TIGER: Tor Traffic Generator for Realistic Experiments

Daniela Lopes
daniela.lopes@tecnico.ulisboa.pt
INESC-ID / IST, Universidade de Lisboa
Lisboa, Portugal

Diogo Barradas
diogo.barradas@uwaterloo.ca
University of Waterloo
Waterloo, ON, Canada

ABSTRACT

Tor is the most widely adopted anonymity network, helping safe-
guard the privacy of Internet users, including journalists and human
rights activists. However, effective attacks aimed at deanonymizing
Tor users’ remains a significant threat. Unfortunately, evaluating
the impact such attacks by collecting realistic Tor traffic without
gathering real users’ data poses a significant challenge.

This paper introduces TIGER (Tor trafflc GEnerator for Realistic
experiments), a novel framework that automates the generation of
realistic Tor traffic datasets towards improving our understanding
of the robustness of Tor’s privacy mechanisms. To this end, TIGER
allows researchers to design large-scale testbeds and collect data
on the live Tor network while responsibly avoiding the need to
collect real users’ traffic. We motivate the usefulness of TIGER by
collecting a preliminary dataset with applicability to the evaluation
of traffic confirmation attacks and defenses.

CCS CONCEPTS

« Security and privacy — Usability in security and privacy;
Privacy-preserving protocols; Pseudonymity, anonymity and

untraceability; « Networks — Network privacy and anonymity.

KEYWORDS

Tor; traffic analysis; dataset generation; web privacy

ACM Reference Format:

Daniela Lopes, Daniel Castro, Diogo Barradas, and Nuno Santos. 2023.
TIGER: Tor Traffic Generator for Realistic Experiments. In Proceedings of
the 21st Workshop on Privacy in the Electronic Society (WPES °23), November
26, 2023, Copenhagen, Denmark. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3603216.3624960

1 INTRODUCTION

Tor [15] is a widely used low-latency anonymity tool to evade
censorship and surveillance. In a nutshell, Tor enforces anonymity
by encapsulating communications in multiple layers, tunneling
them through 3-relay circuits. Despite these efforts, Tor has been

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

WPES 23, November 26, 2023, Copenhagen, Denmark

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0235-8/23/11.

https://doi.org/10.1145/3603216.3624960

Daniel Castro
daniel.castro@tecnico.ulisboa.pt
INESC-ID / IST, Universidade de Lisboa
Lisboa, Portugal

Nuno Santos
nuno.m.santos@tecnico.ulisboa.pt
INESC-ID / IST, Universidade de Lisboa
Lisboa, Portugal

shown to be vulnerable to multiple traffic analysis attacks, such as
website fingerprinting (WF) [14, 25, 31], traffic correlation (TC) [29,
30], and watermarking [17, 18], in which an adversary observes
one or both ends of the communication to determine which client
is accessing which Internet host, or to deanonymize hosts.

However, the data available to test the effectiveness of these
attacks (and their mitigations) in real-world traffic is scarce, de-
manding the strenuous collection of datasets in conditions that may
not always reflect the true characteristics of the Tor network and its
users. While simulations and emulations of Tor have improved over
time and become a viable option to perform experiments, capturing
live Tor traffic remains paramount to evaluate the fidelity of simu-
lators/emulators and produce accurate Tor network models [19].

Despite the fact that previous studies that attempt to simulate
Tor’s behavior have pointed out the difficulties involved in repro-
ducing live experiments [21] (e.g., to consider transient conditions
that might momentarily alter the network’s characteristics), we
argue that such perturbations are inherent to the Tor network
and closer to what adversaries would experience when deploying
real attacks. Unfortunately, we observe that there exists no unified
framework for the automation of large-scale live experiments on
the Tor network. Moreover, building such a framework with safety
considerations in mind, i.e., avoiding the collection of real user data
at all costs, presents multiple challenges, including the realistic
mimicking of users, server endpoints, and their interactions.

To bridge this gap and simplify live Tor traffic collection without
compromising real users’ anonymity, we propose TIGER, a Tor
traffic generator for realistic experiments, and propose guidelines
to approximate the data generated by our automated clients and
services to real-world Tor traffic. We also introduce a methodology
to avoid overloading the Tor network, which restricts the resources
used in experiments according to the network’s existing capacity.

Next, after we survey the related work, we detail TIGER’s ar-
chitecture and how it leverages Docker containers to simplify the
deployment of clients, server endpoints and onion services, and
Tor relays and proxies, while ensuring portability, efficiency, and
network isolation. Lastly, we run a preliminary test on TIGER for
showecasing the capabilities of our framework. Specifically, we col-
lected a large-scale dataset that can be used for the evaluation of
TC attacks on Tor onion service traffic by: i) replicating multiple
user profiles with the creation of sessions of diverse durations and
number of requests; ii) recreating a set of representative services
expected to produce diverse traffic patterns; and iii) modelling ser-
vices with different access patterns.


https://doi.org/10.1145/3603216.3624960
https://doi.org/10.1145/3603216.3624960
https://doi.org/10.1145/3603216.3624960

WPES °23, November 26, 2023, Copenhagen, Denmark

2 RELATED WORK

A plethora of attacks has been proposed against the Tor network [14,
17, 18, 25, 29-31, 34, 37]. However, testing the effectiveness of such
attacks and defenses requires testbeds that allow for the collec-
tion of representative network datasets. Popular approaches in-
clude simulations [20, 22], emulations [4, 41], model-driven experi-
ments [1, 3,9, 13, 19, 42], and live experiments [7, 18, 25, 29, 31, 32].
Simulation: Simulated environments aim to accurately replicate
some system metrics (e.g., bandwidth, latency, or throughput). A
popular simulator for the Tor network is Shadow [20], which runs
unmodified Tor software on top of a virtual network. Shadow allows
replicating the Tor network using fewer resources, being leveraged
to simulate relay congestion in Tor paths [2, 22] and WF attacks [21].
Emulation: Emulated environments replicate the behaviour of the
Tor network by forwarding real application traffic through a set
of machines that implement their own private Tor network. They
allow for the assignment of realistic network conditions expected
to be faced on the real Tor network, such as bandwidth and latency,
and typically have a smaller scale than simulated environments
since they require more resources. Many works [1, 3, 9, 13, 42]
leveraged PlanetLab [11], Emulab [47], and Deter [5] to build small-
scale Tor networks. However, achieving a network as representative
as Tor was challenging due to limited resources and customizabil-
ity. ExperimenTor [4] uses ModelNet network emulators [46] to
emulate the Tor network using at least two virtual or physical ma-
chines. Shirazi et al. [40] compared Shadow and ExperimenTor and
concluded that both approaches have limitations that may inaccu-
rately model the Tor network, such as: i) Shadow ignoring relays’
bandwidth weights and the geographical distribution and AS-level
distribution of the Tor network, and ii) ExperimenTor having low
scalability and ignoring the AS-level distribution of the network.
Models: Jansen et al. [19] proposed a Tor network model using Tor
metrics [45] and used it to compare Shadow and ExperimenTor with
measurements obtained from the live Tor network at a single point
in time, and concluded that the decisions made in network modeling
significantly influence the fidelity of testbeds. The authors found
that both Shadow and ExperimenTor produce network performance
and load patterns that differ from real Tor measurements.

Live experiments: Some methodologies use the live Tor network
infrastructure, placing additional nodes under researchers’ control
for generating custom traffic to gather datasets. Several approaches
have been proposed, with particular emphasis on onion services
characterization [7, 32], WF attacks 10, 25, 31, 33] and defenses [24],
TC attacks [29, 30] and watermarking attacks [18]. Onion services
characterization generally requires controlling multiple relays to
count the number of fetches for particular onion service descrip-
tors (which is no longer possible with V3 onion services [16]), or
controlling onion service guard nodes (which may also be impossi-
ble with real-world onion services since they can serve their own
guard nodes). WF attacks generally require capturing traffic be-
tween the client and the client’s guard node. In addition, some
WF attacks [10, 25] also require recording the Tor cells exchanged
on the controlled guard nodes that will be monitoring the traffic.
Watermarking attacks may require using a proxy as detector of the
embedded watermark or controlling a guard node [17, 18]. TC at-
tacks require monitoring traffic at both ends of the communication.

Daniela Lopes, Daniel Castro, Diogo Barradas & Nuno Santos

—@ Job Coordinator

Researcher <8 7
6—1 L
Dataset repo [~2-6 FSI 216 26—
Clients Relays / Proxies Services

Chi?: Machclwnze 1 Client Service Machine 1 [ Service
.‘ Machine m Machine n

S1.1 S1.2
C13 Ci4

Figure 1: Design of the TIGER framework.

In summary, a framework for live experiments should allow con-
trolling relays and proxies, as well as customizing their software,
and easily modifying the functionality of clients and endpoints. It
would avoid simulating numerous possible network conditions that
may not accurately reflect the authentic behaviour of Tor, thereby
yielding more realistic results. Furthermore, this approach pro-
vides greater flexibility in tailoring the characteristics of endpoints
and is essential to test how accurate Tor network models are in
simulation. Nevertheless, conducting such experiments requires
extensive resources, effort, and time. Additionally, apart from the
recommendations mentioned in the ethical guidelines issued by
the Tor research safety board [43], live experimentation lacks stan-
dardized procedures that also consider potential abusive usage of
the Tor network, such as the potential to overload the live Tor net-
work resources. TIGER aims to address these issues by providing
an experimental testbed with a configurable set of parameters that
support the multiple requirements described in this paragraph.

3 DESIGN

TIGER aims to automatize the creation of datasets of Tor traffic,
respecting a parameterizable set of conditions, towards approxi-
mating the traces that could be obtained from real users’ traffic.
Our framework aims to boost the opportunities for research with
respect to attacks and defenses on Tor, while explicitly aiming to
minimize additional overheads imposed to the live Tor network.
TIGER does not replace simulation or emulation approaches, but it
complements them by enabling easier collection of Tor real traffic
to model the Tor network, and offers an alternative with particular
advantages, such as for research scenarios that necessitate realistic
user and service interactions with the network, such as in evalu-
ating TC attacks, and in which we need more flexibility, such as
controlling the source code (to change the Tor browser source code
for instance) or controlling relays belonging to the circuit.
Challenges for setting up realistic live experiment setups:
Using nodes under our control to perform live experiments requires
emulating several aspects of how clients and services interact. (We
refer to Internet hosts serving content simply as services, specifi-
cally referring to onion services where the distinction is required.)
Specifically, we: i) model user behaviour when accessing services
through Tor; ii) build representative services; iii) adjust relays and
proxies to each particular scenario; and iv) create a realistic topol-
ogy of a network of clients and services under our control, but that
communicate via the live Tor network.



TIGER: Tor Traffic Generator for Realistic Experiments

3.1 Architecture

To tackle the above challenges, we propose the framework show-
cased in Figure 1. TIGER leverages physical machines and container-
ization as the baseline for a fast, flexible, and portable deployment
of a network of nodes running on top of the live Tor network. Once
an experiment is over, the framework’s operator is provided with a
list of network captures, each encompassing the times, sizes, and
directions of packets, and the IPs and ports involved. Each capture
can consist of the data collected during a request, a session (i.e., a set
of requests), or the full experiment, as configured by the operator.

To launch an experiment, the operator details which physical
machines will be dedicated to serving clients, relays, and services,
along with their characteristics if using a cloud provider, in step 1 1.
An extra machine, job coordinator, orchestrates the experiment
(step 2). Each client or service machine has the ability to handle
multiple client or service containers, increasing the experiment’s
scalability with the same resources. The container images are made
publicly available in a Docker registry to expand TIGER’s function-
ality according to the requirements of a given experiment. After
bootstrapping the physical machines, the job coordinator proceeds
to download and run the selected container images, in step 3.

Each onion service container has a key pair and a . onion address,
and runs a Tor process for serving a pre-configurable content. Inter-
net services expose this content but do not run any Tor-associated
process. In turn, relays can run a Tor process with different possible
parameters, as per Tor’s Relay Guide [36]. Each client container
runs a Tor client process and executes a desired crawling script to
access the services and coordinate the experiment (step 4).

An experiment ends when all clients have reached the number
of requests proposed in the configuration file, by having each client
send a terminate request to the job coordinator, as shown in step

5. Then, in step 6, the job coordinator fetches the dataset parcels
from all the experiment machines, stops all the machines, and
publishes the complete dataset on a repository, as in step ‘7 . Finally,
in step ‘8, the operator downloads the dataset from the repository.
Tor overload prevention: The Tor project provides (at least)
hourly [40] relay information through CollecTor [44]. TIGER’s
job coordinator can periodically retrieve this data to limit the band-
width exerted by each client on the Tor network, ensuring the
experiment being run does not straggle Tor’s network capacity.
Prototype: We developed a TIGER protoype using the terraform
tool as an orchestrator to launch physical machines, Google Cloud
as the cloud provider, ansible as the provision tool to set up the
machines and deploy the containers, and Docker Hub to share the
container images. We created our own images for the job coordi-
nator, and all clients and services. To preserve ground truth about
the start and end times at which each request/session took place
(i.e., to synchronize traffic captures collected by the clients and
services involved in communication), we rely on REST endpoints —
contacted by placing requests outside the Tor network — to allow
clients to flag the services they’re communicating with about the
start/finish of each request or session, shown in Appendix A.1.

I These are specified in a configuration file, which may include: the number of clients,
which machines will act as generic Internet services, onion services, or relays; the
zones to run machines in case of a cloud provider, or the IP addresses of machines
belonging to clusters; the container image IDs to use; the generic services and onion
services to serve; and the guard nodes that clients and onion services will make use of.

WPES ’23, November 26, 2023, Copenhagen, Denmark

3.2 Setting up Realistic Live Experiments

Emulating clients: Emulating the usual behavior of Tor clients is
a little-explored topic due to the lack of studies on real Tor users’
access patterns. Thus, we base our recommendations on Internet
usage studies [12, 26, 27, 39] and studies on the effectiveness of WF
attacks on real data [23], which suggest modeling the following
characteristics: i) stay times in pages, which has been shown to
follow a Weibull distribution [26] and depend on the content of
the website [39]; ii) visiting inner pages of each website [23]; iii)
considering the probability of users to start a new session (e.g.,
moving on to a different website) [27]; iv) simulating multi-tab
browsing [12, 23]; v) re-visiting rate [12]; vi) usage of multiple Tor
browser versions [23]; and vii) mimicking different browsing pat-
terns [12]. All these combined allow us to devise a realistic crawling
methodology to control the accesses performed by each client to
different services, allowing us to produce multiple variations, e.g.,
each implemented by a different client Docker container image.
Emulating services: In the past, Mani et al. [28] controlled multi-
ple exit relays to study the main clearnet destinations of Tor users’,
finding that most Tor users’ typically access websites that overlap
the most popular websites visited by non-Tor users. Following these
findings, TIGER operators may either choose to mirror a set of top-
visited websites (e.g., included in the Tranco list [35]), or simply
access popular Internet websites via TIGER-controlled proxies.
The realistic emulation of accesses to onion services, however,
presents additional challenges. For an accurate TIGER live exper-
iment, onion services should experience similar access patterns
and serve similar contents as those observed in real onion services.
However, existing studies on onion services are outdated and new
studies currently limited due to the recent privacy improvements
on onion services [16] (which, e.g., no longer allow matching the
Hidden Service Directory descriptor fetches to the onion services).
Still, previous studies [6, 32] on the ecosystem of existing onion
services found that most accesses by Tor clients are targeted to-
wards a relatively small set of popular onion services, which follows
a similar trend to that observed with typical Internet services [8].
These can be modeled in TIGER as a Zipf distribution, where the
most popular website is accessed significantly more often than
others, while the least accessed websites receive very few accesses.
Finally, TIGER requires the mirroring of a set of representative
web services being served by onion services. Fortunately, previous
studies [6, 32] on the onion service ecosystem have characterized
prevalent categories of content served by such services. A possible
way to integrate these representative services within TIGER is to
manually collect onion services bound to each of these categories
by searching for these topics on the ahmia. fi onion service search
engine. We note that onion services serving content other than
HTTP and HTTPS (such as those primarily used for SSH or Bitcoin
nodes) may also be added manually to TIGER-controlled nodes.
Emulating proxies: For experimenting with certain classes of
attacks on Tor, it is essential to deploy proxy nodes that capture the
traffic exchanged with network entities outside of the researchers’
control (e.g., TC [29, 30] or certain WF [10] attacks where clients
access real-world websites via exit relays that are not under the
researchers’ control). In addition, Rimmer et al. [38] found that, in



WPES ’23, November 26, 2023, Copenhagen, Denmark

Daniela Lopes, Daniel Castro, Diogo Barradas & Nuno Santos

1.0 s kel —ol 02 —o3 031 —o025 —o026
60000 o
- . 220
2 . 3
0.8 550000 ' . @
g H i n 15
40000 i
0.6 o] g
5 230000 =10
9}
(@) < 2
0.4 © 20000 c
) O]
e} ] o = A
¥ 10000 i i Y
02 (L ST SUTL S T “l i, Fo .
—— Session duration (min) offe="deead atbitte [ B0 ay0.0, h M M M mmMmmmmm M
. o — N m < n ©o A N M < un
0.0 # requests per session <TI0 O S T S S B
: OO0 OO0 00O 000 00O 00O 00O 0O o T T A B e S T e B e B
0 5 10 15 20 Onion service Windows of 1 min for a range of 2 hours

(a) Session durations and requests per session CDF.

(b) Data sent by request per onion service.

(c) Different access patterns by onion service popularity.

Figure 2: Generated dataset statistics.

the settings above, employing a single proxy for live traffic collec-
tion may alter the characteristics of traffic and skew the conclu-
sions about an attack’s effectiveness. To address this, Rimmer et al.
propose deploying multiple proxies in the traffic collection infras-
tructure. As described in Section 3.1, TIGER can easily support the
deployment of multiple geographically-distributed proxies on the
configuration of an experimental run.

Emulating topology: Juarez et al. [23] have showed that the per-
formance of WF attacks is degraded when a classifier is trained
in a geographical location which is different than the one where
the classifier will be used as part of a WF attack. This may also be
the case for adversaries with limited geographical coverage and
that aim to launch TC attacks [29]. Thus, we posit that researchers
might have interest to mimic Tor nodes’ geographical distribution
when creating large-scale datasets resorting to live-experiments.
TIGER allows researchers to flexibly host their clients and services
across a range of machines located worldwide, including cloud
machines in different zones, or machines provided in the scope of
collaboration with other research institutes.

4 RESULTS

This section describes a TIGER-generated dataset designed for sup-
porting the evaluation of TC-style attacks targetting onion services.
The dataset was crafted to serve as a versatile example, requiring a
distributed infrastructure to capture traffic at various locations.
TIGER setup: The corresponding TIGER setup is as follows. The
operator configures 10 machines to host clients and 8 machines to
host onion services. Each machine serves 4 instances of Tor clients
and onion services, respectively. Following TIGER’s Docker support,
we created a container image for all clients, and another for all onion
services, containing 32 different websites mirrored from real-world
onion services. The experiment is configured so that each client
performs 2500 requests, also uniformly accessing clearnet services
listed in Tranco’s list [35] in-between sessions established towards
onion services. Following a Zipf distribution, onion services’ access
rate probability ranged between 44.2% (onion1) and 0.2% (onion26).
The most popular onion services were evenly distributed across
physical machines so as not to overload a single machine with the
majority of traffic exchanged during the experiment. We configured
clients to have 80% probability of staying on the same website and
20% probability of starting a new session. Each access is ruled by a
variable stay time of up to 10 minutes.

Dataset characteristics: We focus on describing how the obtained
dataset comprises realistic user behaviors via Tor. We note that an
operator may configure TIGER to fine-tune the characteristics of
the generated traces for considering different scenarios.

Figure 2(a) shows that sessions (sequences of requests to the same

service) display highly variable duration and request count, effec-
tively simulating distinct user browsing patterns, e.g, being useful
to evaluate how different browsing patterns affect the accuracy of
traffic analysis attacks. Figure 2(b) shows the high variability of the
onion services’ characteristics that would translate into different
patterns when accessed (for instance, onion1 is expected to send
higher volumes of traffic per request), e.g, being useful to evaluate
the properties that can make a service’s traffic more easily recog-
nizable. Figure 2(c) shows the concurrent client requests received
by the three most and least popular onion services per minute, for a
duration of 2 hours. We observe that the TIGER experiment allows
for producing concurrent traffic aimed at onion services, which
might be useful for assessing the effectiveness of traffic analysis
attacks and defenses under different noisy conditions. We provide
complementary results in Appendix A.2.
Limitations: TIGER’s main limitations pertain to the scalability
of the experimentation, which necessitates the use of multiple ma-
chines and a considerable time to generate a dataset containing
numerous sessions. However, once the dataset is successfully com-
piled, it can be widely applied, provided that all configurations align
with the specific requirements of the intended experiment.

5 CONCLUSIONS AND FUTURE WORK

This paper introduces TIGER, a versatile framework that gener-
ates realistic Tor traffic datasets through live network experiments,
while preserving user privacy and network resources.We used
TIGER to generate an example dataset that can be used for traffic
correlation purposes. TIGER’s tunability allows operators to tailor
experiments to their specific needs, making it a powerful tool for
studying different traffic analysis attacks on Tor.

Future directions to improve TIGER include: i) build client im-
ages that can access private pages (i.e., bypass login screens), or
filling CAPTCHAEs; ii) devise a tool that can validate Tor network
simulators using TIGER datasets; iii) validate the generated datasets
through testing with established TC and WF attacks; and iv) perform
a comparative analysis against datasets generated using Shadow.



TIGER: Tor Traffic Generator for Realistic Experiments

REFERENCES

(1]

[10]

[11

=
&

[13

[14]

(15

[16]

[17

(18]

[19

[20]
[21]
[22]

[23]

[24]

[25

[26]

[27

[28]

[29

[30

Masoud Akhoondi, Curtis Yu, and Harsha V. Madhyastha. 2012. LASTor: A
Low-Latency AS-Aware Tor Client. In IEEE Security and Privacy.

Armon Barton, Matthew Wright, Jiang Ming, and Mohsen Imani. 2018. Towards
Predicting Efficient and Anonymous Tor Circuits. In USENIX Security.

Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and Douglas
Sicker. 2007. Low-Resource Routing Attacks against Tor. In ACM WPES.

Kevin Bauer, Micah Sherr, and Dirk Grunwald. 2011. ExperimenTor: A Testbed
for Safe and Realistic Tor Experimentation. In CSET.

Terry Benzel. 2011. The Science of Cyber Security Experimentation: The DETER
Project. In ACM ACSAC.

Alex Biryukov, Ivan Pustogarov, Fabrice Thill, and Ralf-Philipp Weinmann. 2014.
Content and Popularity Analysis of Tor Hidden Services. In IEEE ICDCS Work-
shops.

Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. 2013. Trawling for
tor hidden services: Detection, measurement, deanonymization. In IEEE Security
and Privacy.

L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker. 1999. Web caching and
Zipf-like distributions: evidence and implications. In IEEE INFOCOM.
Sambuddho Chakravarty, Marco V. Barbera, Georgios Portokalidis, Michalis
Polychronakis, and Angelos D. Keromytis. 2014. On the Effectiveness of Traffic
Analysis against Anonymity Networks Using Flow Records. In Passive and Active
Measurement.

Giovanni Cherubin, Rob Jansen, and Carmela Troncoso. 2022. Online Website
Fingerprinting: Evaluating Website Fingerprinting Attacks on Tor in the Real
World. In USENIX Security.

Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike
Wawrzoniak, and Mic Bowman. 2003. PlanetLab: An Overlay Testbed for Broad-
Coverage Services. ACM SIGCOMM Computer Communications Review (2003).
Kyle Crichton, Nicolas Christin, and Lorrie Cranor. 2022. How Do Home Com-
puter Users Browse the Web? ACM Transactions on the Web (2022).

Anupam Das and Nikita Borisov. 2013. Securing Anonymous Communication
Channels under the Selective DoS Attack. In Financial Cryptography.

Xinhao Deng, Qilei Yin, Zhuotao Liu, Qi Li, Mingwei Xu, Ke Xu, and Wu Jianping.
2023. Robust Multi-tab Website Fingerprinting Attacks in the Wild. In IEEE
Security and Privacy.

Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-
Generation Onion Router. In USENIX Security.

Tobias Hoeller, Michael Roland, and René Mayrhofer. 2021. On the State of V3
Onion Services. In ACM FOCL

Alfonso Iacovazzi, Daniel Frassinelli, and Yuval Elovici. 2019. The DUSTER attack:
Tor onion service attribution based on flow watermarking with track hiding. In
ACM RAID.

Alfonso Iacovazzi, Sanat Sarda, and Yuval Elovici. 2018. Inflow: Inverse Network
Flow Watermarking for Detecting Hidden Servers. In IEEE INFOCOM.

Rob Jansen, Kevin Bauer, Nicholas Hopper, and Roger Dingledine. 2012. Method-
ically Modeling the Tor Network. In USENIX CSET.

Rob Jansen and Nicholas Hopper. 2011. Shadow: Running Tor in a Box for
Accurate and Efficient Experimentation. In NDSS.

Rob Jansen and Ryan Wails. 2023. Data-Explainable Website Fingerprinting with
Network Simulation. (2023). See also https://explainwf-popets2023.github.io.
Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syverson. 2013.
Users Get Routed: Traffic Correlation on Tor by Realistic Adversaries. In ACM
CCS.

Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt. 2014.
A Critical Evaluation of Website Fingerprinting Attacks. In ACM CCS.

Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew Wright.
2015. WTF-PAD: Toward an Efficient Website Fingerprinting Defense for Tor.
(2015). http://arxiv.org/abs/1512.00524

Albert Kwon, Mashael AlSabah, David Lazar, Marc Dacier, and Srinivas Devadas.
2015. Circuit fingerprinting attacks: Passive deanonymization of tor hidden
services. In USENIX Security.

Chao Liu, Ryen W. White, and Susan Dumais. 2010. Understanding Web Browsing
Behaviors through Weibull Analysis of Dwell Time. In ACM SIGIR.

Anna Harbluk Lorimer, Lindsey Tulloch, Cecylia Bocovich, and Ian Goldberg.
2021. OUStralopithecus: Overt User Simulation for Censorship Circumvention.
In ACM WPES.

Akshaya Mani, T. Wilson-Brown, Rob Jansen, Aaron Johnson, and Micah Sherr.
2018. Understanding Tor Usage with Privacy-Preserving Measurement. In ACM
IMC.

Milad Nasr, Alireza Bahramali, and Amir Houmansadr. 2018. DeepCorr: Strong
Flow Correlation Attacks on Tor Using Deep Learning. In ACM CCS.

Se Eun Oh, Taiji Yang, Nate Mathews, James K Holland, Mohammad Saidur
Rahman, Nicholas Hopper, and Matthew Wright. 2022. DeepCoFFEA: Improved
flow correlation attacks on Tor via metric learning and amplification. In IEEE
Security and Privacy.

WPES ’23, November 26, 2023, Copenhagen, Denmark

Rebekah Overdorf, Mark Juarez, Gunes Acar, Rachel Greenstadt, and Claudia
Diaz. 2017. How unique is your .onion?: An analysis of the fingerprintability of
tor onion services. In ACM CCS.

Gareth Owen and Nick Savage. 2016. Empirical analysis of Tor hidden services.
In IET Information Security.

Andriy Panchenko, Fabian Lanze, Andreas Zinnen, Martin Henze, Jan Pennekamp,
Klaus Wehrle, and Thomas Engel. 2016. Website Fingerprinting at Internet Scale.
In NDSS.

[34] Andriy Panchenko, Asya Mitseva, Martin Henze, Fabian Lanze, Klaus Wehrle,
and Thomas Engel. 2017. Analysis of Fingerprinting Techniques for Tor Hidden
Services. In ACM WPES.

Victor Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Korczyn-
ski, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites Ranking
Hardened Against Manipulation.

The Tor Project. 2020. TorRelayGuide. https://gitlab.torproject.org/legacy/trac/-
/wikis/TorRelayGuide#Parttwo:technicalsetup. Accessed: 2023-07-15.
Mohammad Saidur Rahman, Payap Sirinam, Nate Mathews, Kantha Gangadhara,
and Matthew Wright. 2020. Tik-Tok: The Utility of Packet Timing in Website
Fingerprinting Attacks. In PoPETS.

Vera Rimmer, Theodor Schnitzler, Tom Van Goethem, Abel Romero, Wouter
Joosen, and Katharina Kohls. 2022. Trace Oddity: Methodologies for Data-Driven
Traffic Analysis on Tor. In PoPETS.

Kimberly Ruth, Aurore Fass, Jonathan Azose, Mark Pearson, Emma Thomas,
Caitlin Sadowski, and Zakir Durumeric. 2022. A World Wide View of Browsing
the World Wide Web. In ACM IMC.

Fatemeh Shirazi, Matthias Goehring, and Claudia Diaz. 2015. Tor Experimentation
Tools. In IEEE Security and Privacy Workshops.

Sukhbir Singh. 2014. Large-scale emulation of anonymous communication net-
works. In Master’s thesis, University of Waterloo.

Can Tang and Ian Goldberg. 2010. An Improved Algorithm for Tor Circuit
Scheduling. In ACM CCS.

The Tor Project. 2016. Research Safety Board. https://research.torproject.org/sa
fetyboard/. Accessed: 2023-06-04.

The Tor Project. [n. d.]. CollecTor. https://metrics.torproject.org/collector.html.
Accessed: 2023-06-04.

The Tor Project. [n. d.]. Tor Metrics. https://metrics.torproject.org/. Accessed:
2023-06-04.

Kashi Venkatesh Vishwanath, Diwaker Gupta, Amin Vahdat, and Ken Yocum.
2009. ModelNet: Towards a datacenter emulation environment. In IEEE Conference
on Peer-to-Peer Computing.

Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac
Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. 2003. An Integrated Ex-
perimental Environment for Distributed Systems and Networks. In ACM SIGOPS
Oper. Syst. Rev.

(31

[32

[33

@
2

[36

[37

[38

[39

=
=

(41

[42

[43

[44

[45

[46

N
)

A APPENDIX

A.1 Clients’ and services’ example code

Algorithm 1 gives a brief demonstration of the HTTP server for
client coordination being executed by each service in parallel with
the service to be accessed through Tor. In the case of a Tor node,
such as an onion service or a relay, that service should be associated
with a Tor process configured correctly with a torrc file.

# Create endpoint /startTrafficCapture

def start_traffic_capture():
# Start traffic capture based on requests' content, such as being a session
<> capture, or a request capture, all controlled by the client
cmd = f'tcpdump -i any -s 66 -W 1 -w pcap_file.pcap’
os.system(f'docker exec onion-img-{id} sh -c¢ "{cmd}"")

# Create endpoint /stopTrafficCapture

def stop_traffic_capture():
# Stop an existing traffic capture to end a request or a session
os.system(f'docker exec onion-img-{id} sh -c¢ "kill {pcap_pid}"')

# Serve an HTTP server on REST_PORT to receive traffic capture commands

Algorithm 1: Onion service Python code snippet

Algorithm 2 describes a general skeleton to implement the de-
sired client browsing behavior. We modeled the characteristics i)
and ii) in Section 3.2 and implemented a different configuration to
visit clearnet services and onion services, keeping it extensible to
add further functionality that implements different client browsing
behaviors. We highlighted in magenta the tunable parameters.


https://explainwf-popets2023.github.io
http://arxiv.org/abs/1512.00524
https://gitlab.torproject.org/legacy/trac/-/wikis/TorRelayGuide##Parttwo:technicalsetup
https://gitlab.torproject.org/legacy/trac/-/wikis/TorRelayGuide##Parttwo:technicalsetup
https://research.torproject.org/safetyboard/
https://research.torproject.org/safetyboard/
https://metrics.torproject.org/collector.html
https://metrics.torproject.org/

WPES ’23, November 26, 2023, Copenhagen, Denmark

20000

15000

10000

# client requests received
w
o
o
o

Oﬂwmm\ax\o—wwvm—amm
OO
0000000000000 0000000000

00000000
Onion service

(a) Onion service popularity expressed by the number of

requests made by clients.

Daniela Lopes, Daniel Castro, Diogo Barradas & Nuno Santos

o 10
) 2000
g B8
1 H H [}
5 1500 1 2
o | 26
2 =
2 1000 2 1
2 at
] .
£ 500 : ¥
8 1 i I 2
4 . | A N
0 ;lé:gT%é-eiﬂTl!.é - .
i AAOCRIC OIS NBHOS) 0 Received  Received Sent Sent
000 000 00O 00O 00O 00O 000 0O with onion with clearnet with onion with clearnet
Onion service services services services services

(b) Data received by request per onion service.

(c) Data received and sent by clients when accessing
onion services and clearnet services.

Figure 3: Additional generated dataset statistics.

class ServiceHandler:

# Common code for each service

class SeleniumTorBrowserHandler(ServiceHandler):

# Encapsulates the browser functionality, in this case, Selenium's Tor browser

driver: TorBrowserDriver
# Initializations and start Selenium Driver

def visit_new_website(self, url: str):

self.driver = start_selenium_driver(self.driver)

self.driver.get(url)
return self.driver.page_source
def visit_random_webpage(self):

# Find all the links referenced within the HTML of the current page the
< user is on and add to the list of past visitable pages found within

< the same session

# Choose a random visitable page and access the corresponding URL using

< the Selenium Driver

class SessionHandler:

if

__hame__ == '__main

# Models the client's behavior during each session
browser: SeleniumTorBrowserHandler

actions = Dict[str, float]

cap_folder: str

sample_name: str

session_capture_cmd: str

# Initializations and start browser handler

self.actions = {'new_site': NEW_SITE_PROB, 'navigate': SAME_SITE_PROB}

def choose_next_action(self):
return np.random.choice(len(self.actions), 1,
<~ p=list(self.actions.values()))

def start(self, client_id):

self.session_capture_cmd = start_traffic_capture(...)

def visit_new_website(self, url: str):
# visits a different site (given in url)
def visit_random_webpage(self):

# follows a random link within the current webpage
class SessionHandlerToOnions(SessionHandler):

onion_nodes: dict
hostname: str

# Initializations and different implementations to work with onion services

stay_times = np.random.weibull(a=SHAPE, size=request_iters} * SCALE # Wait

< between requests
# More initializations to maintain state

request_counter = request_iters
full_client_capture = start_traffic_capture(...)
while request_counter > 0:

# Update counters

clearweb = random.randint(@, 100) < clearnet_probability*100

# Choose random clearweb or onion service to visit

base_url = ...

session = SessionHandler(...) if clearweb else SessionHandlerToOSes(...)

session.start()
session.visit_new_website(base_url)
next_action = session.choose_next_action()
stay_time = stay_times[request_id]
sleep(stay_time)
while next_action == 'navigate':

# Update counters

next_action = session.choose_next_action()
session.visit_random_webpage(...)
sleep(stay_times[request_id])

# Update session_id at the end of each session

stop_traffic_capture(full_client_capture, coordinator)

Algorithm 2: Client Python code snippet

A.2 Extra Generated Dataset Statistics

We show further statistics on the generated dataset. Figure 3(a)
shows the disparities in onion service popularity, as expected when
using a Zipf distribution. onion1 received more than half of all
requests, with the majority receiving few requests. This enables
analyzing important characteristics mostly overlooked in previous
work, such as stream separation at the onion service side, perfor-
mance deterioration of WF, TC, and watermarking attacks when
services handle multiple requests simultaneously, Tor network per-
formance analysis, among others.

Figure 3(b) shows the high variability of the onion services’
characteristics that would translate into different patterns when
receiving client requests, showing that incoming traffic follows a
similar distribution to outgoing traffic based on the served pages’
volumetric characteristics, but with much lower traffic volumes
when compared to Figure 2(b).

Figure 3(c) shows the different traffic volume characteristics
when clients are accessing onion services and clearnet services
through Tor. This allows, for instance, to evaluate classifiers that
distinguish Tor traffic to Internet services from Tor traffic to onion
services, or to analyze the feature importance of directional packet
volumes, or to analyze how onion service’s characteristics can affect
the results of attacks or countermeasures evaluated on Tor traffic
to Internet services.

The evaluation presented shows how TIGER can be tuned to
produce datasets with highly variable characteristics, depending
on the intended application.

B ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments and in-
sightful feedback. This work was supported by the Fundacéo para
a Ciéncia e Tecnologia (FCT) under grants PRT/BD/154197/2022
and UIDB/50021/2020, by NSERC under grant RGPIN-2023-03304,
and by IAPMEI under grant C6632206063-00466847 (SmartRetail).



	Abstract
	1 Introduction
	2 Related Work
	3 Design
	3.1 Architecture
	3.2 Setting up Realistic Live Experiments

	4 Results
	5 Conclusions and Future Work
	References
	A Appendix
	A.1 Clients' and services' example code
	A.2 Extra Generated Dataset Statistics

	B Acknowledgments

