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Abstract— In this paper, we revisit the problem of dis-
tributed coverage with a fleet of robots in convex and non-
convex environments. In the majority of approaches for
this problem, the environment is partitioned, each robot
is assigned to a partition and each robot moves toward a
location that improves the service quality in its partition.
These approaches converge to a locally optimal solution,
however, there is no guarantee on the quality of the locally
optimal solution with respect to the globally optimal solu-
tion. We propose distributed algorithms for the coverage
problem in convex continuous, non-convex continuous and
metric graphs. We consider sub-additive sensing functions,
which capture scenarios where the service quality of a loca-
tion is proportional to the distance between the robot and
the location. For these sensing functions, we provide the
first constant factor approximation algorithms for the dis-
tributed coverage problem. We also characterize the time
and communication complexity of the proposed algorithm
and show that the robots converge to a near-optimal solu-
tion in polynomial time. The approximation factor guaran-
tees on the solution quality requires twice the conventional
communication range, however, the extensive simulation
results show that the proposed algorithm provides close
to optimal solution with the conventional communication
range as well, and outperforms several existing algorithms
in convex, non-convex continuous environments and met-
ric graphs.

Index Terms— Multiple and Distributed Robots, Sensor
Networks, Coverage Control

I. INTRODUCTION

Multi-robot teams and mobile sensor networks are used in
various applications such as environmental monitoring [1], and
surveillance [2]. Deploying the robots in an environment in a
distributed manner is a well studied multi-robot problem [3]–
[7] known as the distributed coverage control problem. In
this problem, the robots are capable of sensing or servicing
events arriving in the environment according to a known
spatial distribution. The cost of sensing an event is a function
of the distance from the robot to that event. The objective
is to deploy a set of robots to cover the environment such
that the total coverage cost of the environment is minimized.
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The existing distributed algorithms to solve this problem
converge to a locally optimal solution with no guarantees on
the quality of the solution. In this paper, we provide distributed
approximation algorithms to solve the problem in non-convex
continuous and discrete environments.

Contributions: Our main contributions are fourfold. First,
given an instance of the coverage problem in a non-convex
continuous environment, we generate an instance of the cov-
erage problem for a metric graph and we characterize the
quality of solution to the discrete problem for the continuous
instance (Section III). Second, we propose a distributed cov-
erage control algorithm for the coverage problem on metric
graphs (Section IV) and prove that the proposed algorithm
is a constant factor approximation algorithm if the com-
munication range is twice the conventional communication
range (Section V). The proposed algorithm is the first de-
terministic constant factor approximation algorithm for the
coverage control problem with multiple robots. In Section VI,
we characterize the time and communication complexity of the
proposed algorithm and show that the algorithm converges to a
near-optimal solution in polynomial time and limited commu-
nication. Finally, we evaluate the performance of the proposed
algorithm in convex, non-convex continuous and metric graphs
and show that the proposed algorithm outperforms the state-of-
the-art algorithms with an extensive set of experiments with
a significant margin even with conventional communication
range. We also implement the proposed algorithm in ROS and
compare the solution quality to the existing algorithm with a
team of six robots in a simulated real-world scenario.

A preliminary version of this work appeared in [8], which
proposed a distributed algorithm for the synchronous case
that achieved a constant factor approximation along with a
preliminary numerical validation. In this paper, we extend
the results in [8] in the following ways. First, we provide
bounds on the run-time and the number of messages passed
between the robots. In contrast to the existing distributed
coverage control algorithms in metric graphs, we prove that
the proposed algorithm converges to a near-optimal solution
in a polynomial time. Second, we extend the detailed de-
scription of the algorithm and approximation algorithm anal-
ysis. Third, we provide examples of locally optimal solutions
where the conventional algorithms can not escape, while the
proposed algorithm achieves the global optimal. Fourth, we
show that the proposed algorithm can be implemented in
an asynchronous manner while preserving the performance
guarantees. Fifth, we extend the experimental results in three
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ways: 1) we compare to two state-of-the-art algorithms for
non-convex environments, 2) we characterize the amount of
communication between the robots, and 3) we perform high-
fidelity simulations in the robot simulator ROS/Gazebo to
benchmark performance in real-world scenarios.

Related Work: Cortes et al. [3] introduced the distributed
coverage control problem with mobile sensor networks in
convex environments, and proposed a distributed algorithm
based on Lloyd’s descent method which converges to a locally
optimal solution. The partition of each robot is defined using
Voronoi partitioning, and each robot senses only the events
arriving in its partition. Robots communicate only with the
robots in their neighboring partitions to implement the algo-
rithm.

Different variations of the coverage control problem are
studied in the literature. In [9], the authors consider the case
where the distribution of events is not known by the robots
and present a method for the robots to approximate this
distribution and to decrease the coverage cost with respect to
the approximated distribution. The measurement error in the
location of the neighboring robots is considered in [10]. The
authors in [11] consider heterogeneous robots that have dif-
ferent maximum velocities but consider the coverage problem
on a circle instead of a planar environment. Coverage control
with communication limitations is studied in [12] and [13].

Building on Lloyd’s descent-based algorithm in [3], there
have been extensive studies on the coverage control problem in
non-convex environments. Authors in [14] augment Lloyd’s al-
gorithm with a local path planning algorithm to avoid obstacles
in non-convex polygonal environments. Another approach to
tackle non-convex environments is to partition the environment
by taking the obstacles into consideration. For instance, in [15]
the environment is partitioned considering geodesic distances,
and in [16], [17], the partitions are constructed based on
the visibility of the robots in the presence of obstacles.
In [18], [19], the authors propose a mapping from the non-
convex environment to a convex region and utilize the Lloyd’s
based algorithm [3] to converge to a locally optimal solution
in the mapped convex environment. Then, the solution is
mapped back to the original environment. In contrast to the
aforementioned approaches, we create a discrete representation
of the non-convex environment, and solve the corresponding
coverage problem on the discrete environment and provide
guarantees on the solution quality.

The approach of converting a continuous non-convex en-
vironment to a discrete environment is used in [4], [20],
[21]. The proposed method in [21] represents the non-convex
environment as a graph. The continuous environment is parti-
tioned using the geodesic distances. Each robot moves towards
the closest vertex to the centroid of its partition. We also
represent the non-convex environment as a graph but are
able to characterize the cost of the solution obtained from
the discretized environment in the corresponding continuous
environment as a function of the sampling density.

The problem of discretized coverage control is the k-median
problem [22]–[24] where the objective is to place k robots on
vertices of the graph to minimize the total service time. A
centralized approximation algorithm was presented for the k-

median problem in [22], and the analysis of our distributed
approximation algorithm leverages this centralized approxi-
mation algorithm. The authors in [24] consider the k-median
problem with mobile robots and provide an approximation
algorithm for the objective of minimizing a linear combination
of the relocation cost of the mobile robots and the expected
service time of the demands. In [25], we present an approx-
imation algorithm for the mobile facility location problem
with a time horizon, where the demands arrive sequentially
over time. The authors in [26] present a distributed algorithm
that converges to a local optimum. Their algorithm requires
the robots to know the information of the neighbors of their
neighbors. This assumption is analogous to the communication
range in this paper, however, we establish approximation
guarantees on the solution quality of the proposed algorithm.
Authors in [27] provide a randomized distributed algorithm
for the k-median problem with constant factor approximation
in Euclidean environments. In this paper, we consider more
general non-convex environments and provide a deterministic
approximation algorithm. In [28], the authors consider the
problem of maximizing the number of vertices covered by
the robots with limited sensor range in undirected graphs with
a game-theoretic approach. In contrast, we are considering the
problem of maximizing the service quality.

II. CONTINUOUS AND DISCRETE COVERAGE PROBLEMS

We begin by reviewing the coverage problems in both
continuous [3] and discrete environments [26].

A. Continuous Environment
Consider m mobile robots in a compact environment with

obstacles and let X be the obstacle free subset of the envi-
ronment. There is an event distribution φ : X → R+ defined
over the environment. Let d(p, q) be the length of the shortest
obstacle free path between two locations p and q in X . The
sensing cost of an event at location p by a robot at q is a
strictly non-decreasing function f : R+ → R+ of d(p, q).
Following the non-convex problem formulation in [14], which
extends the original formulation in [3], the continuous problem
is defined as the problem of finding the set of locations in the
environment for the robots that minimizes the sensing cost of
the events, i.e.,

min
Q∈Xm

H(Q) = min
Q∈Xm

∫
X

min
qi∈Q

f(d(p, qi))φ(p)dp. (1)

Without loss of generality, in the rest of the paper we assume
that

∫
X φ(p)dp = 1. Observe that the best sensing cost for an

event is provided by the closest robot to that event location.
Then for a given configuration Q, we partition the environment
into Voronoi subsets as follows:

Vi(Q) = {p ∈ X |d(p, qi) ≤ d(p, qj) ∀qj ∈ Q \ {qi}}.

The robots move according to some dynamics q̇i = g(qi, ui)
where the computation of the shortest path between two
configurations of the robot is tractable. Typically first order
dynamics g(ri, ui) = ui is considered for the robots in cover-
age control literature [3]. We are interested in the distributed
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version of the coverage problem, where the robots have local
information on the other robots and each robot computes its
control input locally.

B. Discrete Environment

Consider a metric graph G = (S, E, c) where S is the vertex
set, E is the set of edges between the vertices, c is the metric
edge cost and let w be the weight on the vertices. Given a team
of m robots, the coverage problem on graph G, is the problem
of finding a set of m locations to optimally cover the vertices
of G, i.e., minimize D(Q) =

∑
v∈S minq∈Q w(v)c(v, q). For

a given configuration Q ∈ Sm, we can partition the vertices
into m subsets

Wi(Q) = {u ∈ S|c(u, qi) < c(u, qj) ∀qj ∈ Q \ {qi}}.

If there exists a vertex that has equal distance to two or
more robots in Q, then the vertex is assigned to the robot with
smaller unique identifier (UID). Robots travel on the edges of
the graph and the control input to a robot is a sequence of
edges leading to its destination vertex.

Centralized Approximation Algorithm: The centralized ver-
sion of this problem is a well-known NP-hard problem called
the k-median problem [22]. The best known approximation
algorithm for this problem on metric graphs is a centralized
local search algorithm which provides solutions within a con-
stant factor of the optimal [24]. Starting from a configuration
Q, the centralized local search algorithm swaps p vertices in
Q at a time with a subset of p vertices in S \ Q. If the new
configuration improves the coverage by at least some ε0 > 0,
then we call this move a valid local move. The procedure
terminates if there are no more valid swaps improving the
total sensing cost. We will refer to this local search algorithm
as CENTRALIZEDALG in the rest of the paper. The solution
obtained from CENTRALIZEDALG is within 3 + 2/p + o(ε0)
of the globally optimal solution.

We focus on the distributed version of this problem in-
troduced in [26] where the robots use local information to
compute their control input. Next, we establish the connection
between the continuous and discrete coverage problems.

III. FROM A CONTINUOUS TO A DISCRETE PROBLEM

To establish a connection between the coverage problem
in continuous and discrete environments, we first convert the
continuous coverage problem to a coverage problem in a
discrete environment through sampling of the environment.

Let S be the set of samples of X with dispersion ζ [29],
where ζ is the maximum distance of any point in the
environment X from the closest point in S, i.e., ζ =
maxp∈X minu∈S d(p, u), (See Figure 1). We construct a met-
ric graph G = (S, E, c) on sampled locations S, where E is
the edge set and c is a function assigning costs to the edges of
the graph. The cost of an edge between two sampled locations
u, v ∈ S is c(u, v) = f(d(u, v)). Let σ(v) for v ∈ S be the
points in X closer to v than other samples in S, i.e.,

σ(v) = {p ∈ X |d(p, v) ≤ d(p, u) ∀u ∈ S \ {v}}.

Fig. 1: Sampled locations in an environment with dispersion ζ.

With a slight abuse of notation, let σ−1(p) be the closest
sample in S to p ∈ X . The function w : S → R+ assigning
weights to the vertices of the graph is w(v) =

∫
p∈σ(v) φ(p)dp.

We assume the following property on the sensing function.
Assumption III.1 (Subadditivity of sensing function): We

assume that the sensing cost function f is a sub-additive
function, i.e., f(d(p, u) + d(u, v)) ≤ f(d(p, u)) + f(d(u, v)).

For instance f(x) =
√
x and f(x) = x are sub-additive

functions.
Remark III.2: Sub-additive sensing functions arise in sev-

eral applications such as dynamic vehicle routing prob-
lems [30], [31] and facility location problems [32], where the
sensing cost is the distance traveled by the clients. However,
several works [3], [33] consider the square of the distance
between the robot and the sensed location (partially due its
nice properties in analysis, such as differentiability), which
does not satisfy Assumption III.1.

Due to Assumption III.1, the cost on the edges of the graph
satisfies the triangle inequality, i.e., for all u, v, z in S

c(u, v) = f(d(u, v)) ≤ f(d(u, z) + d(z, v))

≤ f(d(u, z)) + f(d(z, v)) = c(u, z) + c(z, v).

The following result establishes a connection between the
sensing costs of an approximate solution to the discrete
coverage problem and the optimal coverage in continuous
environment.

Theorem III.3: Consider a continuous coverage problem on
environment X with optimal solution S∗, and its correspond-
ing discrete instance obtained through the set of samples
S with dispersion ζ. Then if Q is the solution obtained
from an α-approximation algorithm for the discrete coverage
problem instance, the sensing cost of Q on the corresponding
continuous problem is H(Q) ≤ αH(S∗) + o(f(ζ)).

Proof: We have,

H(Q) =

∫
X

min
qi∈Q

f(d(qi, p))φ(p)dp

≤
∫
X

min
qi∈Q

f(d(qi, σ
−1(p)) + d(σ−1(p), p)))φ(p)dp

≤
∫
X

min
qi∈Q

[f(d(qi, σ
−1(p))) + f(d(σ−1(p), p))]φ(p)dp
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Continuing we get

H(Q) ≤
∫
X

min
qi∈Q

f(d(qi, σ
−1(p)))φ(p)dp

+

∫
X
f(d(σ−1(p), p))φ(p)dp

≤ D(Q) + f(ζ)

∫
X
φ(p)dp = D(Q) + f(ζ). (2)

where the first inequality is due to the triangle inequality and
the second inequality is due to Assumption III.1. Let S∗ =
{q∗i |i ∈ [m]} be the optimal configuration of the continuous
problem, and S∗G be the configuration constructed by moving
each robot location in S∗ to the closest sampled location in
S. Also note that,

D(S∗G) =
∑
qi∈S∗G

∑
u∈Wi

c(u, qi)w(u)

=
∑
i∈[m]

∑
u∈Wi

c(u, qi)

∫
p∈σ(u)

φ(p)dp

=
∑
qi∈S∗G

∑
u∈Wi

∫
p∈σ(u)

f(d(u, qi))φ(p)dp

≤
∑
qi∈S∗G

∑
u∈Wi

∫
p∈σ(u)

min
qj∈S∗G

f(d(qj , p))

+
∑
qi∈S∗G

∑
u∈Wi

[2f(d(u, p)) + f(d(p, u))]φ(p)dp

≤ H(S∗G) + 3f(ζ), (3)

where the first inequality is due to triangle inequality and
Assumption III.1. Furthermore, we have,

H(S∗G) =
∑
qi∈S∗G

∫
Vi(S∗G)

f(qi, p)φ(p)dp

≤
∑
qi∈S∗G

∫
Vi(S∗)

f(qi, p)φ(p)dp

≤
∑
qi∈S∗G

∫
Vi(S∗)

f(d(q∗i , p))φ(p)dp+

∫
X
f(d(qi, q

∗
i ))φ(p)dp

≤ H(S∗) + f(ζ), (4)

where the second inequality is due to triangle inequality
and Assumption III.1. Let Q∗G be the optimal solution to
the discrete coverage problem on graph G, then D(Q) ≤
αD(Q∗G) ≤ αD(S∗G). Therefore, by Equations (2), (3) and (4),
we have, H(Q) ≤ αH(S∗) + (4α+ 1)f(ζ).

A 5-approximation algorithm for the centralized coverage
on metric graphs is provided in [22]. In the following section,
we provide the first distributed approximation algorithm for
the coverage in metric graphs.

IV. DISTRIBUTED ALGORITHM

In distributed coverage control algorithms for continuous
environments, and their adaptations to discrete environments,
the algorithm drives each robot to the position inside its par-
tition such that the sensing cost of its partition is minimized,
i.e., the centroid of its Voronoi cell in the continuous prob-
lem. Although these algorithms converge to locally optimal

(a) Locally optimal configuration (b) Globally optimal configuration

Fig. 2: Example environment with 3n+ 1 vertices and n+ 1 robots

solutions, there are no global guarantees on the quality of the
solution. The following example provides a graph construction
where such “move to centroid” algorithms perform poorly.

Example IV.1: Consider the environment shown in Figure 2
with 3n + 1 vertices, n + 1 robots and unit costs for the
shown edges. We consider the metric completion of the shown
graph. The vertices are partitioned into two subsets: 1) V1
with 2n + 1 vertices and unit weights on the vertices and
2) V2 with n vertices of weights ε for some 0 < ε � 1.
The highlighted vertices show the configuration of the robots.
The configuration in Figure 2(a) is a locally optimal solution
under the move to centroid control law with global cost of
n(n + 1). However, the configuration shown in Figure 2(b)
provides a global cost of n+nε. Therefore, the locally optimal
solution provided by the move to centroid algorithm provides
a solution with cost at least n+1

1+ε of the optimal cost on the
shown instance. •

Observe that Example IV.1 depicts a scenario where the
locally optimal solution reached by conventional methods is
at least a factor of n of the optimal solution. The conventional
method may get stuck in local solutions far from the optimal
in more common scenarios. For instance, in scenarios where
two areas of an environment are connected by a corridor, and
a robot is positioned in the corridor. The robot can block
the movement of robots between the two areas, preventing
improvement to coverage using conventional methods.

A. High-level Idea

The basic idea of our distributed coverage algorithm is to
imitate the local-search algorithm for the k-median problem
(See Section II-B), namely CENTRALIZEDALG, in a dis-
tributed manner. The challenge in performing a local move in
the distributed manner is that the robots are only aware of the
partitions of their neighboring robots, therefore, the effect of a
local move on the global objective is not known to the robots.
However, we break down a local move in CENTRALIZEDALG
into a sequence of moves between neighbors. Let robot j with
position qj and neighbors N (j) be the closest robot to vertex
v. Then a local move of CENTRALIZEDALG swapping the
position qi of robot i with vertex v is equivalent to a sequence
of swaps inside Q between the neighboring robots and a move
from qj to v. Figure 3 shows an example of a local move in
the centralized algorithm performed by a sequence of local
moves.

For this distributed coverage algorithm, we define the mini-
mum communication range and neighboring robots as follows:
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Fig. 3: Local move in the centralized algorithm (green) and its
equivalent sequence of moves in the distributed algorithm (red).

Definition IV.2 (Neighbor robots): Given a configuration
Q, the set of neighbors of robot i is defined as

N (i) = {j ∈ [m]|d(qi, qj) ≤ 4dmax
ij }

where Vi is the Voronoi partition of robot i in the continuous
environment and

dmax
ij = max{max

p∈Vi

d(p, qi),max
p∈Vj

d(p, qj)}.
Remark IV.3: The conventional definition of neighbors in

the literature [3] is that two robots are neighbors if the
intersection of their Voronoi cell boundaries is not empty.
Therefore, the distance of two neighboring robots i and j
can be 2 max{maxp∈Vi

d(qi, p),maxp∈Vj
d(qj , p)}. In [26],

authors show that in environments represented as graphs,
with the conventional communication range, a move inside
a robot’s partition might change the partition of the neighbors
of their neighbors. Therefore, they assume that the robots
communicate with the neighbors of their neighbors, which is
analogous to twice the communication range needed to imple-
ment Lloyd’s based algorithms in continuous environments. In
Section VII, we evaluate the performance of the algorithm with
the conventional and our definition of neighbors.

We extend the definition of neighboring robots in a con-
tinuous environment to capture the cases where the graph
instance for the discrete coverage problem is given and the
underlying continuous environment is unknown. Consider a
graph instance G = (V,E, c), then for each edge (u, v) ∈ E
we add a dummy vertex z with zero weight and replace edge
(u, v) by two edges (u, z) and (z, v) such that c(u, v) =
2c(u, z) = 2c(z, v). We let c(u, v) for (u, v) /∈ E be the
length of the shortest path in G between u, v. Let Wi be the
partition of robot i, in the resulting graph. Then the equivalent
definition of the neighboring robots is given as follows:

Definition IV.4 (Neighbors in graphs): Given a configura-
tion Q, the set of neighbors of robot i is defined as

N (i) = {j ∈ [m]|c(qi, qj) ≤ 4cmax
ij },

where cmax
ij = max{maxp∈Wi

c(p, qi),maxp∈Wj
c(p, qj)}}.

B. Detailed Description
We are now ready to provide a detailed description of the

proposed algorithm.
Algorithm Framework (Algorithm 1): For the ease of pre-

sentation, we provide a description of the algorithm in which
the robots perform local moves sequentially. Each robot is

assigned a unique identifier UID. Starting from an active robot,
say robot i, the robot will make the possible local moves using
Algorithm 2. If it can not make a local move, the robot will
become inactive and will send a completion message to the
neighboring robots via SENDCOMPLETIONMESSAGE (line 6
of Algorithm 1). After execution of the local move by a robot,
the robot becomes inactive. The next active robot to execute
the local move can be selected in a distributed manner using a
token passing algorithm [34], or any other method that ensures
each robot gets a turn at making a local move. Algorithm 1 is
repeated iteratively until none of the robots find a valid local
move and all of the robots have become inactive.

Algorithm 1 DISTRIBUTEDCOVERAGEALGORITHM

1: Each robot sets itself to active
2: while there exists an active robot do
3: for any active robot i ∈ {1, . . . ,m} do
4: if

∑
u∈Wi

c(u, qi) > 0 then
5: LOCALMOVE(i)
6: SENDCOMPLETIONMESSAGE()
7: end if
8: Robot i deactivates
9: end for

10: end while

Local Move of Robot i (Algorithm 2): At an iteration of
Algorithm 2, let the current configuration of robots be given by
Q = {q1, . . . , qm} where the vertices in the partition of robot
i are given by Wi. The robot i considers moving to a vertex
v ∈Wi from its current vertex qi. This move can only change
the sensing cost of the vertices in the neighboring robots’
partitions (See Lemma V.1 in Section V). Hence, the robot
i can calculate the new neighboring partitions after a potential
move to v. In line 2 of Algorithm 2, robot i calculates the
change in local objective δv due to this move for all v ∈Wi.
Since only robot i is executing Algorithm 2 at the current time,
δv also represents the change in the global objective function.
If minv∈Wi δv ≤ −ε0, robot i moves to q′i = arg min δv and
the iteration terminates (local move type 1). If there is no
valid local move of type 1, then robot i calculates the change
in local objective if it moves to v and a new robot appears at
qi, i.e.,

ρv =
∑

j∈N (i)

∑
u∈Rj(v)

w(u)[c(u, v)− c(u, qj)], (5)

where Rj(v) = {u ∈ Wj |c(u, qj) > c(u, v)} represents
the vertices in the partition of robot j that are closer to v
than the robot j at qj . Robot i then passes the message
with the set Γi = {ρv|v ∈ Wi} and a counter set to 1
to all its neighbors (line 7 of Algorithm 2) and waits for a
response (line 8 of Algorithm 2). If the response is a rejection
from all the neighbors, Algorithm 2 terminates. Otherwise
it selects the acceptance message with the largest change in
the objective and moves to the corresponding vertex. It also
sends an acknowledgement message to the neighbor k whose
message was selected so that robot k can move to qi.

Response of Other Robots (Algorithm 3): When a robot k
receives messages from its neighbors, it follows Algorithm 3.
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Algorithm 2 LOCALMOVE(i)
1: while ∃ a local move do
2: Calculate δv for all vertices in Wi

3: if minv δv ≤ −ε0 then
4: Move to v
5: else
6: Calculate Γi = {ρv|v ∈Wi} . Equation (5)
7: SENDMESSAGE(Γi, 1)
8: RECEIVEMESSAGE()
9: SENDACKNOWLEDGEMENT()

10: end if
11: end while

Since messages from only one sender robot are propagating
through the system at any time, it can select the message
with the smallest counter value if it receives messages from
multiple neighbors. The neighbor who sent the message with
the smallest counter value is called the parent of robot k.
It sends back a rejection message to all other neighbors. If
the counter value of the message was one, it means that the
message originated from its neighboring robot, say i. Then
robot k calculates the change in the sensing costs of the
vertices in Wk \ Rk(v) if it moves to vertex qi and robot
i moves to vertex v resulting in configuration Q′ = {qj |j ∈
N (k)} ∪ {v}, i.e.,

`v =
∑

u∈Wk\Rk(v)

min
q∈Q′

[c(u, q)− c(u, qk)]w(u), (6)

If minv(ρv + `v) ≤ −ε0, robot k decides to move to qi
and sends an acceptance message to robot i with the vertex
arg minv ρv + `v and the change associated with this move.
Otherwise, it increments the counter and sends the message
with Γi to its neighbors. If the counter value in a message is
greater than one, robot k calculates ` as follows:

` =
∑
u∈Wk

min
j∈N (k)

[c(u, qj)− c(u, qk)]w(u) (7)

If minv(ρv + `) ≤ −ε0, robot k sends an acceptance
message back to its parent. Otherwise, it increments the
counter and sends the message to its neighbors.

In function RECEIVEMESSAGE in line 8 of Algorithm 2
and line 16 of Algorithm 3, if any robot receives at least one
acceptance message from its neighbors, it passes the message
with lowest increase in sensing cost value to its parent. If
it receives rejection messages from all its neighbors, it sends
back a rejection message to its parent. Robot i selects the move
with maximum improvement in the sensing cost and sends
back an acknowledgment using SENDACKNOWLEDGEMENT
to the accepted messages. Robots that receive the acknowl-
edgment move to their parent’s location. If there is no more
local move available, robot i sends a completion message
using SENDCOMPLETIONMESSAGE to the neighboring robots
which will be propagated to all the robots. Then the next active
robot executes LOCALMOVE.

Observe that in the proposed distributed coverage control
algorithm, the robots only move to their neighbors partition.

Algorithm 3 RECEIVER

Input: message = (Γi, MessageCounter)
1: if MessageCounter = 1 then
2: Calculate `v for all v in the message . Equation (6)
3: if ∃v in the message with ρv + `v ≤ −ε0 then
4: send acceptance message to parent
5: else
6: SENDMESSAGE(Γi, MessageCounter + 1)
7: end if
8: else
9: Calculate ` . Equation (7)

10: if ∃v in the message with ρv + ` ≤ −ε0 then
11: send acceptance message to parent
12: else
13: SENDMESSAGE(Γi, MessageCounter + 1)
14: end if
15: end if
16: RECEIVEMESSAGE()

(a) A test environment for algorithm
in [26]

(b) Final configuration with pro-
posed algorithm

Fig. 4: A discrete test environment and the final configurations of
algorithm in [26] and the proposed algorithm

To do so, each robot may calculate the local change in the ob-
jective function using Equations (6) and (7). The information
required to calculate the changes in the objective is limited
to the obstacle and event distributions in the neighboring
partitions.

C. Examples of Locally Optimal Solutions To Escape

Now we provide two examples for the algorithms in [26]
and [14]. We illustrate the locally optimal solution reached by
these algorithms, and the moves considered in the proposed
algorithm which helps escape these sub-optimal solutions.

Consider a discrete coverage problem with four vertices
and three robots initialized at the configuration shown in
Figure 4(a). The bars on the vertices of the graph represent the
weight of the vertices. By the communication model in [26],
all the robots are neighbors of each other. The local move in
algorithm in [26] moves the robots inside their partitions if
the move improves the sensing cost of its partition and the
neighboring partitions. Note that the initialized configuration
of the robots is a locally optimal solution for the algorithm
in [26]. However, in the proposed algorithm the robots will
improve on the current configuration by performing single-
hop move type II. Figure 4(b) shows the final configuration
with the proposed algorithm.

Figure 5 shows a continuous environment with a single
robot. The sensing cost of an event is a function of the geodesic
distance from the robot. The high-level idea of the algorithm
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Fig. 5: A test environment for Algorithm in [14]

in [14] is to find the centroid in the environment without
obstacles (see tvirt in Figure 5) and if the centroid is inside
an obstacle, then the algorithm projects the centroid to a face
of the obstacle (see treal in Figure 5) and moves the robot
towards treal. Observe that in the scenarios where the sensing
cost is a function of the length of the shortest path between
the robot and the event location, the projection of the centroid
may result in sub-optimal solutions. However, the proposed
algorithm avoids these scenarios by solving the coverage
problem on a discrete representation of the environment, and
for a sufficiently small ζ, the proposed algorithm converges to
a near-optimal solution.

V. ANALYSIS OF THE ALGORITHM

In this section, we provide an analysis on the quality of the
solutions provided by the proposed algorithm.

A. Correctness and Approximation Factor

Prior to providing the main results on the correctness and
approximation factor of the algorithm, we provide two results
on the change in the sensing cost of vertices in the partitions
of the neighboring robots with a move of a robot.

The following result shows that a move by a robot inside
its partition can only change the sensing cost of the vertices
in its neighboring partitions.

Lemma V.1: Consider a vertex z ∈ Wj where robot j at
position qj is the closest robot to z. Then robot j is closer to
z than any vertex in the partition of a non-neighbor robot, i.e.,
c(z, qj) ≤ mini/∈N (j) minu∈Wi c(z, u).

Proof: Proof by contradiction. Suppose there exists a
move to vertex v ∈ Wi by robot i that changes the sensing
cost of a vertex z ∈ Wj of a non-neighbor robot j, i.e.,
c(v, z) < c(qj , z) which is equivalent to d(v, z) ≤ d(qj , z)
by the monotonicity of function f . By the triangle inequality,

d(qj , v) ≤ d(v, z) + d(qj , z) ≤ 2d(qj , z). (8)

Observe that v ∈Wi, then c(qj , v) ≤ c(qi, v) which implies
d(qj , v) ≤ d(qi, v). By Equation (8), we have d(qi, qj) ≤
d(qj , v) + d(qi, v) ≤ 2d(qj , v) ≤ 4d(qj , z). Then by the
definition of the neighboring robots in Section 4.1, robots i
and j are neighbors. This is a contradiction.

Observe that the proof of LemmaV.1 holds for both def-
initions of neighboring robots in continuous and discrete
environments. Also, the following result shows that if a robot
i moves anywhere in the graph, then the vertices previously
in Wi will be assigned to robot in N (i).

Lemma V.2: For any vertex z ∈ Wi, there exists a robot
j ∈ N (i) at qj where c(z, qj) ≤ c(z, qk) for all k /∈ N (i).

Proof: First we prove the result using definition of
the neighbor robots in Definition 1. Suppose there exists
k /∈ N (i) and vertex z ∈ Wi such that c(z, qk) <
minj∈N (i) c(z, qj). Let P be the shortest path from z to qk.
Let p be the point on the path where P intersects the boundary
of Voronoi cell of robot i. The point p is not on the bound-
ary of robot k, otherwise the distance between d(qi, qk) ≤
4 max{maxp∈Vi d(qi, p),maxp∈Vk

d(qk, p)} which is a con-
tradiction. Hence, the point p is on the boundary of a neigh-
boring robot j. Therefore, there is a path from qj to z shorter
than P , then c(qj , z) = f(d(qj , z)) ≤ f(d(qk, z)) = c(qk, z).

Now we prove the result for the case where the underlying
continuous coverage problem is unknown and neighbors are
defined according to Definition IV.4. Suppose there exists
k /∈ N (i) and vertex z ∈ Wi such that c(z, qk) <
minj∈N (i) c(z, qj). Observe that if two vertices of partitions
Wi and Wk share an edge in E, then by the definition of
neighboring robots in Definition IV.4, robots i and k are
neighbors. Therefore, since k 6∈ N (i), then there is no shared
edge between the vertices in Wi and Wk. Let P be the path
on G from qk to z. Then the path P should contain a vertex u
in a partition of another robot j which is a neighbor of robot
i. Then by the metric property of the graph,

c(qj , z) ≤ c(qj , u) + c(u, z) ≤ c(qk, u) + c(u, z) = c(qk, z),

where the second inequality is due to u ∈Wj and c(u, qj) ≤
c(u, qk). This is a contradiction.

Then we provide the following result on the change in the
global objective with a successful move in the algorithm.

Lemma V.3: If a local move is accepted by the robot, then
the global objective improves by at least ε0.

Proof: A local move falls under the following cases:

(i) Since, by Lemma V.1, a move of type 1 can only change
the sensing cost of the neighboring robots. Then the
result is trivial for the local moves of type 1.

(ii) If the local move consists of a move by the robot i that
is executing LOCALMOVE to a vertex v in its partition
and a neighboring robot j moving to vertex qi. Let Q′ be
the configuration after the local move, then the change
in the global objective ∆D = D(Q′) − D(Q) is given
by the following:

∆D =
∑
k∈[m]

∑
u∈Wk

w(u)[min
q∈Q′

c(u, q)− c(u, qk)]. (9)

They by Lemma V.1 and V.2, the sensing cost changes
only for vertices in u ∈ ∪k∈N (i)Wk, therefore,

∆D =
∑

k∈N (i)

∑
u∈Wk

w(u)[min
q∈Q′

c(u, q)− c(u, qk)]

=
∑

k∈N (i)

∑
u∈Rk(v)

w(u)[c(u, v)− c(u, qk)]

+
∑

k∈N (i)

∑
u∈Wk\Rk(v)

w(u)[min
q∈Q′

c(u, q)− c(u, qk)].

Observe that the sensing cost for vertex u ∈Wk \Rk(v)
for robot k at qk ∈ Q′ = N (i) ∪ {v} \ {j} does not
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change, therefore, we have

∆D =
∑

k∈N (i)

∑
u∈Rk(v)

w(u)[c(u, v)− c(u, qk)]

+
∑

u∈Wj\Rj(v)

w(u)[min
q∈Q′

c(u, q)− c(u, qj)].

Hence, the result follows immediately as ∆D = ρv+ lv .
(iii) Suppose the local move consists of a move by the

robot i that is executing LOCALMOVE to a vertex
v in its partition and a sequence of moves between
the neighboring robots. Without loss of generality, let
〈v, qi, qi+1, . . . , qj−1, qj〉 be the sequence of moves be-
tween the neighboring robots where each robot moves
to the previous vertex of the preceding robot in the
sequence. Let Q′ be the configuration after the local
move, then the change in the global objective is given
by Equation (9). Observe that each robot accepts only
the message from the parent robot. Therefore, among the
neighbors of the robots in the sequence only the parent
of each robot moves.
First we show that the change in the sensing cost
under this sequence of moves only occurs for vertices
in ∪k∈N (i)Wk and vertices in Wj . Let u be a vertex
assigned to robot k′ ∈ [m]\{j ∪N (i)} in configuration
Q, i.e., u ∈Wk′ . Since k′ /∈ N (i), then by Lemma V.1 a
move to vertex v will not improve the sensing cost of u.
Also if k′ is among the robots moving in the sequence,
then there is a robot moving to its previous location,
therefore, each vertex in Wk′ will be sensed by another
robot with the same sensing cost. Therefore, the total
change ∆D in the sensing cost of the vertices becomes

∆D =
∑

k∈N (i)

∑
u∈Rk(v)

w(u)[c(u, v)− c(u, qk)]

+
∑
u∈Wj

w(u)[min
q∈Q′

c(u, q)− c(u, qj)].

Hence, the result follows immediately as ∆D = ρv + l.

Now we show the following result on the valid local moves
in CENTRALIZEDALG given the final configuration of the
proposed distributed algorithm.

Lemma V.4: If the proposed distributed algorithm termi-
nates, then there is no single swap move in the centralized
local search algorithm CENTRALIZEDALG (See Section II-B)
that improves the objective function.

Proof: Suppose that there exists a centralized local move
of robot j at vertex qj to a vertex v ∈ Wi that improves
the objective function by ε0. Therefore, adding a robot to v
improves the sensing cost of the vertices in ∪k∈N (i)Wk by
ρv ≤ −ε0. Therefore, by construction of the algorithm, the
robot i would have suggested the move to its neighboring
robots. Suppose after l communications, robot j at qj receives
the message for the first time. In Line 2 (resp. Line 9) of
Algorithm 3 if j ∈ N (i) (resp. j /∈ N (i)), robot j calculates
the increase in the sensing cost `v (resp. `) for the vertices
in ∪k∈N (j)Wk by the move from qj to the parent of robot j.
Since robot j has rejected this offer, by Lemma V.3 the change

in the global sensing is less than ε0. This is a contradiction.

Theorem V.5: The proposed distributed coverage control
algorithm provides a solution within 5 + o(ε0) factor of the
optimal configuration.

Proof: The result follows immediately from Lemma V.4.
The final configuration in the distributed algorithm is a locally
optimal solution for the CENTRALIZEDALG with single swap
at each iteration, therefore, the configuration provides a cov-
erage within a factor 5 + o(ε0) of the global optimal.

Corollary V.6: Given an environment X with m mobile
robots and a sampling of X with dispersion ζ, the solution Q
obtained from the proposed distributed coverage control algo-
rithm provides coverage cost H(Q) ≤ 5H(S∗)+o(f(ζ)+ε0),
where S∗ is the optimal solution of the continuous problem.

Proof follows immediately from Theorems III.3 and V.5.
Remark V.7 (Collision Avoidance): In the practical imple-

mentation of the proposed algorithm, each robot is equipped
with a local planner to avoid collisions with obstacles and
other robots. At at each iteration, the robots move to their
new discretized location while avoiding the collisions using a
local planner. Since the theoretical guarantees of this paper are
based on location of the robots at the end of each iteration,
therefore the robots preserve the theoretical guarantees while
using a local planner to avoid collisions. We illustrate this with
an implementation of the proposed algorithm in Section VII-C.

B. Parallel Execution of Local Moves

The proposed algorithm in Section IV requires the robots
to take turns in performing the local moves and improve the
solution quality. However, we can modify the implementation
such that some robots can operate in parallel. To do this,
instead of the robots performing local moves in turn, the robots
calculate the change in local objectives and send and receive
messages in parallel. If a robot receives messages originating
from multiple active robots, it selects the message from one
of them (for instance, from the robot with lowest UID) and
runs Algorithm 3 for that message. When a robot decides to
move to a new location, it moves only if none of its neighbors
are currently moving. If any of its neighbors are currently
moving, it waits until all of its neighbors stop moving and
runs Algorithm 2 and Algorithm 3 again.

Theorem V.8: The asynchronous implementation of the pro-
posed distributed coverage control algorithm provides a solu-
tion within 5 + o(ε0) factor of the optimal configuration.

Proof: By Lemmas V.1 and V.2, if the robot i moves
in its partitions or to a vertex v in the partition of robot j,
the cost of only the vertices in N (i) and N (j) is affected.
Therefore, if a robot only moves when none of its neighbors
are moving, the change in local cost calculated by that robot is
correct and the rest of the proof follows identical to the proof
of Theorem V.5. Hence the distributed algorithm presented in
the paper can be implemented asynchronously.
Also, note that since the asynchronous implementation per-
forms the same local moves as the proposed algorithm in
Section IV, therefore, the time complexity analysis of the
algorithm holds for the asynchronous implementation.
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VI. TIME COMPLEXITY

In this section we characterize the runtime and the com-
munication complexity of the proposed algorithm and show
that the proposed algorithm converges to a solution within
5+o(ε0) factor of the optimal solution in a polynomial number
of iterations. This convergence result shows that the proposed
algorithm is a polynomial time distributed approximation
algorithm for the coverage planning problem. To the best
of our knowledge, this is the first distributed approximation
algorithm for the multi-robot coverage problem.

Let Q0 be the starting configuration of the robots and Q∗ be
the optimal configuration for the coverage problem on graph
G. Now we show that the proposed algorithm has a polynomial
runtime under the following assumption:

Assumption VI.1: The maxu,v∈S c(u, v) is polynomial in
the number of samples |S|.

For instance, if a graph is constructed via a grid sampling of
the continuous environment, where each cell is a d×d square,
then we have

max
e∈E

c(e) = f(
√

2|S|d) = O(
√
|S|),

where the second equality follows from sub-additivity of the
sensing function f .

Lemma VI.2: For a given ε > 0, the proposed algorithm
with ε0 ≤ ε achieves a 5 + o(ε) approximation factor with at
most

log(D(Q∗)/D(Q0))/ log

(
1− ε

maxe∈E c(e)

)
iterations, which is polynomial in the input size and 1/ε.

Proof: Let Qi be the configuration of the robots at step
i of the algorithm. As the global sensing cost improves by at
least ε0 after each iteration, we have,

D(Qi+1)−D(Qi) ≤ −ε0.

Observe that D(Qi) ≤ maxe∈E c(e). Therefore,

D(Qi+1) ≤ D(Qi)−
ε

maxe∈E c(e)
.

Therefore, at each iteration of the distributed cover-
age algorithm the sensing cost improves by the factor
of 1 − ε

maxe∈E c(e)
. Hence, the algorithm terminates in

log(D(Q∗)/D(Q0))/ log
(

1− ε
maxe∈E c(e)

)
iterations which

is polynomial in the input size and 1/ε.
Observe that by Theorem V.5 and Lemma VI.2, for a

given ε > 0 we can achieve a polynomial run-time and an
approximation factor of 5 + o(ε) by setting ε0 ≤ βε for any
β ≤ 1.

Remark VI.3: At each iteration of the algorithm, at most
m2 messages are sent with size at most n log(maxe∈E c(e))+
log(m) bits by the robot executing LOCALMOVE. Then at
most m2 messages are sent back between the robots in
the acceptance/rejection step. Finally, the SENDACKNOWL-
EDGEMENT step requires at most m messages. Hence, the
communication complexity of the proposed algorithm is

O

(
log(D(Q∗)/D(Q0))/ log(1− ε

maxe∈E c(e)
)m2

)
.
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Fig. 6: Percentage difference of the solutions of different algorithms
to the solution of the centralized algorithm

VII. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
distributed algorithm and compare it to convex and non-convex
distributed coverage algorithms and the centralized algorithm
in [24]. To construct the discrete problem described in Section
3, we use a grid sampling of the environment. We denote
the maximum distance inside a Voronoi cell of a robot i by
Rcomm = maxp∈Vi d(qi, p) and we evaluate the performance
of the proposed algorithm with communication ranges of
4Rcomm (See Definition 1) and 2Rcomm which is analogous
to the conventional communication model in the continuous
coverage literature. In the rest of this section, we use f(x) = x
as the sensing cost function.

A. Convex Environments
In this experiment, we compare our algorithm to distributed

Lloyd’s algorithm [3] in convex environments. We use the
Euclidean distance as the metric between two points. The
comparison is conducted in a 1500×850 environment with 100
different event distributions. The event distributions are trun-
cated multivariate normal distributions with mean [1400, 800]
and covariance matrices Σ = [σ, 0; 0, σ] where σ is uniformly
randomly selected from interval [5, 10] × 104. In this exper-
iment, the robots are initialized in the bottom left corner of
the environment. Figure 6 illustrates the percentage difference
of the solutions provided by the algorithms with respect to
the centralized algorithm. Observe that the proposed achieves
solution quality very close to the centralized algorithm, even
with a large number of robots, while Lloyd’s algorithm pro-
vides solutions with approximately 15% deviation. Note that
the underlying centralized problem is an NP-hard problem
and the algorithm used for solving the centralized instances is
an approximation algorithm. Therefore, the centralized algo-
rithm provides sub-optimal solutions and in the few of these
instances the proposed algorithm provides a better solution,
resulting in negative percentages.

Figure 7 shows the percentage share of the different local
move types. The dashed lines show the results with 2Rcomm

communication range. The single hop Move type II is a local
move which involves a robot and its neighbors in comparison
to the multi-hop local move which involves non-neighbor
robots. Observe that the majority of the local moves are
Move Type I which communicates with only the neighboring



10 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2023

5 10 15 20 25
Number of Robots

0

20

40

60

80

100
P

er
ce

nt
ag

e
of

S
u

cc
es

sf
u

ll
L

oc
al

M
ov

e
T

yp
e

A
tt

em
p

ts
Move Type I Move Type II: Single-hop Move Type II: Multi-hop

Fig. 7: Percentage share of attempts for different local move types
which resulted in improving the objective.
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Fig. 8: Percentage improvement of algorithms with random initial
configurations.

robots. However, the local Moves of Type II help the proposed
algorithm to leave locally optimal solutions.

Figure 8 illustrates the improvement in the sensing cost for
the Lloyd’s and the proposed algorithm in a convex environ-
ment with uniformly random initial configurations. The results
are obtained for 50 initial configurations in the environment.
Observe that even with the large number of robots where
the random configuration provides a relatively good sensing
cost, the proposed algorithm improves the solution by 50%
on average. In a system of 40 robots, our proposed algorithm
provided ≈ 15% additional improvement on the sensing cost
as compared to the Llyod’s algorithm.

B. Non-Convex Environments

In this section, we compare the solution quality of the
proposed algorithm with two different communication ranges
to the algorithms in [14], [26] and the centralized algo-
rithm [24]. The experiment is conducted in a 1500 × 850
environment that contains obstacles (See Figure 10), and
using 100 different event distributions. The distributions are
generated in the same manner as in the convex environment
experiments with uniformly random mean and covariance
matrices. The communication model in the non-convex studies
are different, for instance, two robots are neighbors in [14],
if the intersection of the Voronoi cells of the robots in the
environment without obstacles is non-empty, and two robots
are neighbors in [26] if the two partitions of the robots share
an edge in the discrete representation of the environment.
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Fig. 10: Robot movements in a non-convex environment using the
proposed distributed algorithm

Therefore in the implementations of algorithms in [14] and
[26], we assume that robots are connected to every other robot.

Figure 9 shows the percentage difference between the
solutions of algorithms compared to the centralized algorithm.
Observe that the proposed algorithm with the conventional
communication range out-performs both other algorithms by
≈ 20% on average in a system with 30 robots and matches the
solution quality of the centralized algorithm. Observe that the
run-time of the proposed algorithm and [26] are a function
of the number of samples in the discretized environment.
In an environment with 869 samples, the average total run-
time of the proposed algorithm in an environment with 30
robots is 38.6 seconds, and the run-times of [26] and [14] are
171.5 and 3.8 seconds, respectively. Figure 10 illustrates the
final configuration and the movement of the robots using the
proposed algorithm in a non-convex environment.

C. ROS Implementation
We have also implemented the proposed algorithm in

ROS [35] and evaluated the performance in a non-convex envi-
ronment with 6 Turtlebot robots. The Turtlebots are equipped
with LIDAR for sensing and their motions is governed by
differential drive dynamic model. The robots are augmented
with TEB local planner [36] for motion planning and avoiding
dynamic and static obstacles. Figure 11 illustrates the testing
environment, and Figure 13(a) shows the event distribution.
Figure 12 illustrates the global objective for the proposed
algorithm and the global objective where the robots only
perform move type I, which is the adaptation of Lloyd’s
algorithm to discrete environments. The proposed method
provides approximately 27% improvement by performing 2
multi-hop moves and converges to a near-optimal locally
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Fig. 11: The test environment in Gazebo simulator [37]
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Fig. 12: The coverage cost of the proposed algorithm compare to the
Lloyd’s algorithm

optimal solution. Figure 13 illustrates the trajectories of the
robots performing the proposed algorithm. The adaptation of
Lloyd’s algorithm, which performs only type I moves reaches
the configuration of the robots shown in Figure 13(d) and
cannot find any move of type I to improve the solution.
However, the proposed algorithm performs a multi-hop move
to escape the locally optimal solution which improves the so-
lution quality significantly. A video this experiment illustrating
the configurations of the six Turtlebots at different time steps
is available online1. These simulation results show that the
performance of the proposed algorithm is independent of the
algorithms used for path planning and collision avoidance and
shines a light on the practicality of the proposed algorithm in
real-world scenarios.

VIII. CONCLUSION

This paper considers the problem of distributed coverage
control in convex and non-convex environments. A connection
is established between the solution quality of the continuous
coverage problem and the solution to the coverage problem on
a discrete representation of the environment. We also propose
the first distributed approximation algorithm for the coverage
problem in discrete and continuous environments and provide
a bound on the quality of the solution. We also characterize
the run-time and communication complexity of the proposed
algorithm. For future work, we consider adapting the proposed
method to capture heterogeneous robots with multiple sensors
and multiple event types in the environment.

1ece.uwaterloo.ca/~sl2smith/papers/2021TCNS-Distributed Coverage.mp4
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