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We introduce the walk-on-boundary (WoB) method for solving boundary
value problems to computer graphics. WoB is a grid-free Monte Carlo solver
for certain classes of second order partial differential equations. A similar
Monte Carlo solver, the walk-on-spheres (WoS) method, has been recently
popularized in computer graphics due to its advantages over traditional
spatial discretization-based alternatives. We show that WoB’s intrinsic prop-
erties yield further advantages beyond those of WoS. Unlike WoS, WoB
naturally supports various boundary conditions (Dirichlet, Neumann, Robin,
and mixed) for both interior and exterior domains. WoB builds upon bound-
ary integral formulations, and it is mathematically more similar to light
transport simulation in rendering than the random walk formulation of WoS.
This similarity between WoB and rendering allows us to implement WoB
on top of Monte Carlo ray tracing, and to incorporate advanced rendering
techniques (e.g., bidirectional estimators with multiple importance sampling,
the virtual point lights method, and Markov chain Monte Carlo) into WoB.
WoB does not suffer from the intrinsic bias of WoS near the boundary and
can estimate solutions precisely on the boundary. Our numerical results
highlight the advantages of WoB over WoS as an attractive alternative to
solve boundary value problems based on Monte Carlo.

CCS Concepts: • Mathematics of computing → Integral equations;
Partial differential equations; • Computing methodologies→ Ray tracing.
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1 INTRODUCTION
Boundary value problems are relevant to diverse applications in
computer graphics and beyond. Since the analytical solution is gen-
erally unavailable, one must resort to a numerical method to esti-
mate the solution for practical problems. Such numerical methods
are conventionally based on discretizing and then solving matrix
equations. Sawhney and Crane [2020] recently introduced to com-
puter graphics an alternative Monte Carlo (MC) solver called the
Authors’ addresses: Ryusuke Sugimoto, University of Waterloo, Canada, rsugimot@
uwaterloo.ca; Terry Chen, University of Waterloo, Canada, ty6chen@uwaterloo.ca;
Yiti Jiang, University of Waterloo, Canada, yt2jiang@uwaterloo.ca; Christopher Batty,
University of Waterloo, Canada, christopher.batty@uwaterloo.ca; Toshiya Hachisuka,
University of Waterloo, Canada, toshiya.hachisuka@uwaterloo.ca.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2023/8-ART $15.00
https://doi.org/10.1145/3592109

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in

N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

InteriorInteriorInteriorInteriorInteriorInteriorInteriorInteriorInteriorInteriorInteriorInteriorInteriorInteriorInteriorInteriorInterior

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

D
ir
ic
hl
et

R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in
R
ob

in

N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n
N
eu

m
an

n

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

M
ix
ed

ExteriorExteriorExteriorExteriorExteriorExteriorExteriorExteriorExteriorExteriorExteriorExteriorExteriorExteriorExteriorExteriorExterior

Fig. 1. The walk-on-boundary (WoB) method can handle various boundary
value problems including Dirichlet, Robin, Neumann, and mixed for both
interior and exterior problems under the same framework based on boundary
integral equations. In this experiment, each problem is configured to have
the same ground-truth solution (middle), and this figure shows that our
WoB estimators all converge to that same solution (left and right).

walk-on-spheres (WoS) method [Muller 1956]. They showed that
WoS possesses various advantages over the conventional methods,
including flexibility of geometric representation, robustness, par-
allelism, applicability to many geometric problems, and pointwise
solution estimations. The connection between WoS and MC ray
tracing [Pharr et al. 2018] was also suggested by these authors and
others [Rioux-Lavoie et al. 2022; Sawhney et al. 2022; Yılmazer et al.
2022], which enables various techniques from MC ray tracing to be
modified and adapted to WoS, such as in recent work by Qi et al.
[2022] on bidirectional WoS.

We introduce another MC-based solver for boundary value prob-
lems: the walk-on-boundary (WoB) method [Sabelfeld 1982, 1991].
Unlike WoS, which is based on random walks, WoB is based on
potential theory, which is the study of harmonic functions in math-
ematical physics. Potential theory allows us to convert the partial
differential equations of boundary value problems into various forms
of boundary integral equations (BIEs). Just like the integral equation
in rendering [Kajiya 1986], the resulting equations can be solved
by tracing rays, rather than using random walks as in WoS. WoB
is arguably less widely known compared to WoS and we are the
first to introduce WoB to computer graphics. WoB and WoS share
many advantages over spatial discretization-based methods, like
finite element or finite difference methods, but WoB possesses fur-
ther advantages that fundamentally differentiate it from WoS. We
explore and demonstrate those advantages, specifically:
• Generality:WoB can handle problems for which WoS is either
inapplicable or inefficient. Handling Neumann or Robin bound-
aries with WoS [Simonov 2008, 2017] is known to be inefficient
for non-convex domains. Only concurrent work by Sawhney
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WoSWoSWoSWoSWoSWoSWoSWoSWoSWoSWoSWoSWoSWoSWoSWoSWoS WoBWoBWoBWoBWoBWoBWoBWoBWoBWoBWoBWoBWoBWoBWoBWoBWoB

Fig. 2. Unlike WoS, WoB does not introduce any errors associated with the
𝜖-shell path termination. The indicated region (left) displays visible banding
artifacts with WoS (middle), where WoB presents no such error (right).

et al. [2023] offers an extension to WoS for efficiently handling
Neumann boundaries. Likewise, efficient handling of exterior
problems in WoS requires Kelvin transformations into interior
problems [Nabizadeh et al. 2021]. By formulating the appropriate
integral equation, our WoB solver handles these cases effortlessly,
without changing the core algorithm. Fig. 1 showcases this gen-
erality with results for Dirichlet, Neumann, Robin, and mixed
boundary conditions for both interior and exterior domains.
• Accuracy:WoB can accurately estimate the solution close to and
even directly on the boundary itself, where WoS becomes ineffi-
cient, inaccurate, or inapplicable. Fig. 2 compares the accuracy of
WoS and WoB near the boundary. Solutions on the boundary are
relevant for Neumann and Robin problems, since the boundary
values are unknown, and they are the main quantity of interest
for certain cases [Da et al. 2016; Sugimoto et al. 2022].
• Similarity to MC ray tracing: WoB performs calculations by
sampling points on the boundary as in MC ray tracing; by con-
trast, WoS is based on random walks inside the boundary shape
using closest point queries, which is not entirely equivalent to MC
ray tracing. Fig. 3 illustrates this difference. WoB is both mathe-
matically and algorithmically more similar to MC rendering than
WoS. This similarity allows WoB to leverage existing ray tracing
frameworks and straightforwardly transform advanced rendering
methods into solvers for boundary value problems.

2 OVERVIEW
Let us examine instances ofWoS andWoB estimators to highlight the
differences. Consider a boundary value problem in which a function
𝑢𝐷 (x) is specified along the boundary of a convex domain 𝐷 , for
simplicity. We will relax this assumption of convexity in Section 4.
We seek a function 𝑢 (x) that conforms to 𝑢𝐷 (x) on the boundary
while satisfying Laplace’s equation, Δ𝑢 (x) = 0, inside the domain.

The WoS estimator in this case is defined as the mean of sample
contributions 𝑢 (x0) defined recursively as

𝑢 (x𝑖 ) =
{
𝑢𝐷 (x𝑖 ) x𝑖 ∈ 𝜕𝐷𝜖 ,
𝑢 (x𝑖+1) otherwise.

(1)

Starting from an evaluation point x0 within the domain, each sub-
sequent x𝑖+1 is generated by sampling a point on the largest ball
centered at x𝑖 that fits within the domain. The set 𝜕𝐷𝜖 is a shell-like
region that lies within a small distance of the boundary. WoS thus
returns 𝑢𝐷 (x𝑖 ) when x𝑖 is only approximately on the boundary;
indeed, none of the generated points are exactly on the boundary.

𝑥0
𝑥1

𝑥2𝑥3
𝑥4

WoS

𝑥0

𝑥1

𝑥2

𝑥3
𝑥4

WoB

Fig. 3. WhileWoS takes randomwalks on spheres, WoB takes randomwalks
on the boundary to compute a sample contribution.

TheWoB estimator with path length𝑀 we introduce is defined as

𝑢 (x𝑖 ) =
{
𝑢𝐷 (x𝑖+1) 𝑖 = 𝑀 − 1,
2𝑢𝐷 (x𝑖+1) − 𝑢 (x𝑖+1) otherwise.

(2)

Like WoS, WoB forms a sequence of x𝑖 starting from the evaluation
point x0. Each x𝑖+1, however, is generated by tracing a random ray
from x𝑘 and finding the intersection with the boundary. Unlike
WoS, all the points (after x0) are exactly on the boundary, and thus
𝑢𝐷 (x𝑖+1) is well-defined, without approximation via the 𝜖-shell 𝜕𝐷𝜖 .
As in MC ray tracing, the recursion terminates after some number of
steps𝑀 and does not depend at all on the 𝜖-shell 𝜕𝐷𝜖 . Algorithm 1
summarizes this method and Fig. 3 illustrates how sequences of x𝑖
differ between WoS and WoB in a non-convex domain.

Just like MC ray tracing, in bothWoS andWoB, one would run the
estimator multiple times and take its average as a final estimation
of 𝑢 (x0). However, because WoB is also based on sampling and
tracing rays recursively, the analogy with MC ray tracing is much
stronger, in sharp contrast to the random walk on spheres process
used by WoS. One of our contributions is to demonstrate WoB’s
strong mathematical and algorithmic similarity to MC ray tracing.

Algorithm 1: Interior, convex-domain, and Dirichlet WoB
Input :domain Ω, evaluation point x0 ∈ Ω,

path length𝑀 , sample count 𝑁
Function EstimateSolution(Ω, x0,𝑀 , 𝑁):

𝑢sum ← 0
for 𝑛 ← 1 to 𝑁 do

𝑢 ← RecursiveEstimate (Ω, x0,𝑀 , 0)
𝑢sum←𝑢sum + 𝑢

end
return 𝑢sum/𝑁

Function RecursiveEstimate(Ω, x𝑖 ,𝑀 , depth):
x𝑖+1← RayIntersectionSampling(Ω, x𝑖 )
if depth = 𝑀 − 1 then

return 𝑢𝐷 (x𝑖+1)
else

𝑢𝑖+1← RecursiveEstimate(Ω, x𝑖 ,𝑀 , depth + 1)
return 2𝑢𝐷 (x𝑖+1) − 𝑢𝑖+1

end

Function RayIntersectionSampling(Ω, x):
d← UniformRayDirectionSampling(Ω, x)
return GetIntersectionPoint(Ω, Ray(x, d))
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The ray tracing approach to diffusion curves [Bowers et al. 2011]
also solves a boundary integral and estimates the solution by sam-
pling points on the boundary using ray intersections, similarly to
WoB.While this approach provides a visually faithful approximation
for diffusion curves [Orzan et al. 2008], it does not actually solve
Laplace’s equation. By contrast, the WoB formulation does solve the
specified PDE (i.e., Laplace’s equation) and can handle more general
problems, such as Neumann problems.

3 BOUNDARY INTEGRAL FORMULATIONS
WoB builds upon boundary integral equation formulations. Such
formulations are applicable to many second-order linear elliptic
PDEs [Clements 2004] and some other PDEs [Liu et al. 2012], but we
focus on boundary value problems based on Poisson’s and Laplace’s
equations. The book by Sabelfeld and Simonov [1994] and notes by
Pechstein [2013] discuss the details of BIEs summarized here.

3.1 Poisson’s Equation and Boundary Conditions
Poisson’s equation is commonly given as

Δ𝑣 (x) = 𝑏 (x) for x ∈ Ω (3)

where Ω is a closed domain in R2 or R3, 𝑣 (x) is the unknown field,
and 𝑏 (x) is a known source function defined inside the domain.
Poisson’s equation with 𝑏 (x) = 0 is also called Laplace’s equation.
We will later consider exterior problems where the domain is R2\Ω
or R3\Ω. Let us denote the boundary of Ω by Γ = 𝜕Ω; note that
Γ is not included in Ω. The boundary value problem in this paper
concerns solving for 𝑣 (x) in Eq. (3) with boundary conditions

𝑣 (x) = 𝑢𝐷 (x) x ∈ Γ𝐷 ⊆ Γ,

𝜕𝑣

𝜕n
(x) = 𝑞𝑁 (x) x ∈ Γ𝑁 ⊆ Γ, (4)

𝜕𝑣

𝜕n
(x) + 𝛼 (x)𝑣 (x) = 𝑔𝑅 (x) x ∈ Γ𝑅 ⊆ Γ,

where the normal derivative 𝜕𝑣
𝜕n (x) = n(x) · ∇𝑣 (x), the weight

𝛼 (x) ≠ 0, and a bar indicates that the function is given. Any point
x ∈ Γ belongs to strictly one of Γ𝐷 , Γ𝑁 , or Γ𝑅 . When Γ𝐷 = Γ, Γ𝑁 = Γ,
or Γ𝑅 = Γ, we call the problem a Dirichlet, Neumann, or Robin prob-
lem, respectively. Otherwise, we call it a mixed boundary problem.

One can always convert Poisson’s equation for 𝑣 (x) into Laplace’s
equation for 𝑢 (x) using a relation 𝑢 (x) = 𝑣 (x) +𝑉0 (x) as follows.
Let 𝑢 be a function satisfying Laplace’s equation

Δ𝑢 (x) = 0 x ∈ Ω
𝑢 (x) = 𝑢𝐷 (x) +𝑉0 (x) x ∈ Γ𝐷 ,
𝜕𝑢

𝜕n
(x) = 𝑞𝑁 (x) +

𝜕𝑉0
𝜕n
(x) x ∈ Γ𝑁 ,

𝜕𝑢

𝜕n
(x) + 𝛼 (x)𝑢 (x) = 𝑔𝑅 (x) +

𝜕𝑉0
𝜕n
(x) + 𝛼 (x)𝑉0 (x) x ∈ Γ𝑅,

(5)

where 𝑉0 (x) =
∫
Ω𝐺 (x, y)𝑏 (y) 𝑑𝑉y and 𝐺 (x, y) is the fundamen-

tal solution (i.e., the solution to Poisson’s equation in an infinite
domain with a negative Dirac delta source at each point). We list
the fundamental solution and their derivatives used in this paper
in Appendix A for readers’ convenience. One can confirm that
𝑣 (x) = 𝑢 (x) − 𝑉0 (x) satisfies Poisson’s equation by noting that

Δ𝑉0 (x) = −𝑏 (x) for x ∈ Ω. We focus on solutions to Laplace’s
equation since it is easy to handle 𝑉0 (x), as we discuss later.

3.2 Direct Boundary Integral Equations
The basic idea of boundary integral formulations is to define the so-
lution based on integrals only of boundary values. They can actually
take several different forms. We first explain one such formulation
called a direct BIE formulation. As the name suggests, direct BIEs
describe the relationship between the solution values in the interior
or on the boundary directly, and are derived based on Green’s third
identity. One common such direct BIE is given as

𝑐 (x)𝑢 (x) = −
∫
Γ

𝜕𝐺

𝜕ny
(x, y)𝑢 (y) 𝑑𝐴y +

∫
Γ
𝐺 (x, y) 𝜕𝑢

𝜕n
(y) 𝑑𝐴y (6)

for x ∈ Ω ∪ Γ, where 𝑐 (x) is an integral free term that evaluates to 1
if x ∈ Ω, and to 1

2 if x ∈ Γ when the boundary is smooth in the sense
of Lyapunov.We consider only smooth surfaces in the following, but
the extension to non-smooth surfaces is straightforward. Note that
polygonal boundaries do not violate the smoothness assumption,
unless x is evaluated exactly on a vertex of the polygon.

Eq. (6) says that the solution 𝑢 (x) satisfies this integral equation
involving only boundary integrals. The boundary conditions alone
do not provide 𝑢 (y) and 𝜕𝑢

𝜕n (y) everywhere along Γ, so one must
solve for such unknown boundary values first to evaluate the so-
lution 𝑢 (x) inside of the domain. Concurrent work by Miller et al.
[2023] uses this equation to cache WoS (and Walk-on-Stars [Sawh-
ney et al. 2023]) estimates along the boundary to accelerate its com-
putation; our WoB readily supports an analogous caching scheme.
One can also derive a BIE for the directional derivative of the

solution by taking the directional derivative of Eq. (6):

𝜕𝑢

𝜕x𝑘
(x) = −

∫
Γ

𝜕2𝐺
𝜕x𝑘 𝜕ny

(x, y)𝑢 (y) 𝑑𝐴y +
∫
Γ

𝜕𝐺

𝜕x𝑘
(x, y) 𝜕𝑢

𝜕n
(y) 𝑑𝐴y,

(7)
for x ∈ Ω. We denote the first order derivative with respect to the
𝑘-th direction by 𝜕𝑢/𝜕x𝑘 . This equation is valid only in the interior
of the domain, so we omitted the integral free term 𝑐 (x) = 1.

3.3 Indirect Boundary Integral Equations
In contrast to direct BIEs, an indirect BIE describes the relationship
between an unknown source density function on the boundary and
the known boundary values, and expresess the solution only indi-
rectly based on the source density function. There are two types of
indirect formulations, derived from potential theory.

Single layer potential. The solution𝑢 (x) to Laplace’s equation can
be expressed in the form of a single layer potential given by

𝑢 (x) =
∫
Γ
𝐺 (x, y)𝜇 (y) 𝑑𝐴y for x ∈ Ω ∪ Γ, (8)

where the unknown source density function 𝜇 corresponds to the
jump of the normal derivative of 𝑢 across the boundary. In short,
Eq. (8) expresses the solution inside the domain (and on the bound-
ary) in terms of monopole sources, distributed over the boundary,
which decay according to the fundamental solution 𝐺 (x, y). Tak-
ing the directional derivative of Eq. (8) and taking the limit to the
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boundary gives an integral equation for 𝜇 (x):
𝜕𝑢

𝜕n
(x) = 𝑐 (x)𝜇 (x) +

∫
Γ

𝜕𝐺

𝜕nx
(x, y)𝜇 (y) 𝑑𝐴y for x ∈ Γ. (9)

Similarly, the directional derivative at any interior point x is
𝜕𝑢

𝜕x𝑘
(x) =

∫
Γ

𝜕𝐺

𝜕x𝑘
(x, y)𝜇 (y) 𝑑𝐴y for x ∈ Ω. (10)

This equation is invalid exactly on the boundary because of jump
discontinuities across Γ.

Double layer potential. An alternative is a double layer potential
which uses dipole source on the boundary:

𝑢 (x) = −
∫
Γ

𝜕𝐺

𝜕ny
(x, y)𝜈 (y) 𝑑𝐴y for x ∈ Ω (11)

where 𝜈 is an unknown source density function, corresponding to
the jump of the solution across the boundary. In the limit as x→ Γ,
one finds an integral equation for 𝜈 (x):

𝑢 (x) = [1 − 𝑐 (x)]𝜈 (x) −
∫
Γ

𝜕𝐺

𝜕ny
(x, y)𝜈 (y) 𝑑𝐴y for x ∈ Γ. (12)

The normal derivative can be computed with
𝜕𝑢

𝜕nx
(x) = − 𝜕

𝜕nx

∫
Γ

𝜕𝐺

𝜕ny
(x, y)𝜈 (y) 𝑑𝐴y for x ∈ Γ, (13)

and the directional derivative can be computed with

𝜕𝑢

𝜕x𝑘
(x) = −

∫
Γ

𝜕2𝐺
𝜕x𝑘 𝜕ny

(x, y)𝜈 (y) 𝑑𝐴y for x ∈ Ω. (14)

Having outlined BIE formulations for Laplace’s equation, we
proceed to solve them via WoB. To develop practical numerical WoB
methods and also generalize WoB to mixed boundary problems, we
will adopt different formulations for different problems.

4 THE WALK-ON-BOUNDARY METHOD
WoB is a stochastic estimator for certain classes of second-order
PDEs based on BIEs. It uses a sequence of stochastically chosen sam-
ple points on the boundary, hence the name "walk-on-boundary".
Sabelfeld [1982] first proposed WoB for the Lamé equation for linear
elasticity. Subsequent books by Sabelfeld [1991] and Sabelfeld and
Simonov [1994] generalized the method and established theoretical
foundations for Dirichlet, Neumann, and Robin problems for Pois-
son’s equation using the indirect BIE formulation, along with exten-
sions to a few other equations. Karaivanova et al. [2004] considered
the applicability of quasi-Monte Carlo methods and Sabelfeld [2012]
studied howWoB can be combined with the method of fundamental
solutions to improve its efficiency.
None of this prior work has considered the application of WoB

ideas to direct BIE formulations or mixed boundary problems; these
extensions are our contributions. We also have identified that using
double layer potential indirect BIEs for Dirichlet boundary prob-
lems, single layer potential indirect BIEs or direct BIEs for Neumann
boundary problems, and single layer potential indirect BIEs for
Robin and mixed boundary problems will result in practical solvers.
We summarize the equations for formulations for all of our estima-
tors discussed in this paper in Table 1.

4.1 Dirichlet Problems with Double Layer BIE
For Dirichlet problems, reordering terms in Eq. (12) and substituting
in the boundary condition 𝑢 = 𝑢𝐷 gives

𝜈 (x) =
∫
Γ
2 𝜕𝐺
𝜕ny
(x, y)𝜈 (y) 𝑑𝐴y + 2𝑢𝐷 (x) for x ∈ Γ, (15)

assuming that x lies on a smooth boundary (𝑐 = 1/2). Since 𝑢𝐷 (x) is
a known quantity, Eq. (15) is a Fredholm equation of the second kind
for 𝜈 , as the rendering equation is also commonly understood to be.
Appendix B elaborates on this point. We can thus apply a recursive
estimate for𝜈 (x) similarly towhat is done for the rendering equation
in light transport simulation [Pharr et al. 2018].

4.1.1 MC estimation. Let us consider estimating 𝜈 (x1) where x1 ∈
Γ based on MC integration. We can estimate the integral in Eq. (15)
viaMC integration by first sampling a point x2 ∈ Γwith a probability
density function (PDF) 𝑝 (x2 |x1) (e.g., tracing a random ray from x1
to x2). A sample 𝜈 (x1) to estimate 𝜈 (x1) can be written as

𝜈 (x1) B
2 𝜕𝐺𝜕ny (x1, x2)
𝑝 (x2 |x1) 𝜈 (x2) + 2𝑢𝐷 (x1) for x1 ∈ Γ. (16)

Because 𝜈 (x2) is unknown, we again use an MC estimate 𝜈 (x2) in
the equation above. Thus a recursive definition for the 𝑖-th step is:

𝜈 (x𝑖 ) B
2 𝜕𝐺𝜕ny (x𝑖 , x𝑖+1)
𝑝 (x𝑖+1 |x𝑖 ) 𝜈 (x𝑖+1) + 2𝑢𝐷 (x𝑖 ) for x𝑖 ∈ Γ. (17)

Just like MC ray tracing, we perform the recursive estimate of 𝜈 (x)
up to a certain recursion depth 𝑀 , forming a path of vertices on
the boundary with length𝑀 . We can use 𝜈 (x1) to construct an MC
estimate for the solution 𝑢 at an interior point x0. Applying another
MC integration with a PDF 𝑝 (x1 |x0) and 𝜈 (x1) to Eq. (11) gives

𝑢 (x0) B −
𝜕𝐺
𝜕ny (x0, x1)
𝑝 (x1 |x0) 𝜈 (x1) for x0 ∈ Ω. (18)

Therefore, the MC estimate for 𝑢 (x0) in the domain interior is
𝑢 (x0) ≈ 1

𝑁

∑𝑁
𝑛=1 𝑢 (x0) . One can think of the PDF 𝑝 (x𝑖+1 |x𝑖 ) as the

PDF of sampling a ray from x𝑖 toward x𝑖+1, the term 2 𝜕𝐺𝜕ny (x𝑖 , x𝑖+1)
as the geometry term times BRDF term (i.e., the integrand) of the
rendering equation, and the term 2𝑢𝐷 (x𝑖 ) as the emission term
in the rendering equation. Implementation of WoB on top of ray
tracing systems is thus straightforward.

4.1.2 Path truncation. One difference between the rendering equa-
tion and the above BIE is that, for the rendering equation, as the
path length increases, the contribution coming from each recursion
becomes smaller and smaller due to the nature of light transport.
However, the integral kernel 2 𝜕𝐺𝜕ny above will not "attenuate" its
contribution per recursion, but will rather maintain it. It thus ap-
pears that it never converges, just like having reflectance equal to
one everywhere does not converge in light transport. This intuition
contradicts with the fact that solutions usually uniquely exist for
Dirichlet problems and it is incorrect.
A solution to this issue is surprisingly simple. We just need to

multiply the contribution 2𝑢𝐷 (x𝑖 ) coming from the last recursion
step by a factor of 1/2 before it terminates: 𝜈 (x𝑀 ) B 𝑢𝐷 (x𝑀 ).
While this strategy deceivingly looks the same as just truncating
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Table 1. List of equations for WoB estimators. The highlighted equations are the second kind Fredholm equations (or the modified first-kind equation for
mixed boundary problems at Dirichlet boundaries) we use to get the unknown direct or indirect quantities on the boundary. It can be combined with other
equations to find the unknown quantities of interest in the interior (or exterior) or on the boundary. It is assumed that the left hand side unknowns are
functions of x, and the integrals are taken over boundary points y. The explicit dependencies on variables are omitted for brevity when it is not confusing. For
interior problems, 𝜙 = 1, and for exterior problems, 𝜙 = −1.

Problem Formulation Quantity to Estimate Evaluation Point x Equation

Dirichlet
indirect BIE
double layer
potential

solution
interior/exterior 𝑢 = −

∫
𝜕𝐺
𝜕ny 𝜈 𝑑𝐴

boundary 𝑢 = 𝑢𝐷 (given)

normal derivative boundary Sect. 3 in the book by Sabelfeld and Simonov [1994].

gradient interior/exterior 𝜕𝑢
𝜕x𝑘 = −

∫
𝜕2𝐺

𝜕x𝑘𝜕ny 𝜈 𝑑𝐴

source density boundary 𝜈 = 2𝜙
∫

𝜕𝐺
𝜕ny 𝜈 𝑑𝐴 + 2𝜙𝑢𝐷

Neumann direct BIE

solution
interior/exterior 𝑢 = −𝜙

∫
𝜕𝐺
𝜕ny𝑢 𝑑𝐴 + 𝜙

∫
𝐺𝑞𝑁 𝑑𝐴

boundary 𝑢 = −2𝜙
∫

𝜕𝐺
𝜕ny𝑢 𝑑𝐴 + 2𝜙

∫
𝐺𝑞𝑁 𝑑𝐴

normal derivative boundary 𝜕𝑢
𝜕n = 𝑞𝑁 (given)

gradient interior/exterior 𝜕𝑢
𝜕xk = −𝜙

∫
𝜕2𝐺

𝜕xk𝜕ny𝑢 𝑑𝐴 + 𝜙
∫

𝜕𝐺
𝜕xk𝑞𝑁 𝑑𝐴

Mixed or
degenerate
problem

indirect BIE
single layer
potential

solution interior/exterior/boundary 𝑢 =
∫
𝐺𝜇 𝑑𝐴 (or given)

normal derivative boundary 𝜕𝑢
𝜕n = 1

2𝜙𝜇 +
∫

𝜕𝐺
𝜕nx 𝜇 𝑑𝐴 (or given)

gradient interior/exterior 𝜕𝑢
𝜕xk =

∫
𝜕𝐺
𝜕xk 𝜇 𝑑𝐴

source density

Dirichlet boundary 𝜇 = 𝜇 − 𝑘
∫
𝐺𝜇 𝑑𝐴 + 𝑘𝑢𝐷

Neumann boundary 𝜇 = −2𝜙
∫

𝜕𝐺
𝜕nx 𝜇 𝑑𝐴 + 2𝜙𝑞𝑁

Robin boundary 𝜇 = −2𝜙
∫ (

𝜕𝐺
𝜕nx + 𝛼 (x)𝐺

)
𝜇 𝑑𝐴 + 2𝜙𝑔𝑅

a path while reducing the contribution from the last "bounce", its
derivation is more involved than that. Below, we briefly summarize
the rough reasoning behind this strategy.

Let us first define an integral operator H when applied to a func-
tion 𝑓 defined over the boundary as

(H 𝑓 ) (x) =
∫
Γ
2 𝜕𝐺
𝜕ny
(x, y) 𝑓 (y) 𝑑𝐴y . (19)

Then, Eq. (15) can be rewritten as

𝜈 = H𝜈 + 2𝑢𝐷 , (20)

where we dropped the variable dependence for brevity. Using the
identity operator I, we can write the expression above as

(I−H)𝜈 = 2𝑢𝐷 . (21)

One can use Neumann series expansion to solve for 𝜈 as

𝜈 = (I−H)−1 2𝑢𝐷 = (I+H+H2 + · · · ) 2𝑢𝐷 , (22)

where the operator H𝑖 for any positive integer 𝑖 is defined by

H𝑖 𝑓 = H𝑖−1 (H 𝑓 ). (23)

The same approach is used for building a recursive MC estimator
for the rendering equation where the operator is defined by BRDF
and the geometry term instead [Pharr et al. 2018].

As noted earlier, the key difference from the rendering equation
is that (H𝑖 )2𝑢𝐷 (x) does not approach zero as 𝑖 increases. Simply
truncating this series at𝑀 thus introduces non-negligible truncation
error. We instead transform the series as(

1
2 (I+ · · · + H

𝑖−1 + · · · ) + 1
2 (I+ · · · + H

𝑖 + · · · )
)
2𝑢𝐷 (x)

=
1
2 (I+(I+H) + · · · + (H

𝑖−1 +H𝑖 ) + · · · )2𝑢𝐷 (x) .
(24)

Just like multiple bounces in light transport, the average of the
integrals (1/2) (H𝑖 +H𝑖+1)2𝑢𝐷 (x) now converges to zero as 𝑖 →∞
due to the alternating sign in the series because of the negative factor
included in the operator H, so it is safe to truncate this modified
series at 𝑖 = 𝑀 :

𝑓 (x) ≈ 1
2

(
I+(I+H) + · · · + (H𝑀−1 +H𝑀 )

)
2𝑢𝐷 (x)

=

(
I+ · · · + H𝑀−1 +12 H𝑀

)
2𝑢𝐷 (x)

(25)

Therefore, the term for the last point x𝑀 should now be multiplied
by 1/2, when compared to just truncating the original series at the
𝑀-th term. For such fixed-length truncation, the resulting estimator
is biased, just like MC rendering with a finite path length. One could
potentially apply the Russian roulette technique to truncate a path
without the bias, though we leave it as future work.
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Formally, this transformation of a Neumann series can be mathe-
matically interpreted as an analytic continuation of the series, and
many other transformations are possible [Sabelfeld 1991; Sabelfeld
and Simonov 1994]. Sabelfeld [1991] numerically compares some
transformations, and our initial experiments also suggest that se-
ries acceleration, such as the van Wijngaarden transformation [van
Wijngaarden 1953], can reduce the error of the estimator based on
Neumann series. All the results we show use the modified Neumann
series with multiplication of 1/2 on the last term.

4.1.3 Derivative and boundary value estimators. With WoB, in ad-
dition to the solution within the domain, we can easily estimate
the gradient inside the domain, solution on the boundary, and nor-
mal derivative on the boundary, just by replacing the first step of
our recursive MC solution estimators. For example, we can apply
an MC estimator based on the equation for the interior gradient,
𝜕𝑢
𝜕x𝑘 = −

∫
𝜕2𝐺

𝜕x𝑘𝜕ny 𝜈 𝑑𝐴, instead of Eq. (18) to get a gradient esti-
mate in the case of the Dirichlet problem estimator with double
layer potential formulation. Similar to WoS [Sawhney and Crane
2020], we can reuse the same paths to get samples for the solution
and the gradient in the interior by changing the initial weight at
almost no additional cost. We however observed increased noise
near the boundary in the gradient estimates for this Dirichlet prob-
lem estimator. This additional noise is likely due to the presence of
the hypersingular kernel 𝜕2𝐺

𝜕x𝑘𝜕ny in the computation, which has a
very large variance when the interior point x is placed very close
to a sampled boundary point y. To overcome this issue, we could
separate the gradient into the normal and tangential components
defined with respect to the nearest boundary point and carefully
evaluate each term as described by Sabelfeld and Simonov [1994].
The estimates of the normal derivatives on the boundary with

WoB use the equations we get by taking the limit of the integral
equations for gradient estimation to the boundary. For this Dirichlet
estimator, however, the normal derivative estimator derived this way
involves a hypersingular integral, which has an infinite variance
and cannot be used directly; we will need to transform it to another
form for evaluation [Sabelfeld and Simonov 1994].

4.2 Neumann Problems with Direct BIE
The strength of WoB is that we can apply essentially the same
approach of building a recursive MC estimator to address other
boundary problems than Dirichlet problems. While Sabelfeld and
Simonov [1994] proposed using single layer potentials to solve
Neumann problems, we propose another formulation based on direct
BIEs since this formulation allows us to utilize a different estimator
than the one with single layer potentials as we will explain later.
Our formulation uses Eq. (6) in combination with the Neumann
boundary conditions 𝑞𝑁 as

𝑢 (x) = −
∫
Γ
2 𝜕𝐺
𝜕ny
(x, y)𝑢 (y) 𝑑𝐴y +

∫
Γ
2𝐺 (x, y)𝑞𝑁 (y) 𝑑𝐴y, (26)

at a point x on the boundary; the second term can be estimated with
another MC estimator without recursion because 𝑞𝑁 is a known
boundary value. We have found that it usually suffices to sample
one boundary point to estimate the integral of the second term per
recursion, though it is possible to have more samples.

The rest is similar to the Dirichlet case described above — we
expand 𝑢 recursively. We can estimate the unknown 𝑢 (x𝑖 ) as

𝑢 (x𝑖 ) B −
2 𝜕𝐺𝜕ny (x𝑖 , x𝑖+1)
𝑝1 (x𝑖+1 |x𝑖 ) 𝑢 (x𝑖+1) +

2𝐺 (x𝑖 , x′𝑖+1)
𝑝2 (x′𝑖+1 |x𝑖 )

𝑞𝑁 (x′𝑖+1). (27)

In general, the two PDFs 𝑝1 and 𝑝2 can differ, sampling two distinct
points x𝑖+1 and x′𝑖+1 based on the current point x𝑖 . This estimator
can be used to estimate the interior value based on Eq. (6) with

𝑢 (x0) B −
𝜕𝐺
𝜕ny (x0, x1)
𝑝1 (x1 |x0) 𝑢 (x1) +

𝐺 (x0, x′1)
𝑝2 (x′1 |x0)

𝑞𝑁 (x′1), (28)

where x0 is an interior point and x1 and x′1 are boundary points.
Estimating the gradient is also possible but with a high variance
similar to the case of the Dirichlet problem estimator.

4.3 Mixed Boundary Problems with Single Layer BIE
For mixed boundary and Robin problems, we adopt a single layer
potential formulation (Eq. (8)) where the boundary unknown we
need to estimate is 𝜇. This formulation was used for pure Dirichlet,
Neumann, and Robin problems by Sabelfeld and Simonov [1994],
but not for mixed boundary problems. This formulation leads to
a Fredholm equation of the second kind for parts of the boundary
where Neumann or Robin conditions are specified (see Table 1 for
the equations). However, for parts of the boundary where Dirichlet
boundary conditions are specified, this formulation would result in
an equation in the form of a Fredholm equation of the first kind:

𝑢𝐷 (x) =
∫
Γ
𝐺 (x, y)𝜇 (y) 𝑑𝐴y for x ∈ Γ𝐷 . (29)

Unlike the second kind equation, the unknown quantity 𝜇 appears
only inside the integral. One cannot simply apply recursive MC
estimation for equations in the form of the first kind equation since
there is no recursion. A common approach is to discretize and solve
the corresponding matrix equation, which ruins the advantages of
WoB over the conventional alternatives.

Inspired by a similar technique by Sabelfeld and Simonov [1994],
we propose to transform Eq. (29) by multiplying by a nonzero con-
stant 𝑘 on both sides and adding 𝜇 (x) to both sides:

𝜇 (x) = 𝜇 (x) − 𝑘
∫
Γ
𝐺 (x, y)𝜇 (y) 𝑑𝐴y + 𝑘𝑢𝐷 (x) for x ∈ Γ. (30)

This equation now has a structure similar to the second kind equa-
tion, with the additional 𝜇 (x) on the right-hand side. This equation
can be estimated recursively, just like the second kind equation. We
estimate the unknown quantity on the left-hand side by sampling
the next point, and estimate the contribution by

𝜇 (x𝑖 ) B
{
− 1
𝑝𝑘
· 𝑘𝐺 (x𝑖 ,x𝑖+1 )𝑝 (x𝑖+1 |x𝑖 ) 𝜇 (x𝑖+1) + 𝑘𝑢𝐷 (x𝑖 ) with prob. 𝑝𝑘

1
1−𝑝𝑘 𝜇 (x𝑖+1) + 𝑘𝑢𝐷 (x𝑖 ) with prob. 1 − 𝑝𝑘 .

(31)
We sample one of the first two terms in Eq. (30) based on the given
probability 𝑝𝑘 . In the second case when we sample the term 𝜇 (x), we
remain at the same point, i.e., x𝑖+1 B x𝑖 , in the next recursion step.
With this method of handling the first kind equation, we can con-
struct a recursive MC estimator for 𝜇 for mixed boundary problems
to recover the solution by another MC integration of Eq. (8).
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The choice of the multiplication constant 𝑘 is critical in this es-
timator, and we picked a value by trial and error. If it is too small,
the bias is higher given the same path length. If it is too large,
the Neumann series diverges and the estimator fails as justified by
[Sabelfeld and Simonov 1994] in the case of pure Dirichlet problems.
Sabelfeld and Simonov [1994] also discuss the restriction on the mix-
ture weight 𝛼 of Robin boundary problems. We found that deriving
theoretical bounds in the case of mixed boundaries are extremely
involved and are left for future work.
The gradient estimator with this formulation does not exhibit

the additional noise as with the other formulations because this
formulation uses an integral kernel with a lower order of singularity.
For the normal derivative estimator, we get 𝜇 in two terms, in the
integral and outside of the integral. We need to sample either one of
the terms or run two paths for the estimates of 𝜇 for the two terms.
One could alternatively employ direct BIEs to get a similar esti-

mator for mixed boundary problems. However, we would still en-
counter a first kind equation, and in practice the resulting schemes
are not much different from the indirect BIE-based method above.

4.4 Sampling Strategies
WoB can use various strategies to sample paths as in MC ray tracing,
and a well-designed strategy can sharply reduce variance of the
estimator. Both WoB and MC ray tracing have a vast design space
of sampling strategies for different problems, and our proposed
strategies in this paper are by no means exhaustive. We leave further
exploration of different strategies as future work and briefly explain
the strategies we implemented in the following.

4.4.1 Ray sampling. The integral kernel 2 𝜕𝐺𝜕ny is in fact proportional
to the differential solid angle of y from another point x. Similar to
the fact that sampling a ray will cancel out the geometry term in
rendering, we can use ray tracing from x to perfectly importance
sample 2 𝜕𝐺𝜕ny at any y. The main difference from rendering is that
we do not have the visibility term between y and x. We thus have
to sample a ray from a sphere, not hemisphere, and sample all the
intersection points (not just the first hit) along the ray from x𝑖 via
"all-hits" ray intersection queries in general. Such all-hits queries
are available and used in ray tracing [Gribble et al. 2014].
Due to our recursive formulation, using all hits would cause

exponential branching of paths which may not be ideal for GPU ray
tracing [Parker et al. 2010]. We can instead pick one intersection out
of the𝑚 such intersections at random, which results in multiplying
the PDF by 1/𝑚, and the sample contribution is thus multiplied by𝑚
but with no branching in recursion. We used this approach in all of
our results in this paper. Since this approach leads to an exponential
increase in variance instead of exponential computation cost per
sample, we do not claim that this strategy is always better than
using all hits and branching exponentially.

For the special case when the domain is convex, we revert to the
original hemispherical sampling strategy with closest-hit query and
the PDF in this strategy simplifies to 𝑝 (y|x) = − 𝜕𝐺𝜕ny (x, y) because
there is only one hit for a direction within the hemisphere. The
solution estimator for the Dirichlet problem with path length 𝑀

then becomes 𝑢 (x0) = 2[𝑢𝐷 (x1) − 𝑢𝐷 (x2) + · · · ] + (−1)𝑀𝑢𝐷 (x𝑀 ).
This estimator is the one introduced in Section 2 (and Algorithm 1).

Another strategy is to use only the first hit point, but combine it
with direct sampling of a point on the boundary (like sampling a
point on light sources in rendering) via multiple importance sam-
pling (MIS) [Veach and Guibas 1995]. While the first-hit-only strat-
egy would not cover the entire integration domain, MIS ensures an
unbiased estimator since direct sampling of a point will cover the
entire domain. We did not employ this strategy since it often had
higher variance in our experiments. However, similar to different
strategies in MC rendering, there might be certain scenarios where
this particular strategy works better than the others.We suggest that
readers explore different options to determine a suitable strategy
for a given problem.

4.4.2 Backward estimator. We have so far considered tracing a
path by sampling a series of points starting from the evaluation
point x0. We call this estimator a "backward" estimator, consistent
with "backward tracing" in rendering which traces a path of light
in a backward manner from the sensor (pixel) all the way to the
light source. One can think of our evaluation point as a pixel and
a boundary as a light source. Note that Qi et al. [2022] adopted
the opposite definitions of backward and forward from those in
rendering, so their forward estimator corresponds to our backward
estimator.

4.4.3 Forward estimator. Sabelfeld and Simonov [1994] proposed
an adjoint estimator inWoB, which forms paths starting from a point
on the boundary. We have found that it is analogous to light tracing
in rendering, which traces a path starting from a point on the light
source and can also be explained via the adjoint of the rendering
equation [Christensen 2003]. We call it a "forward estimator" as in
"forward tracing" in rendering. In the forward estimator, we will
need to make an explicit connection between each point along the
path and the evaluation point to compute the contribution of a path
to the evaluation point. The forward estimator has less variance
than the backward estimator in some of the formulations where the
integral kernel is proportional to 𝜕𝐺

𝜕nx as opposed to 𝜕𝐺
𝜕ny . In this case,

we want to generate a ray from y to sample a point x proportional to
its differential solid angle. For Neumann problems, the formulation
with single layer potentials [Sabelfeld and Simonov 1994] is easier
to importance sample by a forward estimator, while our formulation
with the direct BIE matches better with a backward estimator.

4.4.4 Other strategies. Importance sampling only the integral ker-
nel does not perfectly importance sample all the terms, which is also
true in rendering. For example, the Dirichlet boundary value𝑢𝐷 will
not be importance sampled that way. Because our WoB is based on
a Fredholm equation of the second kind and we can use ray tracing,
it is easy to apply more advanced sampling techniques used in ren-
dering, such as MIS, resampled importance sampling (RIS) [Talbot
et al. 2005], Markov chain MC (MCMC) [Kelemen et al. 2002; Veach
and Guibas 1997], or the zero variance theory [Křivánek and d’Eon
2014] to implement WoB. It contrasts with WoS where applications
of these techniques are not necessarily straightforward (e.g., an MIS
bidirectional estimator is not available in WoS [Qi et al. 2022]). We
show preliminary results with bidirectional estimators with MIS,
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resampling via RIS, MCMC WoB, and path reuse as in the virtual
point lights method [Keller 1997], but many other techniques can be
made available to WoB. One interesting aspect of WoB that might
lead to further development of sampling strategies is that samples
can have positive or negative contributions, unlike rendering where
all contributions are non-negative.

4.5 Generalization
4.5.1 Exterior problems. WoB efficiently handles exterior problems
in its basic form. Instead of the domain Ω, we can solve Laplace’s
equation in R2\Ω or R3\Ω for exterior problems. We define the nor-
mals to remain oriented outward from the interior domain Ω and
replace the definitions of the boundary values with those obtained
by taking the limit from the exterior domain. Moreover, in addition
to the boundary conditions, we require that the solution 𝑢 (x) ap-
proaches zero at infinity for exterior problems. The solvers for the
exterior domain largely remain the same as for the interior domain,
except for a few sign changes in the terms of the BIEs (see Table 1).
Since WoB relies on neither 𝜖-shell approximation nor closest point
queries in WoS, its accuracy and performance for exterior domains
remain the same as for interior problems. For example, WoB does
not need Kelvin transformations [Nabizadeh et al. 2021].
Of the two Dirichlet problem estimators, the double layer po-

tential formulation estimator requires additional attention when
used for exterior problems. This formulation allows us to find so-
lutions that decay according to 𝑂 ( |x|1−𝑑 ) as |x| → ∞, where 𝑑 is
the dimension of the problem. It thus cannot handle more general
cases where solutions decay as 𝑂 ( |x|2−𝑑 ). Sabelfeld and Simonov
[1994] explain how to generalize the double layer potential formu-
lation for such cases. The basic idea is to reduce the problem to one
without the slowly decaying component with some precomputation
before applying WoB. We enabled this extension for the scenes in
Figures 7 and 11 where we expect the decay rate 𝑂 ( |x|2−𝑑 ), while
we did not do so for the other examples for which we use analytical
solutions with decay rate 𝑂 ( |x|1−𝑑 ). The single layer potential for-
mulation, on the other hand, supports solutions with a decay rate
𝑂 ( |x|2−𝑑 ) without modification. The exterior problem estimators
for Neumann, Robin, and mixed boundary problems based on the
single layer potential formulation are also general enough to handle
the general decay rate of harmonic functions.

4.5.2 Multiply-connected domain problems. We mainly focus on
simply connected domains, e.g., domains without holes inside, for
simplicity, with the exception of the interior Neumann problem in
Fig. 9. Multiply connected domains require some additional con-
siderations [Sabelfeld and Simonov 1994]. For Neumann problems
with single layer potential, we can apply the same WoB estimators
without modifications as long as the standard compatibility condi-
tion that the integral of the normal derivative evaluates to zero for
each connected domain is satisfied. For Dirichlet (with double layer
potential) and Robin problems (with single layer potential), the situ-
ation is more complicated. The applicability of WoB in its original
form is guaranteed by assuming more artificial compatibility condi-
tions in these cases, and we need to perform some precomputation
to modify the problem similarly to the exterior Dirichlet problem
estimator. We are yet to confirm the applicability and efficiency

Reference 𝑁 = 64 𝑁 = 256 𝑁 = 1024 𝑁 = 4096

Fig. 4. Estimates for Poisson’s equation for Dirichlet (top) and Neumann
(bottom) problems. WoB can handle the non-zero source term. For each
sample path, we used 16 volume samples to estimate all domain integrals.

of these estimators by Sabelfeld and Simonov [1994] or to derive
solvability conditions for Neumann problem estimators based on
direct BIE formulation. For Dirichlet problems, we observed some
successful applications of the single layer potential formulation
with multiply-connected domains, but the restriction on the multi-
plicative constant 𝑘 seems more strict, and it too requires further
investigation.

4.5.3 Non-zero source term. For Poisson’s equation (i.e., 𝑏 (x) ≠ 0),
we need to additionally sample an interior (or exterior) point to
have an MC estimate for the volume integral of 𝑉0. We include
this term when we retrieve the boundary values 𝑣 (x) or 𝜕𝑣𝜕n (x) in
Laplace’s equation and when we compute the function 𝑉0 in the
relation 𝑢 (x) = 𝑣 (x) −𝑉0 (x). One strategy is to sample such a point
uniformly within the domain, but a well-designed sampling strategy
can reduce variance. For interior problems, one possible sampling
strategy is to sample a point along a line that goes through the
point x. Another possibility is to sample the point depending on the
distribution of the source term. Fig 4 shows examples for Dirichlet
and Neumann problems by sampling interior points uniformly in
terms of the area measure. We focus on Laplace’s equation in the
other results since the volume integral of 𝑉0 can always be added
trivially. Sawhney et al. [2022] dismissed WoB as being formulated
only for Laplace’s equation, but as we show,WoB is certainly capable
of handling Poisson’s equation.

5 RESULTS
Generality of WoB. The sameWoB framework based on boundary

integral equations successfully handles Dirichlet, Neumann, Robin,
and mixed boundary problems, for either interior or exterior do-
mains. Figures 1 and 5 show the results of WoB for interior and
exterior Laplace problems with known analytical solutions, where
we set the boundary conditions to satisfy the known analytical so-
lution. For Robin boundaries, we use a constant value 𝛼 = 1 for
the mix weight in these examples. For the mixed boundary prob-
lems, we uniformly randomly assign one of the Dirichlet, Neumann,
or Robin boundary conditions to each boundary triangle or line
segment, and use 𝑘 = 4 and 𝑝𝑘 = 2/3. We show results using the
sampling strategies described earlier. For Robin and mixed bound-
ary problems, a pure ray sampling strategy without MIS would
miss nonzero contributions, so we instead use RIS with candidates
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Fig. 5. WoB applied to various problems. For the interior (top) and exterior (bottom) problems, we run WoB with path length𝑀 = 4 and 𝑁 = 107 samples per
evaluation point with the formulations and sampling techniques as labeled. The solution estimates are visualized with a color map. For each problem, we show
the absolute root mean square error (vertical axis, varying scales) with respect to the number of samples (horizontal axis) measured against the reference
analytical solution (left). The red lines show the O(1/√𝑁 ) decay rate for reference.

generated uniformly over the boundary to approximately sample
the integral kernel. In Fig. 5, the number of candidates is 16. All
results in Fig. 5 are generated with path length𝑀 = 4 and sample
path count per evaluation point 𝑁 = 107 for consistency, using a
highly parallelized CUDA implementation. We observe that all of
the results are consistent with the analytical solution as expected.

Convergence rate and truncation error. WoB exhibits the expected
MC convergence rate of O(1/√𝑁 ). The RMSE curve can eventually
become flat when we take enough samples because of the error
introduced by path truncation. This error decreases as we increase
the path length although that introduces larger variance to the esti-
mator. For the results in Fig. 5, we observe in particular a relatively
large truncation error for the two interior Neumann problem es-
timators and the exterior Dirichlet and mixed boundary problem
estimators. We thus show their results with different path lengths in
Fig. 6. As expected, we observe that having longer paths decreases
the truncation error at the cost of having a higher variance, requir-
ing a larger sample count to converge. It might be possible to apply
stochastic truncation as in MC rendering [Misso et al. 2022] to avoid

this error, though a careful investigation is needed to handle subtle
differences between WoB and MC rendering.

WoB within MC rendering. Fig. 7 show the results of WoB im-
plemented within our MC ray tracing system. Our implementa-
tion of WoB utilizes the existing functionalities of MC ray trac-
ing such as ray-object intersection, stochastic sampling, and tex-
tures (for boundary values). The code for WoB itself is roughly
100 lines and can support both interior and exterior problems
seamlessly. Visualization was done by simultaneously running ren-
dering with ambient occlusion using the MC ray tracing system.
The inset figure shows a result gener-
ated with our prototype interior Dirich-
let solver on top of a popular open-
source renderer for research purposes,
PBRT [Pharr et al. 2018], with minimal
modifications. For this problem, we set
the boundary values such that we expect
to see a linear horizontal gradient of so-
lution values mapped to colors ranging
from red to green to blue.
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Fig. 7. Results of a WoB solver implemented on top of an MC ray tracing system. WoB’s strong similarity to MC ray tracing makes such an implementation
easy to carry out. The images show the estimated solution for interior (top) and exterior (bottom) Dirichlet problems on a cutting plane. WoB can solve both
problems efficiently with a unified MC ray tracing solver. Ambient occlusion was computed at the same time as the solution using the same rendering system.

(a) reference (b) uniform
sampling

(c) boundary
sampling

(d) estimate on
boundary

Fig. 8. Neumann solver with single layer formulation. The boundary value
𝜕𝑢/𝜕n = 0 except for around the six points. By sampling the start of paths
according to the distribution of the boundary value (c) in our forward esti-
mator, we get much less noise compared to the one with uniform sampling
(b). (a) shows the reference estimate we get with a high sample count. (d)
shows the estimate of the solution exactly on the boundary.

Boundary sampling and estimation on the boundary. WoB for Neu-
mann problems offers two distinct advantages over WoS, as demon-
strated in Fig. 8. First, we can begin the walk-on-boundary process
by sampling a starting point on the boundary, according to the
magnitude of the boundary value, to design an efficient sampling
strategy when the boundary value is specified sparsely. With WoS,
such a strategy is available only for Dirichlet problems [Qi et al.
2022]. Second, we can exploit the BIE formulation to estimate the
solution value exactly on the boundary, with a very minor modifica-
tion to the underlying BIE. The original WoS and its basic extensions
for Neumann problems that rely on epsilon shell termination criteria
are incapable of estimating the solution or the normal derivative
exactly on the boundary or exhibit significant bias in such cases.

Gradient estimator and a path reuse strategy. Similarly to WoS,
WoB can estimate the potential and the gradient simultaneously
with almost no additional cost. Fig. 9 demonstrates the use of WoB
for interpolating potential flow velocities, as described by Nielsen
and Bridson [2011]. By solving for the gradient of the scalar potential
𝑢, which satisfies the Laplace equation and a prescribed Neumann

Fig. 9. Potential flow reconstruction from the velocity boundary condition.
We show the estimated potential field on the left and the estimated velocity
field on the right. On the outer boundary, a constant inflow boundary
condition 𝜕𝑢/𝜕n = −1 is given on the left edge, and a constant outflow
boundary condition 𝜕𝑢/𝜕n = 1 is given on the right edge. On the other
outer boundary edges and the inner boundaries, 𝜕𝑢/𝜕n = 0 is given.

boundary condition, we obtain the velocity field that follows po-
tential flow assumptions (incompressibility and irrotationality) and
matches the inflow/outflow conditions at the boundaries. In this
example, we use a backward estimator for the single layer formula-
tion with RIS, in combination with a path reuse strategy analogous
to the virtual point lights method [Keller 1997] in rendering; we
generate sample paths from the boundaries to get samples for the
unknown boundary value estimates first, and connect each of them
to all the evaluation points to reuse the subpaths starting from the
boundaries. This effectively increases the number of sample paths
per evaluation point while introducing correlation of the estimates
at different evaluation points. Though this correlation may seem un-
desirable, this approach guarantees that the estimated solution and
gradient fields are always smooth, making it a potentially preferable
alternative in some settings like fluid simulation applications. Miller
et al. [2023] introduced a similar boundary value caching technique
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Fig. 10. Equal-time comparison of bidirectional WoB estimators. Left to
right: purely backward estimator, next-event estimation, and the MIS combi-
nation of the two. Top row: non-zero boundary values on each side. Bottom
row: non-zero boundary values around the center of each side. Either the
backward estimator or next-event estimation is more efficient than the other
in each setting. WoB allows us to trivially combine the two estimators via
MIS, and the combined estimator is robust across different settings (right).

for WoS in concurrent work, and their analysis largely applies to
the case of WoB as well.

MIS estimator. Due to the similarity betweenWoB andMC render-
ing, it is trivial to combineWoB estimators via MIS. Fig. 10 compares
the backward estimator, the backward estimator with importance
sampling of boundary values, and the MIS combination of the two
estimators with the balance heuristic for a Dirichlet problem. The
two estimators correspond to unidirectional path tracing and path
tracing with next-event estimation in MC ray tracing. When the
non-zero boundary values are not localized (top row), the backward
estimator performs well, although boundary sampling (which corre-
sponds to next-event estimation) suffers from additional noise due
to its explicit connection to a boundary point. Conversely, when
the non-zero boundary values are localized (bottom row), boundary
sampling becomes significantly more efficient than the backward
estimator. This behavior is analogous to unidirectional path tracing
and next-event estimation for cases where light sources are large or
small. The MIS combination of the two estimators (right column) is
robust across different settings. The related work for WoS [Qi et al.
2022] left this MIS combination to future work, as the integration
domain changes at each step in WoS (i.e., WoS solves a Volterra
equation; see Appendix B). WoB allows us to incorporate MIS since
it has the same mathematical and algorithmic structure as MC ray
tracing. Notably, our bidirectional estimators for WoB also do not
introduce extra bias, unlike their WoS counterparts [Qi et al. 2022].

Markov chain Monte Carlo. We implemented primary sample
space MLT [Kelemen et al. 2002] (PSSMLT) on top of WoB inte-
rior/exterior Dirichlet estimators. In this implementation, each sam-
ple in WoB is generated according to a Markov chain over the
sampling domain including the image space. PSSMLT formulates
this sampling domain as a unit hypercube of random numbers used

Fig. 11. Equal-time comparison of Monte Carlo and Markov chain Monte
Carlo (MCMC) estimators for solving interior and exterior Dirichlet prob-
lems on a plane passing through a concave 3D star shape. Left image: Monte
Carlo sampling. Right image: Markov chain Monte Carlo sampling formu-
lated as PSSMLT [Kelemen et al. 2002]. MCMC can result in lower variance
than MC as in rendering.

to generate each sample and the location in the image space. In our
case, the first two dimensions are used to pick a pixel (i.e., evalua-
tion point) and the rest of the dimensions are used for generating a
sample in the corresponding WoB estimator (i.e., interior or exterior,
depending on the pixel), just like PSSMLT in rendering. We set the
target distribution to be the absolute value of the sample’s contribu-
tion, so samples that have higher absolute contributions are likely to
be generated more often. Since this target distribution includes all
the terms in each sample (e.g., the boundary condition and the prob-
ability of selection in all-hits), MCMC is expected to perform better
than MC with a limited form of importance sampling. Fig. 11 shows
our preliminary examples that compare MC and MCMC in equal
time. These examples solve interior and exterior Dirichlet problems
at the same time. We observe that PSSMLT performs similarly in
rendering and WoB in the sense that the image is less noisy than
MC at the cost of correlation artifacts. This application of MCMC is
straightforward due to the similarity between rendering and WoB.

Numerical comparisons between WoB and WoS. Fig. 12 compares
the efficiency of WoB and WoS interior Dirichlet estimators in ex-
amples of convex and non-convex domains. Both WoB and WoS are
implemented with similarly optimized CUDA code in their basic
forms with no advanced sampling techniques. Our experiments
suggest that WoS performs more efficiently than WoB for complex
non-convex domains, but comparably for simple convex domains.
The reason is that, whileWoS typically takes more computation time
per sample (i.e., per individual random walk that terminates near
the boundary), WoB requires more sample paths due to its higher
variance, resulting in lower overall efficiency. We expect that this
difference may become smaller with additional variance reduction
techniques. Moreover, this observation only provides general guid-
ance on the choice betweenWoS andWoB. We do not claim that one
of them is fundamentally more efficient than the other in any given
problem (be it convex or non-convex) based on these numerical
comparisons; the theoretical comparisons offered throughout this
paper are more generally relevant (e.g., accuracy near the boundary
and generality regarding supported problems).
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Fig. 12. Comparison of WoB and WoS with example interior Dirichlet prob-
lems in a convex domain (top) and a non-convex domain (bottom). The plots
show how the root mean squared errors (vertical axis) decay with increasing
time (horizontal axis). Each line corresponds to a specific parameter choice
for WoB (blue) and WoS (red). We use path length 𝑀 = 2 to 7 for WoB,
and epsilon shell size 10−2 to 10−7 for WoS. For each scene and for each
method, we show the error of the solution with the least error after 2 hours
on the right. We observe that WoS performs more efficiently than WoB for
complex non-convex domains.

6 CONCLUSION
WoB is a promising alternative to WoS as an MC estimator for
boundary value problems. WoB offers a unified way to solve inte-
rior and exterior Dirichlet, Neumann, Robin, and mixed boundary
problems. WoB is the only method that can estimate solutions near
or on the boundary without any spatial discretization error (as in
finite element and finite difference methods) or 𝜖-shell error (as in
WoS). The remarkable similarity of WoB to rendering allowed us to
apply advanced MC rendering methods directly and to implement
WoB atop existing ray tracing codebases.

Our paper has only scratched the surface of WoB’s full potential.
Similar to WoS, WoB can be applied to other elliptic equations with
known fundamental solutions by replacing the fundamental solution.
For example, the book by Sabelfeld and Simonov [1994] describes
the application of WoB to other equations, including screened Pois-
son, linear elastostatics, and diffusion problems. We introducedWoB
to graphics for the first time, but the use of BIEs has been explored
in the form of conventional spatial discretization-based methods,
including the boundary element method [Da et al. 2016; Hahn and
Wojtan 2015; James et al. 2006; James and Pai 1999; Solomon et al.
2017; Sugimoto et al. 2022] and the method of fundamental solu-
tions [Martin et al. 2008]. This relationship between WoB and these
methods is analogous to that between rendering techniques based
on Monte Carlo methods and the radiosity method [Cohen and
Greenberg 1985; Goral et al. 1984; Nishita and Nakamae 1985] for
the rendering equation. These traditional BIE-based techniques also
suggest other potential application domains of WoB. The applica-
tion to problems with spatially-varying coefficients [Sawhney et al.
2022] is another interesting extension.

The generality of WoB in terms of the types of domains and the
valid ranges of parameters (e.g., first kind equation scaling factor 𝑘
and Robin problem mixture weight 𝛼) require further investigation.
We focused on simply connected domains for simplicity, with the
exception of the interior Neumann problem in Fig. 9. Extensions to
support other multiply-connected domain problems are explained
by Sabelfeld and Simonov [1994], but we are yet to validate their
formulation and evaluate their numerical performance.
The bias of the estimator is still another topic. Instead of trun-

cating the paths with a predefined length, we expect that other
path truncation techniques, such as Russian roulette, could be ap-
plied, but with a careful investigation of how this should be done
considering the modification to the Neumann series.
Lastly, we are greatly interested in improving the efficiency of

the method. While WoB applies to more problems than WoS, we
have not yet thoroughly evaluated the performance of WoB and the
variants of WoS, where available. However, we foresee that future
applications of advanced rendering methods, such as the UPS/VCM
methods [Georgiev et al. 2012; Hachisuka et al. 2012], together with
techniques tailored for WoB, such as the use of a more efficient
modified Neumann series and more efficient handling of all-hits
intersections due to contributions betweenmutually invisible points,
can make WoB an even more attractive choice.
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A FUNDAMENTAL SOLUTION
The fundamental solution 𝐺 (x, y) for Laplace operator is the solu-
tion to the equation in an infinite domain: Δ𝐺 (x, y) + 𝛿 (x − y) = 0.
In 3D, we have 𝐺 (x, y) = 1

4𝜋𝑟 and its derivatives are

𝜕𝐺

𝜕xk
(x, y) = r · ek

4𝜋𝑟3
,

𝜕𝐺

𝜕ny
(x, y) = − r · ny

4𝜋𝑟3
,

𝜕𝐺

𝜕nx
(x, y) = r · nx

4𝜋𝑟3
,

𝜕2𝐺
𝜕xk𝜕ny

(x, y) = 1
4𝜋

[
ny · ek
𝑟3

− 3 (r · ny) (r · ek)
𝑟5

]
.

In 2D, we have 𝐺 (x, y) = − 1
2𝜋 log 𝑟 and its derivatives are

𝜕𝐺

𝜕xk
(x, y) = r · ek

2𝜋𝑟2
,

𝜕𝐺

𝜕ny
(x, y) = − r · ny

2𝜋𝑟2
,

𝜕𝐺

𝜕nx
(x, y) = r · nx

2𝜋𝑟2
,

𝜕2𝐺
𝜕xk𝜕ny

(x, y) = 1
2𝜋

[
ny · ek
𝑟2

− 2 (r · ny) (r · ek)
𝑟4

]
.

where r = y − x, 𝑟 = ∥r∥, and e𝑘 is the 𝑘-th basis vector.

B CLASSES OF INTEGRAL EQUATIONS

B.1 The rendering equation, WoS, and WoB
Both the rendering equation and the formulation of WoS are un-
derstood to be Fredholm equations of the second kind [Pharr et al.
2018; Qi et al. 2022]. This type of integral equation takes the form
𝑓 (x) = 𝑔(x) +

∫
𝐷 𝐾 (x, y) 𝑓 (y) 𝑑y where 𝐾 (x, y) is a given integral

kernel, 𝑔(x) is a known function, 𝑓 (y) is an unknown function we
want to solve for, and 𝐷 is a fixed integration domain. When the
integration domain changes depending on x, it is called a Volterra
equation (of the second kind).

In rendering, for surface light transport, x is a tuple of a location
on the surface and a direction from there (i.e., to measure radiance
coming from that particular location toward the particular direction).
The function 𝑔(x) is the emission term, and 𝐾 (x, y) is defined as
𝐾 (x, y) = 𝑓𝑟 (x, y)𝑉 (x, y)𝐺𝑒𝑜 (x, y) where 𝑓𝑟 is the BSDF, 𝑉 is the
visibility term, and𝐺𝑒𝑜 is the geometry term [Pharr et al. 2018]. The
integration domain is fixed as the surfaces of the scene, so it fits the
definition of Fredholm equations.

In WoS, 𝑔(x) is defined as 𝑔(x) =
∫
𝐵x
𝑏 (z)𝐺𝐵x (x, z)𝑑z where 𝑏 (x)

is the source function, 𝐺𝐵x (x, y) is Green’s function for the largest
ball 𝐵x contained within the domain centered at x. Note that both
functions are given so 𝑔(x) is also still given. The kernel 𝐾 (x, y) for
WoS is defined as 𝐾 (x, y) = 𝜕𝐺𝐵x (x,y)

𝜕ny and the integration domain
is 𝐷 = 𝜕𝐵x, the surface of the ball 𝐵x. While Qi et al. [2022] claimed
that the formulation of WoS is a Fredholm equation of the second
kind, it is a Volterra equation of the second kind since the integration
domain 𝐷 = 𝜕𝐵x changes according to x. A connection between
WoS and the rendering equation was imperfectly made in this sense.
On the other hand, in WoB, the integration domain is fixed as the
boundary, so it is precisely a Fredholm equation.
The rendering equation, commonly referred to as a Fredholm

equation [Pharr et al. 2018], appears to contradict the definition
of a fixed integration domain when it is solved by MC ray tracing.

Ray tracing from a point x results in a varying set of visible points
y depending on x, and thus it appears to be a Volterra equation.
However, the integration domain is fixed as the surfaces of the
scene, so it still fits the definition of a Fredholm equation. While
this mismatch is paradoxical, we have identified that classifying the
rendering equation as solely a Fredholm equation is inaccurate.

In addition to the aforementioned area form, the rendering equa-
tion can take a solid angle form, in which the integration domain
𝐷 becomes the hemispherical angular domain around x, and the
kernel 𝐾 (x, y) is defined as 𝑓𝑟 (x → y) cos𝜃 , where y is the first
visible point from x along the direction towards y [Pharr et al. 2018].
This solid-angle form is the form used in MC ray tracing, and in this
context, the rendering equation is a Volterra equation of the second
kind, due to the changing angular integration domain based on x.
However, the area form of the rendering equation, which integrates
over all surface points, is a Fredholm integral equation of the second
kind. The assertions made by Qi et al. [2022] still hold if one accepts
that the solid-angle form of the rendering equation is a Volterra
equation, just like the formulation of WoS.
This distinction is subtle since a Volterra equation can be con-

verted into a Fredholm equation by properly expanding the kernel
𝐾 (x, y) with zeros in a common fixed integration domain. This con-
version is precisely what actually occurs in the area form of the
rendering equation, where the visibility term 𝑉 (x, y) returns zero
for points y that are not visible from x. The area form of the render-
ing equation is still a Fredholm equation, but it can be transformed
into a Volterra equation by redefining the integration domain to in-
clude only visible points from x. The formulation of WoB cannot be
reduced to a Volterra equation, as its kernel is nonzero everywhere.

B.2 Singularity and reciprocity of the kernel
Boundary integral equations involve singular kernels, where the ker-
nel becomes unbounded as the distance between points 𝑟 = |x − y|
approaches zero. The order of singularity in the kernel, 𝐾 , can be
classified as weakly singular, strongly singular, and hypersingu-
lar, for 𝐾 = O(1/𝑟 ), 𝐾 = O(1/𝑟2), and 𝐾 = O(1/𝑟3) respectively.
The orders of singularity here pertain to three-dimensional scenar-
ios, although the underlying concepts remain unchanged in two-
dimensional scenarios. As the order of singularity increases, robust
estimation becomes challenging. Weak and strong singularities in
the kernel are prevalent in the rendering equation, and a plethora
of techniques to circumvent numerical difficulties have been stud-
ied [Pharr et al. 2018]. For instance, tracing a ray, as opposed to
directly sampling a point on surfaces, can avoid singularities arising
from the geometry term. Similar methods are applied to WoB. How-
ever, hypersingular integrals necessitate special attention during
computation and are not typically encountered in rendering. It is
advisable to avoid high-order singularities whenever possible.
The kernel 𝐾 is called symmetric if 𝐾 (x, y) = 𝐾 (y, x) and

asymmetric otherwise. In rendering, the terms reciprocal and non-
reciprocal are used instead of symmetric and asymmetric, respec-
tively; the kernel of the rendering equation is usually symmetric due
to the physics of light, but can be asymmetric in certain cases [Veach
1998]. Both WoB and WoS deal with asymmetric kernels but they
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do not pose a problem for the solvers as long as they are treated
properly, similarly to handling of asymmetric kernels in rendering.

B.3 First-kind equations and their MC estimation
Both Fredholm and Volterra integral equations have first and second
kind forms. A Fredholm equation of the first kind takes the form
𝑔(x) =

∫
𝐷 𝐾 (x, y) 𝑓 (y) 𝑑y, where both 𝑔 and 𝐾 are known and 𝑓 is

the unknown function to be solved for. Note we used the term first
kind equation abusively in the main text: strictly, we should call
it a first kind equation if the equation holds for the entire integral
domain, but in our mixed boundary problem estimator, we have

different integral equations defined conditionally on the type of
boundary at each point. There is also a third kind of Fredholm
equation, but it is not relevant to WoB in our paper.

While second-kind equations can be estimated using MC integra-
tion via Neumann series expansion, this technique is not applicable
to first-kind equations. For instance, one might consider estimating
the integral using MC integration as: 𝑔(x) ≈ 1

𝑁

∑𝑁
𝑖=1

𝐾 (x,y𝑖 ) 𝑓 (y𝑖 )
𝑝 (y𝑖 ) .

This equation cannot be used, as 𝑓 is unknown and cannot be solved
for using MC integration alone. We therefore focused on having
second-kind equations that are compatible with MC integration,
which requires us to choose a specific BIE to achieve this goal.
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