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Abstract. In a previous work [Canad. Math. Bull., 62(4) (2019), 841-855], we developed
the shifted Turán sieve method on a bipartite graph and applied it to problems on cycles in
tournaments. More precisely, we obtained upper bounds for the number of tournaments which
contain a small number of r-cycles. In this paper, we improve our sieve inequality and apply it
to obtain an upper bound for the number of bipartite tournaments which contain a number of
2r-cycles far from the average. We also provide the exact bound for the number of tournaments
which contain few 3-cycles, using other combinatorial arguments.

1. Introduction

In 1934, Turán [9] gave a greatly simplified proof of a result of Hardy & Ramanujan [3] by
proving that ∑

n≤x

(
ω(n)− log log x

)2 � x log log x,

where ω(n) denotes the number of distinct prime factors of a natural number n. In particular,
it implies that for most of large enough values of n, ω(n) approaches log log n, in the sense that
the density of the numbers that does not approach tends to zero. In the same spirit as Turán’s
proof, Liu & Murty [6] introduced the Turán sieve method. This method was further generalized
to a bipartite graph in [7] to investigate several combinatorial questions. In a previous paper
[5], we constructed a shifted version and used it to bound the number of tournaments with few
r-cycles.

Let G = (A,B,E) be a bipartite graph with finite partite sets A,B and edge set E. For
a ∈ A, b ∈ B, we write a ∼ b if there is an edge that joins a and b. For a ∈ A, b, b1, b2 ∈ B, we
define

ω(a) := #
{
b ∈ B | a ∼ b

}
the degree of a,

deg b := #
{
a ∈ A | a ∼ b

}
the degree of b,

n(b1, b2) := #
{
a ∈ A | a ∼ b1 and a ∼ b2

}
the number of common neighbors of b1 and b2,

where both #S and |S| denote the cardinality of the set S. Although ω(a) and deg b play the
same role, we use different notations since the sets A and B are in general intrinsically distinct.

Liu & Murty proved the following:

Theorem 1.1. ([7, Theorem 1])

(1)
∑
a∈A

(
ω(a)− 1

|A|
∑
b∈B

deg b

)2

=
∑

b1,b2∈B
n(b1, b2)− 1

|A|

(∑
b∈B

deg b

)2

.
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The Turán sieve [7, Corollary 1] and its shifted version [5, Corollary 1.3] can be easily deduced
from the theorem above.

A simple observation improves the shifted Turán sieve inequality. Let K be a non-empty
subset of non-negative integers. We have that left hand side of Eq. (1) is bigger than or equal

to #{a ∈ A | ω(a) ∈ K} ·mink∈K

(
k − 1

|A|
∑

b∈B deg b
)2

, from where we deduce the new version

of shifted Turán sieve:

Theorem 1.2.

(2) #{a ∈ A | ω(a) ∈ K} ≤

|A|2
∑

b1,b2∈B
n(b1, b2)− |A|

(∑
b∈B

deg b
)2

min
k∈K

(
|A| · k −

∑
b∈B

deg b
)2 .

A direct consequence of the above theorem is a Chebyshev-like inequality:

Corollary 1.3.

#

{
a ∈ A;

∣∣∣∣∣ω(a)−
∑

b∈B deg b

|A|

∣∣∣∣∣ ≥ t
}
≤ 1

t2

 ∑
b1,b2∈B

n(b1, b2)− 1

|A|

(∑
b∈B

deg b
)2

 .
1.1. Tournaments and cycles. Let X1, X2, . . . , Xt be t pairwise disjoint sets. A simple di-
rected complete t-partite graph is called an m1 × · · · ×mt t-partite tournament and we denote
by Tm1,...,mt the collection of all such t-partite tournaments. In particular, if t = 2 then we
have a bipartite tournament, and if |Xi| = 1 for every 1 ≤ i ≤ t then we just say tournament.
Throughout the text, if (x, y) is a directed edge toward y, we write x→ y.

Now, we define the different kinds of cycles. For a t-partite tournament T , suppose that
V = {x1, x2, . . . , xr} ⊂ T is a set of vertices such that x1 → x2 → · · · → xr → x1. We say that
V is an r-cycle on T . We denote an r-cycle by (V, τ), where τ is a circular permutation of V .

An r-cycle (V, τ) is called a restricted r-cycle on a t-partite tournament T if every partite set
X1, . . . , Xt intersects V at most once. Otherwise we say that it is an unrestricted r-cycle. Since all
cycles in tournaments are restricted and all cycles in bipartite tournaments are unrestricted, we
drop the words “restricted” and “unrestricted” whenever there is no chance of misunderstanding.

In [5], the authors applied the shifted Turán sieve method to establish upper bounds for the
number of tournaments and t-partite tournaments with a given number of vertices and exactly
k restricted r-cycles, where k is fixed and 3 ≤ r ≤ t ≤ n. Joining the result obtained there
with the sieve improvement, it is possible to obtain similar bounds, but allowing more cycles
than a fixed quantity. The case of unrestricted cycles on t-partite tournaments is much harder
than the restricted case, because the cycles can return to the same partition but cannot self-
intersect, and this can cause a break in symmetry. Nevertheless, we were able to apply this
method for bipartite tournaments (Theorem 1.4). The most general case, about unrestricted
r-cycles on t-partite tournaments, still remains untouchable. On the other hand, several results
focused on cycles of small length on t-partite tournaments are known, and for simplicity, the
most studied case is t = 2. For instance, [8] contains a study on the average number of 4-cycles
on random bipartite tournaments and a proof that the distribution of the 4-cycles satisfies the
same conclusion as the Central Limit Theorem. Corollary 2.4 provides bounds for both upper
and lower tails of the Gaussian curve in this case. We conjecture that, for r ≥ 3, the distribution
of the unrestricted 2r-cycles in bipartite tournaments also satisfies the same conclusion as the
Central Limit Theorem, as well as the distribution of restricted r-cycles in t-partite tournaments.
For an overview on multipartite tournaments, see [10, 11] and references therein. The bound
presented in Theorem 1.4 is general but not tight, in the sense that it holds for any cycle
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length, however the upper bound can be greatly improved. Obtaining the exact bound for the
problems presented here and in [5] is an interesting and also a very difficult problem. Yet, using
other combinatorial arguments, it was possible to give the precise bound for the number of
tournaments with a “small” number of 3-cycles (Theorem 1.5).

Notations. As usual, we use the following asymptotic notations: If there exists a constant
C > 0 such that |f(x)| ≤ Cg(x) for every x > 0, we write f(x) � g(x) or f(x) = O(g(x)). If

limx→∞
f(x)
g(x) = 0, we write f(x) = o(g(x)). If limx→∞

f(x)
g(x) = 1, we write f(x) ∼ g(x). Moreover,

if {f(n)}n∈N is a positive increasing sequence such that limn→∞ f(n) =∞, we write f(n)↗∞.

In this paper, we will prove the following result, related to 2r-cycles in bipartite tournaments:

Theorem 1.4. Let ε > 0 and k, r be positive integers with 2 ≤ r ≤
(

1
4 log 2 − ε

)
log(min{m,n}).

(i) If k < (r−1)!r!
4r

(
m
r

)(
n
r

)
, then

#{T ∈ Tm,n | T contains ≤ k 2r-cycles}

≤
2mn

(
m
r

)(
n
r

)
mr−3nr−3r!2

{
2(m2n+mn2) +O

(
24r(m2 + n2)

)}[
4rk − (r − 1)!r!

(
m
r

)(
n
r

)]2 .

(ii) If k > (r−1)!r!
4r

(
m
r

)(
n
r

)
, then

#{T ∈ Tm,n | T contains ≥ k 2r-cycles}

≤
2mn

(
m
r

)(
n
r

)
mr−3nr−3r!2

{
2(m2n+mn2) +O

(
24r(m2 + n2)

)}[
4rk − (r − 1)!r!

(
m
r

)(
n
r

)]2 .

The implicit constants in the O-terms are absolute and refer to min{m,n} → ∞.

The sets A and B are respectively chosen in the shifted Turán sieve to be all bipartite tourna-
ments on m+ n vertices and all 2r-cycles. The main technical difficult in applying this method
lies in the sum of n(b1, b2), that is, to count the number of tournaments a ∈ A that associate
to both 2r-cycles b1, b2 ∈ B. For this, we need to first discuss how cycles b1 and b2 intersect
each other, and this intersection can have a very complicated structure. In this paper, we use
a counting method developed in [5] for estimating the sum of n(b1, b2), that consists of “omit
some existing cases” and “include some non-existing cases” to get the expected main contri-
bution. Then we compare the “under-counting” and “over-counting” of the main contribution
to get the correct estimate. Such an approach greatly simplifies many of our calculations. For
example, in Section 2, for the case (ii), since one can argue that the numbers of under-counting
and over-counting are the same, it is only required to estimate the expected main term.

Theorem 1.4 is useful only when
∣∣k − (r−1)!r!

4r

(
m
r

)(
n
r

)∣∣ > (mn)r−1
√

2(m+n)

4r , i.e., when k is “far”
from the average (see Corollary 2.2). We also notice that the shifted Turán sieve method yields
good upper bounds in terms of r, in the sense that it holds for every fixed r ≥ 2, what had never
been done before in the literature (except for r small).

Apart from the sieve improvement, the bounds presented in Theorem 1.4 are somewhat similar
to those presented in [5] for r-cycles in tournaments. However, for small values of k, the bounds
obtained there are not too tight, in view of the following result.

Theorem 1.5. Let k ≥ 0 be an integer. Then the number of tournaments with n vertices and
exactly k 3-cycles is

n!

k! · 3k
·
[
nk +O

(
(3k − 2)3kk! · nk−1

)]
.

In particular, for every ε > 0, if k ≤ (log n)1−ε then this number is ∼ n!·nk

k!·3k .
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The latter is the only calculation that does not use shifted Turán sieve method in this paper.
The number of tournaments in Tn without 3-cycles is well-known: n!. In Proposition 3.1, we find
the exact number of tournaments with exactly one and exactly two 3-cycles. The exact bound
given by theorem above is far from the upper bound given in [5, Theorem 1.4], and indicates
that all other bounds such as [5, Theorem 1.5] and Theorem 1.4 are still far to be sharp. This
explain why we do not strive so much to minimize the error terms.

The paper is organized as follows. In Section 2, we prove Theorem 1.4 and present some of
its consequences. In Section 3, we prove Theorem 1.5.

2. 2r-cycles on bipartite tournaments

In this section, we investigate 2r-cycles in bipartite tournaments, proving Theorem 1.4. We
also provide some consequences of this result.

Notation. We write (x1, . . . , xn)↔ (y1, . . . , yn) when (x1, . . . , xn) is a permutation of (y1, . . . , yn).

Let r ≥ 2, A = Tm,n, B be the set of all 2r-cycles, and P and Q be two disjoint sets with
|P | = m and |Q| = n. The sets P and Q will be partitions of a bipartite graph in A. Suppose
we pick {pi1 , . . . , pir} ⊆ P and {qj1 , . . . , pjr} ⊆ Q. Note that a 2r-cycle on these vertices means
that

pi1 → qb1 → pa1 → qb2 → pa2 → · · · → par−1 → qbr → pi1

where (a1, . . . , ar−1)↔ (i2, . . . , ir), and (b1, . . . , br)↔ (j1, . . . , jr). Hence given {pi1 , . . . , pir} ⊆
P and {qj1 , . . . , pjr} ⊆ Q there are (r − 1)!r! possible 2r-cycles on these vertices. This means
that

|A| = 2mn and |B| = (r − 1)!r!

(
m

r

)(
n

r

)
.

For a bipartite tournament a ∈ A and a 2r-cycle b ∈ B, we connect a ∼ b when a contains b.
Let VP,b ⊆ P and VQ,b ⊆ Q be the sets of vertices of a fixed 2r-cycle b in P and Q, respectively.
Notice that b is determined by a circular permutation σb of VP,b and a permutation τb of VQ,b,
thus we write b = (VP,b, VQ,b, σb, τb) ∈ B. Hence,

ω(a) = #{2r-cycles b contained in a},
deg b = #{a ∈ A | a contains b = (VP,b, VQ,b, σb, τb)}.

Since b determines 2r directed edges of a, there are 2mn−2r other choices for the remaining
mn− 2r edges, hence deg b = 2mn−2r for all b ∈ B and∑

b∈B
deg b = (r − 1)!r! · 2mn−2r

(
m

r

)(
n

r

)
.

Let b1 = (VP,b1 , VQ,b1 , σb1 , τb1) and b2 = (VP,b2 , VQ,b2 , σb2 , τb2) ∈ B. Consider

n(b1, b2) = #{a ∈ A | a contains both b1 and b2}.

Let M(r1, r2) denote the number of pairs (b1, b2) ∈ B2 such that |VPb1
∩ VPb2

| = r1 and

|VQb1
∩ VQb2

| = r2. As we are interested in an asymptotic upper bound, we will consider only

enough cases for the pair (r1, r2) to obtain the leading terms of the numerator of Eq. (2). We
have some cases:
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(i) Case r1 = 0 or r2 = 0. Then b1 and b2 together determine 4r directed edges and there are
(r − 1)!r! ways to choose each cycle. Therefore we have

M(0, r2) = [(r − 1)!r!]2
(
m

r

)(
n

r

)(
m− r
r

)(
r

r2

)(
n− r
r − r2

)
and n(b1, b2) = 2mn−4r,

M(r1, 0) = [(r − 1)!r!]2
(
m

r

)(
n

r

)(
n− r
r

)(
r

r1

)(
m− r
r − r1

)
and n(b1, b2) = 2mn−4r,

which implies∑
b1,b2∈B
r1=0

n(b1, b2) = 2mn−4r[(r − 1)!r!]2
(
m

r

)(
n

r

)(
m− r
r

)(
n

r

)
,

∑
b1,b2∈B

r1>0,r2=0

n(b1, b2) = 2mn−4r[(r − 1)!r!]2
(
m

r

)(
n

r

)(
n− r
r

)[(
m

r

)
−
(
m− r
r

)]
.

(ii) Case (r1, r2) = (1, 1). There are
(
m
r

)(
n
r

)(
r
1

)2(m−r
r−1

)(
n−r
r−1

)
ways to choose the vertices for b1

and b2. Fix a choice of vertices and suppose that p ∈ P and q ∈ Q are the only shared
vertices between b1 and b2.

If b1 and b2 share no edges then the two cycles together determine 4r directed edges
and n(b1, b2) = 2mn−4r, and if b1 and b2 share one edge then n(b1, b2) = 2mn−4r+1. Since
r1 = r2 = 1 there is at most one shared edge between b1 and b2. Let N0, N1 be the number
of ways to choose the cycles on the vertices of b1 and b2 independently so that they have 0
and 1 edges in common, respectively. There are (r− 1)!r! possibilities to create each cycle.
Among these possibilities:
(a) There are N0 possibilities such that b1 and b2 do not both contain a directed edge in

Gp,q = {p → q, q → p}, since in this case b1 and b2 have no edges in common and the
union of the two cycles represents a valid subgraph of the bipartite tournament.

(b) There are N1 possibilities where b1 and b2 both contain p→ q or q → p, since the union
of these two cycles represents a valid subgraph of the bipartite tournament. There are
an additional N1 possibilities where b1 contains one of the edges p→ q and q → p and
b2 contains the other, since the union of b1 with the inverse of b2 (where the orientation
of every edge in b2 is switched) represents a valid subgraph of the bipartite tournament.

Since these cases are exhaustive, we have N0 + 2N1 = [(r − 1)!r!]2 and then∑
b1,b2∈B
r1=r2=1

n(b1, b2) = (2mn−4rN0 + 2mn−4r+1N1)

(
m

r

)(
n

r

)(
r

1

)2(m− r
r − 1

)(
n− r
r − 1

)

= 2mn−4r[(r − 1)!r!]2
(
m

r

)(
n

r

)(
r

1

)2(m− r
r − 1

)(
n− r
r − 1

)
.

(iii) Case (r1, r2) = (1, 2). The case for (r1, r2) = (2, 1) is analogous by interchanging P and Q.
There are

(
m
r

)(
n
r

)(
r
1

)(
r
2

)(
m−r
r−1

)(
n−r
r−2

)
ways to choose the vertices for b1 and b2. Fix a choice

of vertices and suppose that p ∈ P and q, q′ ∈ Q are the shared vertices between b1 and b2.
If b1 and b2 share no edges then the two cycles together determine 4r directed edges and

n(b1, b2) = 2mn−4r, if b1 and b2 share one edge then n(b1, b2) = 2mn−4r+1, and if b1 and
b2 share two edges then n(b1, b2) = 2mn−4r+2. Let M0,M1,M2 be the number of ways to
choose the cycles on the vertices of b1 and b2 independently so that they have 0, 1 and 2
edges in common, respectively. There are (r − 1)!r! ways to create each 2r-cycle. Among
these possibilities:
(a) There are M0 possibilities such that b1 and b2 do not both contain an edge in Gp,q =
{p→ q, q → p} or Gp,q′ = {p→ q′, q′ → p}, since in this case b1 and b2 have no edges
in common and the union of the two cycles represents a valid subgraph of the bipartite
tournament.
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(b) There are M1 possibilities where b1 and b2 both contain the same directed edge in
Gp,q or Gp,q′ , since the union of these two cycles represents a valid subgraph of the
bipartite tournament. There are an additional M1 possibilities where b1 contains one
of the edges in Gp,q or Gp,q′ and b2 contains the other, since the union of b1 with the
inverse of b2 (where the orientation of every edge in b2 is switched) represents a valid
subgraph of the bipartite tournament.

(c) There are M2 possibilities where b1 and b2 both contain q′ → p→ q or q → p→ q′, since
the union of these two cycles represents a valid subgraph of the bipartite tournament.
There are an additional M2 possibilities where b1 contains one of q′ → p → q and
q → p → q′ and b2 contains the other, since the union of b1 with the inverse of b2
(where the orientation of every edge in b2 is switched) represents a valid subgraph of
the bipartite tournament.

Since these cases are exhaustive, we have M0 + 2M1 + 2M2 = [(r − 1)!r!]2 and then∑
b1,b2∈B

(r1,r2)=(1,2)

n(b1, b2) = 2mn−4r(M0 + 2M1 + 4M2)

(
m

r

)(
n

r

)(
r

1

)(
r

2

)(
m− r
r − 1

)(
n− r
r − 2

)

= 2mn−4r
{

[(r − 1)!r!]2 + 2M2

}(m
r

)(
n

r

)(
r

1

)(
r

2

)(
m− r
r − 1

)(
n− r
r − 2

)
.

Now we need to compute M2. Note that if b1 and b2 share two directed edges then they
both must contain either q → p→ q′ or q′ → p→ q. For each of b1 and b2 we can contract
these two common edges to a single vertex in Q. Since there are (r − 2)!(r − 1)! possible
2r-cycles on partite sets of size r− 1 and r− 1, there are [(r− 2)!(r− 1)!]2 ways to choose
the 2r-cycles b1 and b2 using the respective vertices. Therefore M2 = 2[(r − 2)!(r − 1)!]2

and∑
b1,b2∈B

(r1,r2)=(1,2)

n(b1, b2) = 2mn−4r[(r−2)!(r−1)!]2
[
(r−1)2r2 + 4

](m
r

)(
n

r

)(
r

1

)(
r

2

)(
m−r
r−1

)(
n−r
r−2

)
.

A similar result is valid for (r1, r2) = (2, 1).

Denote the sum of the n(b1, b2)’s in (i), (ii), (iii) (and symmetrical) by S, and let W =
2mn−4r

(
m
r

)(
n
r

)
[(r − 1)!r!]2, so that

S = W ·

{(
m− r
r

)(
n

r

)
+

(
n− r
r

)[(
m

r

)
−
(
m− r
r

)]
+ r2

(
m− r
r − 1

)(
n− r
r − 1

)

+
r4 − 2r3 + r2 + 4

2(r − 1)

[(
m− r
r − 1

)(
n− r
r − 2

)
+

(
m− r
r − 2

)(
n− r
r − 1

)]}
.

If r1 + r2 ≥ 4 with r1, r2 > 0, then b1 and b2 determine at least 2r directed edges, and there
are at most [(r − 1)!r!]2 ways to complete the cycles b1 and b2, hence we have∑

b1,b2∈B
r1+r2≥4
r1,r2>0

n(b1, b2) ≤ 2mn−2r[(r − 1)!r!]2
(
m

r

)(
n

r

)(
r

r1

)(
r

r2

)(
m− r
r − r1

)(
n− r
r − r2

)

≤ 22rW

(
r

r1

)(
r

r2

)[ r−r1−1∏
i=0

(m− r − i)

][
r−r2−1∏
j=0

(n− r − i)

]

≤ 24rW

[
r−r1−1∏
i=0

(m− r − i)

][
r−r2−1∏
j=0

(n− r − i)

]
.
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Note that since r1, r2 > 0, we have mr−r1nr−r2 ≤ max(mr−1nr−3,mr−2nr−2,mr−3nr−1).
Since mr−1nr−3 + mr−3nr−1 ≥ 2mr−2nr−2, for every pair (r1, r2) satisfying r1 + r2 ≥ 4 and
r1, r2 > 0 we have: ∑

b1,b2∈B
r1+r2≥4
r1,r2>0

n(b1, b2) = W ·O
(
24r(mr−1nr−3 +mr−3nr−1)

)

so that∑
r1+r2≥4
r1,r2>0

∑
b1,b2∈B
(r1,r2)

n(b1, b2) ≤ r2 max
r1+r2≥4
r1,r2>0

∑
b1,b2∈B
(r1,r2)

n(b1, b2) = W ·O(24rr2(mr−1nr−3 +mr−3nr−1).

It follows that ∑
b1,b2∈B

n(b1, b2) = S +W ·O(24rr2(mr−1nr−3 +mr−3nr−1)).

We now return to computing the numerator of Eq. (2) (divided by |A|2):

∑
b1,b2∈B

n(b1, b2)− 1

|A|

(∑
b∈B

deg b

)2

=
∑

b1,b2∈B
n(b1, b2)−W

(
m

r

)(
n

r

)

= W

[
S

W
−
(
m

r

)(
n

r

)
+O

(
24rr2(mr−1nr−3 +mr−3nr−1)

)]
.

We will need the following identities to compare the degree 2r, 2r − 1, and 2r − 2 terms of
the polynomial in S with the corresponding terms of the polynomial

(
m
r

)(
n
r

)
.

Lemma 2.1. Let r ∈ N, and let p(m) =
(
m
r

)
−
(
m−r
r

)
. Denote the coefficient of mk in p by p(k).

Then p is a degree r − 1 polynomial with

p(r−1) =
1

r!
· r2, p(r−2) = − 1

r!
· r

2(r − 1)(2r − 1)

2
, |p(r−3)| ≤ 1

r!
· 8r6

Proof: The first two equalities are easily shown by the relations between coefficients and roots
of polynomials. For the inequality involving p(r−3), we note that the coefficient of mr−3 in r!

(
m
r

)
and r!

(
m−r
r

)
are both negative, and the former is less in absolute value than the latter. The

coefficient of mr−3 in r!
(
m−r
r

)
is the sum of the products of the numbers {−r,−(r+1), . . . ,−(2r−

1)} taken three at a time, and this is at least −r3(2r − 1)3 > −8r6. The result follows. �

Using the lemma above, we see that

D1 =

(
m

r

)(
n

r

)
−
(
m− r
r

)(
n

r

)
−
(
n− r
r

)[(
m

r

)
−
(
m− r
r

)]
=

[(
m

r

)
−
(
m− r
r

)][(
n

r

)
−
(
n− r
r

)]
=

1

r!2

[
r2mr−1 − r2(r − 1)(2r − 1)

2
mr−2 +O(r7mr−3)

]
×
[
r2nr−1 − r2(r − 1)(2r − 1)

2
nr−2 +O(r7nr−3)

]
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Expanding the other terms of S/W , we have(
m− r
r − 1

)(
n− r
r − 1

)
=

1

r!2

[
rmr−1 − r(3r−2)(r−1)

2
mr−2 +O(r6mr−3)

]
×
[
rnr−1 − r(3r−2)(r−1)

2
nr−2 +O(r6nr−3)

]
,(

m− r
r − 1

)(
n− r
r − 2

)
=

1

r!2

[
rmr−1 − r(3r−2)(r−1)

2
mr−2 +O(r6mr−3)

][
(r−1)rnr−2 +O(r5nr−3)

]
,(

m− r
r − 2

)(
n− r
r − 1

)
=

1

r!2

[
rnr−1 − r(3r−2)(r−1)

2
nr−2 +O(r6nr−3)

][
(r−1)rmr−2 +O(r5mr−3)

]
.

Therefore

D2 = D1 − r2

(
m− r
r − 1

)(
n− r
r − 1

)
=

1

r!2

[
r4(r − 1)2

2

(
mr−2nr−1 +mr−1nr−2

)
+O

(
r9(mr−1nr−3 +mr−3nr−1)

)]
.

Finally, we have(
m

r

)(
n

r

)
− S

W
= D2 −

r4 − 2r3 + r2 + 4

2(r − 1)

[(
m− r
r − 1

)(
n− r
r − 2

)
+

(
m− r
r − 2

)(
n− r
r − 1

)]
= D2 −

1

r!2

[
1

2
(r6 − 2r5 + r4 + 4r2)(mr−1nr−2 +mr−2nr−1)

+O
(
r9(mr−1nr−3 +mr−3nr−1)

) ]

=
1

r!2
[
−2r2(mr−1nr−2 +mr−2nr−1)

]
+O

(
r9(mr−1nr−3 +mr−3nr−1)

)
.

We now apply Theorem 1.2 with the sets K = {` ∈ Z | 0 ≤ ` ≤ k} for (i) and K = {` ∈ Z |
` ≥ k} for (ii), and combine the above results to obtain the desired result, but before we shall

notice that since r ≤
(

1
4 log 2 − ε

)
log(min{m,n}), the error term O(24r(m2 + n2)) is negligible

compared to the main term m2n+mn2. In fact,

log

(
24r(m2 + n2)

m2n+mn2

)
≤ log

(
24r

min{m,n}

)
→ −∞

as min{m,n} → ∞, thus 24r(m2+n2)
m2n+mn2 → 0. Therefore, we obtain Theorem 1.4. �

Theorem 1.4 and its proof bring up many consequences, such as:

Corollary 2.2. The average number of 2r-cycles in a bipartite tournament in Tm,n is (r−1)!r!
4r

(
m
r

)(
n
r

)
.

Corollary 2.3. Fixed r ≥ 2 and ε > 0, let k ≥ 0 be an integer. As either m → ∞ or n → ∞,
we have that:

(i) If k < (1− ε) (r−1)!r!
4r

(
m
r

)(
n
r

)
, then

#{T ∈ Tm,n | T contains ≤ k 2r-cycles} � 2mn · m+ n

m2n2
.

In particular, the proportion of bipartite tournaments containing at most k 2r-cycles ap-
proaches 0.



THE SHIFTED TURÁN SIEVE METHOD ON TOURNAMENTS II 9

(ii) If k > (1 + ε) (r−1)!r!
4r

(
m
r

)(
n
r

)
, then

#{T ∈ Tm,n | T contains ≥ k 2r-cycles} � 2mn · m+ n

m2n2
.

In particular, the proportion of bipartite tournaments containing at most k 2r-cycles ap-
proaches 1.

In the case of r = 2, it is possible to compute the exact constants given by Theorem 1.4.

Corollary 2.4. (i) If 0 ≤ k < 1
8

(
m
2

)(
n
2

)
, we have

#{T ∈ Tm,n | T contains ≤ k 4-cycles} ≤ 2mn

{(
m
2

)(
n
2

)
(2m+ 2n− 1)[

8k −
(
m
2

)(
n
2

)]2
}
.

(ii) If k > 1
8

(
m
2

)(
n
2

)
, we have

#{T ∈ Tm,n | T contains ≥ k 4-cycles} ≤ 2mn

{(
m
2

)(
n
2

)
(2m+ 2n− 1)[

8k −
(
m
2

)(
n
2

)]2
}
.

Remark 2.5. Moon & Moser [8] proved that

#

{
T ∈ Tm,n | T contains >

⌊
m2

4

⌋
·
⌊
n2

4

⌋
4-cycles

}
= 0.

3. Tournaments with few 3-cycles

One important question to consider is the tightness of the upper bounds provided by the
Turán sieve for #{a ∈ A | ω(a) = k}, or even when this value is non-zero.

For instance, Gutin [2] calculated the number of unlabeled multipartite tournaments with
zero and with one cycle, and also provided the number of unlabeled bipartite tournaments with
exactly k cycles, which are pairwise vertex-disjoint. Bollobás, Frank & Karoński [1] calculated
the probability of a random bipartite tournament be acyclic. Kendall & Babington Smith [4]
proved that

#

T ∈ Tn | T contains >


n3 − n

4
if n is odd

n3 − 4n

4
if n is even

4-cycles

 = 0.

So we consider

Sn,r,k := #{T ∈ Tn | T contains exactly k r-cycles},
and

Mn,r := max{k ≥ 0 | Sn,r,k 6= 0}.

For r = 3, we see that [5, Theorem 1.4 and Remark after Corollary 2.1] implies a tight bound
on a positive proportion of the possible values of k, in the sense that if

An,r :=

{
0 ≤ k ≤Mn,3 | Sn,3,k = 2(n2) · o

(
1

n3

)}
,

then

2(n2) =

Mn,3∑
k=0

Sn,3,k =
∑

k∈An,3

Sn,3,k +
∑

k/∈An,3

Sn,3,k

= 2(n2)
{
|An,3| · o

(
1

n3

)
+ (Mn,3 + 1− |An,3|) ·O

(
1

n3

)}
,
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which implies that Mn,3 + 1− |An,3| ≥ Cn3 for some constant C > 0 and sufficiently large n.

For the values of r > 3, we conjecture that Sn,r,k = 0 provided k > Cnr for some constant

C > 1
r·2r . For a while, using the argument of [5, Theorem 1.4] with the bound of Corollary 1.3,

it is possible to prove that if f(n) ↗ ∞, then the proportion of tournaments with more than
nr · f(n) r-cycles approaches 0, i.e.,

lim
n→∞

1

2(n2)

∑
k>nr·f(n)

Sn,r,k = 0.

On the other hand, we can explicitly compute Sn,3,k for small values of k, say k ≤ (log n)1−ε.
For example, the tournaments which do not contain 3-cycles are exactly the transitive tourna-
ments (i.e., if x→ y and y → z then x→ z). These tournaments are precisely the ones with no
cycles of any length. Therefore, for n ≥ 3,

(3) Sn,3,0 = n!.

From the latter, we can derive the following results:

Proposition 3.1. We have Sn,3,1 = n! · n−2
3 for n ≥ 3 and Sn,3,2 = n! · n2−7

18 for n ≥ 4.

Proof: First we compute Sn,3,1 for n ≥ 3. Given a set V of n vertices, there are 2
(
n
3

)
ways

to choose 3 vertices in V and form a 3-cycle among those 3 vertices. Denote the cycle as
a→ b→ c→ a. In order to obtain a tournament with exactly one 3-cycle, there cannot be any
cycles in the remaining directed edges. Hence there are (n− 2)! ways to pick the orientation of
the directed edges between V \{b, c} so that there are no 3-cycles between these edges.

Fix one of these orientations. Let d ∈ V \{a, b, c}. If a→ d, then it is forced that c→ d and
b → d. If a ← d, then similarly we must have b ← d and c ← d. So for all d ∈ V \{a, b, c}, the
directed edge between a, d determines the directed edge between b, d and c, d. It follows that
Sn,3,1 = 2

(
n
3

)
· (n− 2)! = n! · n−2

3 , as desired.

Next we compute Sn,3,2 for n ≥ 4. There are three possibilities for two 3-cycles:

(1) Case 1: The 3-cycles are vertex-disjoint. Given a set V of n vertices, there are
1
2

(
n
3

)(
n−3

3

)
ways to choose two subsets of 3 vertices, and 4 ways to form two 3-cycles from

these vertices, giving a total of 1
2 · 4 ·

(
n
3

)(
n−3

3

)
distinct ways to choose two 3-cycles in V .

Denote the two 3-cycles as a → b → c → a and a′ → b′ → c′ → a′. In order to obtain a
tournament in Tn with exactly two 3-cycles, there cannot be any cycles in the remaining
directed edges. By transitivity, there are (n−4)! ways to pick the orientation of the directed
edges between V \{b, c, b′, c′} so that there are no 3-cycles between these edges.

Fix one of these orientations, and consider the edge between a and a′. If a → a′, then
to get a tournament with exactly two 3-cycles we must have a → b′ and a → c′. Then
c → a forces c → c′, c → b′, c → a′, and finally b → c forces b → c′, b → b′, b → a′. The
case a ← a′ is similar, and hence the directed edges between a, b, c, a′, b′, c′ are completely
determined by the cycles a→ b→ c→ a, a′ → b′ → c′ → a′, and the edge between a and a′.
Let d ∈ V \{a, b, c, a′, b′, c′}. By the same argument than Sn,3,1, the directed edges between
a, b, c, a′, b′, c′ and d are completely determined by the edge between a and d and the edge
between a′ and d. It follows that the number of tournaments in Tn with exactly two 3-cycles

such that the cycles are disjoint is 2
(
n
3

)(
n−3

3

)
(n− 4)! = n! · n2−9n+20

18 .

(2) Case 2: The 3-cycles share a common edge. Given a set V of n vertices, there are(
n
4

)(
4
2

)
ways to choose the 4 vertices and, among these, 2 vertices to form the common edge,

and there are 2 ways to form two 3-cycles from these 4 vertices. Label the common edge
by a → b and denote the two cycles by a → b → c → a and a → b → c′ → a. In order
to obtain exactly two 3-cycles, there cannot be any cycles in the remaining directed edges.
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By transitivity, there are (n− 3)! ways to pick the orientation of the directed edges between
V \{b, c, c′} so that there are no 3-cycles between these edges.

Fix one of these orientations. Let d ∈ V \{a, b, c, c′}. By the argument in Case 1, the
directed edges between a, b, c, c′ and d are completely determined, therefore the number
of tournaments with exactly two 3-cycles such that the cycles share a common edge is
2
(
n
4

)(
4
2

)
(n− 3)! = n! · n−3

2 .

(3) Case 3: The 3-cycles share only one common vertex. We claim that in this arrange-
ment, the tournament must have at least three 3-cycles. Suppose that vertex a is common,
and the two cycles are a→ b→ c→ a and a→ b′ → c′ → a, and assume for a contradiction
that these are the only 3-cycles in the tournament. Since c→ a→ b′, we must have c→ b′

and since c′ → a→ b, we must have c′ → b. If c→ c′, then c′ → b→ c→ c′ is a 3-cycle and
if c′ → c, then c→ b′ → c′ → c is a 3-cycle, contradiction. Hence there are no tournaments
with exactly two 3-cycles such that the cycles share only one common vertex.

Summing up, we obtain Sn,3,2 = n! · n2−7
18 , as desired. �

For a small value of k (compared to n), we can find an asymptotic formula for Sn,3,k (Theo-
rem 1.5). Since the number of possible arrangements of the 3-cycles grows quickly for large k,
it would be impractical to find a precise formula for Sn,3,k.

3.1. Proof of Theorem 1.5. The cases k = 0, k = 1 and k = 2 are already settled (by Eq.
(3) and Proposition 3.1), therefore we consider k ≥ 3.

(1) Case 1: The 3-cycles are vertex-disjoint. Given a set V of n vertices, there are
1
k!

(
n
3

)(
n−3

3

)
. . .
(
n−3k+3

3

)
ways to choose k sets of 3 vertices, and 2k ways to form k 3-cycles

from these vertices, giving a total of 1
k! · 2

k
(
n
3

)(
n−3

3

)
. . .
(
n−3k+3

3

)
distinct ways to choose k

3-cycles among n vertices since each combination of k 3-cycles is counted exactly k! times.
Denote the k 3-cycles as Ci = {ai → bi → ci → ai} for 1 ≤ i ≤ k. In order to obtain a
tournament with exactly k 3-cycles, there cannot be any cycles in the remaining directed
edges. There are (n − 2k)! ways to pick the orientation of the directed edges between

V \
⋃k

i=1{bi, ci} so that there are no 3-cycles between these edges.
Fix one of these orientations. In order to obtain a tournament with exactly k 3-cycles,

then by the same argument than Case 1 of the computation of Sn,3,2 in Proposition 3.1,
the directed edges between ai, bi, ci, aj , bj , cj are completely determined by the edge between

ai and aj for any 1 ≤ i < j ≤ k. Let d ∈ V \
⋃k

i=1{ai, bi, ci}. By the same argument
of the computation of Sn,3,1 in Proposition 3.1, the directed edges between bi, d, and ci, d
are completely determined by the edge between ai and d. It follows that the number of
tournaments in Tn with exactly k 3-cycles such that the 3-cycles are disjoint is

2k

k!
(n− 2k)!

k−1∏
i=0

(
n− 3i

3

)
=

2k

k!
(n− 2k)!

k−1∏
i=0

1

6
(n− 3i)(n− 3i− 1)(n− 3i− 2)

=
(n− 2k)!

k! · 3k
3k−1∏
j=0

(n− j) =
n!

k! · 3k
3k−1∏
j=2k

(n− j) =
n!

k! · 3k
(
nk +O(k3nk−1)

)
.

(2) Case 2: The 3-cycles are not vertex-disjoint. Let v ≤ 3k − 1 be the number distinct
vertices composing the 3-cycles. We actually have v ≤ 3k − 2 by the same argument than
Case 3 of Proposition 3.1, otherwise if v = 3k − 1 we would have more than k 3-cycles. On
the other hand,

(
v
3

)
≥ k in order to form k distinct 3-cycles, hence v ≥ d 3

√
6ke ≥ 3. There

are at most
(
n
v

)
ways to pick the v vertices for the k 3-cycles, and at most

[
2
(
v
3

)]k
ways to

create the k 3-cycles from these vertices. Choose an arrangement of the 3-cycles and denote
the cycles as Ci = {ai → bi → ci → ai} for 1 ≤ i ≤ k, as before. Without loss of generality,

suppose that C1 and C2 share the vertex a1, i.e., a1 = a2. The set A =
⋃k

i=1{ai} contains
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at most k − 1 vertices, then by transitivity there are at most (n− v + k − 1)! ways to pick

the orientation of the directed edges between the vertices in V \
⋃k

i=1{bi, ci}.
Fix one of these orientations, and suppose it is possible to orient the remaining edges

of the tournament so that exactly k 3-cycles will be obtained; it is possible that some of
these orientations may not admit such an orientation of the remaining edges. Let d ∈
V \
⋃k

i=1{ai, bi, ci}. By the same arguments used in Proposition 3.1, the directed edges
between ai, bi, ci, aj , bj , cj are completely determined by the edge between ai and aj and
the cycles Ci, Cj , and the edges between bi, d and ci, d are completely determined by the edge

between ai and d. It follows that there are at most
(
n
v

)
2k
(
v
3

)k
(n − v + k − 1)! tournaments

in Tn with exactly k 3-cycles such that the union of the 3-cycles contains v distinct vertices.
This number is asymptotic to(

n

v

)
2k
(
v

3

)k

(n− v + k − 1)! ∼ n!

3k
· v

3k

v!
·
k−1∏
j=1

(n− v + j) ∼ n!

3k
· v

3k

v!
· nk−1.

The latter follows from the fact that if v ≥ k then the product on j is ≤ nk−1, and if
v ≤ k − 1, the product is ≤ (n+ log n)k−1 ∼ nk−1.

Summing over all d 3
√

6ke ≤ v ≤ 3k − 2, we find that the number of tournaments in Tn
with exactly k 3-cycles not all disjoint is at most

O

n! · nk−1

3k

∑
3√

6k<v≤3k−2

v3k

v!

 = O

(
n! · nk−1 · (3k − 2)3k

3k

)
.

Adding the results from the two cases gives the desired result. Again, since k ≤ (log n)1−ε,
the error term O

(
(3k − 2)3kk!nk−1

)
is negligible compared to the main term nk. In fact,

log

[
(3k − 2)3kk!nk−1

nk

]
≤ 4k log k + (2 + log 3)k +

1

2
− log n→ −∞

as n→∞, thus (3k−2)3kk!nk−1

nk → 0. �

Summing over small values of k, we obtain the following:

Corollary 3.2.

For every ε > 0, lim sup
n→∞

#
{
T ∈ Tn | T contains ≤ (log n)1−ε 3-cycles

}
n! · en/3

≤ 1.

Comparing the results of Theorem 1.4 in the case r = 3 with the corollary above, we see
that, for a small value of k, the upper bound derived from the Turán sieve method on the
number of tournaments in Tn containing at most k 3-cycles is quite weak compared to the upper
bound above when n→∞. However, Theorem 1.4 allows k = o(n3), while the corollary above
allows only k ≤ (log n)1−ε. Furthermore, it is important to note that the Turán sieve is able to
provide an upper bound for many related combinatorial problems, where deriving an asymptotic
expression for the actual number of tournaments with a certain property may be very difficult.
We plan in the future to study more general problems about unrestricted cycles on t-partite
tournaments, as well as the exact bound in the case of cycles of small length.
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