
A First Look at Generating Website Fingerprinting Attacks via Neural Architecture Search WPES ’23, November 26, 2023, Copenhagen, Denmark

A First Look at Generating Website Fingerprinting Attacks via
Neural Architecture Search

Prabhjot Singh∗
prabhjot.singh@uwaterloo.ca

University of Waterloo
Waterloo, ON, Canada

Shreya Arun Naik∗
s4an@uwaterloo.ca

University of Waterloo
Waterloo, ON, Canada

Navid Malekghaini
nmalekgh@uwaterloo.ca
University of Waterloo
Waterloo, ON, Canada

Diogo Barradas
diogo.barradas@uwaterloo.ca

University of Waterloo
Waterloo, ON, Canada

Noura Limam
noura.limam@uwaterloo.ca
University of Waterloo
Waterloo, ON, Canada

ABSTRACT
An adversary can use website fingerprinting (WF) attacks to breach
the privacy of users who access the web through encrypted tunnels
like Tor. These attacks have increasingly relied on the use of deep
neural networks (DNNs) to build powerful classifiers that canmatch
the traffic of a target user to the specific traffic pattern of a website.

In this paper, we study whether the use of neural architecture
search (NAS) techniques can provide adversaries with a systematic
way to find improved DNNs to launch WF attacks. Concretely, we
study the performance of the prominent AutoKeras NAS tool on
the WF scenario, under a limited exploration budget, and analyze
the effectiveness and efficiency of the resulting DNNs.

Our evaluation reveals that AutoKeras’s DNNs achieve a com-
parable accuracy to that of the state-of-the-art Tik-Tok attack on
undefended Tor traffic, and obtain 5–8% accuracy improvements
against the FRONT random padding defense, thus highlighting the
potential of NAS techniques to enhance the effectiveness of WF.

CCS CONCEPTS
• Security and privacy → Privacy-preserving protocols; •
Networks → Network privacy and anonymity; • Computing
methodologies → Neural networks.

KEYWORDS
deep learning; neural architecture search; website fingerprinting

ACM Reference Format:
Prabhjot Singh, Shreya Arun Naik, Navid Malekghaini, Diogo Barradas,
and Noura Limam. 2023. A First Look at Generating Website Fingerprinting
Attacks via Neural Architecture Search. In Proceedings of the 21st Workshop
on Privacy in the Electronic Society (WPES ’23), November 26, 2023, Copen-
hagen, Denmark.ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3603216.3624961
∗Authors contributed equally.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WPES ’23, November 26, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0235-8/23/11. . . $15.00
https://doi.org/10.1145/3603216.3624961

1 INTRODUCTION
To safeguard their online privacy, users can use encrypted tun-
nels like those created by low-latency anonymity networks such as
Tor [8]. These tunnels allow users to create multi-hop encrypted
pathways that conceal the contents and destination of their commu-
nications from eavesdroppers. However, Tor does not significantly
modify the timing and volume characteristics of packet exchanges,
thus retaining the traffic patterns that are characteristic of the web-
sites visited over the encrypted tunnel [34], a.k.a., a fingerprint.
This design choice makes Tor susceptible to a class of traffic analy-
sis attacks known as website fingerprinting (WF) [1, 19, 36, 37, 39,
41, 46], by which eavesdroppers can disclose the websites users
visit through Tor by applying machine learning techniques that
match the users’ traffic patterns to pre-recorded fingerprints.

In recent years, WF research has shifted from using traditional
machine learning techniques [19, 36] to launching more precise
attacks that use deep neural networks (DNNs) [1, 37, 39, 41]. These
attacks (and further developments thereof) rely on the ability to dis-
cover increasingly effective DNN topologies. However, the search
for improved DNN architectures that can fuel WF attacks has been
primarily conducted through a trial-and-error approach, where
researchers adapt or extend existing architectures that work well in
related domains (e.g., computational vision [20] and biology [18], or
encrypted traffic classification [29]). Unfortunately, this approach
is afflicted by two important drawbacks.

First, although hyperparameter optimization methods [31, 43]
can help to adjust the parameters of a promising DNN (e.g., learning
rate, dropout, etc.), researchers lack a systematic way to understand
the factors that lead to better performance among different DNN
topologies (e.g., number and arrangement of layers and building
blocks). Without a clear understanding of how specific architectural
changes affect a DNN’s effectiveness, researchers may struggle to
make informed decisions about which architectural elements to use
in their DNN (and how to combine them), being limited to the use
of heuristics [42, 45] or pure chance for finding better architectures.

Second, since the development of improved WF attacks is often
based on existing DNN architectures, researchers may overlook
unconventional or innovative architectural choices, thus missing
potential breakthroughs in designing highly effective DNNs.

In this paper, we present a preliminary study towards answering
the question of whether WF researchers can adopt more systematic

©Singh, Arun Naik, Malekghaini, Barradas, Limam. 2023. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive
version was published in Proceedings of the 21st Workshop on Privacy in the Electronic Society, https://doi.org/10.1145/3603216.3624961.

1

https://doi.org/10.1145/3603216.3624961
https://doi.org/10.1145/3603216.3624961
https://doi.org/10.1145/3603216.3624961


WPES ’23, November 26, 2023, Copenhagen, Denmark Singh et al.

approaches to unlock the untapped potential of the neural net-
work design space, towards developing more effective WF attacks.
To this end, we leverage a tool developed within the context of
neural architecture search (NAS) [10, 38], an evolving sub-field of
automated machine learning (AutoML) [13, 23]. NAS focuses on
building and/or optimizing the topology of DNNs, and has seen a
growing momentum in the machine learning community. Specifi-
cally, we use the prominent AutoKeras [24] NAS tool for performing
an automatic exploration of DNN topology configurations (within
a configurable exploration budget), and assess the effectiveness of
the resulting DNNs in performing accurate WF attacks.

The results of our evaluation show that DNNs created from
scratch by AutoKeras (under a limited exploration budget of 100
trials) achieve a comparable accuracy to that of the state-of-the-
art Tik-Tok [37] attack on undefended Tor traffic, albeit at the
cost of larger model sizes and/or inference times. In addition, we
observe that AutoKeras is able to develop DNN models which are
more effective than Tik-Tok on defended Tor traffic. For instance,
AutoKeras’ models enable an accuracy increase between 5–8%when
applied to traces protected by the recent FRONT [14] defense. In
Section 5, we detail a number of steps towards shaping a full-scale
study for grounding the benefits of NAS in the WF domain.

2 BACKGROUND
2.1 Website Fingerprinting
In a typical WF attack on Tor, the adversary intercepts commu-
nications between the user and the entry node of the Tor circuit.
To prepare the attack, the adversary repeatedly accesses target
websites, collects network traffic traces, and extracts attributes
characterizing these traces to create a fingerprint database. Then,
the adversary builds a model for website prediction. Finally, the ad-
versary extracts the fingerprint of a target user’s website access via
Tor and uses its pre-trained model to identify the visited website.
Attack settings. In this work, we focus onWF attacks in the closed-
world setting, where the target user is assumed to access a website
amongst a predefined set of websites known to the adversary. Our
plans for future work include the use of NAS constructs to explore
improved attacks in the more realistic open-world setting, where
users are assumed to be able to visit websites unknown to the
adversary, besides the set of websites the adversary had monitored.
Attacks and defenses. Earlier WF attacks used manually crafted
features to train classical machine learning classifiers and finger-
print website visits over Tor connections [19, 36, 46]. Recently, re-
search on WF has turned to deep learning. The Automated WF [39]
and Deep Fingerprinting (DF) [41] attacks use packet direction in-
formation as input to DNN models. Subsequently, the Tik-Tok [37]
attack enhanced DF model’s results by using the dot product of
direction and timing vectors as input. The Var-CNN [1] attack used
semi-automated feature extraction and Residual Networks [20] to
improve DNN models’ effectiveness on the WF context.

Website fingerprinting defenses aim to prevent successful WF
attacks by obfuscating website traces. By transmitting packets at
fixed rates, constant-rate padding defenses like CS-BuFLO [3], and
Tamaraw [4] mask timing patterns and packet transmission burst
behaviour. More efficient adaptive and randomized padding de-
fenses likeWTF-PAD [27] and FRONT [14] insert dummy packets

to conceal time gaps between packets, towards making accesses to
different websites indistinguishable. While we focus on the above
padding-centric defenses in this study, we refer the reader to a more
complete analysis of the WF defenses’ space [30].

2.2 AutoML and Neural Architecture Search
Automated Machine Learning (AutoML) streamlines the traditional
machine learning workflow by resorting to different optimization
techniques to automate feature engineering, model selection, hy-
perparameter tuning, and model evaluation. Due to its ability to
find highly effective models, AutoML has been previously applied
to the traffic analysis domain [9, 22] and, in particular, to WF [17],
revealing promising results. However, as described previously, the
performance of the resulting “traditional” classifiers has been found
to be subpar when compared to deep learning in the context of WF.

While multiple approaches exist to optimize a DNN’s hyperpa-
rameters [50], these techniques do not address the core challenge
of finding the best architecture for issuing predictions on a given
task [10]. Fortunately, to meet the growing demand for accessible
deep learning, the machine learning community has undertaken a
concerted effort in advancing Neural Architecture Search (NAS),
the process of automating DNN architecture engineering by assem-
bling various basic operations and building blocks chosen from a
predefined search space [21]. NAS schemes comprise three essential
components: the definition of a search space for neural architec-
tures, a set of architecture optimization methods (also known as
search strategies), and a suite of model evaluation methods [10].

For conducting our study, we choose AutoKeras [24, 25], an
open-source NAS system that leverages Bayesian optimization to
guide DNN morphism. AutoKeras focuses on deep learning tasks,
setting it apart from tools that focus on shallow neural network
models [13, 35]. Other open-source alternatives like AutoGluon [11]
and H2O [7] have their own shortcomings, like fixed-sized pipelin-
ing of operators and a more limited search space for neural network
architectures. Moreover, AutoML services hosted on large cloud
platforms [2, 33] encounter obstacles that hinder user adoption. In-
deed, services like Google’s VertexAI [16] or Azure’s AutoML [32]
are aimed at enterprise customers and involve steep monetary ex-
penses, making them less accessible to independent researchers.

3 METHODOLOGY
We now describe our laboratory setup and the experimental design
we followed to shed light on whether NAS techniques can help fuel
the development of more effective and efficient WF attacks.

3.1 Laboratory Setup
AutoKeras configuration. We bootstrap AutoKeras’ DNN explo-
rations in two different ways, either by a) starting to explore a space
of possible DNN typologies from scratch, or b) starting to explore
other DNN typologies loosely based on a given DNN architecture.

To allow AutoKeras to explore DNN architectures from scratch,
we limited ourselves to specify the input and output layers of the
DNN. Specifically, we set an image-input and a classification-head
block. The choice of image-input informs AutoKeras to generate
DNN architectures inspired by the computer vision domain, which
have been shown to produce successful results for network traffic

2



A First Look at Generating Website Fingerprinting Attacks via Neural Architecture Search WPES ’23, November 26, 2023, Copenhagen, Denmark

classification [29, 41]. In turn, to match the overall topology of
DF, we specifically laid out a conv-block, followed by a dense-block,
and a classification-head. This mimics the general architecture of
state-of-the-art WF attacks, by generating a block driven by con-
volutional neural networks that is then connected to a block of
densely connected neurons, before attempting classification.

For each bootstrapping method, we run Autokeras with three
of its different tuners, i.e., hyperparameter optimizers: a) a greedy
tuner, that combines random search and a greedy algorithm; b) a
bayesian tuner, based on Gaussian process models [43], and; c) the
hyperband tuner, based on bandit algorithms [28].
Dataset.We conduct our experiments with the closed-world DS-19
dataset [14], consisting of 100 unique website traces where each
website is visited 100 times via Tor. Website traces contain direc-
tional and timing data related to Tor cells (estimated from Tor
packets [47]), and each trace is either truncated to 5000 cells or
padded with zeros if its original length is shorter. We split the data
into 80% training, 10% validation, and 10% testing sets, and ensured
that every model would be trained in the same split of the data.
Attacks and defenses. In our study, we compare the effectiveness
and efficiency of the DNN models discovered by AutoKeras with
the Tik-Tok [37] WF attack. We chose Tik-Tok as it is typically used
as the benchmark attack that new WF defenses’ proposals should
be able to defend against [30] and because of its reliance on full
trace information (both directional and timing-related data). We use
the default Tik-Tok architecture (i.e., the DF model with directional-
timing vectors as input), and parameters in our experiments.

Inspired by Veicht et al. [44], we assess the effectiveness of Tik-
Tok and AutoKeras-generated models on a set of relevant WF de-
fenses which are accompanied by high-fidelity simulators [15]. We
use these simulators to generate defended traffic from the pre-
recorded undefended traces contained in the DS-19 dataset. Con-
cretely, we make use of the WTF-PAD, FRONT, CS-BuFLO, and
Tamaraw defenses (see Appendix A.1 for each defense’s setup).
Laboratory testbed. For our experiments, we relied on 3 machines,
each configured with a 3.23 GHz AMD EPYC 7302 16-Core Proces-
sor, an NVIDIA A100 40 GB GPU and 74 GB RAM. We used these
machines to train the Tik-Tok and AutoKeras-generated models.

3.2 Experimental Design
We configured AutoKeras to use an exploration budget of 30 or 100
trials, i.e., AutoKeras tries 30 or 100 different combinations of DNN
topologies and hyperparameter configurations before outputting
the best model found, as guided by each of the tuners we used.
To select the number of epochs to train each model, we started
by inspecting the convergence of the Tik-Tok model on the DS-19
dataset, observing that it would converge after about 30 epochs
(see Figure 2 in Appendix A.2). Thus, we opted to train AutoKeras’
models in two settings: a) for the same number of epochs (30), and b)
for 50 epochs, for understanding whether AutoKeras’ models could
benefit from additional training time. As AutoKeras’ image-input
node required a square vector as input, we reshaped our feature
vectors to be of size 71x71 (5041 cells), padding with trailing zeros.
Metrics. We use accuracy to compare the effectiveness of the
AutoKeras-generated models with that of the Tik-Tok WF attack.
Then, to gauge the efficiency of AutoKeras-generated DNNs, we

Table 1: Model comparison on undefended traces (after ex-
ploration). Unless stated, AutoKeras uses the greedy tuner.

Model Trials Epochs Accuracy
Train. Time
(s/epoch)

Inf. Time
(ms/batch)

Total
Parameters

Tik-Tok — 30 0.966 3.0 4 3,985,444
Tik-Tok — 50 0.968 3.0 4 3,985,444
in-conv-dense 30 30 0.633 1.4 2 10,234,167
in-conv-dense 30 50 0.891 1.7 3 2,557,639
in-conv-dense 100 30 0.933 3.1 4 20,578,953
in-conv-dense 100 50 0.921 2.0 2 10,536,983
image-input 30 30 0.931 14.9 16 23,792,615
image-input 30 50 0.961 16.2 20 23,792,615
image-input 100 30 0.956 26.9 31 42,863,079
image-input 100 50 0.965 17.9 19 23,792,615
w/ bayes. opt. 100 50 0.954 18.9 18 21,066,383
w/ hyperband 100 50 0.919 17.4 21 42,831,460

measure themodels’ number of parameters and themodels’ inference
time per batch (32 samples each). We also collect information on the
models’ training time, allowing us to gauge how much time an ad-
versary would be required to spend when, for instance, periodically
retraining models to mitigate concept drift [6, 26].

4 EXPERIMENTAL RESULTS
Next, we assess the ability of AutoKeras models’ to fingerprint
undefended (Section 4.1) and defended (Section 4.2) Tor traffic.

4.1 Attacking Undefended Tor Traces
Table 1 depicts a comparison of the Tik-Tok model with the most
accurate models generated after each AutoKeras exploration, for a
given combination of epochs (30 or 50) and trials (30 or 100), over
the undefended Tor traces included in the DS-19 dataset.
AutoKeras models obtain similar accuracy v.s. Tik-Tok. The
table shows that the most accurate models produced by AutoKeras
(in bold) obtain a similar accuracy to that of Tik-Tok on undefended
Tor traces. For instance, the most accurate AutoKeras model based
on in-conv-dense achieved an accuracy of 93.3%, while the most ac-
curate AutoKeras model based on image-input achieved an accuracy
of 96.5%. While these two models are comparable in the number of
total parameters (∼20M), we see that the best image-input model
achieved an accuracy which is only 0.3% away from that obtained
by Tik-Tok when trained for the same number of epochs.
The greedy tuner allowsAutoKeras to generatemore accurate
models within our maximum exploration budget.We can also
see from the table that the use of a greedy tuner allows AutoKeras
to build more accurate models for the maximum number of trials
we considered in our experiments (trials = 100). For instance, while
image-input achieves an accuracy of 96.5% when using the greedy
tuner, the bayesian and hyperband tuners reach an accuracy of
95.4% and 91.9%, respectively. Since the literature suggests that the
use of the two latter tuners should result in better models than a
greedy approach [12], it may be the case that AutoKeras must be
run for a larger number of trials until improvements are noticeable.

Figure 1(a) and Figure 1(b) depict the maximum accuracy ob-
tained by each variant of the AutoKeras’ models (when using differ-
ent tuners) as the number of trials increase. Interestingly, Figure 1(a)
shows that the greedy tuner allows image-input to obtain a larger
accuracy for a smaller number of trials. Indeed, the bayesian tuner
can only produce a model as accurate as the greedy tuner after 20
trials, while the hyperband tuner is only able to produce a model

3



WPES ’23, November 26, 2023, Copenhagen, Denmark Singh et al.

(a) image-input (50 epochs). (b) in-conv-dense (30 epochs).

Figure 1: Validation acc. on undefended traces (100 trials).

which is ∼10% less accurate than the one produced using the greedy
tuner, for our limited exploration budget.

For in-conv-dense, we can observe in Figure 1(b) that the bayesian
tuner generally allows for more accurate models, being approxi-
mated by models generated via the greedy tuner after trials = 20.
We note, however, that the exploration guided by the bayesian and
hyperband tuners resulted in out of memory errors in AutoKeras
from trial = 30 onwards, precluding us from obtaining additional
models. These errors may stem from AutoKeras’ inability to accu-
rately estimate the available GPU memory in each trial [24].
in-conv-dense is faster than image-input. Table 1 shows that
the most accurate model produced with the in-conv-dense layout
is both faster to train and faster to issue predictions than the ones
generated with the image-input layout, approximating the 3s per-
epoch training times and 4ms per-batch prediction times obtained
by Tik-Tok. Even though the most accurate in-conv-dense model
is significantly larger than Tik-Tok (an extra ∼16M params.) and
comparable in size to the most accurate image-input model (within
∼3M params.), it can issue predictions at the same rate as Tik-Tok.
This result suggests that providing pre-existing DNN layouts to
AutoKeras may help balance the accuracy and performance of the
obtained models. Appendix A.3 includes a closer comparison of the
DNN layout of the best in-conv-dense and image-input models.

Overall, AutoKeras’ in-conv-densemodels enable a faster training
and prediction time than Tik-Tok, albeit at the cost of effectiveness
(e.g., see in-conv-dense, 50 epochs, 100 trials). These models may be
useful in scenarios where adversaries wish to issue predictions at
faster paces and can tolerate larger misclassification rates.

4.2 Attacking Defended Tor Traces
To experiment with AutoKeras’ ability to build accurate models
targetting defended Tor traffic, we conducted a set of experiments
where we select the most effective AutoKeras configurations for
undefended traces (⟨image-input, 50 epochs, 100 trials⟩ and ⟨in-
conv-dense, 30 epochs, 100 trials⟩ with a greedy tuner), and run a
new exploration over each of the defended datasets.

Table 2 reveals that image-input models can obtain an accu-
racy which is comparable to Tik-Tok for adaptive padding (WTF-
PAD) and the more secure constant-rate (CS-BuFLO and Tamaraw)
defenses. Perhaps more interestingly, image-input models gener-
ated over the traces of the two random padding defense (FRONT)
variants reach an accuracy of 86.3% and 75.9%, respectively, repre-
senting an increase of 5.6% and 8.0% when compared to Tik-Tok.
Similarly to the models built over undefended traces, image-input
models tend to be larger in size (up to ∼14×) and take from 2.5 to
9× longer to issue predictions (see Appendix A.4 – Table 3).

Table 2: Accuracy comparison on defended DS-19 traces.

Defense Tik-Tok

AutoKeras
in-conv-dense

⟨100trials, 30epochs⟩

AutoKeras
image-input

⟨100trials, 50epochs⟩
WTF_PAD 0.920 0.642 0.918
FRONT_T1 0.807 0.462 0.863
FRONT_T2 0.679 0.207 0.759
CS_BuFLO 0.116 0.094 0.117
Tamaraw 0.137 0.101 0.0730

Second, we can observe that the accuracy of AutoKeras’ in-conv-
dense models on defended traffic is substantially lower than that
achieved by Tik-Tok. This is especially noticeable when considering
the FRONT defense, where in-conv-dense performs 34–47% worse.
Our analysis of validation accuracy as exploration trials proceed for
defended traces (Appendix A.5 – Figure 4) suggests that additional
explorations may be required for AutoKeras to generate in-conv-
dense models whose effectiveness is comparable to Tik-Tok’s.

Overall, our preliminary results highlight the potential of NAS to
enhance WF attacks, encouraging us to develop a full-scale study.

5 LIMITATIONS AND FUTUREWORK
A single NAS tool. Our preliminary study solely focused on Au-
toKeras to extract insights over the applicability of NAS to the WF
domain. We aim to benchmark other prominent NAS tools, such as
BANANAS [49] or ZARTS [48] as part of our future work.
A small exploration budget. Our explorations with AutoKeras
were limited to 100 trials. For our most complex AutoKeras configu-
rations (i.e., produced via image-input), each 100 trials’ exploration
could be run in ∼16 hours. We aim to assess the performance of Au-
toKeras (and other NAS systems) with larger exploration budgets.
An accuracy-centric optimization. Our explorations focused
accuracy as the single metric to optimize. We plan to assess the
effectiveness and efficiency of AutoKeras’ models when optimizing
for a combination of metrics, such as accuracy and inference time.
A single dataset and trace representation. We aim to consider
other datasets in the WF literature to assess the generalizability
of our findings, and to assess whether NAS tools can yield im-
proved results when exposed to larger datasets (e.g., AWF [39], BigE-
nough [30]) that approximate the scale of those currently used for
benchmarking NAS tools [10]. Further experiments include the use
of recent trace representations [40] and the assessment of AutoML-
learned architectures’ robustness against concept drift [6, 26].
Lack of open-world experiments. Our study focused WF in the
closed-world setting. In the future, we aim to analyze the effective-
ness of NAS-generated DNNs in the open-world WF setting.

6 CONCLUSIONS
This preliminary study explores the use of NAS techniques to en-
hance WF attacks on Tor. The results of our evaluation, resorting
to the AutoKeras NAS tool, reveal that the generated DNNs can
achieve comparable accuracy to the Tik-Tok attack on undefended
Tor traffic, and achieve higher accuracy on traffic defended via ran-
dom padding schemes. Our future work includes the benchmarking
of a larger set of NAS tools and the expansion of our exploration
budget to better assess the benefits of NAS within the WF context.

4



A First Look at Generating Website Fingerprinting Attacks via Neural Architecture Search WPES ’23, November 26, 2023, Copenhagen, Denmark

ACKNOWLEDGMENTS
This work was supported in part by NSERC under grant DGECR-
2023-00037. We gratefully acknowledge our use of computational
resources from the Cybersecurity and Privacy Institute (CPI) at the
University of Waterloo.

REFERENCES
[1] Sanjit Bhat, David Lu, Albert Kwon, and Srinivas Devadas. 2019. Var-CNN: A

data-efficient website fingerprinting attack based on deep learning. Proceedings
on Privacy Enhancing Technologies Vol. 2019, 4, 292–310.

[2] Ekaba Bisong and Ekaba Bisong. 2019. Google automl: cloud vision. Build-
ing Machine Learning and Deep Learning Models on Google Cloud Platform: A
Comprehensive Guide for Beginners (2019), 581–598.

[3] Xiang Cai, Rishab Nithyanand, and Rob Johnson. 2014. Cs-buflo: A congestion
sensitive website fingerprinting defense. In Proceedings of the 13th Workshop on
Privacy in the Electronic Society. 121–130.

[4] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg. 2014.
A systematic approach to developing and evaluating website fingerprinting
defenses. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. 227–238.

[5] Giovanni Cherubin. 2017. Bayes, not Naïve: Security Bounds on Website Fin-
gerprinting Defenses. Proceedings on Privacy Enhancing Technologies Vol. 4,
135–151.

[6] Giovanni Cherubin, Rob Jansen, and Carmela Troncoso. 2022. Online website
fingerprinting: Evaluating website fingerprinting attacks on Tor in the real world.
In Proceedings of the 31st USENIX Security Symposium. 753–770.

[7] Darren Cook. 2016. Practical machine learning with H2O: powerful, scalable
techniques for deep learning and AI. " O’Reilly Media, Inc.".

[8] Roger Dingledine, Nick Mathewson, Paul F Syverson, et al. 2004. Tor: The second-
generation onion router. In Proceedings of the 13th USENIX Security Symposium,
Vol. 4. 303–320.

[9] Priyanka Dodia, Mashael AlSabah, Omar Alrawi, and Tao Wang. 2022. Exposing
the Rat in the Tunnel: Using Traffic Analysis for Tor-Based Malware Detection.
In Proceedings of the 2022 SIGSAC Conference on Computer and Communications
Security. 875–889.

[10] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural architecture
search: A survey. The Journal of Machine Learning Research Vol. 20, 1 (2019),
1997–2017.

[11] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy,
Mu Li, and Alexander Smola. 2020. AutoGluon-Tabular: Robust and Accurate
AutoML for Structured Data. arXiv preprint arXiv:2003.06505 (2020).

[12] Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and efficient
hyperparameter optimization at scale. In International conference on machine
learning. Proceedings of Machine Learning Research (PMLR), 1437–1446.

[13] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel
Blum, and Frank Hutter. 2015. Efficient and robust automated machine learning.
Advances in neural information processing systems Vol. 28 (2015).

[14] Jiajun Gong and TaoWang. 2020. Zero-delay lightweight defenses against website
fingerprinting. In Proceedings of the 29th USENIX Security Symposium. 717–734.

[15] Jiajun Gong, Wuqi Zhang, Charles Zhang, and Tao Wang. 2021. WFDefProxy:
Modularly Implementing and Empirically Evaluating Website Fingerprinting
Defenses. Computing Research Repository (CoRR) Vol. abs/2111.12629 (2021).

[16] Google. 2023. https://cloud.google.com/vertex-ai/docs/training/neural-
architecture-search/overview. Last Accessed: 2023-07-23.

[17] Sonia Gu. 2022. Leveraging Automated Machine Learning for Website Fingerprint-
ing. Master’s thesis. Princeton University - Electrical and Computer Engineering.

[18] Ankit Gupta and Alexander M Rush. 2017. Dilated convolutions for modeling
long-distance genomic dependencies. arXiv preprint arXiv:1710.01278 (2017).

[19] Jamie Hayes, George Danezis, et al. 2016. k-fingerprinting: A Robust Scalable
Website Fingerprinting Technique. In Proceedings of the 25th USENIX Security
Symposium. 1187–1203.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the 29th IEEE conference on
computer vision and pattern recognition. 770–778.

[21] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A survey of the state-
of-the-art. Knowledge-Based Systems Vol. 212 (2021), 106622.

[22] Jordan Holland, Paul Schmitt, Nick Feamster, and Prateek Mittal. 2021. New
directions in automated traffic analysis. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. 3366–3383.

[23] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. 2019. Automated machine
learning: methods, systems, challenges. Springer Nature.

[24] Haifeng Jin, François Chollet, Qingquan Song, and Xia Hu. 2023. AutoKeras: An
AutoML Library for Deep Learning. Journal of Machine Learning Research Vol.
24, 6 (2023), 1–6.

[25] Haifeng Jin, Qingquan Song, and Xia Hu. 2018. Efficient Neural Architecture
Search with Network Morphism. CoRR abs/1806.10282 (2018). arXiv:1806.10282

[26] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt. 2014.
A critical evaluation of website fingerprinting attacks. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security. 263–274.

[27] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew Wright.
2016. Toward an efficient website fingerprinting defense. In Proceedings of the
21st European Symposium on Research in Computer Security, 2016. 27–46.

[28] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2017. Hyperband: A novel bandit-based approach to hyperparameter
optimization. The journal of machine learning research Vol. 18, 1 (2017), 6765–
6816.

[29] Navid Malekghaini, Elham Akbari, et al. 2023. Deep learning for encrypted traffic
classification in the face of data drift: An empirical study. Computer Networks
Vol. 225 (2023), 109648.

[30] Nate Mathews, James K Holland, Se Eun Oh, Mohammad Saidur Rahman,
Nicholas Hopper, and Matthew Wright. 2023. SoK: A critical evaluation of effi-
cient website fingerprinting defenses. In Proceedings of the 44th IEEE Symposium
on Security and Privacy. 969–986.

[31] Pedro Mendes, Maria Casimiro, Paolo Romano, and David Garlan. 2023. Hy-
perJump: Accelerating HyperBand via Risk Modelling. Proceedings of the AAAI
Conference on Artificial Intelligence Vol. 37, 8 (2023), 9143–9152.

[32] Microsoft. 2023. https://azure.microsoft.com/en-ca/products/machine-learning/
automatedml. Last Accessed: 2023-07-23.

[33] DeepakMukunthu, Parashar Shah, andWeeHyong Tok. 2019. Practical automated
machine learning on Azure: using Azure machine learning to quickly build AI
solutions. O’Reilly Media.

[34] Steven J Murdoch and George Danezis. 2005. Low-cost traffic analysis of Tor. In
Proceedings of the 26th IEEE Symposium on Security and Privacy. 183–195.

[35] Randal S Olson and Jason H Moore. 2016. TPOT: A tree-based pipeline optimiza-
tion tool for automating machine learning. InWorkshop on automatic machine
learning. Proceedings of Machine Learning Research (PMLR), 66–74.

[36] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas Zin-
nen, Martin Henze, and Klaus Wehrle. 2016. Website Fingerprinting at Internet
Scale. In Proceedings of the 23rd Network and Distributed System Security Sympo-
sium.

[37] Mohammad Saidur Rahman, Payap Sirinam, Nate Mathews, Kantha Girish Gan-
gadhara, and Matthew Wright. 2020. Tik-Tok: The utility of packet timing in
website fingerprinting attacks. In Proceedings on Privacy Enhancing Technologies
(PoPETs), Vol. 2020. 5–24. Issue 3.

[38] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-yao Huang, Zhihui Li, Xiaojiang
Chen, and Xin Wang. 2021. A Comprehensive Survey of Neural Architecture
Search: Challenges and Solutions. Comput. Surveys Vol. 54, 4, Article 76 (2021).

[39] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and Wouter
Joosen. 2018. Automated website fingerprinting through deep learning. In Pro-
ceedings of the 25th Network and Distributed Systems Security Symposium.

[40] Meng Shen, Kexin Ji, Zhenbo Gao, Qi Li, Liehuang Zhu, and Ke Xu. 2023. Sub-
verting Website Fingerprinting Defenses with Robust Traffic Representation. In
Proceedings of the 32nd USENIX Security Symposium. 607–624.

[41] Payap Sirinam, Mohsen Imani, Marc Juarez, and MatthewWright. 2018. Deep fin-
gerprinting: Undermining website fingerprinting defenses with deep learning. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. 1928–1943.

[42] Leslie N. Smith and Nicholay Topin. 2016. Deep Convolutional Neural Network
Design Patterns. arXiv:1611.00847 [cs.LG]

[43] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian
optimization of machine learning algorithms. Advances in neural information
processing systems Vol. 25 (2012).

[44] Alexander Veicht, Cedric Renggli, and Diogo Barradas. 2023. DeepSE-WF: Unified
Security Estimation for Website Fingerprinting Defenses. Proceedings on Privacy
Enhancing Technologies Vol. 2 (2023), 188–205.

[45] Steven Walczak and Narciso Cerpa. 1999. Heuristic principles for the design
of artificial neural networks. Information and Software Technology 41, 2 (1999),
107–117.

[46] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. 2014.
Effective Attacks and Provable Defenses for Website Fingerprinting. In Proceed-
ings of the 23rd USENIX Security Symposium. 143–157.

[47] Tao Wang and Ian Goldberg. 2013. Improved website fingerprinting on Tor.
In Proceedings of the 12th ACM Workshop on Privacy in the Electronic Society.
201–212.

[48] Xiaoxing Wang, Wenxuan Guo, Jianlin Su, Xiaokang Yang, and Junchi Yan. 2022.
ZARTS: On Zero-order Optimization for Neural Architecture Search. In Advances
in Neural Information Processing Systems, Vol. Vol. 35. 12868–12880.

[49] Colin White, Willie Neiswanger, and Yash Savani. 2021. BANANAS: Bayesian
Optimization with Neural Architectures for Neural Architecture Search. Proceed-
ings of the Advancement of Artificial Intelligence (AAAI) Conference on Artificial
Intelligence Vol. 35, 12 (2021), 10293–10301.

[50] Tong Yu and Hong Zhu. 2020. Hyper-parameter optimization: A review of
algorithms and applications. arXiv preprint arXiv:2003.05689 (2020).

5

https://cloud.google.com/vertex-ai/docs/training/neural-architecture-search/overview
https://cloud.google.com/vertex-ai/docs/training/neural-architecture-search/overview
https://arxiv.org/abs/1806.10282
https://azure.microsoft.com/en-ca/products/machine-learning/automatedml
https://azure.microsoft.com/en-ca/products/machine-learning/automatedml
https://arxiv.org/abs/1611.00847


WPES ’23, November 26, 2023, Copenhagen, Denmark Singh et al.

Figure 2: Validation acc. of Tik-Tok.

InputLayer

SeparableConv1D

SeparableConv1D

CastToFloat32

MaxPooling1D

Dense

Flatten

Dropout

BatchNormalization

Dense

Dropout

ReLU

Softmax

X2

X2

InputLayer

Normalization

ExpandLastDim

CastToFloat32

Resizing

GlobalAveragePooling2D

resnet50 Functional

Concatenate

Dropout

Softmax

Dense

InputLayer

Activation

BatchNormalization

ConvID

MaxPooling1D

Dense

Flatten

Dropout

BatchNormalization

Dense

Dropout

Activation

X2

X4

a) Tik-Tok b) in-conv-dense c) image-input

Softmax

Figure 3: Comparison of the most accurate models.

Table 3: Inference time (per batch) andmodel size comparison
(number of parameters) on defended DS-19 traces.

Defense Tik-Tok
in-conv-dense

⟨100trials, 30epochs⟩
image-input

⟨100trials, 50epochs⟩
WTF_PAD 4ms (3,985,444) 5ms (431,721) 37ms (58,575,847)
FRONT_T1 4ms (3,985,444) 6ms (570,683) 22ms (21,066,383)
FRONT_T2 4ms (3,985,444) 5ms (429,369) 22ms (21,066,380)
CS_BuFLO 4ms (3,985,444) 14ms (2,599,287), 26ms (58,536,548)
Tamaraw 4ms (3,985,444) 4ms (2,597,991) 10ms (25,431,012)

(a) image-input (50 epochs). (b) in-conv-dense (30 epochs).

Figure 4: Validation acc. on defended traces (100 trials).

A APPENDIX
1. Defense configurations. We follow the methodology of Veicht
et al. [44] and use default parameters for WF defenses, as suggested
in their original papers. We used the WTF-PAD implementation
from the WFES repository [5], and two versions of FRONT [14]
with parameters: 𝑁𝑐 = 𝑁𝑠 = 1700 and𝑊𝑚𝑖𝑛 = 1,𝑊𝑚𝑎𝑥 = 14 for
FRONT_T1, and 𝑁𝑐 = 𝑁𝑠 = 2500 for FRONT_T2. Due to its larger
sampling window, FRONT_T2 induces more dummy packets in
the trace when compared to FRONT_T1. For CS-BuFLO [3] and
Tamaraw [4], we used: 𝑑 = 1 and 2−4 ∗ 1000 ≤ 𝜌 ≤ 23 ∗ 1000, along
with 𝜌𝑜𝑢𝑡 = 0.04 and 𝜌𝑖𝑛 = 0.012 with 𝐿 = 50, respectively.
2. Tik-Tok convergence. Figure 2 depicts the accuracy obtained
by the Tik-Tokmodel on the validation set as the number of training
epochs increases (until 50 epochs). We can see a trend where the
model’s accuracy tends to stabilize at around 30 epochs for the
FRONT variants. While accuracy for undefended and defended
traces seems to converge sooner, the accuracy of the model is not
significantly degraded when trained for a larger number of epochs.
3. Comparison of DNN layouts. Figure 3 compares the layout of
the most accurate models generated by AutoKeras on undefended
Tor traffic. The architecture of the in-conv-dense model is smaller
than that of the Tik-Tokmodel, as it contains only two convolutional
blocks (i.e., a combination of Conv1D, MaxPooling, and Dropout),
whereas the Tik-Tok model contains four convolutional blocks. In
tandem with our evaluation results, this suggests that relatively
smaller models can achieve comparable accuracy to that of Tik-Tok.

In turn, more complex models produced by image-input lay-
outs achieve a comparable accuracy with respect to Tik-Tok on
undefended traces. Specifically, we see that the image-input model
leverages a ResNet50 [20] block (i.e, a complex convolutional neural
network that is 50 layers deep). The use of this larger model can
outperform Tik-Tok on specific WF defenses (see Section 4.2).
4. Details on evaluation over defenses. Table 3 compares the
inference time (per batch) and the total number of parameters, resp.,
of Tik-Tok’s DNN and that of the most accurate models generated
by AutoKeras (after 100 trials) on defended Tor traffic.
Model inference time. The inference time for in-conv-dense models
is comparable to that of Tik-Tok, whereas image-input models can
take from 2.5 to ∼9× longer times for issuing predictions.
Model size.We see that in-conv-densemodels are∼1.5 to∼9× smaller
than the Tik-Tok model, whereas image-input models are ∼5 to
∼14.5× larger. The usage of the more complex ResNet blocks instead
of convolutional blocks is the primary reason for this increase in
size, but the resulting image-input models were able to outperform
Tik-Tok against FRONT, a random padding defense.
5. AutoKeras’ models convergence. Figure 4 depicts the evolu-
tion of the maximum validation accuracy obtained by both AutoK-
eras variants on defended traces, as the number of exploration trials
increase. Interestingly, image-input models seem to converge faster
than in-conv-dense models for the adaptive and random padding
defenses considered in our evaluation. For instance, we can see
that image-input obtains over 80% accuracy for WTF-PAD and
FRONT_T1 in under 25 exploration trials, whereas image-input
models reach a lower accuracy plateau only after 50 trials. This
highlights the ability of the (more complex) image-input models to
better learn from noisier (defended) Tor traffic samples.

6


	Abstract
	1 Introduction
	2 Background
	2.1 Website Fingerprinting
	2.2 AutoML and Neural Architecture Search

	3 Methodology
	3.1 Laboratory Setup
	3.2 Experimental Design

	4 Experimental Results
	4.1 Attacking Undefended Tor Traces
	4.2 Attacking Defended Tor Traces

	5 Limitations and Future Work
	6 Conclusions
	Acknowledgments
	References
	A Appendix

