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Abstract. Let Fq[t] denote the polynomial ring over the finite field Fq, and let SN
denote the subset of Fq[t] containing all polynomials of degree strictly less than N . For a
matrix Y =

(
ai,j

)
∈ FR×S

q satisfying ai,1 + · · ·+ai,S = 0 (1 ≤ i ≤ R), let DY (SN ) denote
the maximal cardinality of a set A ⊆ SN for which the equations ai,1x1 + · · ·+ai,SxS = 0
(1 ≤ i ≤ R) are never satisfied simultaneously by distinct elements x1, . . . , xS ∈ A. Under
certain assumptions on Y , we prove an upper bound of the form DY (SN ) ≤ qN (C/N)γ

for positive constants C and γ.

1. Introduction

For r, s ∈ N = {1, 2, . . .} with s ≥ 2r + 1, let
(
bi,j
)

be an r × s matrix whose elements
are integers. Suppose that bi,1 + · · · + bi,s = 0 (1 ≤ i ≤ r). Suppose further that among
the columns of the matrix, there exist r linearly independent columns such that, if any of
the r columns are removed, the remaining n−1 columns of the matrix can be divided into
two sets so that among the columns of each set there are r linearly independent columns.
For k ∈ N, denote by D([1, k]) the maximal cardinality of an integer set A ⊆ [1, k] such
that the equations bi,1x1 + · · · + bi,sxs = 0 (1 ≤ i ≤ r) are never satisfied simultaneously
by distinct elements x1, . . . , xs ∈ A. Using techniques similar to his work on sets free of
three-term arithmetic progressions (see [4]), Roth [5] showed that

D([1, k])� k/(log log k)1/r
2
.

In this paper, we will build upon the methods in [2] to study an analogous question in
function fields.

Let Fq[t] denote the ring of polynomials over the finite field Fq. For N ∈ N, let SN
denote the subset of Fq[t] containing all polynomials of degree strictly less than N . For
R,S ∈ N with S ≥ 2R+1, let Y =

(
ai,j
)

be an R×S matrix with elements in Fq. Suppose
that Y satisfies the following two conditions.

• Condition 1: ai,1 + · · ·+ ai,S = 0 (1 ≤ i ≤ R).
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• Condition 2: Y has L columns with L ≥ R such that:
– any R of these L columns are linearly independent.
– after removing any L − R + 1 of these L columns from Y , we can find two

disjoint sets of R linearly independent columns among the remaining S−L+
R− 1 columns.

– without loss of generality, we may assume that these L columns are the first
L columns of Y .

Consider the system of equations

ai,1x1 + · · ·+ ai,SxS = 0 (1 ≤ i ≤ R). (1)

Let DY (SN ) denote the maximal cardinality of a set A ⊆ SN for which the equations in
(1) are never satisfied simultaneously by distinct elements x1, . . . , xS ∈ A. We write |V |
for the cardinality of a set V . In this paper, we employ a variant of the Hardy-Littlewood
circle method for Fq[t] to prove the following result.

Theorem 1. Assume that Y satisfies Conditions 1 and 2. There exists an effective com-
putable constant C = C(Y ) > 0 such that for N ∈ N,

DY (SN ) ≤ qN
(C
N

)L−R+1
R

.

We note that the assumptions in Condition 2 are more general than the corresponding
assumptions in [5]. Thus, in the special case when L = R, we can derive from Theorem
1 a function field analogue of Roth’s theorem. In addition, on rewriting the upper bound
we obtain in Theorem 1 as

DY (SN )� |SN |
(logq |SN |)(L−R+1)/R

,

we observe that this result is much sharper than its integer analogue. Our improvement
comes from a better estimate of an exponential sum in Fq[t] than in Z (see Lemma 5).

One can also obtain some information about irreducible polynomials from Theorem 1.
Let PN denote the set of all monic irreducible polynomials in Fq[t] of degree strictly less
than N , and let AN denote a subset of PN . By the prime number theorem for Fq[t] (see
[3, Theorem 2.2]), we have |PN | � qN/N. If L + 1 > 2R, Theorem 1 implies that there
exists a positive constant E(Y ) such that whenever

|AN |
|PN |

≥ E(Y )

N (L−2R+1)/R
,

then (1) has a solution with distinct elements x1, . . . , xS ∈ AN .

We conclude this section by introducing the Fourier analysis of Fq[t]. Let K = Fq(t) be
the field of fractions of Fq[t], and let K∞ = Fq((1/t)) be the completion of K at∞. We may
write each element α ∈ K∞ in the shape α =

∑
i≤v ait

i for some v ∈ Z and ai = ai(α) ∈ Fq
(i ≤ v). If av 6= 0, we define ordα = v. We adopt the convention that ord 0 = −∞. Also,
it is often convenient to refer to a−1 as being the residue of α, denoted by resα. Consider
the compact additive subgroup T of K∞ defined by T =

{
α ∈ K∞ | ordα < 0

}
. Given any

Haar measure dα on K∞, we normalize it in such a manner that
∫
T 1 dα = 1. We now



ROTH’S THEOREM ON SYSTEMS OF LINEAR FORMS IN FUNCTION FIELDS 3

extend the measure to KR
∞ by the standard product measure. Thus, if M is the subset of

KR
∞ defined by

M =
{
α = (α1, . . . , αR) ∈ KR

∞
∣∣ ordαi < −N (1 ≤ i ≤ R)

}
,

then the measure of M, mes(M), is equal to q−NR.

We are now equipped to define the exponential function on Fq[t]. Suppose that the
characteristic of Fq is p. Let e(z) denote e2πiz, and let tr : Fq → Fp denote the familiar
trace map. There is a non-trivial additive character eq : Fq → C× defined for each a ∈ Fq
by taking eq(a) = e(tr(a)/p). This character induces a map e : K∞ → C× by defining,
for each element α ∈ K∞, the value of e(α) to be eq(resα). The orthogonality relation
underlying the Fourier analysis of Fq[t], established in [1, Lemma 1], takes the shape∫

T
e(hα) dα =

{
1, when h = 0,

0, when h ∈ Fq[t] \ {0}.

Therefore, for (h1, . . . , hR) ∈ Fq[t]R and α = (α1, . . . , αR) ∈ KR
∞, we have∫

TR
e(h1α1 + · · ·+ hRαR) dα =

R∏
i=1

∫
T
e(hiαi) dαi

=

{
1, when hj = 0 (1 ≤ j ≤ R),

0, otherwise.

(2)

Acknowledgment The authors would like to thank the referee for carefully reading the
paper and making numerous valuable suggestions.

2. Proof of Theorem 1

For R,S ∈ N with S ≥ 2R + 1, let Y =
(
ai,j
)
∈ FR×Sq satisfy Conditions 1 and 2.

For N ∈ N, let DY (SN ) be defined as in Section 1. Write dY (N) = DY (SN )/qN . For
convenience, in what follows, we will write D(SN ) in place of DY (SN ) and d(N) in place of

dY (N). Hence, to prove Theorem 1, it is equivalent to show that d(N) ≤
(
C/N

)(L−R+1)/R
.

For a set A ⊆ SN , let T (A) = TY (A) denote the number of solutions of (1) with xi ∈ A
(1 ≤ i ≤ S). Let 1A be the characteristic function of A, i.e., 1A(x) = 1 if x ∈ A and
1A(x) = 0 otherwise. For 1 ≤ j ≤ S and α = (α1, . . . , αR) ∈ KR

∞, define

Fj(α) =
∑
x∈A

e
(
(a1,jα1 + · · ·+ aR,jαR)x

)
.

By (2), we see that

T (A) =

∫
TR
F1 · · ·FS(α)dα.

We will estimate T (A) by dividing TR into two parts: the major arc M defined by

M =
{

(α1, . . . , αR) ∈ KR
∞
∣∣ ordαi < −N (1 ≤ i ≤ R)

}
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and the minor arc m = TR \M. We have

T (A) =

∫
M
F1 · · ·FS(α)dα +

∫
m
F1 · · ·FS(α)dα. (3)

Before proving Theorem 1, we will need to obtain bounds on T (A) and the contributions
of the the major and minor arcs.

Lemma 2. Suppose that Y ∈ FR×Sq satisfies Conditions 1 and 2. Suppose also that A ⊆
SN for which the equations in (1) are never satisfied simultaneously by distinct elements
x1, . . . , xS ∈ A. Then we have

T (A) ≤ C1|A|S−R−1,

where C1 = C1(Y ) =

(
S
2

)
.

Proof. We have

T (A) =
∣∣∣{x ∈ AS ∣∣Y x = 0

}∣∣∣.
Since A ⊆ SN for which the equations in (1) are never satisfied simultaneously by distinct
elements x1, . . . , xS ∈ A, whenever Y x = 0 for some x ∈ AS , there exist distinct elements
i, j ∈ {1, . . . , S} with xi = xj . Fix one of the C1 choices of {i, j}. Let Y1 be the matrix
obtained from Y by deleting columns i, j. We consider two cases.

• Case 1: Suppose that {i, j} ∩ {1, . . . , L} = ∅. We denote by rkY1 the rank of the
matrix Y1. By Condition 2, we have rkY1 = R. It follows that∣∣∣{x ∈ AS ∣∣xi = xj and Y x = 0

}∣∣∣ ≤ |A|S−R−1.
• Case 2: Suppose that {i, j} ∩ {1, . . . , L} 6= ∅. Without loss of generality, we may

assume that i ∈ {1, . . . , L}. By Condition 2, we can find two disjoint subsets I1
and I2 of {1, . . . , S} \ {i}, each with cardinality R, such that the columns of Y
indexed by either set are linearly independent. Since I1 ∩ I2 = ∅, without loss of
generality, we may assume that j 6∈ I1. Then {i, j} ∩ I1 = ∅. Hence, rkY1 = R,
which implies that∣∣∣{x ∈ AS ∣∣xi = xj and Y x = 0

}∣∣∣ ≤ |A|S−R−1.
On recalling the definition of C1 and combining Cases 1 and 2, the lemma follows. �

Lemma 3. Suppose that Y ∈ FR×Sq and A ⊆ SN . We have∫
M
F1 · · ·FS(α)dα = q−NR|A|S .

Proof. For 1 ≤ j ≤ S, α = (α1, . . . , αR) ∈M, and x ∈ A ⊆ SN , we have

ord
(
(a1,jα1 + · · ·+ aR,jαR)x

)
≤ −1 +N + max

1≤i≤R
ordαi ≤ −2.

Thus,

Fj(α) =
∑
x∈A

e
(
(a1,jα1 + · · ·+ aR,jαR)x

)
=
∑
x∈A

1 = |A|.
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Therefore, our major arc contribution is∫
M
F1 · · ·FS(α)dα = mes(M)|A|S = q−NR|A|S . �

Lemma 4. For Y ∈ FR×Sq and A ⊆ SN , suppose that the columns of Y indexed by
k1, . . . , kR are linearly independent. Then we have∫

TR

∣∣Fk1 · · ·FkR(α)
∣∣2dα = |A|R.

Proof. Let Z denote the matrix
(
ai,kj

)
1≤i,j≤R ∈ FR×Rq . By (2), we have∫

TR

∣∣Fk1 · · ·FkR(α)
∣∣2dα =

∣∣∣{(x,y) ∈ AR ×AR
∣∣Zx = Zy

}∣∣∣.
Since detZ 6= 0, Zx = Zy if and only if x = y. Thus,∫

TR

∣∣Fk1 · · ·FkR(α)
∣∣2dα =

∣∣∣{(x,y) ∈ AR ×AR
∣∣x = y

}∣∣∣ = |A|R. �

Lemma 5. Suppose that Y ∈ FR×Sq satisfies Condition 1. Suppose also that A ⊆ SN
for which the equations in (1) are never satisfied simultaneously by distinct elements
x1, . . . , xS ∈ A. Then we have

sup
−N≤ordβ<0

∣∣∣∣∑
x∈A

e
(
βx
)∣∣∣∣ ≤ d(N − 1)qN − |A|.

Proof. For −N ≤ ordβ < 0, let W = W (β) =
{
y ∈ SN : res(βy) = 1

}
. Since −N ≤

ordβ < 0, we can write ord (β) = −l and β =
∑

j≤−l bjt
j with −N ≤ −l ≤ −1, bj ∈ Fq

(j ≤ −l), and b−l 6= 0. Then, for y = cN−1t
N−1 + · · ·+ c0 ∈ SN , the polynomial y ∈ W if

and only if

res(βy) = b−lcl−1 + b−l−1cl + · · ·+ b−NcN−1 = 0.

Hence, we have that W ' FN−1q as a vector space over Fq.

Since −N ≤ ordβ < 0, by [1, Lemma 7], we have∑
ordx<N

e(βx) = 0.

Therefore,

|W |
∣∣∣∣∑
x∈A

e
(
βx
)∣∣∣∣ =

∣∣∣∣ ∑
y∈W

∑
ordx<N

d(N − 1)e(βx)−
∑
y∈W

∑
ordx<N

1A(x)e(βx)

∣∣∣∣.
For y ∈W, since e(βy) = 1 and y ∈ SN , we have by a change of variables that∑

ordx<N

1A(x)e(βx) =
∑

ordx<N

1A(x)e(β(x+ y)) =
∑

ordx<N

1A(x− y)e(βx).



6 YU-RU LIU, CRAIG V. SPENCER, AND XIAOMEI ZHAO

It follows that

|W |
∣∣∣∣∑
x∈A

e
(
βx
)∣∣∣∣ =

∣∣∣∣ ∑
ordx<N

( ∑
y∈W

d(N − 1)−
∑
y∈W

1A(x− y)

)
e(βx)

∣∣∣∣
≤

∑
ordx<N

∣∣∣∣ ∑
y∈W

d(N − 1)−
∑
y∈W

1A(x− y)

∣∣∣∣
=

∑
ordx<N

∣∣∣d(N − 1)|W | −
∣∣W ∩ (x−A)

∣∣∣∣∣.
Since ai1 + · · · + aiS = 0 (1 ≤ i ≤ R) and the equations in (1) are never satisfied si-
multaneously by distinct elements x1, . . . , xS ∈ A, the equations in (1) are never satisfied
simultaneously by distinct elements x1, . . . , xS ∈W ∩(x−A). Since W ' SN−1 as a vector
space over Fq and Y ∈ FR×Sq , any invertible Fq-linear transformation fromW to SN−1 maps
W ∩ (x−A) to a subset of SN−1 for which the equations in (1) are never satisfied simulta-
neously by distinct elements of the subset. This implies that |W ∩ (x−A)| ≤ d(N−1)|W |.
It follows that

|W |
∣∣∣∣∑
x∈A

e
(
βx
)∣∣∣∣ ≤ ∑

ordx<N

(
d(N − 1)|W | −

∣∣W ∩ (x−A)
∣∣) = d(N − 1)|W |qN − |W ||A|.

Thus, if −N ≤ ordβ < 0, we have∣∣∣∣∑
x∈A

e
(
βx
)∣∣∣∣ ≤ d(N − 1)qN − |A|. �

Lemma 6. Suppose that Y ∈ FR×Sq satisfies Condition 2. Let

Q = Q(Y ) =
{
B ⊆ {1, . . . , L}

∣∣ |B| = L−R+ 1
}
.

For B ∈ Q, let

mB =
{
α ∈ TR

∣∣∣ ord
( R∑
i=1

ai,kαi

)
≥ −N (k ∈ B)

}
.

Then we have

m ⊆
⋃
B∈Q

mB.

Proof. Let α = (α1, . . . , αR) ∈ m. Select any R columns k1, . . . , kR from the first L
columns of Y , and we denote by X =

(
ai,kj

)
1≤i,j≤R ∈ FR×Rq the matrix formed by these

columns. By Condition 2, we have detX 6= 0. Write αi =
∑

m≤−1 bi,mt
m (1 ≤ i ≤ R)

with bi,m ∈ Fq (1 ≤ i ≤ R,m ≤ −1). Thus,

R∑
i=1

ai,kjαi =
∑
m≤−1

R∑
i=1

ai,kjbi,mt
m (1 ≤ j ≤ R).
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Suppose for the moment that for all 1 ≤ j ≤ R, we have ord
(∑R

i=1 ai,kjαi
)
< −N . It

follows that
R∑
i=1

ai,kjbi,m = 0 (−N ≤ m ≤ −1, 1 ≤ j ≤ R). (4)

Write bm = (b1,m, . . . , bR,m). Then, (4) is equivalent to having bmX = 0 (−N ≤ m ≤ −1).
Since detX 6= 0, we have bm = 0 (−N ≤ m ≤ −1). Thus, αi =

∑
m<−N bi,mt

m (1 ≤ i ≤
R), contradicting the fact that α ∈ m. Thus, ord

(∑R
i=1 ai,kjαi

)
≥ −N for at least one

1 ≤ j ≤ R.

Since we can find an element k such that ord
(∑R

i=1 ai,kαi
)
≥ −N amongst any R-

element subset of {1, . . . , L}, it follows that there are at least L−R+1 values k ∈ {1, . . . , L}
with ord

(∑R
i=1 ai,kαi

)
≥ −N . That is, there exists B ⊆ {1, . . . , L} with |B| = L−R+ 1

such that α ∈ mB. This completes the proof of the lemma. �

Lemma 7. Suppose that Y ∈ FR×Sq satisfies Conditions 1 and 2. Suppose also that A ⊆
SN for which the equations in (1) are never satisfied simultaneously by distinct elements
x1, . . . , xS ∈ A and |A| = d(N)qN . Then we have∫

m

∣∣F1 · · ·FS(α)
∣∣dα ≤ C2

(
d(N − 1)− d(N)

)L−R+1
d(N)S−L−1qN(S−R),

where C2 = C2(Y ) =

(
L

L−R+ 1

)
.

Proof. Let Q = Q(Y ) and mB (B ∈ Q) be defined as in Lemma 6. We have∫
mB

∣∣F1 · · ·FS(α)
∣∣dα ≤ ( sup

α∈mB

∏
j∈B

∣∣Fj(α)
∣∣) ∫

TR

∣∣∣∣ ∏
j 6∈B

Fj(α)

∣∣∣∣dα.
By Condition 2, there are two disjoint R-element subsets U and V of {1, . . . , S} \B such
that the columns of Y indexed by either set are linearly independent. It follows from
Lemma 4 and the Cauchy-Schwarz inequality that∫

TR

∣∣∣∣ ∏
j 6∈B

Fj(α)

∣∣∣∣dα ≤ |A|S−|B|−2R ∫
TR

∣∣∣∣ ∏
j∈U

Fj(α)

∣∣∣∣∣∣∣∣ ∏
j∈V

Fj(α)

∣∣∣∣dα
≤ |A|S−|B|−2R

(∫
TR

∣∣∣∣ ∏
j∈U

Fj(α)

∣∣∣∣2dα
) 1

2
(∫

TR

∣∣∣∣ ∏
j∈V

Fj(α)

∣∣∣∣2dα
) 1

2

= |A|S−|B|−2R|A|R

= |A|S−|B|−R.
By Lemma 5, we see that for j ∈ B,

sup
α∈mB

∣∣Fj(α)
∣∣ ≤ (d(N − 1)− d(N)

)
qN .

Thus, ∫
mB

∣∣F1 · · ·FS(α)
∣∣dα ≤ (d(N − 1)− d(N)

)L−R+1
d(N)S−L−1qN(S−R).
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We have seen in Lemma 6 that m ⊆
⋃
B∈QmB. Since |Q| =

(
L

L−R+ 1

)
= C2, we can

deduce from the above inequality that∫
m

∣∣F1 · · ·FS(α)
∣∣dα ≤ C2

(
d(N − 1)− d(N)

)L−R+1
d(N)S−L−1qN(S−R).

This completes the proof of the lemma. �

We are now ready to prove Theorem 1.

Proof of Theorem 1. Suppose that A ⊆ SN for which the equations in (1) are never sat-
isfied simultaneously by distinct elements x1, . . . , xS ∈ A and |A| = d(N)qN . By (3), we
have ∣∣∣∣ ∫

M
F1 · · ·FS(α)dα

∣∣∣∣− ∣∣∣∣ ∫
m
F1 · · ·FS(α)dα

∣∣∣∣ ≤ T (A)

On applying Lemmas 2, 3, and 7, there exist positive constants C1 and C2 such that

d(N)SqN(S−R)−C2

(
d(N−1)−d(N)

)L−R+1
d(N)S−L−1qN(S−R) ≤ C1d(N)S−R−1qN(S−R−1).

Thus,

d(N)S − C1d(N)S−R−1q−N − C2

(
d(N − 1)− d(N)

)L−R+1
d(N)S−L−1 ≤ 0. (5)

Let

C = max
{

(2C1)
R/((R+1)(L−R+1)) sup

N∈N

(
Nq−NR/((R+1)(L−R+1))

)
,

(2C2)
1/(L−R+1)2(L+1)/R(L−R+ 1)/R, 1

}
.

We now claim that for all N ∈ N, one has

d(N) ≤
(C
N

)(L−R+1)/R
. (6)

This statement will follow by induction. Since d(N) ≤ 1, (6) holds trivially when N = 1.
Let N > 1, and assume that

d(N − 1) ≤
( C

N − 1

)(L−R+1)/R
.

We consider two cases.

• Case 1: Suppose that d(N)S − C1d(N)S−R−1q−N ≤ 1
2d(N)S . Then we have

d(N) ≤
(
2C1

)1/(R+1)
q−N/(R+1).

Since

C ≥ (2C1)
R/((R+1)(L−R+1))

(
Nq−NR/((R+1)(L−R+1))

)
,

we obtain that

d(N) ≤
(
C/N

)(L−R+1)/R
.
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• Case 2: Suppose that d(N)S − C1d(N)S−R−1q−N > 1
2d(N)S . We may deduce

from (5) that

d(N)L+1 < 2C2

(
d(N − 1)− d(N)

)L−R+1
.

By setting C3 =
(
2C2

)− 1
L−R+1 , we have

C3d(N)
L+1

L−R+1 + d(N) < d(N − 1). (7)

Let f(x) =
(
C/x

)(L−R+1)/R
. By the mean value theorem, there exists θN ∈ [0, 1]

such that

f(N − 1)− f(N) = f ′(N − θN )(−1)

= C(L−R+1)/R(L−R+ 1)R−1
(
N − θN

)−(L+1)/R
.

Since C ≥ C−13 2(L+1)/R(L−R+ 1)/R, it follows that

f(N − 1)− f(N) ≤ C(L−R+1)/R(L−R+ 1)R−1
(
N − 1

)−(L+1)/R

= C(L+1)/RC−1(L−R+ 1)R−1
(
N − 1

)−(L+1)/R

≤ C(L+1)/RC32
−(L+1)/R

(
N − 1

)−(L+1)/R

≤ C3C
(L+1)/RN−(L+1)/R.

(8)

From the induction hypothesis and (8), we obtain that

d(N − 1) ≤ f(N − 1)

≤ C3

(
C/N

)L+1
R + f(N)

= C3

(
C/N

)L−R+1
R
· L+1
L−R+1 +

(
C/N

)L−R+1
R .

On recalling (7), we have

C3d(N)
L+1

L−R+1 + d(N) < d(N − 1)

≤ C3

(
C/N

)L−R+1
R
· L+1
L−R+1 +

(
C/N

)L−R+1
R .

Since C3x
L+1

L−R+1 + x is an increasing function in x, we have

d(N) ≤ (C/N)(L−R+1)/R.

On combining Cases 1 and 2, the inequality (6) follows. This completes the proof of
Theorem 1. �

References

[1] R. M. Kubota, Waring’s problem for Fq[x], Dissertationes Math. (Rozprawy Mat.) 117 (1974), 60pp.
[2] Y.-R. Liu and C. V. Spencer, A generalization of Roth’s theorem in function fields, Int. J. Number

Theory 5 (2009), 1149-1154.
[3] M. Rosen, Number theory in function fields, GTM 210, Springer (2002).
[4] K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104-109.
[5] K. F. Roth, On certain sets of integers (II), J. London Math. Soc. 29 (1954), 20-26.



10 YU-RU LIU, CRAIG V. SPENCER, AND XIAOMEI ZHAO

Y.-R. Liu, Department of Pure Mathematics, Faculty of Mathematics, University of Wa-
terloo, Waterloo, Ontario, Canada N2L 3G1

E-mail address: yrliu@math.uwaterloo.ca

C. V. Spencer, School of Mathematics, Institute for Advanced Study, 1 Einstein Drive,
Princeton, NJ 08540

Department of Mathematics, Kansas State University, 138 Cardwell Hall, Manhattan,
KS 66506

E-mail address: craigvspencer@gmail.com

X. Zhao, Department of Pure Mathematics, Faculty of Mathematics, University of Wa-
terloo, Waterloo, Ontario, Canada N2L 3G1

E-mail address: x8zhao@math.uwaterloo.ca


