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Abstract. Let Fq[t] denote the polynomial ring over the finite field Fq, and let SN
denote the subset of Fq[t] containing all polynomials of degree strictly less than N . For
non-zero elements r1, · · · , rs of Fq satisfying r1 + · · · + rs = 0, let Dr(SN ) denote the
maximal cardinality of a set A ⊆ SN which contains no non-trivial solution of r1x1 +
· · ·+ rsxs = 0 with xi ∈ A (1 ≤ i ≤ s). We prove that Dr(SN )� |SN |/(logq |SN |)s−2.

1. Introduction

For k ∈ N = {1, 2, · · · }, let D3([1, k]) denote the maximal cardinality of an integer set
A ⊆ [1, k] containing no non-trivial 3-term arithmetic progression. In a fundamental paper
[6], Roth proved that D3([1, k]) � k/ log log k. His result was later improved by Heath-
Brown [2] and Szemerédi [7] to D3([1, k]) � k/(log k)α for some small positive constant

α > 0. Recently, Bourgain [1] proved that D3([1, k]) � k(log log k)1/2/(log k)1/2, which
provides the best bound currently known. In this paper, we consider a generalization of
Roth’s theorem in function fields.

Let Fq[t] denote the ring of polynomials over the finite field Fq. For N ∈ N, let SN
denote the subset of Fq[t] containing all polynomials of degree strictly less than N . For
an integer s ≥ 3, let r = (r1, · · · , rs) be a vector of non-zero elements of Fq satisfying
r1 + · · ·+ rs = 0. A solution x = (x1, · · · , xs) ∈ SsN of r1x1 + · · ·+ rsxs = 0 is said to be
trivial if xj1 = · · · = xjl for some subset {j1, · · · , jl} ⊆ {1, · · · , s} with rj1 + · · ·+ rjl = 0.
Otherwise, we say a solution x is non-trivial. Let Dr(SN ) denote the maximal cardinality
of a set A ⊆ SN which contains no non-trivial solution of r1x1 + · · ·+rsxs = 0 with xi ∈ A
(1 ≤ i ≤ s), and let |SN | denote the cardinality of SN . In this paper, we prove that

Theorem 1. For N ∈ N,

Dr(SN )� |SN |
(logq |SN |)s−2

.

Here the implicit constant depends only on r.

In the special case that r = (1,−2, 1), the number Dr(SN ) denotes the maximal cardi-
nality of a set A ⊆ SN which contains no non-trivial 3-term arithmetic progression. As
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a direct consequence of Theorem 1, we have Dr(SN ) � |SN |/ logq |SN |. We note that
this result is sharper than its integer analogue proved by Bourgain. Our improvement
comes from a better estimate of an exponential sum in Fq[t] than in Z (see Lemma 2). In
addition, when r = (1,−2, 1) and gcd(2, q) = 1, by viewing SN as a vector space over Fp
of dimension MN , where q = pM , one can also derive the above bound for Dr(SN ) from
the result of Meshulam in [4, Theorem 1.2]. However, for a general r = (r1, · · · , rs), if
ri ∈ Fq \ Fp for some 1 ≤ i ≤ s, then Meshulam’s method can not be extended to bound
Dr(SN ). In order to prove Theorem 1, we employ a variant of the Hardy-Littlewood circle
method for Fq[t].

One can also obtain some information about irreducible polynomials from Theorem 1.
Let PN denote the set of all monic irreducible polynomials in Fq[t] of degree strictly less
than N , and let AN denote a subset of PN . By the prime number theorem for Fq[t] (see
[5, Theorem 2.2]), we have |PN | � |SN |/ logq |SN |. For s ≥ 4, Theorem 1 implies that

there exists a positive constant c(r) such that whenever |AN |/|PN | ≥ c(r)/(logq |SN |)s−3,
it follows that AN contains a non-trivial solution of r1x1 + · · · + rsxs = 0 with xi ∈ AN
(1 ≤ i ≤ s). More work is needed to study the case when s = 3, and we will return to this
matter in a future paper.

We conclude this section by introducing the Fourier analysis of Fq[t]. Let K = Fq(t)
be the field of fractions of Fq[t], and let K∞ = Fq((1/t)) be the completion of K at
∞. We may write each element α ∈ K∞ in the shape α =

∑
i≤v ait

i for some v ∈ Z
and ai = ai(α) ∈ Fq (i ≤ v). If av 6= 0, we define ordα = v, and we write 〈α〉 for

qordα. We adopt the conventions that ord 0 = −∞ and 〈0〉 = 0. For a real number

R, we let R̂ denote qR. Hence, if x is a polynomial in Fq[t], then 〈x〉 < N̂ if and only
if the degree of x is strictly less than N . Consider the compact additive subgroup T
of K∞ defined by T =

{
α ∈ K∞ : 〈α〉 < 1

}
. Given any Haar measure dα on K∞, we

normalize it in such a manner that
∫
T 1 dα = 1. Thus, if M is the subset of K∞ defined

by M =
{
α ∈ K∞ : ordα < −N

}
, then the measure of M, mes(M), is equal to N̂−1.

We are now equipped to define the exponential function on Fq[t]. Suppose that the
characteristic of Fq is p. Let e(z) denote e2πiz, and let tr : Fq → Fp denote the familiar
trace map. There is a non-trivial additive character eq : Fq → C× defined for each a ∈ Fq
by taking eq(a) = e(tr(a)/p). This character induces a map e : K∞ → C× by defining, for
each element α ∈ K∞, the value of e(α) to be eq(a−1(α)). It is often convenient to refer to
a−1(α) as being the residue of α, an element of Fq that we denote by resα. In this guise
we have e(α) = eq(resα). The orthogonality relation underlying the Fourier analysis of
Fq[t], established in [3, Lemma 1], takes the shape

∫
T
e(hα) dα =

{
1, when h = 0,

0, when h ∈ Fq[t] \ {0}.
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Notation For k ∈ N, let f(k) and g(k) be functions of k. If g(k) is positive and there
exists a constant c > 0 such that |f(k)| ≤ cg(k), we write f(k)� g(k). In this paper, all
the implicit constants depend only on r.

2. Proof of Theorem 1

For N ∈ N and s ≥ 3, let r = (r1, · · · , rs) and Dr(SN ) be defined as in Section 1. Write
dr(N) = Dr(SN )/|SN |. For convenience, in what follows, we will write D(SN ) in place of
Dr(SN ) and d(N) in place of dr(N). Hence, to prove Theorem 1, it is equivalent to show
that d(N)� 1/N s−2.

For a set A ⊆ SN , let T (A) = Tr(A) denote the number of solutions of r1x1+· · ·+rsxs =
0 with xi ∈ A (1 ≤ i ≤ s). Let 1A be the characteristic function of A, i.e., 1A(x) = 1 if
x ∈ A and 1A(x) = 0 otherwise. Define

fi(α) =
∑
〈x〉<N̂

1A(x)e(αrix) =
∑
x∈A

e(αrix).

Then by the orthogonality relation for the exponential function, we have

T (A) =

∫
T
f1(α)f2(α) · · · fs(α) dα. (1)

We will estimate T (A) by dividing T into two parts: the major arc M defined by M =
{α : ordα < −N} and the minor arc m = T \M.

Lemma 2. Suppose that A ⊆ SN contains no non-trivial solution of r1x1 + · · ·+ rsxs = 0
with xi ∈ A (1 ≤ i ≤ s). Then we have

sup
α∈m

∣∣fi(α)
∣∣ ≤ d(N − 1)N̂ − |A|.

Proof: For α ∈ m, let W = W (α, ri) =
{
y ∈ SN : e(αriy) = 1

}
. Since ord ri = 0 and

ordα ≥ −N , we can write ord (αri) = −l and αri =
∑

j≤−l bjt
j with −N ≤ −l ≤ −1,

bj ∈ Fq (j ≤ −l), and b−l 6= 0. Then for y = cN−1t
N−1 + · · · + c0 ∈ SN , the polynomial

y ∈W if and only if

res(αriy) = b−lcl−1 + b−l−1cl + · · ·+ b−NcN−1 = 0.

Hence, we have that W ' FN−1q as a vector space over Fq.

Since ord (αri) ≥ −N , by [3, Lemma 7], we have∑
〈x〉<N̂

e(αrix) = 0.

Hence,

|W | |fi(α)| =
∣∣∣∣ ∑
y∈W

∑
〈x〉<N̂

d(N − 1)e(αrix)−
∑
y∈W

∑
〈x〉<N̂

1A(x)e(αrix)

∣∣∣∣.
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For y ∈W, since e(αriy) = 1 and y ∈ SN , we have by a change of variables that∑
〈x〉<N̂

1A(x)e(αrix) =
∑
〈x〉<N̂

1A(x)e(αri(x+ y)) =
∑
〈x〉<N̂

1A(x− y)e(αrix).

Hence, it follows that

|W | |fi(α)| =
∣∣∣∣ ∑
〈x〉<N̂

( ∑
y∈W

d(N − 1)−
∑
y∈W

1A(x− y)

)
e(αrix)

∣∣∣∣
≤
∑
〈x〉<N̂

∣∣∣∣ ∑
y∈W

d(N − 1)−
∑
y∈W

1A(x− y)

∣∣∣∣
=
∑
〈x〉<N̂

∣∣∣d(N − 1)|W | −
∣∣W ∩ (x−A)

∣∣∣∣∣.
Since r1 + · · · + rs = 0 and A contains no non-trivial solution of r1x1 + · · · + rsxs = 0
with xi ∈ A (1 ≤ i ≤ s), the set W ∩ (x − A) also contains no non-trivial solution of
the same equation. Since W ' SN−1 as a vector space over Fq and ri ∈ Fq (1 ≤ i ≤ s),
any invertible Fq-linear transformation from W to SN−1 maps W ∩ (x−A) to a subset of
SN−1 which contains no non-trivial solution of r1x1 + · · · + rsxs = 0. This implies that
|W ∩ (x−A)| ≤ d(N − 1)|W |. It follows that

|W | |fi(α)| ≤
∑
〈x〉<N̂

(
d(N − 1)|W | −

∣∣W ∩ (x−A)
∣∣) = d(N − 1)|W |N̂ − |W ||A|.

Thus, if α ∈ m, we have

|fi(α)| ≤ d(N − 1)N̂ − |A|.
This completes the proof of the lemma.

Now, we are ready to prove Theorem 1.

Proof: (of Theorem 1) Suppose that A ⊆ SN contains no non-trivial solution of r1x1 +
· · · + rsxs = 0 with xi ∈ A (1 ≤ i ≤ s). We suppose further that |A|/|SN | = d(N). By
(1), we have

T (A) =

∫
T
f1(α)f2(α) · · · fs(α) dα

=

∫
M
f1(α)f2(α) · · · fs(α) dα+

∫
m
f1(α)f2(α) · · · fs(α) dα.

(2)

If α ∈M and x ∈ SN , we have e(αrix) = 1. It follows that∫
M
f1(α)f2(α) · · · fs(α) dα = |A|s ·mes(M) = d(N)s N̂ s−1. (3)

By the orthogonality relation for the exponential function,∫
T
|f1(α)|2 dα = |A| =

∫
T
|f2(α)|2 dα.
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Hence, by Cauchy’s inequality and Lemma 2, we have∣∣∣∣ ∫
m
f1(α)f2(α) · · · fs(α) dα

∣∣∣∣
≤ sup

α∈m

∣∣f3(α) · · · fs(α)
∣∣ ( ∫

T
|f1(α)|2 dα

)1/2(∫
T
|f2(α)|2 dα

)1/2

≤ d(N)
(
d(N − 1)− d(N)

)s−2
N̂ s−1.

(4)

By combining (2), (3), and (4), we obtain

T (A) ≥
∫
M
f1(α)f2(α) · · · fs(α) dα−

∣∣∣∣ ∫
m
f1(α)f2(α) · · · fs(α) dα

∣∣∣∣
≥
(
d(N)s − d(N)

(
d(N − 1)− d(N)

)s−2)
N̂ s−1.

Since A contains no non-trivial solution of r1x1 + · · ·+ rsxs = 0 with xi ∈ A (1 ≤ i ≤ s),
there exists a constant B = B(r) such that

T (A) ≤ B|A|s−2 = Bd(N)s−2N̂ s−2.

Combining the above two inequalities, we have

d(N)s −Bd(N)s−2N̂−1 − d(N)
(
d(N − 1)− d(N)

)s−2 ≤ 0. (5)

We now claim that there exists a constant C = C(r) ≥ 1 such that for all N ∈ N,

d(N) ≤ Cs−2

N s−2 .

This statement will follow by induction. Since d(N) ≤ 1, the cases where N ≤ C follow
trivially. Let N > C, and suppose that d(N−1) ≤ Cs−2(N−1)2−s. We will now verify that

d(N) ≤ Cs−2N2−s. Since N s−1(2N )−1/2 → 0 as N → ∞, without loss of generality, we

may assume that Cs−2 ≥ B1/2N s−1(2N )−1/2 for all N ∈ N. Hence, if d(N)2 ≤ BN2N̂−1,

since N̂ ≥ 2N , we have

d(N) ≤ B1/2NN̂−1/2 ≤ B1/2N(2N )−1/2 ≤ Cs−2N2−s,

which gives the desired conclusion. Thus, in what follows, we will assume that d(N)2 >

BN2N̂−1. Since Bd(N)s−2N̂−1 < d(N)sN−2 and N ≥ 2, by (5), we have

d(N)s2−1 < d(N)s(1−N−2) < d(N)
(
d(N − 1)− d(N)

)s−2
.

Let E = E(r) be the unique positive number satisfying Es−2 = 2−1. By the induction
hypothesis for d(N − 1), the above inequality implies that

Ed(N)
s−1
s−2 + d(N) < d(N − 1) ≤ Cs−2

(N − 1)s−2
. (6)
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We note that without loss of generality, we can assume that C ≥ E−1(2s−1− 2). Then by
the binomial theorem, we have

N s−1 = (N − 1)s−1 +

(
s− 1

1

)
(N − 1)s−2 +

(
s− 1

2

)
(N − 1)s−3 + · · ·+

(
s− 1

s− 1

)
≤ (N − 1)s−1 + (N − 1)s−2(2s−1 − 1)

≤ (N − 1)s−1 + (N − 1)s−2(CE + 1).

Then it follows that
Cs−2

(N − 1)s−2
≤ E

(
Cs−2

N s−2

) s−1
s−2

+
Cs−2

N s−2 .

We note that Ex
s−1
s−2 + x is an increasing function of x. Thus by combining the above

inequality with (6), we conclude that d(N) ≤ Cs−2N2−s. This completes the proof of
Theorem 1.
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