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Abstract. Let A = Fq[T ] be the ring of polynomials over the finite field Fq and 0 6=
a ∈ A. Let C be the A-Carlitz module. For a monic polynomial m ∈ A, let C(A/mA)
and ā be the reduction of C and a modulo mA respectively. Let fa(m) be the monic
generator of the ideal {f ∈ A,Cf (ā) = 0̄} on C(A/mA). We denote by ω(fa(m)) the
number of distinct monic irreducible factors of fa(m). If q 6= 2 or q = 2 and a 6= 1, T , or
(1 + T ), we prove that there exists a normal distribution for the quantity

ω(fa(m))− 1
2
(log degm)2

1√
3
(log degm)3/2

.

This result is analogous to an open conjecture of Erdős and Pomerance about the distri-
bution of the number of distinct prime divisors of the multiplicative order of b modulo
n, where b is an integer with |b| > 1, and n a positive integer.

1. Introduction

For n ∈ N := {1, 2, 3, · · · }, let ν(n) denote the number of distinct prime divisors of n.
For x ∈ N, a theorem of Turán [19] states that∑

n≤x

(
ν(n)− log log x

)2 � x log log x;

from which we can derive an earlier result of Hardy and Ramanujan [5] that the normal
order of ν(n) is log log n. In other words, for any ε > 0,

#
{
n ≤ x

∣∣n satisfies |ν(n)− log log n| > ε log log n
}

= o(x).

The idea behind Turán’s proof was essentially probabilistic. Further development of
probabilistic ideas led Erdős and Kac [2] to prove a remarkable refinement of the Turán
Theorem. For γ ∈ R, Erdős and Kac proved that

lim
x→∞

1

x
#

{
n ≤ x

∣∣n satisfies
ν(n)− log log n√

log logn
≤ γ

}
= G(γ),
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where G(γ) is the Gaussian normal distribution, i.e.,

G(γ) =
1√
2π

∫ γ

−∞
e−t

2/2dt.

The celebrated theorem of Erdős and Kac opened a door to probabilistic number theory.
In the 60s and 70s, the theory was refined by many authors, culminating in a generalized
Erdős-Kac theorem, proved independently by Kubilius [10] and Shapiro [18]. Their result
is applicable to what are called ‘strongly additive functions’. An interested reader can find
a comprehensive treatment of it in the monograph of Elliott [1].

We can also consider functions that are not strongly additive, say Euler’s ϕ-function.
In this case, the result of Kubilius and Shapiro can not be applied directly. By making a
significant transition from ϕ(n) to a strongly additive function, Erdős and Pomerance [3]
showed that

lim
x→∞

1

x
#

{
n ≤ x

∣∣n satisfies
ν(ϕ(n))− 1

2(log log n)2

1√
3
(log log n)3/2

≤ γ
}

= G(γ).

Another new type of Erdős-Kac’s theorem, which can be described as ‘non-abelian’, was
discovered by R. Murty and K. Murty [14]. More precisely, they proved that under the
assumption of the GRH (i.e., the Riemann Hypothesis for all Dedekind zeta functions of
number fields), an analogous result of Erdős and Pomerance holds for τ(n), where τ(n)
is the Ramanujan τ -function. As shown in [14], their general theorem are applicable to
a wider class of functions arising as Fourier coefficients of modular forms. One can also
derive from it the result of Erdős and Pomerance on ν(ϕ(n)).

In [3], Erdős and Pomerance proposed the following question. For b ∈ Z, n ∈ N with
(b, n) = 1, let lb(n) be the multiplicative order of b modulo n. Thus lb(n) is a divisor of
ϕ(n). Based on the belief that the difference between ν(ϕ(n)) and ν(lb(n)) is ‘small on
average’, Erdős and Pomerance conjectured that if |b| > 1, then

lim
x→∞

1

x
#

{
n ≤ x

∣∣n satisfies (b, n) = 1 and
ν(lb(n))− 1

2(log log n)2

1√
3
(log log n)3/2

≤ γ
}

=
ϕ(b)

|b|
G(γ).

This conjecture remains open until today. The first breakthrough of the problem was
recently achieved by Murty and Saidak [15]. Under the GRH, they proved that the con-
jecture is true. Subsequently, Li and Pomerance [11] also provided an alternative proof of
the same result. The difficulty of this conjecture lies in the intervention of certain non-
abelian extensions of Q. More precisely, we need to bound the quantity

∑
ν(ib(n)), where

ib(n) = ϕ(n)/lb(n), and the estimate involves the distribution of primes in the non-abelian

extensions Q(ζn,
n
√
b), where ζn is a primitive n-th root of unity and n

√
b a n-th root of

b. We can also formulate a prime analogue of Erdős-Pomerance’s conjecture for elliptic
curves. In [13], the second author proved that under the GRH, an analogous result holds
for elliptic curves.

When we see a result involving the GRH, it is natural to ask if its polynomial analogue
holds unconditionally. Let A = Fq[T ] be the polynomial ring over the finite field Fq. For
a ∈ A, m ∈ A a monic polynomial with (a,m) = 1, let la,q(m) be the multiplicative order
of a modulo m. We can consider the distribution of ν(la,q(m)). Let ϕq(m) be the order of
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the multiplicative group (A/mA)∗ and ia,q(m) = ϕq(m)/la,q(m). Following the approach
of Murty and Saidak, we seek to estimate the quantity

∑
ν(ia,q(m)). In this case, we can

obtain unconditionally the desired upper bound. Hence, the distribution of ν(la,q(m)) is
the same with the one of ν(ϕq(m)), if the latter exists. At this point, it is difficult to
establish the existence of a normal distribution for ν(ϕq(m)). The main obstacle is that
the values of ϕq(m) involve sums of q-powers and their prime divisors do not seem to
distribute normally. More precisely, following the same principle in the work of Erdős and
Kac, the expectation of ν(ϕq(m)) is about∑

deg p≤x

ν(ϕq(p))

qdeg p
,

where p ∈ A are monic irreducible polynomials. We note that a prime w divides ϕq(p) if

and only if qdeg p ≡ 1 (mod w), which is equivalent to say that lq(w)| deg p, where lq(w) is
the order of q modulo w which we defined before. Thus to estimate the above quantity, it
involves getting an asymptotic formula for the sum∑

w≤x

1

lq(w)
.

As R. Murty and Srinvasan proved in [16], if the above quantity is bounded by O(x1/4),
we can conclude that q is a primitive root for infinitely many prime p. In other words, the
classical Artin primitive root conjecture holds for q. As the conjecture remains unsolved,
and what we need for estimating ν(ϕq(m)) is not only an upper bound, but an asymptotic
formula for the above sum, it does not seem that there is an easy answer for this problem.

Because of the above complication for polynomials, perhaps we should consider the
Erdős-Pomerance problem in a different formulation. Let A = Fq[T ] and k = Fq(T ) the
rational function field. Let τ be the Frobenius element defined by τ(X) = Xq. We denote
by k{τ} the ‘twisted polynomial ring’ whose multiplication is defined by

τb = bqτ, ∀b ∈ k.

The A-Carlitz module C is the Fq-algebra homomorphism

C : A −→ k{τ}, f 7→ Cf ,

characterized by

CT = T + τ.

Let B be a commutative k-algebra (or more generally, a commutative A-algebra since CT
has coefficients in A) and B+ the additive group of B. We can view an element of k{τ}
as an endomorphism of B+ in the following way: let u ∈ B and

∑
biτ

i ∈ k{τ} (bi ∈ k),(∑
biτ

i
)

(u) =
∑

biu
qi .

Using the A-Carlitz module C, we can define a new multiplication on B as follows: for
f ∈ A and u ∈ B,

f · u := Cf (u) ∈ B.
This gives B a new A-module structure and we denote it by C(B).
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Let m ∈ A be a monic polynomial and mA the ideal of A generated by m. For g ∈ A,
let ḡ be the reduction of g modulo mA. Consider the reduction of C modulo mA, i.e., the
A-module C(A/mA) given by CT (ḡ) = T̄ ḡ + ḡq. For a fixed non-zero polynomial a ∈ A,
consider the set {

f ∈ A,Cf (ā) = 0̄
}

on C(A/mA). It is indeed an ideal of A because C is a ring homomorphism. Since A is a
principle ideal domain, there exists a unique monic polynomial fa(m) ∈ A which generates
the above ideal. Let ω(fa(m)) denote the number of distinct monic irreducible factors of
fa(m). Our goal is to study the behavior of ω(fa(m)).

In the case when p ∈ A is a monic irreducible polynomial, we will prove that

Theorem 1. Let A = Fq[T ], C the A-Carlitz module, and 0 6= a ∈ A. For a monic
irreducible polynomial p ∈ A, let C(A/pA) and ā be the reduction of C and a modulo
pA respectively. Let fa(p) be the monic generator of the ideal {f ∈ A,Cf (ā) = 0̄} on
C(A/pA). If q 6= 2 or q = 2 and a 6= 1, T , or (1 + T ), for x ∈ N, we have∑

deg p=x

(
ω(fa(p))− log x

)2
� π(x) log x,

where π(x) is the number of monic irreducible polynomials in A of degree x.

From Theorem 1, we can derive

Corollary 2. Let p ∈ A be a monic irreducible polynomial. For any ε ∈ R, ε > 0, we have

#
{

deg p = x
∣∣ p satisfies

∣∣ω(fa(p))− log deg p
∣∣ > ε log deg p

}
= o
(
π(x)

)
.

In other words, the normal order of ω(fa(p)) is log deg p.

We remark here that the requirement q 6= 2 and a 6= 0, or q = 2 and a 6= 0, 1, T , or
(1 + T ) in Theorem 1 is analogous to the condition that an integer b satisfies |b| > 1 in
the Erdős-Pomerance conjecture. For a rational prime w ∈ N with (b, w) = 1, we recall
that lb(w) is the multiplicative order of b modulo w. In other words, lb(w) is the positive
generator of the ideal {z ∈ Z, bz ≡ 1 (modw)} of Z. It was proved by Murty and Saidak
[15, Theorem 2] that under the GRH, there exists a normal distribution for the quantity

ν(lb(w))− log logw√
log logw

.

Let fa(p) be defined as in Theorem 1. Since it is analogous to lb(w), the following theorem
can be viewed as an analogue of the result of Murty and Saidak for the Carlitz module.

Theorem 3. For a monic irreducible polynomial p ∈ A, let a and fa(p) be defined as in
Theorem 1. For γ ∈ R and x ∈ N, we have

lim
x→∞

1

π(x)
#

{
deg p = x

∣∣ p satisfies
ω(fa(p))− log deg p√

log deg p
≤ γ

}
= G(γ).

In Theorem 1 and Corollary 2, we see that for a monic irreducible polynomial p ∈ A. the
normal order of ω(fa(p)) is log deg p. We can also consider the normal order of ω(fa(m)),
where m ∈ A is a general monic polynomial. We will show that
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Theorem 4. Let A = Fq[T ], C the A-Carlitz module, and 0 6= a ∈ A. For a monic poly-
nomial m ∈ A, let C(A/mA) and ā be the reduction of C and a modulo mA respectively.
Let fa(m) be the monic generator of the ideal {f ∈ A,Cf (ā) = 0̄} on C(A/mA). If q 6= 2
or q = 2 and a 6= 1, T , or (1 + T ), for x ∈ N, we have∑

degm=x

(
ω(fa(m))− 1

2
(log x)2

)2
� qx (log x)3.

As a direct consequence of Theorem 4, we have

Corollary 5. Let m ∈ A be a monic polynomial. For any ε ∈ R, ε > 0, we have

#

{
degm = x

∣∣m satisfies
∣∣∣ω(fa(m))− 1

2
(log degm)2

∣∣∣ > ε(log degm)2

}
= o
(
qx
)
.

In other words, the normal order of ω(fa(m)) is 1
2 (log degm)2.

We recall that for b ∈ Z, n ∈ N with (b, n) = 1, lb(n) is the multiplicative order of an
integer b modulo n. Since it is the positive generator of the set {z ∈ Z, bz ≡ 1 (modn)},
the fa(m) defined in Theorem 4 can be viewed as the Carlitz module analogue of lb(n).
We remark here that unlike the integer case where we need b and n to be coprime in order
to define lb(n) properly, in the case of the Carlitz module, fa(m) is well defined for all
monic polynomials m ∈ A. Hence, the condition (a,m) = 1 is not required in our setting.
The next theorem is an analogue of Erdős-Pomerance’s conjecture for the Carlitz module.

Theorem 6. For a monic polynomial m ∈ A, let a and fa(m) be defined as in Theorem
4. For γ ∈ R and x ∈ N, we have

lim
x→∞

1

qx
#

{
degm = x

∣∣m satisfies
ω(fa(m))− 1

2(log degm)2

1√
3
(log degm)3/2

≤ γ
}

= G(γ).

In Section 2, we give a technical lemma that is essential for the proofs of Theorems
1 and 3. We then prove these theorems in Section 3. In Section 4, we show that in
order to prove Theorems 4 and 6, it suffices to consider their analogues for Ω(Fa(m))
(see Section 4 for its definition). We prove these results of Ω(Fa(m)) in Section 5 to
conclude the paper. Our approach in Section 4 is different from the ones in [3] and
[15]. In previous works, the equivalences between Theorems 4 and 6, and their analogues
for Ω(Fa(m)), are proved independently from one another. However, by considering the
second moment of the difference between ω(fa(m)) and Ω(Fa(m)) (Lemma 11), we manage
to prove these equivalences simultaneously. We also mention here that the above theorems
may be generalized to general Drinfeld modules of rank one. Since the details are involved,
we intend to return to the problem in a later paper.

Notation For x ∈ R, x > 0, let f(x) and g(x) be two functions of x. If g(x) is positive
and there exists a constant C > 0 such that |f(x)| ≤ Cg(x), we write either f(x)� g(x)
or f(x) = O(g(x)). If lim

x→∞
f(x)/g(x) = 0, we write f(x) = o(g(x)). For p,m ∈ A and

α ∈ N, we write pα‖m to denote pα|m and pα+1 - m.

Acknowledgement The authors wishes to thank the referee for his/her valuable com-
ments, and also for supplying us a simplified proof of Lemma 10.
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2. An important lemma

Let A = Fq[T ] and k = Fq(T ). For 0 6= a ∈ A, p ∈ A a monic irreducible polynomial,
we recall that fa(p) is the monic generator of the ideal {f ∈ A,Cf (ā) = 0̄} on C(A/pA).
Since

C(A/pA) ∼= A/(p− 1)A

(see [4, Theorem 3.6.3]), we have

(p− 1)A ⊆
{
f ∈ A,Cf (ā) = 0̄

}
= fa(p)A.

It follows that fa(p) divides (p− 1) and we can write

p− 1 = fa(p) · ia(p),

where ia(p) ∈ A. Note that

ω(p− 1)− ω(ia(p)) ≤ ω(fa(p)) ≤ ω(p− 1).

Hence, if the contribution of ω(ia(p)) is ‘small’, we can conclude that ω(fa(p)) has the same
distribution with ω(p− 1). In this section, we consider the number of distinct irreducible
factors of ia(p). The following lemma is essential for the proof of Theorems 1 and 3.

Lemma 7. If q 6= 2 or q = 2 and a 6= 1, T , or (1 + T ), then for x ∈ N, we have∑
deg p=x

ω2(ia(p))� π(x).

Proof: Let δ be a fixed constant with 0 < δ < 1 (we will make a choice of δ later). Since
deg ia(p) ≤ deg p = x, there are at most O(1) monic irreducible polynomials l ∈ A with
l|ia(p) and deg l ≥ δx. Hence, we have∑

deg p=x

ω2(ia(p)) =
∑

deg p=x

( ∑
l|ia(p), deg l<δx

1 +O(1)

)2

�
∑

deg p=x

( ∑
l|ia(p), deg l<δx

1

)2

+O
(
π(x)

)
=

∑
deg l1,deg l2<δx

l1 6=l2

∑
deg p=x
l1l2|ia(p)

1 +
∑

deg l<δx

∑
deg p=x
l|ia(p)

1 +O
(
π(x)

)
,

where l1, l2, and l are monic irreducible polynomials.

For 0 6= m ∈ A, it was proved in [7, Proposition 1.1] that m|ia(p) if and only if pA
splits completely in Km, where Km is the Galois extension over k obtained by adjoining
roots of Cm(X) = 0 and roots of Cm(X) = a to k. Let πsc(x,Km) be the number of monic
irreducible polynomials p ∈ A such that deg p = x and pA splits completely in Km. From
the above inequality, we have∑

deg p=x

ω2(ia(p))�
∑

deg l1,deg l2<δx
l1 6=l2

πsc(x,Kl1l2) +
∑

deg l<δx

πsc(x,Kl) +O
(
π(x)

)
.

(1)
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To estimate πsc(x,Km), we apply the Chebotarev density theorem for function fields.
It was proved in [9, p 55] that

πsc(x,Km) =
π(x)

Nm
+O

(
Nm · dm · qx/2

)
,

where Nm = [Km : k] and dm the total degree of the discriminant divisor ∆(Km/k). Let
l ∈ A be an irreducible polynomial. From [7, Proposition 4.4], there exists a positive
integer da (depending only on a) such that if deg l > da,

Nl = (qdeg l − 1) qdeg l,

provided that q 6= 2 or q = 2 and a 6= 1, T , or 1 + T . It was also proved in [7, Theorem
1.7] that for two distinct irreducible polynomials l1 and l2, we have Kl1l2 = Kl1 ·Kl2 , and
Kl1 and Kl2 are linearly disjoint over k. Thus if both deg l1,deg l2 > da,

Nl1l2 = Nl1 ·Nl2 = (qdeg l1 − 1) qdeg l1 · (qdeg l2 − 1) qdeg l2 .

Moreover, from [7, Theorem 2.4], we have dm/Nm = O(degm) as degm → ∞. Thus
Nm · dm � N2

m · degm.

For the first sum in the right hand side of (1), we write

∑
deg l1,deg l2<δx

l1 6=l2

πsc(x,Kl1l2) ≤
∑

da<deg l1,deg l2<δx
l1 6=l2

πsc(x,Kl1l2)

+ 2
∑

deg l1≤da

∑
da<deg l2≤δx

πsc(x,Kl1l2) +
∑

deg l1,deg l2≤da

πsc(x,Kl1l2).

(2)

Applying the Chebotarev density theorem in function fields to the first sum in the right
hand side of (2), we have∑

da<deg l1,deg l2<δx
l1 6=l2

πsc(x,Kl1l2)

=
∑

da<deg l1,deg l2<δx
l1 6=l2

π(x)

(qdeg l1 − 1) qdeg l1 · (qdeg l2 − 1) qdeg l2

+
∑

da<deg l1,deg l2<δx
l1 6=l2

O
(
N2
l1l2 · deg l1l2 · qx/2

)

� π(x) ·

(∑
n<δx

π(n)

(qn − 1) qn

)2

+ qx/2 · 2δx ·

(∑
n<δx

π(n) (qn − 1)2 q2n

)2

� π(x) + qx/2 · 2δx · q10δx.

The last inequality holds since π(n)� qn/n (see [17, Theorem 2.2]). Choosing 10δ < 1/2,
say δ = 1/21, it follows that

(3)
∑

da<deg l1,deg l2<δx
l1 6=l2

πsc(x,Kl1l2)� π(x) + q41/42x · x� π(x).
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For the second sum in the right hand side of (2), we note that if pA splits completely in
Kl1l2 , then pA splits completely in Kl2 . Thus

2
∑

deg l1<da

∑
da<deg l2<δx

πsc(x,Kl1l2)

�
∑

deg l2<δx

πsc(x,Kl2) (since da is a constant)

� π(x) ·
∑
n<δx

π(n)

(qn − 1) · qn
+ qx/2 · δx ·

∑
n<δx

π(n) (qn − 1)2 q2n

� π(x) + qx/2 · 2δx · q5δx � π(x),

(4)

where the last inequality holds if 5δ < 1/2. Also, since πsc(x,Kl1l2) ≤ π(x),

(5)
∑

deg l1,deg l2≤da

πsc(x,Kl1l2)� π(x).

Combining (2), (3), (4), and (5), and choosing δ = 1/21, we have

(6)
∑

deg l1,deg l2<δx
l1 6=l2

πsc(x,Kl1l2)� π(x) + q41/42x · x� π(x).

Moreover, we already saw in the proof of (4) that if 5δ < 1/2.

(7)
∑

deg l<δx

πsc(x,Kl)� π(x),

Combining (1), (6), and (7), we have∑
deg p=x

ω2(ia(p))� π(x).

This completes the proof of Lemma 7.

3. Proofs of Theorems 1 and 3

Now, we are ready to prove Theorems 1 and 3. We start with a proof of Theorem 1.
As usual, p ∈ A is a monic irreducible polynomial.

Proof: (of Theorem 1) It was proved in [12, p 326] that∑
deg p=x

ω(p− 1) = π(x) log x+O
(
π(x)

)
and ∑

deg p=x

ω2(p− 1) = π(x)(log x)2 +O
(
π(x) log x

)
.

Since

ω(p− 1)− ω(ia(p)) ≤ ω(fa(p)) ≤ ω(p− 1),
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from Lemma 7, we get

(8)
∑

deg p=x

ω(fa(p)) =
∑

deg p=x

ω(p− 1) +O

( ∑
deg p=x

ω(ia(p))

)
= π(x) log x+O

(
π(x)

)
.

Also, from Lemma 7, we have∑
deg p=x

ω2(fa(p))

=
∑

deg p=x

ω2(p− 1) +O

( ∑
deg p=x

ω(p− 1)ω(ia(p))

)
+O

( ∑
deg p=x

ω2(ia(p))

)

=
∑

deg p=x

ω2(p− 1) +O

(( ∑
deg p=x

ω2(p− 1)

)1/2( ∑
deg p=x

ω2(ia(p))

)1/2
)

+O
(
π(x)

)
= π(x)(log x)2 +O

(
π(x) log x

)
.

(9)

Applying (8) and (9), we have∑
deg p=x

(
ω(fa(p))− log x

)2
=

∑
deg p=x

ω2(fa(p))− 2 log x
∑

deg p=x

ω(fa(p)) + π(x)(log x)2

� π(x) log x.

This completes the proof of the theorem.

Now, we prove a prime analogue of the conjecture of Erdős and Pomerance for the
Carlitz module.

Proof: (of Theorem 3) To prove Theorem 3, we need the following result in [12, Theorem
2]: let γ ∈ R and x ∈ N,

(10) lim
x→∞

1

π(x)
#

{
deg p = x

∣∣ p satisfies
ω(p− 1)− log deg p√

log deg p
≤ γ

}
= G(γ).

We saw in the proof of Theorem 1 that

ω(p− 1)− log deg p√
log deg p

− ω(ia(p))√
log deg p

≤ ω(fa(p))− log deg p√
log deg p

≤ ω(p− 1)− log deg p√
log deg p

.

For any ε > 0 and x ∈ N, define

E(x, ε) = #

{
deg p = x

∣∣ p satisfies
ω(ia(p))√
log deg p

≥ ε
}
.

From Lemma 7, we have

E(x, ε) · ε
√

log x ≤
∑

deg p=x

ω(ia(p)) ≤
∑

deg p=x

ω2(ia(p))� π(x).
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Since E(x, ε) = o(π(x)), for γ ∈ R, we obtain

#

{
deg p = x

∣∣ p satisfies
ω(fa(p))− log deg p√

log deg p
≤ γ

}
≤ #

{
deg p = x

∣∣ p satisfies
ω(p− 1)− log deg p√

log deg p
− ω(ia(p))√

log deg p
≤ γ

}
≤ #

{
deg p = x

∣∣ p satisfies
ω(p− 1)− log deg p√

log deg p
≤ γ + ε

}
+ o
(
π(x)

)
.

Also, we have

#

{
deg p = x

∣∣ p satisfies
ω(fa(p))− log deg p√

log deg p
≤ γ

}
≥ #

{
deg p = x

∣∣ p satisfies
ω(p− 1)− log deg p√

log deg p
≤ γ

}
.

Using the above two estimates, we can derive from (10) that

G(γ) ≤ lim
x→∞

1

π(x)
#

{
deg p = x

∣∣ p satisfies
ω(fa(p))− log deg p√

log deg p
≤ γ

}
≤ G(γ + ε).

Let ε→ 0. Since G(γ) is a continuous function, it follows that

lim
x→∞

1

π(x)
#

{
deg p = x

∣∣ p satisfies
ω(fa(p))− log deg p√

log deg p
≤ γ

}
= G(γ).

This completes the proof of Theorem 3.

4. Equivalent statements of Theorems 4 and 6

In this section, we will give statements that are equivalent to Theorems 4 and 6. The
alternative formulations have the advantage to be ‘strongly additive’, which is a favorable
property in probabilistic number theory.

By the Chinese remainder theorem [6, Proposition 1.4], we have

C(A/mA) ∼=
∏
pα‖m

C(A/pαA).

It follows that
fa(m) = lcm

{
fa(p

α), pα‖m
}
.

Instead of fa(m), it is indeed more convenient to prove our theorems for

Fa(m) =
∏
pα‖m

fa(p
α).

For m ∈ A, let Ω(m) denote the total number of irreducible polynomials dividing m,
counting multiplicity. Since fa(m) = lcm{fa(pα), pα‖m}, we have

(11) ω(Fa(m)) = ω(fa(m)) ≤ Ω(fa(m)) ≤ Ω(Fa(m)).

In this section, we will show that to obtain Theorems 4 and 6, it suffices to prove their
analogues for Ω(Fa(m)). Since Fa(m) is a product of fa(p

α), we consider first fa(p
α).
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Lemma 8. For a monic irreducible polynomial p ∈ A and α ≥ 1, we have

fa(p
α) = fa(p)p

β where 0 ≤ β ≤ α− 1.

Proof: To prove this lemma, since p is irreducible, it suffices to show fa(p)|fa(pα) and
fa(p

α)|fa(p)pα−1. Since{
f ∈ A,Cf (ā) = 0̄

}
on C(A/pαA) ⊆

{
f ∈ A,Cf (ā) = 0̄

}
on C(A/pA),

we have

fa(p)|fa(pα).

Consider the polynomial fa(p)p
α−1. For g ∈ A, n ∈ N, since Cp(X)/X is an Eisenstein

polynomial in X, i.e., Cp(X) is of the form [17, p 203]

Xqdeg p + c1 · p ·Xqdeg p−1
+ c2 · p ·Xqdeg p−2

+ · · ·+ cdeg p · p ·X with ci ∈ A,
we have

(12) Cp(p
ng) = (png)q

deg p
+ c1 · p · (png)q

deg p−1
+ · · ·+ cdeg p · p · (png) ∈ pn+1A.

Since Cfa(p)(a) ∈ pA, we can write Cfa(p)(a) = png with n ≥ 1 and g ∈ A. Applying (12)
repeatedly, we have

Cpα−1fa(p)(a) = Cpα−1

(
Cfa(p)(a)

)
= Cpα−1(png) ∈ pn+α−1A ⊆ pαA.

Hence, on C(A/pαA), we obtain

fa(p
α)|fa(p)pα−1.

This completes the proof of the lemma.

From Lemma 8, we have

(13)
∑
p|m

Ω(fa(p)) ≤ Ω(Fa(m)) ≤
∑
p|m

Ω(fa(p)) + Ω(m).

We will see later that from (11) and (13), one can derive∑
degm=x

ω(fa(m)) ∼
∑

degm=x

∑
p|m

Ω(fa(p)).

Since the double sums are equal to

qx ·
∑

deg p≤x

Ω(fa(p))

qdeg p
,

to study ω(fa(m)), we need to consider Ω(fa(p))
qdeg p

on average. We prove that

Lemma 9. Let a and fa(p) be defined as in Theorem 1. For x ∈ N, we have∑
deg p≤x

Ω(fa(p))

qdeg p
=

1

2
(log x)2 +O(log x)

and ∑
deg p≤x

Ω2(fa(p))

qdeg p
=

1

3
(log x)3 +O

(
(log x)2

)
.
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Proof: Let l ∈ A be a monic irreducible polynomial. From (8), we have∑
deg p=x

Ω(fa(p)) =
∑

deg p=x

∑
lβ‖fa(p)

β

=
∑

deg p=x

ω(fa(p)) +
∑

deg p=x

∑
lβ‖fa(p)
β≥2

(β − 1)

= π(x) log x+O
(
π(x)

)
+

∑
deg p=x

∑
lβ‖fa(p)
β≥2

(β − 1).

Using the Brun-Titchmarsh theorem in function fields [8, Theorem 4.3], we have∑
deg p=x

∑
lβ‖fa(p)
β≥2

(β − 1) ≤
∑

deg p=x

∑
lγ‖(p−1)
γ≥2

(γ − 1) (since β ≤ γ)

�
∑

deg l2≤x

(
π(x)

q2 deg l
+

2π(x)

q3 deg l
+ · · ·

)

� π(x) ·
∑
n≤x

π(n)

(
1

q2n
+

2

q3n
+ · · ·

)
� π(x).

Combining the above two estimates, we obtain

(14)
∑

deg p=x

Ω(fa(p)) = π(x) log x+O
(
π(x)

)
.

Similarly, we can derive from (9) that

(15)
∑

deg p=x

Ω2(fa(p)) = π(x)(log x)2 +O
(
π(x) log x

)
.

By a partial summation and (14), we can obtain∑
deg p≤x

Ω(fa(p))

qdeg p
=
∑
n≤x

1

qn

∑
deg p=n

Ω(fa(p))

=
∑
n≤x

1

qn

(
π(n) log n+O

(
π(n)

))

=
∑
n≤x

log n

n
+O

(∑
n≤x

log n

qn/2

)
+O

(∑
n≤x

1

n

)

=
1

2
(log x)2 +O

(
log x

)
.

Similarly, applying a partial summation to (15), we get∑
deg p≤x

Ω2(fa(p))

qdeg p
=

1

3
(log x)3 +O

(
(log x)2

)
.

This completes the proof of the lemma.
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The following lemma is essential when we make a transition from ω(fa(m)) to Ω(Fa(m)).

Lemma 10. Let p ∈ A be a monic irreducible polynomial and m ∈ A a monic polynomial
with degm ≥ 1. Then we have ∑

deg p≤x
p≡1(modm)

1

qdeg p
=

log x

ϕ(m)
+O(1),

where ϕ(m) is the order of the multiplicative group (A/mA)∗.

Proof: From Dirichlet’s theorem on monic irreducible polynomials in an arithmetic pro-
gression (see [17, Theorem 4.8]), we have

π(n, 1,m) := #
{

deg p = n
∣∣ p ≡ 1(modm)

}
=

1

ϕ(m)
· q

n

n
+O

(
qn/2/n

)
.

Thus it follows that∑
deg p≤x

p≡1 (modm)

1

qdeg p
=
∑
n≤x

(
1

ϕ(m)n
+O

(
q−n/2/n

))
=

log x

ϕ(m)
+O(1).

This completes the proof of the lemma.

The following lemma estimates the difference between ω(fa(m)) and Ω(Fa(m)).

Lemma 11. Let q 6= 2 or q = 2 and a 6= 1, T , or (1 + T ). For x ∈ N, we have∑
degm=x

(
Ω(Fa(m))− ω(fa(m))

)2
� qx (log x)2.

Proof: We saw in (11) that ω(fa(m)) = ω(Fa(m)). Hence, to prove this lemma, it suffices
to consider the difference between Ω(Fa(m)) and ω(Fa(m)). For 1 ≤ y ≤ x and l ∈ A a
monic irreducible polynomial, we define the truncated functions

ωy(Fa(m)) =
∑

l|Fa(m)
deg l≤y

1 and Ωy(Fa(m)) =
∑

lα‖Fa(m)
deg l≤y

α.

Let ω+
y (Fa(m)) be the number of distinct divisors of Fa(m) whose degrees are > y and

Ω+
y (Fa(m)) defined similarly. Then we have∑

degm=x

(
Ω(Fa(m))− ω(Fa(m))

)2

=
∑

degm=x

(
Ωy(Fa(m)) + Ω+

y (Fa(m))− ωy(Fa(m))− ω+
y (Fa(m))

)2

�
∑

degm=x

(
Ω+
y (Fa(m))− ω+

y (Fa(m))
)2

+
∑

degm=x

Ω2
y(Fa(m)) +

∑
degm=x

ω2
y(Fa(m)).

(16)
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Applying (13) and Lemma 9 to the last two sums, we get

∑
degm=x

ω2
y(Fa(m)) ≤

∑
degm=x

Ω2
y(Fa(m))

�
∑

degm=x

{( ∑
p|m, deg p≤y

Ω(fa(p))

)2

+ Ω2
y(m)

}

�
∑

deg p1,deg p2≤y
Ω(fa(p1)) Ω(fa(p2))

qx

qdeg p1 qdeg p2
+O

(
qx(log y)2

)
� qx

( ∑
deg p≤y

Ω(fa(p))

qdeg p

)2

+O
(
qx(log y)2

)
� qx(log y)4.

(17)

Let y = δ log x for some δ > 0. From (16) and (17), it remains to prove an analogue of
the lemma for Ω+

y (Fa(m)) and ω+
y (Fa(m)).

Since

Fa(m)
∣∣ ∏
pα‖m

fa(p)p
α−1,

if l2|Fa(m), it implies that either (A) l2|fa(p) for some irreducible polynomial p|m, (B)
there exists two distinct irreducible polynomials p1, p2 such that l|fa(p1), l|fa(p2), and
p1p2|m, or (C) l|m. We will use the notation m ∈ A (resp. B or C) to refer to the
case (A) (resp. (B) or (C)). Note that if there is no such l2|Fa(m) with deg l > y (write
m /∈ A,B, C), we have

(18)
∑

degm=x
m/∈A,B,C

(
Ω+
y (Fa(m))− ω+

y (Fa(m))
)2

= 0

In cases (A) and (B), we have

ω+
y (Fa(m)) ≤ Ω+

y (Fa(m)) ≤ ω+
y (Fa(m)) + Ω(Fa(m))δ(m),

where δ(m) = 1, if there exists l2|Fa(m) with deg l > y, and δ(m) = 0 otherwise. It follows
that

Ω+
y (Fa(m)) = ω+

y (Fa(m)) +O
(

Ω(Fa(m))δ(m)
)
.

Hence, we have∑
degm=x
m∈A orB

(
Ω+
y (Fa(m))− ω+

y (Fa(m))
)2
�

∑
degm=x
m∈A orB

δ(m)Ω2(Fa(m)).

Note that if Fa(m) = lβ11 · · · l
βr
r , then

Ω(Fa(m)) =

r∑
i=1

βi ≤ degFa(m) ≤ degm.
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Thus for case (A), by Lemma 10, we have∑
degm=x
m∈A

δ(m)Ω2(Fa(m)) ≤ x2
∑

degm=x
m∈A

δ(m) = x2
∑

deg l>y

∑
degm=x

l2|fa(p), p|m

1

≤ x2
∑

deg l>y

∑
deg p≤x

p≡1(mod l2)

qx

qdeg p

� x2 qx
∑

deg l>y

log x

q2 deg l
� x2 qx

log x

qyy
.

Choosing y = 2 log x, we have ∑
degm=x
m∈A

δ(m)Ω2(Fa(m))� qx.

Similarly, by Lemma 10, one can show that if y = 2 log x,∑
degm=x
m∈B

δ(m)Ω2(Fa(m)) ≤ x2
∑

deg l>y

∑
deg p1,deg p2≤x
p1≡1(mod l)
p2≡1(mod l)

qx

qdeg p1qdeg p2

� x2 qx
∑

deg l>y

(
log x

qdeg l

)2

� qx log x.

Hence, we have

(19)
∑

degm=x
m∈A orB

(
Ω+
y (Fa(m))− ω+

y (Fa(m))
)2
� qx log x.

In case (C), if l2 - fa(p) for any p|m and there is no distinct p1|m, p2|m such that l|fa(p1)
and l|fa(p2), we have

ω+
y (Fa(m)) ≤ Ω+

y (Fa(m)) ≤ ω+
y (Fa(m)) + Ω(m).

Hence,

(20)
∑

degm=x
m∈C\(A∪B)

(
Ω+
y (Fa(m))− ω+

y (Fa(m))
)2
�

∑
degm=x

Ω2(m)� qx(log x)2.

From (18), (19), and (20), we have∑
degm=x

(
Ω+
y (Fa(m))− ω+

y (Fa(m))
)2
� qx(log x)2.

Combining this equation with (16) and (17), the lemma follows.

Now, we are ready to give an equivalent statement of Theorem 4.
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Lemma 12. Let q 6= 2 or q = 2 and a 6= 1, T , or (1 + T ). For x ∈ N,∑
degm=x

(
ω(fa(m))− 1

2
(log x)2

)2
� qx (log x)3

if and only if ∑
degm=x

(
Ω(Fa(m))− 1

2
(log x)2

)2
� qx (log x)3.

Proof: We observe that∑
degm=x

(
ω(fa(m))− 1

2
(log x)2

)2

=
∑

degm=x

(
ω(fa(m))− Ω(Fa(m)) + Ω(Fa(m))− 1

2
(log x)2

)2

�
∑

degm=x

(
Ω(Fa(m))− ω(Fa(m))

)2
+

∑
degm=x

(
Ω(Fa(m))− 1

2
(log x)2

)2
.

Similarly, ∑
degm=x

(
Ω(Fa(m))− 1

2
(log x)2

)2

�
∑

degm=x

(
Ω(Fa(m))− ω(Fa(m))

)2
+

∑
degm=x

(
ω(fa(m))− 1

2
(log x)2

)2
.

Applying Lemma 11 to the above equation, the lemma follows.

Lemma 13. For γ ∈ R and x ∈ N, we have

lim
x→∞

1

qx
#

{
degm = x

∣∣m satisfies
ω(fa(m))− 1

2(log degm)2

1√
3
(log degm)3/2

≤ γ

}
= G(γ)

if and only if

lim
x→∞

1

qx
#

{
degm = x

∣∣m satisfies
Ω(Fa(m))− 1

2(log degm)2

1√
3
(log degm)3/2

≤ γ

}
= G(γ).

Proof: To prove this lemma, it suffices to show that for all but o(qx) monic polynomial
m ∈ A with degm = x, we have

Ω(Fa(m))− ω(fa(m)) = o
(
(log x)3/2

)
.

We will actually prove something much stronger. Define

E1(x) = #
{

degm = x
∣∣m satisfies Ω(Fa(m))− ω(fa(m)) ≥ log x log log x

}
.

Using Lemma 11, we have

E1(x) · (log x log log x)2 ≤
∑

degm=x

(
Ω(Fa(m))− ω(fa(m))

)2
� qx (log x)2.

Since E1(x) = o(qx), the lemma follows.
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5. Proofs of Theorems 4 and 6

Let m ∈ A be a monic polynomial. We are now ready to prove Theorems 4 and 6.

Proof: (of Theorem 4) From Lemma 12, to prove Theorem 4, it suffices to consider its
analogue for Ω(Fa(m)). From (13), we have∑

degm=x

Ω(Fa(m) =
∑

degm=x

∑
p|m

Ω(fa(p)) +O

( ∑
degm=x

Ω(m)

)
.

Using Lemma 9, we can obtain∑
degm=x

∑
p|m

Ω(fa(p)) =
∑

deg p≤x
Ω(fa(p)) ·

qx

qdeg p
=

1

2
qx(log x)2 +O

(
qx log x

)
.

Since ∑
degm=x

Ω(m)� qx log x,

combining the above estimates, we get

(21)
∑

degm=x

Ω(Fa(m)) =
1

2
qx(log x)2 +O

(
qx log x

)
.

From (13), we have

∑
degm=x

Ω(Fa(m))2 =
∑

degm=x

(∑
p|m

Ω(fa(p)) +O
(
Ω(m)

))2

=
∑

degm=x

(∑
p|m

Ω(fa(p))

)2

+O
(
E(x)

)
,

(22)

where

E(x) = max

{ ∑
degm=x

∑
p|m

Ω(fa(p))Ω(m),
∑

degm=x

Ω2(m)

}
.

From Lemma 9, we have∑
degm=x

∑
p|m

Ω(fa(p))Ω(m) =
∑

deg p≤x
Ω(fa(p))

∑
degm=x
p|m

Ω(m)

� qx log x
∑

deg p≤x

Ω(fa(p))

qdeg p
� qx(log x)3.

The last two inequality holds since∑
degm=x
p|m

Ω(m) =
∑

degn=x−deg p

(
1 + Ω(n)

)
� qx−deg p log x.
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Also, ∑
degm=x

Ω2(m)� qx(log x)2.

Hence, we have

(23) E(x)� qx(log x)3.

We consider the main term in (22),

∑
degm=x

(∑
p|m

Ω(fa(p))

)2

= qx
∑

deg p1+deg p2≤x
p1 6=p2

Ω(fa(p1))Ω(fa(p2))

qdeg p1qdeg p2
+ qx

∑
deg p≤x

Ω2(fa(p))

qdeg p

= qx
∑

deg p1+deg p≤x

Ω(fa(p1))Ω(fa(p2))

qdeg p1qdeg p2
+O

(
qx(log x)3

)
.

(24)

The last equality follows from Lemma 9 and the following estimate∑
deg p≤x

Ω2(fa(p))

q2 deg p
=
∑
n≤x

1

qn

∑
deg p=n

Ω2(fa(p))

qdeg p
�
∑
n≤x

(log n)3

qn
� 1.

Consider∑
deg p1+deg p2≤x

Ω(fa(p1))Ω(fa(p2))

qdeg p1qdeg p2
=

∑
deg p1≤x/2

Ω(fa(p1))

qdeg p1

∑
deg p2≤x−deg p1

Ω(fa(p2))

qdeg p2

+
∑

x/2<deg p1≤x

Ω(fa(p1))

qdeg p1

∑
deg p2≤x−deg p1

Ω(fa(p2))

qdeg p2
.

Applying Lemma 9, we have∑
deg p1≤x/2

Ω(fa(p1))

qdeg p1

∑
deg p2≤x−deg p1

Ω(fa(p2))

qdeg p2

=
∑

deg p1≤x/2

Ω(fa(p1))

qdeg p1
·
(

1

2

(
log(x− deg p1)

)2
+O(log x)

)

=
∑

deg p1≤x/2

Ω(fa(p1))

qdeg p1
·
(

1

2
(log x)2 +O(log x)

)
(since deg p1 ≤ x/2)

=
1

4
(log x)4 +O

(
(log x)3

)
.

Also, by Lemma 9, ∑
x/2<deg p1≤x

Ω(fa(p1))

qdeg p1

∑
deg p2≤x−deg p1

Ω(fa(p2))

qdeg p2

�
(

1

2
(log x)2 +O(log x)− 1

2
(log x/2)2

)
· (log x)2

� (log x)3.
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Combining the above two estimates, we have

(25)
∑

deg p1+deg p2≤x

Ω(fa(p1))Ω(fa(p2))

qdeg p1qdeg p2
=

1

4
(log x)4 +O

(
(log x)3

)
.

Combining (22),(23),(24), and (25), we obtain

(26)
∑

degm=x

Ω(Fa(m))2 =
1

4
qx(log x)4 +O

(
qx (log x)3

)
.

Using (21) and (26), we get∑
degm=x

(
Ω(Fa(m))− 1

2
(log x)2

)2
� qx (log x)3.

Applying Lemma 12, the theorem follows.

We now prove Theorem 6.
Proof: (of Theorem 6) From Lemma 13, to prove Theorem 6, it suffices to show that for
m ∈ A,degm = x, the quantity

Ω(Fa(m))− 1
2(log x)2

1√
3
(log x)3/2

distributes normally. We recall that in (13), we have

Ω(Fa(m)) =
∑
p|m

Ω(fa(p)) +O
(
Ω(m)

)
.

Since the normal order of Ω(m) is logm, we have for all but o(qx) monic polynomials
m ∈ A with degm = x,

Ω(m) = (1 + o(1)) log x = o
(
(log x)3/2

)
.

Define

g(m) =
∑
p|m

Ω(fa(p)).

From the above discussion, to prove Theorem 6, it suffices to prove that the quantity

g(m)− 1
2(log x)2

1√
3
(log x)3/2

distributes normally.

We need the following result of Zhang [20]: Let h(m) be a real-valued strongly additive
function on A. In other words, for m1,m2 ∈ A with (m1,m2) = 1, p ∈ A a irreducible
polynomial, and α ≥ 1, we have

h(m1m2) = h(m1) + h(m2) and h(pα) = h(p).

For x ∈ N, define

A(x) =
∑

deg p≤x

h(p)

qdeg p
and B(x) =

( ∑
deg p≤x

h2(p)

qdeg p

)
≥ 0.
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If for each fixed ε > 0,

(27) lim
x→∞

1

B2(x)

∑
deg p≤x

|h(p)|≥εB(x)

h2(p)

qdeg p
= 0,

then we have

lim
x→∞

1

qx
#

{
degm = x

∣∣m satisfies
h(m)−A(x)

B(x)
≤ γ

}
= G(γ).

Apply the result of Zhang to the strongly additive function g(m). From Lemma 9, we
have

A(x) =
1

2
(log x)2 +O(log x) and B(x) =

1√
3

(log x)3/2 +O(log x).

Hence, to conclude

g(m)− 1
2(log x)2

1√
3
(log x)3/2

distributes normally, it remains to check that condition (27) holds for g(p). Let

α(p) =

{
1 if Ω(fa(p)) ≥ εB(x),

0 otherwise.

We have ∑
deg p≤x

|g(p)|≥εB(x)

g2(p)

qdeg p
=

∑
deg p≤x

α(p) · Ω2(fa(p))

qdeg p

≤

( ∑
deg p≤x

α(p)

qdeg p

)1/2( ∑
deg p≤x

Ω4(fa(p))

qdeg p

)1/2

.

Using (14) and (15), we have∑
deg p=x

(
Ω(fa(p))− log deg p

)2
� π(x) log x.

As a direct consequence of the above inequality, we have∑
deg p=x

α(p) = #
{

deg p = x
∣∣ p satisfies Ω(fa(p)) > εB(x)

}
� π(x)

(log x)2
.

By a partial summation, we have∑
deg p≤x

α(p)

qdeg p
�
∑
n≤x

1

qn
· π(n)

(log n)2
� 1.

Also, using the same method as we prove (15), we can show that∑
deg p=x

Ω4(fa(p))� π(x)(log x)4.
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By a partial summation, we have∑
deg p≤x

Ω4(fa(p))

qdeg p
�
∑
n≤x

1

qn
· π(n)(log n)4 � (log x)5.

Combining the above estimates, we have∑
deg p≤x

|g(p)|≥εB(x)

g2(p)

qdeg p
� (log x)5/2 = o

(
B2(x)

)
.

Hence, the condition (27) is satisfied and we have

lim
x→∞

1

qx
#

{
degm = x

∣∣m satisfies
g(m)− 1

2(log x)2

1√
3
(log x)3/2

≤ γ
}

= G(γ).

This completes the proof of the theorem.
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