The Erdös Theorem and the Halberstam Theorem in Function Fields

Yu-Ru Liu *

September 24, 2023

1 Introduction.

For $n \in \mathbb{N}$, define $\omega(n)$ to be the number of distinct prime divisors of n. The Turán Theorem [9] is about the second moment of $\omega(n)$ and it implies a result of Hardy and Ramanujan [4] that the normal order of $\omega(n)$ is $\log \log n$. Further development of probabilistic ideas led Erdös and Kac [2] to prove a remarkable refinement of the Hardy-Ramanujan Theorem, namely, the existence of a normal distribution for $\omega(n)$. More precisely, they proved that for $x, \gamma \in \mathbb{R}$,

$$
\lim _{x \rightarrow \infty} \frac{1}{\#\{n \leq x\}} \#\left\{n \leq x, \frac{\omega(n)-\log \log n}{\sqrt{\log \log n}} \leq \gamma\right\}=G(\gamma):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\gamma} e^{\frac{-t^{2}}{2}} d t
$$

Instead of the sequence of all natural numbers, we consider only the set of primes now. Since $\omega(p)=1$ for each prime p, the normal order of $\omega(p)$ is not $\log \log p$. However, Erdös [1] proved in 1935 that

$$
\sum_{p \leq x}(\omega(p-1)-\log \log x)^{2} \ll \pi(x) \log \log x,
$$

where $\pi(x)=\#\{p$: prime, $p \leq x\}$. It implies that the normal order of $\omega(p-1)$ is $\log \log p$. In 1955, Halberstam [3] improved Erdös' result and proved that

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \#\left\{p \leq x, \frac{\omega(p-1)-\log \log p}{\sqrt{\log \log p}} \leq \gamma\right\}=G(\gamma)
$$

This result can be viewed as a 'prime analogue' of the Erdös-Kac Theorem.
Let $\mathbb{F}_{q}[t]$ be a polynomial ring in one variable over a finite field \mathbb{F}_{q}. Let P be the set of monic irreducible polynomials of $\mathbb{F}_{q}[t]$. For an element $m \in \mathbb{F}_{q}[t]$, let $\operatorname{deg} m$ be the degree

[^0]of the polynomial m. Also, let $\omega(m)$ denote the number of distinct monic irreducible polynomials dividing m, i.e.,
$$
\omega(m)=\sum_{\substack{l \in P \\ l \backslash m}} 1 .
$$

We can formulate analogues of the Erdös Theorem and the Halberstam Theorem in $\mathbb{F}_{q}[t]$.

Theorem 1 Let P be the set of monic irreducible polynomials of $\mathbb{F}_{q}[t]$. Fix a non-zero polynomial $a \in \mathbb{F}_{q}[t]$. For $n \in \mathbb{N}$, we have

$$
\sum_{\substack{p \in P \\ \operatorname{deg} p \leq n}}(\omega(p-a)-\log n)^{2} \ll \pi(n) \log n,
$$

where $\pi(n)=\#\{p \in P, \operatorname{deg} p \leq n\}$.

As a direct consequence of Theorem 1, we have

Corollary 1 Let $\left\{g_{n}\right\}$ be a sequence of real numbers such that $g_{n} \rightarrow \infty$ as $n \rightarrow \infty$. We have

$$
\#\left\{p \in P, \operatorname{deg} p \leq n,\left|\frac{\omega(p-a)-\log (\operatorname{deg} p)}{\sqrt{\log (\operatorname{deg} p)}}\right|>g_{n}\right\}=\mathrm{o}(\pi(n)) .
$$

In particular, given $\epsilon>0$, we have

$$
\#\{p \in P, \operatorname{deg} p \leq n,|\omega(p-a)-\log (\operatorname{deg} p)|>\epsilon \log (\operatorname{deg} p)\}=\mathrm{o}(\pi(n)) .
$$

Thus we conclude that the normal order of $\omega(p-a)$ is $\log (\operatorname{deg} p)$.

As we see from previous examples, Corollary 1 implies a possibility that the quantity

$$
\frac{\omega(p-a)-\log (\operatorname{deg} p)}{\sqrt{\log (\operatorname{deg} p)}}
$$

distributes normally. This is indeed the case.

Theorem 2 Let P be the set of monic irreducible polynomials of $\mathbb{F}_{q}[t]$. Fix a non-zero polynomial $a \in \mathbb{F}_{q}[t]$. For $n \in \mathbb{N}, \gamma \in \mathbb{R}$, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{\pi(n)} \#\left\{p \in P, \operatorname{deg} p \leq n, \frac{\omega(p-a)-\log (\operatorname{deg} p)}{\sqrt{\log (\operatorname{deg} p)}} \leq \gamma\right\}=G(\gamma) .
$$

2 Proof of Theorem 1.

We begin with two facts that are essential for the proof of Theorem 1. Let P be the set of monic irreducible polynomials in $\mathbb{F}_{q}[t]$. The following facts are about elements of P; their proof can be found in $[8]$.

Fact $1([8]$, p14) For $d \in \mathbb{N}$, we have

$$
\#\{p \in P, \operatorname{deg} p=d\}=\frac{q^{d}}{d}+\mathrm{O}\left(q^{d / 2}\right) .
$$

The next fact is about the arithmetic progression of irreducible polynomials in function fields. It is a theorem of Kornblum [5].

Fact $2([8], \mathrm{p} 40)$ Let a, m be polynomials in $\mathbb{F}_{q}[t]$ that are relatively prime. For any $\epsilon>0$ and $d \in \mathbb{N}$, we have

$$
\#\{p \in P, \operatorname{deg} p=d, p \equiv a(\bmod m)\}=\frac{1}{\phi(m)} \cdot \frac{q^{d}}{d}+\mathrm{O}\left(q^{d(1+\epsilon) / 2}\right)
$$

where $\phi(m)$ is the cardinality of $\left(\mathbb{F}_{q}[t] / m \mathbb{F}_{q}[t]\right)^{*}$.

Before proving Theorem 1, we consider its analogous version for monic irreducible polynomials of a fixed degree.

Lemma 1 Let a be a fixed nonzero polynomial and p a monic irreducible polynomial in $\mathbb{F}_{q}[t]$. For $d \in \mathbb{N}$, we have

$$
\sum_{\operatorname{deg} p=d}(\omega(p-a)-\log d)^{2} \ll \frac{q^{d}}{d} \log d
$$

Proof: Let δ be a constant with $0<\delta<1$ which will be chosen later. Let l be a monic irreducible polynomial. Notice that

$$
\begin{aligned}
\omega(p-a) & =\sum_{\substack{l \mid(p-a) \\
\operatorname{deg} l \leq \delta d}} 1+\sum_{\substack{l \mid(p-a) \\
\delta d<\operatorname{deg} l \leq d}} 1 \\
& =\omega_{\delta}(p-a)+\mathrm{O}(1 / \delta)
\end{aligned}
$$

where

$$
\omega_{\delta}(p-a)=\sum_{\substack{l \mid(p-a) \\ \operatorname{deg} l \leq \delta d}} 1 .
$$

By Facts 1 and 2, we have

$$
\begin{aligned}
\sum_{\operatorname{deg} p=d} \omega(p-a) & =\sum_{\operatorname{deg} p=d}\left(\omega_{\delta}(p-a)+\mathrm{O}(1 / \delta)\right) \\
& =\sum_{\operatorname{deg} l \leq \delta d} \sum_{\substack{\operatorname{deg} p=d \\
p \equiv a(\bmod l)}} 1+\mathrm{O}\left(q^{d} / d\right) \\
& =\sum_{\operatorname{deg} l \leq \delta d}\left(\frac{1}{q^{\operatorname{deg} l}-1} \cdot \frac{q^{d}}{d}+\mathrm{O}\left(q^{d(1+\epsilon) / 2}\right)\right)+\mathrm{O}\left(q^{d} / d\right) .
\end{aligned}
$$

By choosing $\delta<1 / 2$, Fact 1 implies that

$$
\begin{aligned}
\sum_{\operatorname{deg} p=d} \omega(p-a) & =\frac{q^{d}}{d} \sum_{\operatorname{deg} l \leq \delta d} \frac{1}{q^{\operatorname{deg} l}}+\mathrm{O}\left(q^{d} / d\right) \\
& =\frac{q^{d}}{d} \sum_{k \leq \delta d} \frac{1}{q^{k}}\left(\frac{q^{k}}{k}+\mathrm{O}\left(q^{k / 2}\right)\right)+\mathrm{O}\left(q^{d} / d\right) \\
& =\frac{q^{d}}{d} \log d+\mathrm{O}\left(q^{d} / d\right) .
\end{aligned}
$$

Now, consider $\sum_{\operatorname{deg} p=d} \omega^{2}(p-a)$. Write

$$
\begin{aligned}
\sum_{\operatorname{deg} p=d} \omega^{2}(p-a) & =\sum_{\operatorname{deg} p=d}\left(\omega_{\delta}(p-a)+\mathrm{O}(1 / \delta)\right)^{2} \\
& =\sum_{\operatorname{deg} p=d} \omega_{\delta}^{2}(p-a)+\mathrm{O}\left(q^{d} \log d / d\right) .
\end{aligned}
$$

We have

$$
\begin{aligned}
\sum_{\operatorname{deg} p=d} \omega_{\delta}^{2}(p-a)= & \sum_{\substack{\operatorname{deg} l_{1} \operatorname{deg} l_{2} \leq \delta d \\
l_{1} \neq l_{2}}} \sum_{\substack{\operatorname{deg} p=d \\
p \equiv a\left(\bmod l_{1} l_{2}\right)}} 1+\sum_{\operatorname{deg} l \leq \delta d} \sum_{\substack{\operatorname{deg} p=d \\
p \equiv a(\bmod l)}} 1 \\
= & \sum_{\operatorname{deg} l_{1}, \operatorname{deg} l_{2} \leq \delta d}\left(\frac{1}{\phi\left(l_{1} l_{2}\right)} \cdot \frac{q^{d}}{d}+\mathrm{O}\left(q^{d(1+\epsilon) / 2}\right)\right) \\
& +\mathrm{O}\left(q^{d} \log d / d\right) .
\end{aligned}
$$

By choosing $0<\delta<1 / 4$, we have

$$
\begin{aligned}
\sum_{\operatorname{deg} p=d} \omega^{2}(p-a) & =\frac{q^{d}}{d} \sum_{\operatorname{deg} l_{1}, \operatorname{deg} l_{2} \leq \delta d} \frac{1}{q^{\operatorname{deg} l_{1}} \cdot q^{\operatorname{deg} l_{2}}}+\mathrm{O}\left(q^{d} \log d / d\right) \\
& =\frac{q^{d}}{d}(\log d)^{2}+\mathrm{O}\left(q^{d} \log d / d\right) .
\end{aligned}
$$

Combine all the above results. Choosing $\delta=1 / 5$, we obtain that

$$
\begin{aligned}
& \sum_{\operatorname{deg} p=d}(\omega(p-a)-\log d)^{2} \\
= & \sum_{\operatorname{deg} p=d} \omega^{2}(p-a)-2 \log d \sum_{\operatorname{deg} p=d} \omega(p-a)+(\log d)^{2} \sum_{\operatorname{deg} p=d} 1 \\
\ll & \frac{q^{d} \log d}{d} .
\end{aligned}
$$

Thus Lemma 1 follows.
Now, we are ready to prove Theorem 1. It follows directly from Lemma 1.
Proof: By Lemma 1, we have

$$
\begin{aligned}
& \sum_{\operatorname{deg} p \leq n}(\omega(p-a)-\log n)^{2} \\
= & \sum_{d \leq n} \sum_{\operatorname{deg} p=d}(\omega(p-a)-\log d+\log d-\log n)^{2} \\
\ll & \sum_{d \leq n} \sum_{\operatorname{deg} p=d}(\omega(p-a)-\log d)^{2}+\sum_{d \leq n} \sum_{\operatorname{deg} p=d}(\log d-\log n)^{2} \\
\ll & \sum_{d \leq n} \frac{q^{d}}{d} \log d+\sum_{1 \leq d \leq n / 2} \sum_{\operatorname{deg} p=d}(\log n)^{2}+\sum_{n / 2<d \leq n} \sum_{\operatorname{deg} p=d}(\log d-\log n)^{2} .
\end{aligned}
$$

The third term of the last inequality is

$$
\sum_{n / 2<d \leq n} \sum_{\operatorname{deg} p=d}(\log d-\log n)^{2} \ll(\log 2)^{2} \sum_{n / 2<d \leq n} \sum_{\operatorname{deg} p=d} 1 \ll \pi(n)
$$

The second term can be estimated by

$$
\sum_{1 \leq d \leq n / 2} \sum_{\operatorname{deg} p=d}(\log n)^{2}=(\log n)^{2} \pi(n / 2) \ll \pi(n)
$$

The first term is the main term. It is bounded by

$$
\sum_{d \leq n} \frac{q^{d}}{d} \log d \ll \log n \sum_{d \leq n} \#\{p \in P, \operatorname{deg} p=d\} \ll \pi(n) \log n
$$

Combining all the above estimates, we obtain

$$
\sum_{\operatorname{deg} p \leq n}(\omega(p-a)-\log n)^{2} \ll \pi(n) \log n
$$

Hence, Theorem 1 follows. We obtain an analogue of the Erdös Theorem in $\mathbb{F}_{q}[t]$.

3 Proof of Theorem 2.

In this section, we shall prove that the quantity

$$
\frac{\omega(p-a)-\log (\operatorname{deg} p)}{\sqrt{\log (\operatorname{deg} p)}}
$$

distributes normally. This result follows from Theorem 1 in [6]. Instead of stating that theorem in its general form, we state below its application in $\mathbb{F}_{q}[t]$. Let P be the set of monic irreducible polynomials of $\mathbb{F}_{q}[t]$. For $m \in \mathbb{F}_{q}[t]$, define $N(m):=q^{\operatorname{deg} m}$. Take $X=\left\{q^{z}, z \in \mathbb{Z}\right\}$. Let S be a subset of infinitely many elements of $\mathbb{F}_{q}[t]$. For $x \in X$, define

$$
S(x)=\{m \in S, N(m) \leq x\}
$$

We assume that S satisfies the following condition:

$$
\text { (C) }\left|S\left(x^{1 / 2}\right)\right|=\mathrm{o}(\mid S(x \mid), \text { for all } x \in X
$$

Let f be a map from S to M. For each $l \in P$, we write

$$
\frac{1}{|S(x)|} \#\{m \in S(x), l \mid f(m)\}=\lambda_{l}(x)+e_{l}(x)
$$

where $\lambda_{l}=\lambda_{l}(x)$ can be thought of as a main term (and is usually chosen to be independent of x$)$ and $e_{l}=e_{l}(x)$ is an error term. For any sequence of distinct elements $l_{1}, l_{2}, \cdots, l_{u} \in$ P, we write

$$
\frac{1}{|S(x)|} \#\left\{m \in S(x), l_{i} \mid f(m) \text { for all } i=1 \cdots u\right\}=\lambda_{l_{1}} \cdot \lambda_{l_{2}} \cdots \lambda_{l_{u}}+e_{l_{1} l_{2} \cdots l_{u}}(x)
$$

We will use $e_{l_{1} l_{2} \cdots l_{u}}$ to abbreviate $e_{l_{1} l_{2} \cdots l_{u}}(x)$ below.
Suppose for all $x \in X$, there exist a constant β with $0<\beta \leq 1$ and $y=y(x)<x^{\beta}$ such that the following conditions hold:
(1) $\#\left\{l \in P, N(l)>x^{\beta}, l \mid f(m)\right\}=\mathrm{O}(1)$, for each $m \in S(x)$.
(2) $\sum_{y<N(l) \leq x^{\beta}} \lambda_{l}=\mathrm{o}\left((\log \log x)^{1 / 2}\right)$.
(3) $\sum_{y<N(l) \leq x^{\beta}}\left|e_{l}\right|=\mathrm{o}\left((\log \log x)^{1 / 2}\right)$.
(4) $\sum_{N(l) \leq y} \lambda_{l}=\log \log x+\mathrm{o}\left((\log \log x)^{1 / 2}\right)$.
(5) $\sum_{N(l) \leq y} \lambda_{l}^{2}=\mathrm{o}\left((\log \log x)^{1 / 2}\right)$.
(6) For $r \in \mathbb{N}$, let $u=1,2, \cdots r$. We have

$$
\sum^{\prime \prime}\left|e_{l_{1} \cdots l_{u}}\right|=\mathrm{o}\left((\log \log x)^{-r / 2}\right)
$$

where $\sum^{\prime \prime}$ extends over all u-tuples $\left(l_{1}, l_{2}, \cdots, l_{u}\right)$ with $N\left(l_{i}\right) \leq y$ and l_{i} are all distinct.
It was proved in [6] that there is a generalization of the Erdös-Kac Theorem in $\mathbb{F}_{q}[t]$.
Theorem 3 (Theorem 1 in [6]) Let P and X be defined as before. Let S be a subset of $\mathbb{F}_{q}[t]$ satisfying Condition (C). Let $f: S \rightarrow \mathbb{F}_{q}[t]$. Suppose there exist a constant β with $0<\beta \leq 1$ and $y=y(x)<x^{\beta}$ such that Conditions (1) to (6) hold. Then for $\gamma \in \mathbb{R}$, we have

$$
\lim _{x \rightarrow \infty} \frac{1}{|S(x)|} \#\left\{m \in S(x), \frac{\omega(f(m))-\log \log N(m)}{\sqrt{\log \log N(m)}} \leq \gamma\right\}=G(\gamma)
$$

Now, we are ready to prove Theorem 2. Let $S=P$ and $f: p \mapsto(p-a)$. By Fact 1, Condition (C) follows. Choose $y=x^{1 / \log \log x}$ and β be any constant such that $0<\beta<1 / 2$. Since for $N(p) \leq x=q^{n}$ with x large (say $>N(a)$), we have

$$
\#\left\{l \in P, N(l)>x^{\beta}, l \mid(p-a)\right\} \leq 1 / \beta
$$

Condition (1) is satisfied. For a monic irreducible polynomial l, Fact 2 implies that

$$
\#\{p \in P, \operatorname{deg} p \leq n, p \equiv a(\bmod l)\}=\frac{1}{\phi(l)} \cdot \pi(n)+\mathrm{O}\left(\pi(n)^{1 / 2+\epsilon}\right)
$$

Take $\lambda_{l}=1 / \phi(l)$. Lemmas 1 and 2 in [7] state that

$$
\sum_{N(l) \leq x} \frac{1}{N(l)}=\log \log x+\mathrm{O}(1)
$$

and

$$
\sum_{N(l) \leq x} \frac{1}{N(l)^{2}} \ll 1
$$

Thus Conditions (2), (4), and (5) follow. Also, we have

$$
\sum_{y<N(l) \leq x^{\beta}}\left|e_{l}\right| \ll \pi(n)^{-1 / 2+\epsilon} \cdot \pi(n)^{\beta} \ll 1
$$

since $\beta<1 / 2$. Thus, Condition (3) follows. For distinct primes $l_{1}, l_{2}, \cdots, l_{u}$ with $N\left(l_{i}\right) \leq$ y, by Fact 2, we have

$$
\left|e_{l_{1} l_{2} \cdots l_{u}}\right| \ll \pi(n)^{-1 / 2+\epsilon} .
$$

Since $y=\mathrm{o}\left(x^{\epsilon}\right)$, Condition (6) is satisfied. Combining all the above results, Theorem 3 implies that

$$
\lim _{n \rightarrow \infty} \frac{1}{\pi(n)} \#\left\{p \in P, \operatorname{deg} p \leq n, \frac{\omega(p-a)-\log (\operatorname{deg} p)}{\sqrt{\log (\operatorname{deg} p)}} \leq \gamma\right\}=G(\gamma)
$$

We obtain an analogue of the Halberstam Theorem in $\mathbb{F}_{q}[t]$.

Acknowledgement I would like to thank Prof. B Mazur and Prof. R Murty for their comments about this work.

References

[1] P. Erdös, On the normal order of prime factors of $(p-1)$ and some related problems concerning Euler's ϕ-functions, Quart. J. Math.(Oxford), 6 (1935), 205-213.
[2] P. Erdös \& M. Kac, The Gaussian law of errors in the theory of additive number theoretic functions, Amer. J. Math., 62 (1940), 738-742.
[3] H. Halberstam, On the distribution of additive number theoretic functions, I., II., \& III., J. London Math. Soc., 30 (1955), 43-53; 31 (1956), 1-14, 15-27.
[4] G.H. Hardy \& S. Ramanujan, The normal number of prime factors of a number n, Quar. J. Pure. Appl. Math., 48 (1917), 76-97.
[5] H. Kornblum, Über die primfunktionen in einer arithmetischen progression, Math. Z. 5 (1919), 100-111.
[6] Y.-R. Liu, A generalization of the Erdös-Kac Theorem and its applications II, submitted.
[7] Y.-R. Liu, A generalization of the Turán Theorem and its applications, to appear in Canadian Mathematical Bulletin.
[8] M. Rosen, Number theory in function fields, Springer Verlag (2002).
[9] P. Turán, On a theorem of Hardy and Ramanujan, J. London Math. Soc. 9 (1934), 274-276.

Departments of Mathematics, Harvard University, Cambridge, MA, USA 02138
Email: yrliu@math.harvard.edu

[^0]: *Research partially supported by an NSERC discovery grant..
 2000 Mathematics Subjective Classification. 11N60, 11R09.

