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1 Introduction.

For n ∈ N, define ω(n) to be the number of distinct prime divisors of n. The Turán
Theorem [9] is about the second moment of ω(n) and it implies a result of Hardy and Ra-
manujan [4] that the normal order of ω(n) is log log n. Further development of probabilistic
ideas led Erdös and Kac [2] to prove a remarkable refinement of the Hardy-Ramanujan
Theorem, namely, the existence of a normal distribution for ω(n). More precisely, they
proved that for x, γ ∈ R,

lim
x→∞

1

#{n ≤ x}
#
{
n ≤ x, ω(n)− log logn√

log log n
≤ γ

}
= G(γ) :=

1√
2π

∫ γ

−∞
e

−t2
2 dt.

Instead of the sequence of all natural numbers, we consider only the set of primes now.
Since ω(p) = 1 for each prime p, the normal order of ω(p) is not log log p. However, Erdös
[1] proved in 1935 that∑

p≤x

(
ω(p− 1)− log log x

)2 � π(x) log log x,

where π(x) = #{p : prime , p ≤ x}. It implies that the normal order of ω(p−1) is log log p.
In 1955, Halberstam [3] improved Erdös’ result and proved that

lim
x→∞

1

π(x)
#
{
p ≤ x, ω(p− 1)− log log p√

log log p
≤ γ

}
= G(γ).

This result can be viewed as a ‘prime analogue’ of the Erdös-Kac Theorem.

Let Fq[t] be a polynomial ring in one variable over a finite field Fq. Let P be the set of
monic irreducible polynomials of Fq[t]. For an element m ∈ Fq[t], let degm be the degree
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of the polynomial m. Also, let ω(m) denote the number of distinct monic irreducible
polynomials dividing m, i.e.,

ω(m) =
∑
l∈P
l |m

1.

We can formulate analogues of the Erdös Theorem and the Halberstam Theorem in Fq[t].

Theorem 1 Let P be the set of monic irreducible polynomials of Fq[t]. Fix a non-zero
polynomial a ∈ Fq[t]. For n ∈ N, we have∑

p∈P
deg p≤n

(
ω(p− a)− log n

)2 � π(n) log n,

where π(n) = #
{
p ∈ P,deg p ≤ n

}
.

As a direct consequence of Theorem 1, we have

Corollary 1 Let {gn} be a sequence of real numbers such that gn → ∞ as n → ∞. We
have

#

{
p ∈ P, deg p ≤ n,

∣∣∣∣ω(p− a)− log(deg p)√
log(deg p)

∣∣∣∣ > gn

}
= o
(
π(n)

)
.

In particular, given ε > 0, we have

#
{
p ∈ P, deg p ≤ n,

∣∣ω(p− a)− log(deg p)
∣∣ > ε log(deg p)

}
= o
(
π(n)

)
.

Thus we conclude that the normal order of ω(p− a) is log(deg p).

As we see from previous examples, Corollary 1 implies a possibility that the quantity

ω(p− a)− log(deg p)√
log(deg p)

distributes normally. This is indeed the case.

Theorem 2 Let P be the set of monic irreducible polynomials of Fq[t]. Fix a non-zero
polynomial a ∈ Fq[t]. For n ∈ N, γ ∈ R, we have

lim
n→∞

1

π(n)
#

{
p ∈ P, deg p ≤ n, ω(p− a)− log(deg p)√

log(deg p)
≤ γ

}
= G(γ).
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2 Proof of Theorem 1.

We begin with two facts that are essential for the proof of Theorem 1. Let P be the set
of monic irreducible polynomials in Fq[t]. The following facts are about elements of P ;
their proof can be found in [8].

Fact 1 ([8], p14) For d ∈ N, we have

#
{
p ∈ P,deg p = d

}
=
qd

d
+ O

(
qd/2

)
.

The next fact is about the arithmetic progression of irreducible polynomials in function
fields. It is a theorem of Kornblum [5].

Fact 2 ([8], p40) Let a,m be polynomials in Fq[t] that are relatively prime. For any ε > 0
and d ∈ N, we have

#
{
p ∈ P, deg p = d, p ≡ a (modm)

}
=

1

φ(m)
· q

d

d
+ O

(
qd(1+ε)/2

)
,

where φ(m) is the cardinality of
(
Fq[t]/mFq[t]

)∗
.

Before proving Theorem 1, we consider its analogous version for monic irreducible
polynomials of a fixed degree.

Lemma 1 Let a be a fixed nonzero polynomial and p a monic irreducible polynomial in
Fq[t]. For d ∈ N, we have

∑
deg p=d

(
ω(p− a)− log d

)2 � qd

d
log d.

Proof: Let δ be a constant with 0 < δ < 1 which will be chosen later. Let l be a monic
irreducible polynomial. Notice that

ω(p− a) =
∑

l|(p−a)
deg l≤δd

1 +
∑

l|(p−a)
δd<deg l≤d

1

= ωδ(p− a) + O
(

1/δ
)
,

where
ωδ(p− a) =

∑
l|(p−a)
deg l≤δd

1.
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By Facts 1 and 2, we have∑
deg p=d

ω(p− a) =
∑

deg p=d

(
ωδ(p− a) + O

(
1/δ
))

=
∑

deg l≤δd

∑
deg p=d

p≡a(mod l)

1 + O
(
qd/d

)

=
∑

deg l≤δd

(
1

qdeg l − 1
· q

d

d
+ O

(
qd(1+ε)/2

))
+ O

(
qd/d

)
.

By choosing δ < 1/2, Fact 1 implies that

∑
deg p=d

ω(p− a) =
qd

d

∑
deg l≤δd

1

qdeg l
+ O

(
qd/d

)
=
qd

d

∑
k≤δd

1

qk

(qk
k

+ O
(
qk/2

))
+ O

(
qd/d

)
=
qd

d
log d+ O

(
qd/d

)
.

Now, consider
∑

deg p=d

ω2(p− a). Write

∑
deg p=d

ω2(p− a) =
∑

deg p=d

(
ωδ(p− a) + O

(
1/δ

))2
=

∑
deg p=d

ω2
δ (p− a) + O

(
qd log d/d

)
.

We have ∑
deg p=d

ω2
δ (p− a) =

∑
deg l1,deg l2≤δd

l1 6=l2

∑
deg p=d

p≡a(mod l1l2)

1 +
∑

deg l≤δd

∑
deg p=d

p≡a(mod l)

1

=
∑

deg l1,deg l2≤δd

(
1

φ(l1l2)
· q

d

d
+ O

(
qd(1+ε)/2

))
+ O

(
qd log d/d

)
.

By choosing 0 < δ < 1/4, we have

∑
deg p=d

ω2(p− a) =
qd

d

∑
deg l1,deg l2≤δd

1

qdeg l1 · qdeg l2
+ O

(
qd log d/d

)
=
qd

d
(log d)2 + O

(
qd log d/d

)
.
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Combine all the above results. Choosing δ = 1/5, we obtain that∑
deg p=d

(ω(p− a)− log d)2

=
∑

deg p=d

ω2(p− a)− 2 log d
∑

deg p=d

ω(p− a) + (log d)2
∑

deg p=d

1

� qd log d

d
.

Thus Lemma 1 follows.

Now, we are ready to prove Theorem 1. It follows directly from Lemma 1.

Proof: By Lemma 1, we have∑
deg p≤n

(
ω(p− a)− log n

)2
=
∑
d≤n

∑
deg p=d

(
ω(p− a)− log d+ log d− log n

)2
�
∑
d≤n

∑
deg p=d

(
ω(p− a)− log d

)2
+
∑
d≤n

∑
deg p=d

(
log d− log n

)2
�
∑
d≤n

qd

d
log d+

∑
1≤d≤n/2

∑
deg p=d

(log n)2 +
∑

n/2<d≤n

∑
deg p=d

(
log d− log n

)2
.

The third term of the last inequality is∑
n/2<d≤n

∑
deg p=d

(
log d− log n

)2 � (log 2)2
∑

n/2<d≤n

∑
deg p=d

1� π(n).

The second term can be estimated by∑
1≤d≤n/2

∑
deg p=d

(log n)2 = (log n)2π(n/2)� π(n).

The first term is the main term. It is bounded by

∑
d≤n

qd

d
log d� log n

∑
d≤n

#
{
p ∈ P, deg p = d

}
� π(n) log n.

Combining all the above estimates, we obtain∑
deg p≤n

(
ω(p− a)− log n

)2 � π(n) log n.

Hence, Theorem 1 follows. We obtain an analogue of the Erdös Theorem in Fq[t].
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3 Proof of Theorem 2.

In this section, we shall prove that the quantity

ω(p− a)− log(deg p)√
log(deg p)

distributes normally. This result follows from Theorem 1 in [6]. Instead of stating that
theorem in its general form, we state below its application in Fq[t]. Let P be the set
of monic irreducible polynomials of Fq[t]. For m ∈ Fq[t], define N(m) := qdegm. Take
X = {qz, z ∈ Z}. Let S be a subset of infinitely many elements of Fq[t]. For x ∈ X, define

S(x) =
{
m ∈ S, N(m) ≤ x

}
.

We assume that S satisfies the following condition:

(C) |S(x1/2)| = o
(
|S(x|

)
, for all x ∈ X.

Let f be a map from S to M . For each l ∈ P , we write

1

|S(x)|
#
{
m ∈ S(x), l | f(m)

}
= λl(x) + el(x),

where λl = λl(x) can be thought of as a main term (and is usually chosen to be independent
of x) and el = el(x) is an error term. For any sequence of distinct elements l1, l2, · · · , lu ∈
P , we write

1

|S(x)|
#
{
m ∈ S(x), li| f(m) for all i = 1 · · ·u

}
= λl1 · λl2 · · ·λlu + el1l2···lu(x).

We will use el1l2···lu to abbreviate el1l2···lu(x) below.

Suppose for all x ∈ X, there exist a constant β with 0 < β ≤ 1 and y = y(x) < xβ

such that the following conditions hold:

(1) #
{
l ∈ P, N(l) > xβ, l | f(m)

}
= O(1), for each m ∈ S(x).

(2)
∑

y<N(l)≤xβ
λl = o

(
(log log x)1/2

)
.

(3)
∑

y<N(l)≤xβ
|el| = o

(
(log log x)1/2

)
.

(4)
∑

N(l)≤y

λl = log log x+ o
(
(log log x)1/2

)
.

(5)
∑

N(l)≤y

λ2l = o
(
(log log x)1/2

)
.
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(6) For r ∈ N, let u = 1, 2, · · · r. We have∑′′ ∣∣el1···lu∣∣ = o
(
(log log x)−r/2

)
,

where
∑′′ extends over all u-tuples (l1, l2, · · · , lu) with N(li) ≤ y and li are all distinct.

It was proved in [6] that there is a generalization of the Erdös-Kac Theorem in Fq[t].

Theorem 3 (Theorem 1 in [6]) Let P and X be defined as before. Let S be a subset of
Fq[t] satisfying Condition (C). Let f : S → Fq[t]. Suppose there exist a constant β with
0 < β ≤ 1 and y = y(x) < xβ such that Conditions (1) to (6) hold. Then for γ ∈ R, we
have

lim
x→∞

1

|S(x)|
#
{
m ∈ S(x),

ω(f(m))− log logN(m)√
log logN(m)

≤ γ
}

= G(γ).

Now, we are ready to prove Theorem 2. Let S = P and f : p 7→ (p − a). By
Fact 1, Condition (C) follows. Choose y = x1/ log log x and β be any constant such that
0 < β < 1/2. Since for N(p) ≤ x = qn with x large (say > N(a)), we have

#
{
l ∈ P, N(l) > xβ, l |(p− a)

}
≤ 1/β,

Condition (1) is satisfied. For a monic irreducible polynomial l, Fact 2 implies that

#
{
p ∈ P, deg p ≤ n, p ≡ a (mod l)

}
=

1

φ(l)
· π(n) + O

(
π(n)1/2+ε

)
.

Take λl = 1/φ(l). Lemmas 1 and 2 in [7] state that∑
N(l)≤x

1

N(l)
= log log x+ O(1)

and ∑
N(l)≤x

1

N(l)2
� 1.

Thus Conditions (2) , (4), and (5) follow. Also, we have∑
y<N(l)≤xβ

|el| � π(n)−1/2+ε · π(n)β � 1,

since β < 1/2. Thus, Condition (3) follows. For distinct primes l1, l2, · · · , lu with N(li) ≤
y, by Fact 2, we have

|el1l2···lu | � π(n)−1/2+ε.

Since y = o(xε), Condition (6) is satisfied. Combining all the above results, Theorem 3
implies that

lim
n→∞

1

π(n)
#

{
p ∈ P, deg p ≤ n, ω(p− a)− log(deg p)√

log(deg p)
≤ γ

}
= G(γ).

7



We obtain an analogue of the Halberstam Theorem in Fq[t].
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