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Waring’s problem in function fields

By Yu-Ru Liu" at Waterloo and Trevor D. Wooley® at Bristol

Abstract. Let F,[7] denote the ring of polynomials over the finite field F, of charac-
teristic p, and write J ;‘[t] for the additive closure of the set of kth powers of polynomials in
F,[#]. Define G, (k) to be the least integer s satisfying the property that every polynomial in
J 5“] of sufficiently large degree admits a strict representation as a sum of s kth powers. We
employ a version of the Hardy-Littlewood method involving the use of smooth polyno-
mials in order to establish a bound of the shape G,(k) = Cklogk + O(kloglogk). Here,
the coefficient C is equal to 1 when k < p, and C is given explicitly in terms of k and p
when k > p, but in any case satisfies C < 4/3. There are associated conclusions for the
solubility of diagonal equations over [,[f], and for exceptional set estimates in Waring’s
problem.

1. Introduction

A striking theme in arithmetic concerns the remarkable similarity between the ring of
rational integers Z on the one hand, and the polynomial rings in a single variable F,[7], de-
fined over the finite fields [, having ¢ elements, on the other. The analogy between Z and
F,[#] is but one in a family that in general relates number fields to function fields. In at least
one respect it is surprising that these rings should resemble one another so faithfully, for
whereas the characteristic of Z is zero, that of F,[7] is equal to the characteristic of [F,, a
positive (prime) number that we denote by ch(F,). A significant desideratum in translating
conclusions from Z to [,[¢], therefore, is the derivation of results uniform in the character-
istic. In this paper we investigate the analogue of Waring’s problem over F,[z], our aim
being to establish conclusions that are relatively robust to changes in the characteristic of
[F,. We concentrate, in particular, on methods having the potential to impact questions that
concern the density of rational points on algebraic varieties in function fields, a topic to
which we intend to return on a future occasion.

Some preparation is required before we can announce our principal conclusions. Let
k be an integer with k = 2, let s € N, and consider a polynomial m in F,[7]. We seek to de-
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termine the circumstances in which m admits a representation
(1.1) m=xF4 x5+ 4 xk

with x; € F[f] (1 i <s). Itis possible that a representation of the shape (1.1) is obstructed
for every natural number s. For example, if the characteristic p of F, divides k, then
xE o xk = (xk/ P ... 4 xk/P)Pand thus m necessarily fails to admit a representation
1 1

of the shape (1.1) whenever m ¢ F,[#’], no matter how large s may be. In order to accomo-
date this and other intrinsic obstructlons we define J* , [1] to be the additive closure of the set
of kth powers of polynomials in F,[¢], and we restrlct attention to those m lying in the sub-
ring JJ;‘ [7] of F,[#]. It is convenient also to define J]f]‘ to be the additive closure of the set of
kth powers of elements of [,.

As is the case for the rational integers Z, two variants of Waring’s problem over F,|[7]
demand attention. In the first (unrestricted) variant, one seeks to establish the existence of a
number sy with the property that, whenever m € J ;‘[t] and s = 59, then the equation (1.1) is
soluble with x; € F,[7] (1 =i < ). Should such a number s, exist, we define v, (k) to be the
least permissible choice for sy. The problem of establishing the existence of v,(k) was ad-
dressed first by Paley [17] in 1933. A feature of Paley’s approach to this problem, in com-
mon with the strategies of subsequent authors, is that a representation is sought first for the
polynomial ¢, and from this representation all others follow by substitution. In order to
achieve success with such a strategy, one must clearly engineer extensive cancellation
amongst monomials " of large degree, and indeed the degree of the kth powers of polyno-
mials x¥ utilised in such a representation (1.1) must usually be at least k times as large as
the degree of the polynomial to be represented. This unrestricted variant therefore resem-
bles not the classical version of Waring’s problem, but rather the “easier” Waring problem
in which the kth powers of integers x* are replaced by +x* (see [11], §21.7, for example).
Methods currently employed in the analysis of the unrestricted variant of Waring’s prob-
lem over [,[f] are apparently of little use in the investigation of the density of rational
points on algebraic varieties. Thus, although we will have more to say about this un-
restricted problem elsewhere, our focus in this paper is on the analogous restricted variant
of Waring’s problem.

Further discussion requires a formal definition. When m € [F,[¢], write ordm for the
degree of m. We say that m is an exceptional element of J* [ t] when its leading coefficient
lies in [Fq\J] and in addition k£ divides ordm. The strongest constraint on the degrees of
the Varlables that might still permit the existence of a representation of the shape (1.1) is
plainly ordx; < [(ordm)/k] (1 =i <s). When ch([F,) < k, however, it is possible that J]k
is not equal to F,, and then the leading coefficient of m need not be an element of Jlk If k
divides ordm, so that m is an exceptional polynomial, such circumstances obstruct the
existence of a representation (1.1) of m with the variables x; satisfying the above constraint
on their degrees®. Motivated by these observations, given k € N with k = 2, we define
P = Py(m) by setting P = [(ordm)/k] when m is not exceptional, and when m is excep-
tional we define P = (ordm)/k + 1. Notice, in particular, that when m is not excep-
tional, then P is the unique integer satisfying k(P — 1) < ordm < kP. We say that m

3 We are grateful to an individual involved in the refereeing process for raising this issue. By applying fa-
miliar estimates of Weil, one may show that such exceptional polynomials are absent whenever ¢ > (k — )2
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admits a strict representation as a sum of s kth powers when for some x; € F,[¢f] with
ordx; < Pr(m) (1 £i <'s), the equation (1.1) is satisfied. We now introduce an analogue
for this strict polynomial Waring problem of the function G(k) familiar from the classical
theory. When k and ¢ are natural numbers exceeding 1, define G, (k) to be the least integer
s1 satisfying the property that, whenever s = s; and m € J fl‘[t] has degree sufficiently large in
terms of k, s and ¢, then m admits a strict representation of the shape (1.1). The primary
goal of this paper is the proof of the uniform upper bound for G,(k) provided in Theorem
1.1 below.

Before describing this theorem, we introduce some additional notation. First, to
each exponent k and finite field F;, we associate an integer y = y,(k) defined in terms
of p=ch(F,) as follows. We write k in base p, say k =ag+aip+---+a,p”, where
0<a =<p—1(0=i=n),and then put y (k) = ap +a; + - -- + a,. It is apparent that for
each g and k one has y,(k) < k, and also that when k = 2 and ch(F,) t k, then y (k) = 2.
In addition, we define 4 = 4,(k) by putting

L when ch(F,) > k,

(1.2) Ay (k) = {(1 — 277071 when ch(F,) < k.

Finally, when x is a positive real number, we write Log x for max{1,logx}, and put
(1.3) G,(k) = Ak(Logk 4+ Log Logk + 2 4+ A Log Logk/Logk).

Theorem 1.1. There is a positive absolute constant C| with the property that whenever
k and q are natural numbers with ch(F,) t k, then

G,(k) £ G, (k) + Cik\/LogLogk/Logk.
Meanwhile, when ch(F,) | k, one has Gy(k) = G4(k/ch(F,)).

Some comments are in order concerning the general features of the bound for G, (k)
provided by Theorem 1.1. First, when ch(F,) t k, the lower bound y,(k) = 2 ensures that
the coeflicient 4 appearing in (1.3) satisfies 1 < 4 < 4/3. When ch(F,) | k, meanwhile, it
follows from Theorem 1.1 that G,(k) = G,(ko), where k is the largest divisor of k coprime
to g. But the first conclusion of Theorem 1.1 may be used to bound G,(ko), and thus
one obtains a bound of the same shape, but quantitatively stronger. Finally, when
74(k) > 3 LogLogk, one has |4,(k) — 1| < 1/(Log k)?. In these circumstances one may re-
place 4 by 1 in the upper bound provided by Theorem 1.1 at the cost of increasing the ab-
solute constant Cj.

Almost all work concerning G,(k) hitherto has been restricted to those situations
wherein ch(F,) > k. Under this condition, Kubota [13], [14] applied a variant of the
Hardy-Littlewood (circle) method involving analogues of Weyl’s inequality and Hua’s
lemma in order to establish that G,(k) <2*+ 1. By making use of a modification
of Vinogradov’s mean value theorem, Car [1], [2] obtained the upper bound
G,(k) < 2k(k —1)log2 + 2k + 3, superior for large k, subject to the same constraint
ch(F,) > k. In the former work, the use of Weyl differencing on certain generating func-
tions involving kth powers of polynomials produces factors of k! within the arguments of
the resulting exponential sums. Since these factors are zero when ch([F,) < &, such methods
are ineffective in providing non-trivial estimates for the generating functions essential to the
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application of the circle method. The work of Car [1], [2] involving Vinogradov’s mean
value theorem, on the other hand, demands that the polynomials x{ + - - - 4 x{ be indepen-
dent for 1 < j <k, and such fails when ch(F,) < k. Again, therefore, one encounters a
formidable barrier to the extension of these methods to small characteristic. Both the inde-
pendent work of Matthews [16] (unpublished) and of Webb [26] is subject to the same lim-
1tations.

Aside from the improvement in the quality of the estimate provided by Theorem 1.1
over those available hitherto, a notable feature of our work is its relative robustness to
changes in the characteristic of the ambient field F,. We surmount the barriers that previ-
ously obstructed viable conclusions for ch(F,) < k by applying the large sieve to obtain a
substitute for Weyl’s inequality, thereby avoiding the problematic use of Weyl differencing.
Such an approach requires the availability of suitable mean value estimates for auxiliary
exponential sums. Here we avoid barriers and complications arising from Vinogradov’s
methods and diminishing range arguments, adapting the theory of smooth Weyl sums to
the function field setting through the introduction of exponential sums over smooth poly-
nomials. It is in this step that the iterative methods of Vaughan [22] and the second author
[27] play an important rdle, and that the parameter y,(k) enters the scene. Repeated effi-
cient differencing analogous to that introduced in [27] inherits some of the features of
Weyl differencing, and so the number of efficient differences that may be usefully extracted
is limited in a manner determined by the divisibility of various binomial coefficients by
ch(F,).

Earlier authors have bounded G,(k) in special situations with ch(F,) < k. Cherly [7]
and Car and Cherly [5] have addressed cases wherein k£ = 3 and ¢ is a power of 2, applying
methods based on the use of Poisson summation to establish that G,:(3) < 11. The latter
conclusion has recently been refined by Gallardo [9], and by Car and Gallardo [6], using
quite different methods, so that the upper bound 11 can now be replaced by 7 for & > 4,
by 8 for 1 =4, and by 10 when 1 < / < 3. Kubota [14], Theorem 37, meanwhile, made use
of diminishing ranges to obtain an upper bound for G, (k) not far short of 6k logk + O(k).
Here we note that Kubota imposes the restriction k | Px(m) for the polynomials m that are
to be represented, and we remark also that his exposition contains some (potentially fix-
able) errors.

The local solubility conditions associated with the representation problem (1.1) are
somewhat more complicated than is the case for the classical version of Waring’s problem.
Suppose that ch(F,) = p. When p |k, we have already noted that (1.1) is soluble only when
m € F,[t”]. A second less obvious condition for solubility presents itself when & is a multiple
of a g”-norm for some natural number b. In order to describe this condition, suppose that
g = p". Let I e N, and let a be a divisor of /4 with 1 < a < [h. Then it follows from [8], §1.1
that whenever @ € [F,[7] is an irreducible polynomial of degree /, and k is a multiple of
N = (p™ —1)/(p® — 1), then there exist polynomials m e F,[¢] for which (1.1) admits no
solutions modulo w. In brief, the map defined by taking x to x" (mod @) is the norm
map from [,[7]/(w) down to a subfield of the latter having p* elements. Each m € [,[{]
for which m modulo @ does not belong to this subfield (in fact, the bulk of F,[7]) fails to be
represented in the shape (1.1), and this failure is detected by a local condition at the place
w. As we shall see in §5, for all k and ¢, provided that s = 2k + 1, all local solubility con-
ditions are embodied within the constraint m € J ;‘ (7] in (1.1). In addition, when ch([F,) > k
one has J]é‘[t] = [,[1].
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Before leaving Theorem 1.1, we remark that the analysis underlying the derivation of
the lower order terms in (1.3) may be applied without substantive modification in the clas-
sical version of Waring’s problem. Thus, writing G(k) for the least integer s, with the prop-
erty that whenever s = s,, then every sufficiently large natural number is the sum of at most
s kth powers of positive integers, one has

G(k) < k(logk +loglogk + 2 + loglogk /log k + O(+/loglogk/logk)).

This refines an earlier bound of the second author [29], Theorem 1.4, in which the final two
terms contained in the outer set of parentheses are replaced simply by O(loglogk/logk).

The theory of exponential sums over smooth polynomials developed in §§2—14 puts
at our disposal a flexible variant of the circle method with wide applicability. We illustrate
this point with two immediate consequences of our methods. In §15 we establish that, in
the sense of natural density, almost all m € [,[f] admit a strict representation in the shape

1 . .
(1.1) whenever s > zAk(Logk—k O(LogLogk)). In order to be precise, we introduce

some additional notation. When N is a large natural number, denote by &; «(NN) the set of
polynomials m € J¥[¢] with ordm < N that do not admit a strict representation in the
shape (1.1). We write E(N) for the cardinality of & x(N). Let the characteristic of [,
be p, and suppose that pT is the largest power of p dividing k. We define G (k) to be the
smallest integer s3 with the property that whenever s = s3, then E;(N) = o(q" P as
N — oo.

Theorem 1.2. There is a positive absolute constant Cy with the property that whenever
k and q are natural numbers with ch(F,) t k, then

1 -
G, (k) = EGq(k) + Cyk+/LogLogk/Logk.

When ch(F,) | k, meanwhile, one has G; (k) = G (k/ch(F,)).
In §16, we discuss the density of solutions of diagonal equations in [F,[#]. Given

s,k € N, and fixed coefficients a; € F,[#] (1 < i < s), denote by N,(B;a) the number of solu-
tions of the equation

(1.4) alx{‘+--~+a3.xf:0,
with x € F,[7]' and ordx; £ B (1 < i < ).

Theorem 1.3. Let k and q be natural numbers with ch(F,) ¥ k. There is a positive ab-
solute constant C5 with the property that whenever s is a natural number with

s = Gq(k) + Csk+/LogLogk/Logk,

then the equation (1.4) satisfies the following quantitative local-to-global principle. Let
a € (F,[7]\{0})", and suppose that the equation (1.4) has non-trivial solutions in all comple-
tions Fy(t)_ of F,(t). Then one has Ny(B;a) > (¢B)*.
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The Lang-Tsen theory of C;-fields (see, in particular, [15], Theorem 8) shows that the
equation (1.4) possesses a solution x € F,[7]"\{0} whenever s > k2. The local solubility hy-
pothesis of Theorem 1.3 is consequently satisfied automatically under the same condition.
Rather than merely establishing the existence of non-trivial solutions of equation (1.4), our
objective is instead the proof of a Hasse principle with good control of the associated den-
sity of solutions. We note in this context that weak approximation follows by our methods

as soon as s = G, (k) + C3k+/LogLogk/Logk.

A perspective on Waring’s problem in [F,[¢] has been presented by Effinger and Hayes
[8] that differs from that motivating the discourse of this paper. As an analogue of the func-
tion G(k) familiar from the classical version of Waring’s problem, Effinger and Hayes de-
fine a function %(k) associated with the collection # of all polynomial rings [, [7] having
characteristic exceeding k (see [8], Definition 1.13). They define 4 (k) to be the least integer
s with the property that, with the exception of at most finitely many polynomials from the
whole collection %, whenever m € F,[tf] and F,[7] € #, then m has a strict representation
in the shape (1.1). The upper bound %(k) < oo is asserted by [8], Theorem 1.9, and the re-
finement % (k) < k*2% may be extracted from the discussion following the statement of [8],
Theorem 8.15. Unfortunately, there is apparently an error in the proof of [§], Theorem
8.11, that invalidates these conclusions. The last line of the proof of this theorem asserts,
inter alia, that the function (d + qd‘z)zl_d is a bounded function of d when the principal
conclusion demands instead that it be a bounded function of g. We have not found a means
to repair the proof of this version of Weyl’s inequality in such a manner that a direct proof
of [8], Theorems 8.15 and 1.9 may be recovered. However, by employing an alternative
strategy we have obtained an upper bound for % (k) somewhat sharper than that claimed
by Effinger and Hayes [8]. We will report on this work elsewhere.

The reader will discern a number of avenues available for future research stemming
from the ideas presented herein, and we plan to pursue several in future papers. Our most
immediate concern is the explicit computation of bounds for G, (k) for smaller values of k.
There is also the problem of obtaining the expected asymptotic formula for the number of
solutions of (1.1), and likewise for quite general systems of homogeneous equations over
F,[#]. Finally, we intend to consider bounds for v,(k) going beyond the trivial relation
vy(k) = G,(k) + 1 that, in combination with the conclusion of Theorem 1.1, already yields
improvements in the results of Vaserstein [21] relating to the ring F,[¢] for smaller ¢. This
list by no means exhausts the menu available for the enthusiast. For example, Car [4] has
considered an analogue of G,(k) for field extensions of F,(¢), and presumably our methods
extend to this situation with additional effort.

We describe the key elements of the circle method as it applies to F,[¢] in §2. Polyno-
mials having only small degree irreducible divisors (that is, smooth polynomials) play a dis-
tinguished role in our method, and so in §3 we discuss their distribution in sufficient detail
for later application. In §4 we build on this work to obtain major arc approximations for
smooth Weyl sums, with a similar analysis for complete Weyl sums, and thus in §5 we de-
rive a satisfactory lower bound for the major arc contribution. As is familiar to aficionados
of the modern circle method, there is a gap between the domains accessible to major and
minor arc treatments, and so in §6 we develop appropriate pruning technology. Then, in §7,
we move on to consider mean values of smooth Weyl sums, beginning first with a funda-
mental lemma, then in §8 establishing an efficient differencing process for mean values, and
finally deriving permissible exponents for these mean values in §9. Following some prelim-
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inary manoeuvres in §10, analogues of Weyl’s estimates for exponential sums follow via the
large sieve in §§11 to 13, with large moduli handled in §11, small moduli in §12, and explicit
Weyl estimates derived in §13. The latter are then applied in §14 in order to bound G,(k),
and thereby we complete the proof of Theorem 1.1. Finally, in §15 we apply the methods
developed for our work on G, (k) in order rapidly to establish Theorem 1.2, the proof of
Theorem 1.3 in §16 being similarly swift.

It is convenient throughout to reserve uppercase Latin letters for positive real num-
bers, and lowercase Latin letters (with the exception of d, e, i, J, k, n, g, r, s, t) for polyno-
mials in F,[7]. We reserve g for the cardinality of the finite field F, and ¢ for the indetermi-
nate underlying the ring F,[z]. The letter e will be associated with the exponential function,
and d, i, j, k, n, r, s with positive integers. Irreducible polynomials w will be supposed
throughout to be monic, and we write @’ || x when @’ | x but @' ¥ x. We denote the
cardinality of a set X by card(X). Throughout, the letter ¢ will denote a sufficiently small
positive number. We use « and > to denote Vinogradov’s well-known notation, implicit
constants depending at most on ¢, unless otherwise indicated. In an effort to simplify our
analysis, we adopt the convention that whenever ¢ appears in a statement, then we are im-
plicitly asserting that for each & > 0 the statement holds for sufficiently large values of the
main parameter. Note that the “value” of ¢ may consequently change from statement to
statement, and hence also the dependence of implicit constants on ¢. Finally, from time to
time we make use of vector notation in order to save space. Thus, for example, we may
abbreviate (¢y,...,¢) to c.

2. The circle method for polynomial rings

While the circle method for [F,[¢] mirrors the classical version familiar from applica-
tions over Z, the substantial differences in detail between these rings demand explanation.
Our goal in the present section is to introduce such notation and basic notions as are sub-
sequently needed to initiate discussion of the key components of this version of the circle
method.

Associated with the polynomial ring F,[#] defined over the field [, is its field of frac-
tions K = F, (7). Write KK, = F,((1/¢) for the completion of F,(¢) at co. We may write each

element o € K, in the shape o= Y a;t' for some neZ and coefficients a; = a;(«) in
i<n

F, (i = n). Our previous definition of ord m for polynomials 72 now extends to elements o of
K., by defining ord o to be the largest integer i for which «;(«) & 0. We then write (o) for
¢°4%. In this context, we adopt the convention that ord0 = —co and <0) = 0. Consider
next the compact additive subgroup T of K, defined by T = {a € K, : (a) < 1}. Every
element o of K, can be written uniquely in the shape o = [o] + ||«||, where [«] € F,[f] and
llo|| € T, and we may normalise any Haar measure do on [, in such a manner that
J1do=1.

3

We are now equipped to define an analogue of the exponential function. Suppose that
ch(F,) = p. There is a non-trivial additive character ¢, : F, — C* defined for each a € F, by
taking e,(a) = e(tr(a)/p), where we write e(z) for ¢*™, and where tr : F, — [, denotes the
familiar trace map. This character induces a map e : K, — C* by defining, for each ele-
ment o € KK, the value of e(x) to be e,(a_1(x)). It is often convenient to refer to a_;(x)
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as being the residue of «, an element of [, that we abbreviate to res . In this guise we have
e(a) = e4(resa). The orthogonality relation underlying the Fourier analysis of F,[¢], estab-
lished in [14], Lemma 1, takes the shape

0, when /e F,[7]\{0}
2.1 ho)do =< 7 1 ’
1) {e( @) do {1, when /i = 0.
In order better to highlight parallels between the application of the circle method over
Z and that over [F,[t], we adopt the convention that whenever X is a real number, then X
denotes ¢*. Next, when R and P are positive numbers with R < P, we denote by .«7(P, R)
the set of degree R-smooth polynomials, that is

(2.2) A (P,R) = {xeF,[f] : <x) £ P, and w|x = (w) < R}.

Here and elsewhere we adopt the convention that whenever w is used to denote a polyno-
mial, then this polynomial is assumed to be irreducible and monic. We fix a natural number
k with k = 2, and then define the classical Weyl sum F(x) = F(«; P), and smooth Weyl
sum f(o) = f(a; P, R), by putting

(2.3) F(;P)= Y e(ax*) and f(x;P,R)= > e(axb).
(<P xes/(P,R)

We seek a strict representation of a given polynomial m of large degree as the sum of
s kth powers, with s chosen suitably large in terms of k. To this end we define P = Pj(m) as
in §1, we take # > 0 sufficiently small in terms of k and s, and we consider the number
R(m) = R, x(m;n) of representations of m in the shape

(2.4) m=xk kb ok,

with (x;» < P (i = 1,2) and y; € o/(P,nP) (1 £ j <5 —2). We note that R(m) provides a
lower bound for the number of strict representations of m in the shape (1.1). When # is a
measurable subset of T, define

(2.5) Ry(m; B) = %IF(oc)zf(oc)“'_ze(—moc) do.

Here and throughout, whenever the secondary parameters of the exponential sums are sup-
pressed, then F(a) and f(o) respectively are used to denote F(o; P) and f(o; P, R), with
P = Py(m) and R = yP. It follows from (2.1) that R(m) = #,(m; T). A heuristic argument
suggests that when s = k + 1 and the necessary local conditions are met, then R(m) should
be of order PS~¥. We confirm this expectation with the number of variables inflated by a
factor roughly of log k.

We analyse the integral (2.5) via the Hardy-Littlewood (circle) method, and to this
end we define sets of major and minor arcs corresponding to well and poorly approximable
elements of T. Let W be a positive parameter with 2W < kP. Given polynomials ¢ and ¢
with (a,g) = 1 and g monic, we define the Farey arc M(g,a) = M(g, a; W) about a/g asso-
ciated with the parameter ¥ by

(2.6) Mg, a; W) = {ae K, : {gu—a) < WP},
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The set of major arcs M(W) is defined to be the union of the sets M (g, a; W) with
27)  a,gel,[f], gmonic, 0=<a)<<g)<W and (a,g)=1.

It is apparent from (2.6) and (2.7) that M(W) = T. We write m(W) = T\M(W) for the
complementary set of minor arcs. As the reader will easily verify, the conditions (2.6) and
(2.7) ensure that the arcs (g, a; W) comprising (W) are disjoint. When W is a positive
parameter satisfying 3W < kP, it is useful also to define the set of arcs (W) to be the
union of the sets

(2.8) N(g,a; W) = {ae Ky, : {gu—ay < {gyWP™*}

with polynomials ¢ and ¢ subject to (2.7). Again one has (W) < T, and the arcs
N(g,a; W) comprising 9N(W) are disjoint. Finally, we write n(W) = T\N(W).

Our strategy for estimating R(m) is now familiar from the classical version of the

1
circle method. We put V' = [ﬁ log, P}, and we write 9t = 9¢(7) and n = n(V). Here and

elsewhere we use log, x to denote (logx)/(logg). In §4 we derive asymptotic formulae for
the generating functions F (o) and f(«) valid for « € 9t. These formulae are then converted
in §5 to an asymptotic formula for the total major arc contribution, and indeed we are able
to establish the asymptotic relation

29) Rs(m; N) = ¢ 1 (my ) P+ o(PF),

valid for s = 2k + 1, wherein ¢, x(m;#) is a number depending at most on 7, ¢, s, kK and m.
Provided that m € J é‘[l], it transpires that ¢; x(m;7) > 0. The goal of §§6 to 14 is then to de-
rive the appropriate complementary minor arc bound %(m; n) = o(P*7*), valid for

(2.10) s = G, (k) + C1k+/Log Logk/Logk,

with C; a suitably large positive absolute constant. On combining the last estimate with
(2.5) and (2.9), we deduce that whenever m € J ;‘[t} and s satisfies (2.10), then R(m) » P57,
and consequently Theorem 1.1 follows at once.

Throughout our applications of the circle method in §§4—16 inclusive, unless stated
otherwise we suppose that ch([F,) t k.

3. A quasi-ordering on the ring of polynomials

By analogy with the familiar formulation of the circle method for Z, one expects that
asymptotic formulae for the generating functions F (o) and (o), valid for o € 9, will follow
via partial summation. However, the ordering on [F,[¢f] provided by the degree of a poly-
nomial is too coarse to permit such arguments to succeed. For example, one may have
e(ax*) # e(ay”) even when (x> = {y)>. We surmount this difficulty by introducing a finer
notion of size that distinguishes between distinct polynomials, and thereby facilitates argu-
ments involving the use of partial summation. In this section we establish such properties
of various counting functions for polynomials in arithmetic progressions, and for smooth
polynomials, as are required in subsequent sections of this paper.



10 Liu and Wooley, Waring’s problem in function fields

Before defining our measure of the size of a polynomial, we recall that the set of non-
zero elements [F: of a finite field F, forms a cyclic group of order ¢ — 1. Let { e [F; be a
fixed generator of this cyclic group. Formally defining ™™ to be the element 0 of [, it
follows that every element of F, can be written uniquely in the form &' for some index i
from the set # = {—00,0,1,...,4 —2}. We define a bijection (- ): from [,[7] to the non-
negative integers as follows. When a € [, we define the index v € .# associated with a via
the relation a = &', and then put {a): = v+ 1 when ve #\{—o0}, and {a); = 0 when
v = —o0. Given a polynomial m = ag + ajt + - -- +ayt" in F,[7], we then define {m): by

N )
(3-1) <m>c = ;)(ai>5ql-

The polynomial ring F,[z] now inherits an ordering from the non-negative integers. When
a,b e F,[t], we write @ < b when {a); < (b):, and we write a < b when either a < b or
a =b. Also, we write a = b and a = b when b < a and b X q, respectively. As is apparent
from (3.1), whenever a,b € F,[f] and the degree of b exceeds that of a, then {b): > {a)..
Indeed, if the degree of m is N, then one has gN > {(m»: = N.

It is convenient to have available a map 7;:(-) from the non-negative integers to
F,[t] that inverts that defined via (3.1). For this purpose, when u is an integer with
0<u<q—1, we define T:(u) by putting T:(u) =¢"" when ue{l,2,...,q—1},
and T:(u) =0 when u=0. Next, given a non-negative integer v, we write v in
base ¢ as v=v9+vig+---+oyg", with 0<v,<¢g—1(0<i<N), and then put
Te(v) = Te(vo) + Te(v1)t + - - + Te(ow)t".

We may now discuss the distribution of polynomials in arithmetic progressions.
Lemma 3.1. Let g and r be elements of F,[t]. Then whenever X € N, we have
card{m e Fy[tf] : <my: < X and m =r (modg)} = X /{g)> + O(1).

Proof. When W eN and g,r € [F,[f], we define Z, (W) to be the set of polyno-
mials m e F,[f] for which {m): < W and m =r (modg), and we write Z, (W) for
card(&wgyr( W)). Note that there is no loss in supposing that ordr < ord g, for one may re-
duce r modulo g. Under this assumption, if m € %, (W) and we subtract r from m, then it

is only the monomials with degree smaller than ord g that are affected, whence

ordg—1

[Kmye — {m — 1| < ;) (g—1)q" <<g).

Thus we see that whenever m e %, (W), thenm + re Z, .. .(W + {g)), whence
(3.2) Zyo(W —=<97) £ Zy,(W) S Zy o(W +<9).

Every polynomial m € F,[#] belongs to some residue class modulo g, and so by averaging
over the elements r € F,[¢] with 0 < {r) < {g) within (3.2), we obtain

Zyo(W —=<g>) = (W +1)/g> = Zy0o(W +<{g7).
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It therefore follows that
X =gy +1) £ Z,0(X) £ (X +<g> + 1),
and so the proof of the lemma is completed by reference to (3.2).

We now analyse the distribution of refined smooth polynomials. Given positive num-
bers X and Y with Y < X, define the set of Y-smooth polynomials

A(X,Y)={nel,[]:<n:<Xand w|n= (=) < Y},
and write A:(X, Y) = card(sZ:(X, Y)). One readily confirms the relation
(3.3) A (P,R) = .A:(qP —1,2R — 1),
and so the set .«Z:(X, Y) offers a refinement of the set ./(P, R).

Before announcing an asymptotic formula for card(&ié(X ,Y)), it is helpful to intro-
duce some notation. When X and Y are positive numbers with ¥ < X, define

34 MW Y)= I = pX.Y)= S ud<d>",
Y<<w>i§X d | Hq(Xv Y)
(dys=X

and
(3.5) E(X,Y)=card{d e F,;[t] : d monic,{d): = X and w|d = Y < <{w): < X}.

Here, we use x(-) to denote the Mobius function on [F,[#], and throughout, whenever we
apply the decoration  to a summation or product, we implicitly assume that the latter is
restricted to monic polynomials.

Lemma 3.2. Suppose that X and Y are positive numbers with Y < X. Then
E(X,Y) < X/log(2Y).

Proof.  Write L(W) = [log, W] for W = X, Y. Then an upper bound for E(X, Y) is
provided by sieving out the zero congruence class modulo w, for each irreducible w with

ordw < min{L( Y),%L(X )}, from the polynomials d with ordd < L(X). A modicum of

computation leads from Hsu [12], Theorem 3.2, to the upper bound

gt X

E(X,Y)« « ,
min{L(Y),%L(X)} log(2)

and this completes the proof of the lemma.
Lemma 3.3. Let X and Y be positive numbers with 1 <Y < X. Then

A:(X,Y) =p,(X,Y)X + O(X/log(2Y)).
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Proof. 1f n is an element of </:(X, Y), then <n); < X. The monic divisors of n are
polynomials of degree at most ordn, whence of size at most <n): < X. By the inclusion-
exclusion principle, therefore, one has

S 1= Y oud) ¥ L
ned:(X,Y) d|T,(X,Y) mye=X
(dy:=X d|m

An application of Lemma 3.1 consequently reveals that

A:(X,Y) = d|l'[z(; Y),u(d) (X/<dy+O0(1)) = p, (X, Y)X + O(E(X, Y)),
<X

and so the proof of the lemma follows by making use of Lemma 3.2.

It is convenient for future reference to record an estimate for the relative density
p,(X, Y) in terms of the familiar Dickman function p(u). We recall at this point that p(u)
is defined for real numbers u to be the unique continuous solution of the differential-
difference equation up’(u) = —p(u — 1) (u > 1) satisfying the initial conditions p(u) = 0 for
u=<0,and p(u) =1for0<u = 1.

Lemma 34. When R and P are positive numbers with P=1 and
2P/log(2P) < R < P, one has

Pq(qp— 1,2IA€— l) :p(P/R) + O(P—I/Z).

Proof. Estimates for the number of smooth polynomials available in the literature
(see [3], Proposition I1.4, or alternatively [18] or [20]) provide the formula

card(/(P, R)) = p(P/R)qP + O(2"/RP/R).
On the other hand, it follows from Lemma 3.3 that
As(gP—1,2R— 1) = p,(qP — 1,2R — 1)qP + O(P/R).
When 2P/log(2P) < R < P, therefore, we may conclude from (3.3) that
p,(gP —1,2R —1) — p(P/R) « 2"/RR™" « P7'/2

and thus the proof of the lemma is complete.

4. Major arc approximations for exponential sums

In order to obtain the asymptotic formula for the major arc contribution given by
(2.9), one must establish control of the generating functions F(x) and f (o) for o € 9. Our
goal in this section is to obtain asymptotic formulae for these exponential sums and certain
associated generating functions of use on the set of major arcs. When o is close to a rational
point a/g of small height, it transpires that F(«) is easily approximated in terms of the local
generating function S(g, a), defined for a, g € F,[f] by

(4.1) S(g.a)= 3 elar’/g).

{ry<Lg>
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Lemma 4.1. (i) Suppose that o€ T, and that o=a/g+p with a,ge F,i],
0 < <ay < <gy < Pand {By < {gy~'P'™F. Then F(a; P) = <{g>~'S(g,a)F(B; P).

(ii) When (B> < P'=*, one has F(p; P) « P(1 + P*(p>) V¥,
(i) When (g,a) = 1, one has S(g,a) < (gHIVk,

Proof.  The conclusion of part (i) of the lemma is [14], Proposition 4, and that of part
(iii) is estimate (a) of [14], Lemma 22. It remains to establish part (ii). When (#) < P~* the
desired bound is immediate from the trivial estimate F(f; P) <« P. We may suppose hence-
forth, therefore, that P% < (f> < Pk, Put L = —ordf, so that L = kP — N for some
integer N with 1 <N <P—1. We may write f in the form g= > b/, with

i-L

bielF, (i< —L) and b_; % 0. Next let r be a non-negative parameter with r < P, and
consider the contribution within the exponential sum F(f; P) defined by (2.3) arising
from those terms x with ordx=P —r. We write x=co+ cit+---+cp_t'", with
ciefFy(0<i<P—r)and cp_, £ 0.

Suppose temporarily that N > rk — 1, and write M = P+ r(k — 1) — N — 1, so that
0<M < P—randr< P/k. Let Z(c) denote the coefficient of t/~! in the expansion of
Ko Kp—r

x*. The monomials occurring in Z(c) take the shape co'cr! ... cpty, where the exponents
ki (0 =i < P —r) are non-negative integers with

(4.2) Ko+K +-+Krp,=k and x +2Kk2+--+(P—r)kp_,=L—1.
It follows from (4.2) that
Ki+- Ky 1ty ++Kkpy Sk— Ky,
and hence that

(k—xm)(P—r)2L—1—kyM=kP—N—-1—rxy(P+r(k—1)—N—1)
=(k—rpy)(P—r1)+ (kpy — (N + 1 —rk).

Our hypothesis that N > rk — 1 consequently ensures that x); < 1. On making use also of
(4.2), we deduce in addition that when x) = 1, one necessarily has xp_, =k —1 and
ki=0(0=<i<P—r,i+ M). It follows that for a suitable polynomial Y(¢) in the vari-
ables ¢; (0 <i < P—r,i + M), one may write Z(c) = keyrck~! + Y(¢). Plainly, moreover,
the coefficients of the terms #/ in the expansion of x* with degree j > L cannot involve any
positive power of ¢;;. We therefore deduce that the contribution of these terms x within the

sum defining F(o; P) in (2.3) is bounded above by

(43) =< Z Z Z eq(kb_LCMCf):},) .

ciely cprelylene Fy
(0<i<P—r,i+M)

> e(pxb)

ord x=P—r

Since the coefficient kb_ Lcﬁ‘,j} of ¢y in the innermost sum on the right-hand side of

(4.3) is non-zero, this sum is necessarily zero, and hence the left-hand side of (4.3) is zero
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whenever 0 < r < (N + 1)/k. On noting that P — (N + 1)/k = —(ord f + 1)/k, we there-
fore deduce from (2.3) that

[E(B; P)| = 2 e(px) = ¥ L
ordx=<—(ord f+1)/k (x> By

In this way we conclude that in the circumstances at hand, one has |F(f; P)| « (g>~V*,
and this suffices to complete the proof of the lemma.

Before discussing the asymptotic behavior of the smooth Weyl sum f(«; P, R) for
o € M, we require a technical lemma. It is useful in this context to write m for the succes-
sor of the polynomial m € [,[f] when viewed according to the quasi-ordering on F,[#], so
that m, = T¢({m): + 1) and {my = <mye + 1.

Lemma 4.2.  Suppose that P and X are natural numbers with 1 < X < gP — 1. Then
whenever € T satisfies {fY < P'%, one has

(4.4) card{m e F,[t] : <m): < X and e(pm*) + e(fmf)} « 1+ PR,

Proof. There is at most one polynomial m counted on the left-hand side of (4.4) for
which ordm, > P, namely that with {m); = gP — 1, and its contribution is plainly ac-
comodated by the right-hand side of (4.4). Consider then a polynomial m counted on
the left-hand side of (4.4), and suppose that {m): < gP — 1. The situations in which
ordff < —kP —1 may be disposed of at once. For whenever {(m): < X, one has
ord(pm*) < kP + ord f < —1. In view of our earlier assumption, a similar argument yields
the bound ord(fm%) < —1, and thus we see that in the situation at hand one has
e(pm*) =1 = e(pm"). The bound (4.4) is therefore trivial for ord f < —kP — 1.

We are left to consider the situations in which (> < P'"* and yet ord # = —kP — 1.
In such circumstances, one has ord f = L, with L = N — kP — 1 for some natural number
N satisfying 0 < N < P. We may write f = > b;t', where b; € F, (i < L) and by, =+ 0. Let

i<L

r be a non-negative integer with r < P, and consider the contribution on the left-hand side
of (4.4) arising from those terms m with ordm = P —r. If r > N/k + 1, then an argument
paralleling that of the first paragraph establishes that ord(fm*) < —1 and ord( [)’mi‘) < -1,
so that e(fm") =1 = e(fm"). Such terms do not contribute to the left-hand side of (4.4),
so we suppose instead that r < N/k+ 1. We may write m = co + ¢t + -+ +cp_ 57",
where ¢;elF, (0<i<P—r) and cp_,+0. If ord(my) > ord(m), then necessarily
¢ = 172 (0<i<P-r), so that m is uniquely determined. Otherwise, in view of
our earlier observations, we may write ms =cj +cfr+--+ch P77, where
¢ €eFy (0<i<P—r)and ¢y, +0. It then follows that m* and m* may be written in
the form

k(P—r) ) k(P—r) .
(4.5) mf= Y aqt/ and mt= Y a'v,
j=0 j=0
where a;,a € F; (0 < j < k(P —r)). Put M = P+ r(k—1). Then a consideration of the
multinomial expansion of m* reveals that for kr < u < N, one has

(46) agp—u = kCM—uC;(J:: + Qu(c);
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for some Q,(¢) € Fylcar—u+1, - - -, cp—r]. One also has axp_ir = c,’ifr and ayp_, = 0 for u < kr.
Similar relations hold for coefficients decorated with a superscript +.

It is apparent from (4.5) that

N
res(fm") — res(fm”) = 3" (arp—i — ajp_)bi—ip-1.
i=kr

Thus we see that when e(fm*) # e(fm* ), the relation axp_; = a;,_, cannot hold for every
index i with kr <i < N. But it is a consequence of (4.6) that when kr <w < N and
cym—v = C4y_, for kr < v <w, and in addition axp_,, = a;p_,, then in fact ¢y, = cj,_,.
When e(fm"*) + e(pm*) and ord(m.) = ord(m), therefore, one has ¢y, * cj,_, for some
index v with kr < v < N. In view of the definition of M, we thus conclude that ¢, % ¢, for
some index v with P+r(k—1) - NZv<=P—r.

Now suppose that e(fm*) + e(fm"), and let v denote the largest index with
P — N < v < P for which ¢, # ¢,. The polynomials m and m, take the forms

m=cptt 4 et R E f ET T e g2
and
my = cpt? 4 et 4 ET
where s € {—0,0,1,...,¢g—3}and c;e F, (v+ 1 =i < P). Here, if v = P, then we under-
stand the last condition to be moot, and when s = —oo, we interpret s + 1 to be 0. In these
circumstances, the number of available choices for s and ¢ is (¢ — 1)¢g”~*. Summing over
the available choices of v with P — N < v < P, we deduce that the total number of possible

choices for m with {m): < X and e(fm*) =+ e(fm") is at most 1 + ¢gV+! =1 + ghP2rordh
and the conclusion of the lemma follows at once.

We are now equipped to establish a major arc approximation to f(o; P, R).
Lemma 4.3. Let P and R be positive numbers with P = 1 and
2P/log(2P) < R < P —log P.

Suppose that o € T, that a and g are elements of F,[t] with g monic and (a,g) = 1, and write
p =a—a/g. Then whenever {g) < R and {B> < P'*, one has

f(%P,R) — {g>"'S(g,a)p(P/R)F(B; P) < {g>P(log P)""*(1 + PK(p).

Proof. Rather than tackling f(o; P, R) directly, we initially consider the sum

L X, V)= 3 e(x").
xed:(X,Y)
{xpe>Y
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Recall (3.4) and suppose that X and Y are positive numbers with 1 < Y < X. Then by the
inclusion-exclusion principle, one has

Sol= Y oud) YL

xed:(X,Y)  d|T(X,Y) (my: <X
x=r (modg) dyesX m=r (modg)
d|m

If d|I1,(X,Y) and both d and g are monic, it follows that when {g): < Y one has
(g9,d) = 1. Recalling (3.5) and applying the Chinese Remainder Theorem in combination
with Lemma 3.1, therefore, we deduce that

> 1= U u(d)(X/{gd>+ O(1))

XEJJC*(X,Y) d|T,(X,Y)

x=r (modg) {dy:=X
=<' YT wd)<dy T+ EX,Y).
d|1,(X,Y)
dy:=X

Applying Lemma 3.2 to both the latter formula and the case g = 1 of the same relation, we
find that

S 1= T 1+0(X/log(2Y)),

xed:(X,Y) xesd:(X,Y)
x=r (modg)
whence
(4.7) > e(ax"/g) —<g>7'S(g,a) X 1< {g>X/log(2Y).
xed:(X,Y) xed:(X,Y)

When W is a positive number with ¥ < W < X, write

gW)= 3 (elax*/g) —<g>"'S(g,a)).

xed:(W,Y)
In these circumstances (4.7) yields the estimate (W) = O({g>X /log(2Y)), and so it fol-
lows by partial summation that

> (elax®) = <g>7'S(g,@)e(pxF)) = S (W) (e(pxF) — e(BxY))
xed:(X,Y) Y<W=<X
(xde>Y W={x)¢

+ 0(<g>X/log(2 Y))

In view of the conclusion of Lemma 4.2, therefore, when 1 < X < gP — 1 and (f> < P'"*,
we have

48) (X, Y)=<>7'S(g,a) f( X, Y) < {g>X (log(2Y)) ' (1 + PX(BY).

On applying partial summation we obtain

f(B; X, Y) = Y}V;X/MW, Y)(e(Bx"*) —e(pxL))
W=(xe

+ A:(X, Y)e(BT([X] + 1)*) — (Y, Y)e(BT:([Y +1))").
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Thus, on writing

Ye(f; X, Y) = . S W(e(Bx*) —e(pxh))

+ Xe(BT:([X]+ 1)) — Ye(BT:([Y] + 1)),
it follows from Lemmata 3.3 and 4.2 that when 1 £ X < qf’ — 1, one has

(49)  fBX,Y) = p, (X, V)Ye(B; X, ¥) < X (10g(2Y)) " (1 4+ P*(B).

We now put X =¢gP —1 and ¥ = 2]? — 1. The hypotheses of the statement of the
lemma then permit us to assume that ¥ « P(log P)~"/? and log Y > (log P)'/. But on re-
calling (2.3), a modicum of computation reveals that

YeB X, Y) = 5 e(pxt) = F(B; P)+ O(P(log P) ')
Y<W<X
W=(xy;
and
f(o; P,R) = > e(ocxk) = fé(oc; X, Y)+ 0(p(log13)_1/2).
xesd:(X,Y) )
Hence, by substituting (4.9) into (4.8), we deduce that

f(o5P,R) — <g>"'S(g.a)p,(¢P — 1,2R — 1)F(B; P) « {g>P(log P)"'/*(1 + P*¢(p)),

and the conclusion of the lemma is now confirmed by recalling Lemma 3.4.

5. A lower bound for the major arc contribution

The sets 9%(g, a; V') comprising 9t are sufficiently sparse and narrow that the deriva-
tion of the asymptotic relation (2.9) is now essentially routine. In preparation for our proof
of this formula, we introduce the singular integral

(5.1) Jor(m)= [ F(p)e(—pm)dp,
Br<(gp)'™
and the singular series
(5.2) Soi(m) = " As(gym),
gelF,[1]

in which we have written

(53) Wlgim) = <>~ ¥ S(g.a)’e(~malg).
ot

Lemma S5.1. Suppose that n and R are positive numbers with n <1 and
nP < R < P—logP. Then whenever s = 2k + 1, one has S, ;(m) < 1 and Js ;(m) < P57,
and furthermore

Ry(m; N) — p(P/R)* Sy 1 (m)Jy i (m) < PFy 1k,
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Proof. Define F*(x) for aeM by taking F*(a)=<g> 'S(g,a)F(f) when
o= pf+a/g lies in N(g,a; V) = N. Then for o e N, it follows from (2.8) and Lemma
4.1(i) that F(a) = F*(), and from Lemma 4.3 that f(a) = p(P/R)F*(«) + O(PV~*). The
bound

F@)'f (@) = p(P/R) F ()" << PV
therefore holds uniformly for o € %. But the measure of 9%t is O(V>P ), and so
(54)  [(F(2)*f ()" = p(P/R)**F*(2)")e(—ma) doe « P**V 1,
€N
Furthermore, from the definition of 9t, we have

(5.5) sJ{F*(oc)se(—moc) do = S(m; V)J (m; V — kP),

where
(5:6)  Jm:W)= [ F(p)e(~pm)df and S(m; W)= 3" As(g;m).
BH<w =W

When W < (¢P)'™*, it follows on combining (5.1) and (5.6), and then applying
Lemma 4.1(ii), that one has the estimate

Js,k(m) - J(m, W) < PS j (1 =+ Pk<ﬁ>)fs/k dﬁ
Byz=w

But equation (3) of [14] shows that when / € Z, the measure of the set of points f in T with
(B> < q'is at most ¢'. When s > k + 1, one therefore finds that

A o N R
(5.7) J(m; V —kP) — J 1 (m) < P* 3 gt (1 + ¢!k « prkp ik,
I=V—kP

and with the same condition on s, a similar argument yields

(5.8) Jor(m) < P* [ (14 PRBY) ™ ap « PF,
<ﬁ><(q}3)]—k

Employing the conclusion of Lemma 4.1(iii) within (5.3), we next find that
W, (g;m) < {g>' /%, Then for s = 2k + 1, it follows from (5.2) and (5.6) that

(59 SmV)-Sulm « T < 5 (@)« v,
Lg>>V h=V+1
and with the same condition on s, a parallel argument leads to the estimate

(5.10) Sox(m) <« ST <« ST (MR < 1.
gelF,l] h=0
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Finally, on substituting (5.7) and (5.9) into (5.5), and then employing the estimates
(5.8) and (5.10), we conclude that

J‘F*(OC)S(;(—W[O() do — SS,k(m)Js,k(m) < ps—k I}_l/k,
N

The proof of the lemma is completed by reference to (5.4).
We show next that under mild hypotheses, the singular series is well-behaved.
Lemma 5.2. Suppose that m € J];‘[t] and s = 2k + 1. Then 1 « S, (m) < 1.

Proof.  'We suppose that s = 2k + 1 throughout the proof of this lemma®. Define the
local density Q, ((m) associated with the completion F,(¢)_ of F,(z) by

Q. s(m) =1+ A(w";m).
h=1

Then the argument of the proof of [14], Lemma 23 shows that the infinite product
[19Qx s(m) converges absolutely to S; x(m). Next, let M(g;m) denote the number of solu-

tions of the congruence xf + - -+ + x* = m (mod g), with {x;> < {¢g> (1 £i < s). Then the
argument of the proof of [14], Theorem 29 establishes that
Q s(m) = hm (Y= M (" m),

h—o0

that

’Qw,s(m) — 1‘ < Z<wh>_1_l/k < <w>—1—1/k’
h=1

and also that whenever m € J]fi‘ 4], then Q. ((m) = {(w)'™*. Under the latter hypothesis,
therefore, we deduce that there is a large positive number 4 = A4(q, s, k) for which

(5.11) Sox(m)» I (1= (@) "1/
(wHy>A

But the number of monic irreducible polynomlals of degree h is at most ¢” /h (see [19], page
13), whence Z (w171 < Z(hqh/ (29)~! « 1. Consequently, on extracting logarithms,

one finds that the infinite product (5.11) converges, and that S; x(m) » 1. The proof of the
lemma is completed on recalling the estimate S; x(m) « 1 prov1ded by Lemma 5.1.

We remark that with additional effort, the condition s = 2k + 1 could be relaxed to
the less severe constraint s = k + 1. Furthermore, as is implicit in [14], Theorem 29, one has
J é‘ (1] = F,[t] when ch(F,) > k. It is also a consequence of the work presented here together
with the conclusion of [14], Theorem 29, that whenever m is congruent to a sum of kth

4 In [14], Lemma 23, the condition s = 3k + 1 is imposed instead, apparently as a result of an oversight.
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powers modulo tw for all irreducible polynomials w satisfying (@) < (k — 1)2, then in fact
m e J[1].
q

Next we turn our attention to the singular integral J; ;(m), the analysis of which is in
many ways simpler than in the analogous situation for Z.

Lemma 5.3. Suppose that s = k + 1. Then Pk« Js.k(m) < Psk,

Proof. Suppose that the leading coefficient of the polynomial m is ¢(m). We define
b = b(m) to be ¢(m) when k divides ord m and m is not exceptional, and otherwise we set
b(m) to be 0. In addition, we write J,(m) = J.,(m; q) for the number of solutions of the
equation xf + -+ +xF=p with x e F,\{0}. Then it follows from [14], Lemma 17, that
whenever s > k + 1, one has

(5.12) Jsk(m) = Joo (m)PF + o1k,

and moreover that 1 < J,,(m) <« 1. In order to confirm this assertion, one observes that
the integration in (5.1) is over fe T with ordf < —(k —1)(P+ 1), and further that
(k—1)(P+ 1) < ordm, except possibly when P < 2k — 1. One may therefore apply [14],
Lemma 17 with m = P+ 1 and m’ = (k — 1)(P + 1), and when P is large enough in terms
of k it is only the cases (a) and (b) of this lemma that are relevant®. We note that when
b(m) % 0, the lower bound J.,(m) = 1 may be confirmed by following the argument of
the proof of [14], Lemma 27. We remark that the same conclusion as above is implicit in
Car [2], Proposition 9, and also that the conclusion of [14], Theorem 18 differs from what
would be anticipated based on (5.12), owing to some oversights in the argument of [14].

On observing that when # > 0 and R > nP, one has p(P/R) > 1, we may combine
Lemmata 5.1, 5.2 and 5.3 to obtain the following conclusion.

Lemma 5.4. Suppose that n and R are positive numbers with n <1 and
nP < R < P —logP. Then whenever m € J];‘[t] and s = 2k + 1, one has Ry(m; N) > P,

6. Pruning technology

The minor arc estimates that we obtain in §13 are insufficient to bound directly the
quantity Z(m;n) defined in (2.5), and thus we are forced to employ pruning techniques
to bridge the gap. In this context, we write ‘B for 9i(P) and p for m(P), and we say that a
positive number u > 2k — 2 is accessible to the exponent k when there exists a positive num-
ber ¢ for which

(6.1) [F(2)%f ()" dox < P+250,

Our goal in this section is to show that whenever u is accessible to the exponent k, and s is
an even integer with s — 2 = u, then

(6.2) [1F(2)*f () %| dov = o(P*75).

) We emphasise that m and m' are integers in this context.
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This estimate plainly implies that Z,(m; n) = o(P**), a bound required in the discussion
concluding §2, and thus the focus of later sections is the pursuit of bounds of the shape
(6.1).

We begin by analysing mean values of classical Weyl sums.
Lemma 6.1. Whenever u = 2k + 1, one has

[1F(2)]" doo < P,
B
Proof.  Suppose that oe B, so that for some a,ge€l,[] with g monic,
0 <<a) <<gy < Pand (a,g9) =1, one has a € M(yg, a; P). Making use of the definition of
(g, a; P) together with Lemma 4.1, we find that

(6.3) F(o) < PLgy ™5 (1 + PHa— afgy) V",
Consequently, one has

(6.4) [|F(2)|" do < PTy T,
B
where

I = ET > <g>7u/k and 7T, = f (1+I.A)k<ﬁ>)7u/kdﬁ.

gel,[t] <ay<<g> (By<PIk
(a,9)=1

Since the number of monic polynomials g € F,[f] with {g) = g’ is equal to ¢/, we see
that whenever u > 2k + 1, one has

o0
(6.5) T Y < (")«
gel,[] h=0

Meanwhile, observing next that the measure of the set of points fin T with (> = ¢’ is at
most ¢/, we deduce that

< [ dp+ [ (1+PNpy)rap
(py<P* (Byz=P*k

j i g (1 4 g Rp) -k
I=—kpP

lIA

N ~ o0
« PRy pR s -k,
h=0

When u > k + 1, it therefore follows that 75 = O(P¥). The conclusion of the lemma fol-
lows on substituting this estimate together with (6.5) into (6.4).

Next we leverage control on the major arcs of mean values involving F(«) into con-
trol of mixed mean values involving also f/(«).
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Lemma 6.2. Suppose that u > 2k — 2 is accessible to the exponent k, and that v is an
integer with 2v = u. Then we have

(6.6) j|F V2 f(0)* | do < PP

Proof. When 4 is a measurable subset of T, write
21;
f |F(2)°f ()] dx

Then by applying Holder’s inequality, we obtain
(6.7) I(T) = I(p) + I(P) < I(p) +111/(v+1)120/(v+1>a

where we write

L= [|F@)*?dx and L= J|f )22 do.
B

Since 2v + 2 is even, the integral /; counts the number of solutions of the equation

1

1(x _y,) 07

3

i

with x;, y; € o/ (P, R) (1 £i <v+1). An upper bound for /, is therefore provided by per-
mitting x; and y; to be any elements of F,[¢] with {x;)» < P and {y;) < P, whence

12<J|F )’f (2)* | doe = I(T).

It therefore follows from (6.7) that
(6.8) I(T) < I(p) + 1.

But by hypothesis u is accessible to the exponent k&, and 2v = u. Hence, on employing
the trivial estimate |F(«)| = O(P), we find that there is a positive number & for which
I(p) = O(P*+2%=9) From Lemma 6.1, moreover, we have I; = O(P>*27%). We therefore
deduce from (6.8) that I(T) = O(P**27%). This confirms (6.6), and so the proof of the
lemma is complete.

We next show that in the mean value crucial to our application, the contribution of
the arcs P\t is of smaller order than the expected main term.

Lemma 6.3. Suppose that u > 2k — 2 is accessible to the exponent k, and that s is an
even integer with s = u+ 2. Then we have

[ 1F (@) ()" 2 dow < P p—2K),
FAR
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Proof.  An application of Holder’s inequality reveals that

(6.9) JF(@)*f (0)* 2| doe < 0050,
PAN
where
(6.10) Ji=[If(@)’de and J,= [ |F(a)|"da
T PAN

But s is even, so that on considering the underlying equation we find that
Ji < [|IF(@)>f (@) | do.
T

Since s — 2 = u and u is accessible to the exponent k, the upper bound J; = O(Ps‘k ) there-
fore follows from Lemma 6.2.

In order to tackle J, we observe first that when « € (g, a; P) < B, it follows as in
(6.3) that

F(a) « P({g)y + P*(gu— ay) V.

But if o€ P\, one necessarily has either {g) > V or {go—ad>>VP* whence
F(a) « PV~ Note that the hypotheses of the lemma ensure that s > 2k + 2. Then on
substituting our estimate for F (o) into (6.10), we deduce from Lemma 6.1 that

Jy < PVVE[|F(a)) ™ do < PSRP 1K,
B
The conclusion of the lemma follows on substituting the latter bound together with our ear-
lier bound for J; into (6.9).

Since 1 =pu (P\N), the estimate (6.2) follows on combining the conclusion of
Lemma 6.3 with (6.1). We finish this section by collecting together the conclusions of Lem-
mata 5.4 and 6.3 to obtain the following lemma.

Lemma 6.4. Suppose that n and R are positive numbers with n <1 and
nP < R < P—logP. Suppose also that u > 2k — 2 is accessible to the exponent k, and that
s is an even integer with s = u + 2. Then whenever m € J](][‘[t], one has Ry(m; P) > Pk,

7. The fundamental lemma for smooth Weyl sums

The goal of the next three sections is to derive, for natural numbers s, upper bounds
for the mean values

(7.1) S«(P. R) = [|f (P, R)[* da.

By orthogonality, the mean value S;(P, R) counts the number of solutions of the equa-
tion
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with x;, y; € (P, R) (1 £i < s). We estimate S;(P, R) via the iterative method introduced
by Vaughan [22], in the variant permitting repeated efficient differencing established by the
second author [27]. As in [22] and [27], our first step is a fundamental (auxiliary) lemma,
and here we model our approach on that of [27]. Aside from leading to considerably
sharper estimates, the latter also permits one to replace two smooth Weyl sums in (7.1) by
corresponding classical Weyl sums, hence simplifying considerably the major arc analysis
discussed above.

Before proceeding further, it is convenient to have available two technical lemmata
that provide basic estimates of use in our subsequent deliberations. When g € [F,[7], we de-
note by sp(g) the squarefree kernel of g, which is to say so(g) = [] w. In addition, when L
is a positive number, we define the set ,(L) by @lg

Gy(L) = {y € Fy[1] : y is monic, <y> < L and 5(y) | s0(9)}-

Lemma 7.1.  Let ¢ and A be fixed positive numbers. Then whenever g € F,[t], and L is
a positive number for which {g» < L*, one has card(‘ég (L)) «< L®

Proof. Observe first that there is no loss of generality in supposing that ordg = 5,
for otherwise we may replace g by ¢g° without adversely affecting the desired conclusions.
Next, from the definition of %,(L), one has

(7.3) card(%,(L)) < 3 <z/<y>>8§iﬁq1<1—<w>—8>*‘.

50(¥)10(9)

Write y(g) for 2'/21og{g>/loglog{g)>. We divide the product on the right-hand side of (7.3)
according to the size of {z). On the one hand,

[I -<@H) ' I (1-g%" <exp(—qlog(l — g *)y(g)).
<w§}§|f/]/(g) (wy<(g)

On the other hand, since the number of monic irreducible divisors of g having degree ex-
ceeding log, /(g) cannot exceed (ord g)/(log, ¥/(g)), one has

I[I - ' I 2=exp(logLg>/log,¥(g)).
wlyg @|g
<@)>y(g) {@)>¥(g)
On substituting the latter estimates into (7.3), we find that there is a positive number
B = B(q,¢) for which
card(%,(L)) < L*exp(Blog{g)/logloglg)) « L*,

thereby confirming the conclusion of the lemma.

Write w(g) for the number of distinct monic irreducible polynomials dividing g, and
write dy(g) for the number of ways of writing g in the form g = cg; ... gx, with ¢ € F,, and
with g; € F,[f] (1 =i < k) monic.

Corollary 7.2. For each k € N, one has di(g) « {g>* and k9 « {g)*.
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Proof. The desired estimates follow at once from Lemma 7.1 on noting that, from
the definition of (L), one has k“9 < dy(g) « (%,(ord g))

It is convenient also to have available a crude lower bound for card(.</(P, R)).

Lemma 7.3. Suppose that R and P are positive numbers with P21 and
R > P/10og(2P). Then card(.</(P,R)) » P~

Proof.  Since for a fixed value of P, the cardinality of .«Z(P, R) is an increasing func-
tion of R, there is no loss of generality in supposing that R = P/log(2P). By suitably ad-
justing the implicit constant in the lower bound supplied by the conclusion of the lemma,
moreover, we may also suppose that P and R each exceed 6. Observe next that the cardi-
nality of .o/ (P, R) is equal to ¢ — 1 times the number of non-negative integral solutions z of
the inequality

> zpordw < P.
ordw<R

From [19] page 13, the number of monic irreducible polynomials of degree [R] is at
least (¢R 2qR/2)/R > ¢®=2/R. Thus we find that card(/(P,R)) = Z(N, U), where

Z(N,U) denotes the number of non-negative integral solutions # of the inequality
U+ +uy < U, with N = [¢R2/R] and U = [P/R]. But then Z(N, U) is equal to the
number of non-negative integral solutions u# of the equation uy + u; + --- + uy = U, and
by [23], §1.5, Exercise 1, we therefore have Z(N,U) = (N + U)!/(N!U!). In view of our
assumption that R = P/log(2P), an application of Stirling’s formula reveals that

logZ(N,U) 2 Nlog(l + U/N) + Ulog(1 + N/U) + O(log(2U))
= Plogq — (10g(2P))2 + O(log(2P)),
whence for large values of P one obtains
card(</(P,R)) = Pexp(—2(loglogf’)2) > P1=%,
This completes the proof of the lemma.

We now advance to describe the fundamental lemma that underlies our efficient dif-
ferencing method. This entails the introduction of some notation. Let P, O, R be positive
numbers with 1 £ R < Q < P. Also, let r be a non-negative integer, and let C;, C/ be
real numbers with 0 < C/ < C; < P (1 =i = r). We consider a subset ¢ of polynomials ¢
whose degrees lie in the box [Ci, Ci] x -+ x [C], G]. For the sake of concision we write G
for the product C1 Cz C], we write C’ for C! C2 C’ and we do likewise, in the obvious
fashion, for other sets of parameters. We interpret an empty product of the latter type to be
unity. Consider next a polynomial ¥ (z; ¢) in the variables z, ¢y, ..., ¢, of degree at least one
in terms of z, having coefficients in F,[f], and write ¥'(z; ¢) for (0¥/0z)(z; ¢). We suppose
throughout that s is a non-negative integer.

We denote by Si(P, O, R) = Si(P, O, R;¥; %) the number of solutions of the equation

(7.4) W(z;B) — (i 0) = S (xF — k),

j=1
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with
(7.5) xj, v € 4(Q,R) (1 =j=5),
(7.6) Y, (wY <P and b,ce¥.
Here we adopt the convention that if s=0, then the right-hand side of (7.4) is

replaced by 0. Next, given a real number 6 with 1< P’< Q, we define
Ts(P,Q, R;0) = Ty(P, Q, R; 0;'¥; %) to be the number of solutions of the equation

(7.7) ¥(z;¢) — ¥(w;c) = mh i:l(u;‘ - v}‘),

with z, w, ¢ as in (7.6), and with

(7.8) mmonic and P’ < (m) <min{Q, P’R},
(7.9) wv e /(0 —0PR) (1<j<5)
(7.10) z=w (modm").

Finally, we write Ny(P, Q, R) = Ny(P, Q, R; ¥; %) for the number of solutions of the equa-
tion (7.4) subject to (7.5) and (7.6) for which ¥’(z;b) = ¥'(w;¢) = 0.

Lemma 7.4. Suppose that 0 = 0(s, k;¥) satisfies the constraint 0 < OP < Q. Then
whenever s is a natural number, one has

(7.11)  S,(P, 0, R) « Sy(P,0P,R) + Ny(P, O, R) + QP"**S,_|(P, O, R)
+ P*C.(P"R)*'Ty(P,Q, R; 0).

Proof.  We divide the solutions of (7.4) counted by S;(P, Q, R) into four classes, and
seek to establish that the contribution from each class is majorised by one of the terms on
the right-hand side of (7.11). In order to describe our classification of these solutions, it is
useful to introduce a notion modifying that of a divisor in a special way. When L is a pos-
itive number, we write xZ(L)y when there is a divisor w of x with {(w) < L such that x/w
is monic and has all of its irreducible factors amongst those of y.

Let S| denote the number of solutions of (7.4) satisfying (7.5) and (7.6) such that
(7.12) min{{x;), <yd} < P

for some j with 1 < j <s; let S, denote the number for which
(7.13) Y (z;b) =0 or ¥ (w;c)=0;

let S3 denote the number for which min{<{x;>, {(y;>} > PY for 1 < j <, the condition
(7.13) does not hold, and such that for some j with 1 < j < s one has

(7.14) x;2(0P)Y'(z;b) or  y;2(0P)Y'(w;c);
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and let S4 denote the number for which min{<{x;», {y;>} > PYfor 1 < j < s, the condition
(7.13) does not hold, and such that (7.14) holds for no j with 1 < j < s. Then

(7.15) SS(P7 Q,R) §4maX{S1,Sz,S3,S4}.
We divide into cases.

(i) Suppose that S; = max{S,, Sz, Ss4}, so that from (7.15) one has S;(P, O, R) < 4S.
Define G(o; P) = G(o; P; %) by

G(u; P) = 2 e(oc‘P(z; b))7

where the summation is over z and b satisfying (7.6). Then on recalling (2.3), it is apparent
from (7.12) that

S1 « [|G(a; P)*f (0P, R) f (% O, R)* | dor.
T

By Hoélder’s inequality, one therefore has

Ss(P, Q, R) < (SY<})7 HP7 R)) 1/(2s) (S;(P, Q, R)) 1—1/(2s),

and so the upper bound (7.11) holds in the first case.

(ii) Suppose that S5 = max{Si, S3, S4}, so that from (7.15) one has S;(P, Q, R) < 45,.
Now define G(o; P) = G(«; P; %) by

G(fx; P) = 2 e(oc‘P(z; b))7

where the summation is over z and b satisfying (7.6) and the first condition of (7.13). Then
we see that

8> < [|G(a; P)G(% P) f (2 Q, R)™| da.
T
By Schwarz’s inequality, therefore, we have
1/2 1/2
Sy(P, @, R) < (Ns(P,Q,R)) ""(Ss(P, O, R)) ',
and so (7.11) holds also in the second case.
(iii) Suppose that S3 = max{S;, Sz, Ss}, so that from (7.15) one has
SS(Pu QvR) é 4S3
Given z and b satisfying (7.6) with W' (z; b) # 0, denote by #(z; ) the set of polynomials x
for which (x» < 0, and such that x has a divisor v with {(v> < P’ with the property that

x/v is monic and has all of its irreducible factors amongst those of W' (z;b). Define the ex-
ponential sum H(o; P, Q) = H(«; P, Q; %) by

HwP,Q)=Y > e(a(x"+¥(zb),

z,b xe L(z;b)
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where the first summation is over z and b satisfying (7.6) subject to the condition that
W'(z;b) # 0. Then

Sy <« [|H(o; P, 0)G(x; P)f (a; O, R)* ™| do,
T

so that by Schwarz’s inequality,

1/2
1/2
S3 < (S(P, 0, R))" <f |[H (o P, 0)°f (o5 0, R oc) :
T
It therefore follows from orthogonality that

(7.16) S(P,O.R) « 3 V(g,9"),
9,9

where we write V (g, g’) for the number of solutions of the equation
W (z;b) + mFxF x4 X =W nse) 4y R R
with z, w, b, ¢ satisfying (7.6), with x; and y; satisfying (7.5) for 1 < j < s — 1, and with
W(z0) £0, W(wie) 0, g|¥'(zh), ¢'[¥(wie), <my=P’, <y <P
x, ymonic, (x) < Qmy~', (=0T, ) =g, () =4"

Now define G,(a; P) = G,(o; P; %) by putting

Gy(a; P) = 3 e(«¥(z: b)),

z,b
where the summation is over z and b satisfying (7.6), and subject to the conditions
W'(z;b) 0 and g|¥'(z;b). Let 6 be the total degree of W. Then since {z) < P and
Ci <P (1 £i<r), wehave (¥'(z;b)> < P°. It therefore follows from (7.16) that

(7.17) Si(P, O, R) < [|9(x)*f (2 Q, R)*?| du,
T

where we write

(7.18) Ga)= Y GyxP) 3 ST e(am*xb).
(<P {my<P? (xy< Omy™!
s0(x)=g

Here, if g is not squarefree, we understand the third summation of (7.18) to be empty.
We now apply Cauchy’s inequality to (7.18), obtaining the upper bound

(7.19) G(@)* <Y |Gy P,
{gy<P?
where
2
M= 3 | ST e(amFxk)

(=P Wmy <PV (xy< Qm)y™!
so(x)=g
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Interchanging the order of summation in the last expression, and then applying Cauchy’s
inequality in combination with Lemma 7.1, we deduce that

2
ZT Z e(ocmkxk)

(=0 my=P’

s0(x)=g (md>< O

a= ¥

(gy<P?

2

« P? > ZT’ > e(ocmkxk)
gy<PP (xy<Q ! (mysP’
s0(x)=g <in>§Q<x>’l

Consequently, on making a trivial estimate for the innermost sum in two different ways, we
find that

A< PP YT PO « P Qlog 0.
=0
We now substitute the last estimate into (7.19), and from there into (7.17), obtaining
the upper bound

(7.20) S(P,Q,R) <« P"Q 3 7(9),
(gy<Pd
where we have written

S(9) = J1Gy(o: P)’f (.0, R)* | d.
T
By orthogonality, the integral #(g) counts the number of solutions of an equation of the
shape (7.4), subject to (7.5) and (7.6), save with s — 1 in place of s, and with W'(z;b) =+ 0,
W'(w;e) 0, g| ¥ (z;b) and g|¥'(w;c). Note that for each fixed choice of z and b, it

follows from Corollary 7.2 that the number of possible divisors g of W'(z; b) is at most
O({¥'(z;b)>*) = O(P?), and likewise for ¥’(w; ¢). We therefore deduce that

> Sg) < P*Si(P. O, R),
gysP°
and from here, the relation (7.20) leads to the upper bound
Si(P,Q,R) « P""*QS, 1(P,Q, R).
This confirms (7.11) in the third case.
(iv) Suppose that Sq = max{S, Sz, S3}, so that from (7.15) one has
Ss(P, Q,R) < 48,.

Then for a given solution of (7.4) satisfying (7.5) and (7.6) counted by Si, we have

oy >PY (yy>P? (1£j<s) and W(zb) £0, ¥ (w;e) 0,
and neither

(7.21) x;2(0P)¥'(z;b) nor y;2(0P)Y'(w;e) (1< j<5s).



30 Liu and Wooley, Waring’s problem in function fields

When 1 < j < s, let m; denote the product of all the monic irreducible factors of x; that are
coprime to W'(z; ). If one were to have (it;> < P?, then x;2(0P)¥'(z;b), contradicting
(7.21). Then we are forced to conclude that {m;) > P9 Let m; be a monic divisor of m; of

smallest degree satisfying the property that {m;) > PY_ Since the degree of each irreducible
factor of x; is at most R, we may infer that

P’ < {m;y <min{Q,P’R} and (m;,¥'(z;h)) =
Plainly, we may proceed in a similar manner with y; for 1 < j <.

With the discussion of the previous paragraph in mind, we see that Sy < V], where 1]
denotes the number of solutions of the equation

W B) S = i) + S )

with z, w, b, ¢ satisfying (7.6), and subject to the condition that for 1 < j < s one has
(7.22) mj, n; monic, P! < {mjy, <njy < min{Q, PR},
(m;, W' (z:0)) = (n;, ¥’ (w;€)) = 1,
uj € o/ (Q —ordm;, R), vje.o/(Q—ordn;,R).

Now define F,,(o; P) = F,,(o; P; ) by putting

Fou(o; P) = Y- e(e¥(2; b)),

z,b

where the summation is over z and b satisfying (7.6) subject to the condition that
(m,¥'(z;5)) = 1. Also, write

Fi(a) = f(m;‘oz; 0 - ordmj,R)f(—nj‘oc; Q—ordn,R) (1=j<5s).

Then it follows from orthogonality that

(7.23) V< inFM(oc P)Fy(~2; P)HIF(oc)

where here, and in what follows, the summation over m and n is subject to (7.22), and we
have written M =m;...myand N = ny .. .n,

We next write
X;(o) = |Fas(a; P)*f (mfa; Q — ordmy, R)™)|
and

Y;(%) = [Fw (e P)*f (nfo; Q — ordny, R)™|.
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Then it is apparent from (7.23) that

(57 () " d

Sa< X |

m,n

so that by Holder’s inequality,

(7.24) Si < 1] ( [ X;(x) doc)l/(ZS) ( [ Y(=) doc)l/(zx).

m,nj=1 \T T
Now observe that

4%(a) do é W(P7 Q7 R7 mj) and 4%(“) do é W(P7 QaR;nj)7

where we write W (P, Q, R;m) for the number of solutions of the equation

(7.25) W(z; b) + m (uf + - +ub) =F(w;¢) + m* (o + - 05,

S

with z, w, b, ¢ subject to (7.6), and with w;,v,€ /(Q—0P,R)(1<j<s5s) and
(¥'(z;b),m) = (W' (w;¢),m) = 1. Then, on applying Hélder’s inequality on the right-
hand side of (7.24), we obtain the estimate

1-1/(25) R 1/(2s)
(7.26) Sy« (Z 1) (2 [1(W(P,Q,R;m))W(P,Q,R; nj))>
m,n mnj=1
< (P"R*7'V(P,Q, R;0),
where V' (P, Q, R; 0) denotes the number of solutions of the equation (7.25) subject to (7.6),

(7.8), (7.9) and the conditions (¥'(z;b),m) = (¥'(w;¢),m) = 1. We now seek to establish
that

(7.27) V(P,Q,R;0) <« P°C,T|(P,Q, R; ),

for on substituting this bound into (7.26), we obtain
Sy(P, Q,R) « P*C.(P’R)* ' T(P, O, R; 0),
and this confirms (7.11) in the fourth and final case.

For a given polynomial m satisfying (7.8), let &(m;u; b) denote the set of solutions z
of the congruence ¥(z; b) = u (mod m*), with {z) < {m*» and (‘P’(z; b), m) = 1. Consider
an irreducible factor @ of m, and suppose that @ || m*. An application of Hensel’s Lemma
(see, for example, [10], Lemma 5.21), shows that card(o@(wh; u; b)) < 0, where 0 is the de-
gree of W. Applying the Chinese Remainder Theorem and recalling Corollary 7.2, therefore,

we deduce that

(7.28) card(& (m;u; b)) < I« (me.
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Consider a solution of (7.25) counted by W(P, Q, R;m). Motivated by the observa-
tion that W(z; b) = ¥(w; ¢) (mod m*), we classify the set of solutions according to the resi-
due class modulo m* of W(z; b). Let

gm(b) = 3 e(a¥(zb))

and

2

Gm(‘x) = Z Z Z gm(a; & b) )

ud<imd*l b Leé(m;u;b)

in which here, and in what follows, the summation over b is subject to (7.6). Then on re-
viewing the definition of V' (P, Q, R;0), we find that

(7.29) V(P,Q,R;0) < S Vi,
PO<(my<min{Q, P'R}
where
(7.30) Vin = [ Gu(a)|f (m*o; Q — 0P, R)|* do.
T

We now apply Cauchy’s inequality in combination with (7.28), thereby obtaining the
estimate

Gp(2) < <m>gér Yoo 2 gmles§ b>|2

uy<(md* b Led(m;u;b)

<my*C, Y Y lgm(os (b))
b (y<my*

On substituting this bound into (7.29) and (7.30), we consequently deduce that
V(P,Q,R;0) < P°C,Y,
where
r=_ 3 S X [lgm(oaGB)Y (mFo @ — 0P, R)*|do.

PV<{my<min{Q,P'R} b (O<(m)* T

A comparison of the equation underlying the right-hand side of the last relation with
(7.7) reveals that Y < T (P, Q, R;0). The desired bound (7.27) follows at once, and as we
remarked earlier, the latter confirms (7.11) in the fourth case. This completes the proof of
the lemma.

8. The efficient differencing process

The role of the fundamental lemma (Lemma 7.4) is to relate the mean value
Ss(P,Q, R) to the derived mean value T,(P, Q, R;0), the latter containing the relatively
powerful congruence condition (7.10). We now exploit this condition by engineering a dif-
ferencing process more efficient than that available via conventional Weyl differencing. In
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order to discuss this efficient differencing process, we define the modified forward differenc-
ing operator Aj by

AL (f(2)shim) = m™*(f (2) = f(z — hm")),
and then define A; recursively by
A (fE)ihs e hism, i) = AL(A(f(2)5 by s, omyg ) by mya).
It is convenient also to adopt the convention that Ag(f(z)) = f(z).

While in characteristic zero, the differencing process effectively decreases the degree
of the polynomial argument by precisely one, the situation in positive characteristic is
more subtle. It is therefore useful to define the g-difference degree of a polynomial f(z)
with coefficients in F,[] to be the largest natural number y for which A} (f(z); h;m) is not
identically zero as a polynomial in z, h, m. We write y(f(z);¢) for the g-difference degree
of the polynomial f(z). In addition, when confusion is easily avoided, we write y(k; ¢) for
7(z*; q). The following lemma shows that y(k; ¢) may be conveniently evaluated in terms of
the sum of digits function y,(k) defined in the preamble to the statement of Theorem 1.1.

Lemma 8.1.  When k is a natural number, one has y(k; q) = y,(k).

Proof. Let the characteristic of F, be p, and write k in base p in the shape
k=a,p"+---+ap+ap, where 0 <a; < p—1(0=i=<n)and a, +0. We seek to show
that y(k;q) = ap +a; + - -- + a,, and this we achieve by induction. Observe first that if
74(k) =1, then k = p" for some non-negative integer n. In such circumstances one has

Q"3 hym) = m* (2" — (z = hm*)"") = (1) R )

which is not identically zero as a polynomial in z, A and m. Thus we see that y(k;¢) = 1
when y,(k) = 1, and so the basis for our induction is established.

Suppose next that y,(k) = 2, and that y(/;¢q) = y,(/) for each natural number / with
| < k. By the binomial expansion, one has

k—1 . .
A1 ("5 hym) = Z%(—l)kﬁ+1 i(h,m)z’,
]:

k 4 )
where we write fj(h,m) = (j)h"fmk(kf‘). When 0 < j < k, write = t(k, j) for the
(f) . Then we have

non-negative integer satisfying p*
(-G -[5]) -2 (G- 5 - 6))
T= —| = |L| - = A T -3,
hzl([ph] [p” P ;; p" p" P

k
where, as usual, we write {} for f — [f]. It follows that (]) is coprime to p if and only if

J has the shape j = b,p" + -+ bip + by, with 0 < b; < a; for 0 < i < n (this in fact fol-
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lows from Lucas’ criterion). Writing ./"(k) for the set of integers j with 0 < j < k — 1 for
which the latter condition is satisfied, we therefore deduce that

A(shm) = 5 (=) T f(hm)z .

jeN (k)

Furthermore, each term in the latter sum is non-trivial as a polynomial in z, 4 and m. In
view of our inductive hypothesis, therefore, one has

kiq) =1 q) =1 ).
(ks q) +jgf}(>;()y(17q) +jgg(>;()yq(1)

Moreover, since y,(k) = 2, there is some element j of 4"(k) for which y,(j) = y,(k) — 1,

and so we conclude that y(k;¢q) = 1+ (y,(k) — 1) = y,(k). This establishes the inductive
step, and so the proof of the lemma is complete.

Before discussing the efficient differencing process itself, we pause to summarise
Lemma 7.4 in a form tailored for the task we have in mind. When j is a non-negative inte-
ger, we define the polynomial W;(z; h;m) =¥, (z; hy, ..., hj;my, ..., m;) by putting

Wi(z;h;m) = Aj(zk;h;m).

For each integer j with 1 < j < y,(k), one may write ¥} ; (z; h;m) in the form

k—j—1
(8.1) W i (zhm) =khy .. by Y Wy (hm)z,
where, for 0 </ < k — j — 1, the polynomials wlj(h m) = zp,’; (hi,...,hj;my, ..., m;) have
coefficients in [,[¢], and are of degree k — j— 1 —/in h and m. We observe that ; ;(h;m)
may be written as a polynonnal in h,mf (1 < r £ ), say ¥y ;(hym) =y, ;(hymf, .. h mk)

When 0 < r <, let JJ( . denote the set of indices / for which 71.7(€) does not depend explic-
itly on &y, ..., ¢&;. Here, we adopt the convention that f( )= {0,1,...,k— j—1}. Thus,
in particular, the indices / € f ., make no contribution on the right- hand side of (8.1).

We now abbreviate y, (k) simply to y, and when 1 < i <y, we take ¢; = ¢,(s, k) to be
a parameter chosen in due course, but satisfying 0 < ¢, < 1/k. When 1 < j <y, we then
put

(8.2) Q=¢+ -+¢, Mj=¢P, H=P—kM; and Q;=(1—P;)P.

The parameter intervals [C/, C;] (1 <i < r) of §7 are now interpreted as (M;, M; + R] and
0,H;) (1 =i <), with r = 2] We write X; for the set of 2j-tuples of polynomials (m, h)
with M; <<m><MRand1<<h><H (1 <z<]) When 1 £ u <1<k, let®Mde-
note the set of polynomials y; ;(&) with / € f;( k\jﬁc Y and write 2 Ei=0,,U- 00, .
Next define &, j to be the set of elements (m,h) e X; satisfying the condltlon that

y(hm¥, . h wm, ) = 0 for some y € E,. We thenputéﬂ D1 j DIV D and de-
fine €; = X;\ 6. In this way, we ensure that when ‘P (z3h;m) is con51dered as a polyno-
mial in z, then whenever (m, h) lies in %, every coeﬁ‘iment of ‘P’  that could conceivably
be non-zero is indeed non-zero.
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Next we define
Fi(o) = 32 (0¥ (z; bym)),
z,h,m
where the summation is over z, h, m with 1 < (z) < P and (m,h) e %;. Finally, we write
Ss(P, O, R;¥;) for Sy(P,Q,R;¥;k;%;), and do likewise with the counting functions T
and N,.

Lemma 8.2. Let y be a positive number with n < 1, and suppose that R is a parameter
satisfying P/log(2P) < R < nP. Then whenever s is a non-negative integer and 0 < j < 7,
one has

(8.3) Sy(P, 0y, R; W¥)) < P'R™ "WH;M;M}} ' Ty(P, O, R; ¢1; ¥)).

Proof. Our strategy is to establish by induction that for each natural number s the
upper bound (8.3) holds. For the sake of convenience, write 0 = ¢;_,, so that P’ =M;,,.
We begin by establishing a basis for the induction with the case s = 0. Observe that
So(P, Qj, R;'¥;) counts the number of solutions of the equation

(8.4) W¥i(z;h;m) =Y;(w; g;n),

with (z),{w) < P, (m,h) € 6; and (n,g) € 6. By exchanging the order of differentiation
and differencing, one sees that ¥ i (z;h;m) = k¥ ;1 (z; h;m), and so it follows from the
discussion in the preamble to this lemma that when (m,h) € %;, then ¥} ; (z; h;m) is a non-
trivial polynomial in z, though possibly constant (i.e. a non-vanishing polynomial only in A
and m). But the latter implies that ¥, x(z; h; m) is also a non-trivial polynomial in z, and of
degree at least one. Fixing choices of (m, h) € 6; and (n, g) € %;, therefore, we find that for
each fixed choice of w there are at most k — j possible choices for z satisfying (8.4). We
consequently find that

(8.5) So(P, Q;, R; ;) < P(H;M;R’)".

The quantity To(P, Q;, R; 0;'¥;), on the other hand, counts the number of solutions of
the equation

(8.6) W)(z; h;m) =¥ (w; b;m),

with {z),(w) < P, (m,h) e %, MJH <<Lm) £ mm{Qj, ,+1R} and z = w (modmF).
Counting only the diagonal solutions of (8.6) with z = w, we find that

(8.7) To(P, Q;, R; 0;¥)) > PM;. H;M;R™"".
A comparison of (8.5) and (8.7) reveals that
So(P, 0, R;¥)) « H;M;R'™"M;} To(P, Q), R; 0; ¥;),
and this confirms the estimate (8.3) in the case s = 0.

Next, we suppose that (8.3) has been established with s replaced by u, for each non-
negative integer u with u < s, and we consider the conclusion of Lemma 7.4 with 6 = ¢, ;.
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First consider the term S;(P, 0P, R;'¥;). Note that since 0 < ¢, <1/k (1 <i<j+1) and
j<y=k,onehas 1 — (¢, +- -+ ¢) 1 — j/k = 0. 1t therefore follows from (8.2) that
0P < Q;, that Pl < Q], and hence also that P20 < Q] i+1. Then on interpreting the equa-
tion underlying S,(P,0P, R;¥;) (v==s—1,s) in integral form, and applying a trivial esti-
mate for the generating functlon f(o; 0P, R), we obtain the bound

Sy(P,0P, R;'¥)) j|F o; 0P, R)*| do

< Q;M;1S; 1 (P,0P, R, Y;).

But S;_(P,0P,R;Y;) = S,_1(P, 0;, R;¥)), and so it follows from our inductive hypothesis
that

(8.8)  Sy(P,0P,R;W)) « P'R* *WH;M;M} >0, T, (P, 0, R; 0; V).

A consideration of the semi-diagonal solutions of (7.7) counted by T(P, Q;, R; 0;¥;), in
which u, = vy, in combination with the conclusion of Lemma 7.3, consequently reveals that

(89) (P QJ,R 0 Y. ) > gfl(P, Qj,R; 9, le)

/+1
Now combining (8.8) and (8.9), and noting that Q, +1M i1 = Qj, we arrive at the upper
bound ‘

(8.10) Sy(P,0P, R; ¥)) < P*R* " H;M;M}}'T,(P, Q;, R; 0;'¥).

Next we consider Ny(P, Q;, R;'¥;). If z, w, h, g, m, n, x, y is a solution of the equation

s

Wiz h;m) = ¥;(w; g;m) = _Z;(Xf —vf)
i
counted by Ny(P, Q,,R ¥;), then one has ¥;(z;h;m) =¥;(w;g;n) =0, and (m,h) € %;
and (n,g) € ;. As in the discussion above concerning the equation (8.4), the polynomlals
¥/(z; h;m) and ¥/ (w; g; n) are non-trivial in z and w respectively. In particular, if either is a
constant polynomial in terms of the respective variables z and w, then that constant is non-
zero. It follows that for fixed choices of (m,h) € ¢; and (n, g) € %;, there are at most O(1)
possible choices of z and w. On interpreting the number of solutions of the underlying equa-
tion in integral form and applying the triangle inequality, we therefore conclude that

(8.11) Ny(P, 0, R; ;) <« (H;M;R')? [| f (o Oy, R)| > dav.
T

If xe/(Q;,R), then either (x) < P’ or else x has a divisor m with
P? < {m) < PYR. On considering the associated equations, one therefore finds that

(8.12) gﬂwgmmFM§gmwwm

where we write

f(OC) = f(OC, AljJrl ) R) + Z f(amk7 Qj+1 ) R)

M <{my<Mj; R
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On considering the underlying equation, a change of variable yields the estimate

> J1f (0m*; Qji1, R)[* dor <« M1 RSo(Qj41, R),
M <{my<MjaRT

and so a trivial estimate for |/ («; M;;1, R)|, in combination with an application of Holder’s
inequality, leads from (8.12) to the bound

1/ (5 0y, R)|* do < szi1 + (Mj+1R)2SSs(Qj+17R)-
T
On recalling (8.11), we therefore arrive at the relation
(8.13) Ny(P, 0, R W)) < (H;M;R')* (M1 R)*'Sy(Q;:1, R).

Next, on considering the semi-diagonal solutions counted by T (P, Q;, R; 0;'¥;) in which
z = w, we obtain the lower bound

TS(P, ij R; 0; lP]) > Pﬁij+1Rj+lSS(Qj+1 R R)
A comparison with (8.13) consequently leads to the upper bound

(8.14)  Ny(P,0;, R;¥)) « P'R* "WH;M;M}\ ' Ty(P, 0, R: 0;'F)).

We now come to the third term on the right-hand side of (7.11). On recalling the in-
ductive hypothesis, it follows from (8.9) together with the relation Q; | M;,| = Q; that

(8.15)  Q;P"S.y(P,Q;, R;Y)) <« P¥R*VH;M;M> ' T,(P, 0, R; 0;¥;).

We therefore conclude from Lemma 7.4 in combination with (8.10), (8.14) and (8.15) that

SS(P, Qj7 R; “Pj) < P38}A{2S71+]}~IJ‘M/'M]-_'S_II T;(P, Qj’ R; 0; le),

and this suffices to establish the inductive step. The desired conclusion (8.3) now follows for
every non-negative integer s, and this completes the proof of the lemma.

The conclusion of Lemma 8.2 enables us to bound the mean value S,(P, Q;, R;'¥;) in
terms of 7(P, Qj, R; ¢;.1; '¥;). We now complete the efficient differencing step by relating
TS(Pa Q]a Ra ¢j+1 ) le) to Ss(Pa Qj+1 ) Ra \Pj+l)~

Lemma 8.3. Let 7 be a positive number with n < 1, and suppose that R is a parameter
satisfying P/log(2P) < R < nP. Then whenever s is a positive integer and 0 < j < y, one has

(8.16) Ty(P, Q) R; ¢;,15¥)) < P""RITH; M;41S,(Qj11, R)

+ (S3(Q141, R) P (Sy(P, Op1, R W, 1)) 2

Proof.  We begin by noting that 7(P, ), R; ¢;,; '¥;) counts the number of solutions
of the equation

N
(8.17) V,(z; h;m) — P (w; by m) = m" 2@4‘ —0by,
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with
(8.18) (5 Y <P, (mb)eE,
and with
(8.19) mmonic, M, < (m) < mm{Qj, M; .\ R},

(820)  w,vie A (Qp1,R) (1Li<s) and z=w (modm").

The last condition may be 1nterpreted by writing w = z — hm* for some he[F glf] with
¢hy < max{{z), (wdImd* < H i+1. Let Uy denote the number of solutions of (8. 17) with
(8.18), (8.19) and (8.20), where in addition one has z = w, and let U; denote the corre-
sponding number of solutions for which w = z — hm* with (m, m;h,h) € &11. Also, let U,
denote the number of solutions of the equation

(8.21) W, (z; b m) — ¥y (z — hm; b m) = i@—u)

with z, h, m, m, u, v subject to (8.18), (8.19) and (8.20), and subject also to the condition
that (m,m; h,h) € €;,. Then it follows from the above discussion that one has the upper
bound

(8.22) Ty(P, Qj, R; ¢;,.1;F)) < Up + U + Un.
In view of the definition of U, the estimate
(823) Uy « ijMj+1Rj+ISS<Qj+1,R)

is immediate from (8.17)—(8.20). Next we consider U;. For a fixed choice of m and
h with (m,h) € ¢;, any polynomials m and h with (m,m,h h) e éf}-H necessarily satisfy
the condition that y(mmk, ... h; m ,hm*) =0 for some yeZE;;, and further that
v(hymf, ..., lmf) % 0 whenever v & 2 E;. A consideration of the relative degrees of terms in-
volving m and h and m and h, reveals that whenever (m,m, h, h) € &1, then for each fixed
(m, h) € %;, the polynomial hmk must be a zero of some one of O(1) polynomials of degree
at most k. There are consequently at most O(1) possible such choices for zm* for each fixed
choice of (m, h) € %;. For each fixed choice of the non-zero polynomial sm*, moreover, it
follows from Corollary 7.2 that the number of available choices for / and m is O(P?).
Given a fixed choice of w, it is a consequence of the foregoing discussion that there are at
most O(1) choices for z with w = z — hm* counted by Uj. Interpreting the equation (8.17)
in terms of an associated integral and applying the triangle inequality, we thus conclude
that

(8.24) Uy« P"H;M;R’  max J1f (am®; @1, R)* dox
/+1<<m><M,+1R T

= P""H;M;R/S,(Qj:1, R).
Next we observe that

m*k(‘I’j(z;h;m) —Wi(z — hm"; b sm)) = W1 (z;h, hym,m).
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On interpreting the equation underlying (8.21) in integral form, we therefore deduce that

Uy < [ Fpa(9)[f (0 Qji1, R da
T

By Schwarz’s inequality, we thus arrive at the upper bound

1/2

1/2
(825)  Us <« (4 (5 0o, R doc) @m(@zf(a; 01, R | doc)

= (S4(Qja1, R) P (Sy(P, Qj11, R W;1))

The desired conclusion (8.16) follows on combining (8.22), (8.23), (8.24) and (8.25).

9. Permissible exponents

The application of Lemmata 8.2 and 8.3 in sequence permits us to estimate
Ss(P, O;, R;Y¥;) in terms of Sy(P, Qj11, R; ¥;11), and thereby a kind of differencing opera-
tion is executed inside the associated mean value. On recalling that W((z) = z*, it is evident
from a comparison of (7.2) and (7.4) that S,y1(P,R) < Sy(P, P, R;'¥y), and so we are able
to apply the aforementioned differencing argument to obtain estimates for S,(P, R) for
successive values of u. The goal of this section is to obtain estimates of the shape
Ss(P,R) « P7te valid for suitable exponents A, when R is suitably small. In this context,
and in what occurs henceforth, it is useful to introduce the following convention concerning
the numbers ¢ and R. Whenever ¢ or R appear in a statement, either implicitly or explicitly,
we assert that for each ¢ > 0, there exists a positive number #,(¢, s, k) such that the state-
ment holds whenever R = nP, with 0 < n < #5,(¢,s, k). Note that the “value” of ¢, and 7,,
may change from statement to statement, and hence also the dependency of implicit con-
stants on ¢ and #. Notice that since our iterative methods will involve only a finite number
of statements (depending at most on k, s and ¢), there is no danger of losing control of im-
plicit constants through the successive changes implicit in our arguments. Finally, we use
the symbol =~ to indicate that constants and powers of R and P¢ are to be ignored.

We say that the exponent A, = A, «(q) is permissible whenever, with the convention
described above, one has S;(P, R) « f’i“'“, wherein we write A, = 2s — k + A,. We may in-
terpret what it means for the exponent A; to be permissible as follows. Whenever ¢ > 0 and
7, 1s a positive number sufficiently small in terms of ¢, then for all positive numbers P suffi-
ciently large in terms of ¢, ¢, #, s and k, one has

J1f (o P, R)|ZS do, « P htActe,
t

Notice that by making use of a trivial estimate for f(o; P, R), it follows easily from the lat-
ter bound that permissible exponents A; may always be assumed to satisfy the inequality
A £ k. In addition, the sequence of inequalities

P¥ < S [|f (o P,R)|Pe(—ah) dou < P* [|f(x; P, R)|* dot
Khy<pPrT T

ensures that A, is necessarily non-negative. The next lemma supplies permissible exponents

when s is 1 or 2.
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Lemma 9.1. One has Si(P, P) < P and S,(P, P) « Pt

Proof- The first inequality claimed in the statement of the lemma is trivial from or-
thogonality. For the second, we observe that S,(P, P) is bounded above by the number of
solutions of the equation

(9.1) (x1 — y) (T x5 4y =X k)

with {x;,{y;> < P (i=1,2). For each fixed choice of x, and y, with x¥ + y¥ both
x1 — y1 and xF 71 4+ xf 2y + - 4 pf~! are divisors of the non-zero element of F,[7] given
by x5 — yé‘ . Fixing any one of the 0(133) possible choices of these divisors, say d; and d,
respectively, one finds that x; = y; + d|, whence

(1 + dl)kil +(n +d1)k*2y1 4+ 4 y{“l =d.

The latter polynomial equation contains the leading term ky¥~!, and since throughout we
assume that the characteristic of F, does not divide k, we find that y; is determined by
a non-trivial polynomial of degree k — 1. Consequently, there are at most k£ — 1 possible
choices for y; and hence also for x;. There are therefore at most O(P>*) solutions of
(9.1) counted by S, (P, P) in which x§ # y%.

When x5 = y¥ meanwhile, one has also x{ = y¥. In this situation, given a fixed
choice of y; and y»,, there are at most k£ choices each for x; and x;. The number of so-
lutions of this type counted by S,(P,P) is therefore at most O(P?). The upper bound
SH(P, P) < P> follows at once on combining this contribution with the one bounded in
the previous paragraph.

It follows from Lemma 9.1 that one may take Ay =k — 1 and A, = k — 2 as per-
missible exponents. We note that it is reasonable to conjecture that the exponent
A, = max{k — u,0} is permissible for each positive integer u. The next lemma delivers a
bound for permissible A, obtained through our efficient differencing process.

Lemma 9.2. Write y = y,(k), and let r be a fixed natural number. Define the real
numbers 0, Ag and I, inductively by defining 6, =0, Ay =k — 2, 7, =2, and when s > 2 by

taking
1 1 1 k—A !
93' =—+(+— )
k+ Ay k  k+ A 2k

AS = As—l(l - 0»\) +k03 o 1’

and
As =25 — k+ A,
Then the exponent A; is permissible for 2 < s <r. In particular, given ¢ > 0, there is a

positive number 1, =1no(e,r,k) with the property that whenever 0 <n <mn,, one has
Sy(P,nP) < P*+¢,
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Proof. We establish the desired conclusion by induction on s. The conclusion of the
lemma for s = 2 follows at once from Lemma 9.1. Suppose then that the conclusion of the
lemma has been confirmed when 2 < s < u. We apply Lemmata 8.2 and 8.3 to bound
Su+1(P,nP) by making use of the trivial upper bound S, i(P,nP) =< S,(P, Qo, R;¥y),
with R = nP, Qy = P and ¥, = z*. With each application of Lemma 8.3, we make a choice
for the associated parameter ¢;, in such a manner that the two terms on the right-hand
side are of similar order of magnitude, thereby optimising the ensuing upper bound for
T, (P, Qj; R; §;.1;'¥)). In view of the inductive hypothesis and our conventions concerning
¢ and R, this choice for ¢, supplies the bound

(9.2) T.(P, O, R; §;11; ¥)) < IA’HCI:I_,‘M;'HQJ%-
We begin this process with j=7—1, and in this way successively define ¢; for
j=v,v—1,...,1. At the final stage we are able to extract the desired upper bound for
Su(P, Qo, R; Wo).

We begin by considering the mean value associated with the equation (7.4), and ob-
serve that by making a trivial estimate, one obtains

Su(P, 0y, R;Y,) < PP H]MS,(0,, R).
An application of Lemma 8.3 now reveals that
(9.3) T(P, 0y 1, R: i ¥, 1) < Ty + T,
where
Ty =P'""H, |M,S,(0Q,,R)
and
12

Ty = (S.(0,, R)) " (P**H>M?S,(0,, R))

In order to minimise our estimate for 7,(P, Q,-1, R; ¢,;'¥,_1), we make a choice for ¢, in
such a way that 77 ~ T», that is

PH, \M,S,(0,,R) ~ PH,M,S,(Q,,R).

We therefore choose ¢, so that H, = 1, which is to say ¢, = 1/k. Applying the inductive
hypothesis for S,(Q,, R), we deduce from (9.3) that

Tu(P, Qy717R; ¢y7 ‘nyl) < PIJFEI?V*lMVQA;M’
which confirms the estimate (9.2) in the case j =y — 1.

Suppose next that j = 0, and that we have fixed choices for ¢, when y =i = j+ 1,
and further that we have established the bound (9.2). The conclusion of the previous para-
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graph establishes such when j = y — 1. On substituting (9.2) into the conclusion of Lemma
8.2, we obtain the upper bound

Su(P, 0y, R Y)) <« P M7 HIM; Q.

Substituting this bound into the conclusion of Lemma 8.3, and applying the inductive hy-
pothesis for S,(Q;, R), we deduce that

(9.4) Tu(P, Qj—1, R; §;;Wj—1) < PX(T5 + Ts),

where

and
u A\ 1
Ty = (PMM HIM?Q! ) (012

We minimise our estimate for 7, (P, Q;-1, R; ¢;; '¥;-1) by choosing ¢; in such a manner that
T5 ~ Ty, that is

(PH;-1M;Q}")* ~ PM}{\ H} M} 0}, 07"

We choose ¢; so that
1+ lu(l - (D/) =2~ 2k¢j + 2“¢/+1 + /1,,(1 - (Dj - ¢j+1)7

or equivalently,

1+ (k= Ay)g;
2k '

¢j:

With this choice of ¢, it follows from (9.4) that the estimate (9.2) holds with j — 1 in place
of j, and this completes the inductive step.

Thus far we have fixed choices for ¢j (y 2 j = 1) via the relations

1+ (k - Au)¢j+1
2k

1 .
¢y:E and ¢; = (1=j=sy—-1).

It follows that for j =1,2,...,y, one has

b — 1 +1_ 1 k— AN\
T kA, \k k+A, 2k

In particular, we have

go L (L1 k— AN
"k A \k k+A)\ 2k
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With this choice of ¢; (1 < j <), it follows from (9.2) that
Tu(P, Qo, R; ; ¥o) < P'M, Q7.
We therefore deduce from Lemma 8.2 that
9.5) Su(P, Qo, R; Wo) « P MO,
and it follows that
(9.6) Sus1(P, R) « Phwite,

with 2,41 = 4,(1 — ¢) + 1 4+ 2u¢,. Thus, if we write 0, in place of ¢;, we find that the
exponent A, is permissible, where A, = A,(1 — 0,41) + k0,11 — 1. The conclusion of
the lemma now follows in all details.

We record a further consequence of the argument employed in the proof of Lemma
9.2 as an associated lemma.

Lemma 9.3. Define the exponents Ay (2 < s <r) as in the statement of Lemma 9.2.
Then one has

[1F(o; P (o; P, R) ™| dov « P51t (1 <5< 7).
]

Proof. We have only to observe that the upper bound (9.6) is extracted from (9.5),
so that in fact one has Sy(P, Qy, R; ¥y) « P*++¢. But the latter supplies the conclusion of
the present lemma.

The bound supplied by Lemma 9.3 has value in that two classical Weyl sums are pres-
ent in the mean value, yet the estimate available for this mean value is not diminished in
quality. Since classical Weyl sums are a valuable resource in analysing the major arc con-
tribution, this simple observation has considerable utility. By modifying the argument of
the proof of [28], Theorem 2.1, we are able to convert the conclusion of Lemma 9.2 into a
convenient form of essentially the same strength.

Theorem 9.4. Write y = y,(k), and let r be a fixed natural number. For each s e N
with 2 < s < r, define the positive number J, i by means of the equation

1 —-2s/k when k <2772
9.7 Os i +logds r = ’ = ’
67 sk EOsk {1 —(2-2""s/k, whenk >272
Then the exponent A, . = koy i is permissible for 2 < s < r. In particular, if we define

B {2s—k+kelzs/k, when k <2772,
’ 25 — k + ke ="2/k - ywhen k> 2772,

then one has Sy(P, R) < P» (2 <5 <)

Proof-  We prove the theorem by induction. We begin by noting that for each natural
number s, the exponent J; , satisfies the inequality 0 < J, x < 1. In addition, it is apparent
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that ¢ 4 logd is an increasing function of 6 when é > 0. In order to establish the conclusion
of the theorem, therefore, it suffices to prove for each fixed s that

(9.8) Sy(P, R) « p¥-k+ko e
with 0" a positive number satisfying the condition 0™ +logd™ < J; 1 + logds k.

Consider first the case in which s = 2. Lemma 9.1 supplies the bound S, (P, R) « P>,
so that Ay x = k — 2 1s a permissible exponent. Moreover, one has

1 - 2/k+10g(1 — 2/k) <1 —4/k <k +10g527k,

and so when s = 2 the upper bound (9.8) holds with 6" < 0, x. This confirms the desired
conclusion when s = 2.

Suppose next that the first conclusion of the theorem holds for the index s, and write
0 = 0, k. In addition, write 4 = 25 + 2 — k + A with

9.9) A=ko(1—¢) + ke — 1,

9.10) kg, :1%5+<1 —1%9 (12;5>y1.

Then it follows from Lemma 9.2 that Ay x = A is a permissible exponent and that
Ss+1(P, R) « P*. We therefore seek to prove that

and

(9.11) A/k +1og(A/k) < 051,k + 108051 ks
and from here the bound (9.8) follows with s replaced by s+ 1, and with 6" = ;1 x. In
view of our opening remarks, the first conclusion of the theorem will then follow by induc-

tion.

On substituting (9.10) into (9.9), we deduce that

B o 1=3 81 -9) (1—-a\
A= ko + k(1 -0) =1 = ko +—+——— ( 5 ) - 1.

On writing w = (1 —6)72!77, we therefore see that

A A 2—w 2—w
%+log<%> :5<1 _k(l +5)) +10g6+10g<1 _k(l +5))
2-w}o  2-w  (2- w)?
k(1+0) k(1+0) 2k2(1+9)

<J+logd—

2—-w (2 —w)?

<0+ logo— .
= T T T (1 1 0)?
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We now recall that 0 < § < 1, whence w < 277, Also, since y = 2, one has

2—w=2—-(1-0)72"722-(1-6)*)2 :%(1 +0)(3-9).
Thus we deduce that
%—Hog(%) §6+10g5—2;w— (38_k25)2'
It follows that for all values of y, one has
(9.12) AJk +log(A/k) <6 +1logd — (2 —2'7) /k,
and that whenever y satisfies the condition 27~ > k, then
(9.13) A/k +1og(A/k) =6 +1logo —2/k.

We now recall that 6 = J; «, so that from (9.7) and (9.13), one obtains
AJk +1og(A/k) =1 — (25 +2)/k = 051,k + 1080511 k,
when k < 2772, whilst for k > 2772, it follows from (9.7) and (9.12) that
Ak +log(AJk) £1— (2 =2"")(s+ 1)/k = Sss1.4 + 10g0s1 1.4

We have therefore confirmed the bound (9.11), whence the exponent Ay s = kdsi1 i 1S
permissible whenever A = kd,  is permissible. This establishes the inductive step, and
so the first conclusion of the theorem follows by induction. In order to complete the proof
of the theorem, we have merely to note that from the first part, the exponent Ay j is permis-
sible whenever A, x is a positive number satisfying

kel =2/k when k < 2772

Akl _ ; = ,

-14) As ke B {kel‘(z‘zu)s/k, when k > 2772,

But then 0 < A, x <k, and so the right-hand side of (9.14) provides an upper bound for
A k.

10. Estimates for smooth Weyl sums: preliminaries

The goal of this and the following three sections is to convert our newly obtained
mean value estimates for smooth Weyl sums into estimates for individual smooth Weyl
sums on the set of minor arcs p. In order to derive such estimates we adapt the argument
of [29], involving the use of the large sieve inequality, to the setting of F,[¢]. Before advanc-
ing in the next section to the pursuit of useable estimates, we begin in this section with some
preliminary manoeuvres.
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Lemma 10.1. When 0 € K., and m is a non-negative integer, one has

> e(bx) =

(xy<in

m, when ord||0| < —m,
0, when ord||0] = —m.

Proof. This is [14], Lemma 7.
When Q is a natural number, and 7 € F,[7] is irreducible, define
A (0,m) = {xeF[f] : <x) £ Q, w|x=wZn},

in which the relation X is that defined in the preamble to Lemma 3.1. Notice that
*(Q,n) € ./ (Q,ordn). The next lemma is an analogue of [22], Lemma 10.1.

Lemma 10.2. Suppose that R, M and Q are positive numbers, that y € </(Q, R), and
in addition 1 £ R < M < ord y < Q. Then there is a unique triple (7, u,v), with 7 irreducible
and v monic, satisfying the following conditions:

(i) y=u,

(i) ue o/*(Q — ordv,n),
(i) M <ordv < M + ordm,
(iv) m|o,

(v) whenever w is a monic irreducible polynomial with w|v, one has n X w and
ordw £ R.

Proof. Consider natural numbers R, M, Q and an element y € </(Q, R) satisfying
the hypotheses of the statement of the lemma. We begin by establishing the existence of a
triple (7, u,v) with 7 irreducible and v monic, and satisfying the conditions (i)—(v). Observe
first that when ye ./(Q,R), then in view of (2.2) we may write y = cw|w;...w,
with ceF;, and with ow; (1 <i<o0) monic irreducible polynomials satisfying
w Zwy = 2w, and ordw; £ R. Let

dy=1 and di= [[ w; (1=j=0).
Then
0=orddy < ordd; <--- <ordd, = ord y.

Since ordy > R and y € .&/(Q, R), one necessarily has ¢ = 2. But 0 < M < ord y, and
so there exists a natural number 7 with ordd, £ M < ordd,.;. Moreover, since
R < M < ord y, it is apparent that 1 < 7 < g. Consequently,

M < ordd,; = ord(dyw,+1) £ M + ord w4 .

We now take 7 = w1, v = d;41 and u = y/v, and observe that (7, u, v) satisfies all of the
conditions imposed on the triple in the statement of the lemma.
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Next we establish the uniqueness of the triple (m,u,v). Suppose that the triples
(7, u;, v;) (i = 1,2) both satisfy the conditions imposed on (7, u,v) in the statement of the
lemma, save that subscripts are applied to the variables in the obvious manner. If the two
triples are distinct, there is plainly no loss of generality in supposing that either 7; < 7, or
else that 7; = 7 and vy > vy. For i = 1,2, let w; denote the product of all the monic irre-
ducible factors w of y with @ > 7;. Then for i = 1,2, it is apparent that v; = nf”wi for some
exponent i; with h; = 1. If m; < 7y, then v, |wy, and so it follows from the condition (iii)
that

(10.1) ordv; = ordm; +ordvy > ordm + M.

But, also in view of the condition (iii), one has ordv; < M + ord ;. We therefore arrive at
a contradiction, and so we are forced instead to assume that 7; = 7, and v; > v,. The first
of the latter two conditions implies that w; = w,, whence the second leads us to the condi-
tion /; > hy. But then we once again obtain the inequality (10.1), contradicting condition
(iii) as before. We therefore conclude that the triples (7;, u;, v;) (i = 1,2) are identical, and
so the triple (7, u,v), whose existence is asserted in the statement of the lemma, is in fact
unique. This completes the proof of the lemma.

We next employ this combinatorial decomposition of the set .oZ(Q, R) so as to rewrite
smooth Weyl sums in a potentially bilinear form. In order to assist in this endeavour, when
M and R are positive numbers with 1 < R < M, and z is a monic irreducible polynomial
with ord 7z < R, we define (M, 7, R) to be the set of monic polynomials v € F,[#] for which
M < ordv £ M + ordz, | v, and such that whenever w is a monic irreducible polynomial
dividing v, then w =~ 7 and ordw < R.

Lemma 10.3. Let o€ K. Then whenever R, M and Q are positive numbers with
1 <R M < Qandre F,[t]\{0}, one has

S e(ax*) « R max  sup Vi(o; O, M, R;7m;0) + M,

xe/(Q,R) T :)rrrc‘f?rlgl}gle 0eT
(x,r)=1

where

Vr(a; Q)Ma R; n;&) = ) Z e(OC(HU)k +9u) .

Proof. We make use of Lemma 10.2 to decompose the smooth Weyl sum in ques-
tion in the form

(10.2) e(ax®y = 3 e(ax)+ 3 e(axk)
xe /(0. R) xe (O, R) xes(Q,R)
(x,7)=1 ordx<M ord x>M

(x,r)=1 (x,r)=1

<<M—|— ZT |VVr,n(O(;QaR)|7
ordn<R
(m,r)=1

where we have written
Wi z(2; O, R) = > e(oc(uv)k).

ve#B(M,n,R)ue.o/*(Q—ordo,n)
(v,r)=1 (u,r)=1



48 Liu and Wooley, Waring’s problem in function fields
But if we write

W, (20,0, M,R) = S ea(uv) + Ou),

then it follows that

o3 Q7 I 6; Qa M7 R) Z 8(—0)C) do
<X>§QA<UA>’1
We next observe that by Lemma 10.1, provided that {v)> < Q, one has

[l e(0x)|do= | qgOw>~1do = 1.
Tl 0wy Oy<g'0 >
Thus we conclude that
(10.3) W, (20, R) < sup|W," (a,0; 0, M, R)|.
0eT ’

On substituting (10.3) into (10.2), the conclusion of the lemma now follows on sum-
ming trivially over 7 and applying the triangle inequality.

11. Estimates for smooth Weyl sums: large moduli

The argument that we apply to estimate the smooth Weyl sum f(o; P, R) proceeds in
two phases. In one stage we apply the large sieve inequality to estimate f(o; P, R). This
treatment provides a satisfactory bound whenever o is well approximated by a ratio a/g
of polynomials with {g> small. In the second stage one applies a treatment employing bi-
linear sums that yields viable estimates in the complementary situation in which o is well-
approximated only by ratios a/g in which <{g) is necessarily large. In this section we tackle
the latter situation, beginning with an auxiliary lemma on bilinear sums.

Lemma 11.1.  Suppose that o € K., and that a and g are elements of F,[t] with g
monic, (a,g) = 1 and {go. — ay < {g)~ ! Then whenever C,D e N, one has

(11.1) 3 < CD({gy "+ C 4+ D+ {g(CD) ).

(H<C

> e(aced)

Kdy<D

Proof. We begin by observing that, in view of the conclusion of Lemma 10.1,
the inner sum on the left-hand side of (11.1) is either D or 0, depending on whether
ord|jac|| < —D or ord|jac|| = —D. Suppose that o, a and g satisfy the hypotheses of the
statement of the lemma. Then by dividing the range of summation for ¢ into arithmetic
progressions modulo g, we deduce that

(11.2) >

(ed<C

> e(occd)' =D X > 1.
{dy<D (wH<Cig)™! <<
ord||a(r+gw)||<—D

Consider a fixed choice of w € F,[7], and, if one exists, a fixed choice of r satisfying the
conditions imposed by the inner summation on the right-hand side of (11.2). If #’ is any
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other polynomial with {r") < {(g) that also satisfies ord||a(r' + gw)|| < —D, then necessar-
ily ord||a(r — r")|| < —D. Write o = a/g + f, and observe that

ord|ja(r —#')|| < ordlla(r — ') /gll + ord]|B(r — 1')]I.
Since by hypothesis, one has (f> < {g>~2, we see that
ord||f(r — ")|| = ord B + ord(r — r') < —2(ord g) + ordg = —ordg.
Meanwhile, when r # 1/, we have a(r — r’') £ 0 (mod ¢), whence ord||a(r — ') /g|| = —ord g.
We therefore deduce that, whether or not r % 1, one has ord||a(r — r')|| = ord||a(r — 1) /4|l
and that whenever r and ' both occur in the inner summation on the right-hand side of

(11.2), then necessarily ord|ja(r —r’")/g|| < —D. By rearranging the latter summation, we
therefore conclude that

(11.3) >

(eH<C

> e(occd)‘ <D X > L
d><D DH< gy~ <Ly
(D<b OI=C@ T dlahal e—

Since (a,g) = 1, it follows that as / runs over a complete residue system modulo g,
then so does ah. Suppose now that Ve [, (7] satisfies {y) < (g, and consider what it means
for ord||y/g|| < —D. When <{g) < D, one has ord| y/g| < —D if and only if ¢g|y. When

{g> > D, meanwhile, one has ord||y/g|| < —D if and only if (y) < <g>ﬁ_l. It follows that
y y y

there are precisely max{1, <g>ﬁ71} residue classes y modulo g for which ord||y/g|| < —D,
whence from (11.3),

2

(ed<C

5 e(acd>\ < D(1 4+ Cgy )1 +<g>D ™)
{dy<D

= CD({gy '+ C + D7+ (gH(CD) ).
This completes the proof of the lemma.

The next lemma, which provides upper bounds for f(«; P, R) of use when o is not
well-approximated by ratios a/g with {g) small, is established via an analogue of the argu-
ment used to prove [29], Lemma 3.1.

Lemma 11.2.  Suppose that A is a real number with 1/2 < J. < 1, and write M = 1P.
Let o € Ky, and suppose that a and g are elements of F,[t| with g monic, (a,g9) =1 and
{go — a) < {g>~". Then whenever I,w € N, and A; and A,, are permissible, one has

S (@ P, R) << PY (M (P/ M) M2 (g; P, M) ") 4+ 1,

where

Er(g; P, M) =g + M* + (P/M) " + (gHPF.

Proof. An application of Lemma 10.3 with r = 1 shows that there exists an irreduc-
ible polynomial 7 with ord 7 < R, and an element 6 € T, for which

(11.4) f(o; P,R) « R# (o) + M,
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where we have written
H(o) = > |h(x%0,0)],
ve/(M+R,R)
with
h(o;0,0) = S e(o(un)* + Ou).
ue.o/*(P—M,n)
Define the complex numbers of unit modulus &(v, #) by means of the relation

(o v,0)|" = &(v, O)h(x;v,0)"

Here we adopt the convention that when A(o;v,6) = 0, then we take ¢(v,0) = 1. Next,
when d € F,[f], we take r, to be the number of solutions of the equation u¥ + - - +uF = d,
with u; € o/*(P— M,n) (1 £i<1/), in which each solution u is counted with weight
e(0(uy + - -+ + ;). Thus we find that

h(e;v,0)" = S rge(ad®).
dy<(P/M)"
A swift application of Holder’s inequality consequently leads from here to the estimate

(11.5) H(a) « (MR |h(x0,0)|
ve./(M+R,R)

=(MR)"™" ¥ rb(e:d.0),

dy < (P/M)*
where we have written

blosd,0)= Y (v, 0)e(odv®).

ved/(M+R,R)

Now let n; denote the number of solutions of the equation uf + - -+ + uf = d, with
u; € o/ (P — M,ordr), counted without weights. Thus, in particular, for each polynomial
d one has |ry] < ny. A further application of Holder’s inequality leads from (11.5) to the
bound

0™ = (R (5 ) (£3) (0,

in which the summations on the right-hand side are over all polynomials d € [,[#], and
where we have written

(11.6) Jo@)= ¥ |b(wd,0)™
dy=(P/m)*
But by considering the underlying equations, it is apparent that
Sng < (qP/M)" and S n3 < S/(P— M,R),
d d

and hence

(11.7)  #(0)* « (PR (P/ M) (MR)™"S;(P — M, R)J,,(x).
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Next we write

o(—Ped) dp.

ne = “I)(ﬂ, d, 0)
T

Then it follows from orthogonality that 7. is equal to the number of solutions of the equa-
tion

k k
Z(Ui - Ueri) =,

with v; € /(M + R, R) (1 =i < 2w), wherein each solution v is counted with weight

w

11 e(vi, 0)e(vyii, 6).
i=1

Since |¢(v, 0)| = 1 for each v, an application of the triangle inequality, combined with a con-
sideration of the underlying equation, leads to the upper bound

ﬁc = ﬁO = SW(M + R>R)~
Thus it follows from (11.6) that

(11.8) Jo(l) = > > nee(acd) < S,y(M + R, R)% (),
dy<(P/M)* (ey < (MR
where

Ro)= > > e(acd)|.

(Y (MR)*Idy< (P/M)*

Applying Lemma 11.1 with C =k(M + R) + 1 and D = k(P — M) + 1, we obtain the es-
timate

(11.9)  2(2) < (PR (Kg>™' + (MR)™ + (P/M) ™ + {g>(PR) ™).

On collecting together the upper bounds (11.7), (11.8) and (11.9), and noting that A;
and A,, are permissible exponents, we arrive at the upper bound

() < PR((B/ M) Y (MR) ™ () /)
< P1+s((P/M)A1MAWEk(g;P’ M))l/(2lw).

The conclusion of the lemma now follows on substituting this bound into (11.4).

12. Estimates for smooth Weyl sums: small moduli

We now examine the smooth Weyl sum f(o; P, R) when « is well-approximated by a
ratio a/g in which {g) is relatively small. Here we apply a variant of Vinogradov’s method
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modelled on the argument of [29], Lemma 4.1. We recall and emphasise at this point that
we assume throughout that ch([F,) t k.

Lemma 12.1.  Suppose that A is a real number with 1/2 < /. < 1, and write M = AP.
Let o € Ky, and suppose that a and g are elements of F,[t| with g monic, (a,g9) =1 and
{ga—a)y < (Mﬁ)_k, {gy < (Mﬁ)k, and either {go.—a) = MP~* or {g> > MR. Then
whenever s is a natural number satisfying 2s = k + 1 and A, is permissible, one has

(5P, R) << PPM + P15 (M (/)™ (1 + <g>(P/ M) ™F)) /.

Proof. The bilinear decomposition that enables us to apply the large sieve in this
instance is a little more delicate than that applied in the proof of Lemma 11.2. We begin
by recalling the definition of the set %,(L) from the preamble to Lemma 7.1. Suppose that
o, a and g satisfy the hypotheses of the statement of the lemma. We observe that each
element y in o/(P, R) may be written uniquely in the form y = xd, with d € €,(P) and
x € o/ (P — ordd, R) satistying (x,g) = 1. The smooth Weyl sum f(o; P, R) defined in (2.3)
may therefore be rewritten in the shape

f(%P,R) = > > e(a(xd)).
de%,(P)ns/(P,R) xe.o/(P—ordd, R)
(x.9)=1

An application of Lemma 7.1 now reveals that
> e(uxd))|+ 3 P/

xe.o/(P—ordd,R) de%y(P)
(x,9)=1 ordd>P-M

Sl P,R) < >

de®%,(P-M)

e(a(xd)k) + P°M.

xe .o/ (P—ordd,R)
(x,9)=1

« P max
d ety (P—M)

When d € 6,(P — M), one has M —ordd 2 M — (P — M) = (24— 1)P > 0. It therefore
follows from Lemma 10.3 that there exists a polynomial d € ,(P — M), an irreducible
polynomial 7 with ordz < R, and an element 6 € T, such that

(12.1) f(o; P, R) « P*M + P*Rg(o;d, 7, 0),
where
(12.2)  g(wd,m,0) = 3 S e(a(uvd)* + 0u)|.
ve#B(M—ordd,n,R)lue .o/ *(P—M,n)
(v,9)=1 (u,9)=1

Let J(g,d,h) denote the number of solutions of the congruence (xd)* = h (mod g)
with (x> < <{g)> and (x,g) = 1. When (&, g) ¥ d*, one plainly has J(g,d,h) = 0. Suppose
then that (%, g) |d*, and write i’ = h/(h,g) and g’ = g/(h,g). Then J(g,d,h) is equal to
{(h,g)> multiplied by the number of solutions of the congruence

(12.3) x*d¥/(h,g) =h (modg"),
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with (x> < {¢g’>. Since (4’,¢’') = 1, the number of solutions of this congruence is at most
O({g'>?). In order to verify this assertion, observe first that for each irreducible divisor w
of ¢’, the number of solutions of the congruence x*d*/(h,g) = h' (mod w) is at most k.
Moreover, since any solution x of (12.3) necessarily satisfies (x,¢’) = 1, and ch(F,) f k, it
follows from Hensel’s Lemma that each solution of the latter congruence lifts uniquely to a
corresponding solution x modulo w’, for each natural number /. The Chinese Remainder
Theorem consequently ensures that the number of solutions of (12.3) with (x> < (¢’ is at
most k") and so the desired conclusion follows from Corollary 7.2. In this way, we de-
duce that

(12.4) J(g.d,h) < {g>*{(h,g)) < Lg>*<dHF.

Let 7~ denote the set of monic polynomials v with M/{d> < {(v) < MR/{d> and
(v,9) = 1. Then in view of the estimate (12.4), there exists a natural number L, satisfying
L « {g>*¢d>*, with the following property. The set ¥~ can be divided into L classes
4 1,.. VL such that, for any two distinct elements vy, v, in a given set ¥;, we have
(01d)* = (v2d)* (mod g) if and only if v; = v, (mod g). Let b, denote the number of solu-
tions of the equation u¥ + - 4+ u* = y with w; € o/*(P — M,n) and (u,9) =1 (1 2i <),
in which each solution u is counted with weight e(H(ul + -4 us)). Then an application of
Holder’s inequality to (12.2) yields the estimate

2
a(o5d,m,0)% < PCdY (MR/<dY)* ™" max 3

l=j=L vev;

> bye(a(vd)*y)

y=(P/M)*

The hypotheses of the statement of the lemma permit us to assume that 2s — 1 = k. It there-
fore follows that there is an integer j, with 1 < j < L, for which

2
(12.5)  g(o;d, 7, 0)* « PP(MR)* ' %

) 2
ve;

> bye(a(vd)’y)

YS(P/M)*

In preparation for the application of the large sieve inequality, we next consider the
spacing of the elements oc(vd)k in T for distinct elements v of ¥7;. Suppose that vy, v € ¥
satisfy v; % v, (modg). Then in view of our construction of the set ¥, one necessarily has
(v1d)* % (v2d)* (mod g), and hence our hypothesis that (a,g) = 1 ensures that

ord||a(( (v1d)* (vzd)k)/gH > —ordg.

Moreover, if we write f = o —a/g, then we may suppose that {gf) < (MR)fk. Since
de%,(P—M)andve #B(M —ordd, n,R), one obtains

ord||B((01d)* — (02d)")|| < (~k(M + R) — ord g) + k(M + R)
< ord||a((v1d)* — (v2d)") /9]|.

We therefore deduce that

ord|| (8 + a/g) ((v1d)* — (v2d)")|| = ord||a((v1d)* — (v2d)") /]|,
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whence
(12.6) ordHoc((vld)k — (vzd)k) | = —ordyg.

We now divide into cases, according to the size of {g). Suppose first that
{g> > MR/{d>. Since for v € (M — ordd,n, R), one has (v) < MR/{d>, it follows that
in this case the elements of ¥'; are necessarily dlstlnct modulo g. It therefore follows from
(12.6) that the points o(vd)* are spaced at least (g>~' apart in T.

Suppose next that (g < M R/ {d>. In this case we plainly have {g> < MR, and so
the hypotheses of the lemma permit us to suppose that {go. — a) = MP~*. On one hand,
if vj,0€7; satlsfy the condltlon v] % vy (modg), then it follows from (12.6) that the
points o(v1d)* and a(vyd)* are spaced at least gy ! apart in T. If v; = v, (modg) on the
other hand, then on recalling that {ga — a < (MR)™*, we find that

(12.7)  ord||a((v1d)* — (02d)")| = ord||(« — a/g)d* (vf — v%)]|
> M — kP — ordg + ord(d* (v} — v%)).

In order to obtain a lower bound for the final term appearing on the right-hand side
of (12.7), we begin by noting that

(12.8)  ord(d*(vf — v5)) = ord(v; — v2) + ord(d* ' (vf "+ of Py -+ 057)).
If v; # vy and v; = v; (mod g), we have

(12.9) ord(v; — vy) = ordg.

Further, if ord vy = ord v,, then since the elements of #; are monic, each term v{“l" vé has

the same degree and leading coefficient 1. Consequently, as an element of F,[¢], the expres-
sion vf~! + vk"2vy + -+ 4+ vA~! has degree (k — 1) ordv; with leading coefficient k (which
is, of course, not d1V1s1ble by ch(F,)). Whether or not ord v; = ord v,, therefore, we find
that when vy, v, € ¥7, one has

(12.10) ord(d* ' (vf '+ of Py + -+ 05 Y)) = max{ord(v;d)"", ord(vyd)* '}
> (k—1)M

On substituting (12.9) and (12.10) into (12.8), we see that
ord(d*(vf —v%)) = (k — 1)M + ordg,
whence by (12.7) we have
ord||e((v1d)* — (02d)")|| = —k(P — M).

In this case, therefore, the points a(v;d)* and «(v,d)* are spaced at least (P/M) ™" apart
in T.
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The prev1ous dlscuss1on shows that for v € 77, the points oc(vd) are spaced at least
min{{g>~!, (P/ M)~ } apart in T. We now apply the large sieve inequality for function
fields, as given by Hsu [12], Theorem 2.4, to deduce that

2

(1211) S| X be(a(vd)y)| « o>+ @/M)Y) X

ve il yy <(B/M)* Y (P/M)*

2
by

But on considering the underlying equation, and recalling that A; is a permissible exponent,
one has

ST |by|* £ Sy(P— M, R) « (P/M)* <At
Gy (/M)
On substituting the latter estimate into (12.11), and thence into (12.5) and (12.1), we deduce
that

S PLR) << P*M + (PR)* (/M) M~ (1 4 <g>(P/ M) ™)) /™.

The conclusion of the lemma is now immediate on recalling our conventions concerning &
and R.

13. Estimates for smooth Weyl sums: a uniform bound

The principal conclusions of the previous two sections can be combined to provide an
estimate for smooth Weyl sums of use no matter what range the modulus g may lie in. In
this section we derive such a bound, and also optimise parameters so as to obtain conclu-
sions asymptotically as strong as are attainable via our methods.

Theorem 13.1. Suppose that A is a real number with 1/2 < A< 1. Let o€ K,
and suppose that whenever a and g are elements of F,[t] with g monic, (a,g9) =1 and
{go.—a> < Pk then one has {g> > P*R. Then promded that [,s,we N satisfy
2s = k+ 1, and A;, A, Ay, are permissible exponents, one has

Pl P, R) < (P 4+ P10 4 P1Y),
where

k(1 —=2)—2A, — (1 = )A, and v:/l—(l—i)As'
20w 2s

'u:

Proof. For the sake of concision, let us write M = AP. By the function field ana-
logue of Dirichlet’s theorem on diophantine approximation (see [14], Lemma 3), given
a € T, there exist polynomials ¢ and g in F,[7] with g monic, (a,g9) =1, {g) < (M f{) and
{go—ay < (M R)” k For the latter pair of polynomials, we have, in part1cular the upper
bound {go — a> < {g>~'. Consequently, we may apply Lemma 11.2 to deduce that when
{g> > (P/M) one has

(13.1) f(P,R) « P1+s(If)/lA\.»+(1—).)A1(p—k(l—i) _,_p—kx))l/(le) 4 p?

« P*(P* 4+ P'7H).
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Suppose, on the other hand, that g < (P/M)". If {ga — a) = MP*, then the hypotheses
of the statement of Lemma 12.1 are satisfied. If {go — a) < MP~*, meanwhile, the hypo-
theses of the present lemma ensure that (g> > MR, and so the hypotheses of the statement
of Lemma 12.1 are again satisfied. We therefore conclude from Lemma 12.1 that when
{g> £ (P/M)k, then one has

(13.2) [ P, R) < P*(P* + P(PH17A0) /)
« P*(P*+ P'™).
The proof of the lemma follows on combining (13.1) and (13.2).
As is more or less apparent from the conclusion of Theorem 13.1, the optimal choice
of / is that satisfying the condition # = v. A modest calculation therefore leads to the fol-

lowing corollary.

Corollary 13.2. Suppose that [,s,w € N satisfy 2s = k + 1, and A;, As, A,, are permis-
sible exponents. Define A and o by means of the relations

o k— A — AA,
C2(s(k + Ay — A) + (1 + Ay))

and

sk — Ap) + IwA
(k4 Ay —A) +w(1+A)

A‘:
S

Suppose in addition that 1/2 < . < 1 — a. Then one has

sup |f(a;P,R)| < sup |f(a; P, R)| < P77"%
oaem(AP) aem(P)

Proof- The desired conclusion follows directly from Theorem 13.1 provided that one
is able to show that whenever « lies in m(P), then o satisfies the hypotheses of the statement
of Theorem 13.1. Consider then a point o in m(P). Suppose that ¢ and ¢ are elements of
F,[f] with g monic, (a,9) = 1 and {ga — a) < P*~*. If one were to have {g) < P, then nec-
essarily o € M(P), contradicting our earlier assumption that o € m(P). We are therefore
forced to conclude that {g)» > P > P*. Consequently, whenever o lies in m(P), then o sat-
isfies the hypotheses of the statement of Theorem 13.1. The proof of the corollary is com-
pleted on verifying that with the choice of A made in the statement, one has u = v = ¢ in
the conclusion of Lemma 13.1.

On making use of Theorem 9.4 to supply permissible exponents within this corollary,
we obtain a conclusion simple enough to use directly in subsequent applications.

Corollary 13.3.  Suppose that k and q are natural numbers with ch(F,) k. Define
y = 7,(k) as in the preamble to the statement of Theorem 1.1, and in addition define
B = B,(k) by putting

1 when k <2772,

B,(k) ="
(k) {(1-2»’)1, when k > 2772
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Then there is a positive absolute constant Cy with the property that, with the exponent a(k)
defined by means of the relation

a(k)_1 = Bk(Logk + BLogLogk + C4+/LogLogk),
there exists a positive number t satisfying t© < 1/2 for which

sup  |f(a;P,R)| < sup |f(xP,R)| « Plok+e
aem((1-7)P) aem(P)

Proof. We begin by considering the situation in which k is large. Put

1
(13.3) s = [EBk(logk—l—logloglogk—i— 1)—"

(13.4) W= BBk(loglogk + 1)-‘, and [ = [Bk/+/loglogk].
Then from Theorem 9.4, we find that the exponents A; and A;, are permissible, where
Ar = ke!"»/(BY < 1/loglogk and A} = ke' >"/(BY) < k/logk.

We also see from Theorem 9.4 that the exponent A; is permissible, where A; satisfies the
equation

(A} /k) +1og(A; /k) =1 — 21/(Bk).
But 0 4 logd is an increasing function of J, and so it follows that
Aj [k <1 —1/(Bk)+ 1/ (B*K?).
We therefore deduce that the exponents
(13.5)  A,=1/loglogk, A, =k/logk and A, =k —1/B+1*/(B%)
are permissible.

We next recall the conclusion of Corollary 13.2. Define the exponents A(k) and o(k)

by
SAW + IW'
(13.6) MR = = e A — A + (1 + A
and
(137) o'(k)_l =25+ Z(SAW + ZW)(I + As)

k—A — AA,

Then whenever 1/2 < A(k) < 1 —a(k), and in addition « satisfies the hypotheses of Theo-
rem 13.1, one has f(a; P,R) « P'=2%)+¢ But for sufficiently large values of k, it follows
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from (13.3), (13.4) and (13.5) that the permissible exponents in the previous paragraph yield
the formulae

(13.8) 2(sAy + Iw) = Blkloglogk(1 + O(1/+/loglogk)),
(13.9) k—A;—ASAw:é(1+0(1/\/10glogk))

and

(13.10) stk —Ar) + w(1 + Ag) + sA,, = s_; (1+ O(1/y/loglogk)).

On substituting (13.8) and (13.9) together with (13.3) and (13.5) into (13.7), we find that the
exponent o(k) satisfies the upper bound

olk) = ogkK + oglo + oglo .
(k) '< Bkl gk Bkl gl gk(l O(1/+/logl gk))

Thus, when £k is sufficiently large, there is a positive absolute constant C4 for which

(13.11) a(k)f1 < Bk(logk + Bloglogk + Cy4+/loglogk).

Likewise, now making use also of (13.10), we deduce from (13.6) that

1= (k) = Bl"il;fk (1+ 0(1/+/loglogk)).

When £ is sufficiently large, therefore, it follows from (13.11) that 1/2 < A(k) < 1 — a(k).
We may thus conclude that whenever k is sufficiently large, one has

(13.12) sup |f(w P,R)| = sup |f(x P, R)| < PI70T,
aem(iP) aem(P)

where o(k) satisfies the upper bound (13.11).

The argument up to this point is applicable for sufficiently large values of &, say for
k > ko. We now seek to establish an estimate of the shape

(13.13) sup |f(o; P,R)| « P'79,
oem(P)

for some positive number ¢, for each exponent k& with k& < ky. By suitably increasing the
size of the absolute constant Cy4 in (13.11), it follows from (13.12) that the estimate (13.13)
holds for all exponents k, and thus the conclusion of the corollary follows at once.

For simplicity, we now take D to be a sufficiently large, though fixed, positive number,
and we set

s = [9BDklogk + 1|, w=[BDklogk+1] and [=2.
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It follows from Theorem 9.4 that the exponents A} and A;, are permissible, where

A:« — kel—Zs/(Bk) < k—17D and Afv _ kel—2w/(Bk) < k_D.

Thus, on recalling the conclusion of Lemma 9.1, we find that the exponents Ay = k~177,

A, = k=P and A; = k — 2 are permissible. On substituting these exponents into (13.6) and
(13.7), and noting that D has been chosen sufficiently large, we obtain

2BDklogk+5 1
0<1—ak)s 22K08KTS 2
<1 =4k = —0BDK10gk <9

and
(13.14) o(k)"' <25+ w+ 1 < 21BDklogk.

On noting that the exponent A(k) satisfies the condition 1/2 < A(k) < 1 — a(k), we may
apply Corollary 13.2 to establish that (13.12) holds in the present situation, though now
with the upper bound (13.14) in place of (13.11). This conclusion confirms the desired esti-
mate (13.13), and the conclusion of the corollary now follows.

14. An upper bound for G,(k): the proof of Theorem 1.1

The conclusions of §13 enable us to establish minor arc estimates of the shape (6.1),
and from there we are able to bound G, (k) by means of Lemma 6.4.

Lemma 14.1. Let A(k) and (k) be defined as in the statement of Corollary 13.2, and
suppose that 1/2 < A(k) < 1 — a(k). Suppose also that v is a natural number with v = k — 1,
and that A, is a permissible exponent. Then whenever u is a natural number with
u>2v+ Api1/a(k), there exists a positive number o for which

[1F(0)?f (2)"] dox < P27k,
p

Proof.  We begin by recalling that p = m(P), so that the hypotheses of the lemma
lead from Corollary 13.2 to the upper bound

(14.1) sup | f(o; P, R)| « P'=o00)+%,

oep

Let w = [Ay41/0(k)] + 1. Then on combining (14.1) with the conclusion of Lemma 9.3, we
deduce that

J1FGF 0 dx = ((suplr 0] ) 1P () ds

P aep T

« (Isl—a(k)+s) wlszu+2—k+AU+1 +e

Since wa(k) > A,+1, it follows that there is a positive number ¢ for which
I|F(O()2f(oc)20+wld(x « p2l}+w+2_k_()‘.
p

The conclusion of the lemma now follows by making use of the trivial estimate | /()| « P.
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Observe that Lemma 14.1 establishes that whenever u > 2v+ A,y /o(k), and
u > 2k — 2, then u is accessible to the exponent k. It therefore follows from Lemma 6.4
that when s is an even integer with s =2 u+2, and m e J];‘[z], then %,(m;B) > P, But
under the same hypotheses, one finds from (6.1) that there is a positive number ¢ with the
property that

[ F(a)f (@) 2e(—um) do < P72 [|F(a)*f (2)"| dow « P77,

Consequently,
Rs(m; T) = Ry(m; B) + Ry(m; p) > P+ O(PF9) » psF,
We summarise this conclusion in the form of a theorem.

Theorem 14.2. Let A(k) and o(k) be defined as in the statement of Corollary 13.2,
and suppose that 1/2 < A(k) <1 —a(k). Suppose also that v is a natural number with
v=k—1 and that A, is a permissible exponent. Then whenever s is an even integer
with s > 20+ 2+ Ayy1/a(k), and m € J]é‘[t}, one has R(m) > (m>**='. In particular, when
A, (v = k — 1) are permissible exponents, one has G,(k) < ®©,(k), where we write

®,(k) = min (20 + 4+ 2[Apy1/(20(k))]).

v=k—1
Corollary 14.3. There is an absolute constant Cs with the property that

LogLogk v/LogLogk
<
G, (k) = Bk(Logk+LogLogk+2+Biogk + Csiog .

Proof. We apply the conclusions of Corollary 13.3 and Theorems 9.4 and 14.2 to
deduce that

(14.2) G,(k) = gl}inl <2v +44+2 B Bic2e'~(2v+2)/(B) (k) Log k} ) ’

where we write

LogLogk /LogLogk
P(k) =14 B2808% | ¢, V0B LOBK
Logk Logk

and with C; chosen to be a suitably large positive absolute constant. On taking

1 LogLogk

we find that

(o 1 LogLogk
el - vt/ (Bl) < _ 1 _po8ogk
¢ ~ Logk X Logk

1 2
_ | BLog Logk Lo (Log Loglzc) '
Logk Logk (Logk)
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The upper bound for G, (k) provided by (14.2) therefore becomes
G,(k) < Bk(Logk + LogLogk + 1 + BLogLogk/Logk)
+ Bk(1+ O(y/LogLogk/Logk)).

The conclusion of the corollary follows on taking Cs to be a sufficiently large positive ab-
solute constant.

On comparing the definition of B, (k) with that of 4,(k) given in (1.2), we see that
when k = 4, one has B, (k) = A, (k) for k > 2772, and B,(k) < A,(k) for k <2772, The first
conclusion of Theorem 1.1 consequently follows at once from that of Corollary 14.3. When
p = ch(F,) divides k, on the other hand, the relation G,(k) = G,(k/ch(F,)) follows on not-
ing that every sum of kth powers in F,[#] belongs to [,[¢’], and that when m € J ;‘ 7], the re-
presentation problem (1.1) may therefore be reduced to the simpler one

m; = x{(/p _|_x§/p + -+ XA{(/P’
where m; () = m(t). This completes our proof of Theorem 1.1.

We finish this section by remarking that it should be possible to adapt the methods of
[24] and [25] to the function field setting, at least when ch(F,) > k. With sufficient effort,
therefore, it should be feasible to establish under the latter condition that G,(5) < 17,
G,(6) =24, G,(7) =33, G4(8) <42, and so on.

15. An upper bound for Gq+ (k): the proof of Theorem 1.2

A modification of the classical argument familiar from Z yields a straightforward
proof of the upper bound for G;r (k) recorded in Theorem 1.2. We therefore economise on
details.

Lemma 15.1. Suppose that k and q are natural numbers with ch(F,) k¥ k. Let
Mk) and o(k) be defined as in the statement of Corollary 13.2, and suppose that
1/2 < A(k) <1 —a(k). Suppose also that v is a natural number with v =k — 1, and that
A1 is a permissible exponent. Then one has G, (k) < (ﬁ; (k), where we write

®, (k) = max{2k + 1,0+ 3+ [Ay41/(20(k))] }.

Proof- Let M be a large natural number, and suppose that v is a natural number
satisfying the hypotheses of the lemma. We put s = @;(k), and let (M) = Z, (M) de-
note the set of non-exceptional polynomials 72 in J fl‘[t], with ord m = M, that fail to admit a
strict representation as a sum of s kth powers. The set of exceptional polynomials may be
handled in like manner with trivial modifications to the argument, so we suppress addi-
tional discussion of this set. Next, defining P = [M /k] as in the preamble to the statement
of Theorem 1.1, we define (M) = Z; (M) to be the set of non-exceptional polynomials
m in J]é‘[t], with ordm = M, for which the equation (2.4) fails to possess a solution with
(Y £P(i=1,2) and yie A (P,R) (1 £ j=s—2). For the sake of concision, we write
Z*(M) =card(2*(M)) and Z(M) = card(Z(M)). Note that Z*(M) < Z(M), and
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hence, in order to establish the conclusion of the lemma it suffices to show that
Z(M)=o0(M)as M — 0.

Next we define the exponential sum
K(o)= > e(—ma).
meZ (M)
Then as a consequence of Lemma 5.4, one has
jF(a VTR () du = S Ry(m;N) > Z(M)PK.
meZ (M)

But if m e (M), then Z;(m; T) = 0, whence

[ F(2)*f ()" *e(—ma) dou + [ F(2)*f ()" *e(—mat) dow = 0.

%N n
Thus we see that

= gftF(aff(a)HK(a) do > Z(M)P*F.

[ F(2)f (2) K(a) do

An application of Schwarz’s inequality now yields

1/2

(15.1)  Z(M)P* « (J"|K |da>1/2<tj1"|F(oc)4f(oc)2‘y_4|doc)

In order to estimate the second integral on the right-hand side of (15.1), we begin by
noting that Lemma 14.1 implies that whenever

(15.2) 2s—4 > 20+ Ay Jo(k),
then there is a positive number ¢ for which
(15.3) [1F(2)?f ()| doe « PP27K2,
p

Under the same conditions, we therefore find that 2s — 4 is accessible to the exponent k,
whence Lemma 6.3 yields

(15.4) [ IF() ()4 do < P2k p-1/0),
RURE
Since 1= pu (P\N), the trivial estimate F(x) « P leads from (15.3) and (15.4) to the
upper bound
f|F (@) do < P2j|F 20(a) ¥ doy « PHRP 1K)

Finally, by orthogonality, the first integral on the right-hand side of (15.1) is equal to
Z(M). We therefore conclude from (15.1) that

Z(M)If)sfk « Z(M) 1/2(13257k I}*l/(k&)) 1/2,
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whence

Z(M) « PFV=1 &) « pp(log pr) =112,
We have shown in this way that Z(M) = o(M) as M — oo, and from this, in view of our
earlier comments concerning exceptional polynomials, it follows that G; (k) < s. The proof
of the lemma is completed by reference to (15.2).

We note that one variable may be saved in the argument above with only modest ad-
ditional effort. In our discussion we made use of two variables not restricted to be smooth
in (2.4), where only one is required in our minor arc treatment. This expedience allowed us
easy reference to Lemmata 5.4 and 6.3. However, by a straightforward modification of the
arguments of §§5 and 6, the two classical Weyl sums may be replaced by one classical Weyl
sum together with a smooth Weyl sum, and thereby a variable is saved.

A comparison of Lemma 15.1 with the conclusion of Theorem 14.2 reveals that the
upper bounds @; (k) and 6, (k) established by these lemmata for G, (k) and G(k), respec-
tively, are essentially related by the equation (5;(k) = %G’)q(k) + 1. The argument of the
proof of Corollary 14.3 therefore yields the following upper bound for G; (k).

Corollary 15.2. There is an absolute constant Cg with the property that

1 LogLogk LogLogk
G;(k)éEBk<L0gk+LogLogk+2+B O8LOEK | - \/W)

Logk 6 Logk

In view of the discussion completing §14, the conclusion of Theorem 1.2 now follows
at once without additional complications.

16. The solubility of diagonal equations: the proof of Theorem 1.3

The application of the Hardy-Littlewood method to equations of the shape (1.4) over
F,[#] is essentially routine, and so we confine ourselves to an abbreviated discussion of the
proof of Theorem 1.3. We consider an equation of the shape (1.4) satisfying the hypotheses
of the statement of Theorem 1.3. Let P be a natural number sufficiently large in terms of
s, k, ¢ and a. We seek to establish a lower bound for the number Ny(P;a) of solutions
x € F,[]’ with {x;) < P (1 £i<s) by means of the Hardy-Littlewood method. Recalling
the notation introduced in (2.3), we now define F; = F;(«; P) and f; = fi(«; P, R) by

Fi(o; P) = F(ajo; P) and  fi(u; P, R) = f(aio; P, R).

Then it follows from (2.1) that a lower bound for N(P;a) is provided by the quantity
N} (P, R;a), defined by

(161) NS*(P,R;a):JFlFQfé...deO(.
T

Next define o(k) as in the statement of Corollary 13.3, and let v be the asso-
ciated positive number satisfying v < 1/2. Suppose that c € F,[#], and that P is sufficiently
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large in terms of ordc. Then it is a straightforward exercise to verify that when-
ever co€ M((1 —7)P), then ae M((1 —7)P+ ordc) = M(P). Consequently, whenever
o€ m(P), then co € m((1 — 7)P). We therefore deduce that when P is sufficiently large in
terms of the degrees of the coefficients ay, . .., a;, then

sup|fi(@)| = sup |f(ao; P, R)| <  sup |f(B: P R)| < P'=o®,
oaEp aem(P) pem((1-1)P)

A modification of the argument of the proof of Lemma 14.1 now shows that whenever v is
a natural number with v = k — 1, and A,.; is a permissible exponent, and provided that
u is a natural number with v > 2v + A, /0(k), then there is a positive number ¢ with the
property that

(16.2) [1F(0) ()" dow < P*Y27570 (1 <, j < 5).
p

In order to justify this assertion, one must note in particular that the efficient differenc-
ing arguments underlying §§7, 8 and 9 may be modified so as to incorporate non-zero
coefficients in the underlying variables. Thus, when b and c¢ are fixed non-zero polynomials,
one finds that whenever A,y is a permissible exponent, then

[1F (ba; P)f (co; P, R)*| dot < PP,
7
where Ao =25+ 2 —k + Ag1.

Next, by a straightforward modification of the argument of the proof of Lemma 6.3,
we deduce from (16.2) that when A, (1 = 1,2,...) are permissible exponents, and

(16.3) = Ugl}(i{ll{21)+4+2[Av+1/(2a(k))]},

then

[ F(@)*fi(2) 2| do < PR PR (1<, j <),
PAR
On recalling that n = p U (P\N), therefore, an application of Holder’s inequality in com-
bination with (16.2) and the last estimate reveals that

(16.4) [IFiFafs ... fi| du < PPFp =20,
n

Turning next to the analysis of the major arcs 9, we may follow the arguments un-
derlying the discussion of §5. Thus we find that

(16.5) [FiBsfs. . fdo—p(P/R) @iy < PRV,
N
where

(16.6) Sk = | F(ap;P)...F(ap; P)dp,
(By<(gP)'*
and
es,k: ZT QIS(Q)a

gelF,t]
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with

As(g) =<g>" >° S(g,ab)...S(g,asb).
<(I[))><)<gl>
.9)=

Here, the exponential sums S(g, a;b) are defined via (4.1) for 1 <i <.

Defining next
= h
Qw,s =1+ Z Q[5(73 )a
=1

an argument paralleling that of the proof of Lemma 5.2 shows that [[Q. ; converges

absolutely to S; x. In addition, if we write M;(g) for the number of solutions of the congru-
ence alx{‘ + -+ agxk =0 (mod g), with {x;> < (g (1 £i <), then

Q.= ]lim (™= My (™),
n— 00

and

10, — 1] < () 171k,

But by the hypotheses of Theorem 1.3, the equation (1.4) possesses a non-trivial solution
x =a in K. Since ch(F,) fk, therefore we may apply Hensel’'s Lemma to show that
M(w") » <w>h =1 whence Q. ¢ > 0 for each irreducible polynomial . We thus con-
clude that for some positive number 4 = A(q, s, k; a), one has

Sox > [1(1 + Ay VR s 1,

Moreover, by an argument paralleling that employed in the proof of Lemma 5.1, one has
S,k < 1. Consequently, the hypotheses of Theorem 1.3 ensure that

(16.7) l <Gk« 1.

It remains only to estimate the singular integral J; . Here we observe that the argu-
ment of the proof of [14], Lemma 15 leads from (16.6) to the relation

(16.8) Jok = (P) 1 (Pra),
where .4, . (P; a) denotes the number of solutions of the inequality
lapxF + -+ axky < (qP)F!
with (x;> < P (1 £ i < 5). The existence of a solution x € I3, of the equation (1.4) ensures
that .#; ;(P;a) = 1 when P is sufficiently large. A variant of the argument of the proof of
[14], Lemma 16 therefore shows that ., ;(P;a) > P** (¢P)*!, and thus we deduce from

(16.8) that J, x » P*~*. The argument of the proof of Lemma 5 1 leading to (5.8), more-
over, establishes that J. sk << P5~*_The hypotheses of Theorem 1.3 therefore guarantee that

(16.9) PR« g < PR
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On substituting (16.7) and (16.9) into (16.5), we are able to conclude that, under the
hypotheses of the statement of Theorem 1.3, one has

JFlefg, oo fyda > Pk,
N

In view of (16.1) and (16.4), therefore, provided that the lower bound (16.3) is satisfied, we
arrive at the lower bound

N:(P,R;a) = fFleﬁ...fsdoc—l-fFngfg...fsdoc
N n

> Ps—k + 0([35‘—1{ I}—Z/(ks)).

The conclusion of Theorem 1.3 now follows on verifying that the argument of the proof of
Corollary 14.3 leads from (16.3) to the upper bound

‘r>nkir_11{21; +4+2[A1/(20(k))]} < G,(k) + C7k+/Log Logk/Logk,

for a suitable positive absolute constant C;. This completes our discussion of the proof of
Theorem 1.3.
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