
Modeling and managing noise in

quantum error correction

by

Stefanie J. Beale

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Physics (Quantum Information)

Waterloo, Ontario, Canada, 2023

© Stefanie J. Beale 2023

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the

Examining Committee is by majority vote.

External Examiner: Robert Raussendorf

Professor, University of British Columbia,

Dept. of Physics and Astronomy

Supervisor(s): Joel J. Wallman

Adjunct Professor, University of Waterloo,

Dept. of Applied Mathematics

Raymond Laflamme

Professor, University of Waterloo,

Dept. of Physics and Astronomy

Internal Member: Roger Melko

Professor, University of Waterloo

Dept. of Physics and Astronomy

Internal-External Member: Joseph Emerson

Professor, University of Waterloo

Dept. of Applied Mathematics

Other Member(s): Richard Cleve

Professor, University of Waterloo

Dept. of Physics and Astronomy

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of

Contributions included in the thesis. This is a true copy of the thesis, including any required

final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions
The new results presented in this thesis are all the product of close collaboration between

Stefanie Beale and Joel Wallman. Other contributions were given by Andrew Doherty and

Ben Criger in the form of questions or discussion that sparked further work by Stefanie

Beale; these contributions are acknowledged below where they appear.

1. Chapter 1: Introduction

• The materials presented in this section were drawn from material presented in

Stefanie Beale’s Masters thesis, [1], drafts and final versions of papers presented

in subsequent chapters [2–4] (all of which resulted from collaboration between

Stefanie Beale and Joel Wallman), and original writings by Stefanie Beale. Any

information presented in this chapter is either common knowledge or attributed

to its source, though some new notational conventions are presented.

2. Chapter 2: Efficiently computing logical noise in quantum-error-correcting codes

• The writing and results presented in this chapter is modified from work previously

published in [2], for which Stefanie Beale was the first author. Her contributions

included development of ideas, mathematical proofs, and writing. This paper

was co-authored by Joel Wallman. Andrew Doherty contributed to this work by

suggesting one of the presented symmetries in the toric code.

• The proof for symmetries in multiple rounds of QEC was not included in [2] and

was derived post-publication by Stefanie Beale.

3. Chapter 3: Randomized compiling for subsystem measurements

• The writing and results presented in this chapter is modified from work previously

published in [3], for which Stefanie Beale was the first author. Her contributions

included development of ideas, mathematical proofs, derivations of specific and

general examples, and writing. This paper was co-authored by Joel Wallman.

Some background material drew loosely on unpublished notes, to which Samuele

Ferracin, Matthew Graydon, and Emily Wright additionally contributed.

iv

4. Chapter 4: Logical randomized compiling

• The writing and results presented in this chapter is modified from work previously

published in [4], for which Stefanie Beale was the first author. Her contributions

included development of ideas, mathematical proofs, and writing. This paper was

co-authored by Joel Wallman. The argument that stabilizer randomization can

still be used when the surrounding circuits differ was included in response to a

question from Ben Criger.

v

Abstract

Simulating a quantum system to full accuracy is very costly and often impossible as we

do not know the exact dynamics of a given system. In particular, the dynamics of mea-

surement noise are not well understood. For this reason, and especially in the context of

quantum error correction, where we are studying a larger system with branching outcomes

due to syndrome measurement, studies often assume a probabilistic Pauli (or Weyl) noise

model on the system with probabilistically misreported outcomes for the measurements.

In this thesis, we explore methods to decrease the computational complexity of simulating

encoded memory channels by deriving conditions under which effective channels are equiv-

alent up to logical operations. Leveraging this method allows for a significant reduction

in computational complexity when simulating quantum error correcting codes. We then

propose methods to enforce a model consistent with the typical assumptions of stochastic

Pauli (or Weyl) noise with probabilistically misreported measurement outcomes: first via a

new protocol we call measurement randomized compiling, which enforces an average noise

on measurements wherein measurement outcomes are probabilistically misreported; then by

another new protocol we call logical randomized compiling, which enforces the same model on

syndrome measurements and a probabilistic Pauli (or Weyl) noise model on all other opera-

tions (including idling). Together, these results enable more efficient simulation of quantum

error correction systems by enforcing effective noise of a form which is easier to model and by

reducing the simulation overhead further via symmetries. The enforced effective noise model

is additionally consistent with standard error correction procedures and enables techniques

founded upon the standard assumptions to be applied in any setting where our protocols are

simultaneously applied.

vi

Acknowledgements

First and foremost, I would like to thank my supervisors, Joel Wallman and Ray Laflamme

for their invaluable support and guidance throughout this degree; I have learned a lot from

our interactions and am grateful to have been able to grow with them. I would also like

to thank my advisory and examining committee members, Roger Melko, Richard Cleve,

Robert Raussendorf, and Joseph Emerson. The research presented in this thesis was un-

dertaken thanks in part to funding from an NSERC-CGSD award, an Ontario Graduate

Scholarship, by the University of Waterloo, and by the provincial and federal governments.

Thanks also to Kristine Boone, Annie Ray, Julia Amoros-Binefa, Clifford Plesha, Aditya

Jain, Arnaud Carignan-Dugas, and many other friends and colleagues; the people I’ve had

the honour and luck to connect with throughout this process have given me so much in terms

of personal and intellectual growth and support, and I am grateful to have found them.

Last, but not least, I would like to thank my grandparents, Bill and Shirley Kilpatrick;

I am very grateful to have had the opportunity to get closer to them during this final stage

of my academic journey.

vii

Table of Contents

List of Figures x

List of Tables xii

Nomenclature xii

1 Introduction 1

1.1 Preliminaries: Notation for quantum states, channels, and operations 4

1.2 Quantum States . 5

1.3 Quantum computation . 7

1.4 Representations of quantum channels . 7

1.4.1 The natural representation . 9

1.5 Circuit Representation . 9

1.6 Common Unitary Operations and Errors on Quantum States 10

1.6.1 Weyl operators . 11

1.6.2 Clifford operators and universal gate sets 13

1.6.3 Other Common Unitary Operations on Quantum Channels 14

1.6.4 Modeling Quantum Error Channels 16

1.7 Measurement . 17

1.7.1 Indirect measurements . 19

1.7.2 Modeling noisy measurements . 21

1.7.3 Weak measurements . 21

1.8 Error Correcting Codes . 22

1.8.1 Classical Repetition Code . 22

1.8.2 Quantum Repetition Code . 23

1.8.3 Stabilizer Codes and their Error Correction Protocols 26

1.8.4 Popular Examples of Stabilizer Codes 28

viii

1.9 Quantifying Errors . 30

1.10 Encoded implementation . 33

1.10.1 QEC Gadgets . 35

1.10.2 Fault Tolerance . 36

1.11 Twirling . 38

1.12 Randomized Compiling . 39

2 Efficiently computing logical noise in quantum error-correcting codes 42

2.1 Chapter overview . 43

2.2 Introduction . 43

2.2.1 Measurements as channels and noise channels as measurements 44

2.3 Encoded memory channels . 45

2.4 Symmetries in encoded memory channels . 48

2.5 Symmetries of stabilizer codes . 52

2.5.1 Noisy readout measurements in stabilizer codes 55

2.5.2 Symmetries of the toric code . 58

2.5.3 Symmetries for multiple rounds of QEC 66

2.5.4 Symmetries for Non-IID Noise . 67

2.5.5 Symmetries of concatenated stabilizer codes 69

2.6 Conclusion . 73

3 Randomized compiling for subsystem measurements 75

3.1 Chapter overview . 75

3.2 Introduction . 76

3.3 Subsystem measurements . 77

3.4 Example: indirect computational basis measurement 79

3.5 Randomized compiling for non-destructive quantum measurements 81

3.6 General indirect measurements . 84

3.6.1 Two-qubit example . 87

3.6.2 Indirect measurements with noisy Clifford operations 89

3.7 Conclusion . 92

4 Logical Randomized Compiling 94

4.1 Chapter overview . 94

4.2 Introduction . 95

4.3 Example: Coherent errors in the repetition code 97

ix

4.4 Introduction to Logical Randomized Compiling 98

4.5 Gauge degree of freedom . 101

4.6 Analysis of LRC . 102

4.6.1 Clifford operations . 105

4.6.2 T gates . 105

4.6.3 Gates with no known twirl . 106

4.7 Syndrome extraction circuits . 106

4.8 Discussion . 109

4.8.1 Timing and Compilation . 109

4.8.2 Idling . 110

4.8.3 Code switching . 111

4.8.4 Sampling Algorithms . 111

4.9 Conclusion . 112

5 Conclusion 113

5.1 Summary of results . 113

5.2 Future work . 115

References 117

x

List of Figures

1.1 Basic example of a quantum circuit diagram. 9

1.2 Basic example of a quantum circuit diagram with a multi-qudit gate. 10

1.3 The circuit representation of a quantum CNOT gate. 15

1.4 The circuit representation of a quantum Toffoli gate. 15

1.5 Circuit diagram of an indirect measurement. 19

1.6 Circuit diagram of an indirect measurement of a Weyl operation. 20

1.7 Circuit diagram of an indirect computational basis measurement. 20

1.8 Confusion matrix for a noisy measurement in the computational basis. 21

1.9 Encoding circuit for the quantum repetition code. 24

1.10 Circuit diagram that measures bit flip errors on the 3 qubit repetition code. 24

1.11 Plots showing logical error rates as a function of physical error rates. 32

1.12 Circuit diagram of a quantum error correction gadget. 36

1.13 Transversal CNOT on the 3 qubit repetition code. 37

1.14 Circuit diagram for randomized compiling. 41

2.1 Indirect Weyl measurement using the {∣+⟩ , ∣−⟩} basis. 56

2.2 A toric code. 59

2.3 Horizontal translation symmetry in the toric code. 62

2.4 Diagonal reflection symmetry in the toric code. 64

2.5 Tree structure of a concatenated code with outer encoding U and inner en-

coding V . 68

3.1 A circuit diagram showing a subsystem measurement. 78

3.2 Circuit diagram of an indirect computational basis measurement. 80

3.3 A circuit diagram showing a randomly compiled computational basis subsys-

tem measurement. 82

3.4 Circuit diagram of a general indirect measurement. 85

3.5 Randomly compiled implementation of a stabilizer measurement. 86

xi

List of Tables

1.1 Syndromes and corresponding bit flip errors for the 3 bit repetition code. . . 25

1.2 Stabilizer generators for the [[5, 1, 3]] code. 28

1.3 Stabilizer generators for the 9 qubit Shor code. 29

1.4 Stabilizer generators for the 7 qubit Steane code. 29

2.1 Permutations that leave the code space invariant for common stabilizer codes. 53

2.2 Non-trivial operations which induce symmetries in some of the more popular

quantum error correcting codes. 54

2.3 A confusion matrix for a noisy measurement in the X-basis. 56

2.4 Symmetry operations for the toric code. 60

xii

Nomenclature

CNOT Quantum controlled-NOT operation, also written as X̂.

IID Independent and identically distributed.

LRC Logical randomized compiling.

POVM Positive-operator-valued measure.

PVM Projection-valued measure.

QEC Quantum error correction.

QECC Quantum error correcting code.

RC Randomized compiling.

Â Controlled-A gate. E.g. the CNOT (CX) gate would be denoted X̂.

ˆ̂
A Controlled-controlled-A gate. E.g. the Toffoli (CCX) gate would be denoted

ˆ̂
X.

χa(b) When a, b ∈ Znd , χa(b) = e2a⋅bπi/d. When a, b ∈ PWd,n, see eq. (1.29).

CLd.n The Clifford group on n d-dimensional qudits.

C Confusion matrix. That is, matrix containing the probabilities of measuring and

reporting different outcomes in a noisy measurement. Adding a bar to get C̄ gives the

symbol for a logical confusion matrix, which gives the probilities of measuring and

reporting different error syndromes.

F The quantum Fourier transform operation. In the qubit case, this corresponds to the

Hadamard gate.

H, K Hilbert spaces, that is, spaces of bounded linear operators from Ca
to itself.

xiii

B(H,K) The space of bounded linear maps from H to K. B(H) = B(H,H).

U(H,K) The set of isometries from H to K. Recall that an isometry is a bounded linear

operator U for which U
†
U = I. B(H) = U(H,H).

Pos(H) The set of bounded and positive semi-definite operators from H to itself.

I The identity matrix.

∣a⟩ The ath computational basis element when a is an integer (or a lower-case Roman

letter representing an integer), a pure state otherwise.

∣a) Vectorization of a computational basis state ∣a⟩⟨a∣.

∣A⟩⟩ Vectorization of an operator A.

M A measurement. Specified as either a set of projective operators or a set of maps.

N̄U(MR) Noisy encoded memory channel as a function of measurement map MR = UU †R†

for an encoding U . N̄U(MR) = U †R†NU . Adding a tilde, ˜̄NU(MR), indicates noisy

measurement with reported outcome R.

ṄU(R) Noisy encoded memory channel as a function of recovery operation R for an en-

coding U . ṄU(R) = N̄U(MR) = U †R†NU . Adding a tilde, ˜̇NU(R), indicates noisy

measurement with reported outcome R.

ṄU({(Ri,Ni)}) Noisy encoded memory channel for an encoding U with multiple interleaved

noise processes and QEC steps with noise and recovery at step i given by Ni and Ri,

respectively. ṄU({(Ri,Ni)}) = U † (∏m

i=1R
†
iNi)U .

πi Projective operator. When i is a syndrome (pure error), they project onto the

eigenspace corresponding to that syndrome (pure error). Typically i will be a lower-

case letter for a syndrome and an upper-case letter for a pure error.

S The stabilizer group of a stabilizer code.

G The stabilizer generators of a stabilizer code.

L The set of logical Pauli (or Weyl) operators for an error correcting code.

T The set of pure errors for a stabilizer code.

xiv

V Set of recovery maps for an error correction. Typically, when referring to a single

recovery operation, we will use R ∈ V.

Γ(A) Gadget implementation of a map A. A is commonly an operation, state preparation,

or measurement. There is also an error correction gadget.

GS(U) The general stabilizer group - the set of operations that stabilize U , where U is an

encoding map, i.e. GS(U) = {S ∶ SU = U}.

GS(U,N) The subset of GS(U) that commutes with N .

GL(U) The general logical group - the set of logical operations for an encoding U . I.e. the

set of operations L such that there exists some L̄ for which LU = UL̄.

GL(U,N) The subset of GL(U) that commutes with N .

Θ(M) Noisy implementation of M. M is commonly a measurement, though this can also be

used for an operation A, as in Θ(A).

Wd.n The Weyl group on n d-dimensional qudits.

PWd,n The projective Weyl group (i.e. the Weyl group modulo phases) on n d-dimensional

qudits.

X The generalized X operator. For qubits, X is the Pauli matrix, σx.

Y The generalized Y operator. For qubits, Y is the Pauli matrix, σy.

Z The generalized Z operator. For qubits, Z is the Pauli matrix, σz.

ZD The cyclic group of order D.

xv

Chapter 1

Introduction

For the past several decades information technology has advanced rapidly, approximately

following Moore’s law, which states that the density of transistors that can be held on an

integrated chip will double roughly every two years [5]. This rapid advancement has allowed

computers to become an integral component of our society, driving research advancements in

medicine, aerospace, cosmology, and many other vital fields. Unfortunately, in recent years

this rate of doubling has slowed, and soon we will encounter a roadblock to the continuation

of this technological evolution; if the size of transistors continues to decrease, quantum effects

will come into play as transistors become progressively smaller and it will become impossible

to continue to advance in this manner using solely classical technologies.

One shortcoming already present in traditional computation is that it is prohibitively

expensive to simulate quantum systems with classical data. As such, it is difficult to design

medications or simulate chemical reactions using classical computers. An alternative ap-

proach to simulating quantum systems was proposed by Richard Feynman in 1982 [6]. Feyn-

man suggested that a quantum computer, which would manipulate quantum data rather

than classical data, could significantly outperform its traditional classical counterpart. The

advent of quantum computing would additionally address the issue of quantum effects com-

ing into play as Moore’s law continues; quantum computers would themselves rely on these

effects. Since 1982, quantum technologies have advanced significantly, and researchers world-

wide are now racing to get as many quantum bits (qubits - see section 1.2) as possible on a

myriad of platforms.

There are a few significant barriers to the successful implementation of a scalable quantum

computer. Among these barriers is the high sensitivity of quantum systems to interactions

with the surrounding environment; any interaction of the quantum system with the envi-

1

ronment can introduce errors. This high sensitivity to noise informs the need for the work

presented in this thesis.

Many techniques have been developed for characterizing, mitigating, tailoring, and cor-

recting noise in quantum devices. Characterization techniques include methods for fully

describing a state or operation, called tomography [7, 8], which are not scalable with de-

vice size. Other more scalable techniques are in wide use that quantify the performance

for operations in terms of different figures of merit. Such techniques include randomized

benchmarking [9], cycle benchmarking [10], extended randomized benchmarking [11], and,

recently, a technique that gives a description of the noise in terms of probabilities of different

errors called cycle error reconstruction [12]. For a thorough description and cross-comparison

of each of these techniques and other error characterization techniques, see ref. [13].

Mitigation techniques sample from implementations with increased noise to get multiple

data points about the expected output and extrapolate from these points to estimate the

ideal output. These techniques include zero noise extrapolation [14, 15], probabilistic error

cancellation [15], and noisy output extrapolation [16]. For a thorough overview of error

mitigation techniques, see [17]. Mitigation techniques are expected to be useful in the near-

term while devices are noisy but small enough that quantum error correction is not yet the

best option.

Noise tailoring methods aim to modify implementations to enforce an effective noise of a

given form. Notably, randomized compiling [18] is used to enforce an effective noise model on

operations that is consistent with standard assumptions made of noise in studies of quantum

error correction (QEC). However this technique was developed outside of the context of QEC

and was not extended to non-destructive measurements [18]. The results presented in this

thesis include protocols analogous to RC for these contexts [2, 4].

Quantum error correction improves performance by introducing redundancy to stored

information by encoding in a larger space, then using redundancy created by this encoding

to gain information about what error might have occurred without disturbing the stored

information (in an ideal implementation). This retrieved information is referred to as an

error syndrome, and is used to select a recovery operation that attempts to correct the error.

QEC and other methods for fault-tolerant quantum computation are widely considered the

most likely path to effective quantum computation as quantum computers scale up [19, 20].

However, modeling computations under QEC is difficult for the same reason that quantum

computers are expected to be effective, namely that large quantum systems are computation-

ally expensive to simulate. The difficulty of simulating the performance of quantum error

correcting codes (QECCs) is compounded by the fact that the effective noise process depends

2

on the specific error syndromes that are observed as part of the correction process, where the

number of possible syndromes typically grows exponentially with the number of qubits and

rounds of computation. Consequently, little is known about the behaviour of generic noise in

quantum error correcting codes and studies of quantum error correction make assumptions

about the form of the noise.

Measurement refers to a step in quantum computation through which information about

the state of the system is retrieved. This information comes in the form of a sample from a

probability distribution over a set of outcomes. Measurement noise is particularly difficult

to characterize in full and is very dependent on the type of platform used to implement the

quantum computation (for example, measurement errors arise due to thermal excitations

in superconducting qubits or difficulty in detecting dark states in ion qubits [17]) so it is

difficult to select a model that is both accurate and consistent across platforms. Consistency

across platforms is desirable to be able to use results from a given study across different

implementations. As such, a noise model is typically assumed in which measurements are

ideally performed and the outcomes are probabilistically misreported. This model is not

well-motivated by physical phenomena, but provides a form of noise that is relatively easy

to simulate. In studies of QEC, when measurement errors are considered, they are typically

assumed to have an analogous form, wherein error syndromes are assumed to be probabilis-

tically misreported. Protocols for fault-tolerant syndrome measurement also generally rely

on this model.

In this thesis, we develop methods to enable more efficient simulation of noise in QECCs.

We further propose protocols for noise tailoring in measurements and QECCs that enforce

noise of a form consistent with typical assumptions made in studies thereof. We begin

this introductory chapter by reviewing quantum states and methods for describing their

evolution. Next, we describe error correcting codes and the stabilizer formalism, followed

by an overview of fault tolerance. Finally, we review some methods for noise tailoring

in quantum systems by giving an overview of twirling and randomized compiling. The

background provided in this chapter is intended to provide the context to understand the

results presented in subsequent chapters, as outlined in broad strokes below.

In chapter 2, we present new results which enable a significant reduction in the computa-

tional complexity of the simulation of QECCs. This work generalizes and extends the work

presented in refs. [1, 21]. The reduction in computational complexity comes from showing

how symmetries in QECCs can be leveraged to find relationships between the noise maps de-

pendent on different syndrome measurement outcomes in a QECC. We show how to leverage

symmetries in general quantum error correcting codes (where previous work restricted atten-

3

tion to a specific type of QECC called stabilizer codes), extend treatment to include noisy

syndrome measurements, give symmetry conditions in the setting where multiple rounds of

QEC are applied, and present a treatment for concatenated codes. We also present specific

symmetries for the toric code, which is one popular example of a stabilizer code. This is the

first instance where symmetry operations were leveraged in this way for a topological code.

In chapter 3, we propose measurement randomized compiling, a protocol which tailors

measurement noise to a form consistent with standard assumptions. The resultant noise

is easy to analyze and allows techniques developed under the typical model to be applied

effectively. Measurement randomized compiling does not introduce significant overhead and

ensures that entanglement between the measured system and the unmeasured system is

removed by the effective measurement.

Finally, in chapter 4, we propose logical randomized compiling (LRC), a protocol which

tailors noise in a QEC implementation to be consistent with standard assumptions on the

noise. We include compilation methods for a universal gate set, state preparation, mea-

surement, and syndrome extraction, which are the base elements needed for a quantum

error corrected implementation of an arbitrary quantum computation. Like measurement

randomized compiling, LRC can be implemented with little to no additional overhead.

1.1 Preliminaries: Notation for quantum states, channels, and oper-

ations

In this section, we lay out some preliminary notation needed to describe quantum com-

putation (states, operations, measurements) mathematically. We use the following general

notation throughout this thesis. For any Hilbert spaces H and K, let B(H,K) denote the

space of bounded linear maps from H to K, Pos(H) ⊂ B(H,H) be the set of bounded and

positive semi-definite operators from H to itself, and let U(H,K) ⊂ B(H,K)/U(1) denote

the set of isometries from H to K, where we remove global phases from the set of isometries

because they are unobservable in quantum mechanics. When H = K, we use the shorthands

B(H) = B(H,H) and U(H) = U(H,H).

4

1.2 Quantum States

The most common base element of quantum information used in quantum computing is a

quantum bit, or qubit. A qubit is a two-level quantum system that can be used to store

information
1
. Alternatively, a d-level quantum system is referred to as a qudit. We define

the computational basis for a single qubit, {∣0⟩ , ∣1⟩},

∣0⟩ = [1

0
] and ∣1⟩ = [0

1
] . (1.1)

This convention for representing states for qubit systems can be trivially extended, e.g. by

letting ∣i⟩ = ei, where {ei} is the canonical basis, to span the space of a qudit. The ∣0⟩ and ∣1⟩
states typically correspond to a ground and excited state, respectively, in a physical system.

An arbitrary pure single qubit state, ∣ψ⟩ ∈ C2
, can be expressed in the computational basis

as

∣ψ⟩ = α ∣0⟩ + β ∣1⟩ , (1.2)

where α, β ∈ C are referred to as probability amplitudes, and ∣α∣2 and ∣β∣2 give the proba-

bility of measuring 0 and 1, respectively, when the state is projected onto the computational

basis (see section 1.7).

Alternatively, we can write a single qubit state in terms of a density matrix, ρ. A density

matrix is a positive semi-definite operator with unit trace. For a pure state, ρ = ∣ψ⟩⟨ψ∣,
where ⟨ψ∣ is the conjugate transpose of ∣ψ⟩. A mixed state is a probabilistic combination of

pure states ∣ψk⟩,

ρ =∑
k

pk ∣ψk⟩⟨ψk∣ , (1.3)

where pk ≥ 0∀k and ∑k pk = 1. An arbitrary single-qubit state can be expressed in the form

of a density matrix as a linear combination of basis elements of hermitian matrices in C2×2
.

An n-qubit state can be expressed as a density matrix in C2
n×2n

.

1
More concretely, a qubit is a quantum system whose observables are the Pauli matrices and identity

operator, but as these elements are yet to be introduced, the less specific description provided here is

sufficient for understanding.

5

More generally, a qudit of dimension d is a quantum system whose state can be described

by an element of the Hilbert space Hd = B(Cd), that is, the set of bounded linear operators

from Cd
to itself. It is sometimes convenient to represent quantum states as vectors of

expansion coefficients. Relative to the canonical orthonormal basis {ej ∶ j ∈ Zd2} of Cd
2

and

a fixed trace-orthogonal basis {Bj ∶ j ∈ Zd2} of Hd, where ZD is the cyclic group with order

D, we define a vectorization map
2

to be the function

∣⟩⟩ ∶ Hd → Cd
2

∶∶ ∣M⟩⟩ = ∑
j∈Zd2

Tr (B†
jM)

√
Tr (B†

jBj)
ej. (1.4)

Note that we explicitly include the normalization factors rather than defining the map

relative to a trace-orthonormal basis. We can translate expectation values into standard

vector inner products by defining ⟨⟨⋅∣ = ∣⋅⟩⟩†
and using the usual shorthand ⟨⟨A∣B⟩⟩ =

⟨⟨A∣∣B⟩⟩, so that

⟨⟨A∣B⟩⟩ = Tr (A†
B) (1.5)

for all A,B ∈ Hd. For example, one can readily see that the normalization factors are such

that

∣Bj⟩⟩ =
√

Tr (B†
jBj)ej, (1.6)

and so the trace-orthogonality relations between the Bj are equivalent to orthogonality

relations between the ∣Bj⟩⟩. We can extend the above definitions to n qudits by setting

d→ d
n
, where we can construct bases for Hdn by taking the n-fold tensor product of a basis

for Hd. We will frequently work with the n-qudit computational basis states and so define

∣) ∶ Znd → Cd
2

∶∶ ∣j) = ∣ ∣j⟩⟨j∣⟩⟩. (1.7)

Note that because the ∣) stores a computational basis state, it can be treated as a classical

dit or as a qudit with a restricted state space that mimics a classical dit. For clarity, note

that if we conjugate a state ρ by a Kraus operator L =M ⊗ ∣k⟩, we get the state

LρL
†
=MρM

†
⊗ ∣k⟩⟨k∣ , (1.8)

where we have used the overhanging tensor factor of ∣k⟩ in L to append an additional state

space. Vectorizing the result then gives

∣LρL†⟩⟩ = ∣MρM
†⟩⟩⊗ ∣k), (1.9)

so that when we switch between vectorized and unvectorized statements we replace ∣k) by

∣k⟩⟨k∣.
2

There are many ways to write quantum states as vectorizations of the density matrix.

6

1.3 Quantum computation

Any quantum computation can be written as a sequence of three types of primitive operations

that act on a quantum state. These operations are:

1. state resets ;

2. unitary operations ; and

3. measurements.

We call a sequence of these operations a circuit, and the map that a circuit describes it a

channel.

Definition 1. A quantum channel is a completely positive and trace-preserving (CPTP)

linear map that maps quantum states to quantum states.

A state can evolve via deliberate operations or from the effects of noise introduced by

poorly implemented operations or interaction with its surroundings. The combined evolution

due to deliberate operations and noise can often be represented by a channel, though in some

cases, when information is lost to the environment, the map will be trace-decreasing rather

than trace-preserving.

1.4 Representations of quantum channels

An arbitrary linear map, A, acting on a density matrix, ρ, can be described in the Kraus

formalism as follows.

A[ρ] =∑
k

AkρK
†
k (1.10)

where {Ak}, {Kk} ⊂ B(Hd,He) are known as Kraus operators [22]. If A is completely

positive, Ak = Kk ∀k. So for all channels, Ak = Kk∀k. The selection of Kraus operators

is non-unique for a given map. Throughout this document, calligraphic font will be used to

denote maps and Roman font to denote operators.

It is also possible to express channels in a form that acts on a vectorized state via

multiplication. We call these representations superoperators, and they are elements of

7

B(B(Hd),B(He)). We now introduce a superoperator representation consistent with the

vectorizated representation introduced in the previous section for states.

A quantum operation is a map from quantum states to quantum states and so is an

element of the set B(Hd,He) of bounded linear operators from Hd to He. As such, one can

write any Q ∈ B(Hd,He) in terms of vectorized operators as

Q =∑
j

∣Aj⟩⟩⟨⟨Bj∣ (1.11)

for some {Aj} ⊂ He and {Bj} ⊂ Hd. When Q is a completely positive map and Hd = B(Cd),
there exist Kraus operators {Kk} ⊂ Ce×d

such that for any trace-orthogonal basis {Bj ∶ j ∈

Z2
d} of Hd, we have

Q = ∑
k

Bj∈Basis(Hd)

∣KkBjK
†
k⟩⟩⟨⟨Bj∣. (1.12)

As a special case, any (usually unitary) operator A ∈ B(Hd,He) defines a superoperator

A ∈ B(B(Hd),B(He)) acting by conjugation, that is, A(ρ) = AρA† ∀ρ ∈ Hd. Note that the

map A → A is a bijection up to a global (and irrelevant) phase, so we abuse notation by

interchanging A and A. Also note that the maps A ↔ A preserve multiplication, that is,

AB ↔ AB. Given this relation, we get a channel A from an operator A by letting

A = ∑
Bj∈Basis(Hd)

∣ABjA
†⟩⟩⟨⟨Bj∣. (1.13)

While unitary channels are fundamental to quantum computation, they are never imple-

mented perfectly. In full generality, an imperfect implementation of a unitary channel can

be a completely arbitrary channel. However, a common class of errors that are analyzed are

stochastic channels [23], which admit a Kraus operator description {Kj} such that K0 = pI

for some p ∈ (0, 1] and

Tr (K†
jKk) = δj,kTr (K†

jKj) . (1.14)

Throughout this document, when a channel acts on a state, the state will be enclosed

in square braces. When a channel depends on some parameter(s), the parameter(s) will

be enclosed in round braces. In the case where the representation allows channels to act

as multiplication (as in vectorized states with superoper representations of channels, ∣⋅⟩⟩),
the square brackets will be omitted. For clarity we will use capital Roman letters (and π

for projectors, to be introduced in section 1.7) to denote operators and calligraphic font to

denote quantum operations (and Π for a map that applies a projector π).

8

1.4.1 The natural representation

We introduce here a specific state representation and corresponding superoperator that will

prove useful for a proof later in this thesis.. This is treated as an aside as it is only used once

and (outside of that proof) is not required for comprehension of the material presented in this

thesis. We will refer the reader to this section when it arises. The natural representation uses

the standard row vectorization map to get a vectorized state, that is ∣ρ⟩⟩ = vec(ρ), and the

corresponding superoperator for a channel A with Kraus operators {Ak} is A = ∑k Ak⊗A
∗
k .

1.5 Circuit Representation

It is often convenient to represent quantum channels pictorially. This is achieved through

the use of quantum circuit diagrams, in which qudits are denoted by horizontal lines and

operations as images overlaid over the qudits. Figure 1.1 shows a basic example of a quantum

circuit.

∣ψ⟩ W U

Figure 1.1: Basic example of a quantum circuit diagram in which an operator W is applied

to the state ∣ψ⟩, followed by an operator U . Time flows from left to right by convention.

More concretely, the pictorial representations of primitive operations are given below:

ψ̄ (State reset)

U (Unitary operation)

(Measurement)

Multi-qudit operations are represented by images overlaid over multiple qudits in a circuit,

as demonstrated in fig. 1.2. A multi-qudit unitary operation is expressed as an operator in a

larger space. If it acts on each qudit individually, it can be broken down as a tensor product of

single qudit operators. Throughout this thesis, when we examine multi-qudit operators that

act in this manner, we will often omit the tensor product symbol for notational simplicity.

For example, a Pauli operation X ⊗X ⊗ I will be written as XXI.

9

∣ψ⟩ W
V

∣φ⟩

Figure 1.2: Basic example of a multi-qudit quantum circuit diagram in which a single qudit

gate, W , acts on ∣ψ⟩, followed by a multi-qudit gate, V , which acts on W ∣ψ⟩ and ∣φ⟩.

In the case of encoded qudits, it is often convenient to denote a single logical qudit,

which is encompassed by many physical qudits (see section 1.8), as a single horizontal line

in a quantum circuit diagram.

1.6 Common Unitary Operations and Errors on Quantum States

In classical systems, after a system is sampled from an analog to a digital signal, the net

effect of any errors will be that some bits flip (that is, some desired 0s will appear as 1s

and vice versa); the exact mechanisms for data processing in classical systems will not be

explored in this thesis. In quantum systems, states are more complex and thus, single-qubit

errors and operations can take a much more complicated form. Let ∣φ⟩ = α ∣0⟩+ β ∣1⟩. The

quantum analog of a bit flip operator is denoted by X, and maps

∣φ⟩ X
−→ α ∣1⟩ + β ∣0⟩ , (1.15)

or, equivalently, X ∣φ⟩ = α ∣1⟩ + β ∣0⟩, where X is the Pauli matrix

X = [0 1

1 0
] . (1.16)

Quantum systems can also undergo phase flips, which map

∣φ⟩ Z
−→ α ∣0⟩ − β ∣1⟩ . (1.17)

Phase flips are denoted Z, and the combination of a bit flip error and phase flip error is

Y = iXZ, where Y and Z are Pauli matrices,

10

Y = [0 −i

i 0
] Z = [1 0

0 −1
] . (1.18)

Together with the identity matrix, I, the Pauli matrices form a complete basis over hermitian

matrices in C2×2
, so that any single qubit operation or error can be represented as a linear

combination of these matrices. We define the single qubit Pauli group, P = {I,X, Y, Z}, and

the n-qubit Pauli group, Pn = {I,X, Y, Z}⊗n.

1.6.1 Weyl operators

We now introduce the Weyl operators, which are a natural way to generalize the standard

Pauli operators to a higher dimensional group. The single-qubit Pauli operators X and Z

can be expressed in terms of bra-ket notation as

X = ∑
j∈Z2

∣j ⊕ 1⟩⟨j∣ ,

Z = ∑
j∈Z2

(−1)j ∣j⟩⟨j∣ . (1.19)

We can generalize these operators to qudits of dimension d by extending the sums in eq. (1.19)

to to be over Zd and replacing the −1 by a dth root of unity, that is

Xd = ∑
j∈Zd

∣j ⊕ 1⟩⟨j∣ ,

Zd = ∑
j∈Zd

χ1(j) ∣j⟩⟨j∣ , (1.20)

where we define

χa(b) = exp (2πiab

d
) , (1.21)

which is a dth root of unity for any a, b ∈ Zd. For convenience, we omit the subscripted d

where it is implicit from context. We can define the Weyl group on single qudits in terms of

generalized X and Z operators, X(d) and Z(d), respectively:

Wd ≡ {χ1(j)X(d)xZ(d)z ∶ j ∈ Zd, x, z ∈ Zd}. (1.22)

In some cases, it is convenient to consider the phaseless Weyl operators. We therefore

define the set of single-qudit projective Weyl operators, PWd,1 = {Xx
dZ

z
d ∶ x, z ∈ Zd}. For

11

convenience, we define the functions x, z ∶ PWd,n → Znd such that for any P ∈ PWd,n, we

have P = X
x(P)

Z
z(P)

. That is, x(P) and z(P) specify the powers of X and Z on each

tensor factor to define P . The set of n-qudit Weyl operators is PWd,n = PW⊗n
d,1, which can

be written as

PWd,n = {Xx
dZ

z
d ∶ x, z ∈ Znd}, (1.23)

where we use the short-hand

A
a
=⨂

i∈Zn

A
ai ,

(1.24)

for an operator A, a vector a ∈ Rn
. PWd,n is a trace-othogonal basis for Hdn . Explicitly, for

x, z ∈ Znd , we have

X
x
d = ∑

j∈Zn
d

∣j ⊕ x⟩⟨j∣

Z
z
d = ∑

j∈Zn
d

χz(j) ∣j⟩⟨j∣ , (1.25)

where for a, b ∈ Znd we define

χa(b) = ∏
i∈Zn

χai(bi) = exp (2πia ⋅ b
d

) . (1.26)

Similarly, we define the n-qudit Weyl group, Wd,n ≡ {χ1(j)X(d)xZ(d)z ∶ j ∈ Zd, x, z ∈ Znd}.

Using the relation

Z
z
X
x
= χx(z)Xx

Z
z
, (1.27)

(which follows trivially from the definitions of X and Z), we can readily verify that the

projective Weyl operators satisfy

PQP
†
= χ

∗
P (Q)Q, (1.28)

where we define

χP (Q) = χx(Q)(z(P))χ∗x(P)(z(Q)). (1.29)

12

One useful feature of the functions χA(B) introduced above arises as a result of their

relationship to the cyclic group. The cyclic group of order d is the set Zd equipped with

addition modulo d. The irreducible representations of Zd are the d functions

χa ∶ Zd → C ∶∶ χa(b) = exp(2πiab/d), (1.30)

which are the same as the coefficients in eq. (1.21). We can extend the above representations

to obtain the d
n

irreducible representations of the Cartesian product Znd by

χa ∶ Z
n
d → C ∶∶ χa(b) = ∏

i∈Zn

χai(bi), (1.31)

which match eq. (1.26). These representations are all characters and thus obey Schur’s

orthogonality relations [24],

Ea∈Zn
d
(χj(a)χ∗k(a)) = δj,k∀j, k ∈ Znd , (1.32)

where

Es∈S (f(s)) =
1

∣S∣ ∑
s∈S

f(s) (1.33)

denotes the uniform average of a function f over a set S. Schur’s orthogonality relations will

be used in several places in this thesis.

1.6.2 Clifford operators and universal gate sets

The n-qudit Clifford group on d-dimensional qudits, CLd,n, is a subgroup of the unitary

group that maps non-identity Weyl operators to non-identity Weyl operators,

CLd,n = {U ∈ U(2n)∣UσU †
∈Wd,n\I⊗n ∀σ ∈Wd,n\I⊗n}/U(1). (1.34)

Importantly, Clifford gates on prime-dimensional qudits include entangling multi-qudit gates

such as the controlled-X (often referred to as controlled-NOT or CNOT in 2-dimensions)

gate, which will be defined in section 1.6.3. A universal gate set is one which can map from

an arbitrary starting state to any state in the system. For a quantum computer to be fully

general (i.e. be able to perform any quantum computation), it must be able to implement a

universal gate set. One way of constructing a universal gate set is to add any non-Clifford

13

operation to the set of Clifford operations. A common choice of non-Clifford gates for qubit

systems is the T gate,

T = [1 0

0 e
iπ/4] . (1.35)

Note that the T gate is the 4
th

root of the Z gate. Analogously, for d-dimensional qudits,

we can define a T gate as the 4
th

root of the d-dimensional Z operator.

1.6.3 Other Common Unitary Operations on Quantum Channels

This section introduces three common multi-qubit operations used in quantum computing,

as well as the single-qubit Hadamard operator and the generalization of each to the qudit

case. The first 2-qubit gate is the controlled-NOT (CNOT) gate. The CNOT gate applies an

X gate to one qubit when the other qubit is in the excited state, and does nothing otherwise.

The qubit which determines whether X is applied is called the control qubit, and the qubit

acted upon is the target qubit. The operator for a CNOT gate is

X̂ ≡ CNOT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.36)

For qudit systems with dimension d, a CNOT gate is given by

X̂ = ∑
j∈Zd

∣j⟩⟨j∣⊗X
j
, (1.37)

and, more generally, a controlled-A gate for a unitary A is given by

Â = ∑
j∈Zd

∣j⟩⟨j∣⊗ A
j
. (1.38)

Another operation that is commonly used in quantum computing is the SWAP gate,

which exchanges the position of two qubits. The SWAP gate on qubits is

SWAP =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.39)

14

∣ψ⟩ •

∣φ⟩

Figure 1.3: The circuit representation of a quantum CNOT gate, where ∣ψ⟩ is the input

state of the control qubit, and ∣φ⟩ is the input state of the target qubit. A controlled gate

with a different action on the target qubit is represented by a similar symbol in which the

circle on the target qubit is replaced by the symbol representing the desired operation.

An arbitrary permutation of qubits can be achieved by applying a sequence of SWAP gates.

The Toffoli gate, a.k.a. the CCX gate is

ˆ̂
X = ∑

i,j∈Zd

∣i⟩⟨i∣⊗ ∣j⟩⟨j∣⊗X
ij
, (1.40)

which applies an X to the target qubit when both control qubits are in the excited state,

∣1⟩. For qudits, it applies a power of X based on the states of the control qudits. The circuit

representation of the Toffoli gate is given in fig. 1.4.

∣ψ1⟩ •

∣ψ2⟩ •

∣φ⟩

Figure 1.4: The circuit representation of a quantum Toffoli gate, where ∣ψ1⟩ and ∣ψ2⟩ are

the input states of the control qubits, and ∣φ⟩ is the input state of the target.

Much like the CNOT gate, the controlled-controlled-X (CCX a.k.a.
ˆ̂
X) gate can be

generalized to an analogous operation which applies powers of an arbitrary unitary A as

ˆ̂
A = ∑

i,j∈Zd

∣i⟩⟨i∣⊗ ∣j⟩⟨j∣⊗ A
ij
. (1.41)

The single-qubit Hadamard transform is a gate which maps X ↔ Z, i.e. implements a

basis change between the computational basis and the {∣+⟩ , ∣−⟩} basis, and is given by

F =
1√
2
[1 1

1 −1
] . (1.42)

A more generalized version is the quantum fourier transform for qudits, given by

F =
1√
d

∑
a,b∈Zd

χa(b) ∣a⟩⟨b∣ . (1.43)

15

An identity that will be useful to keep in mind is that the X̂ gate can be decomposed

into a sequence of gates via

X̂ = (I ⊗ F
†)Ẑ(I ⊗ F). (1.44)

1.6.4 Modeling Quantum Error Channels

This section describes some common sources of errors in quantum systems, as well as the

theory used to describe them. These concepts are integral to understanding how best to

leverage a noisy quantum system, including how to correct errors effectively.

Definition 2. A unitary channel is a channel whose action on a density matrix, ρ, can be

written U[ρ] = UρU †
, for some unitary operator, U .

A unitary operation can be imagined as a rotation of the state space. It is often convenient

to picture the state space as a unit sphere construct called the Bloch sphere, see e.g. [25].

A noisy implementation of a map A will be denoted by Θ(A).

Operations on quantum states are often referred to as gates. One common source of error

is over or under-rotation when gates are applied. This is generally modeled by a unitary

rotation channel, which, for qubits, can be expressed as a single Kraus operator given by

e
iθn⃗⋅σ⃗

, where n⃗ is a vector with n⃗
† ⋅ n⃗ = 1, σ⃗ = (X, Y, Z), and

e
iθn⃗⋅σ⃗

= cos θI + i sin θ(n⃗ ⋅ σ⃗). (1.45)

Definition 3. A mixed unitary channel, Φ, is a channel that can be expressed as a convex

combination of unitary channels as follows

Φ[ρ] =∑
k

p(k)UkρU †
k , (1.46)

where p is a probability vector, 0 ≤ p(k) ≤ 1∀k and ∑k p(k) = 1.

Definition 4. A stochastic Pauli (Weyl) channel is a mixed unitary channel with Uk ∈

Pn(PWd,n)∀k.

16

Stochastic Pauli channels are useful because they are easy to simulate and, because the

Pauli matrices form a complete basis over Hermitian matrices in C2×2
, a code can correct an

arbitrary single-qubit error if and only if it can correct any single-qubit Pauli error.

Not all channels are stochastic Pauli channels. A common non-Pauli source of error

in physical systems is the decay of an excited state to the ground state. This is modeled

by an amplitude damping channel, in which an excited state decays from ∣1⟩ to ∣0⟩ with

some probability p, while the ground state ∣0⟩ remains unchanged. The amplitude damping

channel can be described by the Kraus operators {Ai} in eq. (1.47). The amplitude damping

channel is not mixed unitary and does not leave the identity matrix invariant.

A0 = [0
√
p

0 0
] and A1 = [1 0

0
√

1 − p
] . (1.47)

It is possible to achieve a Pauli approximation of a channel via a process referred to as

Pauli twirling [26]. This is achieved by taking the average result of conjugating a channel

with Pauli operators. More generally, twirling is the process of taking the average channel

under conjugation by a set of unitaries. For more detail, see section 1.11. Pauli twirling is

achievable experimentally and is easily achieved in simulations and theory [26].

The depolarizing channel is a common example of a Pauli channel used to model noise;

it describes a process in which the input state is replaced with the maximally mixed state

with probability p, and left unchanged with probability 1 − p. The depolarizing channel

can be described by the Kraus operators A0 =

√
1 − 3p/4I, A1 =

√
p/4X, A2 =

√
p/4Y ,

and A3 =

√
p/4Z. As with more general stochastic Pauli channels, it is possible to attain a

depolarizing channel by twirling. The twirl which produces a depolarizing channel is over

the Clifford group rather than the Pauli group.

When studying noise in a quantum system, it is often useful to be able to refer to the

number of subsystems that an error acts on. We therefore define the weight of an operator.

Definition 5. An operator has weight w if it acts non-trivially on w qubits.

1.7 Measurement

Measurements are the only method available to retrieve information from a quantum system.

However, any interaction with a quantum system changes it. In this section, we introduce

17

measurement operations, including an overview of mathematical descriptions of projection-

valued measures, computational basis measurements amd indirect measurements.

A projection-valued measure (PVM) M ⊂ Pos(H) is a set of orthogonal projectors that

sum to the identity, that is, π
2
= π for all π ∈ M and ∑π∈M π = IH where IH denotes the

identity element of B(H). An ideal K-outcome projective measurement is described by a

set of projectors M = {πk ∶ k ∈ ZK} ⊂ H. The most common type of measurement is a

measurement in the computational basis, which projects onto computational basis states. For

a single-qubit system, a computational basis measurement takes the form {∣j⟩⟨j∣ ∶ j ∈ Z2}.

For a computational basis measurement of a larger n-qudit system of d-dimensional qudits,

the set would be Mcomp = {∣k⟩⟨k∣ ∶ k ∈ Znd}. When we consider a composite system, we may

want to measure the ith subsystem. This can be represented by the Kraus operators

Mcomp,i = { ∑
j∈Zn

d ∶ji=k

∣j⟩⟨j∣ ∶ k ∈ Zd}, (1.48)

which, in the case i = 0 reduces to

Mcomp,0 = {∣k⟩⟨k∣⊗ I
⊗n−1
d ∶ k ∈ Zd}. (1.49)

That is, the kth projector acts as ∣k⟩⟨k∣ on the ith subsystem and I on the rest of the

subsystems.

When we apply a projective measurement whose projectors πi admit a decomposition of

an operator A as

A =∑
i

λiπi, (1.50)

where {λi} are the eigenvalues of A, we say that we are measuring A. In this case, πi

is a projector onto the eigenspace of A corresponding to λi. If we measure A on some

state, ∣ψ⟩ we will observe some outcome λi, with probability ⟨ψ∣ πi ∣ψ⟩, and the state after

measurement is in the corresponding eigenspace. Specifically, the post-measurement state is

πi∣ψ⟩√
⟨ψ∣πi∣ψ⟩

. (1.51)

The most common type of measurement is a measurement of the Z operator, which imple-

ments a computational basis measurement. We can see that measuring Z projects the state

onto the computational basis since Z can be decomposed as

Z = ∑
j∈Zd

χ1(j) ∣j⟩⟨j∣ . (1.52)

18

1.7.1 Indirect measurements

Sometimes, measurements are mediated through an additional readout space. We call such

measurements indirect measurements. This allows us to construct measurements of opera-

tions which return less information than would be needed if we measured the state space

directly to measure the same operations. For example, if we wanted to measure the operation

ZZ on a 2-qubit space and could only measure the state space directly, we would measure

each of the 2 qubits, giving us 2 bits of information about the state corresponding to the

eigenspace of IZ and of ZI that the state space is in after each measurement. We would

then use these two bits to calculate the eigenspace of ZZ. However, with an indirect mea-

surement, it is possible to measure ZZ (or any single operation for which we can construct

suitable projectors on the joint space) and retrieve only one bit of information, indicating

which eigenspace of ZZ the state is in after measurement. Because we have collected less

information, the state of the system is disturbed less; measuring ZI and then IZ collapses

onto an eigenspace of ZI and then IZ, whereas measuring ZZ collapses onto an eigenspace

of ZZ, leaving the state in a larger subspace of the state space than the double measurement

allows and thereby retaining more quantum information. For example, the superposition of

the state ∣00⟩ + ∣11⟩ is destroyed if we measure two bits by measuring the qubits directly

but preserved if we use an indirect ZZ measurement to measure one bit. To perform an

indirect measurement on a state space Hs, we prepare the readout space Hr in a state ∣φ⟩
and apply a unitary V ∈ U(Hs⊗Hr). Then, we measure Hr via some measurement M ⊂ Hr.

The operation applied for an indirect measurement then takes the form

(I ⊗M)V (1.53)

and the circuit diagram for an indirect measurement is given in fig. 1.5.

State register Ks
V

Readout register Kr ∣φ⟩
(1.54)

Figure 1.5: Circuit diagram of an indirect measurement. Note that we include a measurement

with no classical register; this is for ease of readability and we will follow this convention for

the remainder of this subsection. In practice, a classical register is necessary to retrieve the

classical information from a measurement.

An explicit form for a circuit which performs an indirect measurement of a Weyl operation

A ∈W(Hs) is given in fig. 1.6.

19

State register Hs ∣ψ⟩⟩ A Πk(A)∣ψ⟩⟩

Readout register Hr ∣0⟩ F • F
† ∣k⟩

Figure 1.6: Circuit which performs an indirect measurement of a Weyl operation A ∈W(Hs),
where the quantum Fourier transform is defined in eq. (1.43) and controlled-Weyl gates are

defined in eq. (1.38). The measurement is performed in the computational basis.

Data qubit: ∣ψ⟩⟩ •

Readout qubit: ∣0⟩

Figure 1.7: Circuit diagram of an indirect computational basis measurement.

We denote the indirect measurement of a Weyl operation A ∈W(Hs) as MA so that

MA = (I ⊗McompF
†)Â(I ⊗ F). (1.55)

The projective operators which describe this measurement are given by

MA = {πk(A)⊗ ∣k⟩⟨k∣}, (1.56)

where

πk(A) = 1

d
∑
j∈Zd

χ
∗
k(j)Aj (1.57)

projects onto the k
th

eigenspace of A so that the final state on Hs is in the k
th

eigenspace of

A and the readout register is in ∣k⟩ for k ∈ Zd.

Recalling eq. (1.44), an indirect computational basis measurement can be performed via

the circuit given in fig. 1.7.

Recall that throughout this thesis, in the context of measurements, π will typically denote

a projector and Π will be used as the map that applies π. Further, M will be used to denote

a measurement as a set of operators or maps. In this notation, the ideal state after applying

a PVM M to a system in the state ρ and observing outcome associated with projector π is

ρ
′
=

Π[ρ]
TrΠ[ρ] , (1.58)

20

where TrΠ[ρ] is the probability of observing the outcome π ∈M conditioned on the system

being in the state ρ.

In this thesis, we will often consider the average effect of a measurement, in which case

we can treat measurements as a channel (more detail on this will be given in section 2.2.1

and we defer a more thorough discussion to that section). In this case, the channel that is

applied when the measurement M is performed and the outcome is not recorded is

M = ∑
πk∈M

B∈Basis(H)

∣πkBπ†
k⟩⟩⟨⟨B∣. (1.59)

1.7.2 Modeling noisy measurements

Studies which include noisy measurements typically model them as ideal projectors with

probabilistically misreported outcomes. This model can be summarized by a confusion ma-

trix, which contains the probability of measuring a given projector and reporting a given

outcome under the model. The confusion matrix element in the i
th

row and j
th

column indi-

cates the probability of having applied the ideal projector associated with the i
th

outcome,

given that the j
th

outcome was reported. For the simplest example, consider a computa-

tional basis measurement on a single qubit. Because there are two possible outcomes, the

confusion matrix will be 2 × 2, and would take the form given in fig. 1.8. The columns of a

confusion matrix should sum to 1.

∣0⟩ ∣1⟩
⟨0∣ p(0∣0) p(0∣1)
⟨1∣ p(1∣0) p(1∣1)

Figure 1.8: A confusion matrix for a noisy measurement in the computational basis. Here,

p(A∣B) is the probability of having measured an outcome A (i.e. the ideal projection onto

A was applied) given a reported outcome B.

A noisy implementation of a measurement M will be denoted by Θ(M).

1.7.3 Weak measurements

We now include an overview of weak measurements for completeness. A weak measurement

is an indirect measurement in which the unitary operation applied to the joint space prior

21

to measuring the readout space implements a weak coupling between the state space and

the readout space. We therefore define a unitary operation on the joint space in terms of a

Hamiltonian H ∈ B(Kstate ⊗Kout)

V (t) = e−itH , (1.60)

where t is the interaction strength, and can be associated with the time for which the state

is allowed to evolve under H. We assume since we want a weak interaction that t is small

and perform a series expansion of V about t = 0:

V (t) =
∞

∑
n=0

(−itH)n
n!

(1.61)

= IKstate
⊗ IKstate

− itH −
1

2
t
2
H

2
−

1

6
it

3
H

3
+O(t4). (1.62)

Letting H = S ⊗ O for S ∈ B(Kstate), O ∈ B(Kout), and recalling that a measurement

on subspace Kout has Kraus operators of the form I ⊗ ∣k⟩⟨k∣, we have Kraus operators

Mk ∈ B(Kstate) of the full weak measurement that take the form

Mk ≈ I ⟨k∣φ⟩ − itS ⟨k∣O ∣φ⟩ − 1

2
t
2
S
2 ⟨k∣O2 ∣φ⟩ − 1

6
it

3
S
3 ⟨k∣O3 ∣φ⟩ , (1.63)

where we have dropped higher order terms. The superoperator representation of such a mea-

surement channel in terms of the Kraus operators is defined in the usual way (i.e. eq. (1.12)).

1.8 Error Correcting Codes

Errors are introduced into quantum systems when the system is not sufficiently isolated from

the surrounding environment and when gates are not perfectly implemented. To correct these

errors, it is necessary to use a protocol to reduce errors. This section reviews the basics of

quantum error correcting codes, which form the backbone of one such method for reducing

errors, namely quantum error correction.

1.8.1 Classical Repetition Code

In classical computing, hardware is sufficiently stable that errors due to interaction with the

environment are rare. However, in situations where an error could be fatal (for example in an

22

aircraft), classical encodings are still used to protect computations and stored information.

Classical encodings are also commonly used to reduce the number of bits used to transmit

information. One common classical encoding used to protect against noise is the repetition

code. The repetition code protects classical data by copying every bit of data onto additional

bits to create redundancy. We distinguish encoded (logical) bits from physical bits by adding

a bar, so a three bit encoding for a classical repetition code would be expressed as

0→ 0 = 000 (1.64)

1→ 1 = 111. (1.65)

For example, the string “010” would be encoded as “000111000”. Errors are then corrected

by measuring every physical bit in each logical bit and flipping any bit that doesn’t agree

with the majority. Introducing a bit flip error on the second last physical bit in the above

example, we have “000111010”. When we measure the third logical bit, we see that the second

physical bit doesn’t match the others and will accurately correct the error. If, however, two

single bit errors were introduced in the same logical bit, e.g. “000111011”, we would attempt

to correct the wrong error so that the end result would be “000111111”, thus introducing

a logical fault, as this would then be decoded as “011” rather than the intended “010”.

However, this recovery method works the majority of the time because the error rate in

classical systems is incredibly small [27]
3
.

1.8.2 Quantum Repetition Code

The classical error correction methods described in section 1.8.1 cannot be readily used in

quantum systems because, by the no-cloning theorem [28], quantum states cannot be copied,

so the classical encoding cannot be exactly replicated for a logical quantum state. Further,

measuring a quantum state changes it, so observing the state directly to see errors directly is

not advisable as it would result in a loss of encoded information, and errors are continuous,

unlike errors in digitized classical data.

In quantum error correction, encoding creates redundancy in a similar way; data is

protected using additional qudits, albeit in a different manner. Additionally, extra “readout”

qudits are used to get information about errors in quantum error correcting codes via indirect

measurements.
3

This study reported one memory error on average in 41 hours on a node with 4GB of DRAM with no

error correction in 2016.

23

Definition 6. The set of codewords of a quantum error correcting code is the set of encoded

computational basis states.

The quantum repetition code is constructed by defining logical states ∣0⟩ = ∣000⟩ and

∣1⟩ = ∣111⟩. This encoding does not violate the no-cloning theorem because a general state

∣ψ⟩ = α ∣0⟩+β ∣1⟩ maps to ∣ψ⟩ = α ∣0⟩+β ∣1⟩, rather than (α ∣0⟩+β ∣1⟩)⊗3 and so the state

is not copied in the encoding process. The encoding circuit for the 3 qubit repetition code

is given in fig. 1.9.

∣ψ⟩ • •

∣0⟩
∣0⟩

Figure 1.9: Encoding circuit for the quantum repetition code.

To detect bit flip errors on states encoded in the quantum repetition code, we can detect

differences between any two pairs of physical qubits without directly measuring the encoded

state as shown in fig. 1.10. An astute reader might recognize that this is similar to the

indirect computational basis measurement circuit presented in fig. 1.7, which is a special

case of fig. 1.6.

Figure 1.10: Circuit diagram that measures bit flip errors on the 3 qubit repetition code.

Measuring ancilla qubits a (b) tells us whether the first and second qubit (second and

third) qubit in the encoded state match. The outcome of these measurements is a two bit

string called a measurement syndrome, which provides insight into what errors might have

occurred. Assuming that bit flip errors are the only source of noise in our system, we can

24

try to correct the noise based on the measured error syndrome. Error syndromes and the

associated bit flip errors are listed in table 1.1.

Label a b Errors

m0 0 0 I
⊗3

, X
⊗3

m1 0 1 IIX, XXI

m2 1 0 XII, IXX

m3 1 1 IXI, XIX

Table 1.1: Syndromes and corresponding bit flip errors for the 3 bit repetition code.

Assuming a low probability of error (in a useful quantum system, this is a reasonable

assumption), we generally choose to correct the underlined error associated with each syn-

drome in table 1.1; if each qubit has a low probability p of undergoing a bit flip error, then

the underlined errors are significantly more likely to occur than the others. Correcting an

error that did not occur can result in a logical error. For example, if an XXI error occurs

and we measure the correct syndrome, (0, 1), but we assume that IIX has occurred and

apply IIX as a correction, we will then have the encoded state acted upon by XXX, thus

producing a logical fault
4
.

The indistinguishability of these errors is symptomatic of a pervasive issue in quantum

error correction; the only information available to try to correct errors in a quantum error

correcting code is which syndrome was measured, which could correspond to many different

errors. This difficulty is well summarized by the Knill-Laflamme conditions for error correc-

tion, presented in ref. [20], which give necessary and sufficient conditions for a state to be

recoverable after it has undergone some noise process.

The codewords of a code form an orthonormal basis of the codespace. In terms of the

codewords, {∣ψi⟩} ∈ C, the first Knill-Laflamme condition for the correctability of a set of

errors E is that the following two statements hold for all E,F ∈ E such that E ≠ F :

1. ⟨ψi∣E†
F ∣ψi⟩ = ⟨ψj∣E†

F ∣ψj⟩

2. ⟨ψi∣E†
F ∣ψj⟩ = 0.

It should be noted that this condition applies for any orthonormal basis of the codespace,

rather than just the set of codewords. The other conditions presented in [20] are equivalent

and we restrict attention to this one for brevity.

4
Applying the recovery operator introduces a logical fault because it plus the error maps ∣0⟩↔ ∣1⟩.

25

We can construct a similar code which corrects phase errors by replacing the CNOT gates

in fig. 1.9 with controlled-Z gates and applying Hadamard gates to the ancilla qubits before

and after the CNOTs in the syndrome measurement.

1.8.3 Stabilizer Codes and their Error Correction Protocols

Stabilizer codes are a subclass of quantum error correcting codes for which the encoded space

is specified as the space stabilized by an Abelian group S, called the stabilizer group. That

is, the codespace is the mutual +1 eigenspace of the stabilizers,

{∣ψ⟩ ∶ S ∣ψ⟩ = ∣ψ⟩∀S ∈ S}. (1.66)

The quantum repetition code introduced in the previous section is an example of a stabilizer

code. Typically, the stabilizers are chosen to be phase multiples of Weyl operators, and for

the code space to not be empty we require S to contain no nontrivial phase multiples of the

identity. However, we will work with the operator space of the codespace, and so we define

the codespace to be

O = {ρ ∶ SρS†
= ρ∀S ∈ S}. (1.67)

The projector onto the codespace is then

πI = ES∈S(S). (1.68)

The stabilizer group for a code which encodes k logical qudits of dimension d in n physical

qudits of dimension d has order ∣S∣ = d
n−k

and can be specified by a minimal generating

set G such that ⟨G⟩ = S, where ⟨G⟩ denotes the group generated by G. The simultaneous

eigenspaces of G form a set of mutually orthogonal subspaces of the physical space used to

encode a logical state. We refer to the these eigenspaces as the cospaces of the code. There

is a group T ⊊ PWd,n called pure errors such that each pure error T ∈ T maps a state on

one eigenspace to a state on a distinct eigenspace. Thus, we define the cospace OT of the

code to be

OT = {TρT †
∶ ρ ∈ O}. (1.69)

Thus, the projector onto OT is πT where

πT = TπIT
†
= ES∈S(χ∗T (S)S), (1.70)

26

and the final equality follows from eq. (1.28). Each stabilizer code has logical Weyl operations

L for which [L, S] = [L, T] = 0∀L ∈ L, T ∈ T, S ∈ S and which have the same commutation

relations as the corresponding physical operations. Analogous to our notation for logical

states, we denote a logical operation by putting a bar above, that is, a logical version of an

operation L would be denoted by L̄. As one might expect, a logical operation L̄ acts on the

codespace in the same manner as its physical counterpart, L, would act on an unencoded

state space.

The existence of mutually orthogonal cospaces allows a us to distinguish between sets of

errors that might have occurred by measuring the stabilizer generators of the code. Each

pure error (and therefore cospace) is associated with a ditstring called the error syndrome.

We define the syndrome space to be the union of the cospaces,

∪T∈TOT . (1.71)

Crucially, the syndrome space is a strict subspace of the whole physical space because su-

perpositions of states in different cospaces are not in the syndrome space.

Relating this back to the repetition code introduced in section 1.8.2, the stabilizer genera-

tors of the repetition code are ZZI and IZZ. Figure 1.10 measures the stabilizer generators

using an indirect measurement (recall from eq. (1.44) that a X̂ operation can be expressed

as a Ẑ operation with Fourier transforms), with ZZI measured using the ancilla qubit a

and IZZ measured with qubit b. The measurement outcomes specify which cospace of

the code the post-measurement state is in, and are related to the commutation relations of

the measured stabilizer generator with the error that has occurred (and, equivalently, the

corresponding pure error). The logical Weyl (in this case Pauli) operators for the 3-qubit

repetition code are Ī = III, X̄ = XXX, Ȳ = −Y Y Y , and Z̄ = ZZZ.

As part of the error correction process, a recovery operation RT associated with the

measured cospace is typically applied to map the state back to the codespace. The selection

of effective recovery operations is imperative to the successful implementation of an error

correcting code as selecting suboptimal recovery operations can introduce a logical fault, as

we showed in section 1.8.2 for the repetition code.

The notion of code distance in quantum error correction is analogous to that used in

classical error correcting codes, and there are many equivalent definitions. We will use the

definition provided below herein.

Definition 7. The distance of a quantum error correcting code is the minimum weight of

an operator which maps one codeword to another.

27

A QECC which encodes k logical qubits in n physical qubits and has distance d is

denoted as an [[n, k, d]] code. An [[n, k, d]] code can correct the set of t-qubit errors, where

t ≤ ⌊(d − 1)/2⌋[29]. When the distance is unknown or unspecified, a code is often referred

to as an (n, k) code.

QECCs are often used in concatenation schemes to increase code distance. This is ac-

complished by re-encoding each physical qubit in an encoding with another (or the same)

QECC, recursively. Re-encoding with the same QECC at each level of concatenation is often

used to find thresholds for the performance of a given QECC [30–32]. It is worth noting that

concatenating using different QECCs has been used to get a universal set of fault-tolerant

gates on the full encoded state [33].

1.8.4 Popular Examples of Stabilizer Codes

The [[5, 1, 3]] code is the smallest code that can correct any single-qubit error. The stabilizer

generators of the 5 qubit code are given in table 1.2. This code is referred to as a “perfect”

code because each single qubit Pauli error (plus the trivial error) is associated with a unique

syndrome and there are no syndromes leftover.

X Z Z X I

I X Z Z X

X I X Z Z

Z X I X Z

Table 1.2: Stabilizer generators for the [[5, 1, 3]] code.

The 9-qubit Shor code is created by concatenating the 3 qubit repetition (bit flip) code

and the 3 qubit phase flip code to form a code which can correct all single qubit bit flip or

phase flip errors. The Shor code is specified by the generators given in table 1.3.

28

Z Z I I I I I I I

I Z Z I I I I I I

I I I Z Z I I I I

I I I I Z Z I I I

I I I I I I Z Z I

I I I I I I I Z Z

X X X X X X I I I

I I I X X X X X X

Table 1.3: Stabilizer generators for the 9 qubit Shor code.

Calderbank-Steane-Shor (CSS) codes are created by mapping the parity check matrix of

classical codes
5

to Pauli operators as follows: half of the stabilizer generators are constructed

by taking each row of the parity check matrix for a classical code and replacing every 0 with I

and every 1 with X. To construct the remaining stabilizer generators, this process is repeated,

using a code that is the dual of the first code, but with 0→ I and 1→ Z. The Steane code

is an example of a CSS code, and is constructed from the classical 7 bit Hamming code, with

stabilizer generators given in table 1.4. There are many other CSS codes; the [[15, 1, 3]]
Reed-Muller is one of the more popular examples, and one of the larger codes commonly

studied.

Z Z Z Z I I I

Z Z I I Z Z I

Z I Z I Z I Z

X X X X I I I

X X I I X X I

X I X I X I X

Table 1.4: Stabilizer generators for the 7 qubit Steane code.

For each of the 3-, 5-, 7-, and 9-qubit codes introduced above, the logical Pauli operators

are specified by X̄ = X
⊗n

and Z̄ = Z
⊗n

, with Ȳ = iX̄Z̄.

Some of the more popular stabilizer codes are motivated by topology. In particular, some

surface codes are quite prominent for implementations because a planar chip layout lends

5
We omit an introduction to classical error correcting codes for brevity; for a thorough introduction, see

[34].

29

itself to a planar code construction. Often, topological codes allow stabilizer generators to

be measured by low-weight local operations. In this thesis, we will restrict attention to a

single type of topological code: the toric code. Unlike the previous examples of popular

stabilizer codes, the toric code stores 2 logical qubits. As such, there are two of each of the

single-qubit logical Pauli operations, and 2-qubit operations can be implemented on a single

code block. Another difference is that “the” toric code is actually a class of codes, where

an individual code is specified by a number of rows and columns, from which the number

of physical qubits can be calculated. The distance of the code depends on which toric code

is in use, and as usual corresponds to the lowest-weight non-trivial logical operator. We

defer a complete description of stabilizers and logical operations to section 2.5.2 as it will be

convenient to have the definition at hand when deriving the results in that section.

1.9 Quantifying Errors

In any computation, it is important to have some figure of merit which quantifies the relia-

bility of the result; several methods have been developed to analyse the severity of noise in

quantum systems.

Some specific noise channels have a form that lends itself easily to defining an error rate.

A stochastic Pauli channel, for example, has some probability of applying a non-identity

operation; that probability could easily be viewed as the error rate for that channel. For a

channel which applies a unitary rotation, by contrast, it is not immediately obvious what

figure of merit should be used to quantify the severity of the error.

The average gate infidelity
6

to the identity (hereafter infidelity) is one figure of merit

developed to quantify error rate in quantum systems. The average gate infidelity is often

referred to as the average error rate. It is the most commonly used figure of merit by

experimentalists because it can be estimated efficiently in physical systems via randomized

benchmarking (see ref. [9]). The infidelity, r(Φ), of a channel Φ, to the identity channel is

given by eq. (1.72).

r(Φ) = 1 − ∫ ⟨ψ∣Φ(∣ψ⟩⟨ψ∣) ∣ψ⟩ dψ, (1.72)

6
We define infidelity as one minus the fidelity.

30

where the integration is over the uniform Haar measure on pure states. In terms of the Kraus

operators, {Ak}, of the channel, Φ acting on a m
2
-dimensional state space, the infidelity is

7

[26, 35]

r(Φ) = ∑k ∣Tr(Ak)∣2 +m
m(m + 2) (1.73)

The diamond distance, ⋄(⋅), is another common figure of merit for error quantification, and

is commonly used by theoreticians as a worst-case error analysis. It is defined relative to the

identity channel, I, by eq. (1.74),

⋄(Φ) = supψ
1

2
∥(Φ⊗ Im − Im2)(ψ)∥1, (1.74)

where the supremum is over all m
2
-dimensional pure states to account for the effect of the

channel on an entangled state.

The diamond distance is related to the infidelity by [36, 37]

m + 1
q r(Φ) ≤ ⋄(Φ) ≤

√
m(m + 1)

√
r(Φ), (1.75)

with

⋄(P) = m + 1
m r(P) (1.76)

for Pauli noise P [38]. For unitary rotations, U , ⋄(U) is proportional to
√
r(U), but does

not necessarily saturate the upper bound in eq. (1.75)[39].

Both the fidelity and diamond distance extend easily to characterizing the severity of

logical errors. However, comparing physical and logical error rates with these two figures

of merit demonstrates some significant discrepancies in their characterization; the logical

fidelity at the third level of concatenation arising from depolarizing vs. a rotation about the

Z-axis differ by orders of magnitude when each has the same physical noise rate but one is

characterized by the diamond distance and the other by the fidelity[40]. Figure 1.11 shows

results from [40] comparing physical diamond distance and physical fidelity to logical fidelity

7
In the interest of brevity, we omit the details of this derivation.

31

for randomly generated CPTP maps. Notice that the plots highlight that the depolarizing

noise has the best logical fidelity when compared to the physical diamond distance, and the

worst logical fidelity when compared to the physical fidelity. Conversely, Z rotation noise has

the best logical fidelity when compared to the physical fidelity and the worst logical fidelity

when compared to the physical diamond distance. It is thus difficult to predict the logical

error rate (or even predict whether one type of noise will result in worse or better logical

performance than another) in terms of a single figure of merit that quantifies the physical

error rate.

Recent work, [41], developed a reliable way to predict the logical error rate in terms of the

physical error rate for concatenated codes under randomized compiling (see section 1.12).

However, we still do not have reliable methods for predicting the logical error rate for codes

outside of this setting.

Figure 1.11: Figure reproduced from [40, Figure 1]. ©IOP Publishing. Reproduced with

permission. All rights reserved. Plots of average logical fidelity for an encoded noisy state at

the third level of concatenation, r(N (3)), in the Steane code entangled with a perfect single

qubit state as a function of physical diamond distance, ⋄(N), (left) and physical infidelity,

r(N), (right) when recovery operations are selected to maximize fidelity with the noiseless

state. Each point on each plot corresponds to a random CPTP map, which acts on each

physical qubit comprising the state encoded in the Steane code. The blue lines show the

behaviour of depolarizing noise, while the black show the scaling of errors for a coherent

rotation about the Z axis.

32

1.10 Encoded implementation

When computations are implemented in an error corrected code, we refer to that implemen-

tation as an encoded implementation. The goal of an encoded implementation is to encode

the operations in such a way that some errors can be detected by performing syndrome

measurements and corrected between operations. We consider syndrome measurements as a

fourth type of primitive operation for encoded implementations. Each of the encoded primi-

tives (encoded state resets, unitary operations, measurements, and syndrome measurements)

are themselves a sequence of the three primitive operations applied on the physical space.

We refer to an encoded version of a single operation as a gadget. A gadget is then a

sequence of primitive operations whose composition acts on the codespace in the desired way.

To implement an error-corrected circuit, each element of the unencoded circuit is replaced

by the corresponding gadget. Additionally, error correction gadgets are added (e.g., between

each gadget arising from encoding the circuit) that consist of a syndrome measurement

followed by a recovery operator to correct the effect of any errors that occurred. An error

corrected implementation is successful if it outperforms the unencoded implementation (as

evaluated by some figure of merit). A mathematical description of encoded implementations

follows.

Recall that a quantum circuit consists of a sequence of m operations Q1, . . . ,Qm ∈ B(H)
on some physical space H = B(Cd). In a typical computation, Q1 resets the entire system

to a fixed state and Qm typically performs a measurement to return a ditstring result. The

complete unencoded quantum computation is then

∏
j=m→1

Qj. (1.77)

To implement these operations, we perform some physical operations that are intended

to produce the desired map. That is, we have some noisy implementation map Θ ∶ B(H)→
B(H) such that the actual implemented map is

∏
j=m→1

Θ(Qj). (1.78)

The implementation map Θ is generally a non-linear function
8

(i.e., it is not an element of

B(B(H))) and is also not a representation of the unitary group since the implementation

8
An implementation map can be non-linear because e.g. it could contain noise coming from a unitary

operation acting on the joint system-environment state, in which case the evolution of the system can be

non-linear.

33

of each ideal operation must be compiled into a sequence of calibrated operations, each of

which is imperfectly implemented.

To obtain an improved implementation of a circuit, we implement quantum error cor-

rection protocols to embed the quantum space H into a larger space K = B(Ce) for some

integer e > d. That is, we have some gadget map Γ ∶ B(H) → B(K), which will again not

be linear, such that

∏
j=m→1

Γ(Qj). (1.79)

acts on the larger system. The error correction protocol is successful if eq. (1.77) is closer

to eq. (1.79) than eq. (1.78) under some appropriate figure of merit that depends upon the

application. We can have multiple gadget maps and concatenate them appropriately to

further improve performance at the cost of requiring a larger quantum system and longer

processing time.

Encoded operations (also referred to as logical operations) act on encoded states, which

are elements of a codespace O ⊂ K that is isomorphic to H, via gadgets. Specifically,

for each operation A, a gadget map Γ(A) returns a sequence of q(A) physical operations

A1, . . . , Aq(A) ∈ B(K) such that

Γ(A) = ∏
k=q(A)→1

Θ(Ak) (1.80)

ideally performs the operation Ā on the encoded space O. When operations are performed

non-ideally, the effect of such an implementation can map encoded states outside of the

codespace.

A gadget implementation of an operation A is ideal, Γ(A) = Γid(A) ≡ Ā, if the action

of the gadget map on the codespace O is isomorphic to the ideal action A of A on the

unencoded space H. For convenience, when implementations are ideal, we will denote the

action of such an implementation by the channel it implements, e.g. Γid(A) = Ā. For a

gadget map to be a fault-tolerant encoding, it must prevent the spread of errors beyond the

ability of the code to correct [19]. See section 1.10.2 for more detail.

Because implementations of gadgets are noisy, we want to be able to correct errors that are

introduced during the computation. We therefore introduce an error correction gadget, which

leverages the redundancy introduced by encoding in a larger physical space to correct errors.

The error correction gadget is a function of a set of recovery maps V applied to implement the

34

correction, as well as a measurement outcome T which indicates which recovery to apply. A

QEC gadget is then denoted by ΓQEC(T,V). Because errors can be introduced by any noisy

gadget, QEC gadgets are typically interleaved between every other gadget. An encoding of

a circuit therefore typically takes the form

Γ(M) ∏
j=m−1→0

ΓQEC(Tj,Vj)Γ(Aj), (1.81)

where we terminate the computation with a measurement gadget Γ(M) and allow the re-

covery sets Vj to depend on j rather than only T so that we can correct the different errors

that are introduced by the different logical operations using distinct recovery maps. We will

break down the form of a QEC gadget for Weyl stabilizer codes in section 1.10.1.

For circuit diagrams throughout this thesis, horizontal solid lines denote a logical system,

dotted lines denote a physical system, and double lines denote a classical system. When the

system could be either encoded or unencoded, the convention will be to use single solid lines.

The first example of a circuit diagram requiring such a distinction is shown in the following

section, in fig. 1.12, where the readout registers are unencoded, and an encoded register and

classical register are also depicted.

1.10.1 QEC Gadgets

Because errors in a gadget implementation can map part or all of the encoded state out

of the codespace O, the first step in the quantum error correction gadget ΓQEC(Tout,V) is

to perform a syndrome extraction which (ideally) projects the state onto a single cospace

OTout via ΠTout . Then a recovery operation RTout from a predetermined set V is applied

to the encoded space, which ideally maps the state from cospace OTout to the codespace

O. Figure 1.12 shows a circuit diagram of a QEC gadget, in which we include a classical

register to show how the recovery operation is conditioned on the classical output of the

syndrome measurement. For convenience, we assume that the readout and classical registers

begin in their respective ground states and use an add(0, sTout) = sTout function to write the

syndrome to the classical register. This assumption does not remove generality, as modifying

the classically controlled recovery allows us to permute the syndrome labels at our discretion.

Omitting the readout and classical spaces as the full map leaves them invariant, the effect

of an ideal QEC gadget on the encoded register is

Γideal, QEC(Tout,V) = RToutΠTout . (1.82)

35

Encoded register Ke G1 G2 ⋯ Gn−k γ(sTout)

Readout register Kr(1) ∣0⟩ F • ⋯ F
† ∣0⟩

Readout register Kr(2) ∣0⟩ F • ⋯ F
† ∣0⟩

⋮

Readout register Kr(n − k) ∣0⟩ F ⋯ • F
† ∣0⟩

Classical register J∣0) ⋯ add(sTout) • • ∣0)

Figure 1.12: Quantum error correction gadget. At the end of the syndrome extraction circuit

but prior to measuring the readout space (after the inverse Fourier transforms), the encoded

space is in a superposition of the cospaces of the code, OT , each with a corresponding label

state on the readout space, ∣sT ⟩. The subsystem measurement of the readout space ideally

projects onto a single syndrome sTout . To construct a QEC gadget, we follow the syndrome

extraction by a classically conditioned unitary which applies recovery operations. State

resets are applied on the readout register based on the state of the classical register, and the

final step is to reset the classical register. Note that the reset is depicted as depending on

the classical register but may be implemented differently in practice. Resets are included at

the end of the circuit as the registers used for readout are often reused in the next round of

syndrome extraction and error correction.

1.10.2 Fault Tolerance

While we have thus far mostly omitted an explicit discussion of quantum error correction

protocols on multiple code blocks for simplicity, it is generally the case that a computation

will require multiple logical qudits. In such a setting, with multi-qudit gates acting between

physical qudits in different code blocks, it quickly becomes crucial to have methods in place

to prevent the spread of errors. As an example of how errors might spread on a simple

multi-qubit physical gate, consider the X̂ operation. If an X error occurs on the control

qubit prior to the application of X̂, that error will spread, resulting in an X error on both

the target and control qubits after the X̂. Similarly, if a Z error occurs on the target qubit

prior to the X̂, the final state will have a Z error on both qubits.

Fault tolerance is a property of implementations (or gadgets, including error correction

gadgets) which indicates that that implementation does not permit errors that are correctable

36

for that code to spread in a way that introduces errors that are not correctable by that code on

any code block. In this way, a fault-tolerant implementation ensures that if errors introduced

by any step of a computation is correctable, subsequent operations won’t cause that error

to become uncorrectable.

One class of fault-tolerant gate gadgets are transversal gates. A transversal gate is one

in which each physical operation in the implementation acts only on a single physical qudit

in a given code block, and no two physical operations act on the same physical qudit. More

formally, a gadget Γ(⋅) implementation of an operation A for blocks of an n-qudit code is

transversal if

Γ(A) = ◦nj=1Gi, (1.83)

where each Gi acts non-trivially only on the i
th

qudit in each code block. Note that while

we have written this as a composition of operations, we could equally replace ◦ with ⊗ as

the space that each Gi acts on is disjoint and they can therefore be implemented in parallel.

This construction prevents any error of weight w from causing an error with weight > w on

the same or another code block.

Any gadget composed of a tensor product of Weyl operators is transversal. We show

below how a transversal X̂ operation might be implemented for the 3-qubit code.

Figure 1.13: Transversal CNOT on the 3 qubit repetition code. Here, ∣ψ̄1⟩ is the encoded

input state on the control code block and

37

1.11 Twirling

Twirling is a process by which the average action of a map can be tailored to a desired form

by applying additional operations sampled from a carefully chosen group. In this section, we

show how to apply a twirl and how applying a twirl over Weyl operators to a channel results

in a stochastic Weyl channel. A twirl over a group G is applied to a channel A ∶ H→ H by

taking the uniform average of the composition G†AG over elements G of G. Recall that we

denote the uniform average of a function f over a set G by

EG∈G(f(G)) = 1

∣G∣ ∑
G∈G

f(G). (1.84)

We begin by defining a Kraus representation of A with Kraus operators Ak. Recall that

a superoperator representation of A is given by

A = ∑
k

B∈Basis(H)

∣AkBA†
k⟩⟩⟨⟨B∣. (1.85)

For convenience, we choose Basis(H) to be the projective Weyl group with appropriate

dimensions, which we will denote by simply PW as the dimensions are unspecifed. Applying

the twirl over PW to A, which we denote A↻PW
,

A↻PW
= EP∈PW(P†AP) (1.86)

=
1

∣PW∣2 ∑
k

B,P∈Basis(H)

P†∣AkBA†
k⟩⟩⟨⟨B∣P (1.87)

=
1

∣PW∣2 ∑
k

B,P∈Basis(H)

∣P †
AkBA

†
kP ⟩⟩⟨⟨P †

BP ∣. (1.88)

Now, because PW forms a basis for H, we can decompose each Ak as a sum over elements

of PW, and we can pull out characters using eq. (1.28):

A↻PW
= ∑

k
B,P∈Basis(H)

∣P † (∑
Q∈PW

αQ,kQ)B (∑
W∈PW

αW,kW)
†

P ⟩⟩⟨⟨P †
BP ∣ (1.89)

=
1

∣PW∣2 ∑
k

B,P,Q,W∈Basis(H)

χP (B)αQ,kα∗W,k∣P †
QBW

†
P ⟩⟩⟨⟨B∣ (1.90)

=
1

∣PW∣2 ∑
k

B,P,Q,W∈Basis(H)

χP (B)χ∗P (Q)χ∗P (B)χ∗P (W †)αQ,kα∗W,k∣QBW †⟩⟩⟨⟨B∣. (1.91)

38

Noting that χA(B)χ∗A(B) = 1, χA(B) = χ
∗
B(A), and χ

∗
A(B†) = χA(B), we can simplify

further:

A↻PW
=

1

∣PW∣ ∑
k

B,Q,W∈Basis(H)

χ
∗
P (Q)χ∗P (W †)αQ,kα∗W,k∣QBW †⟩⟩⟨⟨B∣ (1.92)

=
1

∣PW∣ ∑
k

B,Q,W∈Basis(H)

χQ(P)χ∗W (P)αQ,kα∗W,k∣QBW †⟩⟩⟨⟨B∣ (1.93)

Using Schur’s orthogonality relations, eq. (1.32),

A↻PW
= ∑

k
B,Q∈Basis(H)

αQ,kα
∗
Q,k∣QBQ†⟩⟩⟨⟨B∣

= ∑
B∈Basis(H)

⎛
⎜⎜⎜⎜
⎝

∑
k

Q∈Basis(H)

∣αQ,k∣2Q
⎞
⎟⎟⎟⎟
⎠
∣B⟩⟩⟨⟨B∣

= ∑
B∈Basis(H)

⎛
⎜
⎝

∑
Q∈Basis(H)

α
′
QQ

⎞
⎟
⎠
∣B⟩⟩⟨⟨B∣ (1.94)

which is a stochastic Weyl channel for α
′
Q = ∑k ∣αQ,k∣

2
. In the following section, we’ll see

an example of how a twirl can be leveraged to advantage in a quantum computation.

1.12 Randomized Compiling

Randomized compiling (RC) is a technique proposed in ref. [18] to tailor noise in quantum

computations. The technique works by inserting random operations from the Weyl group

at certain time steps in a circuit, and additional gates to undo the action of those opera-

tions, so that the full compiled circuit implements the same effective map as the bare circuit.

The random gates introduced by RC can often be compiled into neighbouring gates (as in

fig. 1.14) so that RC introduces little to no overhead in terms of number of gates. Averaging

over these randomizations applies a twirl to the noise introduced by gates between the added

random operations and corrections, thereby enforcing a stochastic Weyl noise model on those

gates. In quantum computing, the results of an experiment are sampled from a distribu-

tion. Typically, we sample from the outcome distribution multiple times by implementing

a computation multiple times, and each implementation is referred to as a shot. Because

implementations of quantum computations require multiple shots, each randomization can

39

be added to a different shot, thereby allowing RC to be implemented without increasing the

number of shots
9
.

More concretely, before applying RC, circuits are expressed as alternating rounds of

“easy” and “hard” gates, where we expect the easy gates to be significantly less noisy than

hard gates. In most cases, the easy gates are taken to be single-qudit operations, and

hard gates will include multi-qudit operations, as multi-qudit operations are often harder to

implement with high precision. Correction gates are constructed by conjugating the random

gates inserted before a round of hard gates by the operation implemented in the hard round.

In chapter 4, we will extend this protocol to logical operations, and theorem 14 gives a

concrete mathematical description of how such a randomization tailors noise in the general

case. We therefore defer a mathematical treatment to that section.

9
In chapter 4, we will discuss the case where only a single shot is taken to sample from a distribution.

40

Figure 1.14: Reprinted figure with permission from [18, Figure 1] Copyright 2016 by the

American Physical Society. Figure shows how to randomly compile a circuit. a) Shows a

bare circuit with rounds of easy and hard gates (in this example, the easy gates are single-

qudit gates and the hard gates are X̂ gates). b) Shows the insertion of random operations

before each hard gate, with corresponding corrections inserted after. c) shows the additional

operations introduced in b) being compiled into the neighbouring easy gates so that the final

circuit has the same depth as the bare circuit in a).

41

Chapter 2

Efficiently computing logical noise in quantum

error-correcting codes

The results presented in this chapter were first presented in [2], with the exception of sec-

tion 2.5.3, which is as-yet unpublished. This chapter presents work which was begun in

my Masters thesis on using symmetries in QECs to calculate the effective logical noise more

efficiently by leveraging degeneracies in the logical noise that arise as a result of these symme-

tries [1]. The results presented in my Masters thesis restricted attention to perfect syndrome

extraction, dealt only with stabilizer codes, and considered only degeneracies, with no con-

sideration of logical degeneracies, that is, attention was restricted to maps that are exactly

identical rather than identical up to logical operations. The symmetries presented for the

3-qubit, 5-qubit, and Steane codes were presented in [21] and/or [1]. My Masters thesis

utilized symmetries in treatment of a hybrid soft/hard decoder for a concatenated 5-qubit

code, but did not consider general concatenated codes. This chapter generalizes these results

to arbitrary quantum error correcting codes, including concatenation, considers noisy mea-

surement, extends treatment to consider equivalence up to logical operations, and presents

new results. New results include a no-go theorem that states that there is no global sym-

metry group for any code which applies to all noise processes, symmetries of the toric code,

symmetries for multiple rounds of error correction, and generalized symmetries for non-IID

noise.

42

2.1 Chapter overview

Quantum error correction protocols have been developed to offset the high sensitivity to

noise inherent in quantum systems. However, much is still unknown about the behaviour of

a quantum error-correcting code under general noise, including noisy measurements. This

lack of knowledge is largely due to the computational cost of simulating quantum systems

large enough to perform nontrivial encodings. In this chapter, we develop general methods

for incorporating noisy measurement operations into simulations of quantum error-correcting

codes and show that measurement errors on readout qubits manifest as a renormalization on

the effective logical noise. We also derive general methods for reducing the computational

complexity of calculating the exact effective logical noise by many orders of magnitude. This

reduction is achieved by determining when different recovery operations produce equivalent

logical noise. These methods could also be used to better approximate soft decoding schemes

for concatenated codes or to reduce the size of a lookup table to speed up the error correc-

tion step in implementations of quantum error-correcting codes. We give examples of such

reductions for the 3-qubit, 5-qubit, Steane, concatenated, and toric codes.

2.2 Introduction

In recent years, there has been a resurgence of interest in studying the behaviour of general

and specific noise in QECCs [21, 30, 42–48]. There has also been interest in studying sym-

metries in quantum error correcting codes for several purposes, including noise tailoring [47],

code construction via classical cyclic codes [49], applying logical operations [50, 51], and re-

ducing the complexity of simulations [21]. In this chapter, we extend the previous formalism

used to study quantum memories [52] to include noisy measurements. We then derive gen-

eral conditions under which two syndromes will result in equivalent logical noise in a QECC.

These degeneracies can reduce the computational cost of studying QECCs by orders of mag-

nitude, and once degeneracies are found for a given QECC, they can be re-used for any future

simulation of that code under any applicable noise model without any additional computa-

tion. Moreover, part of the motivation for simulating QECCs is to determine good choices

of recovery maps for each sydrome. By establishing general and simple conditions under

which recovery maps associated with different syndromes are degenerate, we can reduce the

number of syndromes for which good choices need to be cached or have complex calculations

performed. We anticipate that this will enable faster implementations of decoders, especially

in memory-constrained environments (such as cryogenic control computers or decoders built

43

into FPGAs), so that errors can be corrected before they cascade.

In section 2.2.1 of this chapter, we show how measurements can be treated like a chan-

nel and, conversely, how noise can be treated like a measurement channel. In section 2.4,

we derive general results showing when the effective noise conditioned upon two different

measurement outcomes is equivalent. In section 2.5, we demonstrate that noisy readout

measurements in stabilizer codes leave the effective logical noise invariant up to a renormal-

ization and show how our results can be applied to reduce the simulation cost by applying

our results to several small stabilizer codes, the general toric code, and concatenated codes.

Even at the first level of concatenation, our results can reduce the exact simulation cost of a

soft decoder (see [32] for a description of soft decoding) by a factor of 64
7/34, 992 ≈ 10

8
for

depolarizing noise in the Steane code. Similar results were obtained for some of these codes

under a more restricted noise model (namely, noise models with a single Kraus operator)

in ref. [21], however, the results here are broader (they identify more degenerate syndrome

maps), more general (they apply to general codes and noise maps, including noisy readout

measurements), and allow new symmetry operations to be verified with ease.

2.2.1 Measurements as channels and noise channels as measurements

Experimental imperfections cause realistic measurements to deviate from an ideal projective

measurement in a number of ways. First, noise may result in superoperators being applied

to the system before and/or after the ideal measurement. Second, the measurement proce-

dure may not be describable by a PVM, but rather by a Positive-Operator-Valued Measure

(POVM), which is a subset M′
⊂ Pos(H) such that ∑π′∈B′ π

′
= IH (that is, we relax the

assumption that the elements of a PVM are projectors). The state update rule for PVMs

introduced in eq. (1.58) (and included in eq. (2.1) for convenience) can be directly general-

ized to POVMs using the decomposition π
′
= π

†
π ∀π′ ∈M′

⊂ Pos(H) to define an operator

π (which need not be positive and is not unique).

So for a PVM {π} or POVM {π′} with decompositions π
′
= π

†
π (where the π used

to decompose each π
′

are not the elements of the PVM but use the same symbol for the

purpose of writing eq. (2.1) in a way that applies to both types of measurement), the post-

measurement state when outcome π is observed is

ρ
′
π =

Π[ρ]
Tr[Π[ρ]] . (2.1)

Crucially, for both PVMs and POVMs the post-measurement state is not a linear function

of the input state. However, the non-linearity is of a benign form, namely, the non-linearity

44

from conditioning upon the output state that arises from Bayes’ rule. With some abuse of

notation (namely, interpreting 0/0 as 1), the expected post-measurement state is

∑
π∈M

ρ
′
πTrΠ[ρ] = ∑

π∈M
Π[ρ]. (2.2)

To accomodate additional noise processes, we can simply replace the implicit linear maps

Π[ρ] = πρπ
†

by general linear maps that can include pre- and post-measurement control

operations and noise maps. That is, measurements can be defined as either a set of operators

(as introduced in section 1.7) or as a set of superoperators. For this chapter, we define a

general measurement M to be a set of superoperators, that is, M ⊂ B(B(H),B(K)), although

we will only consider the case K = H. To be physical, each M ∈ M must map valid

quantum states to valid quantum states (that is, be completely positive but generally not

trace-preserving). To be a complete measurement, some outcome must always occur if the

input state is a density matrix and so

∑
M∈M

M (2.3)

must be a trace-preserving map. Note that any completely positive map can be represented

in Kraus operator form as a channel in the form of eq. (2.3), and so noise processes can

formally be regarded as a measurement where the outcome is not recorded.

2.3 Encoded memory channels

In this chapter, we focus on what is perhaps the simplest example of an implementation of

a quantum error corrected channel. Specifically, we deal with encoded memory channels,

comprised of the following steps:

1. Apply an encoding map U .

2. Apply a noise map N .

3. Perform a syndrome measurement M.

4. Perform a recovery operation R conditioned on the outcome of the measurement.

5. Apply a decoding map U †
.

45

Recall that an encoding of H into K is an isometry U ∈ U(H,K), which can be expressed

as ∑j∈Zd
∣j̄⟩⟨j∣. For any encoding, we can choose a set of recovery maps V ⊂ U(K) such

that the set of projectors {ΠR = RUU †R† ∶ R ∈ V} associated with the cospaces of the code,

form a projective measurement. That is, the recovery maps satisfy U
†
Q

†
RU = δQ,R1H for all

Q,R ∈ V and ∑R∈VRUU
†
R

†
= 1K.

For example, the 3-qubit repetition code encodes 1 logical qubit into 3 physical qubits

via the isometry U = ∣000⟩⟨0∣ + ∣111⟩⟨1∣. We can extend this isometry into a projective

measurement on the encoded space by choosing, for example, V = {III,XII, IXI, IIX}.

The elements of V can be regarded as the most likely errors to occur. Thus, if a system

is prepared in the encoded state U ∣ψ⟩ and a specific error E ∈ V occurs, the ideal PVM

{ΠR = RUU †R
†
∶ R ∈ V} will result in the outcome E, which can then be corrected by

applying E†
.

In this chapter, because we are dealing exclusively with channels of the form described

above, we fold the recovery maps R†
for each cospace into the measurement for convenience

and define the ideal measurement to be M = {M}, where M = R†
ΠR so that M = {UU †R† ∶

R ∈ V}. A QECC is then a pair (U,M)1, and can be used to protect a logical qubit against

a noisy physical process N (typically a completely positive, trace-preserving map), thereby

reducing the above steps to

1. Apply an encoding map U .

2. Apply a noise map N .

3. Perform a syndrome measurement M (including recovery).

4. Apply a decoding map U †
.

While this procedure includes applying the encoding and decoding maps, in practice one

would typically prepare a logical state directly and measure the expectation values of encoded

operators or treat the output as an encoded input into a subsequent round of error correction,

where subsequent operations can be conditioned upon the observed outcome of M. Often,

a gate will be applied before the correction step (step 3); in this case, N is replaced with a

possibly noisy implementation of a gate or a fault-tolerant gadget.

1
Note that because we have folded the recovery operations into M, this pair implicitly defines the set of

corrected errors as those that are equivalent to a recovery operation up to trivial operations on the logical

space.

46

When the outcome M ∈M is observed, the above process results in the conditional map

N̄U(M) = U †MNU , (2.4)

where we do not divide by the probability with which the outcome occurs. We define the

average logical channel as the average over the conditional maps,

N̄U =
1

∣M∣ ∑
M∈M

N̄U(M). (2.5)

The average logical channel is often used to benchmark the performance of a given QECC

(U,M) against a given noise model N .

For ideal measurements, the ideal recovery operator uniquely specifies the measurement

outcome. Therefore we define the effective map conditioned on the recovery map R to be the

effective map conditioned on MR = UU †R†
, following our convention of folding the recovery

map into the measurement. That is, we define

ṄU(R) = N̄U(MR) = U †R†NU , (2.6)

as in ref. [52], where we have used the fact that U
†
UU

†
= U

†
for the isometry U and we use

Ṅ and Roman font rather than N̄ and caligraphic font to differentiate between conditioning

on a measurement or a recovery operation.

As with the usual model for noisy measurements, to model noisy readout measurements

in quantum error correcting codes, we assume that the effective measurement on the encoded

space can be represented as a probabilistic sum over ideal projectors onto the cospaces of

the code. That is, for a measurement outcome associated with a recovery operation R that

is applied based on a reported outcome, the noisy measurement channel Θ(ΠR) is given by

Θ(ΠR)[ρ] = ∑
Q∈R

C̄Q,RΠQ[ρ], (2.7)

where C̄Q,R is an element of the logical 2
n−k × 2

n−k
confusion matrix, C̄. One method used

to protect against measurement errors of this form is to measure each stabilizer generator

multiple times and correct according to the outcome that occurs most frequently. We prove

that this assumption is valid for stabilizer codes with ideal syndrome extraction circuits and

noisy measurement of the readout qubits in section 2.5. To be consistent with the effective

logical map defined for the case where measurement is ideal, we fold the recovery operation

into the noisy measurement map, to define

47

M̃R = R†
Θ(ΠR). (2.8)

Note that because ideal measurements are a special case of noisy measurements where C̄j,m =

δj,m, any results derived using noisy measurements of the form M̃R throughout this chapter

hold equally for ideal measurements. We denote the effective logical channel with noisy

measurements the same as that for ideal measurements but with the addition of a ˜ over Ṅ
or N̄ . We can then write

˜̇NU(R) = ˜̄NU(M̃R) (2.9)

= U †M̃RNU (2.10)

= U †R†
Θ(ΠR)NU (2.11)

= ∑
Q∈R

C̄Q,RU
†R†

ΠQNU (2.12)

= C̄R,RṄU(R), (2.13)

The simplification from eq. (2.12) to eq. (2.13) is possible because we have the decoding map,

U †
after the measurement so that any terms not in the codespace after the measurement are

removed by U †
. In the case where the state is not decoded after the error correction step,

the cospaces will remain populated from cases where δQ,R = 0. Examining eq. (2.13), we

see that the effective logical channel with noisy measurements is identical to the effective

logical channel with ideal measurement, up to a renormalization. For the remainder of this

chapter, when we refer to noisy measurements we mean measurements with noise of the

form described in section 1.7.2, that is, ideal projectors with probabilistically misreported

outcomes.

2.4 Symmetries in encoded memory channels

The above error correction procedure is defined to be a pair (U,M), where M is the mea-

surement including recovery operators and we often label measurement outcomes by the

associated recovery map. To simulate the error correction procedure, we need to compute

the conditional maps N̄U(M). There are many maps and each conditional map is typically

expensive to compute. However, as observed in [21, 30], many of the conditional maps are

48

related, which can be exploited to reduce the computation time. We define two superoper-

ators N ,N ′
∈ B(B(H)) to be degenerate if N ′

= cN for some c ∈ R and to be logically

degenerate if there exist invertible superoperators Ā, B̄ ∈ B(B(H)) such that

N ′
= cĀN B̄ (2.14)

for some c ∈ R. We are primarily interested in the superoperators associated to measurement

outcomes, and so we say that two outcomes Q,R ∈M are (logically) degenerate for a fixed

noise process N if the corresponding superoperators N̄U(Q) and N̄U(R) are (logically)

degenerate. We say that two measurement outcomes are nondegenerate for a fixed noise

process N if they are not known to be degenerate under N . We make this particular

distinction because we may not know all degeneracies for a class of noise processes. We

call a set of degenerate measurement outcomes a degeneracy class and a set of logically

degenerate measurement outcomes a logical degeneracy class.

Some degeneracy relations are easily established for a noise process using stabilizers

and logical operators. Stabilizers and logical operators of an encoding U can be expressed

as invertible superoperators S,L ∈ B(B(K)) such that SU = U and LU = UL̄ for some

L̄ ∈ B(B(H)) respectively. Note that the set of logical operators refers to operations on

the logical space, rather than restricting to Pauli or Weyl logical operations. A stabilizer

is a special case of a logical operator where L̄ = 1B(H). For example, for the 3-qubit code,

the superoperators corresponding to ZZI and ZZZ are a stabilizer and a nontrivial logical

operator of the encoding U = ∣000⟩⟨0∣ + ∣111⟩⟨1∣ respectively. The (general) stabilizer

and logical groups are the groups GS(U) of stabilizer and GL(U) of logical operations

respectively. Note that the “general” stabilizer group is distinct from the stabilizer group

of a stabilizer code as it includes any operation for which the above conditions hold. The

general stabilizer group can have e.g. permutation operations which relabel the physical

qubits. The stabilizer group, S, of a stabilizer code is a subset of the general stabilizer

group, that is S ⊂ GS(U).

For any stabilizer S ∈ GS(U) and logical operator L ∈ GL(U), we have N̄U(RS) =
N̄U(R) and N̄U(LR) = L̄N̄U(R). Therefore recovery maps in the same left coset of GS(U)
will be degenerate and recovery maps in the same left coset of GL(U) will be logically

degenerate. The above observation can be used to change a single measurement outcome

M to make N̄U(M) closer to a given logical operation (in particular, the identity opera-

tion). However, two distinct elements Q,R ∈ V cannot be related by a logical operation, as

otherwise they would violate the assumption that U
†
Q

†
RU = 0, that is, that the associated

measurement operators are orthogonal. Therefore the relationship N̄U(LR) = L̄N̄U(R) can-

49

not speed up the computation of the full set of conditional maps for a fixed measurement.

The results presented in the remainder of this section, however, do enable a reduction in

computational complexity that allows a speed up. Before proceeding any further, we prove

that no distinct outcomes are logically degenerate for all noise processes under ideal or noisy

measurements, and hence any degeneracies can only hold for restricted noise models.

Theorem 1. For any encoding U ∈ U(H) and any two recovery maps Q,R ∈ V associated

to different (possibly noisy) measurement outcomes, there exist noise models N such that Q
and R are not degenerate under N .

Proof. Let N = Q, so

˜̇QU(Q) = C̄Q,QQ̇U(Q) = C̄Q,QU †Q†QU = C̄Q,QĪ (2.15)

Recalling that U
†
R

†
QU = δQ,RIH, we have

˜̇QU(R) = C̄R,RQ̇U(R) = C̄R,RU †R†QU = 0̄. (2.16)

Therefore for any invertible superoperators Ā, B̄ ∈ B(B(H)),

Ā ˜̇QU(R)B̄ = 0̄ ≠ ˜̇QU(Q) (2.17)

as required.

Despite the apparently strong statement of theorem 1, it has been observed that different

measurement outcomes can be degenerate for broad families of noise processes [21, 30].

ref. [21] gave conditions based on code symmetries to identify degenerate syndrome maps

for independent and identically distributed (IID) unitary noise in stabilizer codes, where a

noise channel N is IID if it can be written as N = N⊗n
1 for some noise process, N1, acting

on a single system. We present a more general result with a trivial and constructive proof,

giving conditions under which different recovery operations or measurements are logically

degenerate for general QECCs. These conditions hold for more general (including non-IID)

noise. Our results also show how logical operations can be factored into the error correction

step by updating ideal recovery operations to other operations which are logically degenerate

to their ideal counterparts. The following proposition follows directly from the definitions

laid out above. This result seems trivial in light of our notation, however, arriving at such

conclusions in less abstract settings (e.g., for stabilizer codes) is quite challenging.

Proposition 2. Let U ∈ U(H,K), M ∈M be a measurement outcome, and N ∈ B(B(K)).

For any A,B ∈ GL(U), the maps U †B†M̃NAU and U †M̃NU are logically degenerate.

50

Note that the the symmetry operators A,B ∈ GL(U) are not required to be unitary.

From proposition 2, we can immediately identify some degenerate measurement outcomes

when there are logical operators that commute with the noise. Specifically, we define

the logical symmetry group of an encoding U under a noise process N to be the group

GL(U,N) = {L ∈ GL(U) ∶ [N ,L] = 0}, and the stabilizer symmetry group to be

GS(U,N) = GL(U,N) ∩GS(U).

Corollary 3. Let U ∈ U(H,K), M̃ ∈ M̃, and N ∈ B(B(K)). The maps { ˜̄N U(B†M̃A) ∶
A ∈ GL(U,N),B ∈ GL(U)} are logically degenerate. Furthermore, the maps { ˜̄N U(B†M̃A) ∶
A ∈ GS(U,N),B ∈ GS(U)} are degenerate.

Proof. Let A ∈ GL(U,N) and B ∈ GL(U). By assumption, there exist invertible Ā, B̄ ∈

B(B(H)) such that AU = UĀ and BU = UB̄. Therefore by eqs. (2.4) and (2.13) we have

˜̄N (B†M̃A) = C̄mN̄U(B†MA) = C̄mU †B†MANU
= C̄mU

†B†MNAU = C̄mB̄
†U †MNUĀ

= C̄mB̄
†N̄U(M)Ā,

where C̄m is the diagonal element of the logical confusion matrix associated with measure-

ment outcome M, as required. Note that the logical group and the logical symmetry group

are groups, and so all pairs in the first set are logically degenerate. The final statement holds

because Ā = Ī = B̄ if A,B ∈ GS(U) by definition.

Measurement is often assumed to be noiseless in studies of quantum computing, and, in

fact, this assumption was made in each of the papers which observed symmetries in QECCs

before the work presented in this chapter, namely refs [1, 21, 30]. The symmetry conditions

for QEC are given by corollary 4, where the order and daggers differ because of the R†
in

eq. (2.6). We also denote the subset of a set of superoperators A ⊂ B(B(H)) that have

a single Kraus operator by AK so that we can use the bijection A ↔ A in the following

statement.

Corollary 4. Let U ∈ U(H,K), R ∈ V, and N ∈ B(B(K)). The maps { ˜̇N U(A†
RB) ∶ A ∈

GLK(U,N),B ∈ GLK(U)} are logically degenerate. Furthermore, the maps { ˜̇N U(A†
RB) ∶

A ∈ SK(U,N ,B ∈ SK(U)} are degenerate.

A simple application of corollary 4 is to independent and identically distributed (IID)

noise, that is, to superoperators N that can be written as N = N⊗n
1 for some noise process

N1 ∈ B(B(J)) acting on a single system with Hilbert space J. For such noise, GL(U,N⊗n
1)

51

will typically contain permutation operators. Moreover, the recovery maps R are typically

chosen to be tensor products of elements of some “nice error basis”[53] E ⊂ U(J) that

contains the identity and can be used to construct the ideal PVM, which, for qubits, is

taken to be the set of single-qubit Pauli matrices. We define the weight of some recovery

map R ∈ E⊗n to be the number of subsystems on which it acts nontrivially. Recall that a

group of permutations of n objects is k-transitive if every ordered subset of k objects can

be mapped to every other ordered subset of k objects. When a group is 1-transitive, we say

that it is transitive. We then have the following.

Corollary 5. Let n be a positive integer, U ∈ U(H,K⊗n) be an encoding, E ⊂ U(K) be a nice

error basis, and N ∈ B(B(K⊗n)). Then if GS(U,N) (GL(U,N)) contains a k-transitive

group, the set of weight k errors under ideal or noisy measurements will be partitioned into

at most (∣E∣+k−2
k

) (logical) degeneracy classes.

Proof. From corollary 4, for any permutation P ∈ (GL(U,N)) GS(U,N) of the tensor

factors of K⊗n
and any R ∈ E⊗n, the conditional maps ṄU(P †

RP) and ÑU(R) are (logically)

degenerate. The number of distinct unordered combinations of length k from s items is given

by (s+k−1
k

). Then corollary 5 follows directly from corollary 4 and the fact that there are

(∣E∣+k−2
k

) distinct unordered combinations of k of the ∣E∣ − 1 nontrivial errors.

For example, let E = P = {I,X, Y, Z} be the set of single-qubit Pauli operators. Then

if GL(U,N) contains a 1-transitive group, the weight-1 Pauli operators for IID noise are

partitioned into at most 3 degeneracy classes. If GL(U,N) contains a 2-transitive group,

then there will be at most (4
2
) = 6 degeneracy classes of weight 2 Pauli errors.

2.5 Symmetries of stabilizer codes

As an application of section 2.4, we now consider how symmetries can be used to accelerate

simulations of Pauli stabilizer codes under IID noise. We focus on symmetries A and B
that correspond to conjugation by unitary operators A,B ∈ U(H) with A = B and typically

set Ā = Ī. As we are considering IID noise, any permutation of the qubits in GL(U) is

an element of the symmetry group of U under N . We can then use logical operations and

elements of the symmetry group to find sets of degenerate recovery maps.

For a stabilizer code with generators {Gi} and logical Pauli operations L, any state in

52

3-Qubit Code 5-Qubit Code Steane Code

Permutations (0 1 2) (0 1 2 3 4) (3 4)(5 6)

(0 4)(1 3) (0 3 1)(2 4 5)

Transitivity 1 1 2

∣V∣ 4 16 64

∣VIID∣ 2 4 5

Table 2.1: Permutations that leave the code space invariant for common stabilizer codes [1,

21]. We also list the transitivity of the symmetry groups generated by these permutations, the

number ∣V∣ of recovery maps, the number ∣VIID∣ of logically nondegenerate Pauli recovery

maps for generic IID noise under the permutation group formed by the listed permutations.

the code space can be written as

ρ = (∑
L∈L

µLL)
n−k−1

∏
i=0

1

2
(I +Gi), (2.18)

where µL ∈ [−1, 1]. Stabilizer generators and X̄ and Z̄ operators for common (n, 1)-
stabilizer codes and the toric code are listed in section 1.8.4.

From eq. (2.18), we see that L(U) = ⟨S,L⟩ forms a basis for the codespace of a stabilizer

code with logical Pauli operations L and stabilizer group S. Then any permutation operator

that permutes the elements of the stabilizer group, S, and leaves the elements of L invariant

will be an element of the (general) stabilizer group GS(U). Similarly, any permutation

operator that permutes the elements of the stabilizer group, S, and permutes the elements

of the logical Pauli group L(U) will be an element of the (general) logical group GL(U).

Therefore we can find permutation operators in the symmetry group of the corresponding

code for IID noise and so partition the recovery operators into degeneracy classes using

corollary 4 by considering only the action of permutations on the stabilizer S and logical L
groups. In table 2.1 we list permutation operators that generate transitive groups for each

code, and a 2-transitive group for the Steane code. As X̄ and Z̄ are permutationally invariant

for these codes, the permutation operators are in the general stabilizer group GS(U).

For (n, k)-stabilizer codes, it is common to consider only Pauli recovery maps. Pauli

recovery maps for an (n, k)-stabilizer code with encoding U can be written as {TLT ∶ T ∈

P⊗n/L(U)}, where any choice of Pauli operator LT ∈ L(U) for each T will define a valid set

of recovery maps. The set P⊗n/L(U) is sometimes referred to as the set of pure errors [32].

For an (n, k)-stabilizer code, there are 2
n−k

recovery maps, where typically k ≪ n. Using

53

Code Symmetry Operation Logical Operation ∣Vdep∣
5-Qubit Q⊗5

Q 2

Steane Q⊗7
Q 3

H⊗7 H

Table 2.2: An incomplete list of non-trivial operations which induce symmetries in some

of the more popular quantum error correcting codes and the number ∣Vdep∣ of logically

nondegenerate Pauli recovery maps for local depolarizing noise under the listed symmetry

operations and the permutation symmetries listed in table 2.1. Note that these symmetries

are valid under the conditions of corollary 3, and therefore require that the physical noise

acting on the system commute with the symmetry operator. For example, we can have

physical noise N = D⊗n
p , where Dp is a single qubit depolarizing channel with parameter p

because [Q,Dp] = [H,Dp] = 0.

the permutation operators, we can reduce the number of distinct conditional maps that

need to be computed for IID noise using corollary 4. Note that the choice of LT will not

affect the number of logically degenerate recovery maps, however, it will change the number

of degenerate recovery maps. This is because applying LT to a recovery map only alters

the corresponding conditional map by a logical operation and keeps the same syndrome, so

toggling LT will change the logical relation between elements of the same logical degeneracy

class.

For example, one could choose the recovery maps for the 3-qubit code to be V1 =

{III,XII, IY I, IIY }, in which case there are 3 degeneracy classes under IID noise. We

could also select V2 = {III,XII, IXI, IIX} which only has 2 degeneracy classes under IID

noise. This apparent discrepancy occurs because IY I and IIY are logically degenerate to

IXI and IIX respectively, which are degenerate to XII under IID noise by corollary 4.

Both V1 and V2 have 2 logical degeneracy classes. A similar situation arises for the other

codes, which explains the discrepancy between the 7 nondegenerate recovery maps observed

in ref. [30] for the Steane code, and the 5 nondegenerate recovery maps proven for IID uni-

tary noise in ref. [21]. Ref. [21] speculated that the discrepancy was due to the restriction to

noise models with a single Kraus operator. Instead, the discrepancy is due to the selection of

recovery operations; in [30], elements from 5 different equivalence classes were present in the

set of recovery operations, whereas in [21] the set of recovery operations chosen contained

elements of 7 equivalence classes.

If the noise commutes with additional logical operators, the number of logically nonde-

54

generate recovery maps is further decreased. A common example is IID depolarizing noise

N = D⊗n
p , where Dp(ρ) = pρ+(1−p)I/2 is the single-qubit depolarizing channel with param-

eter p. For any single-qubit unitary (or unital
2
) channels U0, . . . ,Un−1, the composite channel

⊗jUj commutes with D⊗n
p . In particular, let Q =

√
Z
√
X, which maps X → Y → Z → X.

For the 5-qubit and Steane codes, we have Q
⊗n

∈ GL(U), where Q̄ implements the same

operation on the logical space, that is, it maps X̄ → Ȳ → Z̄. The set VIID of representa-

tive elements for the degeneracy classes under IID noise can be chosen to be {I,X0, Y0, Z0}
for the 5-qubit code and {I,X0, Y0, Z0, X0Z1} for the Steane code. We can map Y0 and

Z0 to X0 by applying powers of Q
⊗n

and so the representative elements of the logical de-

generacy classes under IID depolarizing noise can be chosen to be {I,X0} for the 5 qubit

code and {I,X0, X0Z1} for the Steane code. For the 5 qubit code, ṄU(R) = D̄p for any

R ∈ {X0, Y0, Z0}, so that the logical operations (that is, Q̄ and Q̄
†
) commute with ṄU(R)

and the representatives of the degeneracy classes can also be chosen to be {I,X0}. The same

property does not hold for the Steane code. Some examples of symmetry operators for the

3-, 5-, and 7-qubit codes are given in tables 2.1 and 2.2. Note that these operators can be

used to generate equivalence classes whenever they commute with the physical noise map,

that is, they do not necessarily require IID noise. For example, the (0 4)(1 3)3 operator can

be used to partition the recovery operators in the 5-qubit code when the physical noise has

the form N = E ⊗F ⊗ G ⊗F ⊗ E , where E , F and G are arbitrary single-qubit noise maps.

We explore symmetries for non-IID noise in more detail in section 2.5.4.

2.5.1 Noisy readout measurements in stabilizer codes

Recall that syndrome measurements are used to project onto cospaces of stabilizer codes. A

syndrome measurement is typically performed by coupling the encoded system to a readout

system via a syndrome extraction circuit and then measuring the state of the readout system

to implement an indirect measurement of a stabilizer generator, as in fig. 1.6. The measure-

ment outcome for a complete syndrome measurement is the bit string m ∈ Zn−k2 formed from

the bits retrieved from each stabilizer generator measurement. In this section, we show that

for syndrome measurements where the physical measurement undergoes measurement noise,

2
A unital channel is one which leaves the identity matrix invariant.

3
Many of these operators are permutations, which we denote using cycle notation wherein orbits created

by the permutation operators are grouped in rounded brackets with qubit labels ordered to convey the

applied permutation, e.g. (1 4 3) maps the 1
st

qubit to the 4
th

qubit, the 4
th

qubit to the 3
rd

qubit, and the

3
rd

qubit to the 1
st

qubit. When a permutation contains multiple orbits, they can be written consecutively

to denote the composition of the permutations that apply each orbit.

55

Encoded register ∣ψ⟩⟩ Gi

Readout register ∣+⟩ •
±

Figure 2.1: Indirect Weyl measurement using the {∣+⟩ , ∣−⟩} basis.

the effective noise on the syndrome extraction is to probabilistically misreport syndromes

according to a logical confusion matrix. The logical confusion matrix can be constructed as a

product of elements of the confusion matrices that describe the individual measurements on

the readout space. Folding the Fourier transforms into the state preparation and measure-

ment, we obtain the syndrome extraction circuit for a single syndrome bit with measurement

in the {∣+⟩ , ∣−⟩} basis, i.e. measurement of an X operator on the readout space.

∣+⟩ ∣−⟩
⟨+∣ a 1 − b

⟨−∣ 1 − a b

Table 2.3: A confusion matrix for a noisy measurement in the X-basis where a is the prob-

ability of correctly measuring ∣+⟩ and b is the probability of correctly measuring ∣−⟩.

A destructive noisy X-basis measurement Θ(M±) described by a confusion matrix C can

be expressed as a set of Kraus operators, {π̃(X)i,j},

π̃(X)i,j =
1

2

√
Ci,j ⟨j∣ , (2.19)

where i, j ∈ {+,−} with i the observed outcome and j the correct outcome. We retrieve

Kraus operators for the effective map on the encoded qubits by noting that the readout qubit

starts in the state ∣+⟩⟨+∣ so that we can write the Kraus operators {π̃(Gi)mi,j} of the noisy

indirect measurement Θ(Π(Gi)mi
) ∶ K → K of generator Gi with observed outcome mi and

correct outcome j as

π̃(Gi)mi,j =
1

2

√
Cmi,j (I ⊗ ⟨j∣) Ĝi (I ⊗ ∣+⟩) . (2.20)

Recalling that Ĝi = ∣0⟩⟨0∣⊗ I + ∣1⟩⟨1∣⊗Gi, we can simplify to

π̃(Gi)mi,j =
1

2

√
Cmi,j(I + (−1)γ(j)Gi), (2.21)

56

where γ(+) = 0 and γ(−) = 1. From here on, we use {0, 1} to label outcomes {+,−}
according to the mapping defined by γ(⋅). An ideal measurement is a special case of the above

derivation, with Ci,j = δi,j so that the ideal measurement operators for a single syndrome bit

are π(Gi)0 = (I +Gi)/2 and π(Gi)1 = (I −Gi)/2. Then we can express the Kraus operators

for a noisy measurement in terms of the Kraus operators of an ideal measurement as follows

π̃(Gi)mi,j =
1

2

√
Cmi,jπ(Gi)j. (2.22)

The noisy channel for the measurement of a single syndrome bit with observed outcome mi

is the sum over a correct and incorrect measurement with outcome mi,

Θ(Π(Gi)mi
)[ρ] = ∑

j∈Z2

π̃(Gi)mi,jρπ̃(Gi)mi,j (2.23)

= ∑
j∈Z2

Cmi,jπ(Gi)jρπ(Gi)j (2.24)

= ∑
j∈Z2

Cmi,jΠ(Gi)j[ρ]. (2.25)

A complete noisy syndrome measurement with outcome m is implemented by Θ(Πm) =
Θ(Πmn−k

) ◦ ... ◦Θ(Πm2
) ◦Θ(Πm1

), so that

Θ(Πm)[ρ] = ∑
j∈Zn−k

2

(
n−k

∏
i=1

π̃(Gi)mi,ji) ρ(
n−k

∏
i=1

π̃(Gi)mi,ji) (2.26)

= ∑
j∈Zn−k

2

(
n−k

∏
i=1

C
(i)
mi,ji

π(Gi)ji) ρ(
n−k

∏
i=1

π(Gi)ji) , (2.27)

(2.28)

where C
(i)

is the confusion matrix for the i
th

readout qubit. Examining eq. (2.28), we can

see that the noisy projector onto a cospace associated with syndrome m can be expressed as

a probabilistic sum over ideal projections onto the cospaces of the code,

Θ(Πm)[ρ] = ∑
j∈Z2n−k

2

C̄j,mΠj[ρ], (2.29)

where

57

C̄j,m =

n−k

∏
i=1

C
(i)
mi,ji

(2.30)

forms a confusion matrix for the logical measurement noise.

2.5.2 Symmetries of the toric code

We now show how our results can be applied to surface codes by considering the toric code

as described in fig. 2.2. We do not fully specify an upper bound on the number of logically

nondegenerate Pauli recovery maps because it depends on the number of rows and columns

and involves high-weight recovery maps for large codes. Instead, we focus on weight 1 and

weight 2 recovery maps.

The torus is constructed from a rectangular lattice by identifying the top and bottom

edges and then the left and right edges, which imposes periodic boundary conditions. There-

fore Z̄1 (Z̄2) can be moved to be any dark row (column) by multiplying the illustrated choice

by Z stabilizers along the rows (columns). Similarly, X̄1 (X̄2) can be moved to any light

column (row) by multiplying the illustrated choice by X stabilizers along the columns (rows).

Therefore rotating or twisting the torus by 2 units to map dark lines to dark lines (horizon-

tal or vertical translations with periodic boundary conditions) will permute the elements of

GS(U) and L(U), where the logical operation will simply be an identity. That is, twists

that map (i, j) → (i + 2, j) and rotations that map (i, j) → (i, j + 2) are in the symmetry

group of the r× c Toric code. We include below a proof. Using rotations and twists, we can

map any weight 1 Pauli to a weight 1 Pauli that acts on one of the qubits at (0, 1) or (1, 0).
Therefore, by corollary 4, there will be at most 6 degeneracy classes of weight 1 Pauli errors

under IID noise instead of 3n.

Lemma 6. Vertical translation via VertT ∶ (i, j)→ (i+ 2, j) and horizontal translation via

HorizT ∶ (i, j)→ (i, j + 2) each preserve the toric code under IID noise.

Proof. By definition, a vertical translation operation, VertT ∶ (i, j) → (i + 2, j), is a per-

mutation operator, making it a unitary operation which commutes with noise that acts in

the same way on every physical qubit. Then if VertT [SA] = SA for all logical operations A,

lemma 6 holds as the codespace is preserved.

Applying VertT to an X stabilizer has the following effect:

58

Z1

Z2

X2

X1

0 1 2 3 c-1
0

1

2

3

r-1

X Stabilizer

Z Stabilizer

. . .

...

. . .

...

. . .

Figure 2.2: A toric code is specified by a number of rows, r ∈ 2Z, and a number of columns,

c ∈ 2Z, with qubits lying on the edges of an r × c grid indexed by {(i, j) ∶ i ≠ j, i ∈ Zr, j ∈
Zc}, as depicted above. The qubit in row i and column j is indexed by (i,j). The circles

represent physical qubits, and the diagrams of X and Z stabilizers show which qubits these

operators act on, with every qubit on the edge of an X (Z) stabilizer acted on by an X

(Z) Pauli operator. The X stabilizers for the toric code are given by X = {X(i, j) ∶ i ∈
2Zr/2, j ∈ 2Zc/2} and the Z stabilizers by Z = {Z(i, j) ∶ i ∈ 2Zr/2 + 1, j ∈ 2Zc/2 + 1}, where

A(i, j) = Ai−1,j ⊗ Ai+1,j ⊗ Ai,j−1 ⊗ Ai,j+1. The logical operators are Z̄1 = ⨂j∈2Zc/2+1
Z0,j,

Z̄2 = ⨂i∈2Zr/2+1
Zi,0, X̄1 = ⨂j∈2Zr/2

Xi,1, and X̄2 = ⨂j∈2Zc/2
X1,j. Note that all operations

on the row (column) index are taken modulo r (c), corresponding to periodic boundary

conditions. The stabilizers are generated by X ∪ Z, and a minimal generating group can be

achieved by removing one X stabilizer and one Z stabilizer from X ∪ Z.

59

Code Map Name Symmetry Operation Logical Operation

r × c Toric Vertical Translation (i, j)→ (i + 2, j)∀i, j NA

Horizontal Translation (i, j)→ (i, j + 2)∀i, j NA

Vertical Reflection (i, j)→ (−i, j)∀i, j NA

Horizontal Reflection (i, j)→ (i,−j)∀i, j NA

J F⊗n ◦ (i, j)→ (i + 1, j + 1)∀i, j F
⊗2
◦ SWAP

r × r Toric Diagonal Reflection (i, j)→ (j, i)∀i, j SWAP

Table 2.4: Symmetry operations for the toric code, along with the associated logical opera-

tions. These operations can be applied for general IID noise, with the exception of J , which

requires noise that commutes with the n-qubit Hadamard gate as well as the permutation,

for example, J can be applied to a toric code undergoing IID depolarizing noise. Note that a

vertical translation is also called a twist and a horizontal translation is also called a rotation.

VertT [X(i, j)] = Xm−1,j ⊗Xm+1,j ⊗Xm,j−1 ⊗Xm,j−1, (2.31)

where m = i + 2 (mod r), and the modulo r arises due to the periodic boundary of the

toric code. Noting that {m = (i + 2) mod r ∶ i ∈ 2Zr/2} = {i ∶ i ∈ 2Zr/2} and comparing

VertT [X(i, j)] to the form of X(i, j), we see that VertT leaves the X stabilizers invariant.

A similar exercise confirms that the Z stabilizers are similarly preserved, and therefore VertT

leaves the stabilizer group invariant.

Applying VertT to X1 and Z2 leaves them invariant; VertT therefore leaves SX1 and

SZ2 invariant.

For the other logical operations,

VertT [X2] = ⨂
j∈2Zc/2

X3,j (2.32)

and

VertT [Z1] = ⨂
j∈2Zc/2+1

X2,j. (2.33)

Then, X2 =MVertT [X2], and Z1 = NVertT [Z1] for

60

M = ⨂
u∈2Zc/2

X(2, u), (2.34)

N = ⨂
w∈2Zc/2+1

Z(1, w). (2.35)

Because M ∈ S,

VertT [SX2] = {VertT [SX2] ∶ S ∈ S}
= {VertT [S]VertT [X2] ∶ S ∈ S}
= {SMX2 ∶ S ∈ S}
= SX2. (2.36)

A similar procedure using N rather than M shows that VertT preserves SZ1, and for

a horizontal translation, an analogous proof demonstrates that HorizT ∶ (i, j) → (i, j + 2)
preserves the toric code when every physical qubit undergoes the same noise process.

We can also combine a rotation by 1, a twist by 1 (i.e. mapping all physical qubits

by H ∶ (i, j) → (i + 1, j + 1)), and F⊗n
, where F is the Hadamard gate. This operation

J = F⊗nH preserves the stabilizer group by mapping X stabilizers to Z stabilizers and

vice versa, X̄1 ↔ Z̄2, and X̄2 ↔ Z̄1, and so implements a logical SWAP combined with a

Hadamard gate on each logical qubit. A proof is included below. Therefore for noise that

commutes with J (e.g., IID depolarizing noise), there are at most 4 logically nondegenerate

weight 1 Pauli recovery maps, namely, {X0,1, Z0,1, Y0,1, Y1,0}.

Lemma 7. A logical Hadamard gate can be implemented simultaneously on both logical qubits

in a toric code by applying J = F⊗nH.

Proof. Applying J has the following effect on the X and Z stabilizers:

J [X] = {Z(i + 1, j + 1) ∶ i ∈ 2Zr/2, j ∈ 2Zc/2}
= {Z(i, j) ∶ i ∈ 2Zr/2 + 1, j ∈ 2Zc/2 + 1}
= Z (2.37)

61

0 1 2 3 c-1
0

1

2

3

r-1

Figure 2.3: Horizontal translation symmetry in the toric code.

J [Z] = {X(i + 1, j + 1) ∶ i ∈ 2Zr/2 + 1, j ∈ 2Zc/2 + 1}
= {X(i, j) ∶ i ∈ 2Zr/2 + 2, j ∈ 2Zc/2 + 2}
= {X(i, j) ∶ i ∈ 2Zr/2, j ∈ 2Zc/2}
= X (2.38)

so the stabilizers are preserved by J . Applying J to Z1,

J [Z1] = ⨂
j∈2Zc/2+1

X1,j+1

= ⨂
j∈2Zc/2

X1,j

= X2. (2.39)

An analogous procedure shows that J [Z2] = X2. Applying F
⊗n
H to X2,

J [X2] = ⨂
j∈2Zc/2

Z2,j+1

= ⨂
j∈2Zc/2+1

Z2,j

= SZ1 (2.40)

62

for some S ∈ S. A similar procedure yields J [X2] = SZ2 for some S ∈ S. Then J maps

X2 ↔ Z1 and X1 ↔ Z2 modulo stabilizers, thereby implementing a Hadamard on both

logical qubits.

From the periodic boundary conditions, we can also reflect vertically or horizontally by

mapping (i, j)→ (−i, j) or (i, j)→ (i,−j), respectively. These reflections will permute the

X stabilizers and the Z stabilizers and will either leave the logical operators invariant or

map them to a different row/column, which is equivalent to the original logical operator up

to a product of stabilizers. Therefore these reflections are elements of the (general) stabilizer

group GS(U).

Lemma 8. Vertical and horizontal reflection preserve the toric code under IID noise.

Proof. Applying a vertical reflection, VertR ∶ (i, j)→ (−i, j), to an X stabilizer, X(i, j),

VertR[X(i, j)] = Xm−1,j ⊗Xm+1,j ⊗Xm,j−1 ⊗Xm,j+1, (2.41)

where m = r − i (mod r). Noting that {m = r − i (mod r) ∶ i ∈ 2Zr/2} = {i ∶ i ∈ 2Zr/2},

we see that a vertical reflection preserves the X stabilizers. A similar exercise shows that

vertical reflection preserves the Z stabilizers, and thereby preserves the stabilizer group.

Applying a vertical reflection to the logical operators leaves all but X2 invariant, so

that VertR[SX1] = SX1, VertR[SZ1] = SZ1, and VertR[SZ2] = SZ2. Applying a vertical

reflection to X2,

VertR[X2] = ⨂
j∈2Zc/2

Xr−1,j

= PX2, (2.42)

where

P = ⨂
u∈2Zr/2\0
w∈2Zc/2

X(u,w). (2.43)

63

0 1 2 3 c-1
0

1

2

3

r-1

Figure 2.4: Diagonal reflection symmetry in the toric code.

Because P ∈ S,

VertR[SX1] = {VertR[SX1] ∶ S ∈ S}
= {VertR[S]VertR[X1] ∶ S ∈ S}
= {SPX1 ∶ S ∈ S}
= SX1. (2.44)

A similar procedure shows that the toric code is preserved by a horizontal reflection, HorizR ∶

(i, j)→ (i,−j).

An r × r toric code can also be reflected across a diagonal axis via (i, j) → (j, i). This

reflection permutes the stabilizers and maps X̄1 ↔ X̄2 and Z̄1 ↔ Z̄2 up to a product of

stabilizers. Diagonal reflection is therefore an element of the logical symmetry group of an

r × r toric code, which implements a logical SWAP gate.

Lemma 9. A logical SWAP gate can be implemented in an r× r toric code by permuting the

physical qubits by rotating clockwise by 90°or via a reflection through an axis 45°clockwise

from the horizontal.

Proof. Applying a clockwise rotation by 90°, Rot90: (i, j)→ (j,−i), to an X stabilizer yields

64

Rot90[X(i, j)] = Xj,m−1 ⊗Xj,m+1 ⊗Xj−1,m ⊗Xj+1,m, (2.45)

where m = r − i; because we apply operations to the row index modulo r, −i = r − i = m.

Then X = {Rot90[X(i, j)] ∶ i, j ∈ Zr}. A similar argument shows that Rot90 preserves Z.

Applying Rot90 to the logical operators,

Rot90[Z1] = ⨂
j∈2Zr/2+1

Zj,0 = Z2 (2.46)

Rot90[Z2] = ⨂
i∈2Zr/2+1

Z0,r−i = NZ1 (2.47)

Rot90[X2] = ⨂
j∈2Zr/2

Xj,r−1 =MX1 (2.48)

Rot90[X1] = ⨂
j∈2Zr/2

X1,r−j = X2, (2.49)

where N,M ∈ S

For any Pauli recovery map of a fixed weight w, we can use rotations and twists to map

one of the qubits P acts nontrivially on to either (0, 1) or (1, 0). Therefore the number of

nondegenerate recovery maps is reduced by a factor of approximately n/2, although the exact

reduction factor introduced by translational symmetry depends upon w. We can further

reduce the number of nondegenerate Pauli recovery maps using another symmetry of the

toric code, namely, horizontal and vertical reflections about any row or column. Translational

symmetries combined with horizontal and vertical reflection reduce the 9(n
2
) weight 2 Pauli

recovery maps to at most 9(n+c+r
2
−2) nondegenerate recovery maps, which is approximately

9(n-1)/2 up to edge effects. The following explains where this number comes from. Using

translation, we can map any weight 2 Pauli recovery map to have weight on either (0, 1)
or (1, 0). There are n − 1 coordinate pairs containing each of these origins. Consider

the coordinate pairs of the form {(0, 1), (i, j)}. Without loss of generality, we can use a

vertical reflection—that is, (i, j) → (r − i, j)—so that i ∈ [0, r/2]. We can then use a

horizontal reflection and a rotation—that is, (i, j) → (i, 2 − j)—so that j ∈ [1, c/2 + 1].
There are then

(r/2+1)×(c/2+1)
2

− 1 coordinate pairs containing (0, 1) as we have reduced to

a (c/2 + 1) × (r/2 + 1) grid with qubits on half of the locations, and we subtract the

65

location of (0, 1). A similar reduction of coordinate pairs containing (1, 0) using horizontal

reflection and vertical reflection with a twist of the form (i, j) → (2 − i, j) produces pairs

in {{(1, 0), (i, j)} ∶ i ∈ [1, r/2 + 1], j ∈ [0, c/2]}. Adding the sizes of these two sets of

coordinate pairs, we get
rc/2+r+c

2
− 1. Recall that rc/2 = n to get n+r+c

2
− 1. There is one

additional symmetry that occurs using these operations which is not covered by the above

counting argument: there is a coordinate pair in each reduced set which, by undoing some

of the operations used, maps to {(0, 1), (1, 0)}. as such, we can subtract one case. Then we

multiply by 9 for the selection of a weight 2 element in P2. Further reductions are possible

using, e.g., a diagonal reflection for general IID noise in a square lattice or J for depolarizing

noise.

2.5.3 Symmetries for multiple rounds of QEC

For a memory channel in which a state is stored for a prolonged period, we expect to need

to apply multiple rounds of error correction as the noise continues to act on the state. A

memory channel with m QEC steps and corresponding m recovery operations Ri and noise

channels Ni can be expressed as

ṄU({(Ri,Ni)}) = U † (
m

∏
i=1

R†
iNi)U . (2.50)

Because we have allowed the noise acting at each time step to be distinct for generality, we

also assume that the set of recovery maps used at each time step will be distinct so that

each Ri is drawn from a set Vi of recovery operations for that time step. We now show how

to get degeneracies and logical degeneracies in the case where a channel has the above form.

Corollary 10. Let U ∈ U(H,K), Ri ∈ Vi, and Ni ∈ B(B(K)) and define C(N) = {A ∈

U(B(K)) ∶ [A,N] = 0} The maps {ṄU({(A†
iRiAi+1,Ni)}) ∶ A1 ∈ GLK(U,N1),Ai∉{1,m+1} ∈

C(Ni),Am+1 ∈ GLK(U)} are logically degenerate. Furthermore, the maps {ṄU({(A†
iRiAi,Ni+1)}) ∶

A1 ∈ SK(U,N1),Ai∉{1,m+1} ∈ C(Ni),Am+1 ∈ SK(U)} are degenerate.

66

Proof.

Ā†
m+1ṄU({(Ri,Ni)})Ā1 = U †A†

m+1 (
m

∏
i=1

R†
iNi)A1U (2.51)

= U †A†
m+1 (

m

∏
i=1

R†
iNiAiA

†
i)A1U (2.52)

= U †A†
m+1 (

m

∏
i=1

R†
iAiNiA

†
i)A1U (2.53)

= U † (
m

∏
i=1

A†
i+1R

†
iAiNi)U (2.54)

= ṄU({(A†
iRiAi+1,Ni)}) (2.55)

2.5.4 Symmetries for Non-IID Noise

Though we have restricted attention in the examples thus far to IID noise in stabilizer

codes, it should be noted that proposition 2, corollary 3, corollary 4, and corollary 10 apply

equally to codes undergoing non-IID noise. In the case of non-IID noise, logically degenerate

or strictly degenerate recovery operations can be calculated just as in previous sections.

However, the form of the noise must be taken into account when finding (logically) degenerate

maps, as commutation relations are not quite as simple for non-IID noise. If the non-IID

noise commutes with a symmetry operator, it can be applied in the same way as in all

of the examples thus far. For example, in a 5-qubit code undergoing noise of the form

N = N0⊗N1⊗N0⊗N1⊗N0, the permutation operator (0 4)(1 3) commutes with the noise

and can thus be used to partition recovery operations, while (0 1 2 3 4) does not preserve

the noise and therefore cannot be used to generate symmetries. Then, using single-qubit X

operators as an example, X0 ≊ X4 ≠ X1 ≊ X3, where we use ≊ to denote operators in the

same degeneracy class, and ≠ to denote a separation between degeneracy classes.

To find degeneracies when the physical noise does not commute with a symmetry opera-

tor, we must examine the effects of symmetries on the joint map MN , as in proposition 2.

For perfect measurements, this corresponds to finding degeneracies in maps of the form

R†N , where R†
is a recovery map. To find recovery maps which produce the same effective

noise under a permutation operator, for example, we must simultaneously permute N and

the recovery operation in question. This will not necessarily help in reducing computational

67

ρ̄ U

V

W [ρ̄]2,2

W [ρ̄]2,1

W [ρ̄]2,0

V

W [ρ̄]1,2

W [ρ̄]1,1

W [ρ̄]1,0

V W [ρ̄]0,2

W [ρ̄]0,1

W [ρ̄]0,0

W = V ⊗nU

Outer encoding: U

Inner encoding: V

Permutation on inner encoding:

Permutation on outer encoding:

Figure 2.5: Tree structure of a concatenated code with outer encoding U and inner encoding

V . The leaves on the right represent physical qubits. The subscripts in W [ρ̄]i,j denote that

the physical qubit is the jth qubit in the inner encoding (V) of the ith qubit in the outer

encoding (U). Double-ended arrows depict the action of a permutation which swaps the 0
th

and 1
st

qubit on the inner and outer encodings.

complexity for a fixed noise model, but comes in handy when handling, for example, per-

mutations of noise occurring for different error paths in a concatenated code. Section 2.5.5

gives a more complete example of how this can be applied, using a concatenated 5-qubit

code to illustrate, where the second level of concatenation sees non-IID noise even if the

physical noise is IID. Note, however, that by the nature of concatenated codes, there are

several permutations of noise at the second level of concatenation, allowing permutations

to be applied more liberally to the noise model to find degeneracies between permutations

of the noise as well as between recovery operations, whereas for a single noise model, any

symmetry operator must preserve that single noise model.

68

2.5.5 Symmetries of concatenated stabilizer codes

A common method of improving the logical error rate is to concatenate QECCs. Let

U ∈ U(H,H⊗n) and V ∈ U(H,H⊗m) be two encodings. Then W = V
⊗n
U ∈ U(H,H⊗mn)

is a concatenated encoding with inner (outer) encoding V (U), as illustrated in fig. 2.5.

The number of recovery operators increases doubly exponentially in the number of levels

of concatenation. However, we now show how corollary 4 and proposition 2 can be applied

directly to concatenated codes to reduce the number of nondegenerate (or logically nonde-

generate) recovery maps by concatenating symmetries of the inner and outer encodings. We

apply corollary 4 at the first level as in previous examples, and in higher levels, use propo-

sition 2 to apply symmetry operations. The reason proposition 2 is more applicable after

the first encoding is that the effective “physical” noise for higher levels is no longer IID so

the symmetry operations we’ve explored for IID noise no longer commute with the effective

“physical” noises. We therefore must permute the noise and symmetry operations together

to find degeneracy classes for different recovery operation/noise map pairs at each level.

To analyze concatenated codes, we first need to construct a set of recovery maps and

the logical group. Let VU and VV be sets of recovery maps for U and V respectively. Then

VW = {(⊗jFj)V⊗n[G] ∶ F0, . . . , Fn−1 ∈ VV , G ∈ VU} is a set of recovery maps for W . To

see this, let R = (⊗jFj)V⊗n[G] and R
′
= (⊗jF

′
j)V⊗n(G′) be two elements of VW and recall

that the recovery maps for, e.g., U satisfy U
†
Q

†
RU = δR,Q1H. Then as VU and VV are sets

of recovery maps for U and V , we have

W
†
R

†
R
′
W = U

†
G

†(⊗jV
†
F

†
j F

′
jV)G′

U

= U
†
B

†(⊗jδFj ,F
′
j
1H)G′

U

= U
†
G

†(1H)⊗nG′
U∏

j

δFj ,F
′
j

= 1HδG,G′ ∏
j

δFj ,F
′
j

= 1HδR,R′ (2.56)

as required. Any recovery maps for U that are tensor products of logical operators for V

(e.g. Pauli recovery maps in concatenated stabilizer codes) can be commuted through V
⊗n

.

We now show how to build some elements of the logical group GL(W), focusing on tensor

product operations and the symmetry group under IID noise. Suppose that A0, . . . ,An−1 ∈

GL(V) and let Āj be such that AjV = VĀj. Then, provided (⊗jĀj) ∈ GL(U) with

69

(⊗jĀj)U = UĂ, we have

(⊗jAj)W = (⊗jAjV)U = (⊗jVĀj)U (2.57)

= V⊗nUĂ =WĂ, (2.58)

and so (⊗jAj) ∈ GL(W) for Aj ∈ GL(V)∀j such that AjV = VĀj and ⊗jĀj ∈ GL(U).
The permutation group of a concatenated code can be generated from the permutation

groups of the inner and outer encodings by labeling each qubit as a pair of indices and

permuting one index with the inner code’s permutation group and the other index by the

outer code’s permutation group. For example, let A ∈ GL(U) be a permutation of n qubits.

Then we can commute A through V⊗n by permuting the tensor factors as illustrated in

fig. 2.5.

If the permutation groups of both the inner and outer code in a concatenated code are

transitive, then the concatenated code will also be transitive. This becomes evident when

envisioning the action of permutation operators on the branches in fig. 2.5; if U is transitive

then each major branch (those to the right of U but left of V) can be mapped to any

other major branch. If V is transitive, each subbranch of the major branches (those to

the right of each V) can be mapped to any other subbranch of the same branch. Then it

follows that any physical qubit can be mapped to any other physical qubit when the codes

being concatenated are transitive, that is, the concatenation of transitive codes will also be

transitive, although the concatenation of 2-transitive codes will typically not be 2-transitive

because the individual permutations cannot separate errors that act on the same inner code

block.

For example, consider the 9-qubit Shor code, which can be regarded as a concatenated

code with U = ∣000⟩⟨0∣+∣111⟩⟨1∣ and V = UF = ∣000⟩⟨+∣+∣111⟩⟨−∣. The Hadamard gate is

introduced so that weight 1 Z errors, which are logical operators in the inner repetition code

without the Hadamard, are mapped to X errors and so can be detected and corrected by the

outer code. There are 2
8
= 256 recovery maps for the 9-qubit Shor code. Any permutation

of the 3 qubits for either U or V is in both GS(U) and S(V). Labelling the qubits by (i, j)
where i labels the qubits in the inner encoding and j labels the qubits in the outer encoding,

we can apply any permutation to j for each i independently (i.e., permutations on the inner

encoding) and any permutation on j for all i (i.e., permutations on the outer encoding,

which affect all corresponding qubits in the inner encoding). Because both the inner and

outer encodings are transitive, the weight 1 Pauli recovery maps for the concatenated code

fall into 3 degeneracy classes under IID noise with representative elements X0,0, Y0,0, and

Z0,0. The weight 2 Pauli recovery maps can be divided into two types. For the first type,

70

both nontrivial Pauli terms act on a qubit in the same inner encoding. By permuting the

outer encoding, we can map the nontrivial Pauli terms to act on the first inner encoding.

We can then permute the qubits in the inner encoding so that the nontrivial Pauli terms

act on qubits (0, 0) and (0, 1). Multiplying by Z0,0Z0,1 (a stabilizer) and permuting qubits

(0, 0) and (0, 1) as necessary, there are 3 nondegenerate weight 2 recovery maps of this type,

namely, P0,0X0,1 for P ∈ {X, Y, Z}, where some of the other weight 2 recovery maps are

in the same degeneracy class as I or weight 1 errors. For the second type, one nontrivial

Pauli term acts on a qubit in each of two distinct inner encodings. By permuting the inner

encodings, we can map any such Pauli recovery map to P0,0Q1,0 for P,Q ∈ P. There are 9

such terms; however, we can swap the inner encodings to reduce to 5 terms (i.e., ZX and

XZ are degenerate). Therefore there are at most 5 nondegenerate weight 2 recovery maps

of this type. Then there are at most 12 nondegenerate Pauli recovery maps under IID noise

(1 of weight 0, 3 of weight 1, and 8 of weight 2), compared to the total of 256 Pauli recovery

maps selected for a given implementation.

The reduction in the number of recovery maps is more dramatic for larger concatenated

codes and higher levels of concatenation. For the 5 qubit and Steane codes, there are

16
5
≈ 10

6
and 64

7
≈ 4 × 10

12
recovery maps at the first level of concatenation respectively.

To quickly remove many degenerate recovery maps, it is more convenient to use the recursive

structure typically used in numerical studies. For noise with N = N⊗m
1 and a recovery map

R = (⊗jFj)V⊗n[G] where F0, . . . , Fn−1 ∈ VV and G ∈ VU , we then have

ṄW (R) =W†R†N⊗m
1 W

= U †G (⊗jV
†F †

jN1V)U
= U †G (⊗jN̄1,V (Fj))U . (2.59)

That is, the logical noise map via eq. (2.4) for the concatenated code is simply the logical map

for the outer code where the effective “physical” noise map is the effective logical noise for

the inner code conditioned on the Fj. We then see that the number of logical nondegeneracy

classes at the first level of a concatenated code will be at most ∣VV,N1
∣n× ∣VU ∣, where VV,N1

is the set of degeneracy classes under the noise process N1. For the 5 qubit and Steane codes

with IID depolarizing noise, there are then at most 2
5 × 16 = 512 and 3

7 × 64 = 34, 992

logical degeneracy classes.

We can further reduce the number of logical degeneracy classes by using the symmetry

of the outer encoding and choosing the decoder correctly. Importantly, even if the physical

noise is IID, the effective noise for the outer encoding conditioned on observed syndromes

(i.e., the Fj in eq. (2.59)) will not be IID. Nevertheless, the set of effective noise processes

71

for the outer encoding is permutationally invariant with respect to the outer code. Consider

two recovery maps (⨂j Fj)V
⊗n[G] and (⨂j F

′
j)V⊗n[G′]. If ⨂j F

′
j can be obtained from

⨂j Fj by an element of the symmetry group, then an optimal decoder will set G
′
to be the

same permutation of G as then the two recovery maps will have the same (and optimal)

logical noise by corollary 4. Therefore instead of all the elements of V⊗nV,N1
, we need only

consider the representative elements under the symmetry group of U .

For example, for the 5-qubit code under IID depolarizing noise there are 2
5

effective noise

processes ⊗jN̄1,V (Fj) corresponding to the choices of Fj ∈ {I,X(j,0)}, where we denote the

operator that acts as Xj on the ith code block and identity on the other blocks by X(i,j).

With this notation, because of the (0 1 2 3 4) symmetry, we only need to consider operations

that act as X(i,0), resulting in 8 effective noise processes for an optimal decoder, namely

those conditioned on the following recovery operators applied to the inner encoding:

F0 = {I} (no errors)

F1 = {X(2,0)} (one error)

F2 = {X(0,0)X(4,0), X(1,0)X(3,0)} (two errors)

F3 = {X(1,0)X(2,0)X(3,0), X(0,0)X(2,0)X(4,0)} (three errors)

F4 = {X(0,0)X(1,0)X(3,0)X(4,0)} (four errors)

F5 = {X(0,0)X(1,0)X(2,0)X(3,0)X(4,0)}, (five errors)

where we have grouped the effective noise processes by weight and chosen as representative

elements the combinations that are invariant under reflection about qubit 2 (that is, the

permutation (0 4)(1 3), which is in the symmetry group of the 5-qubit code). Furthermore,

for IID depolarizing noise at the physical level (i.e., N1 = D⊗5
p), each of the N̄1,V (Fj) is a

depolarizing channel and so commutes with Q, so that we need only consider the 6 choices

of G ∈ {I,X0, . . . , X4}. Moreover, by the reflection symmetry of the 5-qubit code and the

chosen combinations about qubit 2, we need only consider G ∈ {I, X̄0, X̄1, X̄2}, where we

use a X̄ because the recovery map acts on a single code block as a logical X. That is,

interpreting (F,G) as specifying the recovery map R = FV⊗n[G], there are at most 32

degeneracy classes whose representative elements are specified by the recovery maps

(F0 ∪ F1 ∪ F2 ∪ F3 ∪ F4 ∪ F5) × {I, X̄0, X̄1, X̄2}. (2.60)

For the no error or five error cases, we can permute G by arbitrary cyclic permutations

because the effective noise for the outer encoding is IID and the outer encoding is invariant

under cyclic permutations, so we need only consider G ∈ {I, X̄1} and so the elements in the

72

two sets

F0 × {X̄0, X̄1, X̄2}
F5 × {X̄0, X̄1, X̄2} (2.61)

are all degenerate, reducing to single representative elements,

F0 × X̄0

F5 × X̄0, (2.62)

and leaving only 28 degeneracy classes. We note that there is a further degeneracy, as explicit

calculations show that there are in fact only 20 degeneracy classes as any two choices of G

that are related by a permutation that leaves ⊗jFj invariant are degenerate. We denote

degeneracy by (F,G) ≅ (F ′
, G

′). From explicit calculations, we know that

(X(2,0), X̄0) ≅ (X(2,0), X̄1)
(X(0,0)X(4,0), I) ≅ (X(1,0)X(3,0), I)

(X(0,0)X(4,0), X̄1) ≅ (X(0,0)X(4,0), X̄2)
(X(1,0)X(3,0), X̄0) ≅ (X(1,0)X(3,0), X̄2)

(X(1,0)X(2,0)X(3,0), I) ≅ (X(0,0)X(2,0)X(4,0), I)
(X(0,0)X(2,0)X(4,0), X̄0) ≅ (X(0,0)X(2,0)X(4,0), X̄2)
(X(1,0)X(2,0)X(3,0), X̄1) ≅ (X(1,0)X(2,0)X(3,0), X̄2)

(X(0,0)X(1,0)X(3,0)X(4,0), X̄0) ≅ (X(0,0)X(1,0)X(3,0)X(4,0), X̄1). (2.63)

However, we have not been able to identify an explicit symmetry to show that these cases

are degenerate.

2.6 Conclusion

In this chapter, we introduced notation which facilitates the exploration of the effective

noise arising from a QECC, including the effects of noisy measurements. In section 2.5.1

we demonstrated that noisy readout measurements leave the effective logical noise invari-

ant up to a renormalization for stabilizer codes. We showed how the computational cost of

calculating the effective logical noise in a QECC can be reduced by orders of magnitude by

identifying measurement outcomes and recovery maps which result in the same (or logically

73

degenerate) noise in section 2.4. This reduction in computational complexity does not re-

duce the accuracy of the simulation. In section 2.5, we demonstrated the usefulness of the

reduction by presenting degeneracies for the 3-, 5-, and 7-qubit codes (tables 2.1 and 2.2) as

well as concatenated codes (section 2.5.5) and the toric code (table 2.4) for independent and

identically distributed noise. Identifying additional symmetries in these and other quantum

error correcting codes is an open question. We anticipate that our results can be used to

construct better soft decoders for concatenated codes, since logically degenerate recovery

maps should simply be altered to make them degenerate.

Furthermore, a significant barrier to the successful implementation of a quantum error

correcting protocol in a large system is the time that the error correction step takes. The

methods in this chapter can be used to simplify the decoding step, since optimal recovery

maps for a small number of nondegenerate syndromes can be pre-computed and cached. This

allows other syndromes to be straightforwardly reduced to the nondegenerate syndromes and

the recovery maps can be altered accordingly. While we focused on the toric code due to

its translational symmetry, we expect that similar reductions will also hold for surface codes

[45, 54] and color codes [55, 56] even without translational symmetry, in part because these

codes have more logical gates with simple (e.g., tensor product) structures.

74

Chapter 3

Randomized compiling for subsystem

measurements

In the previous chapter, we made the standard assumption about the physical noise and

showed that it produces syndrome measurement noise of the commonly assumed form. In

this chapter, we propose a noise tailoring technique for measurement noise that enforces a

similar form for physical measurements.

The results presented in this chapter were first presented in [3].

3.1 Chapter overview

Measurements are a vital part of any quantum computation, whether as a final step to

retrieve results, as an intermediate step to inform subsequent operations, or as part of the

computation itself (as in measurement-based quantum computing). However, measurements,

like any aspect of a quantum system, are highly error-prone and difficult to model. In this

chapter, we introduce a new technique based on randomized compiling to transform errors in

measurements into a simple form that removes particularly harmful effects and is also easy to

analyze. In particular, we show that our technique reduces generic errors in a computational

basis measurement to act like a confusion matrix, i.e. to report the incorrect outcome

with some probability, and as a stochastic channel that is independent of the measurement

outcome on any unmeasured qudits in the system. We further explore the impact of errors

on indirect measurements and demonstrate that a simple and realistic noise model can cause

errors that are harmful and difficult to model. Applying our technique in conjunction with

75

randomized compiling to an indirect measurement undergoing this noise results in an effective

noise which is easy to model and mitigate.

3.2 Introduction

Measurements are the sole method of retrieving information from quantum systems; as such,

they are integral to any quantum computation. In circuit-based models of quantum compu-

tation, most measurements are destructive
1
, terminal measurements in the computational

basis, used at the end of a circuit to retrieve results. Noise on these measurements is typ-

ically modeled by assuming that the measurement outcomes are permuted according to a

confusion matrix, that is, a matrix containing probabilities of observing a given outcome

given that another outcome occurred (recall section 1.7.2). When noise can accurately be

modeled by a confusion matrix, it can be mitigated in post-processing with an overhead

that, under reasonable assumptions, scales polynomially with the number of qubits [57].

However, measurement outcomes can also be used to choose subsequent operations as in

quantum error correction [19] and measurement-based quantum computation [58]. For these

applications, the assumption that measurements are terminal and destructive is insufficient,

and the noise model that applies a confusion matrix is not well motivated. The effect of

realistic noise when the measured state persists after measurement can be harmful and

difficult to model. This same problem of realistic errors being difficult to model also arises

for unitary channels. For such channels, the effects of noise can be reduced to a stochastic

model which is easier to predict and mitigate or correct by applying randomized compiling

(RC) [18].

In this chapter, we generalize RC to tailor the effects of measurement errors to a stochastic

form that is easier to model. Like RC for unitary channels, our generalization does not

introduce significant overhead in number of shots or number of gates. We show that our

protocol reduces fully general noise on a destructive computational basis measurement to a

channel which acts stochastically on the unmeasured qudits in a way that is independent of

the measurement outcome, and permutes the outcomes observed on the measured qudits.

1
In theoretical treatments of quantum computing, destructive measurements are effectively just mea-

surements for which the measured qudits are not re-used. In experimental implementations, a distinction

might be made based on the platform as measurements in e.g. photonic quantum computation destroy the

measured qudits, whereas superconducting qudits persist after measurement; however this distinction is not

relevant here.

76

We further show how harmful noise can occur from a simple and realistic perturbation of an

indirect measurement and that our protocol reduces this noise to a more desirable form.

We begin in section 3.3 by defining the concept of unnormalized stochastic channels to

cover the form of noise returned by our technique. In section 3.4 we give an explicit ex-

ample where a simple and well-motivated noise model on a standard implementation of an

indirect computational basis measurement results in noise that does not follow the stan-

dard assumptions on measurement noise, and which is harmful and difficult to model when

subsequent operations are applied. In section 3.5 we show how randomized compiling can

be applied to non-destructive measurements to tailor harmful errors into a form which is

easier to model and less harmful. Section 3.6 generalizes section 3.4 to general indirect mea-

surements, showing how randomized compiling can be applied to indirect measurements to

tailor noise effectively, and we return to the example from section 3.4 to show the effects of

randomized compiling explicitly. We finally include in section 3.6.2 an explicit derivation of

a noisy implementation of a general indirect measurement of a Weyl operation which shows

that the harmful noise which is removed by randomized compiling is realistic for noise on

higher dimensional systems and for a common subclass of measurements.

3.3 Subsystem measurements

Stochastic channels are easier to analyze because the worst-case error rate is approximately

equal to the average error rate, and are accurate as a model because general errors can

be converted into stochastic channels using randomized compiling [18]. Although ref. [23]

defined stochastic channels to be trace-preserving maps, the proof that the twirled channel

EG∈GG
†
ΛG (3.1)

is a stochastic channel for any channel Λ and unitary 1-design G [59] in [23, Theorem 3]

can be trivially generalized to completely positive maps, where the twirled channel admits

the same Kraus operator decomposition without the trace-preserving condition. We refer to

such channels as unnormalized stochastic channels. Similarly, measurements which undergo

a probabilistic bit-flip noise are easy to predict and model.

A case of interest is a type of measurement that we refer to as subsystem measurements,

wherein a subset of m qudits are non-destructively measured in the computational basis.

Formally, let Hdn ≡ Hrest ⊗ Hmeas where Hmeas ≡ Hdm is the space of states for the m

qudits being measured. Then a subsystem measurement with side-evolution U applied to

77

Unmeasured Qudits U

Measured Qudits

•

Figure 3.1: A circuit diagram showing a subsystem measurement, which consists of a com-

putational basis measurement of a subset of m qudits of dimension d and some evolution U

on the rest of the system. The corresponding channel is given in eq. (3.3).

the unmeasured qudits corresponds to measuring the m qudits and returning the outcome

k ∈ Zmd with probability

Tr (πkρ) , (3.2)

where πk = U ⊗ ∣k⟩⟨k∣, and we allow U ∈ Hdn−m to not be the identity to allow other

computation to take place during the measurement.

We can return the outcome k by “creating” a new m-qudit system that always has a

definite state. This gives us the Kraus operators πk ⊗ ∣k⟩ and so we obtain the overall

channel

MU,Hmeas
= U ⊗ ∑

k∈Zm
d

∣k)(k∣⊗ ∣k), (3.3)

where the second tensor factor corresponds to the returned outcome. Note that this channel

does not violate the no-cloning theorem because it is only cloning orthogonal states.

A subsystem measurement includes the case where m = n, that is, where the entire

system is measured. While there are in principle more general types of measurements, in

practice more complex measurements are typically implemented by applying an entangling

unitary and then performing a subsystem measurement. We will return to this in more detail

in section 3.6.

We now define uniform stochastic instruments, which correspond to a specific type of

imperfect subsystem measurement.

Definition 8. A uniform stochastic instrument is a channel that can be written as

∑
a,b,k∈Zm

d

UTa,b ⊗ ∣k + b)(k + a∣⊗ ∣k) (3.4)

where Ta,b is an unnormalized stochastic channel that acts only on Hrest.

78

A uniform stochastic instrument is a particularly simple error model in that there are

only three error modes:

1. A state may be misreported, that is, the system is in the state ∣k + a) but is reported

as ∣k);

2. The measured systems are left in the wrong computational basis state, that is, they

are left in the state ∣k + b) when the outcome k is reported; and

3. A stochastic error is applied to the unmeasured systems that is independent of the

observed outcome.

We refer to such channels as “uniform” because the error applied to the rest of the system

is uniform over the observed outcome. Moreover, the measured and unmeasured qudits are

disentangled by such a measurement even if they were entangled before the measurement.

We can see this by noting that the post-measurement state is a linear combination of tensor

products of arbitrary states of the unmeasured qudits with pure states of the measured

qudits. The states of the measured and unmeasured qudits after the measurement are

typically classically correlated, unless only one Ta,b is nonzero in eq. (3.4). Note that the

probability of observing the outcome k and leaving the system in the state ∣k + b) given an

initial state ρ is

∑
a∈Zm

d

Tr (Ta,b)⊗ (k + a∣[ρ], (3.5)

and so is determined by the unnormalized stochastic channels {Ta,b}. Generally, some out-

come will always occur and so

∑
a,b∈Zm

d

Ta,b (3.6)

is a trace-preserving map.

3.4 Example: indirect computational basis measurement

We now illustrate the complexity of modelling errors in subsystem measurements without

randomized compiling by considering an indirect subsystem measurement, wherein the mea-

surement is performed by coupling the system be measured to another quantum system that

79

Data qubit: ρ •

Readout qubit: ⟨0∣

Figure 3.2: Circuit diagram of an indirect computational basis measurement. A data qubit

in an initial state ρ is coupled to a readout qubit initialized in the state ⟨0∣ by a CNOT

gate. The readout qubit is then measured in the computational basis.

can be directly measured. For simplicity, we will restrict to an indirect computational basis

measurement of a single data qubit by coupling it to another readout qubit, and we include

as a reminder the circuit diagram for such a measurement in fig. 3.2. Typically, V would

correspond to performing a controlled-X (CNOT) gate, which can be written as

V = ∣0⟩⟨0∣⊗ I + e
iπ/2 ∣1⟩⟨1∣⊗ e

−iπX/2
. (3.7)

The Kraus operators describing the action of an ideal implementation of fig. 3.2 on the data

qubit are

Kj = (I2 ⊗ ∣j⟩⟨j∣)V (I2 ⊗ ∣0⟩) = ∣j⟩⟨j∣⊗ ∣j⟩ , (3.8)

for j = 0, 1, which corresponds to an ideal computational basis measurement of the data

qubit as desired, where the second tensor factor is the observed measurement outcome.

Now suppose that the CNOT gate is implemented with an over-rotation error, which we

will take to be

Vφ = ∣0⟩⟨0∣⊗ I + ∣1⟩⟨1∣⊗ e
−iφX

, (3.9)

where φ = π/2 corresponds to the ideal case and we ignore the e
iπ/2

factor as it only appears

as an overall phase on K1. This results in the Kraus operators

K̃0 = ∣0⟩⟨0∣⊗ ∣0⟩ + cosφ ∣1⟩⟨1∣⊗ ∣0⟩
K̃1 = −i sinφ ∣1⟩⟨1∣⊗ ∣1⟩ . (3.10)

While this is an extremely simple error model representing just one likely error in an imple-

mentation, it already complicates the behavior. Consider an initial state ρ = ∣+⟩⟨+∣ for the

data qubit. The ideal unnormalized output after observing the outcome ∣0⟩ is 1

2
∣0⟩⟨0∣, where

the trace of the unnormalized output gives the probability with which it occurs. However,

with the Kraus operators in eq. (3.10) we instead obtain

K̃0 ∣+⟩⟨+∣ K̃†
0 =

1

2
(∣0⟩⟨0∣ + cosφ ∣0⟩⟨1∣ + cosφ ∣1⟩⟨0∣ + cos

2
φ ∣1⟩⟨1∣)⊗ ∣0⟩⟨0∣ . (3.11)

80

This incorrect state cannot be modelled by a confusion matrix, as it is not a mixture of

∣0⟩⟨0∣ and ∣1⟩⟨1∣. We will return to this example in section 3.6.1 to show how randomized

compiling results in a simpler error model.

3.5 Randomized compiling for non-destructive quantum measure-

ments

In this section, we introduce randomized compiling for non-destructive quantum measure-

ments and analyze the impact on a general noisy measurement. A general noisy imple-

mentation of a subsystem measurement MU,Hmeas
as illustrated in fig. 3.1 can be expressed

as

Θ(MU,Hmeas
) = ∑

k∈Zn
d

Mk ⊗ ∣k), (3.12)

where the Mk are completely positive maps from H to itself and the ∣k) corresponds to the

outcome. That is, a known classical outcome is returned but the corresponding evolution of

the system can be arbitrary provided that the state of the system conditioned on an outcome

is a valid quantum state. As some outcome is always observed, ∑kMk is a trace-preserving

map, however, we do not need to formally impose this restriction.

Our goal is to transform a noisy implementation of a subsystem measurement of the form

in eq. (3.12) to be a uniform stochastic measurement as in eq. (3.4) by adding gates drawn

uniformly at random from the following three sets as illustrated in fig. 3.3:

1. diagonal gates on the measured qudits before and after the measurement to diagonalize

the measurement;

2. basis permutations on the measured qudits to permute the expected outcome and undo

the permutation after the measurement; and

3. a unitary 1-design on the unmeasured qudits before and after the measurement to

reduce the errors on the unmeasured qudits to stochastic errors.

For clarity, we will first prove the well-known fact that the average effect of applying

uniformly random diagonal gates as introduced before and after the measurement pro-

duces a dephasing channel before analyzing the effect of all three steps together. Through-

out this chapter, we will assume that the implementations of the random gates are ideal.

81

Unmeasured Qudits Hrest G U UG
†
U

†

Measured Qudits Hmeas ≡ Hdm X
−x Z

a
Z
b X

x

• add x

Figure 3.3: A circuit diagram showing a randomly compiled computational implementation

of fig. 3.1, where a, b, x ∈ Zmd are m-digit strings with entries modulo d and G is an element

of a unitary 1-design. In theorem 12, we prove that the uniform average over a, b, x, and G

is a uniform stochastic instrument.

This assumption can be trivially generalized to errors where the implementation of each

random gate U can be written as LUR for some constant maps L and R by redefining

Θ(MU,Hmeas
) → RΘ(MU,Hmeas

)L and similarly for other imperfectly implemented opera-

tions [60], which would correspond to the “hard” cycles in randomized compiling [18]. To

both minimize the number of additional physical gates that are introduced and to justify

the above redefinition of the noisy implementations of measurements and other hard cycles,

adjacent random gates should be compiled into each other and into neighbouring single-

qudit gates from the bare circuit where possible. As such, when measurements are randomly

compiled in addition to other hard cycles following ref. [18], the number of physical gates

to be implemented does not change. Moreover, in the limit where random gates are chosen

independently for each execution of a circuit, no additional executions are required [61].

Lemma 11. For any positive integers d and n with d ≥ 2,

Ea∈Zn
d
(Za) = ∑

z∈Zn
d

∣Zz⟩⟩⟨⟨Zz∣ = ∑
j∈Zn

d

∣j)(j∣ .

Proof. Using eq. (1.13) with PWd,n as the basis, we have

Za
= ∑

x,z∈Zm
d

∣Za
X
x
Z
z
Z
−a⟩⟩⟨⟨Xx

Z
z∣

= ∑
x,z∈Zm

d

χa(x)∣Xx
Z
z⟩⟩⟨⟨Xx

Z
z∣, (3.13)

where the second equality follows from eq. (1.28). Averaging over a and using eq. (1.32)

82

gives

Ea∈Zn
d
(Za) = ∑

x,z∈Zn
d

∣Xx
Z
z⟩⟩⟨⟨Xx

Z
z∣Ea∈Zm

d
(χa(x))

= ∑
x,z∈Zn

d

∣Xx
Z
z⟩⟩⟨⟨Xx

Z
z∣Ea∈Zn

d
(χx(a)χ∗0(a))

= ∑
z∈Zn

d

∣Zz⟩⟩⟨⟨Zz∣, (3.14)

establishing the first equality.

We can use eq. (1.32) to invert eq. (1.25) and obtain

∣j⟩⟨j∣ = Ez∈Zn
d
(χ∗j (z)Zz) . (3.15)

Substituting eq. (3.15) into eq. (3.14) and using linearity gives

Ea∈Zn
d
(Za) = ∑

j,k∈Zm
d

∣j)(k∣Ea∈Zm
d
(χj(a)χ∗k(a))

= ∑
j∈Zm

d

∣j)(j∣ , (3.16)

establishing the second equality.

Having analyzed the effect of the random diagonal gates, we now prove that averaging

over all the random gates in fig. 3.3 produces a uniform stochastic instrument.

Theorem 12. If the implementation of a noisy measurement as in fig. 3.1 is described by

the channel eq. (3.12) and the additional gates in fig. 3.3 are ideal, then the average of fig. 3.3

over a, b, x ∈ Zmd and G over a unitary 1-design G is a uniform stochastic instrument.

Proof. Under the stated assumptions, we can write the channel implemented by fig. 3.3 for

fixed a, b, x ∈ Zmd and G ∈ G as

Θa,b,x,G(MU,Hmeas
) = ∑

k∈Zm
d

Λk,a,b,x,g ⊗ ∣k) (3.17)

where we have relabeled the classical outcomes to account for adding x so that the measure-

ment acts as Mk−x ⊗ ∣k) and we define

Λk,a,b,x,G = (UG†U †
⊗ X xZb)Mk−x(G ⊗ ZaX −x). (3.18)

83

The average over a, b, x ∈ Zmd and G ∈ G is then

ΘRC(MU,Hmeas
) = Ea,b,x∈Zm

d ,G∈G (Θa,b,x,G(MU,Hmeas
)) . (3.19)

We will evaluate this average by first averaging over the diagonal gates, that is, over a, b ∈ Zmd ,

then over the permutation gates, that is, over x ∈ Zmd , and finally over the unitary 1-design,

that is, over G ∈ G. By lemma 11, the independent uniform average over a, b ∈ Zmd gives

Ea,b (Λk,a,b,x,G) = ∑
α,β∈Zm

d

(UG†U †
⊗ X x ∣β)(β∣)Mk−x(G ⊗ ∣α)(α∣X −x). (3.20)

Now note that the X channels permute the ideal projectors, since

X
x ∣j⟩⟨j∣X−x

= ∣j + x⟩⟨j + x∣ . (3.21)

Therefore for any fixed x we have X x∣j) = ∣j+x) and so averaging Λk,a,b,x,G over a, b, x ∈ Zmd
for fixed values of k and G gives

Ea,b,x∈Zm
d
(Λk,a,b,x,G) = ∑

α,β∈Zm
d

Ex∈Zm
d
((UG†U †

⊗ ∣β + x)(β∣)Mk−x(G ⊗ ∣α)(α + x∣))

= ∑
α,β∈Zm

d

UG†Mk,α,βG ⊗ ∣k + β)(k + α∣ , (3.22)

where we relabel the terms in the sum by setting α → α + k − x and β → β + k − x and

define

Mk,α,β = Ex∈Zm
d
((U †

⊗ (β + k − x∣)Mk−x(Irest ⊗ ∣α + k − x))) , (3.23)

which only acts on Hrest. Therefore to complete the proof we need to show that EGG
†Mk,a,bG

is an unnormalized stochastic channel that is independent of k. To see that it is independent

of k, note that if we relabel x → k + x in eq. (3.23), then the right-hand side is manifestly

independent of k. As Mk,α,β only acts on Hrest, we set

Tα,β = EG∈G (G†Mk,α,βG) = EG∈G (G†M0,α,βG) , (3.24)

which is an unnormalized stochastic channel [23], completing the proof.

3.6 General indirect measurements

We now analyze how randomly compiling subsystem measurements can be used to perform

effective indirect measurements with simple error models. Indirect measurements are one of

84

Data register
V

Readout register: ⟨0∣

Figure 3.4: Circuit diagram of a general indirect measurement, which can be used to perform

indirect measurements such as syndrome measurements.

the fundamental techniques in quantum error correction as they are used to detect if the

system is in the code space without disturbing the state of the system if it is in the code space

and to determine the correction to apply if it is not in the code space. Such measurements

are performed by a circuit as in fig. 3.4, which generalizes fig. 3.2. The corresponding Kraus

operators are

Kk = (I ⊗ ⟨k∣)V (I ⊗ ∣0⟩)⊗ ∣k⟩ , (3.25)

where the ∣k⟩ represents the observed outcome. Typically, we choose

V = ∑
j,k∈Zm

d

πk ⊗ ∣k + j⟩⟨j∣ (3.26)

for a projective measurement {πk ∶ k ∈ Zmd }. To see that V is unitary, note that for any

projective measurement we have ∑k πk = I and so

V
†
V = ∑

j,k∈Zm
d

πk ⊗ ∣j⟩⟨j∣ = I ⊗ ∑
j∈Zm

d

∣j⟩⟨j∣ = I, (3.27)

and similarly for V V
†
. Thus the ideal Kraus operators are

Kk = πk ⊗ ∣k⟩ , (3.28)

which is equivalent to performing the ideal projective measurement on the state register and

encoding the result in the state of the readout register. As in section 3.4, simple error models

will result in Kraus operators that are not proportional to the ideal projectors and thus leave

coherences, arising from cross-terms between the orthogonal subspaces corresponding to

different ideal outcomes. For example, in section 3.6.2, we show that an indirect measurement

projecting onto the eigenspaces of a Weyl operator with a simple error leaves such coherences.

These coherences are assumed to not exist in many analyses of quantum error correction and

can cause particularly harmful accumulation of errors as different cospaces and combinations

thereof are allowed to interfere in subsequent operations.

85

Data register
X
p
Z
q V V

†
Z
−q
X
−p
V (Zg ⊗ Z

a)Xx X
−x (Z−g ⊗ Z

b)
Readout register: ⟨0∣

• add x

Figure 3.5: Randomly compiled implementation of a stabilizer measurement where V is a

multi-qudit Clifford operation. As V is a multi-qudit Clifford operation, V
†
Z
−q
X
−p
V is a

tensor product of single-qudit Weyl operators. The random Weyl operators are specified by

p, q, x ∈ Znd , g ∈ Zn−md , and a, b ∈ Zmd .

While fig. 3.4 is valid for any unitary V , we typically require some structure to ensure

that the random gates that are added are simpler than the gate being twirled, and thus do

not significantly add to the complexity (and typically the total error) of the circuit. We now

consider the special case where V is a Clifford unitary, that is, when VWV
†

is proportional

to a Weyl operator for any W ∈ PWd,n. In fig. 3.5, we show how to implement fig. 3.4 with

randomized compiling so that Markovian implementations of a Clifford unitary operation and

the measurement are reduced to the ideal Clifford channel followed by a uniform stochastic

measurement. Considering first the Clifford operation V , from ref. [18], averaging p, q ∈ Znd
gives the effective channel

ΘRC(V) = ΛV , (3.29)

where Λ is a stochastic Weyl channel, that is, a channel of the form [62]

Λ = ∑
x,z∈Zn

d

µ(x, z)X xZz
(3.30)

where µ ∶ Z2n
d → [0, 1] is a probability distribution. Combining this with theorem 12, when

we average over all the random gates in fig. 3.5, we obtain the channel

ΘRC(MU,Hmeas
V) = ΘRC(MU,Hmeas

)ΘRC(V)

=

⎛
⎜
⎝

∑
a,b,k∈Zm

d

Ta,b ⊗ ∣k + b)(k + a∣⊗ ∣k)
⎞
⎟
⎠

ΛV (3.31)

where the Ta,b are unnormalized stochastic channels. Moreover, as the Ta,b are twirled by the

Weyl group, they are also of the form

Ta,b = ∑
α,β∈Zn−m

d

νa,b(α, β)X αZβ
(3.32)

86

where each νa,b ∶ Z
n−m
d → [0, 1] is a subnormalized probability distribution that together add

to a normalized probability distribution. Substituting eqs. (3.30) and (3.32) into eq. (3.31)

and using the fact that the product of Weyl channels is a Weyl channel gives

ΘRC(MU,Hmeas
V) = ∑

a,b,k∈Zm
d

(Λa,b ⊗ ∣k + b)(k + a∣)V ⊗ ∣k), (3.33)

for some subnormalized stochastic channels Λa,b. When V is a Clifford operation that is

also of the special form in eq. (3.26), eq. (3.33) simplifies to performing the ideal projective

measurement and then applying a uniform stochastic channel. While we focused on measure-

ments in the computational basis throughout this chapter, these results can be generalized

to measurements in another basis by re-defining the random Z and X gates relative to the

measurement basis.

3.6.1 Two-qubit example

For concreteness, we return to the simple two-qubit example in section 3.4 and show how it

is transformed by randomized compiling. Using the fact that Z is diagonal and using the

identities CX(X⊗ I)CZ = X⊗X and CX(I⊗Z)CX = Z⊗Z to determine the correction

gates, so that the randomly compiled implementation of section 3.4 is as follows, where the

xj and zj are bits.

Data qubit: ρ X
x0Z

z0 • X
x2−x0Z

z2−z0−z1 X
−x2Z

−z2

Readout: ⟨0∣ X
x1Z

z1 X
x3−x1−x0Z

z3−z1 X
−x3Z

z4

• add x3

(3.34)

As we will only consider a noisy implementation of the CNOT gate, we will simplify the

above by compiling adjacent single-qubit operations, however, this compilation would result

in a different noise process if the single-qubit operations are implemented imperfectly. We

simplify eq. (3.34) by applying the first Z
z1 to the input state and canceling the random

gates where possible by commuting them through single-qubit circuit elements, noting that

X and Z commute as channels. Because the computational basis measurement is ideal, the

random X and Z gates applied before and after it leave it unchanged. These gates should

not generally be omitted when the measurement itself is noisy, but in our example the noise

is coming solely from a multi-qubit gate, so they have no effect. These simplifications give

87

the following circuit.

Data qubit: ρ X
x0Z

z0 • X
−x0Z

−z0−z1

Readout qubit: ⟨0∣ X
x1 X

−x1−x0

•

(3.35)

While eq. (3.35) is equivalent to simply randomly compiling the CNOT, randomized com-

piling has not been analyzed in the context of non-destructive measurements. Theorem 12

establishes that the complete indirect measurement with general errors will be reduced to

a uniform stochastic measurement as in eq. (3.33), however, the only simple error mod-

els for measurements are confusion matrices, which do not fully capture the dynamics of a

non-destructive measurement.

We therefore restrict attention to the well-motivated example of an over-rotation gate

during an indirect measurement and show that RC helps for this explicit example. When

the CNOT in eq. (3.35) is implemented imperfectly using the Vφ gate defined in eq. (3.9),

the overall channel is equivalent to the following.

Data qubit: ρ X
x0Z

z0

Vφ
X
−x0Z

−z0−z1

Readout qubit: ⟨0∣ X
x1 X

−x1−x0

•

(3.36)

As Vφ commutes with Z ⊗ I and I ⊗X, we obtain the reduced circuit

Data qubit: ρ X
x0

Vφ
X
−x0 Z

z1

Readout qubit: ⟨0∣ X
−x0

•

(3.37)

Setting aside the Z
z1 gate (which will average to a dephasing channel by lemma 11) to begin,

we have four Kraus operators arising from two measurement outcomes and two values of x0

These Kraus operators are given by

Lk,x0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(∣x0⟩⟨x0∣ + cosφ ∣1 + x0⟩⟨1 + x0∣)⊗ ∣k⟩ k = x0

−i sinφ ∣1 + x0⟩⟨1 + x0∣⊗ ∣k⟩ k ≠ x0.
(3.38)

Averaging over z1 ∈ Z2 removes any off-diagonal terms introduced by conjugating by these

Kraus operators, so that effectively we have 6 Kraus operators for the final channel. We can

combine like terms to reduce this down to 4 Kraus operators of the form

K̃k′,k =

√
∣p(k, k′)∣ ∣k′⟩⟨k′∣⊗ ∣k⟩ , (3.39)

88

where k
′

indicates which ideal projector acts on the state space, k is the result written to

the readout register, and p(k, k′) is a coefficient representing the probability of observing k

and applying k
′
. After this simplification, the final set of Kraus operators can be written

K̃0,0 = (1 − i sinφ) ∣0⟩⟨0∣⊗ ∣0⟩
K̃0,1 = cosφ ∣1⟩⟨1∣⊗ ∣0⟩
K̃1,0 = cosφ ∣0⟩⟨0∣⊗ ∣0⟩
K̃1,1 = (1 − i sinφ) ∣0⟩⟨0∣⊗ ∣0⟩ . (3.40)

This noise can thus be condensed into a confusion matrix representation

1

2
(1 + sin

2
φ cos

2
φ

cos
2
φ 1 + sin

2
φ
) . (3.41)

Adding additional errors to the CZ gate may change the confusion matrix and/or add a

stochastic Pauli error channel acting on the state space. In section 3.6.2, we show how

this example generalizes to higher dimensions and also indirect measurements of multi-qudit

operators.

3.6.2 Indirect measurements with noisy Clifford operations

Noise can arise in any or all of the component operations used to implement an indirect

measurement. In this subsection, we look specifically at the effect of an over- or under-

rotation of the coupling operation used to implement an indirect Weyl measurement.

Recall the explicit form for a circuit which performs an indirect measurement of a Weyl

operator A ∈ PWd,n given in fig. 1.6,

State register A

Readout register: ⟨0∣ F • F
†

We assume that the Fourier and inverse Fourier operations are performed perfectly

and implement the controlled-A operation as an imperfect rotation. Recall that the ideal

controlled-A operation is

Â = ∑
j∈Zd

∣j⟩⟨j∣⊗ A
j
. (3.42)

89

We now define an operation which can represent an over- or under-rotation of the applied

operation,

Â(t) ≡ Ât = ∑
j∈Zd

∣j⟩⟨j∣⊗ A
jt
, (3.43)

where the ideal operation is applied when t = 1, that is Â(1) = Â. We will assume that t is

close to 1 and let t = 1 + ε. Then

A
jt
= A

j(1+ε)
= A

j(Aj)ε. (3.44)

For small ε, we can expand B
ε

as

B
ε
= I + εln(B) +O(ε2). (3.45)

Applying this expansion to eq. (3.44),

A
jt
= A

j[I + εln(Aj) +O(ε2)] (3.46)

≈ A
j
+ εjA

j
ln(A). (3.47)

To get the complete expression for the Kraus operators of an indirect measurement with

noise of the described form, we fold the Fourier transform into the input state to get an

initial state

F ∣0⟩ = 1√
d
∑
a∈Zd

∣a⟩ ≡ ∣+⟩ , (3.48)

and fold the inverse Fourier transform into the computational basis measurement, to get an

effective destructive measurement on the readout space with Kraus operators

MI,Hr
F

†
= {⟨k∣F †

∶ k ∈ Zd} (3.49)

= { 1√
d
∑
b∈Zd

χ
∗
b (k) ∣k⟩⟨b∣ ∶ k ∈ Zd} (3.50)

acting on the state register. Combining the input state (eq. (3.48)), interaction operation, Â
t
,

and effective measurement (eq. (3.50)), we get Kraus operators for the noisy measurement

of the form

Mk(t) =
1

d
∑
j∈Zd

χ
∗
k(j)Ajt. (3.51)

90

Note that for the remainder of this section we omit the readout register, treating this as

a destructive measurement, for ease of book-keeping. However, the following analysis gen-

eralizes trivially to a non-destructive measurement. Substituting eq. (3.47) into the Kraus

operators in eq. (3.51), we get

Mk(1 + ε) ≈
1

d
∑
j∈Zd

χ
∗
k(j)[Aj + εjAjln(A)]

≈ πk(A) + εln(A)
d

∑
j∈Zd

χ
∗
k(j)jAj, (3.52)

where πk(A) = Mk(1) are the projectors on the state space for the ideal measurement of

A. Ideally, a measurement of A with outcome k projects fully onto the k
th

eigenspace of

A so that for a set of eigenvectors {∣ψb⟩ ∶ b ∈ Z} of A, ⟨ψb∣ πk(A) ∣ψb⟩ = δb,k ⟨ψb∣ψb⟩. If

the second term is not proportional to πk(A), this measurement can leave some of the state

outside of the k
th

eigenspace of A. To see this, let

Jk = ∑
j∈Zd

χ
∗
k(j)jAjln(A), (3.53)

so that we can describe the second term more succinctly, and observe that the terms resulting

from applying Mk(t) to a state ρ̄ will be proportional to:

1. πk(A)ρ̄πk(A)†
(which is in the expected eigenspace)

2. cross terms Jkρ̄πk(A)†
and πk(A)ρ̄J†

k, and

3. Jkρ̄J
†
k.

If Jk is proportional to a projector (or a combination of projectors) other than πk(A), the

cross terms allow superpositions between the cospaces to persist beyond the measurement,

and Jkρ̄J
†
k allows terms outside of the k

th
eigenspace to persist as well.

We now show that Jk does not implement a complete projection onto the k
th

eigenspace,

i.e. Jk is not proportional to πk(A). We can define an eigenbasis of A with eigenvalues

{χb(1) ∶ b ∈ Zd} by selecting a +1 eigenvector ∣ψ0⟩ of A for b = 0 and letting the remaining

eigenvectors be ∣ψb⟩ = Tb ∣ψ0⟩, where ATb = χb(1)TbA. To show that Jk does not project

onto the k
th

eigenspace, we need to demonstrate that Jk ∣ψb⟩ is non-zero for some b ≠ k. If

∣ψb⟩ is an eigenvector of A with eigenvalue χb(1), then ∣ψb⟩ is also an eigenvector of ln(A)

91

with eigenvalue ln(χb(1)). So, recalling eq. (1.30), we have

Jk ∣ψb⟩ = ∑
j∈Zd

χ
∗
k(j)jln[χb(1)]χb(1)j ∣ψb⟩ (3.54)

=
2πib

d
∑
j∈Zd

χ
∗
k(j)χb(j)j ∣ψb⟩ . (3.55)

Using the series identity

n

∑
i=0

kx
k
= x

1 − (n + 1)xn + nxn+1

(1 − x)2 (3.56)

and eq. (1.30), it can be shown that

2πi

d
∑
j∈Zd

χ1(j)j = π [cot (π
d
) − i] . (3.57)

Therefore for k = 0 and b = 1, we have

J0 ∣ψ1⟩ = π [cot (π
d
) − i] ∣ψ1⟩ , (3.58)

which is always nonzero. As 0 and 1 are in Zd for any d > 2, there will always be an outcome

which can leave a portion of the state outside of the expected eigenstate after measurement

for any meaningful qudit system. We can therefore conclude that an over- or under- rotation

of the coupling gate for an indirect Weyl measurement can leave a portion of the state outside

of the eigenspace associated with the measured outcome. Note that the asymmetry between,

e.g., outcomes k = 0 and k = 1 arises as a result of the asymmetry in the error model; if the

state of the system prior to the measurement is a +1 eigenvector of A, then Â(t) leaves it

unchanged for any value of t.

3.7 Conclusion

Measurements are a fundamental part of quantum computations, and are a major source

of intractable noise in modern quantum systems. In this chapter, we showed that the com-

mon method for modeling noisy measurements is inadequate to capture the dynamics in a

realistic system. We proposed a compilation method which addresses the intractability of

measurement errors, rendering them easier to mitigate and model, and showed that apply-

ing our technique reduces measurement errors to a form which is commonly used to model

measurement errors, that is, to probabilistic misreporting of measurement outcomes and a

92

stochastic channel on the unmeasured qudits. Our method applies to non-destructive and

indirect measurements, making it fully generalizable to any case where measurements could

be used in a quantum computation, and does not introduce significant overhead in either

the number or gates or number of shots required.

93

Chapter 4

Logical Randomized Compiling

In the previous chapter we showed how to tailor measurement noise at the physical level to

follow the typically assumed model. In this chapter, we extend this result to tailor noise on

any gadget in an encoded implementation to follow the most commonly assumed models.

The results presented in this chapter were first presented in [4], and a patent has been filed

for the proposed protocol.

4.1 Chapter overview

Studies of quantum error correction (QEC) typically focus on stochastic Pauli errors because

the existence of a threshold error rate below which stochastic Pauli errors can be corrected

implies that there exists a threshold below which generic errors can be corrected. However,

rigorous estimates of the threshold for generic errors are typically orders of magnitude worse

than the threshold for stochastic Pauli errors. Specifically, coherent errors have a particularly

harmful impact on the encoded space because they can map encoded states to superpositions

of logical and error states. Further, coherent errors can add up and interfere over multiple

rounds of error correction or between syndrome measurements, which may result in signifi-

cantly worse errors than expected under a stochastic Pauli error model. In this chapter, we

present an algorithm which decoheres noise at the logical level, projecting the state of the

system onto a logical state with a well-defined error. The algorithm does not significantly

increase the depth of the logical circuit (and usually does not lead to any increase in depth),

and applies generally to most fault-tolerant gadgets and error correction steps.

94

4.2 Introduction

Studies of quantum error correcting codes often assume a noise model which is relatively

easy to model and correct effectively. In most cases, this is a probabilistic Pauli noise model

on the encoded space, with ideal syndrome extraction [32, 44, 63], however, recently there

have been many numerical studies of relatively simple coherent noise models, which result

in a wide range of effective error rates [21, 30, 40]. In cases where noisy syndrome extraction

is considered, it typically follows a model where syndromes are probabilistically misreported

because this model is straightforward to simulate [21, 30, 32, 40, 44, 63, 64].

Quantum systems can be used for more efficient computations because they can be in

coherent superpositions of states. When written as an expansion in terms of outer products

of the superposed states, these coherences are represented by cross-terms between the states,

for example ∣0⟩⟨1∣ or ∣1⟩⟨0∣ have coherence between ∣0⟩ and ∣1⟩. Unintended coherences can

cause noise that is difficult to model and detrimental to the computation as they can interfere

and build up quickly. Ideal measurements remove coherences (that is, the cross-terms)

between eigenstates of the measured operator. For example, if we begin in a superposed

state of ∣0⟩ and ∣1⟩, e.g.

∣+⟩⟨+∣ = 1

2
(∣0⟩⟨0∣ + ∣0⟩⟨1∣ + ∣1⟩⟨0∣ + ∣1⟩⟨1∣) (4.1)

and measure in the computational basis (i.e. measure the Z operator), we remove the cross

terms ∣0⟩⟨1∣ and ∣1⟩⟨0∣. Similarly, averaging over powers of Z removes coherences between

∣0⟩ and ∣1⟩ (the eigenspaces of Z) [3].

Recall that in quantum error correction, a state is encoded in a subspace of a larger phys-

ical space, referred to as the codespace, and, for stabilizer codes, there are a set of subspaces

isomorphic to the codespace which we refer to as cospaces. Ideal syndrome measurement

allows us to project onto individual cospaces and distinguish which cospace the state is in

after measurement, and we apply a correction based on this information. We refer to coher-

ence between states in different spaces as coherences between those spaces. When non-trivial

coherences arise in a stabilizer code, they take the form of coherences within cospaces and

coherences between cospaces. There are three types of error which deviate from the standard

assumptions about noise in QECCs that we are concerned about:

1. Measurement errors other than classical bit flips;

2. Coherence within a cospace;

95

3. Coherence between cospaces.

Much like with the example given above for coherences between ∣0⟩ and ∣1⟩, ideal syndrome

measurement removes coherences between cospaces. However, syndrome measurement may

not be ideal, and errors can build up and interfere during the syndrome measurement process.

We therefore need to address all three of these deviations rather than letting syndrome

measurement handle coherence between cospaces. In this chapter, we propose a technique

called Logical Randomized Compiling (LRC), in which we address each of these problems

as follows: we address measurement errors by applying the compilation method proposed

in ref. [3] to physical measurements, and a generalization thereof to logical measurements;

we address coherences within cospaces by applying a generalization of RC [18] to a logical

(usually Pauli) twirling group; and we address coherences between cospaces by applying

random stabilizers between operations (a more detailed breakdown of how each type of

gadget is compiled is given in section 4.4). We show that averaging over the application of

random powers of stabilizers removes coherences between cospaces (which are eigenspaces

of the stabilizers), analogous to how averaging over the application of random powers of Z

operations decoheres coherences between eigenspaces of Z.

Previous work has looked at the impact of RC [18] on the performance of QECs [46, 65].

In the absence of twirling, residual coherence can be more efficiently corrected using non-

Pauli logical operations [46]. This possibility can still be used with LRC if the logical twirl is

omitted. RC has been shown to improve the logical fidelity for a wide class of errors, however,

it can sometimes decrease the logical fidelity by removing contributions from the physical

noise that interfere in a helpful way [65]. Moreover, it is hard to predict whether the coherent

contributions will interfere constructively or destructively. Another study, ref. [66], proposed

inserting random stabilizers to mimic syndrome measurement (without getting a returned

syndrome) and demonstrated that it can improve the logical error rate in the absence of

error correction, but did not fully analyze the technique. Notably, as shown in theorem 13,

the method proposed in ref. [66] removes coherences between cospaces but does not address

coherences within cospaces. As in ref. [66], we propose inserting stabilizers throughout a

computation to enforce a noise model which is more predictable and less harmful. However,

we propose also using syndrome extraction and error correction to correct the remaining

error. We include a mathematical analysis of the effect of applying random stabilizers, and

combine this randomization with generalizations of other noise tailoring techniques [3, 18].

The chapter is structured as follows. We begin by illustrating the potential for coherent

errors that cannot be removed by existing techniques in section 4.3. We then define LRC

96

in section 4.4 and give a qualitative explanation for how it removes undesired coherences.

We next discuss some details around noise that will facilitate our proposal section 4.5. We

then prove that LRC removes undesired coherences in section 4.6. We illustrate how our

technique is applied to syndrome extraction circuits in section 4.7, and conclude with some

implementation details and open questions in section 4.8.

4.3 Example: Coherent errors in the repetition code

In this section, we provide an example where LRC is helpful and RC cannot be applied.

Specifically, we look at a noisy gadget implementation of a Toffoli gate for the 3-qubit

repetition code, and show that a well-motivated noise model can produce an error which

creates coherences between cospaces that can be suppressed by LRC. RC is not applicable

in this setting because the Toffoli gate is a non-Clifford gate.

Recall the 3-qubit repetition code (reviewed in section 1.8.1), which has the codewords

∣0̄⟩ = ∣000⟩ and ∣1̄⟩ = ∣111⟩. This code can be described by the stabilizer generators ZZI

and IZZ and the logical Pauli operations Ī = III, X̄ = XXX, Ȳ = −Y Y Y , and Z̄ = ZZZ.

We denote a rotation about a Pauli P by an angle θ by

Pθ = exp(−iθP) = cos θI − i sin θP. (4.2)

Conjugating a state by Pθ results in cross-terms between the initial state and the state that

P maps to. In stabilizer codes, stabilizers act trivially, logical Pauli operators map within

a cospace, and error operators map between cospaces. Therefore, coherent logical Pauli

operations (that is, errors of the form Lθ = exp(−iθL) for a logical Pauli operator L ∈ L)

create coherences within a cospace, and coherent errors create coherences between cospaces.

Recall that the Toffoli gate is the three-qubit gate

ˆ̂
X = ∑

i,j∈Z2

∣ij⟩⟨ij∣⊗X
ij
. (4.3)

The corresponding ideal logical gate is

ˆ̂
X = ∑

i,j∈Z2

∣̄ij̄⟩⟨̄ij̄∣⊗ X̄
ij
. (4.4)

In the 3-qubit repetition code, the logical Toffoli gate can be implemented by a gate gadget

composed of transversal
ˆ̂
X gates, i.e.,

ˆ̂
X =

ˆ̂
X(1,1),(2,1),(3,1)

ˆ̂
X(1,2),(2,2),(3,2)

ˆ̂
X(1,3),(2,3),(3,3), (4.5)

97

and the subscripted indices label which qubits the Toffoli gates act on, with a tuple (a, b)
indicating the b

th
qubit in the a

th
code block.

We will look at an example where the conditional X in one of the physical Toffoli gates

in the Toffoli gadget is overrotated. To model this overrotation, note that X ≅ Xπ/2 up

to a phase. Then we can express an overrotation of an X gate by an angle δ as Xπ/2+δ =

exp(−i(π/2 + δ)X) = X ⋅Xδ. A Toffoli gate overrotated by an angle δ is then given by

ˆ̂
X(δ) = ∑

i,j∈Z2

∣ij⟩⟨ij∣⊗ (X ⋅Xδ)ij. (4.6)

We will let the first Toffoli gate in the gadget defined in eq. (4.5) be the one which undergoes

an overrotation and observe the effect when this noisy gadget acts on the ∣1̄1̄1̄⟩ state, that

is, the case where all three code blocks are in the logical 1 state:

ˆ̂
X(δ)(1,1),(2,1),(3,1) ˆ̂

X(1,2),(2,2),(3,2)
ˆ̂
X(1,3),(2,3),(3,3) ∣1̄1̄1̄⟩ = ∣1̄1̄⟩⊗ (X ⋅Xδ)⊗X ⊗X ∣1̄⟩ (4.7)

= ∣1̄1̄⟩⊗ (XII)δX̄ ∣1̄⟩ (4.8)

= ∣1̄1̄⟩⊗ (XII)δ ∣0̄⟩ (4.9)

In the ideal implementation, i.e. δ = 0, the final state is ∣1̄1̄0̄⟩. The error introduced by

the overrotation is then (XII)δ on the third code block. For the three qubit code, XII is

an error and so (XII)δ maps the system to a superposition of states in different cospaces.

By applying random stabilizers, LRC removes the coherence between the cospaces, ensuring

that the state is in the syndrome space. Note that due to the symmetry of the code and

the gadget implementation, changing which Toffoli gate is overrotated results in different

coherent errors.

4.4 Introduction to Logical Randomized Compiling

In this section, we will give an intuitive overview of the motivation, implementation, and

impact of LRC on a fault-tolerant quantum computation. The following sections will provide

a more rigorous mathematical treatment and justification for the protocol.

Recall that any quantum computation can be written as a sequence of three types of

primitive operations:

1. state resets ;

2. unitary operations ; and

98

3. measurements.

And that an encoded implementation is composed of gadget implementations of the logical

versions of these primitives plus an additional gadget to implement syndrome measurement.

Because gadgets are the building blocks of an error-corrected (possibly fault-tolerant) im-

plementation of a circuit, we are concerned with compiling gadgets to tailor noise into a

form that is easy to handle, i.e., with no unwanted coherences and only bit flip measurement

errors.

Our protocol, LRC, reduces the effect of generic Markovian errors to the form that is

typically considered in QEC, making them easier to analyze and allowing standard decoders

designed for stochastic Pauli errors to be used effectively. Specifically, each type of operation

is compiled to suppress deviations from the desired form of noise as follows:

1. To account for measurement noise, measurements are randomly compiled [3] using

logical operations.

2. To account for coherence within a cospace, logical twirling operations are applied before

and after logical unitary operations.

3. To account for coherence between cospaces, random stabilizers are applied before and

after every operation.

More concretely, the basic building blocks of fault tolerant quantum computing are mod-

ified as follows, where stabilizers and logical operations are always selected from the current

code if code switching is being used [67].

1. State resets

A random stabilizer S is applied after each encoded state reset. This ensures that the

prepared state does not have coherences between cospaces.

ψ̄ (Bare State Reset Gadget)

ψ̄ S (LRC State Reset Gadget)

2. Unitary operations

A random stabilizer S followed by a random logical operationG drawn uniformly from a

group GU is applied before each encoded unitary operation U . The compiled operation

UG
†
U

†
followed by a second random stabilizer S

′
are applied after the encoded unitary

99

operation. The use of random stabilizers ensures that the state before and after the

logical operation does not have coherences between cospaces. The application of G and

UG
†
U

†
performs a twirl as in RC [18] which (with judicious selection of GU) removes

coherent noise within the cospaces. We discuss the selection of GU in section 4.6. For

Clifford gates, we will typically select the logical Pauli group (or the logical Weyl group

for qudits).

U (Bare Gate Gadget)

GS U S
′
UG

†
U

† (LRC Gate Gadget)

3. Measurements

Before each encoded measurement, that is each measurement of an encoded logical

Weyl operation, a random stabilizer S and random logical operation L are performed.

The classical output of the measurement is adjusted according to the selected random

logical operation. The random stabilizer ensures that the state does not contain coher-

ences between cospaces prior to measurement. The inclusion of the other operations

is analogous to randomized compiling for instruments [3].

(Bare Measurement)

SX
x
Z
z add x (LRC Measurement)

4. Syndrome extraction

A syndrome extraction measures stabilizer generators of the code by applying opera-

tions on a combined space created by the union of some readout qubits and the qudits

used in the encoding and then measuring the readout qudits. Before and after each

syndrome measurement or part thereof (i.e. before and after measurement of a single

dit of the syndromes), we apply a random stabilizer on the encoded space. We have

omitted some details here for ease of readability. Specifically, the syndrome extraction

circuit should be randomly compiled, and the physical measurement should undergo

randomized compiling for measurements in addition to the randomization over powers

of stabilizers. We will give a more complete specification in section 4.7.

(Bare Syndrome Extraction Gadget)

S S
′ (LRC Syndrome Extraction Gadget)

100

Where possible, the additional operations introduced by LRC are compiled into adjacent

operations. As the additional operations are typically transversal single-qubit operations,

very few additional physical operations will be introduced by LRC. These modifications apply

at the logical level, however protocols for mitigating or suppressing noise at the physical level

can still be used for some parts of the implementation. In particular, dynamical decoupling

or refocusing techniques and physical RC could be applied to the circuit implementations of

encoded operations (see e.g. refs. [68, 69]).

4.5 Gauge degree of freedom

There exists a gauge degree of freedom in how noise is expressed on operations whereby an

identity operation can be inserted between consecutive operations via any invertible matrix

M as M
−1
M to alter the form of the noise. Under such a transformation, a simple circuit

composed of a (possibly noisy) state preparation of a state ρ, a (possibly noisy) unitary

operation U , and a (possibly noisy) measurement M is transformed as follows

Θ(ρ)Θ(U)Θ(M)→ Θ(ρ)M−1
0 M0Θ(U)M−1

1 M1Θ(M), (4.10)

so that we get some new implementation map Θ
′
such that

Θ
′(ρ) = Θ(ρ)M−1

0 (4.11)

Θ
′(U) =M0Θ(U)M−1

1 , and (4.12)

Θ
′(M) =M1Θ(M). (4.13)

As with any gauge transformation, the different implementation maps produce equivalent

results, that is

Θ(ρ)Θ(U)Θ(M) = Θ
′(ρ)Θ′(U)Θ′(M). (4.14)

The matrices used to change the gauge of noises before and after each operation may be

non-identical, e.g. we can have M0 ≠M1, and may, for example, depend upon the start time

of an instruction. Noisy unitaries can be factored as

Θ(U) = ∆LU∆R, (4.15)

where ∆L and ∆R are noise maps [60]. Some time-dependent noise processes can be removed

by an appropriate gauge transformation by folding the gauge which follows the unitary

101

operation into the noise map preceding the next operation, thereby allowing us to assume

that a noisy implementation of a unitary operation and the corresponding gadget can be

written as

Θ(U) = U∆U , or (4.16)

Γ(U) = Γid(U)∆̄U (4.17)

for some noise maps ∆U or ∆̄U .

4.6 Analysis of LRC

In this section, we show how averaging over the application of random stabilizers before and

after an operation results in a probabilistic map between cospaces and that twirling over

the logical Weyl group enforces a probabilistic noise map within cospaces. We then combine

these results and measurement RC to show that the effective noise from the resultant protocol

follows the probabilistic model we want to achieve when a logical Weyl twirl can be used, and

a noise model which has fewer undesired coherences when such a twirl is not possible. We give

some examples of other twirling groups to replace the twirl over logical Weyls where needful,

and note that where there is not a known twirling group for the specific operation being

tailored, the application of random stabilizers is still useful to remove coherences between

cospaces and can be applied regardless of the form that the surrounding operations take.

We begin with a proof that, for stabilizer codes, applying uniformly random stabilizers

projects the state of the system onto the syndrome space. This projection removes coherences

between cospaces of the code. Note that if the state begins and ends on the syndrome space,

the only permitted noise is within cospaces; the effective map if we apply this averaging to

project onto the syndrome space before and after an operation is a probabilistic mapping

between cospaces plus possible noise within each cospace. Because the proof is given in

terms of channels and does not depend on the input state, the averaging is independent of

the surrounding operations under the assumption that the stabilizer averaging occurs in the

same location in the encoded circuit for each randomization.

Theorem 13. For a code with stabilizer group S, we have

ES∈S(S) = ∑
T∈T

ΠT . (4.18)

102

Proof. In the natural representation, reviewed in section 1.4.1, we have

M =M ⊗M
∗
. (4.19)

Substituting in eq. (1.70), we have

∑
T∈T

ΠT = ∑
T∈T

πT ⊗ π
∗
T

= ES,S ′∈S (S ′ ⊗ S
∗ ∑
T∈T

χ
∗
T (S)χT (S ′))

Recall that as S is an Abelian group and χT is a character of S and thus obeys the character

orthogonality relations eq. (1.32)

∑
T∈T

χ
∗
T (S)χT (S ′) = δS,S ′∣S∣. (4.20)

Therefore, we have

∑
T∈T

ΠT = ES∈S (S ⊗ S
∗)

= ES∈S(S),

as claimed, where the factor of ∣S∣ cancels with its inverse in the average over S
′
.

By theorem 13, averaging over applications of stabilizers is equivalent to projecting onto

the syndrome space, which removes coherences between cospaces. Now that we have a

method that handles coherence between cospaces, we next look at a method to remove or

reduce coherences within cospaces. Specifically, we look at the effect of twirling an operation

over a group up to a correction that preserves the operation’s ideal action. We show that

when this method is applied to a noisy implementation of an operation, it can be used to

address coherences within a cospace. Recall that a standard twirl (without correction to

preserve the desired action) has the following definition:

Definition 9. Given a group G, a channel Λ, we define the twirl of Λ over G as

Λ
↻G

≡ EG∈G (G†
ΛG) . (4.21)

We now show that applying a corrected twirl to a noisy implementation of a unitary

operation results in an effective map comprised of the ideal unitary operation followed by a

103

twirled version of the noise. This is useful for the prevention of coherences within cospaces be-

cause twirled operations do not induce coherences between the states that would be returned

by applications of different elements of the twirling group. We can then remove coherences

within cospaces by selecting a twirling group whose elements act within a cospace. Note

that twirling only over the logical Weyl group does not address coherences between cospaces

because the representation of the logical Weyl group on the physical space is not multiplicity

free. That is, states outside of the syndrome space can persist despite a twirl over the logical

Weyl group. The following is a straightforward generalization of randomized compiling [18]

without assuming any structure for the twirling group.

Theorem 14. Let GU be a group, U be a unitary operator. Averaging over specific ideal

operations applied before and after a noisy encoded unitary gadget Γ(U) produces an effective

channel comprised of the ideal action of U followed by the noise introduced by Γ(U) twirled

over GU . These operations take the form

G (Before)

UG
†
U

†
(After)

for G ∈ G.

Proof.

EG∈G (UG†U †
Γ(U)G) = UEG∈G (G†

∆UG) (4.22)

= U∆
↻G
U , (4.23)

where ∆U ≡ U †
Γ(U) can be interpreted as the noise introduced by Γ(U), for which a noisy

unitary gadget for U would have an implementation map Γ(U) = U∆U , consistent with

eq. (4.17).

In practice, the additional operations G and UG
†
U

†
are compiled into surrounding op-

erations. As such, we can assume that the additional operations are ideal under suitable

assumptions of gate-independent noise [18]. Under gate-dependent noise, we can perturb

from the average and apply theorem 14 provided the perturbations are small.

We now explore different options for the logical twirling group to use when applying

theorem 14 to logical unitary operations. Note that for the purposes of the following dis-

cussion we are omitting the random stabilizers from consideration, however, we recommend

applying both techniques in combination. A compiled version of a unitary operation U of

104

the form (UG†
U

†)UG will always be equivalent to the bare unitary U , assuming that G is

unitary. We can therefore in theory select any twirling group composed of unitary opera-

tions to implement the twirling component of LRC, based on what noise tailoring we wish to

achieve. In practice, however, ease of implementation matters; we generally want to select

twirling operations for which the implementation of G and UG
†
U

†
is composed of single-

qudit operations where possible so that twirling operations can be more easily compiled into

neighbouring operations and introduce minimal noise where such compilation is not possible.

The suggested twirling groups, GU , given in this section assume that Weyl operations are

“easy”, as is U .

4.6.1 Clifford operations

Recall that, by definition, Clifford operations preserve the projective Weyl group, that is for

any Clifford operation C, C[L] ∈ PWd,n ∀L ∈ PWd,n. For any unitary operation C in the

Clifford group, we select GC = L. Then the LRC implementation of C takes the form

Γ(C) (Bare Clifford Gadget)

LS Γ(C) S
′
CL

†
C

† (LRC Clifford Gadget)

for gates L ∈ L. Twirling over L results in a stochastic Weyl channel, so the noise introduced

during the compiled Clifford is stochastic Weyl.

4.6.2 T gates

There are some known instances where non-Clifford gadgets can be compiled to further tailor

the noise arising from the imperfect gadget implementation. The T gate is one such gate

with a known twirl. For d = 2, we can apply operations before and after the T gadget,

defined as T = exp(−iπZ/8), to reduce the effective noise from this gadget to a stochastic

Pauli channel, with the further restriction that pX = pY . This compilation is possible using

the dihedral group [70], i.e. setting GU = ⟨PW2,n, T
2⟩ to perform the twirl. Then, for any

G ∈ GU , we can factor G = RL for a rotation R ∈ ⟨T 2⟩, L ∈ PW2,n and simplify the

compilation gates to get

105

Γ(T) (Bare T Gadget)

RLS Γ(T) S
′
LR

√
Z
x(L) (LRC T Gadget)

where a(L) for a ∈ {x, z} is the power of A in L such that L = X
x(L)

Z
z(L)

. For any

encoding for which we can implement the Clifford group and the T gate fault-tolerantly

(which together form a universal gateset), we can therefore apply LRC to get a universal

gateset for which the effective noise is a stochastic Weyl channel and which remains in the

union of the cospaces of the code.

4.6.3 Gates with no known twirl

For operations for which there is no known useful twirling group, we can still apply the

stabilizer randomization to project back onto the cospaces, thereby reducing some of the

effects of coherent errors. This amounts to setting GU = {I} so that the compilation looks

like

Γ(U) (Bare Gate Gadget)

S Γ(U) S
′ (LRC Gate Gadget)

4.7 Syndrome extraction circuits

Recall that a QEC gadget is composed of a syndrome extraction step followed by a recov-

ery operation conditioned on the extracted syndrome and that syndrome measurement is

performed by coupling the encoded register to another register of qudits called the readout

register to perform an indirect measurement of each of the stabilizer generators. In this

section, we show how to apply LRC, focusing on syndrome extraction as it is the piece

of a fault-tolerant implementation with the highest number of distinct types of operations

working in tandem and so the most complicated to compile (a syndrome extraction con-

tains unencoded measurement and state preparation as well as operations which act on an

encoded and unencoded register). Ideal syndrome extraction is a common assumption in

studies of QEC because the resulting circuits are simpler and can often be efficiently simu-

lated. Specifically, for channels containing multiple rounds of error correction with imperfect

106

syndrome extraction (specifically when the imperfection is not constrained to probabilisti-

cally misreported syndromes), the build up and interference of terms within and outside of

the syndrome space quickly becomes complicated and expensive to track.

Under LRC, we apply random stabilizers before and after the syndrome extraction circuit

to project the state of the encoded qudits onto the syndrome space. The projection onto the

syndrome space removes any coherences between cospaces so that these coherences cannot

interact and build up during the syndrome extraction circuit (theorem 13). We apply a

corrected twirl, as in theorem 14, to ensure that the effective noise for coupling operations is

Pauli both on the encoded register and the readout register. Finally, we apply measurement

RC [3] to the measurements of the readout qudits.

We note that in practice, a refocusing sequence and stabilizer randomization would be

introduced during any idling time on the encoded register while the syndrome register is

being measured. We discuss this more in section 4.8.2. The refocusing sequence and random

stabilizers applied while the readout register is being measured account for any noise that

might accumulate on the encoded register during the measurement and ensure that the final

state is in the syndrome space.

Though we can apply LRC to the full syndrome extraction, it is beneficial to apply it

instead to the syndrome extraction performed for each individual syndrome dit. In this

way, we prevent coherences that could be removed by applying random stabilizers from

persisting and interfering during subsequent operations before the full syndrome extraction

is completed. We will now step through the compilation process for a single-dit syndrome

extraction, beginning with a bare syndrome extraction gadget,

where the syndrome is extracted by writing the eigenvalue of a stabilizer generator A to the

readout qudit using a controlled Weyl operation, so that

= A

F • F
†

The randomly compiled controlled Weyl operation (including the basis change implemented

by F gates) is then

= L A L
†

F P • P
† G(A,L) F

†

107

where the L operations are drawn from the logical Weyl group, G(A,L) is a Weyl operator

that corrects for the operation that propagates from the L acting on the encoded register to

the readout register via the controlled-A operation, and P is an element of the Weyl group on

the physical register. Applying this random compilation to the syndrome extraction circuit,

we get

Next, we add random stabilizers before and after the syndrome extraction circuit to get

S S
′

This ensures that the state before and after the noisy measurement is in the syndrome space

(theorem 13). Finally, we add measurement RC to get

S S
′

X
x
Z
z

Z
z
′

X
−x

• add x

This ensures that the measurement decouples the readout space from the encoded space and

that measurement noise takes the form of probabilistically misreported syndromes.

Optionally, we can add operations to account for noise which accumulates on the encoded

register during measurement (as measurement takes longer than unitary operations and the

encoded register can undergo noise while idling). We let these operations be denoted Φ

and include a discussion about what form they might take in section 4.8.2. The simplest

option would be to repeatedly apply random stabilizers. Including this adjustment, the fully

compiled syndrome extraction is

S S
′
L Φ S

′′
L

†

X
x
Z
z

Z
z
′

X
−x

• add x

(LRC Syndrome Extraction Gadget)

We add a twirl of Φ over the logical Weyl operators to ensure that the noise introduced on the

encoded register during idling is a stochastic Weyl channel. Because Φ is an implementation

108

of the identity channel, the twirled version will simply be a stochastic Weyl map. Further,

since the entire syndrome extraction is composed of Clifford operations, we can commute all

of the stochastic Weyl noise terms that remain after compiling each element to one end of

the circuit (e.g. the end) and combine them into a single stochastic Weyl error channel with

bit flip errors on the on the readout register and reported syndrome.

Doing a complete syndrome extraction requires that we repeat this process n − k times,

once for each generator. Because each repetition is a circuit that has the same form, i.e. is

composed of Clifford gates and a measurement, we can similarly move all of the remaining

noise processes to the end of the sequence of syndrome dit extractions. The effective noise

on the encoded register after completing the syndrome extraction is then a stochastic Weyl

map on the cospaces of the code, and the confusion matrix for the complete syndrome can

be constructed by taking products of the elements of the confusion matrices for individ-

ual syndrome dit measurements, as in [2]. The syndrome dits may additionally be left in

the incorrect state by the syndrome measurements, but this is accounted for by the reset

performed on the readout registers between syndrome measurements.

4.8 Discussion

In this section, we discuss some of the implementation details that are relevant to applying

LRC effectively. Specifically, we explore the considerations for compiling the operations

introduced by LRC into a circuit in such a way that added noise and overhead are minimal

to none in section 4.8.1, discuss some options for compiling idling registers in section 4.8.2,

briefly address some considerations regarding code switching in section 4.8.3, and finally

comment on the applicability of RC and LRC to single-shot algorithms in section 4.8.4.

4.8.1 Timing and Compilation

We expect that the gates introduced by LRC will generally be transversal single-qudit gates

(SQGs), which introduce less noise than other operations. We also assume that each gad-

get begins and ends with a cycle of single-qudit gates (with appropriate modifications for

state reset and measurement gadgets). Under these assumptions, we can compile the gates

introduced by LRC into the start and end of each gadget, and also compile the SQGs at the

end of one gadget with the SQGs at the beginning of the next gadget. LRC will therefore

introduce minimal overhead in terms of gate count, and in the assumption that SQGs have

gate-independent noise, will not introduce any additional noise to the system.

109

One concern that arises for implementing the stabilizer averaging is that each shot of a

QEC circuit will be slightly different as different syndromes are measured and, accordingly,

different recovery operations are applied. Because theorem 13 is proven using channels, the

input state to the randomization does not impact the proof. As such, the surrounding oper-

ations do not impact the effect of randomizing over stabilizers as long as the randomization

occurs at the same location in the circuit for each shot. The timing does not need to be

exact in terms of wall clock time because delays are identity operations and inserting identity

operations does not impact the implemented map.

An additional note is that while RC removes the coherent part of the noise much like

LRC does, there are some instances where the coherent part of physical noise can improve

the logical fidelity. In such cases, removing the coherence at the physical level worsens

performance. In contrast, LRC can be used without a physical twirl, which will not remove

the contribution of the physical coherent noise to the logical fidelity.

Moreover, LRC can be used in cases where RC would not be viable. For example,

stabilizer averaging can be used even in cases where the gate being implemented does not

have an easily implementable twirling group, so for a gadget implementation of a non-

Clifford gate like the Toffoli gate example described for the 3-qubit code in section 4.3, some

coherences can be removed by LRC, while RC could not be implemented for this use-case.

4.8.2 Idling

It is common for some subset of qudits in a computation to be idle while others undergo

operations. Perhaps most notably, measurements take longer to implement than gates so

if the computation cannot proceed beyond the measurement until it has been completed,

some registers may be left idle while the measurement is underway. In [3], operations on

unmeasured qudits are randomly compiled to make the effective noise on the unmeasured

register follow a stochastic model. We propose a similar implementation, where when qudits

are idle, we apply first and last a random stabilizer, and in between we apply a refocusing

sequence that persists for the remaining duration of the idle time. There are many choices

of refocusing techniques; one should be chosen to optimize performance based on the noise

model that is present in the system and possibly on the encoding. This process should

be applied anywhere that qudits would otherwise idle in a computation and not just when

measurements are in progress. Because the ideal implementation of an idling sequence is the

identity, twirling gates can and should be added to constrain the effective noise map to a

stochastic Weyl channel.

110

4.8.3 Code switching

While we do not look at code switching methods explicitly in this chapter, it should be noted

that computations which involve code switching can be randomly compiled by applying

randomizations according to whatever the encoding is at any given step in a circuit. For

example, in switching from a code C to a code C
′
, the minimal example would be to apply

random stabilizers from code C prior to switching and random stabilizers from code C
′
after

switching. This ensures that any portion of the state outside of the codespace prior to the

switch does not get mapped into the new code in a way that is disadvantageous and ensures

that the initial state after switching to C
′

is in the syndrome space of C
′
. For any steps

where the register is unencoded, randomized compiling should be used, and for any where

the system is in a concatenated encoding, stabilizers (and logical operations) of the combined

code should be used.

4.8.4 Sampling Algorithms

Some quantum computing algorithms require only sampling from a distribution rather than

estimating the full distribution. In this section, we will argue that for such algorithms, LRC

(and RC) can still be used.

For each compilation c of a circuit, we have an output probability distribution p⃗c. The

average over random compilations results in an average over output distributions, where the

average output distribution p⃗avg approximates the ideal distribution p⃗ideal, that is

p⃗ideal ≈ p⃗avg =
1

∣c∣ ∑
c

p⃗c. (4.24)

The probability of getting a ditstring b when sampling a single shot from p⃗avg is given by

p⃗avg(b) =
1

∣{c}∣ ∑
c

p⃗c(b) (4.25)

because the distributions p⃗c are mutually independent. If we take a single shot with a single

compilation sampled uniformly at random, the probability of returning ditstring b is

∑
c

P (p⃗c)p⃗c(b) =
1

∣{c}∣ ∑
c

p⃗c(b), (4.26)

where the equality comes from the different compilations being equiprobable (i.e. P (p⃗c) =
1/∣{c}∣). This is the same probability as in eq. (4.25), so we can conclude that taking a

single shot with a randomly sampled compilation is equivalent to taking a single shot from

the average distribution which approximates the ideal distribution.

111

4.9 Conclusion

Noise in quantum error corrected systems often deviates from the common assumption of a

stochastic Weyl model with ideal or probabilistically misreported syndrome measurements.

In this chapter, we proposed a method that generalizes and combines existing compilation

strategies in the context of fault-tolerant quantum computations to show how noise can be

tailored to follow the desired form that is generally assumed. Under our protocol, noisy

quantum error corrected implementations are easier to model and the remaining noise is

easier to correct using the standard Weyl recovery methods.

112

Chapter 5

Conclusion

5.1 Summary of results

In this thesis, we developed results that significantly reduce the computational complexity

of simulating quantum error correcting codes (QECCs), and proposed protocols for noise

tailoring for measurements and in quantum error correction (QEC). These results render

the average behaviour of noise in an error corrected setting and for measurements consistent

with standard assumptions in both contexts. A summary of our results is included below.

In chapter 2, we developed results on the use of symmetries for efficient simulation of

quantum error correcting codes. We derived conditions under which effective encoded mem-

ory channels are equivalent up to logical operations, thereby extending the work begun in

refs. [1, 21] to general QECCs rather than restricting to stabilizer codes as was done in all

previous work. We showed that these symmetries are still useful when syndrome measure-

ments undergo noise which causes the physical measurement to probabilistically misreport

outcomes, extended to the case where multiple QEC steps are performed, included a treat-

ment of non-IID noise and concatenated codes, and presented examples of such symmetries

for the toric code. We also showed that no symmetry operation can hold for every noise

model for a given code. These results enable a significant reduction in computational com-

plexity in simulations of QECCs and could enable more efficient error correction. For current

implementations of surface codes, the time taken to implement the decoding step is a major

roadblock for QEC; this is because the decoder relies on a large set of possible errors so a

lookup table is intractable and other methods must be used. The symmetries we found for

the toric code significantly reduce the size of the lookup table. The number of single-qubit

errors that need to be considered for the toric code is reduced from O(n) to O(1), and the

113

number of 2-qubit errors from O(n2) to O(n). Notably, the number of single qubit errors

that needs to be considered is independent of n, which will lead to massive gains for large

codes. For example, for a 10 × 10 code with 50 qubits (i.e. a distance 5 toric code), this

amounts to a reduction in single-qubit errors from 150 to 6 and 2-qubit errors from 11,025 to

297. Such reductions could make decoders tractable for even large codes. Further, knowledge

of symmetries also enables improved selection of recovery operations by suggesting recovery

operations which lead to degeneracy with maps known to have a smaller error.

In chapter 3, we developed a method called measurement randomized compiling. Iso-

lating the effects of noise coming from measurements is a challenging task and as a result,

measurement noise is particularly difficult to model accurately. As a result, the standard

assumptions about the form that measurement noise takes in theoretical treatments and

when creating protocols for assessing or mitigating measurement noise are not well moti-

vated by physical systems. In particular, measurements are often assumed to be terminal

and destructive, which is insufficient for many usecases. Perhaps the most notable use case

for non-destructive measurements is quantum error correction, where readout qudits are re-

peatedly reused for subsequent syndrome measurements. Studies of QEC which consider

measurement noise typically assume a model wherein ideal projectors are applied and out-

comes are probabilistically misreported; most of the protocols that have been developed

that consider measurement noise rely on this assumed form. In fact, the results presented in

chapter 2 on symmetries in QECCs relied on this model. Our protocol, measurement ran-

domized compiling, enforces a model on the average measurement consistent with the typical

assumptions and applies to non-destructive measurements as well as terminal measurements.

That is, under measurement randomized compiling, the noise on the measurement takes the

form of bit flip errors on the measured register, with a stochastic Weyl noise on the unmea-

sured qudits. Applying measurement RC therefore allows any protocols founded under the

standard assumptions around measurement noise to be applied effectively. Importantly, the

average channel under measurement RC removes entanglement between the measured regis-

ter and any unmeasured register, leaving only classical correlations. Because our technique

applies to non-destructive and indirect measurements, it is applicable to the QEC setting

and other settings where non-destructive measurements might be used. Measurement RC

does not introduce significant overhead in terms of number of shots or number of gates.

Combining the results in chapter 3 with the derived form of syndrome measurement noise

in chapter 2, we saw that when the syndrome extraction circuit is ideal and the physical

measurement undergoes measurement RC, the noise on syndrome measurements follows the

standard assumption of ideal projections onto cospaces with probabilistically misreported

114

syndromes. We thus extended our treatment to encoded implementations in chapter 4 and

proposed another protocol, logical randomized compiling, which enforces standard noise as-

sumptions on any gadget. Specifically, LRC ensures that errors do not map out of the

syndrome space, that any noise within the cospaces follows a stochastic Pauli (or Weyl)

model, and that syndromes are probabilistically misreported. These constraints on the noise

are standard assumptions in studies of quantum error correction, as stochastic noise is easier

to model, mitigate, and correct using the standard Pauli (or Weyl) recovery methods. While

some studies deviate from these assumptions by including coherent noise, these studies are

limited in number and in scope. LRC can be used in any QEC implementation that uses

stabilizer codes, and ensures that coherent errors are not allowed to persist and interfere. We

included for completeness compilation methods for a universal gateset, a state preparation

gadget, a measurement gadget, and a syndrome extraction gadget. We showed that RC and

LRC can be used even in the case where a single shot is used to sample from a distribu-

tion, and we note that LRC can be used even in cases where RC would not be usable, e.g.

when the physical operations used to implement a gadget are non-Clifford. LRC does not

introduce significant overhead in terms of number of shots or number of gates.

5.2 Future work

Recently, a protocol to implement randomized benchmarking at the logical level (logical

randomized benchmarking) was proposed [71]. However, more research showed that ef-

fects of non-Markovianity arising from coupling between readout qudits and encoded qudits

can impede a useful implementation of logical randomized benchmarking [72]. One area of

exploration for LRC and/or measurement RC would be to see if the effective removal of

entanglement between measured and unmeasured qudits under these techniques is sufficient

to allow logical randomized benchmarking to be applied effectively.

Because LRC enforces a stochastic Weyl model which is consistent with typical recovery

protocols, knowing the probabilities of different errors would enable a much improved per-

formance of a QECC. Cycle error reconstruction is an error characterization technique that

assumes a stochastic Weyl model and relies on RC to enforce that assumption [12]. LRC

could therefore allow us to extend cycle error reconstruction to a logical implementation and

it could be used to inform recovery selection, resulting in drastically improved performance

as errors are accurately assessed. Another area of exploration would be to implement mea-

surement RC on a device and see if it enables improved performance when combined with

measurement noise mitigation techniques founded on the typically assumed measurement

115

noise model. Future work could also include finding more symmetry operations for other

codes and noise models. More efficient decoding methods could be designed for topological

codes by leveraging symmetries and data compression techniques, thereby increasing decoder

speed, which is currently a major limiting factor in the successful implementation of QECCs.

116

References

[1] Stefanie J. Beale. The Effects of Quantum Error Correction on Noisy Systems.

uwspace.uwaterloo.ca, 2018.

[2] Stefanie J. Beale and Joel J. Wallman. Efficiently computing logical noise in quantum

error-correcting codes. Physical Review A, 103:6, 2021.

[3] Stefanie J. Beale and Joel J. Wallman. Randomized compiling for subsystem measure-

ments. arXiv, 2304.06599, 2023.

[4] Stefanie J. Beale and Joel J. Wallman. Randomized compiling in fault-tolerant quantum

computation. arXiv, 2306.13752, 2023.

[5] Robert E. Fontana Jr. and Gary M. Decad. Moore’s law realities for recording sys-

tems and memory storage components: Hdd, tape, nand, and optical. AIP Advances,

8:056506, 2018.

[6] Richard P. Feynman. Simulating physics with computers. International Journal of

Theoretical Physics, 21:467-488, 1982.

[7] W. Gale, E. Guth, and G. T. Trammell. Determination of the quantum state by mea-

surements. Phys. Rev., 165:1434-1436, 1968.

[8] J. F. Poyatos, J. I. Cirac, and P. Zoller. Complete characterization of a quantum process:

The two-bit quantum gate. Phys. Rev. Lett., 78:390-393, 1997.

[9] Joseph Emerson, Robert Alicki, and Karol Życzkowski. Scalable noise estimation with

random unitary operators. J. Opt. B, 7(10):S347, 2005.

[10] Alexander Erhard, Joel James Wallman, Lukas Postler, Michael Meth, Roman Stricker,

Esteban A. Martinez, Philipp Schindler, Thomas Monz, Joseph Emerson, and Rainer

117

http://hdl.handle.net/10012/13657
https://doi.org/10.1103%2Fphysreva.103.062404
https://doi.org/10.48550/arXiv.2304.06599
https://doi.org/10.48550/arXiv.2306.13752
https://aip.scitation.org/doi/full/10.1063/1.5007621
https://people.eecs.berkeley.edu/~christos/classics/Feynman.pdf
https://link.aps.org/doi/10.1103/PhysRev.165.1434
https://link.aps.org/doi/10.1103/PhysRevLett.78.390
http://stacks.iop.org/1464-4266/7/i=10/a=021?key=crossref.0612a2d913e264bbddc29e955e77423d

Blatt. Characterizing large-scale quantum computers via cycle benchmarking. Nat.

Commun., 10(1): 5347, 2019.

[11] Joel Wallman, Chris Granade, Robin Harper, and Steven T. Flammia. Estimating the

coherence of noise. New Journal of Physics, 17:113020, 2015.

[12] Arnaud Carignan-Dugas, Dar Dahlen, Ian Hincks, Egor Ospadov, Stefanie J. Beale,

Samuele Ferracin, Joshua Skanes-Norman, Joseph Emerson, and Joel J. Wallman. The

error reconstruction and compiled calibration of quantum computing cycles. arXiv,

2303.17714, 2023.

[13] Boone, Kristine. Concepts and methods for benchmarking quantum computers.

uwspace.uwaterloo.ca, 2021.

[14] Ying Li and Simon C. Benjamin. Efficient variational quantum simulator incorporating

active error minimization. Phys. Rev. X, 7(2):021050, Jun 2017.

[15] Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. Error mitigation for short-depth

quantum circuits. Phys. Rev. Lett., 119(18):180509, Nov 2017.

[16] Samuele Ferracin, Akel Hashim, Jean-Loup Ville, Ravi Naik, Arnaud Carignan-Dugas,

Hammam Qassim, Alexis Morvan, David I. Santiago, Irfan Siddiqi, and Joel J. Wallman.

Efficiently improving the performance of noisy quantum computers. arXiv, 2201.10672,

2022.

[17] Zhenyu Cai, Ryan Babbush, Simon C. Benjamin, Suguru Endo, William J. Huggins,

Ying Li, Jarrod R. McClean, and Thomas E. O’Brien. Quantum error mitigation. arXiv,

2210.00921, 2023.

[18] Joel J. Wallman and Joseph Emerson. Noise tailoring for scalable quantum computation

via randomized compiling. Phys. Rev. A, 94:052325, 2016.

[19] Daniel Gottesman. An Introduction to Quantum Error Correction and Fault-Tolerant

Quantum Computation. Proceedings of Symposia in Applied Mathematics, 68:13, 2010.

[20] Emanuel Knill and Raymond Laflamme. Theory of quantum error-correcting codes.

Physical Review A, 55:900, 1997.

[21] Eric Huang, Andrew C. Doherty, and Steven Flammia. Performance of quantum error

correction with coherent errors. Physical Review A, 99(2):022313, 2019.

118

http://dx.doi.org/10.1038/s41467-019-13068-7
http://iopscience.iop.org/article/10.1088/1367-2630/17/11/113020
https://doi.org/10.48550/arXiv.2303.17714
http://hdl.handle.net/10012/17139
https://link.aps.org/doi/10.1103/PhysRevX.7.021050
https://link.aps.org/doi/10.1103/PhysRevLett.119.180509
https://doi.org/10.48550/arXiv.2201.10672
https://doi.org/10.48550/arXiv.2210.00921
https://doi.org/10.1103/PhysRevA.94.052325
https://redirect.cs.umbc.edu/~lomonaco/ams2009-talks/Gottesman-Paper.pdf
https://Journals.aps.org/pra/abstract/10.1103/PhysRevA.55.900
https://doi.org/10.1103%2Fphysreva.99.022313

[22] John Watrous. The Theory of Quantum Information. Cambridge University Press,

2018.

[23] Matthew A. Graydon, Joshua Skanes-Norman, and Joel J. Wallman. Designing stochas-

tic channels. 2201.07156, 2022.

[24] W. Fulton and J. Harris. Representation Theory: A First Course. Graduate Texts in

Mathematics. Springer New York, 2011.

[25] Christian Dickel. Programming for the quantum computer. Qutech: Bits of Quantum,

2016.

[26] Easwar Magesan. Gaining Information About a Quantum Channel Via Twirling.

uwspace.uwaterloo.ca, 2008.

[27] Leonardo Bautista-Gomez, Ferad Zyulkyarov, Osman Unsal, and Simon McIntosh-

Smith. Unprotected computing: A large-scale study of dram raw error rate on a super-

computer. SC ’16: Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, 2167-4337, 2016.

[28] William K. Wootters and Wojciech H Zurek. A single quantum cannot be cloned.

Nature, 299:802-803, 1982.

[29] Daniel Gottesman. Surviving as a quantum computer in a classical world. Textbook

manuscript, 2016.

[30] Christopher Chamberland, Joel Wallman, Stefanie Beale, and Raymond Laflamme.

Hard decoding algorithm for optimizing thresholds under general markovian noise.

Physical Review A, 95(4):042332, 2017.

[31] David Poulin. Tensor networks and quantum error correction. Physical Review Letters,

113:030501, 2014.

[32] David Poulin. Optimal and efficient decoding of concatenated quantum block codes.

Physical Review A, 74:052333, 2006.

[33] Tomas Jochym-O’Connor and Raymond Laflamme. Using concatenated quantum codes

for universal fault-tolerant quantum gates. Physical Review Letters, 112:010505, 2014.

[34] Stefan M. Moser and Po-Ning Chen. A student’s guide to coding and information theory.

Cambridge, 2012.

119

https://cs.uwaterloo.ca/~watrous/TQI/TQI.pdf
https://doi.org/10.48550/arXiv.2201.07156
http://blog.qutech.nl/index.php/2016/11/03/programming-for-the-quantum-computer/
https://uwspace.uwaterloo.ca/bitstream/handle/10012/3828/uw-ethesis.pdf;sequence=1
https://ieeexplore.ieee.org/document/7877133/
https://www.nature.com/articles/299802a0
https://doi.org/10.1103%2Fphysreva.95.042332
https://Journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.030501
https://Journals.aps.org/pra/abstract/10.1103/PhysRevA.74.052333
https://Journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.010505

[35] Michael A. Nielsen. A simple formula for the average gate fidelity of a quantum dy-

namical operation. Physics Letters A, 303:249–252, 2002.

[36] Joel J. Wallman and Steven T. Flammia. Randomized benchmarking with confidence.

New Journal of Physics, 16:103032, 2014.

[37] Salman Beigi and Robert König. Simplified instantaneous non-local quantum com-

putation with applications to position-based cryptography. New Journal of Physics,

13:125202, 2011.

[38] Yuval R Sanders, Joel J. Wallman, and Barry C. Sanders. Bounding quantum gate

error rate based on reported average fidelity. New Journal of Physics, 18:012002, 2015.

[39] Richard Keung, David M. Long, Andrew Doherty, and Steven T. Flammia. Comparing

experiments to the fault-tolerance threshold. Physical Review Letters, 117:170502, 2016.

[40] Pavithran S. Iyer and David Poulin. A Small Computer is Needed to Optimize Fault-

Tolerant Protocols. Quantum Sci. Technol., 3:030504, 2018.

[41] Pavithran Iyer, Aditya Jain, Stephen D. Bartlett, and Joseph Emerson. Efficient diag-

nostics for quantum error correction. Physical Review Research, 4(4):043218, 2022.

[42] Mauricio Gutiérrez, Conor Smith, Livia Lulushi, Smitha Janardan, and Kenneth R.

Brown. Errors and pseudothresholds for incoherent and coherent noise. Physical Review

A, 94:042338, 2016.

[43] Daniel Greenbaum and Zachary Dutton. Modeling coherent errors in quantum error

correction. Quantum Science and Technology, 3:015007, 2017.

[44] Andrew S. Darmawan and David Poulin. Tensor-network simulations of the surface

code under realistic noise. Physical Review Letters, 119(4):040501, 2017.

[45] Sergey Bravyi, Matthias Englbrecht, Robert Koenig, and Nolan Peard. Correcting

coherent errors with surface codes. 1710.02270, 2017.

[46] Stefanie J. Beale, Joel J. Wallman, Mauricio Gutiérrez, Kenneth R. Brown, and Ray-

mond Laflamme. Quantum error correction decoheres noise. Physical Review Letters,

121(19):190501, 2018.

[47] Zhenyu Cai, Xiaosi Xu, and Simon C. Benjamin. Mitigating Coherent Noise Using Pauli

Conjugation. npj Quantum Inf, 6(17), 2019.

120

https://www.sciencedirect.com/science/article/pii/S0375960102012720
https://iopscience.iop.org/article/10.1088/1367-2630/16/10/103032
http://iopscience.iop.org/article/10.1088/1367-2630/13/9/093036/meta
http://iopscience.iop.org/article/10.1088/1367-2630/18/1/012002/meta
https://Journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.170502
 https://doi.org/10.1088/2058-9565/aab73c
https://doi.org/10.1103%2Fphysrevresearch.4.043218
https://Journals.aps.org/pra/abstract/10.1103/PhysRevA.94.042338
https://iopscience.iop.org/article/10.1088/2058-9565/aa9a06
https://doi.org/10.1103%2Fphysrevlett.119.040502
https://doi.org/10.1038/s41534-018-0106-y
https://doi.org/10.1103%2Fphysrevlett.121.190501
https://doi.org/10.1038/s41534-019-0233-0

[48] Joseph Iverson and John Preskill. Coherence in logical quantum channels. New Journal

of Physics, 22:073066, 2020.

[49] Giuliano G. La Guardia. Quantum Codes Derived from Cyclic Codes. International

Journal of Theoretical Physics, 56:2479-2484, 2017.

[50] Markus Grassl and Martin Roetteler. Leveraging automorphisms of quantum codes

for fault-tolerant quantum computation. IEEE Transactions on Automatic Control,

534-538, 2013.

[51] Rui Chao and Ben W. Reichardt. Fault-tolerant quantum computation with few qubits.

npj Quantum Information, 4:42, 2018.

[52] Benjamin Rahn, Andrew C. Doherty, and Hideo Mabuchi. Exact performance of con-

catenated quantum codes. Physical Review A, 66:032304, 2002.

[53] E. Knill. Group Representations, Error Bases and Quantum Codes. OSTI.GOV, 1996.

[54] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland.

Surface codes: Towards practical large-scale quantum computation. Physical Review

A, 86(3):032324, 2012.

[55] Héctor Bomb́ın and M. A. Martin-Delgado. Topological Quantum Distillation. New

Journal of Physics, 97(18):180501, 2006.

[56] Héctor Bomb́ın. Gauge color codes: optimal transversal gates and gauge fixing in

topological stabilizer codes. New Journal of Physics, 17:083002, 2015.

[57] Sergey Bravyi, Sarah Sheldon, Abhinav Kandala, David C. Mckay, and Jay M. Gam-

betta. Mitigating measurement errors in multiqubit experiments. Phys. Rev. A,

103(4):042605, 2021.

[58] Robert Raussendorf and Hans J. Briegel. A one-way quantum computer. Phys. Rev.

Lett., 86(22):5188–5191, May 2001.

[59] Christoph Dankert, Richard Cleve, Joseph Emerson, and Etera Livine. Exact and

approximate unitary 2-designs and their application to fidelity estimation. Physical

Review A, 80(1):012304, 2009.

[60] Joel J. Wallman. Randomized benchmarking with gate-dependent noise. Quantum,

2:47, 2018.

121

https://iopscience.iop.org/article/10.1088/1367-2630/ab8e5c
https://link.springer.com/article/10.1007/s10773-017-3399-2
https://ieeexplore.ieee.org/document/6620283
https://www.nature.com/articles/s41534-018-0085-z
https://Journals.aps.org/pra/abstract/10.1103/PhysRevA.66.032304
https://www.osti.gov/biblio/378680
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.86.032324
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.180501
https://iopscience.iop.org/article/10.1088/1367-2630/17/8/083002/meta
https://link.aps.org/doi/10.1103/PhysRevA.103.042605
https://link.aps.org/doi/10.1103/PhysRevLett.86.5188
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.80.012304
https://doi.org/10.22331/q-2018-01-29-47

[61] Christopher Granade, Christopher Ferrie, and David G. Cory. Accelerated Randomized

Benchmarking. New J. Phys., 17:013042, 2014.

[62] M. Fukuda and A. S. Holevo. On weyl-covariant channels. arXiv, 0510148, 2006.

[63] Jesse Fern. Correctable noise of quantum-error-correcting codes under adaptive con-

catenation. Phys. Rev. A, 77(1):010301, 2008.

[64] Luka Skoric, Dan E. Browne, Kenton M. Barnes, Neil I. Gillespie, and Earl T. Campbell.

Parallel window decoding enables scalable fault tolerant quantum computation. arXiv,

2209.08552, 2023.

[65] Aditya Jain, Pavithran Iyer, Stephen D. Bartlett, and Joseph Emerson. Improved

quantum error correction with randomized compiling. Phys. Rev. Research, 5(3):033049,

2023.

[66] A. Greene, M. Kjaergaard, M. E. Schwartz, G. O. Samach, A. Bengtsson, M. O’Keeffe,

D. K. Kim, M. Marvian, A. Melville, B. M. Niedzielski, A. Vepsalainen, R. Winik,

J. Yoder, D. Rosenberg, S. Lloyd, T. P. Orlando, I. Marvian, S. Gustavsson, and W. D.

Oliver. Error mitigation via stabilizer measurement emulation. arXiv, 2102.05767, 2021.

[67] Jonas T. Anderson, Guillaume Duclos-Cianci, and David Poulin. Fault-tolerant con-

version between the steane and reed-muller quantum codes. Physical Review Letters,

113(8):080501, 2014.

[68] Wan-Jung Kuo and Daniel A. Lidar. Quadratic dynamical decoupling: Universality

proof and error analysis. Physical Review A, 84(4):042329, 2011.

[69] Imdad S. B. Sardharwalla, Toby S. Cubitt, Aram W. Harrow, and Noah Linden. Uni-

versal refocusing of systematic quantum noise. arXiv, 1602.07963, 2016.

[70] Arnaud Carignan-Dugas, Joel J. Wallman, and Joseph Emerson. Characterizing uni-

versal gate sets via dihedral benchmarking. Phys. Rev. A, 92(6):060302, 2015.

[71] Joshua Combes, Christopher Granade, Christopher Ferrie, and Steven T. Flammia.

Logical randomized benchmarking. arXiv, 1702.03688, 2017.

[72] Athena Ceasura, Pavithran Iyer, Joel J. Wallman, and Hakop Pashayan. Non-

exponential behaviour in logical randomized benchmarking. arXiv, 2212.05488, 2022.

122

http://dx.doi.org/10.1088/1367-2630/17/1/013042
https://doi.org/10.48550/arXiv.quant-ph/0510148
https://link.aps.org/doi/10.1103/PhysRevA.77.010301
https://doi.org/10.48550/arXiv.2209.08552
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.5.033049
https://doi.org/10.48550/arXiv.2102.05767
https://doi.org/10.1103%2Fphysrevlett.113.080501
https://doi.org/10.1103%2Fphysreva.84.042329
https://doi.org/10.48550/arXiv.1602.07963
https://link.aps.org/doi/10.1103/PhysRevA.92.060302
https://doi.org/10.48550/arXiv.1702.03688
https://doi.org/10.48550/arXiv.2212.05488

	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Preliminaries: Notation for quantum states, channels, and operations
	Quantum States
	Quantum computation
	Representations of quantum channels
	The natural representation

	Circuit Representation
	Common Unitary Operations and Errors on Quantum States
	Weyl operators
	Clifford operators and universal gate sets
	Other Common Unitary Operations on Quantum Channels
	Modeling Quantum Error Channels

	Measurement
	Indirect measurements
	Modeling noisy measurements
	Weak measurements

	Error Correcting Codes
	Classical Repetition Code
	Quantum Repetition Code
	Stabilizer Codes and their Error Correction Protocols
	Popular Examples of Stabilizer Codes

	Quantifying Errors
	Encoded implementation
	QEC Gadgets
	Fault Tolerance

	Twirling
	Randomized Compiling

	Efficiently computing logical noise in quantum error-correcting codes
	Chapter overview
	Introduction
	Measurements as channels and noise channels as measurements

	Encoded memory channels
	Symmetries in encoded memory channels
	Symmetries of stabilizer codes
	Noisy readout measurements in stabilizer codes
	Symmetries of the toric code
	Symmetries for multiple rounds of QEC
	Symmetries for Non-IID Noise
	Symmetries of concatenated stabilizer codes

	Conclusion

	Randomized compiling for subsystem measurements
	Chapter overview
	Introduction
	Subsystem measurements
	Example: indirect computational basis measurement
	Randomized compiling for non-destructive quantum measurements
	General indirect measurements
	Two-qubit example
	Indirect measurements with noisy Clifford operations

	Conclusion

	Logical Randomized Compiling
	Chapter overview
	Introduction
	Example: Coherent errors in the repetition code
	Introduction to Logical Randomized Compiling
	Gauge degree of freedom
	Analysis of LRC
	Clifford operations
	T gates
	Gates with no known twirl

	Syndrome extraction circuits
	Discussion
	Timing and Compilation
	Idling
	Code switching
	Sampling Algorithms

	Conclusion

	Conclusion
	Summary of results
	Future work

	References

