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Abstract. Let r1, . . . , rs be non-zero integers satisfying r1 + · · ·+ rs = 0. Let

G ' Z/k1Z⊕ · · · ⊕ Z/knZ
be a finite abelian group with ki|ki−1 (2 ≤ i ≤ n), and suppose that (ri, k1) = 1
(1 ≤ i ≤ s). Let Dr(G) denote the maximal cardinality of a set A ⊆ G which contains
no non-trivial solution of r1x1 + · · · + rsxs = 0 with xi ∈ A (1 ≤ i ≤ s). We prove
that Dr(G)� |G|/ns−2. We also apply this result to study problems in finite projective
spaces.

1. Introduction

For k ∈ N = {1, 2, . . .}, let D3([1, k]) denote the maximal cardinality of an integer
set A ⊆ {1, . . . , k} containing no non-trivial 3-term arithmetic progression. In a funda-
mental paper [5], Roth proved that D3([1, k]) � k/ log log k via an application of the
circle method. His result was later improved by Heath-Brown [2] and Szemerédi [7] to
D3([1, k])� k/(log k)α for some small positive constant α > 0. Bourgain [1] proved that

D3([1, k]) � k(log log k)2/(log k)2/3. In this paper, we prove a generalization of Roth’s
theorem in finite abelian groups.

For a natural number s ≥ 3, let r = (r1, . . . , rs) be a vector of non-zero integers satisfying
r1 + · · ·+ rs = 0. Given a finite abelian group G, we can write

G ' Z/k1Z⊕ · · · ⊕ Z/knZ,
where Z/kiZ is a cyclic group of order ki (1 ≤ i ≤ n) and ki|ki−1 (2 ≤ i ≤ n). We denote
by c(G) = n the number of constituents of G. Moreover, we say that G is coprime to r
provided that (ri, k1) = 1 for all 1 ≤ i ≤ s.

A solution x = (x1, . . . , xs) ∈ Gs of r1x1 + · · · + rsxs = 0 is said to be trivial if
xj1 = · · · = xjl for some subset {j1, . . . , jl} ⊆ {1, . . . , s} with rj1 + · · ·+rjl = 0. Otherwise,
we say that a solution x is non-trivial. For a finite abelian group G coprime to r, let Dr(G)
denote the maximal cardinality of a set A ⊆ G which contains no non-trivial solution of
r1x1 + · · · + rsxs = 0 with xi ∈ A (1 ≤ i ≤ s). Also, for n ∈ N, we denote by dr(n) the
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supremum of Dr(G)/|G| as G ranges over all finite abelian groups G with c(G) ≥ n and G
coprime to r. Here, |G| denotes the cardinality of G. In this paper, we prove the following
theorem.

Theorem 1. Let r = (r1, . . . , rs) be a vector of non-zero integers satisfying r1+· · ·+rs = 0.
There exists an effectively computable constant C(r) > 0 such that for n ∈ N,

dr(n) ≤ C(r)s−2

ns−2
.

We note that in the special case that r = (1,−2, 1) and G is a finite abelian group
of odd order, the number Dr(G) denotes the maximal cardinality of a set A ⊆ G which
contains no non-trivial 3-term arithmetic progression. Moreover, the constant C(r) can
be taken to be 2 in this case (see Remark 6). Hence, we can deduce from Theorem 1 the
result of Meshulam in [4, Theorem 1.2] which states that if G is a finite abelian group of
odd order, then Dr(G) ≤ 2|G|/c(G).

In the following corollary, we provide an application of Theorem 1.

Corollary 2. Let p be an odd prime and q = ph for some h ∈ N. For n ∈ N, let PG(n, q)
denote the projective space of dimension n over the finite field Fq of q elements. For v ∈ N
with v > 1, let Mv(n, q) denote the maximum cardinality of a set A ⊆ PG(n, q) for which
no (v + 1) points in A are linearly dependent over Fq. Then, there exists an effectively

computable constant C̃(p, v) > 0 such that

Mv(n, q) ≤
C̃(p, v)

hv−1
·
n∑
j=1

qj

jv−1
+ 1.

An m-cap is a set of m points of PG(n, q) for which no three points are collinear. In
the special case that v = 2, the quantity M2(n, q) denotes the maximal value of m for

which there exists an m-cap in PG(n, q). For an odd prime p, we can take C̃(p, 2) = 2
(see Remark 6). Hence, Corollary 2 implies the result of Storme, Thas, and Vereecke in
[6, Theorem 1.2] about the sizes of caps in finite projective spaces.

For v ∈ N with v > 1, let Mv(n, q) denote the maximum cardinality of a set A ⊆
PG(n, q) for which no (v+1) points in A are linearly dependent over Fq, and some (v+2)
points in A are linearly dependent over Fq. In [3], Hirschfeld and Storme provide a general
discussion on Mv(n, q). We note that Mv(n, q) ≤ Mv(n, q). Hence, Corollary 2 gives a
bound for Mv(n, q) which is useful when n is sufficiently large.

Before proving Theorem 1 and Corollary 2, we introduce the Fourier transform on a

finite abelian group G. Let Ĝ denote the character group of G. The Fourier transform of

a function g : G→ C is the function ĝ : Ĝ→ C defined by

ĝ(χ) =
∑
x∈G

g(x)χ(−x).

Then, we have Parseval’s identity,∑
χ∈Ĝ

|ĝ(χ)|2 = |G|
∑
x∈G
|g(x)|2.
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Notation For k ∈ N, let f(k) and g(k) be functions of k. If g(k) is positive and there
exists a constant C = C(r) > 0 such that |f(k)| ≤ Cg(k), we write f(k) � g(k). In this
paper, all the implicit constants depend only on r.

2. Proof of Theorem 1

Let r1, . . . , rs be non-zero integers with r1 + · · · + rs = 0. For n ∈ N, let G be a finite
abelian group coprime to r with c(G) ≥ n. For convenience, in what follows, we write
D(G) in place of Dr(G) and d(n) in place of dr(n). For a set A ⊆ G, we denote by
T (A) = Tr(A) the number of solutions of

r1x1 + · · ·+ rsxs = 0

with xi ∈ A (1 ≤ i ≤ s). For 1 ≤ i ≤ s, let riA = {rix : x ∈ A}, and let 1riA be the
characteristic function of riA, i.e., 1riA(x) = 1 if x ∈ riA and 1riA(x) = 0 otherwise. Let

fi = 1̂riA. We note that since G is coprime to r, the map from G to G defined by x 7→ rix

is a bijection. Thus, for χ ∈ Ĝ, we have

fi(χ) =
∑
x∈G

1riA(x)χ(−x) =
∑
x∈A

χ(−rix) (1 ≤ i ≤ s).

It follows that∑
χ∈Ĝ

f1(χ)f2(χ) · · · fs(χ) =
∑
x1∈A

· · ·
∑
xs∈A

∑
χ∈Ĝ

χ
(
− (r1x1 + · · ·+ rsxs)

)
= |G|T (A).

(1)

Moreover, we define

h(χ) =
∑
x∈G

d(n− 1)χ(−x).

Hence, h(χ) = d(n− 1)|G| if χ = χ0 and h(χ) = 0 otherwise. The function h(χ) is a good
approximation for fi(χ). More precisely, we have the following lemma.

Lemma 3. Let G be a finite abelian group coprime to r with c(G) ≥ n. Suppose that
A ⊆ G contains no non-trivial solution of r1x1 + · · · + rsxs = 0 with xi ∈ A (1 ≤ i ≤ s).
Then we have

sup
χ∈Ĝ
|h(χ)− fi(χ)| = d(n− 1)|G| − |A|.

In particular, since h(χ) = 0 for χ 6= χ0, it follows that

sup
χ 6=χ0

∣∣fi(χ)
∣∣ ≤ d(n− 1)|G| − |A|.
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Proof. Let χ ∈ Ĝ and W = ker(χ). Since χ(G) is a cyclic group and G/W ∼= χ(G), we
may conclude that c(W ) ≥ c(G)− 1 ≥ (n− 1). Note that

|W ||h(χ)− fi(χ)| =
∣∣∣∣ ∑
y∈W

∑
x∈G

d(n− 1)χ(−x)−
∑
y∈W

∑
x∈G

1riA(x)χ(−x)

∣∣∣∣.
Since y ∈ ker(χ), by a change of variables, we have∑

x∈G
1riA(x)χ(−x) =

∑
x∈G

1riA(x)χ(−(x+ y)) =
∑
x∈G

1riA(x− y)χ(−x).

Hence, it follows that

|W ||h(χ)− fi(χ)| =
∣∣∣∣∑
x∈G

( ∑
y∈W

d(n− 1)−
∑
y∈W

1riA(x− y)

)
χ(−x)

∣∣∣∣
≤
∑
x∈G

∣∣∣∣ ∑
y∈W

d(n− 1)−
∑
y∈W

1riA(x− y)

∣∣∣∣
=
∑
x∈G

∣∣∣d(n− 1)|W | −
∣∣W ∩ (x− riA)

∣∣∣∣∣.
We note that since A contains no non-trivial solution of r1x1 + · · ·+ rsxs = 0 with xi ∈ A
(1 ≤ i ≤ s), the set W ∩ (x − riA) also contains no non-trivial solution of the same
equation. Furthermore, the fact that G is coprime to r implies that W is coprime to r.
Since c(W ) ≥ (n− 1), we have

∣∣W ∩ (x− riA)
∣∣ ≤ d(n− 1)|W |. We may conclude that

|W ||h(χ)− fi(χ)| ≤
∑
x∈G

(
d(n− 1)|W | −

∣∣W ∩ (x− riA)
∣∣)

= d(n− 1)|W ||G| − |W ||A|.

Hence, we have

|h(χ)− fi(χ)| ≤ d(n− 1)|G| − |A|.
We note that for χ = χ0, one has

|h(χ0)− fi(χ0)| = d(n− 1)|G| − |A|.

This completes the proof of the lemma. �

Now, we are ready to prove Theorem 1.

Proof. (of Theorem 1) Let G be a finite abelian group coprime to r with c(G) ≥ n.
Suppose that A ⊆ G contains no non-trivial solution of r1x1 + · · ·+ rsxs = 0 with xi ∈ A
(1 ≤ i ≤ s). Furthermore, suppose that D(G) = |A|, and let d∗(G) = |A|/|G|.

By (1), we have

|G|T (A) =
∑
χ∈Ĝ

f1(χ)f2(χ) · · · fs(χ)

= f1(χ0)f2(χ0) · · · fs(χ0) +
∑
χ 6=χ0

f1(χ)f2(χ) · · · fs(χ).
(2)
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We note that

f1(χ0)f2(χ0) · · · fs(χ0) = |A|s = d∗(G)s|G|s. (3)

Also, by Cauchy’s inequality and Lemma 3, we have∣∣∣∣ ∑
χ 6=χ0

f1(χ)f2(χ) · · · fs(χ)

∣∣∣∣
≤ sup

χ 6=χ0

∣∣f3(χ) · · · fs(χ)
∣∣ ( ∑

χ 6=χ0

|f1(χ)|2
)1/2( ∑

χ 6=χ0

|f2(χ)|2
)1/2

≤
(
d(n− 1)− d∗(G)

)s−2 |G|s−2(∑
χ∈Ĝ

|f1(χ)|2
)1/2(∑

χ∈Ĝ

|f2(χ)|2
)1/2

.

By Parseval’s identity, ∑
χ∈Ĝ

|f1(χ)|2 = |G|
∑
x∈G
|1r1A(x)|2 = |G||A|.

The same equality also holds if we replace f1 by f2. Thus, from the above estimates, we
have ∣∣∣∣ ∑

χ 6=χ0

f1(χ)f2(χ) · · · fs(χ)

∣∣∣∣ ≤ d∗(G)
(
d(n− 1)− d∗(G)

)s−2 |G|s. (4)

By combining (2), (3), and (4), it follows that

T (A) ≥ 1

|G|
f1(χ0)f2(χ0) · · · fs(χ0)−

1

|G|

∣∣∣∣ ∑
χ 6=χ0

f1(χ)f2(χ) · · · fs(χ)

∣∣∣∣
≥
(
d∗(G)s − d∗(G)

(
d(n− 1)− d∗(G)

)s−2) |G|s−1.
Since A contains no non-trivial solution of r1x1 + · · ·+ rsxs = 0 with xi ∈ A (1 ≤ i ≤ s),
there exists a constant B = B(r) such that

T (A) ≤ B|A|s−2 = Bd∗(G)s−2 |G|s−2.
Combining the above two estimates, we have

d∗(G)s −Bd∗(G)s−2|G|−1 − d∗(G)
(
d(n− 1)− d∗(G)

)s−2 ≤ 0. (5)

We now claim that there exists a constant C = C(r) ≥ 1 such that for all n ∈ N,

d(n) ≤ Cs−2

ns−2
. (6)

This statement follows by induction on n. Since d(n) ≤ 1, the cases where n ≤ C hold
trivially. Let n > C, and suppose that d(n − 1) ≤ Cs−2(n − 1)2−s. We now verify that
d∗(G) ≤ Cs−2n2−s, and since this inequality holds for any finite abelian group G coprime
to r with c(G) ≥ n, we may conclude that d(n) ≤ Cs−2n2−s. Let F be any real number
with F > 1. We split the proof into two cases:

(1) Suppose that d∗(G)2 ≤ FB|G|−1. Since |G| ≥ 2n, we have d∗(G) ≤ (FB2−n)1/2.

Hence, if (FB2−m)1/2ms−2 ≤ Cs−2 for all m > C, one has that d∗(G) ≤ Cs−2n2−s. For
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m > 0, the function 2−m/2ms−2 obtains its global maximum of (2s − 4)s−2(e log 2)2−s

when m = (2s− 4)/ log 2. Therefore, this case follows provided that

C ≥ (FB)1/(2s−4)
(

2s− 4

e log 2

)
.

(2) Suppose that d∗(G)2 > FB|G|−1. Since F−1d∗(G)s > Bd∗(G)s−2|G|−1, by (5), we
have

(1− F−1)d∗(G)s < d∗(G)(d(n− 1)− d∗(G))s−2.

Let E = E(F ) be the unique positive number satisfying Es−2 = (1 − F−1). By the
induction hypothesis for d(n− 1), the above inequality implies that

Ed∗(G)
s−1
s−2 + d∗(G) < d(n− 1) ≤ Cs−2

(n− 1)s−2
.

Since Ex
s−1
s−2 +x is an increasing function of x, to prove that d∗(G) ≤ Cs−2ns−2, it suffices

to show that

Cs−2

(n− 1)s−2
≤ E

(
Cs−2

ns−2

) s−1
s−2

+
Cs−2

ns−2
.

We note that the above inequality is equivalent to

ns−1

(n− 1)s−2
− n ≤ CE. (7)

For m > 1,
ms−1

(m− 1)s−2
−m

is a decreasing function of m. Since n > C, to prove (7), it is enough to show that

Cs−1

(C − 1)s−2
− C ≤ CE.

The above inequality is satisfied whenever

C ≥ (E + 1)1/(s−2)

(E + 1)1/(s−2) − 1
.

Hence, provided that C is large enough in terms of r, it follows by induction that (6)
holds for all n ∈ N. This completes the proof of Theorem 1. �

Remark 4. We see from the above proof that our constant C = C(r) can be computed
explicitly. For any value of E such that 0 < E < 1, we may choose C to be

max

{(
B

1− Es−2

)1/(2s−4)(2s− 4

e log 2

)
,

(E + 1)1/(s−2)

(E + 1)1/(s−2) − 1

}
,

where B = B(r) is chosen as in the proof of Theorem 1. For any choice of r = (r1, . . . , rs),
one can numerically choose E to minimize the above expression. We note that

lim
s→∞

(
(E + 1)1/(s−2)

(E + 1)1/(s−2) − 1
− s− 2

log(E + 1)
− 1

2

)
= 0.



A GENERALIZATION OF MESHULAM’S THEOREM 7

Thus, for fixed B, the constant C can be chosen in such a way that it grows like a linear
function in s.

Remark 5. If the vector r = (r1, . . . , rs) ∈ Zs satisfies the condition that there is no proper
subset {j1, . . . , jl} ( {1, . . . , s} with rj1+· · ·+rjl = 0, then a solution x = (x1, . . . , xs) ∈ As
is trivial if and only if x1 = · · · = xs. Hence, T (A) = |A|, and in place of (5), we obtain
the inequality

d∗(G)s − d∗(G)|G|2−s − d∗(G)
(
d(n− 1)− d∗(G)

)s−2 ≤ 0.

By an argument similar to the proof of Theorem 1, for any value of E such that 0 < E < 1,
we may choose C to be

max

{(
1

1− Es−2

) 1
(s−1)(s−2)

(
s− 1

e log 2

)
,

(E + 1)1/(s−2)

(E + 1)1/(s−2) − 1

}
.

We note that in this case, the constant C depends only on s. Moreover, we can change
the constant E as n varies in our proof, i.e., E = E(n) can be chosen to be a function of
n. Table 1 lists valid choices of C(s) for small values of s.

Table 1. Values of the Constant C(s) in Remark 5

s 3 4 5 6 7 8 9 10 11
C(s) 2.050 3.138 4.766 6 7.598 9 10.436 12 13.277

Remark 6. One can also optimize the choice of C = C(r) by utilizing the inequality in
(5) directly. Consider the special case that r = (1,−2, 1) and G is a finite abelian group
of odd order with c(G) ≥ n. Since a solution x = (x1, x2, x3) is trivial if and only if
x1 = x2 = x3, we can take B(r) = 1 in this case. Since |G| ≥ 3n, by (5), we have

d∗(G)2 + d∗(G)− 3−n ≤ d(n− 1).

We note that for n ≥ 3,

2

n− 1
≤
(

2

n

)2

+
2

n
− 3−n.

Since x2+x−3−n is an increasing function of x, by induction, we can show that d(n) ≤ 2/n
for all n ∈ N. In other words, when r = (1,−2, 1), we can take C(r) = 2.

3. Proof of Corollary 2

Let p be an odd prime and q = ph for some h ∈ N. For n ∈ N, let PG(n, q) denote the
projective space of dimension n over Fq. For v ∈ N with v > 1, define Mv(n, q) to be the
maximum cardinality of a set A ⊆ PG(n, q) for which no (v + 1) points in A are linearly

dependent over Fq. We can similarly define M̃v(n, q) as the maximum cardinality of a set
B ⊆ Fnq ⊕{1} ⊆ PG(n, q) for which no (v+ 1) points in B are linearly dependent over Fq.
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Corollary 7. Let p be an odd prime and q = ph for some h ∈ N. There exists an effectively

computable constant C̃(p, v) > 0 such that

M̃v(n, q) ≤
C̃(p, v)qn

(nh)v−1
.

Proof. Let r1, . . . , rv−1 be integers that are not divisible by p. Since p ≥ 3, there exists an
rv ∈ Z such that p - rv and r1 + · · ·+ rv 6≡ 0 (mod p). By taking rv+1 = −(r1 + · · ·+ rv),
we have shown that there exists a vector r = (r1, . . . , rv+1) of integers not divisible by p
that satisfies r1 + · · ·+ rv+1 = 0.

Suppose that B ⊆ Fnq⊕{1} and no (v+1) points in B are linearly dependent over Fq. Let
r = (r1, . . . , rv+1) be a vector of integers not divisible by p that satisfies r1+ · · ·+rv+1 = 0.
If B contains a non-trivial solution of r1x1+· · ·+rv+1xv+1 = 0 with xi ∈ B (1 ≤ i ≤ v+1),
then there are (v+ 1) points in B that are linearly dependent over Fq. Hence, by viewing
Fnq as a finite abelian group with nh constituents, we can derive from Theorem 1 that

M̃v(n, q) ≤
C(r)v−1 qn

(nh)v−1
. (8)

Define

C̃(p, v) = inf
r

{
C(r)v−1

}
,

where r runs through all vectors (r1, . . . , rv+1) of integers not divisible by p with r1 + · · ·+
rv+1 = 0. Then, by (8), the corollary follows. �

We are now ready to prove Corollary 2, which states that

Mv(n, q) ≤
C̃(p, v)

hv−1
·
n∑
j=1

qj

jv−1
+ 1.

Proof. (of Corollary 2) We note that an element of PG(n, q) can be written either as (y, 1)
with y ∈ Fnq or as (z, 0) with z ∈ PG(n− 1, q). Thus, for n ≥ 1, we have

Mv(n, q) ≤ M̃v(n, q) +Mv(n− 1, q). (9)

We note that

Mv(1, q) ≤ M̃v(1, q) + 1. (10)

By (9), (10), and Corollary 7, we have

Mv(n, q) ≤
n∑
j=1

M̃v(j, q) + 1 ≤ C̃(p, v)

hv−1
·
n∑
j=1

qj

jv−1
+ 1.

The corollary now follows. �
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