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1 Introduction.

For n € N, define w(n) to be the number of distinct prime divisors of n. The Turdn
Theorem [9] is about the second moment of w(n) and it implies a result of Hardy and Ra-
manujan [4] that the normal order of w(n) is loglog n. Further development of probabilistic
ideas led Erdos and Kac [2] to prove a remarkable refinement of the Hardy-Ramanujan
Theorem, namely, the existence of a normal distribution for w(n). More precisely, they
proved that for x,v € R,

. 1 w(n) — loglogn 1 /7 42
lim ——— <z, <yp=G(y)=— dt.
T00 #{n <z} #{n =7 Vloglogn 7 /Y} ™) V21 J o <

Instead of the sequence of all natural numbers, we consider only the set of primes now.
Since w(p) = 1 for each prime p, the normal order of w(p) is not log log p. However, Erdos
[1] proved in 1935 that

Z (w(p —1) —loglog x)2 < 7(x)loglogz,

p<w

where m(z) = #{p : prime, p < x}. It implies that the normal order of w(p—1) is log log p.
In 1955, Halberstam [3] improved Erdés’ result and proved that

. 1 w(p—1) —loglogp
lim —— < <~V =am).
Jm #{p <u, Tosloas < ’Y} ()

This result can be viewed as a ‘prime analogue’ of the Erdés-Kac Theorem.

Let Fy[t] be a polynomial ring in one variable over a finite field F,. Let P be the set of
monic irreducible polynomials of [F4[t]. For an element m € Fy[t], let degm be the degree
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of the polynomial m. Also, let w(m) denote the number of distinct monic irreducible
polynomials dividing m, i.e.,
w(m) = Z 1.
leP
llm

We can formulate analogues of the Erdés Theorem and the Halberstam Theorem in F,[t].

Theorem 1 Let P be the set of monic irreducible polynomials of Fyt]. Fix a non-zero
polynomial a € Fy[t]. For n € N, we have

E (w(p —a) —log n)2 < m(n)logn,
peEP
degp<n

where m(n) = #{p € P,degp < n}.
As a direct consequence of Theorem 1, we have

Corollary 1 Let {g,} be a sequence of real numbers such that g, — oo as n — oco. We

have
#{p € P, degp < n, |20 =9~ logldeer) ’ > gn} = o(m(n)).
log(deg p)

In particular, given € > 0, we have

#{p € P, degp <n,

w(p — a) — log(degp)| > elog(degp)} = o(m(n)).
Thus we conclude that the normal order of w(p — a) is log(degp).

As we see from previous examples, Corollary 1 implies a possibility that the quantity

w(p — a) — log(deg p)
log(deg p)

distributes normally. This is indeed the case.

Theorem 2 Let P be the set of monic irreducible polynomials of Fy[t]. Fiz a non-zero
polynomial a € Fylt]. Forn € N, v € R, we have

w(p —a) —log(degp) _ } _ G,

1
lim #{pGP, degp < n, <
(n) log(deg p)

n—o0 T



2 Proof of Theorem 1.

We begin with two facts that are essential for the proof of Theorem 1. Let P be the set
of monic irreducible polynomials in F,[t]. The following facts are about elements of P ;
their proof can be found in [8].

Fact 1 ([8], pl4) For d € N, we have
q’ d/2
#{pe Pdegp=df =L +0(¢).

The next fact is about the arithmetic progression of irreducible polynomials in function
fields. It is a theorem of Kornblum [5].

Fact 2 ([8], p40) Let a, m be polynomials in F[t] that are relatively prime. For any e >0
and d € N, we have

1 d
#{pe P, degp:d,pza(modm)} = o) %+O(qd(1+€)/2),

where ¢(m) is the cardinality of (Fq[t]/qu[t])*.

Before proving Theorem 1, we consider its analogous version for monic irreducible
polynomials of a fixed degree.

Lemma 1 Let a be a fired nonzero polynomial and p a monic irreducible polynomial in
Fq[t]. For d € N, we have

d
Z (w(p —a) — logal)2 < % log d.
deg p=d

Proof: Let § be a constant with 0 < § < 1 which will be chosen later. Let [ be a monic
irreducible polynomial. Notice that

wlp—a)= Z 1+ Z 1

l|(p—a) l|(p—a)
degl<déd Sd<degi<d

— wi(p—a) + O(1/5),

ws(p —a) = Z 1.

Ul(p—a)
deg1<éd

where



By Facts 1 and 2, we have

> wp-a)= Y (wsp—a)+0(1/9))

deg p=d deg p=d

= Y ) 1+0(¢%a)
degl<déd degp=d
p=a(mod]l)

1 d
= 2 (qdegz_l'qd+0(qd‘”€)/z))+0(qd/d)-
degl<dd

By choosing 6 < 1/2, Fact 1 implies that

Now, consider Z w?(p — a). Write

deg p=d
Z a)?(p—a): Z <w5(p—a)+0(1/5))2
deg p=d deg p=d
= Z wg(p—a)—l—O(qdlogd/d).
deg p=d

We have

Y wip-a)= Y S+ Y Y

deg p=d degly,deglo<dd  degp=d degl<dd degp=d
l1#l p=a(modl1l2) p=a(mod1)

d
- 2 (am Trou)

degly,degla<dd
+ O(qdlogd/d).

By choosing 0 < § < 1/4, we have

d
2 _ 49 1 d
Z w (P—a)—g Z qdeah . gels +O(q logd/d)
deg p=d degly,degla<dd
qd

=~ (logd)* + O(qdlogd/d).

S8

4



Combine all the above results. Choosing 6 = 1/5, we obtain that

Y (wlp—a) —logd)?

deg p=d
= Z 2(p—a) —2logd Z + (log d)? Z 1
deg p=d deg p=d deg p=d
d
q“logd
< 7

Thus Lemma 1 follows.
Now, we are ready to prove Theorem 1. It follows directly from Lemma 1.

Proof: By Lemma 1, we have

Z (w(p —a) — logn)2

degp<n
=Y (w —logd+logd — logn)?
d<n degp=d
<<Z Z — logd) ~I—Z Z logd—logn)2
d<n degp d d<n degp=d
<<Zq logd + Z Z (logn)? Z Z logd—logn)2.
d<n 1<d<n/2 degp=d n/2<d<n degp=d

The third term of the last inequality is

S Y (lgd—logn)’ < (0g2)? Y Y 1< n(n)

n/2<d<n degp=d n/2<d<n degp=d

The second term can be estimated by

Z Z (logn)? = (logn)*n(n/2) < n(n).

1<d<n/2 degp=d
The first term is the main term. It is bounded by
Zglogd<<lognz#{peP degp = d}<<7r ) log n.
d<n d<n

Combining all the above estimates, we obtain

Z (w(p —a) —log n)2 < 7(n)logn.

degp<n

Hence, Theorem 1 follows. We obtain an analogue of the Erdés Theorem in F,[t].



3 Proof of Theorem 2.

In this section, we shall prove that the quantity

w(p — a) — log(deg p)
log(degp)

distributes normally. This result follows from Theorem 1 in [6]. Instead of stating that
theorem in its general form, we state below its application in F,[t]. Let P be the set
of monic irreducible polynomials of F,[t]. For m € F,[t], define N(m) := ¢48™. Take
X ={¢*,z € Z}. Let S be a subset of infinitely many elements of F,[t]. For z € X, define

S(z)={me S, N(m) <z}
We assume that S satisfies the following condition:
(C) |S(z'?)] = o(|S(z]), for all z € X.

Let f be a map from S to M. For each | € P, we write

1

m #{m € S(.CI}), ! |f(m)} = )\l(:c) + el(;p>7

where \; = \;(z) can be thought of as a main term (and is usually chosen to be independent
of x) and e; = ¢;(x) is an error term. For any sequence of distinct elements ly,1lo, -+ ,1, €
P, we write

1 .
5@ {m € S(x), l;] f(m) foralli=1- u} = Ay A, A, F eyt (X).

We will use e;,,...1, to abbreviate ej,,...;, (x) below.
Suppose for all 2 € X, there exist a constant 8 with 0 < # < 1 and y = y(z) < 2°
such that the following conditions hold:

(1) #{z e P, N(l) > o, uf(m)} — O(1), for each m € S(z).

(2) Z A= o((loglogx)1/2).

y<N()<zh

(3) Z ler] = o((loglogaz)l/2).

y<N()<zP

(4) Z A = loglog z 4 o((log log x)1/2).
N()<y

(5) Z A7 = o((loglog )'/?).

N()<y



(6) For r € N, let u=1,2,---r. We have
Z” ety | = o((loglog x)_r/2),

where S°" extends over all u-tuples (I1,la,- - ,1,) with N(I;) <y and I; are all distinct.

It was proved in [6] that there is a generalization of the Erdés-Kac Theorem in Fy[t].

Theorem 3 (Theorem 1 in [6]) Let P and X be defined as before. Let S be a subset of
[F,[t] satisfying Condition (C). Let f : S — Fy[t]. Suppose there exist a constant B with
0< B <1andy=y(x) < x? such that Conditions (1) to (6) hold. Then for v € R, we

have
_ 1 w(f(m)) —loglog N(m) B
B st #5005 e <=0

Now, we are ready to prove Theorem 2. Let S = P and f : p — (p —a). By
Fact 1, Condition (C) follows. Choose y = /198162 and § be any constant such that
0 < 8 < 1/2. Since for N(p) < x = ¢" with z large (say > N(a)), we have

#{le P, N(I)> 2", 1|(p—a)} <1/B,

Condition (1) is satisfied. For a monic irreducible polynomial [, Fact 2 implies that

#{p€ P, degp<n,p=a(modl)} = ~m(n) + O(ﬂ(n)1/2+€).

1
¢(1)
Take \; = 1/¢(l). Lemmas 1 and 2 in [7] state that

1
Z NG loglogz + O(1)
N()<z

and

1
> W«l.

N()<z
Thus Conditions (2) , (4), and (5) follow. Also, we have

Z let] < w(n) "2 1(n)? <« 1,
y<N()<zh

since $ < 1/2. Thus, Condition (3) follows. For distinct primes l1,ls,- - , 1, with N(l;) <
y, by Fact 2, we have

|6l1l2"'lu| < F(n)_1/2+€.
Since y = o(z€), Condition (6) is satisfied. Combining all the above results, Theorem 3
implies that

w(p — a) —log(degp) _ 7} _ G,

ol
m —— p € P, degp < n,
log(deg p)

n00 (1)



We obtain an analogue of the Halberstam Theorem in Fy[¢].
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