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Abstract

The simulation of physicochemical processes with computational methods is key for en-
gineering design, with applications in a variety of industries, ranging from pharmaceuticals
to aerodynamics. Despite its importance and widespread use, significant challenges related
to the accuracy and computational complexity of these simulations remain prominent.

These systems are governed by non-linear transport equations with physical and chemi-
cal processes occurring at different spatiotemporal scales in complex geometries. This leads
to problems which are computationally expensive and often infeasible to solve. As such,
reducing the computational complexity of multiphysics problems without compromising
on accuracy is a central goal in the engineering community.

Recently, machine learning has proven to be a promising direction towards this goal.
The availability of data from both multiphysics experiments and simulations have led to
high-performing neural networks capable of accelerating traditional methods for solving
multiphysics problems. Despite these hopeful results, there still exists a gap between
machine learning and its optimal application in a realistic engineering design process. This
work aims to bridge that gap through two main approaches.

The first approach is by developing a framework which hosts neural network training
and existing computational multiphysics software in a unified framework. The second ap-
proach is to incrementally determine optimal neural network parameters by running com-
putational multiphysics problems and neural network training in parallel. This has shown
to reduce data collection and training time while increasing the speedup of multiphysics
simulations over increments.
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Chapter 1

Introduction

1.1 Research Motivation

Efficient simulation of physicochemical processes is central to engineering design. These
processes typically consist of multiphase flow, heat and mass transfer, reaction and trans-
port of chemical species in multicomponent mixtures, and turbulence. These complex
processes span a wide range of space and time scales, making experimentation inefficient
and often infeasible for preliminary design. Simulations present a safe and cost-effective
alternative to physical prototyping and testing while providing engineers with detailed
insights of the system of interest. This is accomplished through high-throughput design
screening, which requires the simulation of several designs and operating conditions with
relatively small variations. Thus, simulations should be executed quickly so that many
configurations can be tested efficiently. This is important for several industrial applica-
tions, such as modelling airflow in buildings for efficient energy usage [29], determining the
hydrodynamics of fluidized bed systems [44], or designing optimal aerospace vehicles [39].

These processes, and many more in chemical engineering, can be described by complex
partial differential equations (PDEs) that represent conservation of mass, momentum, and
energy in a continuum. Most industrially-relevant multiphysics occurs in complex geome-
tries such as chemical reactors, separators, and boilers; or porous materials like zeolites. To
further complicate matters, many of these processes are convection-dominated, meaning
convective transport is significantly larger than other transport processes such as diffu-
sion. The governing equations therefore have high Peclet and Reynolds numbers and are
classified mathematically as hyperbolic PDEs.
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Conventional numerical schemes encounter multiple computational difficulties when
solving hyperbolic PDEs [28]. To effectively model convective flows, upwinding schemes
must be used to enforce hyperbolicity numerically. Current numerical methods for con-
vective transport are prone to instabilities such as non-physical oscillations, which occur
when a downstream boundary condition forces a rapid change in the solution. High mesh
densities are usually required for adequate numerical accuracy in complex geometries, but
result in stability issues due to the corresponding requirement of small timescales (Courant-
Friedrich-Lewy condition) [16].

Since most engineering applications operate at macroscopic length scales, the processes
mentioned above are adequately approximated by continuum models such as the Navier-
Stokes equations. The Navier-Stokes equations are derived by substituting intensive prop-
erties (i.e., density for mass) into basic laws of physics: the continuity equation and New-
ton’s second law of motion. The force term contains three components: a pressure term, a
stress term, and an external force term acting on every fluid particle. This general form,
however, is very difficult - if not impossible - to use in practice, as it has a number of
unspecified elements. Thus, further assumptions are required to simplify the model.

This work focuses on Newtonian incompressible fluids, though in reality, many common
fluids are compressible. The stress term is further simplified by Newton’s law of viscosity,
which assumes the stress is linearly proportional to the rate of deformation. The Navier-
Stokes equations adequately describe many relevant physicochemical processes, with addi-
tional equations and variations for reaction, turbulence, heat transfer, and mixtures. Thus,
this work focuses on computational multiphysics (CMP) simulations which are modelled
by the Navier-Stokes equations. These equations are rarely solved analytically, instead
their solutions are approximated numerically with discretization methods.

Solving the Navier–Stokes equations for convection-dominated problems requires nu-
merical methods that may be computationally expensive, and often infeasible to solve [28].
Several approaches have been developed to solve these equations numerically, by discretiza-
tion using methods of different orders, such as finite difference, finite volume, spectral
methods, finite element, and more [56]. However, to ensure convergence, fields must vary
smoothly on the mesh, meaning meshes need to resolve very small spatiotemporal scales,
which increases the computational cost.

In spite of considerable successes, challenges related to the effective implementation of
CMP remain prominent. The effectiveness of simulations is intimately tied to the fidelity
of the mathematical models, mesh quality of the geometry, the stability and convergence
of the numerical methods used, and computational speed [54]. Efficient simulations are
required so that frequent, small changes to a system can be tested in a timely manner. A
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typical parametric analysis requires many simulations and iterations for a class of systems
in a regime, with only small variations to the geometry or fluid parameters. Currently,
these past iterations and history of related systems are not used to speed up computations.
Thus, numerical solutions should be accelerated by leveraging past iterations of simulations
under similar conditions. If we have access to history of related systems, it is important
to use it in a way that makes simulations more efficient. This can be accomplished with
machine learning techniques.

Machine learning (ML) has shown promising results in many computational multi-
physics applications such as turbulence closure modelling [58], operator learning [27], and
ML-accelerated physics solvers [38, 2, 26]. This work focuses on ML-accelerated computa-
tional multiphysics, which seeks to hybridize classical numerical methods with data-driven
deep learning techniques [5]. This idea has already shown promising results in a range
of related works [48, 23, 26]. Despite this rapid progress, current work in this field lacks
key features required to be used effectively in practice. The models, pipeline, and data
are sometimes not publicly available, and if they are, a standalone deep learning model
is provided rather than an automated, end-to-end framework coupled with existing mul-
tiphysics solvers. Additionally, the choice of neural network architecture is not based on
scientific reasoning, models are usually designed similar to popular, high-performing ar-
chitectures which are used for unrelated tasks like image recognition [45]. Many of these
recent publications do not adequately describe their algorithms and sometimes do not show
a performance benefit compared to modern traditional methods, particularly when com-
pared to Finite Element software like OpenCMP [35] and NGSolve [47]. To build accessible
ML-accelerated CMP solvers, it is beneficial to consider engineering expertise during the
design phase.

1.2 Objectives

The overall objective of this thesis is to develop ML-based acceleration methods for com-
putational multiphysics which are compatible with the engineering design process. Specific
objectives include,

Reproduce research on numerical methods combined with deep learning, specif-
ically, CFDNet [38]. By reproducing this work, the performance benefit of ML-
coupled physics solvers will be validated. This also provides a foundation for further
analysis and improvement of the coupled framework.
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Determine optimal neural network architectures and reduce data usage through
hyperparameter tuning and incremental training. This reduces data processing and
training time while closely following a realistic engineering design cycle.

Apply and validate method to arbitrary 2D and 3D flow problems to ensure the
method could be used in practice, and as a basis for further research.

1.3 Thesis Structure

This thesis is grouped into six chapters, including this introduction chapter. Chapter
2 is the background section, describing common fluid transport equations, discretization
methods, and a machine learning overview. Chapter 3 consists of an extensive literature
review on ML-accelerated multiphysics solvers. Chapter 4 describes the research methods
used in this work, detailing the computational methods used for both the multiphysics
simulation and the machine learning implementation. Chapter 5 summarizes the results
of this work, and finally, Chapter 6 discusses conclusions and future work.
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Chapter 2

Background

This chapter introduces the study of multiphysics systems, the most common equations
used to describe these systems, and the numerical methods used to solve these equations.
Key concepts in machine learning, including detailed descriptions of popular neural network
architectures and algorithms, are also discussed.

2.1 Computational Multiphysics in Chemical Engi-

neering

Computational multiphysics (CMP) is the unified study of heat, mass, and momentum
transfer in physicochemical processes with computer simulations. These are systems gov-
erned by several physical and chemical processes, or multiscale systems, where processes
in the same system occur at different time and spatial scales. CMP is widely used in the
design and implementation of biological and chemical processes in industry. This coincides
with the field of chemical engineering, and so, CMP is an essential skill for a chemical
engineers toolkit.

Chemical engineering is a multidisciplinary field which spans a variety of industries,
including, but not limited to, pharmaceuticals, cosmetics, energy systems, wastewater
treatment, and food production. One example, demonstrating a common industrial appli-
cation in the field of chemical engineering, is the conversion of raw materials into consumer
products through chemical reactions and fluid flow. A common environment where matter
undergoes this change is in reactors, which are controlled vessels where a chemical reaction
occurs. Different types of reactors are designed to perform this conversion depending on
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the desired product. In order to develop an efficient reactor at an industrial scale, engi-
neers must understand the physical and chemical processes that occur in the reactor over
time. An understanding of the phenomena will help determine the operating conditions
and design required for optimal performance. This is accomplished with computational
multiphysics.

2.2 Navier-Stokes equations

The processes mentioned above are accurately described at length scales greater than
inter-atomic distances, and so, continuum models are used to analyze them. Continuum
models consist of equations formulated to describe basic laws of physics representing the
conservation of mass, momentum, and energy. These set of equations, referred to as the
Navier-Stokes equations, are used to model these processes.

The Navier-Stokes equations arise from three fundamental laws of physics, which state
that [54]:

• The mass of a fluid is conserved,

• The rate of change of momentum of is equal to the sum of all forces imposed on a
fluid particle, and

• The rate of change of energy is equal to the rate of heat added to the system and
the work done on the particle.

The key difference in the equations for fluid mechanics versus the classical physics
equations, i.e., Newtons laws, is treating the fluid as a continuum. The laws above are re-
formulated into equations with macroscopic properties - such as density, velocity, pressure,
and temperature; and their derivatives in time and space [54]. A fluid control volume is
the smallest element of a fluid where molecular interactions can be neglected. Let Figure
2.1 represent this fluid element of interest.

Equation of continuity

The equation of continuity is developed by writing a mass balance over the fluid control
volume, ∆x∆y∆z, which is fixed in time and space.[

rate of increase of mass

]
=

[
rate of mass in

]
−

[
rate of mass out

]
(2.1)
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Figure 2.1: Control volume which a fluid flows through. The arrows indicate the mass flux in
and out of the volume at faces normal to all three dimensions of the element

To begin, consider a fluid passing parallel to the x-axis, through the faces shaded orange.
The rate of mass entering the volume from this surface is given by:

∆y∆z[(ρu)x − (ρu)x+∆x] (2.2)

Similar equations can be written for fluid passing through the volume parallel to the
y-axis and the z-axis. Putting these together, the mathematical notation of Equation 2.1
becomes:

∆x∆y∆z
∂ρ

∂t
=∆y∆z[(ρu)x − (ρu)x+∆x]+

∆x∆z[(ρv)y − (ρv)y+∆y]+

∆y∆x[(ρw)z − (ρw)z+∆z]
(2.3)

where u, v, w are the x, y, z components of velocity, respectfully, and ρ is the density of
the fluid. The simplified version of this equation is derived by dividing by the differential
volume element ∆x∆y∆z and taking the limit as ∆x,∆y, and∆z approach zero:

∂ρ

∂t
= −

(
∂

∂x
ρu +

∂

∂y
ρv +

∂

∂z
ρw

)
= −(∇ · ρv)

(2.4)
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Figure 2.2: Point of fluid in control volume for steady, unidirectional flow. The molecular stresses
acting on the face normal to the y-axis is shown. τyx is the shear stress from the velocity gradient,
and pδy is the pressure exerted from the surrounding fluid, and will always act perpendicular to
the surface.

For an incompressible flow, where the fluid density is assumed to be constant, this
equation is simplified to:

(∇ · v) = 0 (2.5)

Equation of motion

The equation of motion is derived from the momentum balance over the control volume of
a fluid element. Consider the fluid element in Figure 2.1. Momentum is transported by two
mechanisms: (i) molecular transport and (ii) convective transport. Molecular transport
is created by the forces acting on the fluid in the volume element. There will be two
contributions to the force in the molecular effects - the first contribution is associated with
pressure, and the second contribution is due to the viscous forces acting on the fluid.

A point of a fluid in a control volume will constantly experience a pressure from the
weight of surrounding fluid. Consider the surface normal to the y-axis for a fluid point in
the centre of the control volume in Figure 2.2. This fluid point will experience a pressure
from the weight of the fluid above it. This pressure term is denoted by pδy.

A fluid in a container can be thought of as several stacked thin layers of fluids, subject to
effects from boundary layers - more specifically, the no-slip condition. Due to these effects,
the fluid layers will flow at different velocities depending on their location, generating a
velocity gradient between the layers. The velocity gradient between these layers creates a
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shear stress parallel to the layers, as pictured as the yellow shaded plane in section 2.2.
This shear stress can be described by Newton’s Law of Viscosity, which relates the velocity
gradient to the viscosity of the fluid, µ, with the following formula:

τyx = −µdu
dy

(2.6)

Combining the terms from the viscous and pressure forces, the molecular stresses acting
on the face perpendicular to y are defined by:

πxy = pδxy + τxy (2.7)

where δxy is the Kronecker delta, and is only non-zero when the force is applied normal
to the surface of interest. It is important to note that τij will not always be as simple as
Equation 2.6. In realistic scenarios, a 3D flow can have velocity components in all three
dimensions, (u, v, w), and so the viscous stress can be a linear combination of all three
velocity gradients. The shear stress can then be defined in a more general form:

τxy = −µ

(
∂v

∂x
+

∂u

∂y

)
+ (

2

3
µ− κ)

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
δxy (2.8)

where µ is the viscosity of the fluid and κ is the dilatational viscosity, a term that stems
from kinetic theory, and is equal to zero for monatomic gases at low density [42].

Momentum can also be transported by the bulk movement of the fluid. This phenomena
is called convective transport. Consider again Figure 2.2, except now, imagine the velocity
has non-zero components in all three dimensions. Hence, (u, v, w) are all non-zero. The
central surface normal to the y-axis shaded in Figure 2.2 would have a flow rate of v (the
y-component of velocity). The fluid would also have a momentum of ρv per unit volume,
where v is the multidimensional velocity vector. Putting this together, the momentum flux
by convection for the central surface shaded yellow in Figure 2.2 would be vρv. Similarly,
the momentum flux by convection for the faces normal to the x and z axis would be uρv
and wρv, respectfully. To be concise, this can be written as a second-order tensor:

ρvv (2.9)

To conclude, the combined momentum-flux tensor Φ, which combines the momentum
flux from both molecular effects and convective effects, is written as,

Φ = π + ρvv (2.10)
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where Φ is a second-order tensor. Given there are three dimensions, the momentum flux
has nine independent coefficients in total.

The equation of motion is derived similarly to the equation of continuity, except with
momentum as the conserved quantity. The momentum balance of a fluid element can be
described by:[

rate of increase of mom.

]
=

[
rate of mom. in

]
−

[
rate of mom. out

]
+

[
external forces

]
(2.11)

Consider the same volume element as Figure 2.1. The momentum flux from the orange
shaded faces perpendicular to the x-axis can be described as follows:

∆x∆y∆z
∂

∂t
ρu = ∆y∆z(Φxx|x − Φxx|x+∆x)

+ ∆z∆x(Φyx|y − Φyx|y+∆y)

+ ∆x∆y(Φzx|z − Φzx|z+∆z)

+ ρgx∆x∆y∆z

(2.12)

Dividing by the volume element and rewriting in terms of gradients, the general form of
the momentum flux equation in tensor notation for all three components is:

∂

∂t
ρv = −[∇ · ρvv]−∇p− [∇ · τ ] + ρg (2.13)

The Navier Stokes Equations

For a constant ρ and a constant µ, inserting the expanded version of Equation 2.8 into the
equation of motion 2.13 we get the Navier-Stokes equation:

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇P + µ∇2v + ρg (2.14)

Dimensional analysis shows that the Navier-Stokes equation can be generally described
by one number: the Reynolds number. By dividing every dimensional term of Equation
2.14 by a suitable reference value, the equation is reformulated to be independent of the
physical measurements of the problem. This is important in engineering, where the scale
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of a problem might be too costly to replicate in the experimental and testing phases of a
project. In Equation 2.14, the terms can be non-dimensionalized as follows:

v∗ =
v

vref
; p∗ =

p

ρv2ref
; g∗ =

gL

v2ref
(2.15)

where L is the characteristic length scale and vref is the reference velocity. To write Equa-
tion 2.14 in its non-dimensional form, a term arises, which is referred to as the Reynolds
(Re) number. The Reynolds number describes the ratio of inertial forces to viscous forces,
and is defined as:

Re =
ρLvref

µ
(2.16)

This number allows Equation 2.14 to be reformulated as:

∂v∗
∂t

+ (v∗ · ∇)v∗ = −∇p ∗+
1

Re
∇2v∗+ g∗ (2.17)

Reynolds-Averaged Navier Stokes for Turbulence Modelling

All flows encountered in nature become chaotic above a certain Reynolds number. At
high Reynolds numbers, flows become turbulent and disorderly states of motion develop
between fluid layers, making the velocity and pressure fields continuously change over time.
This generates rotational structures of varying length scales in the flow called turbulent
eddies.

Eddies are responsible for the effective heat and momentum flux across the entire
domain [1]. They span a wide range of length scales, and it is typical to have eddies
as small as 1× 10−5 metres for a domain length scale of 1× 10−1 metres. Thus, to capture
the flow dynamics at these length scales, a very fine mesh of roughly 109 − 1012 points is
required [54]. Additionally, time would need to be discretized in steps of at least 1× 10−4

seconds. This is a significant computational burden, and so, additional approximations
and simplifications are preferred over direct numerical simulations.

Reynolds-Averaged Navier Stokes (RANS) equations are used to avoid the need to com-
pute the effects of every eddy. The Reynolds-Averaged Navier-Stokes (RANS) equations
are time-averaged Navier Stokes equations primarily used to solve turbulent flows. These
equations were derived by observing the behaviour of flow velocity in a turbulent regime.
Consider the velocity profile of a flow in a tube with a constant imposed pressure gradient
in Figure 2.3. It is clear that the velocity fluctuates from a mean value, and thus, can be
decomposed into a mean component, denoted vz, and a fluctuating component, denoted
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v′z. This is referred to as the Reynolds decomposition. The Reynolds decomposition of the
z component of velocity, as shown in Figure 2.3, is therefore:

vz = vz + v′z (2.18)

The mean value, vz, is attained by taking the average over a window of time [42]:

vz =
1

t0

∫ t+ 1
2
t0

t− 1
2
t0

vz(s)ds (2.19)

Figure 2.3: Figure from Chapter 5.2 of [42] showing vz, its time-averaged value vz, and its
fluctuating component v′z in turbulent flow. In (a), vz does not depend on time, while in (b) vz
is time dependant.

Now that the time-averaged quantities have been described, they can be inserted into
the continuity equation 2.4 in cartesian notation as:

∂

∂x
(vx + v′x) +

∂

∂y
(vy + v′y) +

∂

∂z
(vz + v′z) = 0 (2.20)

The fluctuating component, v′x, has a time average of zero. Information about the
fluctuating component can therefore be obtained by taking the root-mean-square of the
velocity fluctuations [54].

The equations of motion can also be re-written in terms of their time-averaged quan-
tities. Before doing so, rules related to time averaged components and their derivatives
should be noted. Consider the Reynolds decomposition of two vector fields v = V + v′,
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and u = U + u′ where V and U are the mean values. The following relationships hold:

v′ = 0; v = V;
∂v

∂s
=

∂V

∂s
v + u = V + U; vu = VU + v′u′;

vU = VU; v′U = 0

(2.21)

Using the Reynolds decomposition in the momentum equations will provide the follow-
ing formulation for the x-component of velocity, u, where u is the velocity vector. Similar
equations are developed for the y and z components of velocity.

∂U

∂t
+∇ · (UU) +∇ · (u′u′) = −1

ρ

∂P

∂x
+ ν∇2U (2.22)

It is clear from Equation 2.22 that there now exist Reynolds stresses, u′u′, that must be
solved for. Turbulence modelling, which will be described further in section 4, focuses on
approximating these Reynolds stresses by estimating them in terms of the mean velocity
components. This term is required to close the momentum equations.

2.3 Numerical methods

The above equations cannot be solved analytically, they must be approximated numerically.
This is accomplished with the application of numerical methods, the most popular ones
being the Finite Difference Method (FDM), the Finite Element Method (FEM), and the
Finite Volume Method (FVM). This work focuses on both the Finite Element Method
(FEM) and the Finite Volume Method (FVM) because of their ability to handle arbitrary
geometries. Other methods, such as the FDM, require simple geometries that conform with
the coordinate system used. This is not suitable for engineering applications, where most
environments involve complex geometries. These complex geometries need an unstructured
mesh to resolve regions of high error, the boundary layer of an aircraft wing being one
example.

2.3.1 Finite Volume Method

Section 2.1 described the equations governing fluid flow and heat transfer by applying them
to a control volume. The Finite Volume Method is a numerical method used to solve these
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equations by integrating over the control volume (CV). To demonstrate this, consider a
steady, two-dimensional convection-diffusion equation where convection is only present in
the x-dimension:

∂

∂x
ρuT =

∂

∂x
(Γ

∂T

∂x
) +

∂

∂y
(Γ

∂T

∂y
) (2.23)

where Γ is the diffusion coefficient and T is some quantity being diffused in an arbitrary
two-dimensional geometry. The geometry can be discretized into multiple control volumes,
as shown in 2.4. Consider a point - or node - at the centre of each CV. Focusing on the
central CV with node P , we can begin discretizing the diffusion equation in terms of the
surrounding nodes and faces by integrating over the CV.

P RL
l r

B

T

t

b

Figure 2.4: Nodes in a simple 2D geometry. The central node is labelled P, and the surrounding
nodes are labelled T (Top), R (Right), L (Left), B (Bottom). The lower case t,r,b,l denote the
control volume faces of the point P.

The equation will be solved over the control volume (CV), hence, it needs to be inte-
grated over the entire CV:∫

CV

∂

∂x
ρuT =

∫
CV

∂

∂x
(Γ

∂T

∂x
) +

∂

∂y
(Γ

∂T

∂y
)dV (2.24)

Gauss’ divergence theorem allows a volume integral of field F to be expressed as a surface
integral with the following relation:∫

CV

div(F )dV =

∫
A

(n̂ · F )dA (2.25)
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Using Gauss’ divergence theorem, the Equation 2.24 can be rewritten as a surface
integral: ∫

A

n̂ · (ρuT )dA =

∫
A

(α
∂T

∂x
)(̂i · n̂)dA +

∫
A

(α
∂T

∂y
)(ĵ · n̂)dA (2.26)

which can then be integrated and discretized.

Discretization of diffusion

To start, the diffusion term will be discretized using the Central Differencing scheme
(CDS). The CDS allows an approximation ∂T

∂x
for each face by computing the difference of

the nodes of each surrounding CV and dividing by the distance between the two nodes.
Consider the diffusion term in Equation 2.26. The cross-sectional area normal to the x-
direction of the system is integrated from the right face to the left face. Similarly, in the
y-direction, the cross-sectional area is integrated from the top face to the bottom face.

ΓAr
∂T

∂x

∣∣∣∣∣
r

− ΓAl
∂T

∂x

∣∣∣∣∣
l

+ ΓAt
∂T

∂x

∣∣∣∣∣
t

− ΓAb
∂T

∂x

∣∣∣∣∣
b

(2.27)

the area on the right and left face on the system is in the direction normal to x. Hence,
the area is ∆y∆z. Since the effects from the third dimension, z, are to be ignored, it can
be assumed that ∆z = 1. Similarly, on the top and bottom faces of the system, the area
is ∆x∆z. Thus,

Ab = ∆x,At = ∆x,Ar = ∆y, Al = ∆y (2.28)

∂T

∂x

∣∣∣∣∣
r

=
TR − TP

∆x
,

∂T

∂x

∣∣∣∣∣
l

=
TP − TL

∆x
,

∂T

∂x

∣∣∣∣∣
t

=
TT − TP

∆y
,

∂T

∂x

∣∣∣∣∣
b

=
TP − TB

∆y
(2.29)

Plugging the results from 2.28 and 2.29 back into 2.27, the following equation is for-
mulated:

Γ∆y

∆x
(TR − TP )− Γ∆y

∆x
(TP − TL) +

Γ∆x

∆y
(TT − TP )− Γ∆x

∆y
(TP − TB) (2.30)

For simplicity, diffusion coefficients are defined for each face:

Dr =
Γ∆y

∆x
Dl =

Γ∆y

∆x
Dt =

Γ∆x

∆y
Db =

Γ∆x

∆y
(2.31)
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Grouping the T terms together, the diffusion term can be discretized as follows:

DrTR + DlTL + DtTT + DbTB − (Dr + Dl + Dt + Db)TP (2.32)

Now, the convection term is left to discretize. For the convection term, another scheme
is used to approximate the node values. It is called the Upwind Differencing Scheme
(UDS). UDS is required for convection-dominated flows, as the CDS fails to converge due
to oscillations in the solution. UDS approximates the value of velocity as its upstream value.
Since the flow is convecting in the positive x-direction at a constant velocity, ur = ul = u
and u > 0. The coefficients of the discretised equation are therefore always positive, hence
satisfying the requirements for boundedness.

Using Gauss’ theorem, the convection term is written as the following surface integral:∫
A

n̂ · (ρuT ) = (ρuTA)r − (ρuTA)l (2.33)

Inserting in the following assumptions to the surface integral,

Tr ≈ TP Tl ≈ TL (2.34)

the following result is produced:
uATP − uATL (2.35)

for simplicity, let
Fr = uA|r Fl = uA|l (2.36)

Now, the diffusion and convection discretizations are equated and grouped by T:

FrTP − FlTL = DrTR + DlTL + DtTT + DbTB − (Dr + Dl + Dt + Db)TP (2.37)

Final discretized form

The final discretized form of the entire equation, without including any boundary conditions
or known values, is:

[Fr + Dr + Dl + Dt + Db]TP = DrTR + (Dl + Fl)TL + DtTT + DbTB (2.38)

Let aR = Dr, aL = (Dl + FL), aT = Dt, aB = Db

[aR + aL + aT + aB]TP = aRTR + aLTL + aTTT + aBTB (2.39)
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Equation 2.39 can now be solved by inserting boundary terms, rewriting in matrix form,
and solving the system of equations. It is important to note that a simple problem was
chosen only to demonstrate the application of the FVM on a mesh element. In real life
applications, the spatial scale is large, and hundreds of thousands of nodes, often millions,
must be solved for and hence require advanced computational methods and hardware to
pursue.

2.4 Machine Learning

Deep
Learning

Neural
Networks

Machine
Learning

Artificial
Intelligence

Figure 2.5: Fields of AI

Artificial Intelligence (AI) is a field in computer sci-
ence and engineering that focuses on the development
of machines capable of performing tasks that require
human knowledge. Today, AI is a thriving field with
many practical applications and active research topics,
ranging from cognitive computing to robotics.

While the two terms are sometimes used inter-
changeably, it is important to note that Machine Learn-
ing (ML) is a subset of AI that uses mathematical mod-
els of data to perform tasks autonomously. In order to
achieve desired performance in a model, it must be able
to understand the factors of variation of a dataset [17].
Factors of variation refer to different sources of influ-
ence coming from the physical world, for instance, language accents in voice recordings or
the brightness of the sun in an image. This represents a variability in the dataset, and it
must be understood in order to develop an ML model capable of generalizing.

Neural Networks (NNs) are a type of ML model structure designed with a set of oper-
ations arranged in a hierarchical fashion, inspired by the structure of a brain. NNs apply
a set of computations on an input, transforming the input into a feature representation.
Layers in NNs are defined as a step that computes these feature representations. The
depth of a NN is the number of layers included in the model architecture. Shallow NNs -
i.e., NNs with a small number of layers, are difficult to use in practice depending on the
task at hand. The lack of feature representations will make it challenging for the model to
accurately depict the variability in a dataset.

Deep Learning (DL) is a class of Neural Networks that are structured with several layers
- hence the term deep. DL was created to tackle the limitations of shallow NNs. Deep
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learning introduces feature representations that are computed in terms of previous, simpler
feature representations. This allows the model to hierarchically break down a problem into
simpler concepts, improving performance for complex learning tasks.

2.4.1 Feedforward neural network

To introduce the concept of ML using NNs, the simplest NN architecture - Feedforward
Neural Networks - will first be discussed. At a high level, NNs consist of a network of
functions with applied weights, referred to as parameters, which the computer determines
by analyzing data. A parameter is computed by a series of mathematical operations which
produce an output after receiving one or more inputs. In the next layer of a network, the
previous output is fed as input to a new layer with a new set of operations that again
produce outputs. These outputs are then passed into new sets of operations, and this cycle
continues until the original input has gone through all layers. The final output of the last
layer in a network therefore produces the NNs output, or, the NNs prediction. This full
cycle is referred to as a forward pass.

x2

x3

h1

h2

h3

h4

y1

y2

x1

h5

(a) (b) (c)

Figure 2.6: Basic one-layer network. The input data, (a), goes through a layer. The layer is
composed of several nodes, (b), with each node consisting of a set of weights and biases applied
to each input point, followed by an activation function. Finally, the output (c) is returned.
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A layer consists of several nodes, which are computational units with input connections,
a function that applies weights and biases to these inputs, and connections to return an
output. In Figure 2.6, (b) represents a layer with 5 nodes. In each node, the following set
of operations are applied:

h(x) = f(wTx + b)

= f(w1x1 + w2x2 + w3x3 + b)
(2.40)

where f(x) is an activation function of choice. Activation functions are a key step in the
neuron computation - without activations, the learning process would essentially become
linear regression. The activation function introduces non-linearity to the model, allowing it
to perform more complex tasks. Some common activation functions are visualized below.

Figure 2.7: Common activation functions used in ML models

The choice of an activation function depends on the problem of interest. For instance,
if given a problem where negative values are unphysical, the ReLU (rectified linear unit)
function would be suitable as it zeros out negative values (see Figure 2.7).

Figure 2.6 is a simple example of a one-layer neural network chosen just to exemplify
layer operations. In practice, most neural networks are generated with several layers, and
hence, further break down the problem into a hierarchy of representations through deep
learning.

Learning parameters in neural networks

The process of learning in a neural network simply refers to the continuous adjustment of
the NNs parameters through multiple forward passes until a desired error is reached. This
cycle is commonly referred to as an epoch. The error is computed by a loss function, which
measures the difference between the NNs prediction and the target output for a given
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data sample. As such, every input data sample must be provided with a corresponding
target value in supervised learning. Unsupervised learning refers to learning without target
values, such as in dimensionality reduction or clustering algorithms.

The objective of training is to find the most optimal weights and biases (which corre-
spond to a minimal loss). In order to fully understand how neural networks are trained,
it is crucial to understand how the parameters of a neural network are updated during
training. This happens through backpropagation.

Backpropagation aims to minimize the loss function by updating the NNs parameters
using gradient descent. The power of gradient descent stems from a widely used concept
in calculus - gradients. To determine the amount that the model parameters should be
adjusted by, the gradient of the error is computed. Backpropagation refers to the backwards
propagation of error - where the gradient of the error is traced back to all its dependant
variables in the neural network.

Figure 2.8: Backpropagation. Once the data, x, goes through a full forward pass, the error is
computed and backpropagated through the NN. f(x) is the activation function.

To illustrate the concept of backpropagation, the gradients of the neural network in
Figure 2.8 will be computed in terms of the adjustable neural network parameters. In
supervised learning, the error is computed by comparing the NN output with a target
value through a loss function. Although the NN parameters are not direct inputs of the
error/loss function, the chain rule in calculus allows us to express the gradient of the error
in terms of the NN weights and biases. For example, the gradient of parameter w1 in
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Figure 2.8 is computed as follows:

∂E

∂w1

=
∂E

∂ypred

∂ypred
∂h3

∂h3

∂h1

∂h1

∂w1

(2.41)

Optimization

Optimization algorithms use the gradient information to iteratively update NN parameters
and hence improve the accuracy of the ML model. To exemplify this, consider a common
optimization algorithm used in ML, Stochastic Gradient Descent (SGD). The objective of
SGD, like all optimization algorithms, is to minimize the loss function by updating the
decision variables, which in this case, are the NN parameters.

The above section described how the gradients of the loss are computed with respect to
the NN parameters. The SGD algorithm uses these gradients, along with a learning rate,
to update the NN weights and biases so that the next prediction lands as close as possible
to the minimal loss. The SGD algorithm follows the direction of the fastest decrease of the
loss function, or, towards the negative gradient of the loss function. The parameters are
updated at every iteration as follows:

wi ← wi−1 − η
∂E

∂w
(2.42)

where η is the learning rate and ∂
∂w

E can be obtained from the chain rule for a multi-layer
NN, see Equation 2.41.

Figure 2.9 shows gradient descent being applied with a loss function, E(w), on one
parameter, w. The figure depicts an ideal learning rate - if the learning rate is too high,
it can overshoot the minimum, and if it is too low, reaching convergence will be time
consuming.

2.4.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are NNs that contain at least one convolution
layer. CNNs are a deep learning technique developed mainly to tackle image classification
problems, finding a wide range of applications from self-driving cars and facial recognition
to image segmentation [10, 49].

The term convolution stems from the mathematical definition of convolution. A con-
volution is an operation on two functions, f and g, that produces a third function f ∗ g
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Figure 2.9: Visual of the loss function, E(w), with respect to the adjustable parameter w. At
each iteration, i, w is updated and the loss is reduced.

which represents the correlation between the two. A convolution between discrete two-
dimensional matrices, f and g, can be expressed as follows:

y[i, j] = f ∗ g =
∑
n

∑
m

f [n,m]g[i− n, j −m] (2.43)

The input, f , can represent an image or uniform spatial grid, and g is the kernel. Here,
(i, j) are the indices of the input while (n,m) are the indices of the kernel. The kernel
is “flipped” relative to the input, in the sense that as the index to the input increases,
the index to the kernel decreases. Due to this, convolution is commutative, meaning that
(f ∗ g) = (g ∗ f). Hence, swapping the order of the input and kernel in a convolution
operation does not change the output. While the commutative property is nice-to-have
for mathematical proofs, it provides no physical significance. As such, in machine learning
libraries, convolution is implemented without flipping the kernel, as defined in the equation
below. Mathmatically, this is referred to as cross-correlation.
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y[i, j] = f ∗ g =
∑
n

∑
m

f [n,m]g[i + n, j + m] (2.44)

In a convolutional layer, each grid point in an image or matrix passes through a con-
volution kernel. In machine learning context, a convolutional kernel is a smaller matrix
comprised of weights. The sum of the dot-products between the kernel weights and input
pixels at each unique position is found. This is a scalar, and is assigned to a grid point in
the output array. A deconvolution is the transpose of a convolutional layer.

The area the kernel is applied to at a given time is known as the receptive field of the
neuron, and is “shone” like a flashlight across the input. For an n× n input, k× k kernel,
and s× s stride, the resulting output is of dimension:(

n− k

s
+ 1,

n− k

s
+ 1

)
(2.45)

This is depicted in Figure 2.10. Following the convolutional layer, the data is usually
passed to an activation function to introduce non-linearities. This ensures that the model
has more power than simpler linear regression techniques, and that sequential layers can
be stacked effectively.

(a) (b) (c)

=

Figure 2.10: Convolutional layer, where (b) is a 2× 2 kernel applied on a patch of the input (a),
and (c) is the scalar assigned to a corresponding grid point in the output matrix.
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2.4.3 Graph Neural Networks

A graph is a data structure that describes a set of entities and the connections between
them. Many real life data is stored as a graph, such as social networks [32], protein-protein
interactions [61], and even cosmological data [13]. Graph Neural Networks were developed
to effectively apply ML to this data structure. This type of NN employs the same key
computations as traditional NNs but in an architecture suitable for graph data structures.
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Figure 2.11: GraphSAGE to predict a target node a. The neighbouring node features are combined
using an aggregate function, and fed through a small neural network denoted by the orange NN
figure. A search depth equal to 2 is depicted in this figure.

A graph consists of edges and nodes. Nodes store information while edges describe the
connectivity between different nodes. For example, a graph can be a spatial mesh, where
the nodes represent a point in space and the edges represent the distance between these
points. The edges might be directed based on directional dependencies, but for the scope
of this work, an undirected spatial mesh will be used to exemplify the application of graph
NNs.

A Graph Neural Network architecture developed by Hamilton, W. et. al., named
GraphSAGE [20], is popular choice for the application of ML on graphs. This is due
to its inductive learning approach, which allows generalization of unseen nodes, eliminat-
ing the need to provide a global structure of the graph during training and prediction.
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GraphSAGE generates node embeddings through sampling and aggregating features from
a nodes local neighborhood [20]. Instead of training a unique embedding vector for every
single node, a set of aggregator functions are trained to learn feature information from a
node’s local neighbourhood. The aggregator function combines information from nodes at
varying search depths relative to the target node. These search depths are denoted as k in
Figure 2.11. The mean operator is the chosen aggregator function in Figure 2.11. During
inference, the trained model is able to produce embeddings for new nodes by applying
these learned aggregation functions.

Graph Convolutional Networks (GCNs) [25] developed by Kipf & Welling in 2017 also
learn feature embeddings by analyzing neighbouring nodes. GCN are inspired by tradi-
tional CNNs, except now the convolution is a graph convolution which aggregates features
from a local neighbourhood.
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Chapter 3

Literature Review

The past decade has revealed vast advancements in the field of Machine Learning (ML),
particularly in natural language processing and computer vision. The most important
applications of ML employ deep learning, a subset of ML that uses neural networks with
multiple hidden layers [21, 53]. Deep learning achieves great success by representing a prob-
lem in a hierarchical manner, with each concept defined in relation to a simpler concept,
and further building on these simple representations to learn more abstract ones [17]. This
concept is not new in fluid dynamics - methods such as Reduced Order Modelling focus
on representing complex dynamics in terms of a simplified model with dominant terms to
reduce the computational cost. Considering the volumes of data available from both exper-
iments and simulations, an interest sparked in the field of deep learning for computational
fluid dynamics, and many applications have been developed since [5, 43, 6, 62, 27, 60].

The potential of deep learning to improve fluid dynamics has been demonstrated in a
broad range of topics, including measurement techniques in experiments [55] and control
strategies for drag reduction [19]. To match the focus of this work, this review will be
limited to recent progress in the field which seek to accelerate computational fluid dynamics
simulations. Recent work can be grouped into solver accelerators or model replacements,
which either combine numerical solvers with ML to provide a computational advantage,
or use ML to learn a surrogate model, respectively. Work can be further distinguished by
the choice of neural network architecture. Additionally, popular neural network structures
with wide reach in fluid dynamics are discussed.
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3.1 ML to infer the solution of a model

3.1.1 Convolutional neural networks

Convolutional neural networks (CNNs) have recently been recognized as a powerful model
architecture for fluid dynamics. The most prominent features that contribute to their
success in the field are (i) parameter sharing, where the same set of weights are used across
the spatial domain in a layer, making an efficient and generalizable model; and (ii) local
kernels which learn spatial patterns across neighboring inputs. This makes CNNs suitable
for large spatial data where neighboring regions are correlated. The shared weights also
allow for shorter training times, and require less training data to reach a target loss. As
such, CNNs are a popular choice for research in deep learning for fluid dynamics.

Theurey, N. et. al. adapted a special UNet encoder-decoder architecture to analyze the
accuracy of deep learning models for Reynolds Averaged Navier-Stokes (RANS) simulations
of 2D airfoils [50]. The input data consisted of a mask of the domain, and the output was
converged velocity and pressure profiles obtained from running a RANS simulation in
OpenFOAM with a Spalart-Allmaras turbulence model [59]. Although the simulations were
run on an unstructured mesh, the OpenFOAM field data was projected to a uniform grid
of size (128 × 128) to make it a suitable input size for the CNN. The performance was
measured by the L1 loss for several test cases of unseen geometries, which was commonly
less than 3%. Additional analysis was performed on model sizing. By increasing the model
size from 122k parameters to 30.9m parameters, the loss decreased from 6.3 × 10−3 to
3.3× 10−3, and the flow patterns are captured more sharply (see Figure 7 in [50]). Similar
architectures have been applied to other case studies, such as unsteady RANS in vertical
axis turbines [12].

More recently, a different type of encoder-decoder, called Variational Autoencoder
(VAE), was used to determine the steady flow fields across supercritical airfoils [57]. A
Variational Autoencoder (VAE) consists of an encoder (which reduces the data into a latent
space through sequential layers) and decoder (which decodes this latent space back into its
original data size through sequential layers). The encoder determines the latent variables z
from the input data x by a learned distribution P (z|x); and the decoder generates similar
data x’ by sampling from this learned distribution P (z). In [57], the latent space has an
additional neural network which is trained to learn a mapping between the airfoil shape
to the high level features of the steady flow fields. This mapping allows the solution to be
predicted given only the airfoil shape, drastically reducing the pre-processing time required
before model inference.
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Another popular use of CNNs is for super resolution [11]. This is extremely useful in
fluid dynamics, where high-resolution (HR) information of flow fields are less accessible
due to limited computational or experimental resources [14]. In turbulence modelling, for
example, the smallest spatiotemporal scales must be resolved in order to achieve accurate
results.

Figure 3.1: Results from SURFNet [37] ©
[2021] IEEE. The framework outperforms the
sole use of a coarse model, while still having the
majority of the training data to be coarse, reduc-
ing the dataset collection time.

SURFNet [37] is a super-resolution flow
network for turbulence modelling that uses
incremental transfer learning to resolve flow
information at fine scales. A coarse model
is trained on a relatively inexpensive set of
low-resolution data, with each array of size
64 × 256, for 10 geometries and 9 varia-
tions of each geometry. The learned feature
maps from the coarse model are transferred
to higher resolution models, incrementally,
up to a resolution of size 2048×2048, as de-
picted in Figure 3.1. With transfer learning,
as the model incrementally increased in size,
fewer data was required to achieve accu-
rate results. The highest resolution model,
2048×2048, only required one additional ge-
ometry for training. This reduced the data
collection and training time by 3.6× and
10.2×, respectively. As such, transfer learn-
ing is a promising approach to train large
machine learning models for prediction on
fine grids.

3.1.2 Graph neural networks

The main drawback of CNNs is their need for structured data - i.e., regular Euclidean
data like pixels in an 2D image. Traditional convolutional kernels operate on structured
data, without capturing possible varying spatial information between nodes. In most fluid
simulations however, information is stored in an unstructured mesh that represents the
discretized physical space of an arbitrary geometry. Therefore, to capture the dynamics
of a realistic industrial or environmental setting, the data for the model should be stored
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in an appropriate data structure. In machine learning, this can be accomplished by using
new architectures designed for non-Euclidean data, specifically, graph neural networks.

Extending deep neural networks to non-euclidean data is an emerging research area
called geometric deep learning [4]. Under this field, graph neural networks (GNNs) have
received enormous attention, and their ideas have been applied to several deep learning in
CFD applications [9].

In [41], a data-driven framework based on a graph convolutional network (GCN) is
developed to predict fluid dynamics on a non-uniform mesh. This method is validated on
a few cases of internal flow, achieving an acceptable accuracy with a three-order speedup
compared to numerical methods.

3.1.3 Physics-informed neural networks

Physics-informed machine learning integrates domain knowledge directly into machine
learning algorithms, ensuring physical consistency in the model output. This idea was
first established by M. Raissi et al. [43] in 2019. To demonstrate this concept, they consid-
ered the following non-linear partial differential equation (Burgers equation) [30] describing
a field u:

∂u

∂t
+ u

∂u

∂x
− 0.01

π

∂2u

∂x2
= 0 (3.1)

The field, u(x, t), is predicted using a neural network, G(x, t), that takes a point in
space (x) and time (t) and returns the value of the field, u, at that point. Now consider
a corresponding neural network, f(x, t), defined as the left hand side of Equation 3.1.
This neural network also takes x and t as input parameters, computes u from G(x, t), and
then computes the gradients of u with respect to x and t to formulate equation 3.1. This
creates shared parameters between the two networks, f(x, t) and G(x, t), and a coupled
loss is computed [43]:
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u, u

i) =
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Nf
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|f(tif , x
i
f )|2 +

1
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Nu∑
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|G(tiu, x
i
u)− ui|2 (3.2)

In equation 3.2, {tiu, xi
u, u

i} are points sampled from the initial time and boundaries of
the domain, which are already known. On the other hand, {tif , xi

f} are sampled collocation
points inside the domain, used to train f(x, t). The results of this method can visualized
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in Figure A.6. of [43], where it is evident that the physics-informed neural network method
produces very accurate results.

Physics-Informed Neural Networks (PINNs) received a tremendous reaction from the
computational fluid dynamics community due to their computational advantages and phys-
ically consistent results. Buaria et. al. developed deep PINNs to resolve small-scale dy-
namics of fluid turbulence [7], and Nath, K. et. al [36] used PINNs to predict gas flow
dynamics in diesel engines. These are just a few examples of the many of applications of
PINNs developed in the last few years [24].

3.2 ML for the development of hybrid solvers

Figure 3.2: Summary of results from [26]. The
framework was tested on Re = 100000 Large
Eddy Simulations using up to an 8 × coarser
grid with a 40-fold speedup.

Despite the vast amount of research in this
area, development is needed for deep learn-
ing strategies within multiphysics solvers
to prove useful to engineers. Multiphysics
solvers like OpenFOAM [59] and NGSolve [47]
have a large user base due to their precise
and physically consistent results. As such,
efforts have been directed to benefit from
the two techniques by combining both the
speed of deep learning and the precision of
traditional solvers.

A recent trend in hybrid techniques is
to partially replace the physics solver with
a NN to improve performance. The re-
placed components can either be ones most
affected by discretization loss [26] or the
most computationally expensive steps in the
numerical algorithm [51, 2]. Kochkov, D.
et. al [26] aimed to accelerate the com-
putation of Direct Numerical Simulations
(DNS) of turbulent flows without compro-
mising on accuracy or stability. In DNS, re-
solving the smallest spatiotemporal features
required for accuracy implies a computational scaling of Re3. To alleviate this cost, this
work developed a hybrid NN-physics solver that can resolve turbulent flows on an order
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of magnitude coarser grid than usually required for the same accuracy and stability. This
was accomplished by using a NN to replace components of the algorithm most effected by
resolution loss, which, in this case, was the computation of convective flux Φ. The explicit
timestepping and pressure projection were then computed with traditional methods. The
NN and numerical method were written in the JAX framework to support reverse-mode
automatic differentiation, allowing for the optimization of the entire algorithm. To summa-
rize, this end-to-end process showed computational speedup with accuracy and stability,
while also obeying all physical laws by solving the turbulence equations on coarser grids
(see Figure 3.2).

Another approach to hybridize NN and physics solvers to improve performance is to
replace the most computationally expensive step of the solver by a neural network. One
solution method for incompressible Navier-Stokes equations involves computing a pressure
projection. This involves resolving the Poisson equation to correct the velocity field. The
Poisson equation is written in matrix form as a large sparse linear system Apt = bApt = bApt = b, where pt
is the unknown pressure field, A is the discrete matrix for the Poisson operator, and b is the
source term proportional to the divergence of the velocity field. Due to the large number
of free parameters, several iterations are required to obtain a relatively small residual,
resulting in a computational burden.

The use of data-driven methods to accelerate the pressure projection step was pioneered
by Tompson et. al. [51] in 2016. They solved the Navier-Stokes equations for an inviscid
fluid using the euler equations, where advection was computed traditionally and a CNN was
used to infer pt, the unknown pressure field. The training of the CNN was unsupervised, as
the divergence of the updated velocity field was directly minimized with the loss function:

loss =
∑

wi{∇ · (ut+1 −
1

ρ
∇pt)}2 (3.3)

The performance of the model was tested on plume simulations against a Jacobi iterative
method, and similar results were achieved. Although the results were visually impressive,
there was a lack of analysis on the accuracy.

Ajuria-Illaramendi et. al. extended Tompsons work with accuracy as the main ob-
jective [2]. Using the same CNN architecture, they performed a more rigorous testing
phase by increasing the Richardson number: a dimensionless number corresponding to the
ratio of buoyant forces to momentum-driven forces. It was found that as the Richard-
son number increased, the NN based method produced significantly less accurate results
than the Jacobi method. As such, they developed a combined CNN-Jacobi method for
the pressure projection step, where, if the corrected velocity divergence is higher than a
certain threshold, the Jacobi method is used instead. Building on this idea, Weymouth, G.
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[60] developed a CNN smoother for the geometric multigrid (GMG) method, minimizing
the velocity-divergence over the recursive GMG procedure, achieving 2 to 3-fold speedup
compared to standard GMG methods.

Another method for hybrid neural networks was recently introduced by Jeon, J. et al.
who developed a framework for ML–CFD cross-coupling computation with OpenFOAM, an
open-source finite volume method solver for CMP. CFD calculations are performed with
OpenFOAM on an initial time series, and if a desired tolerance is reached, the next time series
is predicted with a neural network [23]. Otherwise, the next time series is calculated with
CFD. This process is repeated over a period of time, and the neural network parameters
are continuously updated with the latest time-series results. This framework was found to
stabilize the residual over extended periods of time, and provided a 1.8× speed-up for a
laminar flow case.

CFDNet [38] is a cross-coupled physics-solver-NN framework that accelerates the con-
vergence of RANS simulations. CFDNet is designed to predict three main physical prop-
erties of the fluid: the velocity, pressure, and eddy viscosity. This is accomplished by
training the CNN on a variety of use cases with immersed geometries in a two-dimensional
domain. A key component that distinguishes CFDNet from a simple CNN is that the CNN
prediction is fed back into OpenFOAM to refine the solution and ensure it meets the same
residual constraints as a physics solver, as depicted in Figure 3.3. This ensures that the
final output of CFDNet is consistent with traditional physics solvers by obeying physical
laws, which is an important criteria for scientists and engineers. To test CFDNet, the
process is evaluated on cases that were not trained on - specifically, immersed cylinders,
airfoils, and ellipses of different aspect ratios; as well as wall-bounded channel flows. It
was found that, by using a CNN and refining the prediction with the OpenFOAM solver, the
same residual tolerances are met in a fraction of the time. CFDNet achieved 1.9 − 7.4×
speedups on steady laminar and turbulent RANS flows, as depicted in Figure 3.4.
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Figure 3.3: The architecture of the CFDNet framework [38].

Figure 3.4: CFDNet speedup results for various benchmark problems in both laminar and turbu-
lent flow regimes [38].
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Chapter 4

Research Methods

This chapter contains the methods used to implement the results of this thesis. First,
the computational tools used to solve the incompressible navier stokes (INS) equations on
a two-dimensional domain are described. The machine learning implementation is then
detailed, and finally, the data generation process is discussed.

4.1 Simulation of Incompressible Navier Stokes

The objective of this work is to accelerate the simulation of INS equations in a two-
dimensional domain for both laminar and turbulent flows. As such, solving the governing
transport equations with numerical methods was the first step of this project. CMP soft-
ware contains the numerical methods required to solve fluid flow problems. In this work,
the CMP software used is OpenFOAM [59], an open source CMP package based on the finite
volume method (FVM).

In order to perform calculations to solve the governing equations of a problem, the
problem must be adequately described with three main components [18]:

1. A computational mesh representing the domain occupied by the fluid

2. Discretized equations and algorithms to calculate the flow fields of interest

3. Boundary and initial conditions for the flow fields
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Geometry creation

The first step was to generate the problem domain. This was accomplished with GMSH [15],
an open source 3D finite element mesh generator. While geometries can be defined directly
in OpenFOAM in the appropriate user files, GMSH provides a more flexible framework better
suited to generate customisable designs.

Figure 4.1 portrays the geometry used for training, a wall-bounded flow with an im-
mersed body. The flow originates from the inlet, depicted by the arrow, and is only present
in the x-dimension.

Figure 4.1: Geometry for training. Walls are depicted by the red and the blue faces are the front
and back, set to empty in OpenFOAM to ensure equations are only solved in the (x,y) dimension
rendering the problem as two-dimensional

Boundary Conditions

Computational Fluid Dynamics problems are defined in terms of initial and boundary
conditions. A table summarizing the boundary conditions used to run the INS simulations
are presented below.
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p u nuTilda nut
inlet freestream 0 freestream (uref , 0, 0) freestream 3νfluid freestream νfluid

outlet freestream 0 zeroGradient 3νfluid freestream νfluid
walls zeroGradient fixedValue (0, 0, 0) fixedValue 0 wallFcn 0

front and back empty empty empty empty

Table 4.1: Boundary conditions in OpenFOAM

The fixedValue condition is a Dirichlet boundary condition where the values of the faces
at the boundary are equal to the value specified, i.e., ϕb = ϕref . The zeroGradient con-
dition sets the normal gradient value to 0, i.e., ∂

∂n
ϕb = 0. The freestream condition is

a hybrid fixedValue and zeroGradient condition - for fluid flowing out of a boundary
face, zeroGradient is applied, otherwise, fixedValue is applied [18]. The wallFcn con-
dition adds a wall constraint to the eddy viscosity for turbulent flows. In this case, the
nutUSpaldingWallFunction from OpenFOAM was used. The empty conditions were applied
to enforce a two-dimensional problem. The value νfluid refers to the viscosity of the fluid,
which was set to 1× 10−5.

4.1.1 SIMPLE algorithm

The SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm is a widely
used iterative procedure for calculating pressure and velocity in steady, incompressible
flows. Patankar and Spalding [8] introduced this algorithm to tackle the difficulties associ-
ated with handling pressure-velocity coupling in transport equations. The key idea behind
the SIMPLE algorithm is to decompose the velocity and pressure solves into two separate
steps [54].

Consider the continuity 2.4 and momentum 2.14 equations defined in Chapter 2. Since
SIMPLE is most commonly applied to steady problems, the transient term of the momen-
tum equation will be set to zero. The term that accounts for external effects, ρg, will be
neglected [42]. Hence, the equations can be reformulated as:

∇ · v = 0 (4.1)

v · ∇v −∇ · (ν∇v) = −∇p (4.2)
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In Equation 4.2, p is the kinematic pressure (P
ρ

) and ν is the kinematic viscosity (µ
ρ
).

Just as in Equation 2.14, v is the velocity field in (x, y, z). Hence, when expanded in
Cartesian notation, 4.2 becomes three separate equations for three unknowns (vx, vy, vz).
The convection term in 4.2 is non-linear, introducing more difficulty when attempting to
solve the system of equations. On top of this, the computed velocity field must satisfy the
continuity equation.

Given a problem on an arbitrary domain, the above equations can be re-written into
matrix form, where M is a matrix storing known coefficients that result from discretization
with the FVM:

Mv = −∇p (4.3)

The coefficient matrix is then reformulated into diagonal (A) and off-diagonal (H)
terms. Hence, the matrix form of the discretized momentum equation is:

Av −H = −∇p (4.4)

This can be rearranged for v and substituted into the continuity equation to obtain a
Poisson equation for pressure. Putting this together, the multi-step solution procedure for
the SIMPLE algorithm can be visualized in Figure 4.2:

(a)

(b)

(c)

(d)

Figure 4.2: Iterative SIMPLE algorithm. Given an initial guess for pressure in (a), a velocity
field is calculated. The velocity is split into diagonal and non-diagonal terms in (b), to solve
for a corrected pressure in (c) which satasfies the continuity equation. This corrected pressure is
applied to (d) to correct the velocity. A residual is computed comparing the two sides of (a), and
the procedure is iteratively repeated until convergence is reached.
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The steps of the SIMPLE algorithm are summarized below:

1. Solve the momentum equation (a) with an initial guess for the pressure to obtain a
velocity field.

2. Given this velocity field, solve the Poisson equation (c) for a corrected pressure field.

3. Correct the velocity field with this new pressure field through (d), now the velocity
satisfies the continuity equation.

4. Compute residual, if greater than desired value, repeat the process to compute the
next iteration (see arrow in Figure 4.2).

4.1.2 Spalart-Allmaras Turbulence Model

In Reynolds-Averaged Navier Stokes turbulence models, an additional term is needed to
close the momentum equations. Closing the momentum equation refers to approximating
the Reynolds stresses (see Equation 2.22) in terms of the mean velocity components. One
way that this is accomplished is through eddy viscosity models. This idea was proposed by
Boussinesq back in 1877 [46], who stated that the momentum transfer caused by turbulent
fluctuations can be modelled with the eddy viscosity, νt, through the following relationship
(in a two-dimensional domain):

u′v′ = νt

(
∂U

∂y
+

∂V

∂x

)
(4.5)

where u and v are the x and y components of velocity, respectively. u′ denotes the fluctu-
ating component while U denotes the mean component. The Spalart-Allmaras turbulence
model contains one additional equation, which is the transport equation of the modified
eddy viscosity, ν̃t. This is approximated by computing ν̃t as a quartic function in the vis-
cous sublayer. In this work, the Spalart-Allmaras model was used as the turbulence model
to remain consistent with the procedure outlined in CFDNet [38].

Consider Figure 4.3. The behaviour of the turbulent viscosity changes drastically in
regions close to the wall. In the viscous sublayer (y+ < 5), depicted by the red dashed line,
the profile is described by a quartic function. To resolve this region numerically, the mesh
has to be extremely fine considering fields must vary smoothly on the mesh.
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Figure 4.3: Figure from [31] demonstrating how the turbulent viscosity behaves close to a wall.
In the viscous sublayer, and varies with (y+)4 where y+ is a dimensionless wall unit describing
the distance from the wall.

To overcome this, a new variable is introduced, ν̃t, which is a function of the turbulent
kinematic viscosity νt. In the viscous sublayer region, νt is formulated as:

νt = ν̃tfv1 (4.6)

where fv1 is a cubic function. This accounts for the quartic profile near the wall, and
the goal is to determine a ν̃t that is identical to νt. As such, in the Spalart-Allmaras model,
only one additional equation - the transport equation of ν̃t - is needed to close the RANS
turbulence equations. This transport equation is provided below 4.7 [38]. Cb1, Cb2, Cw1, σ
are constants obtained experimentally. S̃ and ft2 are model-specific terms.
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4.2 Neural Network Creation

The machine learning algorithms used in this work were developed with Pytorch [40],
an open-source machine learning framework based on the Python programming language.
Along with Tensorflow and Keras, Pytorch is a popular platform for deep learning research.
Its popularity stems from its balance of both speed and usability: it provides structure
that makes models, data processors, and optimizers easy to build, while still providing
flexibility in its implementation to accelerate performance.

The machine learning implementation was inspired by CFDNet [38], and hence, a sim-
ilar encoder-decoder neural network architecture was developed in this work. In this con-
text, encoder refers to a series of convolutional operations while a decoder is a series of
transposed convolutional operations which occur after the encoder.

A Pytorch convolutional layer is defined in the Conv2d method, as depicted in List-
ing 4.1 below. The in channels are the number of channels coming into the layer. For
instance, in the first layer of the model, the number of channels can either be 4 for the
turbulent network (ux, uy, p, ν̃) or 3 for the laminar network (ux, uy, p). The out channels

is the number of channels coming out of the convolutional layer. To effectively capture fea-
ture information, the out channels should always be large compared to the in channels.

1 import torch

2 # Initialize 1 random 3-channel tensor of size (64, 256)

3

4 input = torch.rand(1, 3, 64, 256)

5 conv_layer = torch.nn.Conv2d(3, 32, (2,8), (2,8))

6 output_encoder = conv_layer(input)

7

8 # View output size after encoder convolution kernel and stride

9 >>> output_encoder.shape

10 torch.Size([1, 32, 32, 32])

11
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12 # Now , apply transpose convolution to decode the output back into its

original shape

13 deconv_layer = torch.nn.ConvTranspose2d (32, 3, (2,8), (2,8))

14 output_decoder = deconv_layer(output_encoder)

15

16 >>> output_decoder.shape

17 torch.Size([1, 3, 64, 256])

Listing 4.1: Example of single layer encoder-decoder operations in pytorch

The optimizer used to update the neural network parameters in this work was RM-
SProp. This was initially chosen to stay consistent with the results of CFDNet. However,
when other optimizers were explored further on in this work, RMSProp always provided
the best performance. As such, the RMSProp optimizer was used in all sections of this
work. RMSProp avoids computing very large or very small gradients, ensuring stable
results during training.

RMSprop accomplishes this by normalizing the gradient using a moving average of
squared gradients. This normalization decreases the step size for large gradients and in-
creases the step size for vanishing gradients. RMSProp essentially treats the learning rate
as an adjustable hyperparameter rather than a fixed value, allowing convergence to be
reached faster.

RMSProp updates the neural network parameters w with the following set of operations:

gi+1 ← α · gi + (1− α)(∇wE(w))2 (4.8)

wi+1 ← wi − η
∇wE√
gi+1 + ϵ

(4.9)

where α is a decay rate, η is the learning rate, and ∇wE(w) is the gradient of the loss
function with respect to the weight of interest, w. Pytorch sets a default value for α equal
to 0.99. In this work, the default value was used for alpha.

4.3 Data generation

In order to train the network, the simulation data had to be structured in a tensor format
suitable for a Pytorch model. When handling information stored in meshes, this can be
accomplished in two ways:
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1. For an unstructured mesh, the data must be projected to a uniform grid. This is
accomplished using a built-in OpenFOAM interpolation function, probes, that returns
an interpolated value for the field of interest given any point on the domain.

2. If the grid is structured but not uniform, interpolation methods are not necessarily
needed, instead the information can be stored in a spatially consistent manner.

Both of these processes involve common steps for setting up the simulation:

1. Develop mesh in GMSH for case study

2. Run the simpleFoam solver for the case study, with the following criteria:

(a) Set a Reynolds number equal to 30 for the laminar problems or 6× 105 for the
turbulent problems by specifying an appropriate uref value

(b) Set a low tolerance of 1× 10−5

(c) Obtain (u, v, p, ν̃) fields

Interpolation

Once all the cases have run, the training data is ready to be processed. The training data
is generated as follows:

1. Given the desired number of uniform axial points and uniform vertical points, gen-
erate (n,m) points based on the OpenFOAM geometry case dimensions

2. Generate numpy arrays for training given these uniformly sampled values

3. Automatically determine uref from OpenFOAM files, and non-dimensionalize the field
values with the following equations: u = u

uref
, p = p

u2
ref

The resulting training data is a numpy tensor of shape [K,C,N,M ], where K is the total
number of iterations to reach convergence, C is the number of distinct flow parameters,
and (N,M) is the size of the two-dimensional domain. See Figure 4.4 for a visualization of
the training data tensor. In this work, all cases are structured as a 2D grid of dimension
64× 256.
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Figure 4.4: Figure visualizing the training data tensor size. For a simulation that takes k itera-
tions to converge, with each iteration stored in a grid of size (N,M), with C channels (4 in this
case) the overall tensor size for pytorch would be [K,C,N,M ]. (a) is an input tensor while (b)
is the target tensor.
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Chapter 5

Results

5.1 Validation of CFDNet

The motivation of this project is to accelerate current computational fluid dynamics meth-
ods with the help of machine learning. After exploring literature on the topic, the validation
of a CFDNet [38] - mentioned in Chapter 3 and again summarized below - was chosen as
a starting point.

In engineering design, validation plays a key role in the development and evaluation
of new methods [3]. As such, the first phase of this project consisted of the validation of
results from CFDNet.

Summary of CFDNet

The goal of CFDNet is to overcome key limitations of other work in the field of ML in
Computational Fluid Dynamics. Firstly, DL is commonly used to predict converged flow
fields as an end-to-end surrogate without explicitly adding conservation laws [57, 50]. This
means that the output does not necessarily meet the constraints of traditional physics-based
solving algorithms, which is an important criteria for scientists and engineers. Secondly,
most work in the field only provide information on a subset of flow variables rather than
all that are present in the problem, which paints an incomplete solution [50, 48]. Lastly,
a majority of approaches lack generalization abilities, usually focusing on one type of
geometry or flow case. CFDNet tackles these challenges by developing an end-to-end
framework that leverages both DL and traditional physics solvers to accelerate Reynolds-
Averaged Navier Stokes problems on different domains.
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Case studies

The following case studies were chosen to train the CFDNet framework and to validate their
findings. These are common benchmark problems in engineering, with relevant applications
in industry and research. As such, the datasets and models used for this work - both in the
validation section and beyond - were generated with these case studies as an inspiration.

Wall-bounded flows

The first case study in CFDNet is wall-bounded, two-dimensional turbulent flows. Many
efforts have been dedicated to this case, as confined geometries like pipes and channels are
common in industry and thoroughly studied in the design phase. Simulations are particu-
larily important when studying turbulence in these geometries, as obtaining experimental
measurements can be challenging in wall-bounded designs. The physical effects of the wall
and the limitations it presents on the implementation of sensing technologies causes some
of these challenges.

As such, one application of CFDNet is to accelerate the exploration of the design
space for different Reynolds (Re) numbers in wall-bounded flows. For the scope of this
study, models were only developed for wall-bounded flow around immersed bodies in both
laminar and turbulent regimes. This is because flow around immersed bodies captures the
challenges of wall-bounded flows described above, while adding a layer of complexity by
introducing an immersed body.

Flow around immersed geometry

The study of flow around solid bodies is an extensive field of research due to its broad uses in
engineering; such as for determining the best structure for a bridge [33], or designing high-
performance vehicles [39]. In aerodynamics, for instance, knowledge on the flow behaviour
such as drag and lift around wings helps engineers optimize the shape and surface contours
of vehicles, improving fuel efficiency, maneuverability, and enhancing overall performance.
This makes the study of flow around geometries a good candidate for the application of
ML.

Since the flow around solid bodies is an important research problem, CFDNet is applied
to flows around geometries in both laminar and turbulent flow regimes. Two training sets
were generated for this case study:
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1. Laminar flow around solid bodies with constant Re = 30

2. Turbulent flow around solid bodies with constant Re = 6× 105

The training sets consist of six different ellipses as shown in Figure 5.1. The different
ellipses are obtained by changing the aspect ratio (the ratio of the vertical to the horizontal
semi-axis length) from 0.1 to 0.7. The geometries were generated and meshed using GMSH.
See Chapter 4 for further explanation on the data generation process.

b
a

Figure 5.1: Use cases for training, as inspired by [38]. The aspect ratio, a
b , varies from 0.1 to

0.7.

Simulation details

The training dataset is generated by solving the Reynolds-Averaged Navier Stokes equa-
tions until steady state with the SIMPLE algorithm in OpenFOAM [59]. For the turbulent
case studies, the Spalart-Allmaras one equation turbulence model was used. Since the
Spallart-Allmaras model is a RANS model, a steady state is reached by computing the
time-averaged flow components. As such, the converged solution in the turbulent flow
cases is the steady solution.

Residual details The simulations are run until steady state, which, in this case, means
reaching a residual value of 1×10−6 and 1×10−4 for the velocity and pressure, respectively,
and 1× 10−5 for the modified eddy viscosity.

Turbulence Properties The discrete form of the transport equations are numerically
solved on a structured grid with appropriate boundary conditions. The discretization
scheme for the gradient terms of the equations are computed using a second-order, least-
squares interpolation method using neighbouring cells. The gradient schemes specify the
handling of the gradient terms of the equation. For the convection and the modified
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turbulent viscosity terms, an unbounded, second-order, upwind-biased scheme is used [38].
The diffusion terms of the transport equations are evaluated with Gaussian integration,
along with a linear interpolation method for calculating viscosity [38].

In order to implement this in an OpenFOAM environment, the fvSchemes file in the
system directory must be modified to reflect the desired residuals and schemes specified
above. Please see Appendix 1 for access to the fvSolution and fvSchemes files used in
this work.

Machine Learning Model

The ML model used in this section of the results - the validation of CFDNet - uses the
same network architecture as CFDNet [38]. This architecture is shown in the figure below.

decoder
encoder

conv1
(2,8)

conv2
(3,4)

conv3
(11, 8)

deconv3
(2, 8)

deconv1
(11, 8)

deconv2
(3, 4)

decoder

Figure 5.2: Machine Learning model used in this work, inspired by [38]. The tuples under each
convolution in the figure state the kernel and stride size at that layer.

The encoder-decoder architecture of the network is suitable for this study, as it allows
the input data to be efficiently represented in a latent space, significantly reducing the
computation time for training and validation. Additionally, a CNN is well-suited for data
on a grid as it captures both local and global spatial patterns. Refer to Section 2.4 for
further details on the ML architecture.

The convolution kernel size for every layer is depicted in Figure 5.2. The stride size is
equal to the kernel size. After the first and last layer of the neural network, the PReLU [22]
activation function is applied. This activation function is chosen over ReLU because it is ex-
pected to have data values that are not exactly between (0, 1) after non-dimensionalization.
Some of the values are below 0 and other values are greater than 1. If ReLU was used,

47



it would zero out the negative values generating inconsistent output results. The internal
layers apply tanh activation functions after every output [38].

Results

In order to validate CFDNet, reproducing their key results was first attempted. The major
claim that CFDNet makes is that their coupled NN-physics-solver framework reduces the
computational time required to simulate 2-dimensional INS problems without compromis-
ing on accuracy. Additionally, they claim that the warm-up phase significantly increases
the overall speed-up to convergence. In this context, warm-up refers to running a few
iterations with the physics solver prior to neural network usage. The input to the neural
network is therefore an intermediate iteration, and not an initialization. In order to en-
sure physically consistent results, the refinement stage is needed. Refinement consists of
running the physics solver until the desired residual is reached with the neural network
prediction as the initialization. Although the NN produces outputs with relatively low
residuals (1 × 10−3 - 1 × 10−2), it takes several OpenFOAM iterations to drop a residual
an order of magnitude. The majority of the compute time is therefore dedicated to the
refinement stage.

Figure 5.3 is grouped by interpolative (subset geometry) and extrapolative (different
geometry) test cases. The left and right groups in these test cases are laminar and turbulent
flow regimes, respectively.
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Figure 5.3: Validation of CFDNets speedup results. (a) is the physics solver only, (b) is the NN
+ refinement without warmup, and (c) is the warmup + NN + refinement. The cyan, pink, and
yellow bars are the times consumed by the physics solver, NN, and warmup, respectively.

Figure 5.4: CFDNet [38] speedup results. (a) is the warmup + NN + refinement, (b) is the NN
+ refinement without warmup, and (c) is the physics solver only.

While the exact speedups were not obtained, it can be concluded that the method
developed follows the same general trends as the results shown by CFDNet. It is clear
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that the majority of compute time is dedicated to the refinement stages, and that warmup
significantly improves the NN output. Additionally, the NN output produces poorer re-
sults for turbulent extrapolative test cases of different geometries when warmup is not
introduced, which is consistent with the findings of CFDNet. Another important aspect
to note is that the initialization process was not described in CFDNet, so it is assumed
that they initialized with zero. However, it is common to initialize the INS equations by
solving their linearized version: the Stokes equations. This provides a suitable initial guess
to the iterative solver, and usually reduces the time to convergence. Hence, it is unknown
whether the same magnitude of speedup in CFDNet would be achieved if the solution to
the Stokes equation was used to initialize instead.

It is clear from Figure 5.3 that inference, which includes data processing times, takes
significantly less computational time than the physics solver. This inspired the idea of
re-using the neural network when possible to further reduce compute time, leading to the
next section of results.

5.2 Recursion

Once a trained model was obtained during the validation phase, the benefit of warm-up
and whether it is necessary was explored. Warm-up provides the neural network with an
intermediate SIMPLE iteration, which is closer to the solution than an initialization, and
this was found to significantly reduce time to convergence [38]. If warm-up is needed to
achieve better neural network output results, then a closer estimate to the converged result
- which is exactly what the neural network is trained to do - should be leveraged. As such,
the warm-up process can be replaced with a recursive step, further reducing compute time
and data required for inference.

The recursive step works as follows: first, use an initialization as input to the neural
network. In this case, the initialization was zero. Use the prediction from this initialization
again as input to the neural network. This new prediction is the recursive result. While
this process can be repeated numerous times, there was no significant benefit of using
recursion more than once. While testing the performance of this method, it was found
that the prediction obtained from recursion is closer to the converged solution than warm-
up. When evaluating a new geometry (cylinder), the recursive output produced a 1.8x
speed up compared to without recursion, which only provided a 1.3x speed up, as seen in
Figure 5.5.

The results from Figure 5.6 might justify why recursion provides a significant advantage.
It is clear that the velocity magnitude prediction is more accurate around the boundary
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Figure 5.5: Recursion to replace warmup. The figure represents the time to convergence for (a)
the physics solver alone, (b) the CFDNet framework without warmup, (c) the CFDNet framework
with wamrup, and (d) recursion instead of warmup.

layer for the recursive output compared to the output without recursion. Due to the no-slip
condition and the velocity gradients that arise from it, resolving the flow dynamics around
the boundary layer is computationally challenging. As such, achieving accurate results in
these regions is crucial for reaching convergence.
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(a) (b)

(c) (d)

Figure 5.6: Element-wise difference of Umagnitude for recursion. The top row compares the pre-
diction, without recursion, against the converged result. The bottom row compares the prediction
and converged result after one recursive iteration. The boundary layer regions are closer to the
converged result, as depicted by the low diff values, for the recursive case.
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5.3 Hyperparameter Optimization

Simulation-based design plays an important role in engineering, where simulations are a key
step in verification and evaluation. Simulation-based design aims to eliminate unsuitable
iterations as early as possible in the prototyping phase, before resources are allocated to
build and test potentially poorly performing models [34].

Similarly in machine learning, it is important to optimize model performance and elim-
inate poor model structures early on. This is accomplished by modifying configuration
values referred to as hyperparameters until the model produces satisfactory results. In this
work, the hyperparameters of interest are the layer sizes and learning rate. The goal of
this section is to couple the neural network hyperparameter optimization process with the
simulation-based design process to achieve an optimal model early in the design phase.

This study aims to generate an efficient training process that properly reflects the
engineering design cycle through incremental training [52]. Incremental training continu-
ously updates a trained neural network as new data is discovered over time. This ensures
that the neural network still predicts well for new problems that differ from the problems
originally trained on. As such, rather than curating a dataset before training, this work
simultaneously runs simulations and neural network training. The simulation process in
this work refers to 2-dimensional INS problems with an immersed geometry, with each
design iteration differing by changing the size of the immersed geometry. For instance,
design iteration 1 would be an immersed geometry of ellipse aspect ratio of 0.1, design
iteration 2 would have an ellipse aspect ratio of 0.25, and so on. The hyperparameters of
the model are incrementally optimized to better suit the dataset over time. This means
that at each design iteration, more layers are added to the neural network to better capture
feature information. By doing this, the model incrementally improves and cuts down the
time required to achieve minimal loss.

The general process is as follows:

1. A dataset is generated for one design iteration with OpenFOAM. Given initial hyper-
parameters, a neural network is trained to start with.

2. The next design iteration uses this optimal neural network through a CFDNet pro-
cess: OpenFOAM for warm-up→ NN→ OpenFOAM for refinement. The next dataset is
generated from this process.

3. The simulation results from this design iteration are added to the existing dataset.
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4. The neural network parameters are initialized with the weights from the previously
obtained optimal neural network, and new layers are added on top of this while
adjusting the learning rate. The neural network is trained with these new hyperpa-
rameters and the extended dataset.

5. Steps 2-4 are repeated for the remaining design iterations.

O
pe
nF
O
AM

a b

c

b

Figure 5.7: Hyperparameter Optimization setup. Step (a) is training the model with the current

dataset. In step (b), new design iterations use the state of the trained model, and the output is fed

into OpenFOAM for refinement. In step (c), the input and OpenFOAM refinement output is used

to generate a dataset, which is added to the existing dataset. Additionally, the hyperparameters

are optimized and step (a) is run again.
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Figure 5.8: Hyperparameter Optimization flow chart description of each step. The dotted lines

represent the processes which are continuously updating.
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Figure 5.9: Incremental training results. The first two rows show the NN output of an early
design iteration, and the last two rows show the last design training result. (a) is the input to the
neural network, (b) is the neural network output, and (c) is the output after refinement.
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The incremental training with hyperparameter optimization process proved successful
when evaluating on nine design cases of immersed ellipses with aspect ratios ranging from
0.1 to 0.8, as depicted in Figure 5.9. In the initial training cases, the speed-up relative to
solely running OpenFOAM was around 1.3x. By the time the model has reached the last
design iteration, the speed-up reached 2.6x, as depicted in Figure 5.10. The speed-ups
steadily increased as the model was provided more data from the different design cases.

Figure 5.10: Incremental training results. The x-axis represents increasing design iterations, and
the y-axis represents the compute time of obtaining the converged results.

5.4 Implementation of an end-to-end framework

In addition to exploring methods to enhance the efficiency of CFDNets process, a primary
goal of this work was to establish a practical framework that can be readily used by
researchers and engineers.

This work provides a user-centered framework which merges ML models and their
training with physics solvers. Currently, this framework is usable with the opensource
FVM solver, OpenFOAM [59], and also has some functionality implemented for use with
opensource Finite Element Method solver, OpenCMP [35].
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The use of this framework is housed in the user configuration files. Two main user
configuration files are specified, config train and config, the first to specify training
configurations, and the latter to run the framework once the user is satisfied with the
trained model. Example files are provided in Appendix 2.

The framework contains a few key features:

• Data processing: The framework automatically generates tensors in an appropriate
structure required for the neural network training. The user specifies the desired data
size and whether interpolation is to be used to generate this data.

• Training: The user can train regularly or with hyperparameter optimization. With
the user configuration files, a range to sample hyperparameter values from can be
specified. For instance, if optimizing by increasing the layer sizes after every iteration,
the user can specify the desired layer size to sample from, i.e., layer 1 = [128,256].

• Recursion: Once a trained model is obtained, the user can use this model recursively
by specifying the number of desired recursions.

• Warmup: The user can use the physics solver before input to the neural network
model by specifying a high residual to run the simulation up until.

• Refinement: Functionality is provided to go back into OpenFOAM for refinement up
to a low residual as specified by the user.

Please refer to Appendix 1 for details on the user configuration files and on how to run
the framework. These configuration files are subject to change if additional functionality
is implemented over time.

Figure 5.11 shows the results of running the framework with warm-up for an unseen
geometry.
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Figure 5.11: Results for an unseen geometry in the coupled physics solver and NN framework.
(a) is the input to the NN, (b) is the NN output, and (c) is the output after refinement. For a
completely unseen geometry, a speedup of 1.3x was obtained.
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Chapter 6

Conclusions & Future Work

This work focused on the development of a coupled machine learning (ML) and physics
solver framework to reduce the time to convergence of computational fluid dynamics (CFD)
simulations governed by the incompressible Navier Stokes equations. Despite considerable
progress in the field of ML-accelerated CFD, there remains work to be done for its practical
application in engineering design. As such, the main objective of this work was the devel-
opment of ML-accelerated CFD methods that are compatible with an engineering design
process.

The first section of this work was the validation of similar research in the field - CFDNet
[38]. It was found that the simulation speed-ups followed the same relative pattern as the
results presented in CFDNet. After obtaining a suitable model from the validation of CFD-
Net, more extensions were implemented. Firstly, the neural network was used recursively
to further reduce time to convergence. Additionally, an incremental training method that is
compatible with the engineering design process was developed. The adaptation of CFDNet
along with these new methods were implemented in a user-friendly framework which joins
the machine learning implementation with the physics solver through a common interface.

The results of this thesis can be summarized into the main points below:

• Model validation of similar research in the field. This was accomplished by
the development and evaluation of a framework inspired by CFDNet. The results
obtained followed a pattern relative to those presented in CFDNet. Namely, warmup
further reduced the time to convergence, and the coupled framework almost always
provided a speedup relative to running the physics solver alone. It was expected to
have some level of discrepancy between the results of this work and the results of
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CFDNet. Considering the code and data from CFDNet were not provided, exact
replication was not possible.

• Recursion can be used to replace warm-up. Considering that the neural net-
work was trained to produce a solution close to the converged solution, warm-up
should not be necessary. The neural network was used recursively instead of warm-
up, which was shown to further reduce time to convergence for multiple test cases.

• Incremental training while tuning hyperparameters can provide an opti-
mal machine learning model earlier in the design phase. Simultaneously
training the neural network while running OpenFOAM simulations provided a perfor-
mance benefit that increased incrementally through every case study. This is ad-
vantageous in a typical parametric study since the neural network can be used to
accelerate simulations while training. This reduces the overall data processing time
while decreasing the time to convergence for these case studies.

• Extension to arbitrary domains. This was accomplished by projecting an un-
structured mesh onto a uniform grid, which created a consistent input domain for the
neural network. Rather than depending on a structured grid which limits the possi-
ble design space, this projection allows for the implementation of arbitrary domains
that can still benefit from the acceleration framework.

This work can be extended in a few directions. One would be to apply this framework to
physics solvers beyond OpenFOAM, particularly to those based on the finite element method
(FEM) such as NGSolve or OpenCMP. It is important to determine if a performance benefit
still exists for these solvers, and, if not, how the process needs to be changed to create
one. A reoccurring problem with this work was the interpolation error that arises when
projecting between uniform and non-uniform grids. Considering the approximation order
within elements are higher in the FEM, interpolation error will be heightened. As such,
new methods that can alleviate this issue while still being generalizable (to a certain extent)
should be developed.

Another important inclusion is the extension to three-dimensional domains. Two-
dimensional domains are most often found in literature on ML-accelerated CFD due and
their sufficient results for symmetric domains. However, more often than not, flows in com-
plex geometries need to be modelled, requiring transport equations to be solved in three
dimensions. The framework developed in this thesis provides functionality for data pro-
cessing in three-dimensions, however, further analysis should be conducted to determine
acceleration details in three-dimensional domains.
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APPENDICES

Appendix 1

1 solvers

2 {

3 p

4 {

5 solver GAMG;

6 tolerance 1e-08;

7 relTol 0.1;

8 smoother GaussSeidel;

9 }

10

11 U

12 {

13 solver smoothSolver;

14 smoother GaussSeidel;

15 nSweeps 2;

16 tolerance 1e-08;

17 relTol 0.1;

18 }

19

20 nuTilda

21 {

22 solver smoothSolver;

23 smoother GaussSeidel;

24 nSweeps 2;

25 tolerance 1e-08;

26 relTol 0.1;

27 }

28 }

29

30 SIMPLE
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31 {

32 nNonOrthogonalCorrectors 0;

33

34 residualControl

35 {

36 p 1e-4;

37 U 5e-6;

38 nuTilda 1e-4;

39 }

40 }

41

42 relaxationFactors

43 {

44 fields

45 {

46 p 0.3;

47 }

48 equations

49 {

50 U 0.7;

51 nuTilda 0.7;

52 }

53 }

Listing 1: Residual details implemented in OpenFOAM

1 ddtSchemes

2 {

3 default steadyState;

4 }

5

6 gradSchemes

7 {

8 default leastSquares;

9 }

10

11 divSchemes

12 {

13 default none;

14 div(phi ,U) Gauss linearUpwind grad(U);

15 div(phi ,nuTilda) Gauss linearUpwind grad(nuTilda);

16 div(( nuEff*dev2(T(grad(U))))) Gauss linear;

17 }

18

19 laplacianSchemes

20 {
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21 default Gauss linear corrected;

22 }

23

24 interpolationSchemes

25 {

26 default linear;

27 }

28

29 snGradSchemes

30 {

31 default corrected;

32 }

33

34 wallDist {

35 method meshWave;

36 }

Listing 2: Numerical scheme details implemented in OpenFOAM

Appendix 2

1 [SIMULATION DETAILS]

2 software = OpenFOAM

3 fields = u, p

4 tolerance = 0.0001

5 train_dir = OpenFOAM/sajeda -9/ train

6 test_dir = OpenFOAM/sajeda -9/ test

7 generate_training_data = True

8 data_dir_str = train_data

9 use_probes = False

10 turbulence = False

11

12 [CNN DETAILS]

13 x_uniform_dim = 64

14 y_uniform_dim = 256

15 num_dimensions = 2

16

17 [TRAIN DETAILS]

18 train_model = False

19 optimize_hyperparams = False

20 model_save = model_laminar

21 incremental_train = False

22 regular_train = False
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23

24 [HYPERPARAMETERS]

25 learning_rate = 6e-4, 6e-6

26 num_epochs = 40

27 batch_size = 2, 6, 10

28 batch_layers = True

29 display_epochs = 1

30 loss_function = MSELoss

31 layer_1 = 3, 32

32 layer_2 = 32, 64, 128

33 layer_3 = 128, 256

34 layer_4 = 128, 256

35 kernel_conv1 = 2, 2, 2, 8

36 dropout = 0.0, 0.1

37 optimizer = RMSprop

38 momentum = 0.8, 0.9

39 skip_connections = 0

Listing 3: Example user configuration file for data generation and training. User can
specify the type of training and type of data generation

1

2 [SIMULATION DETAILS]

3 software = OpenFOAM

4 working_dir = OpenFOAM/sajeda -9/ run2/

5 task = inference , refinement

6 fields = u, p

7

8 [ERROR ANALYSIS]

9 tolerance_pre = 0.01

10 tolerance_post = 0.0001

11 save_to_file = True

12

13 [CNN MODEL]

14 x_uniform_dim = 256

15 y_uniform_dim = 64

16 recursive = 1

17 model_name = model.pt

Listing 4: Example user configuration file for a full framework run
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