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Waring’s problem in function fields

By Yu-Ru Liu1) at Waterloo and Trevor D. Wooley2) at Bristol

Abstract. Let Fq½t� denote the ring of polynomials over the finite field Fq of charac-
teristic p, and write Jk

q ½t� for the additive closure of the set of kth powers of polynomials in
Fq½t�. Define GqðkÞ to be the least integer s satisfying the property that every polynomial in

Jk
q ½t� of su‰ciently large degree admits a strict representation as a sum of s kth powers. We

employ a version of the Hardy-Littlewood method involving the use of smooth polyno-
mials in order to establish a bound of the shape GqðkÞeCk log k þ Oðk log log kÞ. Here,
the coe‰cient C is equal to 1 when k < p, and C is given explicitly in terms of k and p

when k > p, but in any case satisfies C e 4=3. There are associated conclusions for the
solubility of diagonal equations over Fq½t�, and for exceptional set estimates in Waring’s
problem.

1. Introduction

A striking theme in arithmetic concerns the remarkable similarity between the ring of
rational integers Z on the one hand, and the polynomial rings in a single variable Fq½t�, de-
fined over the finite fields Fq having q elements, on the other. The analogy between Z and
Fq½t� is but one in a family that in general relates number fields to function fields. In at least
one respect it is surprising that these rings should resemble one another so faithfully, for
whereas the characteristic of Z is zero, that of Fq½t� is equal to the characteristic of Fq, a
positive (prime) number that we denote by chðFqÞ. A significant desideratum in translating
conclusions from Z to Fq½t�, therefore, is the derivation of results uniform in the character-
istic. In this paper we investigate the analogue of Waring’s problem over Fq½t�, our aim
being to establish conclusions that are relatively robust to changes in the characteristic of
Fq. We concentrate, in particular, on methods having the potential to impact questions that
concern the density of rational points on algebraic varieties in function fields, a topic to
which we intend to return on a future occasion.

Some preparation is required before we can announce our principal conclusions. Let
k be an integer with k f 2, let s A N, and consider a polynomial m in Fq½t�. We seek to de-
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termine the circumstances in which m admits a representation

m ¼ xk
1 þ xk

2 þ � � � þ xk
s ;ð1:1Þ

with xi A Fq½t� ð1e ie sÞ. It is possible that a representation of the shape (1.1) is obstructed
for every natural number s. For example, if the characteristic p of Fq divides k, then
xk

1 þ � � � þ xk
s ¼ ðxk=p

1 þ � � � þ xk=p
s Þp, and thus m necessarily fails to admit a representation

of the shape (1.1) whenever m B Fq½tp�, no matter how large s may be. In order to accomo-
date this and other intrinsic obstructions, we define Jk

q ½t� to be the additive closure of the set
of kth powers of polynomials in Fq½t�, and we restrict attention to those m lying in the sub-
ring Jk

q ½t� of Fq½t�. It is convenient also to define Jk
q to be the additive closure of the set of

kth powers of elements of Fq.

As is the case for the rational integers Z, two variants of Waring’s problem over Fq½t�
demand attention. In the first (unrestricted ) variant, one seeks to establish the existence of a
number s0 with the property that, whenever m A Jk

q ½t� and sf s0, then the equation (1.1) is
soluble with xi A Fq½t� ð1e i e sÞ. Should such a number s0 exist, we define vqðkÞ to be the
least permissible choice for s0. The problem of establishing the existence of vqðkÞ was ad-
dressed first by Paley [17] in 1933. A feature of Paley’s approach to this problem, in com-
mon with the strategies of subsequent authors, is that a representation is sought first for the
polynomial t, and from this representation all others follow by substitution. In order to
achieve success with such a strategy, one must clearly engineer extensive cancellation
amongst monomials tn of large degree, and indeed the degree of the kth powers of polyno-
mials xk

i utilised in such a representation (1.1) must usually be at least k times as large as
the degree of the polynomial to be represented. This unrestricted variant therefore resem-
bles not the classical version of Waring’s problem, but rather the ‘‘easier’’ Waring problem
in which the kth powers of integers xk are replaced by Gxk (see [11], §21.7, for example).
Methods currently employed in the analysis of the unrestricted variant of Waring’s prob-
lem over Fq½t� are apparently of little use in the investigation of the density of rational
points on algebraic varieties. Thus, although we will have more to say about this un-
restricted problem elsewhere, our focus in this paper is on the analogous restricted variant
of Waring’s problem.

Further discussion requires a formal definition. When m A Fq½t�, write ord m for the
degree of m. We say that m is an exceptional element of Jk

q ½t� when its leading coe‰cient
lies in FqnJk

q , and in addition k divides ord m. The strongest constraint on the degrees of
the variables that might still permit the existence of a representation of the shape (1.1) is
plainly ord xi e dðord mÞ=ke ð1e ie sÞ. When chðFqÞ < k, however, it is possible that Jk

q

is not equal to Fq, and then the leading coe‰cient of m need not be an element of Jk
q . If k

divides ord m, so that m is an exceptional polynomial, such circumstances obstruct the
existence of a representation (1.1) of m with the variables xi satisfying the above constraint
on their degrees3). Motivated by these observations, given k A N with k f 2, we define
P ¼ PkðmÞ by setting P ¼ dðord mÞ=ke when m is not exceptional, and when m is excep-
tional we define P ¼ ðord mÞ=k þ 1. Notice, in particular, that when m is not excep-
tional, then P is the unique integer satisfying kðP � 1Þ < ord me kP. We say that m

3) We are grateful to an individual involved in the refereeing process for raising this issue. By applying fa-

miliar estimates of Weil, one may show that such exceptional polynomials are absent whenever q > ðk � 1Þ2.

2 Liu and Wooley, Waring’s problem in function fields



admits a strict representation as a sum of s kth powers when for some xi A Fq½t� with
ord xi ePkðmÞ ð1e ie sÞ, the equation (1.1) is satisfied. We now introduce an analogue
for this strict polynomial Waring problem of the function GðkÞ familiar from the classical
theory. When k and q are natural numbers exceeding 1, define GqðkÞ to be the least integer
s1 satisfying the property that, whenever sf s1 and m A Jk

q ½t� has degree su‰ciently large in
terms of k, s and q, then m admits a strict representation of the shape (1.1). The primary
goal of this paper is the proof of the uniform upper bound for GqðkÞ provided in Theorem
1.1 below.

Before describing this theorem, we introduce some additional notation. First, to
each exponent k and finite field Fq we associate an integer g ¼ gqðkÞ defined in terms
of p ¼ chðFqÞ as follows. We write k in base p, say k ¼ a0 þ a1p þ � � � þ an pn, where
0e ai e p � 1 ð0e ie nÞ, and then put gqðkÞ ¼ a0 þ a1 þ � � � þ an. It is apparent that for
each q and k one has gqðkÞe k, and also that when k f 2 and chðFqÞF k, then gqðkÞf 2.
In addition, we define A ¼ AqðkÞ by putting

AqðkÞ ¼
1; when chðFqÞ > k;

ð1 � 2�gqðkÞÞ�1; when chðFqÞ < k:

(
ð1:2Þ

Finally, when x is a positive real number, we write Log x for maxf1; log xg, and put

ĜGqðkÞ ¼ AkðLog k þ Log Log k þ 2 þ A Log Log k=Log kÞ:ð1:3Þ

Theorem 1.1. There is a positive absolute constant C1 with the property that whenever

k and q are natural numbers with chðFqÞF k, then

GqðkÞe ĜGqðkÞ þ C1k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Log Log k

p
=Log k:

Meanwhile, when chðFqÞ j k, one has GqðkÞ ¼ Gq

�
k=chðFqÞ

�
.

Some comments are in order concerning the general features of the bound for GqðkÞ
provided by Theorem 1.1. First, when chðFqÞF k, the lower bound gqðkÞf 2 ensures that
the coe‰cient A appearing in (1.3) satisfies 1eAe 4=3. When chðFqÞ j k, meanwhile, it
follows from Theorem 1.1 that GqðkÞ ¼ Gqðk0Þ, where k0 is the largest divisor of k coprime
to q. But the first conclusion of Theorem 1.1 may be used to bound Gqðk0Þ, and thus
one obtains a bound of the same shape, but quantitatively stronger. Finally, when
gqðkÞ > 3 Log Log k, one has jAqðkÞ � 1j < 1=ðLog kÞ2. In these circumstances one may re-
place A by 1 in the upper bound provided by Theorem 1.1 at the cost of increasing the ab-
solute constant C1.

Almost all work concerning GqðkÞ hitherto has been restricted to those situations
wherein chðFqÞ > k. Under this condition, Kubota [13], [14] applied a variant of the
Hardy-Littlewood (circle) method involving analogues of Weyl’s inequality and Hua’s
lemma in order to establish that GqðkÞe 2k þ 1. By making use of a modification
of Vinogradov’s mean value theorem, Car [1], [2] obtained the upper bound
GqðkÞe 2kðk � 1Þ log 2 þ 2k þ 3, superior for large k, subject to the same constraint
chðFqÞ > k. In the former work, the use of Weyl di¤erencing on certain generating func-
tions involving kth powers of polynomials produces factors of k! within the arguments of
the resulting exponential sums. Since these factors are zero when chðFqÞe k, such methods
are ine¤ective in providing non-trivial estimates for the generating functions essential to the
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application of the circle method. The work of Car [1], [2] involving Vinogradov’s mean
value theorem, on the other hand, demands that the polynomials x

j
1 þ � � � þ x

j
k be indepen-

dent for 1e j e k, and such fails when chðFqÞe k. Again, therefore, one encounters a
formidable barrier to the extension of these methods to small characteristic. Both the inde-
pendent work of Matthews [16] (unpublished) and of Webb [26] is subject to the same lim-
itations.

Aside from the improvement in the quality of the estimate provided by Theorem 1.1
over those available hitherto, a notable feature of our work is its relative robustness to
changes in the characteristic of the ambient field Fq. We surmount the barriers that previ-
ously obstructed viable conclusions for chðFqÞe k by applying the large sieve to obtain a
substitute for Weyl’s inequality, thereby avoiding the problematic use of Weyl di¤erencing.
Such an approach requires the availability of suitable mean value estimates for auxiliary
exponential sums. Here we avoid barriers and complications arising from Vinogradov’s
methods and diminishing range arguments, adapting the theory of smooth Weyl sums to
the function field setting through the introduction of exponential sums over smooth poly-
nomials. It is in this step that the iterative methods of Vaughan [22] and the second author
[27] play an important rôle, and that the parameter gqðkÞ enters the scene. Repeated e‰-
cient di¤erencing analogous to that introduced in [27] inherits some of the features of
Weyl di¤erencing, and so the number of e‰cient di¤erences that may be usefully extracted
is limited in a manner determined by the divisibility of various binomial coe‰cients by
chðFqÞ.

Earlier authors have bounded GqðkÞ in special situations with chðFqÞe k. Cherly [7]
and Car and Cherly [5] have addressed cases wherein k ¼ 3 and q is a power of 2, applying
methods based on the use of Poisson summation to establish that G2hð3Þe 11. The latter
conclusion has recently been refined by Gallardo [9], and by Car and Gallardo [6], using
quite di¤erent methods, so that the upper bound 11 can now be replaced by 7 for h > 4,
by 8 for h ¼ 4, and by 10 when 1e he 3. Kubota [14], Theorem 37, meanwhile, made use
of diminishing ranges to obtain an upper bound for GqðkÞ not far short of 6k log k þ OðkÞ.
Here we note that Kubota imposes the restriction k jPkðmÞ for the polynomials m that are
to be represented, and we remark also that his exposition contains some (potentially fix-
able) errors.

The local solubility conditions associated with the representation problem (1.1) are
somewhat more complicated than is the case for the classical version of Waring’s problem.
Suppose that chðFqÞ ¼ p. When p j k, we have already noted that (1.1) is soluble only when
m A Fq½tp�. A second less obvious condition for solubility presents itself when k is a multiple
of a qb-norm for some natural number b. In order to describe this condition, suppose that
q ¼ ph. Let l A N, and let a be a divisor of lh with 1e a < lh. Then it follows from [8], §1.1
that whenever $ A Fq½t� is an irreducible polynomial of degree l, and k is a multiple of
N ¼ ðplh � 1Þ=ðpa � 1Þ, then there exist polynomials m A Fq½t� for which (1.1) admits no
solutions modulo $. In brief, the map defined by taking x to xN ðmod$Þ is the norm
map from Fq½t�=ð$Þ down to a subfield of the latter having pa elements. Each m A Fq½t�
for which m modulo $ does not belong to this subfield (in fact, the bulk of Fq½t�) fails to be
represented in the shape (1.1), and this failure is detected by a local condition at the place
$. As we shall see in §5, for all k and q, provided that sf 2k þ 1, all local solubility con-
ditions are embodied within the constraint m A Jk

q ½t� in (1.1). In addition, when chðFqÞ > k

one has Jk
q ½t� ¼ Fq½t�.
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Before leaving Theorem 1.1, we remark that the analysis underlying the derivation of
the lower order terms in (1.3) may be applied without substantive modification in the clas-
sical version of Waring’s problem. Thus, writing GðkÞ for the least integer s2 with the prop-
erty that whenever sf s2, then every su‰ciently large natural number is the sum of at most
s kth powers of positive integers, one has

GðkÞe k
�
log k þ log log k þ 2 þ log log k=log k þ Oð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log k

p
=log kÞ

�
:

This refines an earlier bound of the second author [29], Theorem 1.4, in which the final two
terms contained in the outer set of parentheses are replaced simply by Oðlog log k=log kÞ.

The theory of exponential sums over smooth polynomials developed in §§2–14 puts
at our disposal a flexible variant of the circle method with wide applicability. We illustrate
this point with two immediate consequences of our methods. In §15 we establish that, in
the sense of natural density, almost all m A Fq½t� admit a strict representation in the shape

(1.1) whenever sf
1

2
Ak
�
Log k þ OðLog Log kÞ

�
. In order to be precise, we introduce

some additional notation. When N is a large natural number, denote by Es;kðNÞ the set of
polynomials m A Jk

q ½t� with ord meN that do not admit a strict representation in the
shape (1.1). We write Es;kðNÞ for the cardinality of Es;kðNÞ. Let the characteristic of Fq

be p, and suppose that pt is the largest power of p dividing k. We define Gþ
q ðkÞ to be the

smallest integer s3 with the property that whenever sf s3, then Es;kðNÞ ¼ oðqN=p tÞ as
N ! y.

Theorem 1.2. There is a positive absolute constant C2 with the property that whenever

k and q are natural numbers with chðFqÞF k, then

Gþ
q ðkÞe

1

2
ĜGqðkÞ þ C2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Log Log k

p
=Log k:

When chðFqÞ j k, meanwhile, one has Gþ
q ðkÞ ¼ Gþ

q

�
k=chðFqÞ

�
.

In §16, we discuss the density of solutions of diagonal equations in Fq½t�. Given
s; k A N, and fixed coe‰cients ai A Fq½t� ð1e ie sÞ, denote by NsðB; aÞ the number of solu-
tions of the equation

a1xk
1 þ � � � þ asx

k
s ¼ 0;ð1:4Þ

with x A Fq½t�s and ord xi eB ð1e ie sÞ.

Theorem 1.3. Let k and q be natural numbers with chðFqÞF k. There is a positive ab-

solute constant C3 with the property that whenever s is a natural number with

sf ĜGqðkÞ þ C3k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Log Log k

p
=Log k;

then the equation ð1:4Þ satisfies the following quantitative local-to-global principle. Let

a A ðFq½t�nf0gÞs, and suppose that the equation ð1:4Þ has non-trivial solutions in all comple-

tions FqðtÞ$ of FqðtÞ. Then one has NsðB; aÞg ðqBÞs�k
.
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The Lang-Tsen theory of Ci-fields (see, in particular, [15], Theorem 8) shows that the
equation (1.4) possesses a solution x A Fq½t�snf0g whenever s > k2. The local solubility hy-
pothesis of Theorem 1.3 is consequently satisfied automatically under the same condition.
Rather than merely establishing the existence of non-trivial solutions of equation (1.4), our
objective is instead the proof of a Hasse principle with good control of the associated den-
sity of solutions. We note in this context that weak approximation follows by our methods
as soon as sf ĜGqðkÞ þ C3k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Log Log k

p
=Log k.

A perspective on Waring’s problem in Fq½t� has been presented by E‰nger and Hayes
[8] that di¤ers from that motivating the discourse of this paper. As an analogue of the func-
tion GðkÞ familiar from the classical version of Waring’s problem, E‰nger and Hayes de-
fine a function GðkÞ associated with the collection Fk of all polynomial rings Fq½t� having
characteristic exceeding k (see [8], Definition 1.13). They define GðkÞ to be the least integer
s with the property that, with the exception of at most finitely many polynomials from the
whole collection Fk, whenever m A Fq½t� and Fq½t� A Fk, then m has a strict representation
in the shape (1.1). The upper bound GðkÞ < y is asserted by [8], Theorem 1.9, and the re-
finement GðkÞe k22k may be extracted from the discussion following the statement of [8],
Theorem 8.15. Unfortunately, there is apparently an error in the proof of [8], Theorem
8.11, that invalidates these conclusions. The last line of the proof of this theorem asserts,
inter alia, that the function ðd þ qd�2Þ21�d

is a bounded function of d when the principal
conclusion demands instead that it be a bounded function of q. We have not found a means
to repair the proof of this version of Weyl’s inequality in such a manner that a direct proof
of [8], Theorems 8.15 and 1.9 may be recovered. However, by employing an alternative
strategy we have obtained an upper bound for GðkÞ somewhat sharper than that claimed
by E‰nger and Hayes [8]. We will report on this work elsewhere.

The reader will discern a number of avenues available for future research stemming
from the ideas presented herein, and we plan to pursue several in future papers. Our most
immediate concern is the explicit computation of bounds for GqðkÞ for smaller values of k.
There is also the problem of obtaining the expected asymptotic formula for the number of
solutions of (1.1), and likewise for quite general systems of homogeneous equations over
Fq½t�. Finally, we intend to consider bounds for vqðkÞ going beyond the trivial relation
vqðkÞeGqðkÞ þ 1 that, in combination with the conclusion of Theorem 1.1, already yields
improvements in the results of Vaserstein [21] relating to the ring Fq½t� for smaller q. This
list by no means exhausts the menu available for the enthusiast. For example, Car [4] has
considered an analogue of GqðkÞ for field extensions of FqðtÞ, and presumably our methods
extend to this situation with additional e¤ort.

We describe the key elements of the circle method as it applies to Fq½t� in §2. Polyno-
mials having only small degree irreducible divisors (that is, smooth polynomials) play a dis-
tinguished rôle in our method, and so in §3 we discuss their distribution in su‰cient detail
for later application. In §4 we build on this work to obtain major arc approximations for
smooth Weyl sums, with a similar analysis for complete Weyl sums, and thus in §5 we de-
rive a satisfactory lower bound for the major arc contribution. As is familiar to aficionados
of the modern circle method, there is a gap between the domains accessible to major and
minor arc treatments, and so in §6 we develop appropriate pruning technology. Then, in §7,
we move on to consider mean values of smooth Weyl sums, beginning first with a funda-
mental lemma, then in §8 establishing an e‰cient di¤erencing process for mean values, and
finally deriving permissible exponents for these mean values in §9. Following some prelim-
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inary manoeuvres in §10, analogues of Weyl’s estimates for exponential sums follow via the
large sieve in §§11 to 13, with large moduli handled in §11, small moduli in §12, and explicit
Weyl estimates derived in §13. The latter are then applied in §14 in order to bound GqðkÞ,
and thereby we complete the proof of Theorem 1.1. Finally, in §15 we apply the methods
developed for our work on GqðkÞ in order rapidly to establish Theorem 1.2, the proof of
Theorem 1.3 in §16 being similarly swift.

It is convenient throughout to reserve uppercase Latin letters for positive real num-
bers, and lowercase Latin letters (with the exception of d, e, i, j, k, n, q, r, s, t) for polyno-
mials in Fq½t�. We reserve q for the cardinality of the finite field Fq and t for the indetermi-
nate underlying the ring Fq½t�. The letter e will be associated with the exponential function,
and d, i, j, k, n, r, s with positive integers. Irreducible polynomials $ will be supposed
throughout to be monic, and we write $r k x when $r j x but $rþ1 F x. We denote the
cardinality of a set X by cardðXÞ. Throughout, the letter e will denote a su‰ciently small
positive number. We use f and g to denote Vinogradov’s well-known notation, implicit
constants depending at most on e, unless otherwise indicated. In an e¤ort to simplify our
analysis, we adopt the convention that whenever e appears in a statement, then we are im-
plicitly asserting that for each e > 0 the statement holds for su‰ciently large values of the
main parameter. Note that the ‘‘value’’ of e may consequently change from statement to
statement, and hence also the dependence of implicit constants on e. Finally, from time to
time we make use of vector notation in order to save space. Thus, for example, we may
abbreviate ðc1; . . . ; ctÞ to c.

2. The circle method for polynomial rings

While the circle method for Fq½t� mirrors the classical version familiar from applica-
tions over Z, the substantial di¤erences in detail between these rings demand explanation.
Our goal in the present section is to introduce such notation and basic notions as are sub-
sequently needed to initiate discussion of the key components of this version of the circle
method.

Associated with the polynomial ring Fq½t� defined over the field Fq is its field of frac-
tions K ¼ FqðtÞ. Write Ky ¼ Fqðð1=tÞÞ for the completion of FqðtÞ at y. We may write each
element a A Ky in the shape a ¼

P
ien

ait
i for some n A Z and coe‰cients ai ¼ aiðaÞ in

Fq ðie nÞ. Our previous definition of ord m for polynomials m now extends to elements a of
Ky by defining ord a to be the largest integer i for which aiðaÞ3 0. We then write hai for
qord a. In this context, we adopt the convention that ord 0 ¼ �y and h0i ¼ 0. Consider
next the compact additive subgroup T of Ky defined by T ¼ fa A Ky : hai < 1g. Every
element a of Ky can be written uniquely in the shape a ¼ ½a� þ kak, where ½a� A Fq½t� and
kak A T, and we may normalise any Haar measure da on Ky in such a manner thatÐ
T

1 da ¼ 1.

We are now equipped to define an analogue of the exponential function. Suppose that
chðFqÞ ¼ p. There is a non-trivial additive character eq : Fq ! C� defined for each a A Fq by
taking eqðaÞ ¼ e

�
trðaÞ=p

�
, where we write eðzÞ for e2piz, and where tr : Fq ! Fp denotes the

familiar trace map. This character induces a map e : Ky ! C� by defining, for each ele-
ment a A Ky, the value of eðaÞ to be eq

�
a�1ðaÞ

�
. It is often convenient to refer to a�1ðaÞ
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as being the residue of a, an element of Fq that we abbreviate to res a. In this guise we have
eðaÞ ¼ eqðres aÞ. The orthogonality relation underlying the Fourier analysis of Fq½t�, estab-
lished in [14], Lemma 1, takes the shape

Ð
T

eðhaÞ da ¼ 0; when h A Fq½t�nf0g;
1; when h ¼ 0:

�
ð2:1Þ

In order better to highlight parallels between the application of the circle method over
Z and that over Fq½t�, we adopt the convention that whenever X is a real number, then X̂X

denotes qX . Next, when R and P are positive numbers with ReP, we denote by AðP;RÞ
the set of degree R-smooth polynomials, that is

AðP;RÞ ¼ fx A Fq½t� : hxie P̂P; and $ j x ) h$ie R̂Rg:ð2:2Þ

Here and elsewhere we adopt the convention that whenever $ is used to denote a polyno-
mial, then this polynomial is assumed to be irreducible and monic. We fix a natural number
k with k f 2, and then define the classical Weyl sum FðaÞ ¼ Fða;PÞ, and smooth Weyl
sum f ðaÞ ¼ f ða;P;RÞ, by putting

Fða;PÞ ¼
P

hxieP̂P

eðaxkÞ and f ða;P;RÞ ¼
P

x AAðP;RÞ
eðaxkÞ:ð2:3Þ

We seek a strict representation of a given polynomial m of large degree as the sum of
s kth powers, with s chosen suitably large in terms of k. To this end we define P ¼ PkðmÞ as
in §1, we take h > 0 su‰ciently small in terms of k and s, and we consider the number
RðmÞ ¼ Rs;kðm; hÞ of representations of m in the shape

m ¼ xk
1 þ xk

2 þ yk
1 þ yk

2 þ � � � þ yk
s�2;ð2:4Þ

with hxiie P̂P ði ¼ 1; 2Þ and yj A AðP; hPÞ ð1e j e s � 2Þ. We note that RðmÞ provides a
lower bound for the number of strict representations of m in the shape (1.1). When B is a
measurable subset of T, define

Rsðm;BÞ ¼
Ð
B

FðaÞ2
f ðaÞs�2

eð�maÞ da:ð2:5Þ

Here and throughout, whenever the secondary parameters of the exponential sums are sup-
pressed, then FðaÞ and f ðaÞ respectively are used to denote Fða;PÞ and f ða;P;RÞ, with
P ¼ PkðmÞ and R ¼ hP. It follows from (2.1) that RðmÞ ¼ Rsðm;TÞ. A heuristic argument
suggests that when sf k þ 1 and the necessary local conditions are met, then RðmÞ should
be of order P̂Ps�k. We confirm this expectation with the number of variables inflated by a
factor roughly of log k.

We analyse the integral (2.5) via the Hardy-Littlewood (circle) method, and to this
end we define sets of major and minor arcs corresponding to well and poorly approximable
elements of T. Let W be a positive parameter with 2W < kP. Given polynomials a and g

with ða; gÞ ¼ 1 and g monic, we define the Farey arc Mðg; aÞ ¼ Mðg; a;WÞ about a=g asso-
ciated with the parameter W by

Mðg; a;WÞ ¼ fa A Ky : hga� ai < ŴWP̂P�kg:ð2:6Þ
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The set of major arcs MðW Þ is defined to be the union of the sets Mðg; a;WÞ with

a; g A Fq½t�; g monic; 0e hai < hgie ŴW and ða; gÞ ¼ 1:ð2:7Þ

It is apparent from (2.6) and (2.7) that MðWÞLT. We write mðW Þ ¼ TnMðWÞ for the
complementary set of minor arcs. As the reader will easily verify, the conditions (2.6) and
(2.7) ensure that the arcs Mðg; a;W Þ comprising MðWÞ are disjoint. When W is a positive
parameter satisfying 3W < kP, it is useful also to define the set of arcs NðWÞ to be the
union of the sets

Nðg; a;WÞ ¼ fa A Ky : hga� ai < hgiŴWP̂P�kgð2:8Þ

with polynomials a and g subject to (2.7). Again one has NðW ÞLT, and the arcs
Nðg; a;W Þ comprising NðW Þ are disjoint. Finally, we write nðWÞ ¼ TnNðWÞ.

Our strategy for estimating RðmÞ is now familiar from the classical version of the

circle method. We put V ¼ 1

12
logq P

� �
, and we write N ¼ NðVÞ and n ¼ nðVÞ. Here and

elsewhere we use logq x to denote ðlog xÞ=ðlog qÞ. In §4 we derive asymptotic formulae for
the generating functions FðaÞ and f ðaÞ valid for a A N. These formulae are then converted
in §5 to an asymptotic formula for the total major arc contribution, and indeed we are able
to establish the asymptotic relation

Rsðm;NÞ ¼ cs;kðm; hÞP̂Ps�k þ oðP̂Ps�kÞ;ð2:9Þ

valid for sf 2k þ 1, wherein cs;kðm; hÞ is a number depending at most on h, q, s, k and m.
Provided that m A Jk

q ½t�, it transpires that cs;kðm; hÞ > 0. The goal of §§6 to 14 is then to de-
rive the appropriate complementary minor arc bound Rsðm; nÞ ¼ oðP̂Ps�kÞ, valid for

sf ĜGqðkÞ þ C1k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Log Log k

p
=Log k;ð2:10Þ

with C1 a suitably large positive absolute constant. On combining the last estimate with
(2.5) and (2.9), we deduce that whenever m A Jk

q ½t� and s satisfies (2.10), then RðmÞg P̂Ps�k,
and consequently Theorem 1.1 follows at once.

Throughout our applications of the circle method in §§4–16 inclusive, unless stated
otherwise we suppose that chðFqÞF k.

3. A quasi-ordering on the ring of polynomials

By analogy with the familiar formulation of the circle method for Z, one expects that
asymptotic formulae for the generating functions FðaÞ and f ðaÞ, valid for a A N, will follow
via partial summation. However, the ordering on Fq½t� provided by the degree of a poly-
nomial is too coarse to permit such arguments to succeed. For example, one may have
eðaxkÞ3 eðaykÞ even when hxi ¼ hyi. We surmount this di‰culty by introducing a finer
notion of size that distinguishes between distinct polynomials, and thereby facilitates argu-
ments involving the use of partial summation. In this section we establish such properties
of various counting functions for polynomials in arithmetic progressions, and for smooth
polynomials, as are required in subsequent sections of this paper.
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Before defining our measure of the size of a polynomial, we recall that the set of non-
zero elements F�q of a finite field Fq forms a cyclic group of order q � 1. Let x A F�q be a
fixed generator of this cyclic group. Formally defining x�y to be the element 0 of Fq, it
follows that every element of Fq can be written uniquely in the form x i for some index i

from the set I ¼ f�y; 0; 1; . . . ; q � 2g. We define a bijection h � ix from Fq½t� to the non-
negative integers as follows. When a A Fq, we define the index n A I associated with a via
the relation a ¼ xn, and then put haix ¼ nþ 1 when n A Inf�yg, and haix ¼ 0 when
n ¼ �y. Given a polynomial m ¼ a0 þ a1t þ � � � þ aNtN in Fq½t�, we then define hmix by

hmix ¼
PN
i¼0

haiixq
i:ð3:1Þ

The polynomial ring Fq½t� now inherits an ordering from the non-negative integers. When
a; b A Fq½t�, we write a � b when haix < hbix, and we write a8 b when either a � b or
a ¼ b. Also, we write a � b and a9 b when b � a and b8 a, respectively. As is apparent
from (3.1), whenever a; b A Fq½t� and the degree of b exceeds that of a, then hbix > haix.
Indeed, if the degree of m is N, then one has qN̂N > hmix f N̂N.

It is convenient to have available a map Txð�Þ from the non-negative integers to
Fq½t� that inverts that defined via (3.1). For this purpose, when u is an integer with
0e ue q � 1, we define TxðuÞ by putting TxðuÞ ¼ xu�1 when u A f1; 2; . . . ; q � 1g,
and TxðuÞ ¼ 0 when u ¼ 0. Next, given a non-negative integer v, we write v in
base q as v ¼ v0 þ v1q þ � � � þ vNqN , with 0e vi e q � 1 ð0e ieNÞ, and then put
TxðvÞ ¼ Txðv0Þ þ Txðv1Þt þ � � � þ TxðvNÞtN .

We may now discuss the distribution of polynomials in arithmetic progressions.

Lemma 3.1. Let g and r be elements of Fq½t�. Then whenever X A N, we have

cardfm A Fq½t� : hmix eX and m1 r ðmod gÞg ¼ X=hgiþ Oð1Þ:

Proof. When W A N and g; r A Fq½t�, we define Zg; rðW Þ to be the set of polyno-
mials m A Fq½t� for which hmix eW and m1 r ðmod gÞ, and we write Zg; rðW Þ for
card

�
Zg; rðWÞ

�
. Note that there is no loss in supposing that ord r < ord g, for one may re-

duce r modulo g. Under this assumption, if m A Zg; rðWÞ and we subtract r from m, then it
is only the monomials with degree smaller than ord g that are a¤ected, whence

jhmix � hm � rixje
Pord g�1

i¼0

ðq � 1Þqi < hgi:

Thus we see that whenever m A Zg;aðW Þ, then mG r A Zg;aGrðW þ hgiÞ, whence

Zg;0ðW � hgiÞeZg; rðWÞeZg;0ðW þ hgiÞ:ð3:2Þ

Every polynomial m A Fq½t� belongs to some residue class modulo g, and so by averaging
over the elements r A Fq½t� with 0e hri < hgi within (3.2), we obtain

Zg;0ðW � hgiÞe ðW þ 1Þ=hgieZg;0ðW þ hgiÞ:
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It therefore follows that

hgi�1ðX � hgiþ 1ÞeZg;0ðXÞe hgi�1ðX þ hgiþ 1Þ;

and so the proof of the lemma is completed by reference to (3.2).

We now analyse the distribution of refined smooth polynomials. Given positive num-
bers X and Y with Y eX , define the set of Y -smooth polynomials

~AAxðX ;YÞ ¼ fn A Fq½t� : hnixeX and $ j n ) h$ix eYg;

and write ~AAxðX ;YÞ ¼ card
�
~AAxðX ;Y Þ

�
. One readily confirms the relation

AðP;RÞ ¼ ~AAxðqP̂P � 1; 2R̂R � 1Þ;ð3:3Þ

and so the set ~AAxðX ;Y Þ o¤ers a refinement of the set AðP;RÞ.

Before announcing an asymptotic formula for card
�
~AAxðX ;Y Þ

�
, it is helpful to intro-

duce some notation. When X and Y are positive numbers with Y < X , define

PqðX ;YÞ ¼
Q

Y<h$ixeX

$; rqðX ;YÞ ¼
Py

d jPqðX ;Y Þ
hdixeX

mðdÞhdi�1;ð3:4Þ

and

EðX ;YÞ ¼ cardfd A Fq½t� : d monic; hdixeX and $ j d ) Y < h$ixeXg:ð3:5Þ

Here, we use mð�Þ to denote the Möbius function on Fq½t�, and throughout, whenever we
apply the decoration y to a summation or product, we implicitly assume that the latter is
restricted to monic polynomials.

Lemma 3.2. Suppose that X and Y are positive numbers with Y < X. Then

EðX ;Y ÞfX=logð2Y Þ.

Proof. Write LðW Þ ¼ ½logq W � for W ¼ X ;Y . Then an upper bound for EðX ;YÞ is
provided by sieving out the zero congruence class modulo $, for each irreducible $ with

ord$emin LðYÞ; 1

2
LðX Þ

� �
, from the polynomials d with ord d eLðXÞ. A modicum of

computation leads from Hsu [12], Theorem 3.2, to the upper bound

EðX ;Y Þf qLðX Þ

min LðYÞ; 1
2

LðXÞ
� � f

X

logð2YÞ ;

and this completes the proof of the lemma.

Lemma 3.3. Let X and Y be positive numbers with 1eY < X. Then

~AAxðX ;Y Þ ¼ rqðX ;YÞX þ O
�
X=logð2YÞ

�
:
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Proof. If n is an element of ~AAxðX ;YÞ, then hnix eX . The monic divisors of n are
polynomials of degree at most ord n, whence of size at most hnixeX . By the inclusion-
exclusion principle, therefore, one has

P
n A ~AAxðX ;YÞ

1 ¼
Py

d jPqðX ;YÞ
hdixeX

mðdÞ
P

hmixeX

d jm

1:

An application of Lemma 3.1 consequently reveals that

~AAxðX ;Y Þ ¼
Py

d jPqðX ;Y Þ
hdixeX

mðdÞ
�
X=hdiþ Oð1Þ

�
¼ rqðX ;YÞX þ O

�
EðX ;YÞ

�
;

and so the proof of the lemma follows by making use of Lemma 3.2.

It is convenient for future reference to record an estimate for the relative density
rqðX ;YÞ in terms of the familiar Dickman function rðuÞ. We recall at this point that rðuÞ
is defined for real numbers u to be the unique continuous solution of the di¤erential-
di¤erence equation ur 0ðuÞ ¼ �rðu � 1Þ ðu > 1Þ satisfying the initial conditions rðuÞ ¼ 0 for
ue 0, and rðuÞ ¼ 1 for 0 < ue 1.

Lemma 3.4. When R and P are positive numbers with Pf 1 and

2P=logð2PÞ < R < P, one has

rqðqP̂P � 1; 2R̂R � 1Þ ¼ rðP=RÞ þ OðP�1=2Þ:

Proof. Estimates for the number of smooth polynomials available in the literature
(see [3], Proposition II.4, or alternatively [18] or [20]) provide the formula

card
�
AðP;RÞ

�
¼ rðP=RÞqP̂P þ Oð2P=RP̂P=RÞ:

On the other hand, it follows from Lemma 3.3 that

~AAxðqP̂P � 1; 2R̂R � 1Þ ¼ rqðqP̂P � 1; 2R̂R � 1ÞqP̂P þ OðP̂P=RÞ:

When 2P=logð2PÞ < R < P, therefore, we may conclude from (3.3) that

rqðqP̂P � 1; 2R̂R � 1Þ � rðP=RÞf 2P=RR�1 fP�1=2;

and thus the proof of the lemma is complete.

4. Major arc approximations for exponential sums

In order to obtain the asymptotic formula for the major arc contribution given by
(2.9), one must establish control of the generating functions FðaÞ and f ðaÞ for a A N. Our
goal in this section is to obtain asymptotic formulae for these exponential sums and certain
associated generating functions of use on the set of major arcs. When a is close to a rational
point a=g of small height, it transpires that FðaÞ is easily approximated in terms of the local
generating function Sðg; aÞ, defined for a; g A Fq½t� by

Sðg; aÞ ¼
P

hri<hgi
eðark=gÞ:ð4:1Þ
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Lemma 4.1. (i) Suppose that a A T, and that a ¼ a=g þ b with a; g A Fq½t�,
0e hai < hgie P̂P and hbi < hgi�1P̂P1�k. Then Fða;PÞ ¼ hgi�1Sðg; aÞFðb;PÞ.

(ii) When hbi < P̂P1�k, one has Fðb;PÞf P̂Pð1 þ P̂PkhbiÞ�1=k
.

(iii) When ðg; aÞ ¼ 1, one has Sðg; aÞfhgi1�1=k.

Proof. The conclusion of part (i) of the lemma is [14], Proposition 4, and that of part
(iii) is estimate (a) of [14], Lemma 22. It remains to establish part (ii). When hbie P̂P�k the
desired bound is immediate from the trivial estimate Fðb;PÞf P̂P. We may suppose hence-
forth, therefore, that P̂P�k < hbi < P̂P1�k. Put L ¼ �ord b, so that L ¼ kP � N for some
integer N with 1eN eP � 1. We may write b in the form b ¼

P
ie�L

bit
i, with

bi A Fq ðie�LÞ and b�L 3 0. Next let r be a non-negative parameter with reP, and
consider the contribution within the exponential sum Fðb;PÞ defined by (2.3) arising
from those terms x with ord x ¼ P � r. We write x ¼ c0 þ c1t þ � � � þ cP�rt

P�r, with
ci A Fq ð0e i eP � rÞ and cP�r 3 0.

Suppose temporarily that N > rk � 1, and write M ¼ P þ rðk � 1Þ � N � 1, so that
0eM < P � r and r < P=k. Let XðcÞ denote the coe‰cient of tL�1 in the expansion of
xk. The monomials occurring in XðcÞ take the shape ck0

0 ck1

1 . . . ckP�r

P�r , where the exponents
ki ð0e i eP � rÞ are non-negative integers with

k0 þ k1 þ � � � þ kP�r ¼ k and k1 þ 2k2 þ � � � þ ðP � rÞkP�r ¼ L � 1:ð4:2Þ

It follows from (4.2) that

k1 þ � � � þ kM�1 þ kMþ1 þ � � � þ kP�r e k � kM ;

and hence that

ðk � kMÞðP � rÞfL � 1 � kMM ¼ kP � N � 1 � kM

�
P þ rðk � 1Þ � N � 1

�
¼ ðk � kMÞðP � rÞ þ ðkM � 1ÞðN þ 1 � rkÞ:

Our hypothesis that N > rk � 1 consequently ensures that kM e 1. On making use also of
(4.2), we deduce in addition that when kM ¼ 1, one necessarily has kP�r ¼ k � 1 and
ki ¼ 0 ð0e i < P � r; i3MÞ. It follows that for a suitable polynomial 1ðcÞ in the vari-
ables ci ð0e ieP � r; i3MÞ, one may write XðcÞ ¼ kcMck�1

P�r þ 1ðcÞ. Plainly, moreover,
the coe‰cients of the terms t j in the expansion of xk with degree j fL cannot involve any
positive power of cM . We therefore deduce that the contribution of these terms x within the
sum defining Fða;PÞ in (2.3) is bounded above by

���� P
ord x¼P�r

eðbxkÞ
����e P

ci A Fq

ð0ei<P�r; i3MÞ

P
cP�r A F

�
q

���� P
cM A Fq

eqðkb�LcMck�1
P�r Þ

����:ð4:3Þ

Since the coe‰cient kb�Lck�1
P�r of cM in the innermost sum on the right-hand side of

(4.3) is non-zero, this sum is necessarily zero, and hence the left-hand side of (4.3) is zero
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whenever 0e r < ðN þ 1Þ=k. On noting that P � ðN þ 1Þ=k ¼ �ðord b þ 1Þ=k, we there-
fore deduce from (2.3) that

jFðb;PÞj ¼
���� P
ord xe�ðord bþ1Þ=k

eðbxkÞ
����e P

hxiehbi�1=k

1:

In this way we conclude that in the circumstances at hand, one has jFðb;PÞjfhbi�1=k,
and this su‰ces to complete the proof of the lemma.

Before discussing the asymptotic behavior of the smooth Weyl sum f ða;P;RÞ for
a A N, we require a technical lemma. It is useful in this context to write mþ for the succes-
sor of the polynomial m A Fq½t� when viewed according to the quasi-ordering on Fq½t�, so
that mþ ¼ Txðhmix þ 1Þ and hmþix ¼ hmix þ 1.

Lemma 4.2. Suppose that P and X are natural numbers with 1eX e qP̂P � 1. Then

whenever b A T satisfies hbi < P̂P1�k, one has

cardfm A Fq½t� : hmix eX and eðbmkÞ3 eðbmk
þÞgf 1 þ P̂Pkhbi:ð4:4Þ

Proof. There is at most one polynomial m counted on the left-hand side of (4.4) for
which ord mþ > P, namely that with hmix ¼ qP̂P � 1, and its contribution is plainly ac-
comodated by the right-hand side of (4.4). Consider then a polynomial m counted on
the left-hand side of (4.4), and suppose that hmix < qP̂P � 1. The situations in which
ord b < �kP � 1 may be disposed of at once. For whenever hmix eX , one has
ordðbmkÞe kP þ ord b < �1. In view of our earlier assumption, a similar argument yields
the bound ordðbmk

þÞ < �1, and thus we see that in the situation at hand one has

eðbmkÞ ¼ 1 ¼ eðbmk
þÞ. The bound (4.4) is therefore trivial for ord b < �kP � 1.

We are left to consider the situations in which hbi < P̂P1�k and yet ord bf�kP � 1.
In such circumstances, one has ord b ¼ L, with L ¼ N � kP � 1 for some natural number
N satisfying 0eN eP. We may write b ¼

P
ieL

bit
i, where bi A Fq ðieLÞ and bL 3 0. Let

r be a non-negative integer with reP, and consider the contribution on the left-hand side
of (4.4) arising from those terms m with ord m ¼ P � r. If r > N=k þ 1, then an argument
paralleling that of the first paragraph establishes that ordðbmkÞ < �1 and ordðbmk

þÞ < �1,
so that eðbmkÞ ¼ 1 ¼ eðbmk

þÞ. Such terms do not contribute to the left-hand side of (4.4),
so we suppose instead that reN=k þ 1. We may write m ¼ c0 þ c1t þ � � � þ cP�rt

P�r,
where ci A Fq ð0e ieP � rÞ and cP�r 3 0. If ordðmþÞ > ordðmÞ, then necessarily
ci ¼ xq�2 ð0e ieP � rÞ, so that m is uniquely determined. Otherwise, in view of
our earlier observations, we may write mþ ¼ cþ0 þ cþ1 t þ � � � þ cþP�rt

P�r, where
cþi A Fq ð0e ieP � rÞ and cþP�r 3 0. It then follows that mk and mk

þ may be written in
the form

mk ¼
PkðP�rÞ

j¼0

ajt
j and mk

þ ¼
PkðP�rÞ

j¼0

aþj t j;ð4:5Þ

where aj; a
þ
j A Fq ð0e j e kðP � rÞÞ. Put M ¼ P þ rðk � 1Þ. Then a consideration of the

multinomial expansion of mk reveals that for kr < ueN, one has

akP�u ¼ kcM�uck�1
P�r þWuðcÞ;ð4:6Þ
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for some WuðcÞ A Fq½cM�uþ1; . . . ; cP�r�. One also has akP�kr ¼ ck
P�r and akP�u ¼ 0 for u < kr.

Similar relations hold for coe‰cients decorated with a superscript þ.

It is apparent from (4.5) that

resðbmkÞ � resðbmk
þÞ ¼

PN
i¼kr

ðakP�i � aþkP�iÞbi�kP�1:

Thus we see that when eðbmkÞ3 eðbmk
þÞ, the relation akP�i ¼ aþkP�i cannot hold for every

index i with kre ieN. But it is a consequence of (4.6) that when kr < weN and
cM�v ¼ cþM�v for kre v < w, and in addition akP�w ¼ aþkP�w, then in fact cM�w ¼ cþM�w.
When eðbmkÞ3 eðbmk

þÞ and ordðmþÞ ¼ ordðmÞ, therefore, one has cM�v 3 cþM�v for some
index v with kre veN. In view of the definition of M, we thus conclude that cv 3 cþv for
some index v with P þ rðk � 1Þ � N e veP � r.

Now suppose that eðbmkÞ3 eðbmk
þÞ, and let v denote the largest index with

P � N e veP for which cv 3 cþv . The polynomials m and mþ take the forms

m ¼ cPtP þ � � � þ cvþ1tvþ1 þ xstv þ xq�2tv�1 þ xq�2tv�2 þ � � � þ xq�2

and

mþ ¼ cPtP þ � � � þ cvþ1tvþ1 þ xsþ1tv;

where s A f�y; 0; 1; . . . ; q � 3g and ci A Fq ðv þ 1e iePÞ. Here, if v ¼ P, then we under-
stand the last condition to be moot, and when s ¼ �y, we interpret s þ 1 to be 0. In these
circumstances, the number of available choices for s and c is ðq � 1ÞqP�v. Summing over
the available choices of v with P � N e veP, we deduce that the total number of possible
choices for m with hmix eX and eðbmkÞ3 eðbmk

þÞ is at most 1 þ qNþ1 ¼ 1 þ qkPþ2þord b,
and the conclusion of the lemma follows at once.

We are now equipped to establish a major arc approximation to f ða;P;RÞ.

Lemma 4.3. Let P and R be positive numbers with Pf 1 and

2P=logð2PÞ < R < P � log P:

Suppose that a A T, that a and g are elements of Fq½t� with g monic and ða; gÞ ¼ 1, and write

b ¼ a� a=g. Then whenever hgie R̂R and hbi < P̂P1�k, one has

f ða;P;RÞ � hgi�1Sðg; aÞrðP=RÞFðb;PÞfhgiP̂Pðlog P̂PÞ�1=2ð1 þ P̂PkhbiÞ:

Proof. Rather than tackling f ða;P;RÞ directly, we initially consider the sum

~ffxða;X ;YÞ ¼
P

x A ~AAxðX ;Y Þ
hxix>Y

eðaxkÞ:
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Recall (3.4) and suppose that X and Y are positive numbers with 1eY < X . Then by the
inclusion-exclusion principle, one has

P
x A ~AAxðX ;Y Þ
x1r ðmod gÞ

1 ¼
Py

d jPqðX ;YÞ
hdixeX

mðdÞ
P

hmixeX

m1r ðmod gÞ
d jm

1:

If d jPqðX ;YÞ and both d and g are monic, it follows that when hgix eY one has
ðg; dÞ ¼ 1. Recalling (3.5) and applying the Chinese Remainder Theorem in combination
with Lemma 3.1, therefore, we deduce that

P
x A ~AAxðX ;Y Þ
x1r ðmod gÞ

1 ¼
Py

d jPqðX ;YÞ
hdixeX

mðdÞ
�
X=hgdiþ Oð1Þ

�

¼ hgi�1X
Py

d jPqðX ;Y Þ
hdixeX

mðdÞhdi�1 þ EðX ;Y Þ:

Applying Lemma 3.2 to both the latter formula and the case g ¼ 1 of the same relation, we
find that P

x A ~AAxðX ;Y Þ
x1r ðmod gÞ

1 ¼ hgi�1 P
x A ~AAxðX ;Y Þ

1 þ O
�
X=logð2Y Þ

�
;

whence

P
x A ~AAxðX ;Y Þ

eðaxk=gÞ � hgi�1Sðg; aÞ
P

x A ~AAxðX ;Y Þ
1fhgiX=logð2YÞ:ð4:7Þ

When W is a positive number with Y < W eX , write

SðWÞ ¼
P

x A ~AAxðW ;YÞ

�
eðaxk=gÞ � hgi�1Sðg; aÞ

�
:

In these circumstances (4.7) yields the estimate SðW Þ ¼ O
�
hgiX=logð2YÞ

�
, and so it fol-

lows by partial summation that

P
x A ~AAxðX ;Y Þ
hxix>Y

�
eðaxkÞ � hgi�1Sðg; aÞeðbxkÞ

�
¼

P
Y<WeX
W¼hxix

SðW Þ
�
eðbxkÞ � eðbxk

þÞ
�

þ O
�
hgiX=logð2YÞ

�
:

In view of the conclusion of Lemma 4.2, therefore, when 1eX e qP̂P � 1 and hbi < P̂P1�k,
we have

~ffxða;X ;Y Þ � hgi�1Sðg; aÞ ~ffxðb;X ;YÞfhgiX
�
logð2YÞ

��1ð1 þ P̂PkhbiÞ:ð4:8Þ

On applying partial summation we obtain

~ffxðb;X ;YÞ ¼
P

Y<WeX
W¼hxix

~AAxðW ;Y Þ
�
eðbxkÞ � eðbxk

þÞ
�

þ ~AAxðX ;Y Þe
�
bTxð½X � þ 1Þk

�
� ~AAxðY ;Y Þe

�
bTxð½Y þ 1�Þk

�
:
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Thus, on writing

1xðb;X ;YÞ ¼
P

Y<WeX
W¼hxix

W
�
eðbxkÞ � eðbxk

þÞ
�

þ Xe
�
bTxð½X � þ 1Þk

�
� Ye

�
bTxð½Y � þ 1Þk

�
;

it follows from Lemmata 3.3 and 4.2 that when 1eX e qP̂P � 1, one has

~ffxðb;X ;Y Þ � rqðX ;Y Þ1xðb;X ;YÞfX
�
logð2YÞ

��1ð1 þ P̂PkhbiÞ:ð4:9Þ

We now put X ¼ qP̂P � 1 and Y ¼ 2R̂R � 1. The hypotheses of the statement of the
lemma then permit us to assume that Y f P̂Pðlog P̂PÞ�1=2 and log Y g ðlog P̂PÞ1=2. But on re-
calling (2.3), a modicum of computation reveals that

1xðb;X ;YÞ ¼
P

Y<WeX
W¼hxix

eðbxkÞ ¼ Fðb;PÞ þ O
�
P̂Pðlog P̂PÞ�1=2�

and

f ða;P;RÞ ¼
P

x A ~AAxðX ;Y Þ
eðaxkÞ ¼ ~ffxða;X ;YÞ þ O

�
P̂Pðlog P̂PÞ�1=2�:

Hence, by substituting (4.9) into (4.8), we deduce that

f ða;P;RÞ � hgi�1Sðg; aÞrqðqP̂P � 1; 2R̂R � 1ÞFðb;PÞfhgiP̂Pðlog P̂PÞ�1=2ð1 þ P̂PkhbiÞ;

and the conclusion of the lemma is now confirmed by recalling Lemma 3.4.

5. A lower bound for the major arc contribution

The sets Nðg; a;VÞ comprising N are su‰ciently sparse and narrow that the deriva-
tion of the asymptotic relation (2.9) is now essentially routine. In preparation for our proof
of this formula, we introduce the singular integral

Js;kðmÞ ¼
Ð

hbi<ðqP̂PÞ1�k

FðbÞs
eð�bmÞ db;ð5:1Þ

and the singular series

Ss;kðmÞ ¼
Py

g A Fq½t�
Asðg;mÞ;ð5:2Þ

in which we have written

Asðg;mÞ ¼ hgi�s P
hai<hgi
ða;gÞ¼1

Sðg; aÞs
eð�ma=gÞ:ð5:3Þ

Lemma 5.1. Suppose that h and R are positive numbers with h < 1 and

hP < ReP � log P. Then whenever sf 2k þ 1, one has Ss;kðmÞf 1 and Js;kðmÞf P̂Ps�k,
and furthermore

Rsðm;NÞ � rðP=RÞs�2
Ss;kðmÞJs;kðmÞf P̂Ps�kV̂V�1=k:
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Proof. Define F �ðaÞ for a A N by taking F �ðaÞ ¼ hgi�1Sðg; aÞFðbÞ when
a ¼ b þ a=g lies in Nðg; a;VÞLN. Then for a A N, it follows from (2.8) and Lemma
4.1(i) that FðaÞ ¼ F �ðaÞ, and from Lemma 4.3 that f ðaÞ ¼ rðP=RÞF �ðaÞ þ OðP̂PV̂V�4Þ. The
bound

FðaÞ2
f ðaÞs�2 � rðP=RÞs�2

F �ðaÞs f P̂PsV̂V�4

therefore holds uniformly for a A N. But the measure of N is OðV̂V 3P̂P�kÞ, and so

Ð
N

�
FðaÞ2f ðaÞs�2 � rðP=RÞs�2F �ðaÞs

�
eð�maÞ daf P̂Ps�kV̂V�1:ð5:4Þ

Furthermore, from the definition of N, we have

Ð
N

F �ðaÞseð�maÞ da ¼ Sðm;VÞJðm;V � kPÞ;ð5:5Þ

where

Jðm;WÞ ¼
Ð

hbi<ŴW

FðbÞs
eð�bmÞ db and Sðm;WÞ ¼

Py

hgieŴW

Asðg;mÞ:ð5:6Þ

When ŴW < ðqP̂PÞ1�k, it follows on combining (5.1) and (5.6), and then applying
Lemma 4.1(ii), that one has the estimate

Js;kðmÞ � Jðm;W Þf P̂Ps
Ð

hbifŴW

ð1 þ P̂PkhbiÞ�s=k
db:

But equation (3) of [14] shows that when l A Z, the measure of the set of points b in T with
hbi < ql is at most ql . When sf k þ 1, one therefore finds that

Jðm;V � kPÞ � Js;kðmÞf P̂Ps
Py

l¼V�kP

qlþ1ð1 þ qlþkPÞ�s=k f P̂Ps�kV̂V�1=k;ð5:7Þ

and with the same condition on s, a similar argument yields

Js;kðmÞf P̂Ps
Ð

hbi<ðqP̂PÞ1�k

ð1 þ P̂PkhbiÞ�s=k
dbf P̂Ps�k:ð5:8Þ

Employing the conclusion of Lemma 4.1(iii) within (5.3), we next find that
Asðg;mÞfhgi1�s=k. Then for sf 2k þ 1, it follows from (5.2) and (5.6) that

Sðm;VÞ �Ss;kðmÞf
Py

hgi>V̂V

hgi1�s=k f
Py

h¼Vþ1

ðqhÞ2�s=k f V̂V�1=k;ð5:9Þ

and with the same condition on s, a parallel argument leads to the estimate

Ss;kðmÞf
Py

g A Fq½t�
hgi1�s=k f

Py
h¼0

ðqhÞ2�s=k f 1:ð5:10Þ
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Finally, on substituting (5.7) and (5.9) into (5.5), and then employing the estimates
(5.8) and (5.10), we conclude that

Ð
N

F �ðaÞs
eð�maÞ da�Ss;kðmÞJs;kðmÞf P̂Ps�kV̂V�1=k:

The proof of the lemma is completed by reference to (5.4).

We show next that under mild hypotheses, the singular series is well-behaved.

Lemma 5.2. Suppose that m A Jk
q ½t� and sf 2k þ 1. Then 1fSs;kðmÞf 1.

Proof. We suppose that sf 2k þ 1 throughout the proof of this lemma4). Define the
local density W$; sðmÞ associated with the completion FqðtÞ$ of FqðtÞ by

W$; sðmÞ ¼ 1 þ
Py
h¼1

Asð$h;mÞ:

Then the argument of the proof of [14], Lemma 23 shows that the infinite productQ
$
W$; sðmÞ converges absolutely to Ss;kðmÞ. Next, let Msðg;mÞ denote the number of solu-

tions of the congruence xk
1 þ � � � þ xk

s 1m ðmod gÞ, with hxii < hgi ð1e ie sÞ. Then the
argument of the proof of [14], Theorem 29 establishes that

W$; sðmÞ ¼ lim
h!y

h$ihð1�sÞMsð$h;mÞ;

that

jW$; sðmÞ � 1jf
Py
h¼1

h$hi�1�1=k fh$i�1�1=k;

and also that whenever m A Jk
q ½t�, then W$; sðmÞf h$i1�s. Under the latter hypothesis,

therefore, we deduce that there is a large positive number A ¼ Aðq; s; kÞ for which

Ss;kðmÞg
Q

h$i>A

ð1 � h$i�1�1=ð2kÞÞ�1:ð5:11Þ

But the number of monic irreducible polynomials of degree h is at most qh=h (see [19], page
13), whence

P
$
h$i�1�1=ð2kÞ

e
P

h

ðhqh=ð2kÞÞ�1 f 1. Consequently, on extracting logarithms,

one finds that the infinite product (5.11) converges, and that Ss;kðmÞg 1. The proof of the
lemma is completed on recalling the estimate Ss;kðmÞf 1 provided by Lemma 5.1.

We remark that with additional e¤ort, the condition sf 2k þ 1 could be relaxed to
the less severe constraint sf k þ 1. Furthermore, as is implicit in [14], Theorem 29, one has
Jk

q ½t� ¼ Fq½t� when chðFqÞ > k. It is also a consequence of the work presented here together
with the conclusion of [14], Theorem 29, that whenever m is congruent to a sum of kth

4) In [14], Lemma 23, the condition sf 3k þ 1 is imposed instead, apparently as a result of an oversight.
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powers modulo $ for all irreducible polynomials $ satisfying h$ie ðk � 1Þ2, then in fact
m A Jk

q ½t�.

Next we turn our attention to the singular integral Js;kðmÞ, the analysis of which is in
many ways simpler than in the analogous situation for Z.

Lemma 5.3. Suppose that sf k þ 1. Then P̂Ps�k f Js;kðmÞf P̂Ps�k.

Proof. Suppose that the leading coe‰cient of the polynomial m is cðmÞ. We define
b ¼ bðmÞ to be cðmÞ when k divides ord m and m is not exceptional, and otherwise we set
bðmÞ to be 0. In addition, we write JyðmÞ ¼ Jyðm; qÞ for the number of solutions of the
equation xk

1 þ � � � þ xk
s ¼ b with x A Fs

qnf0g. Then it follows from [14], Lemma 17, that
whenever sf k þ 1, one has

Js;kðmÞ ¼ JyðmÞP̂Ps�k þ OðP̂Ps�k�1=kÞ;ð5:12Þ

and moreover that 1e JyðmÞf 1. In order to confirm this assertion, one observes that
the integration in (5.1) is over b A T with ord b < �ðk � 1ÞðP þ 1Þ, and further that
ðk � 1ÞðP þ 1Þe ord m, except possibly when Pe 2k � 1. One may therefore apply [14],
Lemma 17 with m ¼ P þ 1 and m 0 ¼ ðk � 1ÞðP þ 1Þ, and when P is large enough in terms
of k it is only the cases (a) and (b) of this lemma that are relevant5). We note that when
bðmÞ3 0, the lower bound JyðmÞf 1 may be confirmed by following the argument of
the proof of [14], Lemma 27. We remark that the same conclusion as above is implicit in
Car [2], Proposition 9, and also that the conclusion of [14], Theorem 18 di¤ers from what
would be anticipated based on (5.12), owing to some oversights in the argument of [14].

On observing that when h > 0 and R > hP, one has rðP=RÞg 1, we may combine
Lemmata 5.1, 5.2 and 5.3 to obtain the following conclusion.

Lemma 5.4. Suppose that h and R are positive numbers with h < 1 and

hP < ReP � log P. Then whenever m A Jk
q ½t� and sf 2k þ 1, one has Rsðm;NÞg P̂Ps�k.

6. Pruning technology

The minor arc estimates that we obtain in §13 are insu‰cient to bound directly the
quantity Rsðm; nÞ defined in (2.5), and thus we are forced to employ pruning techniques
to bridge the gap. In this context, we write P for MðPÞ and p for mðPÞ, and we say that a
positive number u > 2k � 2 is accessible to the exponent k when there exists a positive num-
ber d for which Ð

p

jFðaÞ2
f ðaÞuj daf P̂Puþ2�k�d:ð6:1Þ

Our goal in this section is to show that whenever u is accessible to the exponent k, and s is
an even integer with s � 2f u, thenÐ

n

jFðaÞ2
f ðaÞs�2j da ¼ oðP̂Ps�kÞ:ð6:2Þ

5) We emphasise that m and m 0 are integers in this context.
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This estimate plainly implies that Rsðm; nÞ ¼ oðP̂Ps�kÞ, a bound required in the discussion
concluding §2, and thus the focus of later sections is the pursuit of bounds of the shape
(6.1).

We begin by analysing mean values of classical Weyl sums.

Lemma 6.1. Whenever uf 2k þ 1, one has

Ð
P

jFðaÞju daf P̂Pu�k:

Proof. Suppose that a A P, so that for some a; g A Fq½t� with g monic,
0e hai < hgie P̂P and ða; gÞ ¼ 1, one has a A Mðg; a;PÞ. Making use of the definition of
Mðg; a;PÞ together with Lemma 4.1, we find that

FðaÞf P̂Phgi�1=kð1 þ P̂Pkha� a=giÞ�1=k:ð6:3Þ

Consequently, one has

Ð
P

jFðaÞju daf P̂PuT1T2;ð6:4Þ

where

T1 ¼
Py

g A Fq½t�

P
hai<hgi
ða;gÞ¼1

hgi�u=k and T2 ¼
Ð

hbi<P̂P1�k

ð1 þ P̂PkhbiÞ�u=k db:

Since the number of monic polynomials g A Fq½t� with hgi ¼ ql is equal to ql , we see
that whenever uf 2k þ 1, one has

T1 e
Py

g AFq½t�
hgi1�u=k

e
Py
h¼0

ðqhÞ2�u=k f 1:ð6:5Þ

Meanwhile, observing next that the measure of the set of points b in T with hbi ¼ ql is at
most qlþ1, we deduce that

T2 e
Ð

hbi<P̂P�k

db þ
Ð

hbifP̂P�k

ð1 þ P̂PkhbiÞ�u=k
db

e P̂P�k þ
Py

l¼�kP

qlþ1ð1 þ qlþkPÞ�u=k

f P̂P�k þ P̂P�k
Py
h¼0

qhð1�u=kÞ:

When uf k þ 1, it therefore follows that T2 ¼ OðP̂P�kÞ. The conclusion of the lemma fol-
lows on substituting this estimate together with (6.5) into (6.4).

Next we leverage control on the major arcs of mean values involving FðaÞ into con-
trol of mixed mean values involving also f ðaÞ.
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Lemma 6.2. Suppose that u > 2k � 2 is accessible to the exponent k, and that v is an

integer with 2vf u. Then we have

Ð
T

jFðaÞ2
f ðaÞ2vj daf P̂P2vþ2�k:ð6:6Þ

Proof. When B is a measurable subset of T, write

IðBÞ ¼
Ð
B

jFðaÞ2
f ðaÞ2vj da:

Then by applying Hölder’s inequality, we obtain

IðTÞ ¼ IðpÞ þ IðPÞf IðpÞ þ I
1=ðvþ1Þ
1 I

v=ðvþ1Þ
2 ;ð6:7Þ

where we write

I1 ¼
Ð
P

jFðaÞj2vþ2
da and I2 ¼

Ð
T

j f ðaÞj2vþ2
da:

Since 2v þ 2 is even, the integral I2 counts the number of solutions of the equation

Pvþ1

i¼1

ðxk
i � yk

i Þ ¼ 0;

with xi; yi A AðP;RÞ ð1e ie v þ 1Þ. An upper bound for I2 is therefore provided by per-
mitting x1 and y1 to be any elements of Fq½t� with hx1ie P̂P and hy1ie P̂P, whence

I2 e
Ð
T

jFðaÞ2
f ðaÞ2vj da ¼ IðTÞ:

It therefore follows from (6.7) that

IðTÞf IðpÞ þ I1:ð6:8Þ

But by hypothesis u is accessible to the exponent k, and 2vf u. Hence, on employing
the trivial estimate jFðaÞj ¼ OðP̂PÞ, we find that there is a positive number d for which
IðpÞ ¼ OðP̂P2vþ2�k�dÞ. From Lemma 6.1, moreover, we have I1 ¼ OðP̂P2vþ2�kÞ. We therefore
deduce from (6.8) that IðTÞ ¼ OðP̂P2vþ2�kÞ. This confirms (6.6), and so the proof of the
lemma is complete.

We next show that in the mean value crucial to our application, the contribution of
the arcs PnN is of smaller order than the expected main term.

Lemma 6.3. Suppose that u > 2k � 2 is accessible to the exponent k, and that s is an

even integer with sf u þ 2. Then we have

Ð
PnN

jFðaÞ2
f ðaÞs�2j daf P̂Ps�kV̂V�2=ðksÞ:
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Proof. An application of Hölder’s inequality reveals that

Ð
PnN

jFðaÞ2
f ðaÞs�2j dae J

1�2=s
1 J

2=s
2 ;ð6:9Þ

where

J1 ¼
Ð
T

j f ðaÞjs da and J2 ¼
Ð

PnN
jFðaÞjs da:ð6:10Þ

But s is even, so that on considering the underlying equation we find that

J1 e
Ð
T

jFðaÞ2
f ðaÞs�2j da:

Since s � 2f u and u is accessible to the exponent k, the upper bound J1 ¼ OðP̂Ps�kÞ there-
fore follows from Lemma 6.2.

In order to tackle J2 we observe first that when a A Mðg; a;PÞLP, it follows as in
(6.3) that

FðaÞf P̂Pðhgiþ P̂Pkhga� aiÞ�1=k:

But if a A PnN, one necessarily has either hgi > V̂V or hga� ai > V̂VP̂P�k, whence
FðaÞf P̂PV̂V�1=k. Note that the hypotheses of the lemma ensure that sf 2k þ 2. Then on
substituting our estimate for FðaÞ into (6.10), we deduce from Lemma 6.1 that

J2 f P̂PV̂V�1=k
Ð
P

jFðaÞjs�1
daf P̂Ps�kV̂V�1=k:

The conclusion of the lemma follows on substituting the latter bound together with our ear-
lier bound for J1 into (6.9).

Since n ¼ pW ðPnNÞ, the estimate (6.2) follows on combining the conclusion of
Lemma 6.3 with (6.1). We finish this section by collecting together the conclusions of Lem-
mata 5.4 and 6.3 to obtain the following lemma.

Lemma 6.4. Suppose that h and R are positive numbers with h < 1 and

hP < ReP � log P. Suppose also that u > 2k � 2 is accessible to the exponent k, and that

s is an even integer with sf u þ 2. Then whenever m A Jk
q ½t�, one has Rsðm;PÞg P̂Ps�k.

7. The fundamental lemma for smooth Weyl sums

The goal of the next three sections is to derive, for natural numbers s, upper bounds
for the mean values

SsðP;RÞ ¼
Ð
T

j f ða;P;RÞj2s
da:ð7:1Þ

By orthogonality, the mean value SsðP;RÞ counts the number of solutions of the equa-
tion

xk
1 þ � � � þ xk

s ¼ yk
1 þ � � � þ yk

s ;ð7:2Þ
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with xi; yi A AðP;RÞ ð1e i e sÞ. We estimate SsðP;RÞ via the iterative method introduced
by Vaughan [22], in the variant permitting repeated e‰cient di¤erencing established by the
second author [27]. As in [22] and [27], our first step is a fundamental (auxiliary) lemma,
and here we model our approach on that of [27]. Aside from leading to considerably
sharper estimates, the latter also permits one to replace two smooth Weyl sums in (7.1) by
corresponding classical Weyl sums, hence simplifying considerably the major arc analysis
discussed above.

Before proceeding further, it is convenient to have available two technical lemmata
that provide basic estimates of use in our subsequent deliberations. When g A Fq½t�, we de-
note by s0ðgÞ the squarefree kernel of g, which is to say s0ðgÞ ¼

Q
$ j g

$. In addition, when L

is a positive number, we define the set CgðLÞ by

CgðLÞ ¼ fy A Fq½t� : y is monic; hyie L̂L and s0ðyÞ j s0ðgÞg:

Lemma 7.1. Let e and A be fixed positive numbers. Then whenever g A Fq½t�, and L is

a positive number for which hgie L̂LA, one has card
�
CgðLÞ

�
f L̂Le.

Proof. Observe first that there is no loss of generality in supposing that ord gf 5,
for otherwise we may replace g by g5 without adversely a¤ecting the desired conclusions.
Next, from the definition of CgðLÞ, one has

card
�
CgðLÞ

�
e

P
s0ðyÞ j s0ðgÞ

ðL̂L=hyiÞe e L̂LeQ
$ j g

ð1 � h$i�eÞ�1:ð7:3Þ

Write cðgÞ for 21=e loghgi=log loghgi. We divide the product on the right-hand side of (7.3)
according to the size of h$i. On the one hand,

Q
$ j g

h$iecðgÞ

ð1 � h$i�eÞ�1
e

Q
h$iecðgÞ

ð1 � q�eÞ�1
e exp

�
�q logð1 � q�eÞcðgÞ

�
:

On the other hand, since the number of monic irreducible divisors of g having degree ex-
ceeding logq cðgÞ cannot exceed ðord gÞ=

�
logq cðgÞ

�
, one has

Q
$ j g

h$i>cðgÞ

ð1 � h$i�eÞ�1
e

Q
$ j g

h$i>cðgÞ

2e exp
�
logqhgi=logq cðgÞ

�
:

On substituting the latter estimates into (7.3), we find that there is a positive number
B ¼ Bðq; eÞ for which

card
�
CgðLÞ

�
e L̂Le expðB loghgi=log loghgiÞf L̂L2e;

thereby confirming the conclusion of the lemma.

Write oðgÞ for the number of distinct monic irreducible polynomials dividing g, and
write dkðgÞ for the number of ways of writing g in the form g ¼ cg1 . . . gk, with c A Fq, and
with gi A Fq½t� ð1e ie kÞ monic.

Corollary 7.2. For each k A N, one has dkðgÞfhgie and koðgÞfhgie.
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Proof. The desired estimates follow at once from Lemma 7.1 on noting that, from
the definition of CgðLÞ, one has koðgÞ e dkðgÞf

�
Cgðord gÞ

�k�1
.

It is convenient also to have available a crude lower bound for card
�
AðP;RÞ

�
.

Lemma 7.3. Suppose that R and P are positive numbers with Pf 1 and

R > P=logð2PÞ. Then card
�
AðP;RÞ

�
g P̂P1�e.

Proof. Since for a fixed value of P, the cardinality of AðP;RÞ is an increasing func-
tion of R, there is no loss of generality in supposing that R ¼ P=logð2PÞ. By suitably ad-
justing the implicit constant in the lower bound supplied by the conclusion of the lemma,
moreover, we may also suppose that P and R each exceed 6. Observe next that the cardi-
nality of AðP;RÞ is equal to q � 1 times the number of non-negative integral solutions z of
the inequality P

ord$eR

z$ ord$eP:

From [19], page 13, the number of monic irreducible polynomials of degree ½R� is at
least ðqR�1 � 2qR=2Þ=Rf qR�2=R. Thus we find that card

�
AðP;RÞ

�
fZðN;UÞ, where

ZðN;UÞ denotes the number of non-negative integral solutions u of the inequality
u1 þ � � � þ uN eU , with N ¼ ½qR�2=R� and U ¼ ½P=R�. But then ZðN;UÞ is equal to the
number of non-negative integral solutions u of the equation u0 þ u1 þ � � � þ uN ¼ U , and
by [23], §1.5, Exercise 1, we therefore have ZðN;UÞ ¼ ðN þ UÞ!=ðN!U !Þ. In view of our
assumption that R ¼ P=logð2PÞ, an application of Stirling’s formula reveals that

log ZðN;UÞfN logð1 þ U=NÞ þ U logð1 þ N=UÞ þ O
�
logð2UÞ

�
¼ P log q �

�
logð2PÞ

�2 þ O
�
logð2PÞ

�
;

whence for large values of P one obtains

card
�
AðP;RÞ

�
f P̂P exp

�
�2ðlog log P̂PÞ2�g P̂P1�e:

This completes the proof of the lemma.

We now advance to describe the fundamental lemma that underlies our e‰cient dif-
ferencing method. This entails the introduction of some notation. Let P, Q, R be positive
numbers with 1eReQeP. Also, let r be a non-negative integer, and let Ci, C 0

i be
real numbers with 0eC 0

i eCi eP ð1e ie rÞ. We consider a subset C of polynomials c
whose degrees lie in the box ½C 0

1;C1� � � � � � ½C 0
r ;Cr�. For the sake of concision we write ~CCj

for the product ĈC1ĈC2 . . . ĈCj, we write ~CC 0
j for ĈC 0

1ĈC 0
2 . . . ĈC

0
j , and we do likewise, in the obvious

fashion, for other sets of parameters. We interpret an empty product of the latter type to be
unity. Consider next a polynomial Cðz; cÞ in the variables z, c1; . . . ; cr of degree at least one
in terms of z, having coe‰cients in Fq½t�, and write C 0ðz; cÞ for ðqC=qzÞðz; cÞ. We suppose
throughout that s is a non-negative integer.

We denote by SsðP;Q;RÞ ¼ SsðP;Q;R;C;CÞ the number of solutions of the equation

Cðz; bÞ �Cðw; cÞ ¼
Ps

j¼1

ðxk
j � yk

j Þ;ð7:4Þ
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with

xj; yj A AðQ;RÞ ð1e j e sÞ;ð7:5Þ

hzi; hwie P̂P and b; c A C:ð7:6Þ

Here we adopt the convention that if s ¼ 0, then the right-hand side of (7.4) is
replaced by 0. Next, given a real number y with 1e P̂Py < Q, we define
TsðP;Q;R; yÞ ¼ TsðP;Q;R; y;C;CÞ to be the number of solutions of the equation

Cðz; cÞ �Cðw; cÞ ¼ mk
Ps

j¼1

ðuk
j � vk

j Þ;ð7:7Þ

with z, w, c as in (7.6), and with

m monic and P̂Py < hmieminfQ̂Q; P̂PyR̂Rg;ð7:8Þ

uj; vj A AðQ � yP;RÞ ð1e j e sÞ;ð7:9Þ

z1w ðmod mkÞ:ð7:10Þ

Finally, we write NsðP;Q;RÞ ¼ NsðP;Q;R;C;CÞ for the number of solutions of the equa-
tion (7.4) subject to (7.5) and (7.6) for which C 0ðz; bÞ ¼ C 0ðw; cÞ ¼ 0.

Lemma 7.4. Suppose that y ¼ yðs; k;CÞ satisfies the constraint 0 < yP < Q. Then

whenever s is a natural number, one has

SsðP;Q;RÞfSsðP; yP;RÞ þ NsðP;Q;RÞ þ Q̂QP̂PyþeSs�1ðP;Q;RÞð7:11Þ

þ P̂Pe ~CCrðP̂PyR̂RÞ2s�1
TsðP;Q;R; yÞ:

Proof. We divide the solutions of (7.4) counted by SsðP;Q;RÞ into four classes, and
seek to establish that the contribution from each class is majorised by one of the terms on
the right-hand side of (7.11). In order to describe our classification of these solutions, it is
useful to introduce a notion modifying that of a divisor in a special way. When L is a pos-
itive number, we write xDðLÞy when there is a divisor w of x with hwie L̂L such that x=w

is monic and has all of its irreducible factors amongst those of y.

Let S1 denote the number of solutions of (7.4) satisfying (7.5) and (7.6) such that

minfhxji; hyjige P̂Pyð7:12Þ

for some j with 1e j e s; let S2 denote the number for which

C 0ðz; bÞ ¼ 0 or C 0ðw; cÞ ¼ 0;ð7:13Þ

let S3 denote the number for which minfhxji; hyjig > P̂Py for 1e j e s, the condition
(7.13) does not hold, and such that for some j with 1e j e s one has

xjDðyPÞC 0ðz; bÞ or yjDðyPÞC 0ðw; cÞ;ð7:14Þ
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and let S4 denote the number for which minfhxji; hyjig > P̂Py for 1e j e s, the condition
(7.13) does not hold, and such that (7.14) holds for no j with 1e j e s. Then

SsðP;Q;RÞe 4 maxfS1;S2;S3;S4g:ð7:15Þ

We divide into cases.

(i) Suppose that S1 fmaxfS2;S3;S4g, so that from (7.15) one has SsðP;Q;RÞe 4S1.
Define Gða;PÞ ¼ Gða;P;CÞ by

Gða;PÞ ¼
P
z;b

e
�
aCðz; bÞ

�
;

where the summation is over z and b satisfying (7.6). Then on recalling (2.3), it is apparent
from (7.12) that

S1 f
Ð
T

jGða;PÞ2
f ða; yP;RÞ f ða;Q;RÞ2s�1j da:

By Hölder’s inequality, one therefore has

SsðP;Q;RÞf
�
SsðP; yP;RÞ

�1=ð2sÞ�
SsðP;Q;RÞ

�1�1=ð2sÞ
;

and so the upper bound (7.11) holds in the first case.

(ii) Suppose that S2 fmaxfS1;S3;S4g, so that from (7.15) one has SsðP;Q;RÞe 4S2.
Now define ~GGða;PÞ ¼ ~GGða;P;CÞ by

~GGða;PÞ ¼
P
z;b

e
�
aCðz; bÞ

�
;

where the summation is over z and b satisfying (7.6) and the first condition of (7.13). Then
we see that

S2 f
Ð
T

j ~GGða;PÞGða;PÞ f ða;Q;RÞ2sj da:

By Schwarz’s inequality, therefore, we have

SsðP;Q;RÞf
�
NsðP;Q;RÞ

�1=2�
SsðP;Q;RÞ

�1=2
;

and so (7.11) holds also in the second case.

(iii) Suppose that S3 fmaxfS1;S2;S4g, so that from (7.15) one has

SsðP;Q;RÞe 4S3:

Given z and b satisfying (7.6) with C 0ðz; bÞ3 0, denote by Lðz; bÞ the set of polynomials x

for which hxie Q̂Q, and such that x has a divisor n with hnie P̂Py with the property that
x=n is monic and has all of its irreducible factors amongst those of C 0ðz; bÞ. Define the ex-
ponential sum Hða;P;QÞ ¼ Hða;P;Q;CÞ by

Hða;P;QÞ ¼
P
z;b

P
x ALðz;bÞ

e
�
a
�
xk þCðz; bÞ

��
;
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where the first summation is over z and b satisfying (7.6) subject to the condition that
C 0ðz; bÞ3 0. Then

S3 f
Ð
T

jHða;P;QÞGða;PÞ f ða;Q;RÞ2s�1j da;

so that by Schwarz’s inequality,

S3 f
�
SsðP;Q;RÞ

�1=2
	Ð

T

jHða;P;QÞ2
f ða;Q;RÞ2s�2j da


1=2

:

It therefore follows from orthogonality that

SsðP;Q;RÞf
P
g;g 0

Vðg; g 0Þ;ð7:16Þ

where we write Vðg; g 0Þ for the number of solutions of the equation

Cðz; bÞ þ mkxk þ xk
1 þ � � � þ xk

s�1 ¼ Cðw; cÞ þ nkyk þ yk
1 þ � � � þ yk

s�1;

with z, w, b, c satisfying (7.6), with xj and yj satisfying (7.5) for 1e j e s � 1, and with

C 0ðz; bÞ3 0; C 0ðw; cÞ3 0; g jC 0ðz; bÞ; g 0 jC 0ðw; cÞ; hmie P̂Py; hnie P̂Py;

x; y monic; hxie Q̂Qhmi�1; hyie Q̂Qhni�1; s0ðxÞ ¼ g; s0ðyÞ ¼ g 0:

Now define Ggða;PÞ ¼ Ggða;P;CÞ by putting

Ggða;PÞ ¼
P
z;b

e
�
aCðz; bÞ

�
;

where the summation is over z and b satisfying (7.6), and subject to the conditions
C 0ðz; bÞ3 0 and g jC 0ðz; bÞ. Let d be the total degree of C. Then since hzie P̂P and
ĈCi e P̂P ð1e ie rÞ, we have hC 0ðz; bÞie P̂Pd. It therefore follows from (7.16) that

SsðP;Q;RÞf
Ð
T

jGðaÞ2
f ða;Q;RÞ2s�2j da;ð7:17Þ

where we write

GðaÞ ¼
P

hgieP̂P d

Ggða;PÞ
P

hmieP̂Py

Py

hxieQ̂Qhmi�1

s0ðxÞ¼g

eðamkxkÞ:ð7:18Þ

Here, if g is not squarefree, we understand the third summation of (7.18) to be empty.

We now apply Cauchy’s inequality to (7.18), obtaining the upper bound

jGðaÞj2 eM
P

hgieP̂P d

jGgða;PÞj2;ð7:19Þ

where

M ¼
P

hgieP̂P d

���� P
hmieP̂Py

Py

hxieQ̂Qhmi�1

s0ðxÞ¼g

eðamkxkÞ
����

2

:
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Interchanging the order of summation in the last expression, and then applying Cauchy’s
inequality in combination with Lemma 7.1, we deduce that

M ¼
P

hgieP̂P d

���� Py

hxieQ̂Q
s0ðxÞ¼g

P
hmieP̂Py

hmieQ̂Qhxi�1

eðamkxkÞ
����

2

f P̂Pe P
hgieP̂P d

Py

hxieQ̂Q
s0ðxÞ¼g

���� P
hmieP̂Py

hmieQ̂Qhxi�1

eðamkxkÞ
����

2

:

Consequently, on making a trivial estimate for the innermost sum in two di¤erent ways, we
find that

Mf P̂Pe
Py

hxieQ̂Q

P̂PyQ̂Qhxi�1 f P̂PyþeQ̂Q log Q̂Q:

We now substitute the last estimate into (7.19), and from there into (7.17), obtaining
the upper bound

SsðP;Q;RÞf P̂PyþeQ̂Q
P

hgieP̂Pd

JðgÞ;ð7:20Þ

where we have written

JðgÞ ¼
Ð
T

jGgða;PÞ2
f ða;Q;RÞ2s�2j da:

By orthogonality, the integral JðgÞ counts the number of solutions of an equation of the
shape (7.4), subject to (7.5) and (7.6), save with s � 1 in place of s, and with C 0ðz; bÞ3 0,
C 0ðw; cÞ3 0, g jC 0ðz; bÞ and g jC 0ðw; cÞ. Note that for each fixed choice of z and b, it
follows from Corollary 7.2 that the number of possible divisors g of C 0ðz; bÞ is at most
O
�
hC 0ðz; bÞie

�
¼ OðP̂PdeÞ, and likewise for C 0ðw; cÞ. We therefore deduce that

P
hgieP̂P d

JðgÞf P̂PeSs�1ðP;Q;RÞ;

and from here, the relation (7.20) leads to the upper bound

SsðP;Q;RÞf P̂PyþeQ̂QSs�1ðP;Q;RÞ:

This confirms (7.11) in the third case.

(iv) Suppose that S4 fmaxfS1;S2;S3g, so that from (7.15) one has

SsðP;Q;RÞe 4S4:

Then for a given solution of (7.4) satisfying (7.5) and (7.6) counted by S4, we have

hxji > P̂Py; hyji > P̂Py ð1e j e sÞ and C 0ðz; bÞ3 0; C 0ðw; cÞ3 0;

and neither

xjDðyPÞC 0ðz; bÞ nor yjDðyPÞC 0ðw; cÞ ð1e j e sÞ:ð7:21Þ
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When 1e j e s, let ~mmj denote the product of all the monic irreducible factors of xj that are
coprime to C 0ðz; bÞ. If one were to have h ~mmjie P̂Py, then xjDðyPÞC 0ðz; bÞ, contradicting
(7.21). Then we are forced to conclude that h ~mmji > P̂Py. Let mj be a monic divisor of ~mmj of
smallest degree satisfying the property that hmji > P̂Py. Since the degree of each irreducible
factor of xj is at most R, we may infer that

P̂Py < hmjieminfQ̂Q; P̂PyR̂Rg and
�
mj;C

0ðz; bÞ
�
¼ 1:

Plainly, we may proceed in a similar manner with yj for 1e j e s.

With the discussion of the previous paragraph in mind, we see that S4 eV1, where V1

denotes the number of solutions of the equation

Cðz; bÞ þ
Ps

j¼1

ðmjujÞk ¼ Cðw; cÞ þ
Ps

j¼1

ðnjvjÞk;

with z, w, b, c satisfying (7.6), and subject to the condition that for 1e j e s one has

mj; nj monic; P̂Py < hmji; hnjieminfQ̂Q; P̂PyR̂Rg;ð7:22Þ �
mj;C

0ðz; bÞ
�
¼
�
nj;C

0ðw; cÞ
�
¼ 1;

uj A AðQ � ord mj;RÞ; vj A AðQ � ord nj;RÞ:

Now define Fmða;PÞ ¼ Fmða;P;CÞ by putting

Fmða;PÞ ¼
P
z;b

e
�
aCðz; bÞ

�
;

where the summation is over z and b satisfying (7.6) subject to the condition that�
m;C 0ðz; bÞ

�
¼ 1. Also, write

FjðaÞ ¼ f ðmk
j a;Q � ord mj;RÞ f ð�nk

j a;Q � ord nj;RÞ ð1e j e sÞ:

Then it follows from orthogonality that

V1 e
P
m;n

Ð
T

FMða;PÞFNð�a;PÞ
Qs
j¼1

FjðaÞ da;ð7:23Þ

where here, and in what follows, the summation over m and n is subject to (7.22), and we
have written M ¼ m1 . . .ms and N ¼ n1 . . . ns.

We next write

XjðaÞ ¼ jFMða;PÞ2
f ðmk

j a;Q � ord mj;RÞ2sj

and

YjðaÞ ¼ jFNða;PÞ2
f ðnk

j a;Q � ord nj;RÞ2sj:
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Then it is apparent from (7.23) that

S4 f
P
m;n

Ð
T

Qs
j¼1

�
XjðaÞYjðaÞ

�1=ð2sÞ
da;

so that by Hölder’s inequality,

S4 f
P
m;n

Qs
j¼1

	Ð
T

XjðaÞ da


1=ð2sÞ	Ð
T

YjðaÞ da


1=ð2sÞ
:ð7:24Þ

Now observe that

Ð
T

XjðaÞ daeWðP;Q;R;mjÞ and
Ð
T

YjðaÞ daeW ðP;Q;R; njÞ;

where we write WðP;Q;R;mÞ for the number of solutions of the equation

Cðz; bÞ þ mkðuk
1 þ � � � þ uk

s Þ ¼ Cðw; cÞ þ mkðvk
1 þ � � � þ vk

s Þ;ð7:25Þ

with z, w, b, c subject to (7.6), and with uj; vj A AðQ � yP;RÞ ð1e j e sÞ and�
C 0ðz; bÞ;m

�
¼
�
C 0ðw; cÞ;m

�
¼ 1. Then, on applying Hölder’s inequality on the right-

hand side of (7.24), we obtain the estimate

S4 f

	P
m;n

1


1�1=ð2sÞ	P
m;n

Qs
j¼1

�
WðP;Q;R;mjÞWðP;Q;R; njÞ

�
1=ð2sÞ
ð7:26Þ

f ðP̂PyR̂RÞ2s�1
VðP;Q;R; yÞ;

where VðP;Q;R; yÞ denotes the number of solutions of the equation (7.25) subject to (7.6),
(7.8), (7.9) and the conditions

�
C 0ðz; bÞ;m

�
¼
�
C 0ðw; cÞ;m

�
¼ 1. We now seek to establish

that

VðP;Q;R; yÞf P̂Pe ~CCrTsðP;Q;R; yÞ;ð7:27Þ

for on substituting this bound into (7.26), we obtain

SsðP;Q;RÞf P̂Pe ~CCrðP̂PyR̂RÞ2s�1
TsðP;Q;R; yÞ;

and this confirms (7.11) in the fourth and final case.

For a given polynomial m satisfying (7.8), let Eðm; u; bÞ denote the set of solutions z

of the congruence Cðz; bÞ1 u ðmod mkÞ, with hzi < hmki and
�
C 0ðz; bÞ;m

�
¼ 1. Consider

an irreducible factor $ of m, and suppose that $h kmk. An application of Hensel’s Lemma
(see, for example, [10], Lemma 5.21), shows that card

�
Eð$h; u; bÞ

�
e d, where d is the de-

gree of C. Applying the Chinese Remainder Theorem and recalling Corollary 7.2, therefore,
we deduce that

card
�
Eðm; u; bÞ

�
e doðmÞfhmie:ð7:28Þ
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Consider a solution of (7.25) counted by WðP;Q;R;mÞ. Motivated by the observa-
tion that Cðz; bÞ1Cðw; cÞ ðmod mkÞ, we classify the set of solutions according to the resi-
due class modulo mk of Cðz; bÞ. Let

gmða; z; bÞ ¼
P

hzieP̂P

z1z ðmod mkÞ

e
�
aCðz; bÞ

�

and

GmðaÞ ¼
P

hui<hmik

����P
b

P
z AEðm;u;bÞ

gmða; z; bÞ
����

2

;

in which here, and in what follows, the summation over b is subject to (7.6). Then on re-
viewing the definition of VðP;Q;R; yÞ, we find that

VðP;Q;R; yÞe
Py

P̂Py<hmieminfQ̂Q; P̂PyR̂Rg
Vm;ð7:29Þ

where

Vm ¼
Ð
T

GmðaÞj f ðmka;Q � yP;RÞj2s
da:ð7:30Þ

We now apply Cauchy’s inequality in combination with (7.28), thereby obtaining the
estimate

GmðaÞfhmie ~CCr

P
hui<hmik

P
b

P
z AEðm;u;bÞ

jgmða; z; bÞj2

e hmie ~CCr

P
b

P
hzi<hmik

jgmða; z; bÞj2:

On substituting this bound into (7.29) and (7.30), we consequently deduce that

VðP;Q;R; yÞf P̂Pe ~CCr1;

where

1 ¼
Py

P̂Py<hmieminfQ̂Q; P̂PyR̂Rg

P
b

P
hzi<hmik

Ð
T

jgmða; z; bÞ2
f ðmka;Q � yP;RÞ2sj da:

A comparison of the equation underlying the right-hand side of the last relation with
(7.7) reveals that 1eTsðP;Q;R; yÞ. The desired bound (7.27) follows at once, and as we
remarked earlier, the latter confirms (7.11) in the fourth case. This completes the proof of
the lemma.

8. The e‰cient di¤erencing process

The rôle of the fundamental lemma (Lemma 7.4) is to relate the mean value
SsðP;Q;RÞ to the derived mean value TsðP;Q;R; yÞ, the latter containing the relatively
powerful congruence condition (7.10). We now exploit this condition by engineering a dif-
ferencing process more e‰cient than that available via conventional Weyl di¤erencing. In
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order to discuss this e‰cient di¤erencing process, we define the modified forward di¤erenc-
ing operator D�

1 by

D�
1

�
f ðzÞ; h;m

�
¼ m�k

�
f ðzÞ � f ðz � hmkÞ

�
;

and then define D�
j recursively by

D�
jþ1

�
f ðzÞ; h1; . . . ; hjþ1;m1; . . . ;mjþ1

�
¼ D�

1

�
D�

j

�
f ðzÞ; h1; . . . ; hj;m1; . . . ;mj

�
; hjþ1;mjþ1

�
:

It is convenient also to adopt the convention that D0

�
f ðzÞ

�
¼ f ðzÞ.

While in characteristic zero, the di¤erencing process e¤ectively decreases the degree
of the polynomial argument by precisely one, the situation in positive characteristic is
more subtle. It is therefore useful to define the q-di¤erence degree of a polynomial f ðzÞ
with coe‰cients in Fq½t� to be the largest natural number g for which D�

g

�
f ðzÞ; h;m

�
is not

identically zero as a polynomial in z, h, m. We write g
�

f ðzÞ; q
�

for the q-di¤erence degree
of the polynomial f ðzÞ. In addition, when confusion is easily avoided, we write gðk; qÞ for
gðzk; qÞ. The following lemma shows that gðk; qÞ may be conveniently evaluated in terms of
the sum of digits function gqðkÞ defined in the preamble to the statement of Theorem 1.1.

Lemma 8.1. When k is a natural number, one has gðk; qÞ ¼ gqðkÞ.

Proof. Let the characteristic of Fq be p, and write k in base p in the shape
k ¼ an pn þ � � � þ a1p þ a0, where 0e ai e p � 1 ð0e ie nÞ and an 3 0. We seek to show
that gðk; qÞ ¼ a0 þ a1 þ � � � þ an, and this we achieve by induction. Observe first that if
gqðkÞ ¼ 1, then k ¼ pn for some non-negative integer n. In such circumstances one has

D�
1ðzpn

; h;mÞ ¼ m�k
�
zpn � ðz � hmkÞpn�

¼ ð�1Þpþ1
hpn

mkðpn�1Þ;

which is not identically zero as a polynomial in z, h and m. Thus we see that gðk; qÞ ¼ 1
when gqðkÞ ¼ 1, and so the basis for our induction is established.

Suppose next that gqðkÞf 2, and that gðl; qÞ ¼ gqðlÞ for each natural number l with
l < k. By the binomial expansion, one has

D�
1ðzk; h;mÞ ¼

Pk�1

j¼0

ð�1Þk�jþ1
fjðh;mÞz j;

where we write fjðh;mÞ ¼ k

j

	 

hk�jmkðk�j�1Þ. When 0e j < k, write t ¼ tðk; jÞ for the

non-negative integer satisfying pt

���� k

j

	 

. Then we have

t ¼
Py
h¼1

k

ph

� �
� j

ph

� �
� k � j

ph

� �	 

¼
Py
h¼1

j

ph

� �
þ k � j

ph

� �
� k

ph

� �	 

;

where, as usual, we write fbg for b � ½b�. It follows that
k

j

	 

is coprime to p if and only if

j has the shape j ¼ bn pn þ � � � þ b1p þ b0, with 0e bi e ai for 0e ie n (this in fact fol-
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lows from Lucas’ criterion). Writing NðkÞ for the set of integers j with 0e j e k � 1 for
which the latter condition is satisfied, we therefore deduce that

D�
1ðzk; h;mÞ ¼

P
j ANðkÞ

ð�1Þk�jþ1
fjðh;mÞz j:

Furthermore, each term in the latter sum is non-trivial as a polynomial in z, h and m. In
view of our inductive hypothesis, therefore, one has

gðk; qÞ ¼ 1 þ max
j ANðkÞ

gð j; qÞ ¼ 1 þ max
j ANðkÞ

gqð jÞ:

Moreover, since gqðkÞf 2, there is some element j of NðkÞ for which gqð jÞ ¼ gqðkÞ � 1,
and so we conclude that gðk; qÞ ¼ 1 þ

�
gqðkÞ � 1

�
¼ gqðkÞ. This establishes the inductive

step, and so the proof of the lemma is complete.

Before discussing the e‰cient di¤erencing process itself, we pause to summarise
Lemma 7.4 in a form tailored for the task we have in mind. When j is a non-negative inte-
ger, we define the polynomial Cjðz; h;mÞ ¼ Cj;kðz; h1; . . . ; hj;m1; . . . ;mjÞ by putting

Cjðz; h;mÞ ¼ D�
j ðzk; h;mÞ:

For each integer j with 1e j e gqðkÞ, one may write C 0
j;kðz; h;mÞ in the form

C 0
j;kðz; h;mÞ ¼ kh1 . . . hj

Pk�j�1

l¼0

cl; jðh;mÞzl ;ð8:1Þ

where, for 0e l e k � j � 1, the polynomials cl; jðh;mÞ ¼ c
ðkÞ
l; j ðh1; . . . ; hj;m1; . . . ;mjÞ have

coe‰cients in Fq½t�, and are of degree k � j � 1 � l in h and m. We observe that cl; jðh;mÞ
may be written as a polynomial in hrm

k
r ð1e re jÞ, say cl; jðh;mÞ ¼ wl; jðh1mk

1 ; . . . ; hjm
k
j Þ.

When 0e re j, let I
ðrÞ
j;k denote the set of indices l for which wl; jðxÞ does not depend explic-

itly on xrþ1; . . . ; xj. Here, we adopt the convention that I
ð jÞ
j;k ¼ f0; 1; . . . ; k � j � 1g. Thus,

in particular, the indices l A I
ð0Þ
j;k make no contribution on the right-hand side of (8.1).

We now abbreviate gqðkÞ simply to g, and when 1e ie g, we take fi ¼ fiðs; kÞ to be
a parameter chosen in due course, but satisfying 0 < fi e 1=k. When 1e j e g, we then
put

Fj ¼ f1 þ � � � þ fj; Mj ¼ fjP; Hj ¼ P � kMj and Qj ¼ ð1 �FjÞP:ð8:2Þ

The parameter intervals ½C 0
i ;Ci� ð1e ie rÞ of §7 are now interpreted as ðMi;Mi þ R� and

½0;Hi� ð1e ie jÞ, with r ¼ 2j. We write Xj for the set of 2j-tuples of polynomials ðm; hÞ
with M̂Mi < hmiie M̂MiR̂R and 1e hhiie ĤHi ð1e ie jÞ. When 1e me le k, let Ym;l de-

note the set of polynomials wl;lðxÞ with l A I
ðmÞ
l;k nI

ðm�1Þ
l;k , and write Xm ¼ Ym;m W � � �WYm;k.

Next define Dm; j to be the set of elements ðm; hÞ A Xj satisfying the condition that

wðh1mk
1 ; . . . ; hmmk

m Þ ¼ 0 for some w A Xm. We then put Ej ¼ D1; j WD2; j W � � �WDj; j, and de-
fine Cj ¼ XjnEj. In this way, we ensure that when C 0

j;kðz; h;mÞ is considered as a polyno-
mial in z, then whenever ðm; hÞ lies in Cj, every coe‰cient of C 0

j;k that could conceivably
be non-zero is indeed non-zero.
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Next we define

FjðaÞ ¼
P

z;h;m

e
�
aCj;kðz; h;mÞ

�
;

where the summation is over z, h, m with 1e hzie P̂P and ðm; hÞ A Cj. Finally, we write
SsðP;Q;R;CjÞ for SsðP;Q;R;Cj;k;CjÞ, and do likewise with the counting functions Ts

and Ns.

Lemma 8.2. Let h be a positive number with h < 1, and suppose that R is a parameter

satisfying P=logð2PÞ < Re hP. Then whenever s is a non-negative integer and 0e j < g,
one has

SsðP;Qj;R;CjÞf P̂PeR̂R2s�1þj ~HHj
~MMjM̂M

2s�1
jþ1 TsðP;Qj;R; fjþ1;CjÞ:ð8:3Þ

Proof. Our strategy is to establish by induction that for each natural number s the
upper bound (8.3) holds. For the sake of convenience, write y ¼ fjþ1, so that P̂Py ¼ M̂Mjþ1.
We begin by establishing a basis for the induction with the case s ¼ 0. Observe that
S0ðP;Qj;R;CjÞ counts the number of solutions of the equation

Cjðz; h;mÞ ¼ Cjðw; g; nÞ;ð8:4Þ

with hzi; hwie P̂P, ðm; hÞ A Cj and ðn; gÞ A Cj. By exchanging the order of di¤erentiation
and di¤erencing, one sees that C 0

j;kðz; h;mÞ ¼ kCj;k�1ðz; h;mÞ, and so it follows from the
discussion in the preamble to this lemma that when ðm; hÞ A Cj, then C 0

j;kðz; h;mÞ is a non-
trivial polynomial in z, though possibly constant (i.e. a non-vanishing polynomial only in h
and m). But the latter implies that Cj;kðz; h;mÞ is also a non-trivial polynomial in z, and of
degree at least one. Fixing choices of ðm; hÞ A Cj and ðn; gÞ A Cj, therefore, we find that for
each fixed choice of w there are at most k � j possible choices for z satisfying (8.4). We
consequently find that

S0ðP;Qj;R;CjÞf P̂Pð ~HHj
~MMjR̂R

jÞ2:ð8:5Þ

The quantity T0ðP;Qj;R; y;CjÞ, on the other hand, counts the number of solutions of
the equation

Cjðz; h;mÞ ¼ Cjðw; h;mÞ;ð8:6Þ

with hzi; hwie P̂P, ðm; hÞ A Cj, M̂Mjþ1 < hmieminfQ̂Qj; M̂Mjþ1R̂Rg and z1w ðmod mkÞ.
Counting only the diagonal solutions of (8.6) with z ¼ w, we find that

T0ðP;Qj;R; y;CjÞg P̂PM̂Mjþ1
~HHj

~MMjR̂R
jþ1:ð8:7Þ

A comparison of (8.5) and (8.7) reveals that

S0ðP;Qj;R;CjÞf ~HHj
~MMjR̂R

j�1M̂M�1
jþ1T0ðP;Qj;R; y;CjÞ;

and this confirms the estimate (8.3) in the case s ¼ 0.

Next, we suppose that (8.3) has been established with s replaced by u, for each non-
negative integer u with u < s, and we consider the conclusion of Lemma 7.4 with y ¼ fjþ1.
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First consider the term SsðP; yP;R;CjÞ. Note that since 0 < fi e 1=k ð1e ie j þ 1Þ and
j < ge k, one has 1 � ðf1 þ � � � þ fjÞf 1 � j=k f y. It therefore follows from (8.2) that
yPeQj, that P̂Py e Q̂Qj, and hence also that P̂P2y e Q̂QjM̂Mjþ1. Then on interpreting the equa-
tion underlying SvðP; yP;R;CjÞ ðv ¼ s � 1; sÞ in integral form, and applying a trivial esti-
mate for the generating function f ða; yP;RÞ, we obtain the bound

SsðP; yP;R;CjÞ ¼
Ð
T

jFjðaÞ2
f ða; yP;RÞ2sj da

f Q̂QjM̂Mjþ1Ss�1ðP; yP;R;CjÞ:

But Ss�1ðP; yP;R;CjÞeSs�1ðP;Qj;R;CjÞ, and so it follows from our inductive hypothesis
that

SsðP; yP;R;CjÞf P̂PeR̂R2s�3þj ~HHj
~MMjM̂M

2s�2
jþ1 Q̂QjTs�1ðP;Qj;R; y;CjÞ:ð8:8Þ

A consideration of the semi-diagonal solutions of (7.7) counted by TsðP;Qj;R; y;CjÞ, in
which us ¼ vs, in combination with the conclusion of Lemma 7.3, consequently reveals that

TsðP;Qj;R; y;CjÞg Q̂Q1�e
jþ1 Ts�1ðP;Qj;R; y;CjÞ:ð8:9Þ

Now combining (8.8) and (8.9), and noting that Q̂Qjþ1M̂Mjþ1 ¼ Q̂Qj, we arrive at the upper
bound

SsðP; yP;R;CjÞf P̂P2eR̂R2s�3þj ~HHj
~MMjM̂M

2s�1
jþ1 TsðP;Qj;R; y;CjÞ:ð8:10Þ

Next we consider NsðP;Qj;R;CjÞ. If z, w, h, g, m, n, x, y is a solution of the equation

Cjðz; h;mÞ �Cjðw; g; nÞ ¼
Ps

i¼1

ðxk
i � yk

i Þ

counted by NsðP;Qj;R;CjÞ, then one has C 0
j ðz; h;mÞ ¼ C 0

j ðw; g; nÞ ¼ 0, and ðm; hÞ A Cj

and ðn; gÞ A Cj. As in the discussion above concerning the equation (8.4), the polynomials
C 0

jðz; h;mÞ and C 0
jðw; g; nÞ are non-trivial in z and w respectively. In particular, if either is a

constant polynomial in terms of the respective variables z and w, then that constant is non-
zero. It follows that for fixed choices of ðm; hÞ A Cj and ðn; gÞ A Cj, there are at most Oð1Þ
possible choices of z and w. On interpreting the number of solutions of the underlying equa-
tion in integral form and applying the triangle inequality, we therefore conclude that

NsðP;Qj;R;CjÞf ð ~HHj
~MMjR̂R

jÞ2 Ð
T

j f ða;Qj;RÞj2s
da:ð8:11Þ

If x A AðQj;RÞ, then either hxi < P̂Py, or else x has a divisor m with
P̂Py < hmie P̂PyR̂R. On considering the associated equations, one therefore finds that

Ð
T

j f ða;Qjþ1;RÞj2s
dae

Ð
T

jfðaÞj2s
da;ð8:12Þ

where we write

fðaÞ ¼ f ða;Mjþ1;RÞ þ
P

M̂Mjþ1<hmieM̂Mjþ1R̂R

f ðamk;Qjþ1;RÞ:
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On considering the underlying equation, a change of variable yields the estimate

P
M̂Mjþ1<hmieM̂Mjþ1R̂R

Ð
T

j f ðamk;Qjþ1;RÞj2s
daf M̂Mjþ1R̂RSsðQjþ1;RÞ;

and so a trivial estimate for j f ða;Mjþ1;RÞj, in combination with an application of Hölder’s
inequality, leads from (8.12) to the boundÐ

T

j f ða;Qj;RÞj2s
daf M̂M 2s

jþ1 þ ðM̂Mjþ1R̂RÞ2s
SsðQjþ1;RÞ:

On recalling (8.11), we therefore arrive at the relation

NsðP;Qj;R;CjÞf ð ~HHj
~MMjR̂R

jÞ2ðM̂Mjþ1R̂RÞ2s
SsðQjþ1;RÞ:ð8:13Þ

Next, on considering the semi-diagonal solutions counted by TsðP;Qj;R; y;CjÞ in which
z ¼ w, we obtain the lower bound

TsðP;Qj;R; y;CjÞg P̂P ~HHj
~MMjþ1R̂R jþ1SsðQjþ1;RÞ:

A comparison with (8.13) consequently leads to the upper bound

NsðP;Qj;R;CjÞf P̂P�1R̂R2s�1þj ~HHj
~MMjM̂M

2s�1
jþ1 TsðP;Qj;R; y;CjÞ:ð8:14Þ

We now come to the third term on the right-hand side of (7.11). On recalling the in-
ductive hypothesis, it follows from (8.9) together with the relation Q̂Qjþ1M̂Mjþ1 ¼ Q̂Qj that

Q̂QjP̂P
yþeSs�1ðP;Qj;R;CjÞf P̂P3eR̂R2s�3þj ~HHj

~MMjM̂M
2s�1
jþ1 TsðP;Qj;R; y;CjÞ:ð8:15Þ

We therefore conclude from Lemma 7.4 in combination with (8.10), (8.14) and (8.15) that

SsðP;Qj;R;CjÞf P̂P3eR̂R2s�1þj ~HHj
~MMjM̂M

2s�1
jþ1 TsðP;Qj;R; y;CjÞ;

and this su‰ces to establish the inductive step. The desired conclusion (8.3) now follows for
every non-negative integer s, and this completes the proof of the lemma.

The conclusion of Lemma 8.2 enables us to bound the mean value SsðP;Qj;R;CjÞ in
terms of TsðP;Qj;R; fjþ1;CjÞ. We now complete the e‰cient di¤erencing step by relating
TsðP;Qj;R; fjþ1;CjÞ to SsðP;Qjþ1;R;Cjþ1Þ.

Lemma 8.3. Let h be a positive number with h < 1, and suppose that R is a parameter

satisfying P=logð2PÞ < Re hP. Then whenever s is a positive integer and 0e j < g, one has

TsðP;Qj;R; fjþ1;CjÞf P̂P1þeR̂R jþ1 ~HHj
~MMjþ1SsðQjþ1;RÞð8:16Þ

þ
�
SsðQjþ1;RÞ

�1=2�
SsðP;Qjþ1;R;Cjþ1Þ

�1=2
:

Proof. We begin by noting that TsðP;Qj;R; fjþ1;CjÞ counts the number of solutions
of the equation

Cjðz; h;mÞ �Cjðw; h;mÞ ¼ mk
Ps

i¼1

ðuk
i � vk

i Þ;ð8:17Þ
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with

hzi; hwie P̂P; ðm; hÞ A Cj;ð8:18Þ

and with

m monic; M̂Mjþ1 < hmieminfQ̂Qj; M̂Mjþ1R̂Rg;ð8:19Þ

ui; vi A AðQjþ1;RÞ ð1e ie sÞ and z1w ðmod mkÞ:ð8:20Þ

The last condition may be interpreted by writing w ¼ z � hmk for some h A Fq½t� with
hhiemaxfhzi; hwighmi�k

e ĤHjþ1. Let U0 denote the number of solutions of (8.17) with
(8.18), (8.19) and (8.20), where in addition one has z ¼ w, and let U1 denote the corre-
sponding number of solutions for which w ¼ z � hmk with ðm;m; h; hÞ A Ejþ1. Also, let U2

denote the number of solutions of the equation

Cjðz; h;mÞ �Cjðz � hmk; h;mÞ ¼ mk
Ps

i¼1

ðuk
i � vk

i Þ;ð8:21Þ

with z, h, m, m, u, v subject to (8.18), (8.19) and (8.20), and subject also to the condition
that ðm;m; h; hÞ A Cjþ1. Then it follows from the above discussion that one has the upper
bound

TsðP;Qj;R; fjþ1;CjÞeU0 þ U1 þ U2:ð8:22Þ

In view of the definition of U0, the estimate

U0 f P̂P ~HHj
~MMjþ1R̂R jþ1SsðQjþ1;RÞð8:23Þ

is immediate from (8.17)–(8.20). Next we consider U1. For a fixed choice of m and
h with ðm; hÞ A Cj, any polynomials m and h with ðm;m; h; hÞ A Ejþ1 necessarily satisfy
the condition that wðh1mk

1 ; . . . ; hjm
k
j ; hmkÞ ¼ 0 for some w A Xjþ1, and further that

nðh1mk
1 ; . . . ; hjm

k
j Þ3 0 whenever n A Xj. A consideration of the relative degrees of terms in-

volving m and h, and m and h, reveals that whenever ðm;m; h; hÞ A Ejþ1, then for each fixed
ðm; hÞ A Cj, the polynomial hmk must be a zero of some one of Oð1Þ polynomials of degree
at most k. There are consequently at most Oð1Þ possible such choices for hmk for each fixed
choice of ðm; hÞ A Cj. For each fixed choice of the non-zero polynomial hmk, moreover, it
follows from Corollary 7.2 that the number of available choices for h and m is OðP̂PeÞ.
Given a fixed choice of w, it is a consequence of the foregoing discussion that there are at
most Oð1Þ choices for z with w ¼ z � hmk counted by U1. Interpreting the equation (8.17)
in terms of an associated integral and applying the triangle inequality, we thus conclude
that

U1 f P̂P1þe ~HHj
~MMjR̂R

j max
M̂Mjþ1<hmieM̂Mjþ1R̂R

Ð
T

j f ðamk;Qjþ1;RÞj2s
dað8:24Þ

¼ P̂P1þe ~HHj
~MMjR̂R

jSsðQjþ1;RÞ:

Next we observe that

m�k
�
Cjðz; h;mÞ �Cjðz � hmk; h;mÞ

�
¼ Cjþ1ðz; h; h;m;mÞ:
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On interpreting the equation underlying (8.21) in integral form, we therefore deduce that

U2 f
Ð
T

Fjþ1ðaÞj f ða;Qjþ1;RÞj2s
da:

By Schwarz’s inequality, we thus arrive at the upper bound

U2 f

	Ð
T

j f ða;Qjþ1;RÞj2s
da


1=2	Ð
T

jFjþ1ðaÞ2
f ða;Qjþ1;RÞ2s j da


1=2

ð8:25Þ

¼
�
SsðQjþ1;RÞ

�1=2�
SsðP;Qjþ1;R;Cjþ1Þ

�1=2
:

The desired conclusion (8.16) follows on combining (8.22), (8.23), (8.24) and (8.25).

9. Permissible exponents

The application of Lemmata 8.2 and 8.3 in sequence permits us to estimate
SsðP;Qj;R;CjÞ in terms of SsðP;Qjþ1;R;Cjþ1Þ, and thereby a kind of di¤erencing opera-
tion is executed inside the associated mean value. On recalling that C0ðzÞ ¼ zk, it is evident
from a comparison of (7.2) and (7.4) that Ssþ1ðP;RÞeSsðP;P;R;C0Þ, and so we are able
to apply the aforementioned di¤erencing argument to obtain estimates for SuðP;RÞ for
successive values of u. The goal of this section is to obtain estimates of the shape
SsðP;RÞf P̂Plsþe, valid for suitable exponents ls when R is suitably small. In this context,
and in what occurs henceforth, it is useful to introduce the following convention concerning
the numbers e and R. Whenever e or R appear in a statement, either implicitly or explicitly,
we assert that for each e > 0, there exists a positive number h0ðe; s; kÞ such that the state-
ment holds whenever R ¼ hP, with 0 < he h0ðe; s; kÞ. Note that the ‘‘value’’ of e, and h0,
may change from statement to statement, and hence also the dependency of implicit con-
stants on e and h. Notice that since our iterative methods will involve only a finite number
of statements (depending at most on k, s and e), there is no danger of losing control of im-
plicit constants through the successive changes implicit in our arguments. Finally, we use
the symbolA to indicate that constants and powers of R and Pe are to be ignored.

We say that the exponent Ds ¼ Ds;kðqÞ is permissible whenever, with the convention
described above, one has SsðP;RÞf P̂Plsþe, wherein we write ls ¼ 2s � k þ Ds. We may in-
terpret what it means for the exponent Ds to be permissible as follows. Whenever e > 0 and
h0 is a positive number su‰ciently small in terms of e, then for all positive numbers P su‰-
ciently large in terms of q, e, h, s and k, one has

Ð
T

j f ða;P;RÞj2s
daf P̂P2s�kþDsþe:

Notice that by making use of a trivial estimate for f ða;P;RÞ, it follows easily from the lat-
ter bound that permissible exponents Ds may always be assumed to satisfy the inequality
Ds e k. In addition, the sequence of inequalities

P̂P2s f
P

hhieP̂Pk

Ð
T

j f ða;P;RÞj2s
eð�ahÞ daf P̂Pk

Ð
T

j f ða;P;RÞj2s
da

ensures that Ds is necessarily non-negative. The next lemma supplies permissible exponents
when s is 1 or 2.
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Lemma 9.1. One has S1ðP;PÞf P̂P and S2ðP;PÞf P̂P2þe.

Proof. The first inequality claimed in the statement of the lemma is trivial from or-
thogonality. For the second, we observe that S2ðP;PÞ is bounded above by the number of
solutions of the equation

ðx1 � y1Þðxk�1
1 þ xk�2

1 y1 þ � � � þ yk�1
1 Þ ¼ xk

2 � yk
2 ;ð9:1Þ

with hxii; hyiie P̂P ði ¼ 1; 2Þ. For each fixed choice of x2 and y2 with xk
2 3 yk

2 , both
x1 � y1 and xk�1

1 þ xk�2
1 y1 þ � � � þ yk�1

1 are divisors of the non-zero element of Fq½t� given
by xk

2 � yk
2 . Fixing any one of the OðP̂PeÞ possible choices of these divisors, say d1 and d2

respectively, one finds that x1 ¼ y1 þ d1, whence

ðy1 þ d1Þk�1 þ ðy1 þ d1Þk�2
y1 þ � � � þ yk�1

1 ¼ d2:

The latter polynomial equation contains the leading term kyk�1
1 , and since throughout we

assume that the characteristic of Fq does not divide k, we find that y1 is determined by
a non-trivial polynomial of degree k � 1. Consequently, there are at most k � 1 possible
choices for y1 and hence also for x1. There are therefore at most OðP̂P2þeÞ solutions of
(9.1) counted by S2ðP;PÞ in which xk

2 3 yk
2 .

When xk
2 ¼ yk

2 , meanwhile, one has also xk
1 ¼ yk

1 . In this situation, given a fixed
choice of y1 and y2, there are at most k choices each for x1 and x2. The number of so-
lutions of this type counted by S2ðP;PÞ is therefore at most OðP̂P2Þ. The upper bound
S2ðP;PÞf P̂P2þe follows at once on combining this contribution with the one bounded in
the previous paragraph.

It follows from Lemma 9.1 that one may take D1 ¼ k � 1 and D2 ¼ k � 2 as per-
missible exponents. We note that it is reasonable to conjecture that the exponent
Du ¼ maxfk � u; 0g is permissible for each positive integer u. The next lemma delivers a
bound for permissible Du obtained through our e‰cient di¤erencing process.

Lemma 9.2. Write g ¼ gqðkÞ, and let r be a fixed natural number. Define the real

numbers ys, Ds and ls inductively by defining y2 ¼ 0, D2 ¼ k � 2, l2 ¼ 2, and when s > 2 by

taking

ys ¼
1

k þ Ds�1
þ 1

k
� 1

k þ Ds�1

	 

k � Ds�1

2k

	 
g�1

;

Ds ¼ Ds�1ð1 � ysÞ þ kys � 1;

and

ls ¼ 2s � k þ Ds:

Then the exponent Ds is permissible for 2e se r. In particular, given e > 0, there is a

positive number h0 ¼ h0ðe; r; kÞ with the property that whenever 0 < h < h0, one has

SsðP; hPÞf P̂Plsþe.
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Proof. We establish the desired conclusion by induction on s. The conclusion of the
lemma for s ¼ 2 follows at once from Lemma 9.1. Suppose then that the conclusion of the
lemma has been confirmed when 2e se u. We apply Lemmata 8.2 and 8.3 to bound
Suþ1ðP; hPÞ by making use of the trivial upper bound Suþ1ðP; hPÞeSuðP;Q0;R;C0Þ,
with R ¼ hP, Q0 ¼ P and C0 ¼ zk. With each application of Lemma 8.3, we make a choice
for the associated parameter fjþ1 in such a manner that the two terms on the right-hand
side are of similar order of magnitude, thereby optimising the ensuing upper bound for
TuðP;Qj;R; fjþ1;CjÞ. In view of the inductive hypothesis and our conventions concerning
e and R, this choice for fjþ1 supplies the bound

TuðP;Qj;R; fjþ1;CjÞf P̂P1þe ~HHj
~MMjþ1Q̂Qlu

jþ1:ð9:2Þ

We begin this process with j ¼ g� 1, and in this way successively define fj for
j ¼ g; g� 1; . . . ; 1. At the final stage we are able to extract the desired upper bound for
SuðP;Q0;R;C0Þ.

We begin by considering the mean value associated with the equation (7.4), and ob-
serve that by making a trivial estimate, one obtains

SuðP;Qg;R;CgÞf P̂P2þe ~HH 2
g
~MM 2
gSuðQg;RÞ:

An application of Lemma 8.3 now reveals that

TuðP;Qg�1;R; fg;Cg�1ÞfT1 þ T2;ð9:3Þ

where

T1 ¼ P̂P1þe ~HHg�1
~MMgSuðQg;RÞ

and

T2 ¼
�
SuðQg;RÞ

�1=2�
P̂P2þe ~HH 2

g
~MM 2
gSuðQg;RÞ

�1=2
:

In order to minimise our estimate for TuðP;Qg�1;R; fg;Cg�1Þ, we make a choice for fg in
such a way that T1AT2, that is

P̂P ~HHg�1
~MMgSuðQg;RÞA P̂P ~HHg

~MMgSuðQg;RÞ:

We therefore choose fg so that Hg ¼ 1, which is to say fg ¼ 1=k. Applying the inductive
hypothesis for SuðQg;RÞ, we deduce from (9.3) that

TuðP;Qg�1;R; fg;Cg�1Þf P̂P1þe ~HHg�1
~MMgQ̂Q

lu
g ;

which confirms the estimate (9.2) in the case j ¼ g� 1.

Suppose next that j f 0, and that we have fixed choices for fi when gf if j þ 1,
and further that we have established the bound (9.2). The conclusion of the previous para-
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graph establishes such when j ¼ g� 1. On substituting (9.2) into the conclusion of Lemma
8.2, we obtain the upper bound

SuðP;Qj;R;CjÞf P̂P1þeM̂M 2u
jþ1

~HH 2
j
~MM 2

j Q̂Qlu

jþ1:

Substituting this bound into the conclusion of Lemma 8.3, and applying the inductive hy-
pothesis for SuðQj;RÞ, we deduce that

TuðP;Qj�1;R; fj;Cj�1Þf P̂PeðT3 þ T4Þ;ð9:4Þ

where

T3 ¼ P̂P ~HHj�1
~MMjQ̂Q

lu

j ;

and

T4 ¼ ðP̂PM̂M 2u
jþ1

~HH 2
j
~MM 2

j Q̂Qlu

jþ1Þ
1=2ðQ̂Qlu

j Þ1=2:

We minimise our estimate for TuðP;Qj�1;R; fj;Cj�1Þ by choosing fj in such a manner that
T3AT4, that is

ðP̂P ~HHj�1
~MMjQ̂Q

lu

j Þ2A P̂PM̂M 2u
jþ1

~HH 2
j
~MM 2

j Q̂Qlu

jþ1Q̂Qlu

j :

We choose fj so that

1 þ luð1 �FjÞ ¼ 2 � 2kfj þ 2ufjþ1 þ luð1 �Fj � fjþ1Þ;

or equivalently,

fj ¼
1 þ ðk � DuÞfjþ1

2k
:

With this choice of fj, it follows from (9.4) that the estimate (9.2) holds with j � 1 in place
of j, and this completes the inductive step.

Thus far we have fixed choices for fj ðgf j f 1Þ via the relations

fg ¼
1

k
and fj ¼

1 þ ðk � DuÞfjþ1

2k
ð1e j e g� 1Þ:

It follows that for j ¼ 1; 2; . . . ; g, one has

fj ¼
1

k þ Du

þ 1

k
� 1

k þ Du

	 

k � Du

2k

	 
g�j

:

In particular, we have

f1 ¼ 1

k þ Du

þ 1

k
� 1

k þ Du

	 

k � Du

2k

	 
g�1

:
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With this choice of fj ð1e j e gÞ, it follows from (9.2) that

TuðP;Q0;R; f1;C0Þf P̂P1þeM̂M1Q̂Qlu

1 :

We therefore deduce from Lemma 8.2 that

SuðP;Q0;R;C0Þf P̂P1þeM̂M 2u
1 Q̂Qlu

1 ;ð9:5Þ

and it follows that

Suþ1ðP;RÞf P̂Pluþ1þe;ð9:6Þ

with luþ1 ¼ luð1 � f1Þ þ 1 þ 2uf1. Thus, if we write yuþ1 in place of f1, we find that the
exponent Duþ1 is permissible, where Duþ1 ¼ Duð1 � yuþ1Þ þ kyuþ1 � 1. The conclusion of
the lemma now follows in all details.

We record a further consequence of the argument employed in the proof of Lemma
9.2 as an associated lemma.

Lemma 9.3. Define the exponents ls ð2e se rÞ as in the statement of Lemma 9:2.

Then one has Ð
T

jFða;PÞ2
f ða;P;RÞ2sj daf P̂Plsþ1þe ð1e s < rÞ:

Proof. We have only to observe that the upper bound (9.6) is extracted from (9.5),
so that in fact one has SsðP;Q0;R;C0Þf P̂Plsþ1þe. But the latter supplies the conclusion of
the present lemma.

The bound supplied by Lemma 9.3 has value in that two classical Weyl sums are pres-
ent in the mean value, yet the estimate available for this mean value is not diminished in
quality. Since classical Weyl sums are a valuable resource in analysing the major arc con-
tribution, this simple observation has considerable utility. By modifying the argument of
the proof of [28], Theorem 2.1, we are able to convert the conclusion of Lemma 9.2 into a
convenient form of essentially the same strength.

Theorem 9.4. Write g ¼ gqðkÞ, and let r be a fixed natural number. For each s A N

with 2e se r, define the positive number ds;k by means of the equation

ds;k þ log ds;k ¼ 1 � 2s=k; when k e 2g�2;

1 � ð2 � 21�gÞs=k; when k > 2g�2:

�
ð9:7Þ

Then the exponent Ds;k ¼ kds;k is permissible for 2e se r. In particular, if we define

ls ¼
2s � k þ ke1�2s=k; when k e 2g�2;

2s � k þ ke1�ð2�21�gÞs=k; when k > 2g�2;

�

then one has SsðP;RÞf P̂Plsþe ð2e se rÞ.

Proof. We prove the theorem by induction. We begin by noting that for each natural
number s, the exponent ds;k satisfies the inequality 0 < ds;k < 1. In addition, it is apparent
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that dþ log d is an increasing function of d when d > 0. In order to establish the conclusion
of the theorem, therefore, it su‰ces to prove for each fixed s that

SsðP;RÞf P̂P2s�kþkd�þe;ð9:8Þ

with d� a positive number satisfying the condition d� þ log d� e ds;k þ log ds;k.

Consider first the case in which s ¼ 2. Lemma 9.1 supplies the bound S2ðP;RÞf P̂P2þe,
so that D2;k ¼ k � 2 is a permissible exponent. Moreover, one has

1 � 2=k þ logð1 � 2=kÞ < 1 � 4=k e d2;k þ log d2;k;

and so when s ¼ 2 the upper bound (9.8) holds with d� e d2;k. This confirms the desired
conclusion when s ¼ 2.

Suppose next that the first conclusion of the theorem holds for the index s, and write
d ¼ ds;k. In addition, write l ¼ 2s þ 2 � k þ D with

D ¼ kdð1 � f1Þ þ kf1 � 1;ð9:9Þ

and

kf1 ¼ 1

1 þ d
þ 1 � 1

1 þ d

	 

1 � d

2

	 
g�1

:ð9:10Þ

Then it follows from Lemma 9.2 that Dsþ1;k ¼ D is a permissible exponent and that
Ssþ1ðP;RÞf P̂Plþe. We therefore seek to prove that

D=k þ logðD=kÞe dsþ1;k þ log dsþ1;k;ð9:11Þ

and from here the bound (9.8) follows with s replaced by s þ 1, and with d� ¼ dsþ1;k. In
view of our opening remarks, the first conclusion of the theorem will then follow by induc-
tion.

On substituting (9.10) into (9.9), we deduce that

D ¼ kdþ kf1ð1 � dÞ � 1 ¼ kdþ 1 � d

1 þ d
þ dð1 � dÞ

1 þ d

1 � d

2

	 
g�1

� 1:

On writing w ¼ ð1 � dÞg21�g, we therefore see that

D

k
þ log

D

k

	 

¼ d 1 � 2 � w

kð1 þ dÞ

	 

þ log dþ log 1 � 2 � w

kð1 þ dÞ

	 


e dþ log d� ð2 � wÞd
kð1 þ dÞ �

2 � w

kð1 þ dÞ �
ð2 � wÞ2

2k2ð1 þ dÞ2

e dþ log d� 2 � w

k
� ð2 � wÞ2

2k2ð1 þ dÞ2
:
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We now recall that 0 < d < 1, whence w < 21�g. Also, since gf 2, one has

2 � w ¼ 2 � ð1 � dÞg21�g
f 2 � ð1 � dÞ2=2 ¼ 1

2
ð1 þ dÞð3 � dÞ:

Thus we deduce that

D

k
þ log

D

k

	 

e dþ log d� 2 � w

k
� ð3 � dÞ2

8k2
:

It follows that for all values of g, one has

D=k þ logðD=kÞe dþ log d� ð2 � 21�gÞ=k;ð9:12Þ

and that whenever g satisfies the condition 2g�2 f k, then

D=k þ logðD=kÞe dþ log d� 2=k:ð9:13Þ

We now recall that d ¼ ds;k, so that from (9.7) and (9.13), one obtains

D=k þ logðD=kÞe 1 � ð2s þ 2Þ=k ¼ dsþ1;k þ log dsþ1;k;

when k e 2g�2, whilst for k > 2g�2, it follows from (9.7) and (9.12) that

D=k þ logðD=kÞe 1 � ð2 � 21�gÞðs þ 1Þ=k ¼ dsþ1;k þ log dsþ1;k:

We have therefore confirmed the bound (9.11), whence the exponent Dsþ1;k ¼ kdsþ1;k is
permissible whenever Ds;k ¼ kds;k is permissible. This establishes the inductive step, and
so the first conclusion of the theorem follows by induction. In order to complete the proof
of the theorem, we have merely to note that from the first part, the exponent Ds;k is permis-
sible whenever Ds;k is a positive number satisfying

Ds;keDs; k=k ¼ ke1�2s=k; when k e 2g�2;

ke1�ð2�21�gÞs=k; when k > 2g�2:

�
ð9:14Þ

But then 0eDs;k e k, and so the right-hand side of (9.14) provides an upper bound for
Ds;k.

10. Estimates for smooth Weyl sums: preliminaries

The goal of this and the following three sections is to convert our newly obtained
mean value estimates for smooth Weyl sums into estimates for individual smooth Weyl
sums on the set of minor arcs p. In order to derive such estimates we adapt the argument
of [29], involving the use of the large sieve inequality, to the setting of Fq½t�. Before advanc-
ing in the next section to the pursuit of useable estimates, we begin in this section with some
preliminary manoeuvres.
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Lemma 10.1. When y A Ky and m is a non-negative integer, one has

P
hxi<m̂m

eðyxÞ ¼ m̂m; when ordkyk < �m;

0; when ordkykf�m:

�

Proof. This is [14], Lemma 7.

When Q is a natural number, and p A Fq½t� is irreducible, define

A�ðQ; pÞ ¼ fx A Fq½t� : hxie Q̂Q; $ j x ) $8 pg;

in which the relation 8 is that defined in the preamble to Lemma 3.1. Notice that
A�ðQ; pÞLAðQ; ord pÞ. The next lemma is an analogue of [22], Lemma 10.1.

Lemma 10.2. Suppose that R, M and Q are positive numbers, that y A AðQ;RÞ, and

in addition 1eReM < ord yeQ. Then there is a unique triple ðp; u; vÞ, with p irreducible

and v monic, satisfying the following conditions:

(i) y ¼ uv,

(ii) u A A�ðQ � ord v; pÞ,

(iii) M < ord veM þ ord p,

(iv) p j v,

(v) whenever $ is a monic irreducible polynomial with $ j v, one has p8$ and

ord$eR.

Proof. Consider natural numbers R, M, Q and an element y A AðQ;RÞ satisfying
the hypotheses of the statement of the lemma. We begin by establishing the existence of a
triple ðp; u; vÞ with p irreducible and v monic, and satisfying the conditions (i)–(v). Observe
first that when y A AðQ;RÞ, then in view of (2.2) we may write y ¼ c$1$2 . . .$s

with c A F�q , and with $i ð1e ie sÞ monic irreducible polynomials satisfying
$1 9$2 9 � � �9$s and ord$1 eR. Let

d0 ¼ 1 and dj ¼
Q

1eiej

$i ð1e j e sÞ:

Then

0 ¼ ord d0 < ord d1 < � � � < ord ds ¼ ord y:

Since ord y > R and y A AðQ;RÞ, one necessarily has sf 2. But 0 < M < ord y, and
so there exists a natural number t with ord dt eM < ord dtþ1. Moreover, since
ReM < ord y, it is apparent that 1e t < s. Consequently,

M < ord dtþ1 ¼ ordðdt$tþ1ÞeM þ ord$tþ1:

We now take p ¼ $tþ1, v ¼ dtþ1 and u ¼ y=v, and observe that ðp; u; vÞ satisfies all of the
conditions imposed on the triple in the statement of the lemma.

46 Liu and Wooley, Waring’s problem in function fields



Next we establish the uniqueness of the triple ðp; u; vÞ. Suppose that the triples
ðpi; ui; viÞ ði ¼ 1; 2Þ both satisfy the conditions imposed on ðp; u; vÞ in the statement of the
lemma, save that subscripts are applied to the variables in the obvious manner. If the two
triples are distinct, there is plainly no loss of generality in supposing that either p1 � p2, or
else that p1 ¼ p2 and v1 � v2. For i ¼ 1; 2, let wi denote the product of all the monic irre-
ducible factors $ of y with $ � pi. Then for i ¼ 1; 2, it is apparent that vi ¼ phi

i wi for some
exponent hi with hi f 1. If p1 � p2, then v2 jw1, and so it follows from the condition (iii)
that

ord v1 f ord p1 þ ord v2 > ord p1 þ M:ð10:1Þ

But, also in view of the condition (iii), one has ord v1 eM þ ord p1. We therefore arrive at
a contradiction, and so we are forced instead to assume that p1 ¼ p2 and v1 � v2. The first
of the latter two conditions implies that w1 ¼ w2, whence the second leads us to the condi-
tion h1 > h2. But then we once again obtain the inequality (10.1), contradicting condition
(iii) as before. We therefore conclude that the triples ðpi; ui; viÞ ði ¼ 1; 2Þ are identical, and
so the triple ðp; u; vÞ, whose existence is asserted in the statement of the lemma, is in fact
unique. This completes the proof of the lemma.

We next employ this combinatorial decomposition of the set AðQ;RÞ so as to rewrite
smooth Weyl sums in a potentially bilinear form. In order to assist in this endeavour, when
M and R are positive numbers with 1eReM, and p is a monic irreducible polynomial
with ord peR, we define BðM; p;RÞ to be the set of monic polynomials v A Fq½t� for which
M < ord veM þ ord p, p j v, and such that whenever $ is a monic irreducible polynomial
dividing v, then $9 p and ord$eR.

Lemma 10.3. Let a A Ky. Then whenever R, M and Q are positive numbers with

1eReM < Q and r A Fq½t�nf0g, one hasP
x AAðQ;RÞ
ðx; rÞ¼1

eðaxkÞf R̂R max
p irreducible

ord peR

sup
y AT

Vrða;Q;M;R; p; yÞ þ M̂M;

where

Vrða;Q;M;R; p; yÞ ¼
P

v ABðM;p;RÞ
ðv; rÞ¼1

���� P
u AA�ðQ�M;pÞ

ðu; rÞ¼1

e
�
aðuvÞk þ yu

�����:
Proof. We make use of Lemma 10.2 to decompose the smooth Weyl sum in ques-

tion in the form P
x AAðQ;RÞ
ðx; rÞ¼1

eðaxkÞ ¼
P

x AAðQ;RÞ
ord xeM
ðx; rÞ¼1

eðaxkÞ þ
P

x AAðQ;RÞ
ord x>M
ðx; rÞ¼1

eðaxkÞð10:2Þ

f M̂M þ
Py

ordpeR
ðp; rÞ¼1

jWr;pða;Q;RÞj;

where we have written

Wr;pða;Q;RÞ ¼
P

v ABðM;p;RÞ
ðv; rÞ¼1

P
u AA�ðQ�ord v;pÞ

ðu; rÞ¼1

e
�
aðuvÞk�:
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But if we write

Wþ
r;pða; y;Q;M;RÞ ¼

P
v ABðM;p;RÞ

ðv; rÞ¼1

P
u AA�ðQ�M;pÞ

ðu; rÞ¼1

e
�
aðuvÞk þ yu

�
;

then it follows that

Wr;pða;Q;RÞ ¼
Ð
T

Wþ
r;pða; y;Q;M;RÞ

P
hxieQ̂Qhvi�1

eð�yxÞ dy:

We next observe that by Lemma 10.1, provided that hvie Q̂Q, one has

Ð
T

���� P
hxieQ̂Qhvi�1

eðyxÞ
���� dy ¼

Ð
hyi<q�1Q̂Q

�1
hvi

qQ̂Qhvi�1 dy ¼ 1:

Thus we conclude that

Wr;pða;Q;RÞe sup
y AT

jWþ
r;pða; y;Q;M;RÞj:ð10:3Þ

On substituting (10.3) into (10.2), the conclusion of the lemma now follows on sum-
ming trivially over p and applying the triangle inequality.

11. Estimates for smooth Weyl sums: large moduli

The argument that we apply to estimate the smooth Weyl sum f ða;P;RÞ proceeds in
two phases. In one stage we apply the large sieve inequality to estimate f ða;P;RÞ. This
treatment provides a satisfactory bound whenever a is well approximated by a ratio a=g

of polynomials with hgi small. In the second stage one applies a treatment employing bi-
linear sums that yields viable estimates in the complementary situation in which a is well-
approximated only by ratios a=g in which hgi is necessarily large. In this section we tackle
the latter situation, beginning with an auxiliary lemma on bilinear sums.

Lemma 11.1. Suppose that a A Ky, and that a and g are elements of Fq½t� with g

monic, ða; gÞ ¼ 1 and hga� ai < hgi�1. Then whenever C;D A N, one has

P
hci<ĈC

���� P
hdi<D̂D

eðacdÞ
����f ĈCD̂D

�
hgi�1 þ ĈC�1 þ D̂D�1 þ hgiðĈCD̂DÞ�1�:ð11:1Þ

Proof. We begin by observing that, in view of the conclusion of Lemma 10.1,
the inner sum on the left-hand side of (11.1) is either D̂D or 0, depending on whether
ordkack < �D or ordkackf�D. Suppose that a, a and g satisfy the hypotheses of the
statement of the lemma. Then by dividing the range of summation for c into arithmetic
progressions modulo g, we deduce that

P
hci<ĈC

���� P
hdi<D̂D

eðacdÞ
����e D̂D

P
hwi<ĈChgi�1

P
hri<hgi

ordkaðrþgwÞk<�D

1:ð11:2Þ

Consider a fixed choice of w A Fq½t�, and, if one exists, a fixed choice of r satisfying the
conditions imposed by the inner summation on the right-hand side of (11.2). If r 0 is any
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other polynomial with hr 0i < hgi that also satisfies ordkaðr 0 þ gwÞk < �D, then necessar-
ily ordkaðr � r 0Þk < �D. Write a ¼ a=g þ b, and observe that

ordkaðr � r 0Þke ordkaðr � r 0Þ=gk þ ordkbðr � r 0Þk:

Since by hypothesis, one has hbi < hgi�2, we see that

ordkbðr � r 0Þk ¼ ord b þ ordðr � r 0Þ < �2ðord gÞ þ ord g ¼ �ord g:

Meanwhile, when r3 r 0, we have aðr � r 0ÞE 0 ðmod gÞ, whence ordkaðr � r 0Þ=gkf�ord g.
We therefore deduce that, whether or not r3 r 0, one has ordkaðr � r 0Þk ¼ ordkaðr � r 0Þ=gk,
and that whenever r and r 0 both occur in the inner summation on the right-hand side of
(11.2), then necessarily ordkaðr � r 0Þ=gk < �D. By rearranging the latter summation, we
therefore conclude that

P
hci<ĈC

���� P
hdi<D̂D

eðacdÞ
����e D̂D

P
hwi<ĈChgi�1

P
hhi<hgi

ordkah=gk<�D

1:ð11:3Þ

Since ða; gÞ ¼ 1, it follows that as h runs over a complete residue system modulo g,
then so does ah. Suppose now that y A Fq½t� satisfies hyi < hgi, and consider what it means
for ordky=gk < �D. When hgie D̂D, one has ordky=gk < �D if and only if g j y. When

hgi > D̂D, meanwhile, one has ordky=gk < �D if and only if hyi < hgiD̂D
�1

. It follows that

there are precisely maxf1; hgiD̂D
�1g residue classes y modulo g for which ordky=gk < �D,

whence from (11.3),

P
hci<ĈC

���� P
hdi<D̂D

eðacdÞ
����e D̂Dð1 þ ĈChgi�1Þð1 þ hgiD̂D

�1Þ

¼ ĈCD̂D
�
hgi�1 þ ĈC�1 þ D̂D�1 þ hgiðĈCD̂DÞ�1�:

This completes the proof of the lemma.

The next lemma, which provides upper bounds for f ða;P;RÞ of use when a is not
well-approximated by ratios a=g with hgi small, is established via an analogue of the argu-
ment used to prove [29], Lemma 3.1.

Lemma 11.2. Suppose that l is a real number with 1=2 < l < 1, and write M ¼ lP.

Let a A Ky, and suppose that a and g are elements of Fq½t� with g monic, ða; gÞ ¼ 1 and

hga� ai < hgi�1. Then whenever l;w A N, and Dl and Dw are permissible, one has

f ða;P;RÞf P̂P1þe
�
M̂MDwðP̂P=M̂MÞDlXkðg;P;MÞ

�1=ð2lwÞ þ M̂M;

where

Xkðg;P;MÞ ¼ hgi�1 þ M̂M�k þ ðP̂P=M̂MÞ�k þ hgiP̂P�k:

Proof. An application of Lemma 10.3 with r ¼ 1 shows that there exists an irreduc-
ible polynomial p with ord peR, and an element y A T, for which

f ða;P;RÞf R̂RHðaÞ þ M̂M;ð11:4Þ
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where we have written

HðaÞ ¼
P

v AAðMþR;RÞ
jhða; v; yÞj;

with

hða; v; yÞ ¼
P

u AA�ðP�M;pÞ
e
�
aðuvÞk þ yu

�
:

Define the complex numbers of unit modulus eðv; yÞ by means of the relation

jhða; v; yÞj l ¼ eðv; yÞhða; v; yÞ l :

Here we adopt the convention that when hða; v; yÞ ¼ 0, then we take eðv; yÞ ¼ 1. Next,
when d A Fq½t�, we take rd to be the number of solutions of the equation uk

1 þ � � � þ uk
l ¼ d,

with ui A A�ðP � M; pÞ ð1e ie lÞ, in which each solution u is counted with weight
e
�
yðu1 þ � � � þ ulÞ

�
. Thus we find that

hða; v; yÞ l ¼
P

hdieðP̂P=M̂MÞk

rdeða dvkÞ:

A swift application of Hölder’s inequality consequently leads from here to the estimate

HðaÞ l f ðM̂MR̂RÞ l�1 P
v AAðMþR;RÞ

jhða; v; yÞj lð11:5Þ

¼ ðM̂MR̂RÞ l�1 P
hdie ðP̂P=M̂MÞk

rdhða; d; yÞ;

where we have written

hða; d; yÞ ¼
P

v AAðMþR;RÞ
eðv; yÞeða dvkÞ:

Now let nd denote the number of solutions of the equation uk
1 þ � � � þ uk

l ¼ d, with
ui A AðP � M; ord pÞ, counted without weights. Thus, in particular, for each polynomial
d one has jrd je nd . A further application of Hölder’s inequality leads from (11.5) to the
bound

HðaÞ2lw
e ðM̂MR̂RÞ2wðl�1Þ

	P
d

nd


2w�2	P
d

n2
d



JwðaÞ;

in which the summations on the right-hand side are over all polynomials d A Fq½t�, and
where we have written

JwðaÞ ¼
P

hdieðP̂P=M̂MÞk

jhða; d; yÞj2w:ð11:6Þ

But by considering the underlying equations, it is apparent that

P
d

nd e ðqP̂P=M̂MÞ l and
P
d

n2
d eSlðP � M;RÞ;

and hence

HðaÞ2lw f ðP̂PR̂RÞ2lwðP̂P=M̂MÞ�2lðM̂MR̂RÞ�2w
SlðP � M;RÞJwðaÞ:ð11:7Þ
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Next we write

~nnc ¼
Ð
T

jhðb; d; yÞj2w
eð�bcdÞ db:

Then it follows from orthogonality that ~nnc is equal to the number of solutions of the equa-
tion

Pw
i¼1

ðvk
i � vk

wþiÞ ¼ c;

with vi A AðM þ R;RÞ ð1e ie 2wÞ, wherein each solution v is counted with weight

Qw
i¼1

eðvi; yÞeðvwþi; yÞ:

Since jeðv; yÞj ¼ 1 for each v, an application of the triangle inequality, combined with a con-
sideration of the underlying equation, leads to the upper bound

~nnc e ~nn0 eSwðM þ R;RÞ:

Thus it follows from (11.6) that

JwðaÞ ¼
P

hdieðP̂P=M̂MÞk

P
hcieðM̂MR̂RÞk

~nnceðacdÞfSwðM þ R;RÞRðaÞ;ð11:8Þ

where

RðaÞ ¼
P

hcieðM̂MR̂RÞk

���� P
hdieðP̂P=M̂MÞk

eðacdÞ
����:

Applying Lemma 11.1 with C ¼ kðM þ RÞ þ 1 and D ¼ kðP � MÞ þ 1, we obtain the es-
timate

RðaÞf ðP̂PR̂RÞk�hgi�1 þ ðM̂MR̂RÞ�k þ ðP̂P=M̂MÞ�k þ hgiðP̂PR̂RÞ�k�:ð11:9Þ

On collecting together the upper bounds (11.7), (11.8) and (11.9), and noting that Dl

and Dw are permissible exponents, we arrive at the upper bound

HðaÞf P̂PR̂R
�
ðP̂P=M̂MÞ�kþDl ðM̂MR̂RÞ�kþDwRðaÞ

�1=ð2lwÞ

f P̂P1þe
�
ðP̂P=M̂MÞDl M̂M DwXkðg;P;MÞ

�1=ð2lwÞ
:

The conclusion of the lemma now follows on substituting this bound into (11.4).

12. Estimates for smooth Weyl sums: small moduli

We now examine the smooth Weyl sum f ða;P;RÞ when a is well-approximated by a
ratio a=g in which hgi is relatively small. Here we apply a variant of Vinogradov’s method
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modelled on the argument of [29], Lemma 4.1. We recall and emphasise at this point that
we assume throughout that chðFqÞF k.

Lemma 12.1. Suppose that l is a real number with 1=2 < l < 1, and write M ¼ lP.

Let a A Ky, and suppose that a and g are elements of Fq½t� with g monic, ða; gÞ ¼ 1 and

hga� ai < ðM̂MR̂RÞ�k, hgie ðM̂MR̂RÞk, and either hga� aif M̂MP̂P�k or hgi > M̂MR̂R. Then

whenever s is a natural number satisfying 2sf k þ 1 and Ds is permissible, one has

f ða;P;RÞf P̂PeM̂M þ P̂P1þe
�
M̂M�1ðP̂P=M̂MÞDs

�
1 þ hgiðP̂P=M̂MÞ�k

��1=ð2sÞ
:

Proof. The bilinear decomposition that enables us to apply the large sieve in this
instance is a little more delicate than that applied in the proof of Lemma 11.2. We begin
by recalling the definition of the set CgðLÞ from the preamble to Lemma 7.1. Suppose that
a, a and g satisfy the hypotheses of the statement of the lemma. We observe that each
element y in AðP;RÞ may be written uniquely in the form y ¼ xd, with d A CgðPÞ and
x A AðP � ord d;RÞ satisfying ðx; gÞ ¼ 1. The smooth Weyl sum f ða;P;RÞ defined in (2.3)
may therefore be rewritten in the shape

f ða;P;RÞ ¼
P

d ACgðPÞXAðP;RÞ

P
x AAðP�ord d;RÞ

ðx;gÞ¼1

e
�
aðxdÞk�:

An application of Lemma 7.1 now reveals that

f ða;P;RÞf
P

d ACgðP�MÞ

���� P
x AAðP�ord d;RÞ

ðx;gÞ¼1

e
�
aðxdÞk

�����þ P
d ACgðPÞ

ord d>P�M

P̂P=hdi

f P̂Pe max
d ACgðP�MÞ

���� P
x AAðP�ord d;RÞ

ðx;gÞ¼1

e
�
aðxdÞk�����þ P̂PeM̂M:

When d A CgðP � MÞ, one has M � ord d fM � ðP � MÞ ¼ ð2l� 1ÞP > 0. It therefore
follows from Lemma 10.3 that there exists a polynomial d A CgðP � MÞ, an irreducible
polynomial p with ord peR, and an element y A T, such that

f ða;P;RÞf P̂PeM̂M þ P̂PeR̂Rgða; d; p; yÞ;ð12:1Þ

where

gða; d; p; yÞ ¼
P

v ABðM�ord d;p;RÞ
ðv;gÞ¼1

���� P
u AA�ðP�M;pÞ

ðu;gÞ¼1

e
�
aðuvdÞk þ yu

�����:ð12:2Þ

Let Jðg; d; hÞ denote the number of solutions of the congruence ðxdÞk 1 h ðmod gÞ
with hxi < hgi and ðx; gÞ ¼ 1. When ðh; gÞF d k, one plainly has Jðg; d; hÞ ¼ 0. Suppose
then that ðh; gÞ j d k, and write h 0 ¼ h=ðh; gÞ and g 0 ¼ g=ðh; gÞ. Then Jðg; d; hÞ is equal to
hðh; gÞi multiplied by the number of solutions of the congruence

xkd k=ðh; gÞ1 h 0 ðmod g 0Þ;ð12:3Þ
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with hxi < hg 0i. Since ðh 0; g 0Þ ¼ 1, the number of solutions of this congruence is at most
Oðhg 0ieÞ. In order to verify this assertion, observe first that for each irreducible divisor $
of g 0, the number of solutions of the congruence xkd k=ðh; gÞ1 h 0 ðmod$Þ is at most k.
Moreover, since any solution x of (12.3) necessarily satisfies ðx; g 0Þ ¼ 1, and chðFqÞF k, it
follows from Hensel’s Lemma that each solution of the latter congruence lifts uniquely to a
corresponding solution x modulo $ l , for each natural number l. The Chinese Remainder
Theorem consequently ensures that the number of solutions of (12.3) with hxi < hg 0i is at
most koðg 0Þ, and so the desired conclusion follows from Corollary 7.2. In this way, we de-
duce that

Jðg; d; hÞfhgiehðh; gÞifhgiehdik:ð12:4Þ

Let V denote the set of monic polynomials v with M̂M=hdi < hvie M̂MR̂R=hdi and
ðv; gÞ ¼ 1. Then in view of the estimate (12.4), there exists a natural number L, satisfying
Lfhgiehdik, with the following property. The set V can be divided into L classes
V1; . . . ;VL such that, for any two distinct elements v1, v2 in a given set Vj, we have
ðv1dÞk 1 ðv2dÞk ðmod gÞ if and only if v1 1 v2 ðmod gÞ. Let by denote the number of solu-
tions of the equation uk

1 þ � � � þ uk
s ¼ y with ui A A�ðP � M; pÞ and ðui; gÞ ¼ 1 ð1e ie sÞ,

in which each solution u is counted with weight e
�
yðu1 þ � � � þ usÞ

�
. Then an application of

Hölder’s inequality to (12.2) yields the estimate

gða; d; p; yÞ2s f P̂PehdikðM̂MR̂R=hdiÞ2s�1 max
1ejeL

P
v AVj

���� P
hyieðP̂P=M̂MÞk

bye
�
aðvdÞk

y
�����

2

:

The hypotheses of the statement of the lemma permit us to assume that 2s � 1f k. It there-
fore follows that there is an integer j, with 1e j eL, for which

gða; d; p; yÞ2s f P̂PeðM̂MR̂RÞ2s�1 P
v AVj

���� P
hyieðP̂P=M̂MÞk

bye
�
aðvdÞk

y
�����

2

:ð12:5Þ

In preparation for the application of the large sieve inequality, we next consider the

spacing of the elements aðvdÞk in T for distinct elements v of Vj. Suppose that v1; v2 A Vj

satisfy v1 E v2 ðmod gÞ. Then in view of our construction of the set Vj, one necessarily has

ðv1dÞk E ðv2dÞk ðmod gÞ, and hence our hypothesis that ða; gÞ ¼ 1 ensures that

ord
��a
�
ðv1dÞk � ðv2dÞk

�
=g
��f�ord g:

Moreover, if we write b ¼ a� a=g, then we may suppose that hgbi < ðM̂MR̂RÞ�k. Since
d A CgðP � MÞ and v A BðM � ord d; p;RÞ, one obtains

ord
��b�ðv1dÞk � ðv2dÞk

��� <
�
�kðM þ RÞ � ord g

�
þ kðM þ RÞ

e ord
��a
�
ðv1dÞk � ðv2dÞk

�
=g
��:

We therefore deduce that

ord
��ðb þ a=gÞ

�
ðv1dÞk � ðv2dÞk

��� ¼ ord
��a
�
ðv1dÞk � ðv2dÞk

�
=g
��;
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whence

ord
��a�ðv1dÞk � ðv2dÞk

���f�ord g:ð12:6Þ

We now divide into cases, according to the size of hgi. Suppose first that
hgi > M̂MR̂R=hdi. Since for v A BðM � ord d; p;RÞ, one has hvie M̂MR̂R=hdi, it follows that
in this case the elements of Vj are necessarily distinct modulo g. It therefore follows from
(12.6) that the points aðvdÞk are spaced at least hgi�1 apart in T.

Suppose next that hgie M̂MR̂R=hdi. In this case we plainly have hgie M̂MR̂R, and so
the hypotheses of the lemma permit us to suppose that hga� aif M̂MP̂P�k. On one hand,
if v1; v2 A Vj satisfy the condition v1 E v2 ðmod gÞ, then it follows from (12.6) that the
points aðv1dÞk and aðv2dÞk are spaced at least hgi�1 apart in T. If v1 1 v2 ðmod gÞ on the
other hand, then on recalling that hga� ai < ðM̂MR̂RÞ�k, we find that

ord
��a�ðv1dÞk � ðv2dÞk

��� ¼ ordkða� a=gÞd kðvk
1 � vk

2 Þkð12:7Þ

fM � kP � ord g þ ord
�
d kðvk

1 � vk
2 Þ
�
:

In order to obtain a lower bound for the final term appearing on the right-hand side
of (12.7), we begin by noting that

ord
�
d kðvk

1 � vk
2 Þ
�
f ordðv1 � v2Þ þ ord

�
d k�1ðvk�1

1 þ vk�2
1 v2 þ � � � þ vk�1

2 Þ
�
:ð12:8Þ

If v1 3 v2 and v1 1 v2 ðmod gÞ, we have

ordðv1 � v2Þf ord g:ð12:9Þ

Further, if ord v1 ¼ ord v2, then since the elements of Vj are monic, each term vk�1�l
1 vl

2 has
the same degree and leading coe‰cient 1. Consequently, as an element of Fq½t�, the expres-
sion vk�1

1 þ vk�2
1 v2 þ � � � þ vk�1

2 has degree ðk � 1Þ ord v1 with leading coe‰cient k (which
is, of course, not divisible by chðFqÞ). Whether or not ord v1 ¼ ord v2, therefore, we find
that when v1; v2 A Vj, one has

ord
�
d k�1ðvk�1

1 þ vk�2
1 v2 þ � � � þ vk�1

2 Þ
�
¼ maxfordðv1dÞk�1; ordðv2dÞk�1gð12:10Þ

> ðk � 1ÞM:

On substituting (12.9) and (12.10) into (12.8), we see that

ord
�
d kðvk

1 � vk
2 Þ
�
f ðk � 1ÞM þ ord g;

whence by (12.7) we have

ord
��a�ðv1dÞk � ðv2dÞk���f�kðP � MÞ:

In this case, therefore, the points aðv1dÞk and aðv2dÞk are spaced at least ðP̂P=M̂MÞ�k apart
in T.

54 Liu and Wooley, Waring’s problem in function fields



The previous discussion shows that for v A Vj, the points aðvdÞk are spaced at least
minfhgi�1; ðP̂P=M̂MÞ�kg apart in T. We now apply the large sieve inequality for function
fields, as given by Hsu [12], Theorem 2.4, to deduce that

P
v AVj

���� P
hyieðP̂P=M̂MÞk

bye
�
aðvdÞk

y
�����

2

f
�
hgiþ ðP̂P=M̂MÞk

� P
hyieðP̂P=M̂MÞk

jbyj2:ð12:11Þ

But on considering the underlying equation, and recalling that Ds is a permissible exponent,
one has P

hyieðP̂P=M̂MÞk

jbyj2 eSsðP � M;RÞf ðP̂P=M̂MÞ2s�kþDsþe:

On substituting the latter estimate into (12.11), and thence into (12.5) and (12.1), we deduce
that

f ða;P;RÞf P̂PeM̂M þ ðP̂PR̂RÞ1þe�ðP̂P=M̂MÞDsM̂M�1
�
1 þ hgiðP̂P=M̂MÞ�k

��1=ð2sÞ
:

The conclusion of the lemma is now immediate on recalling our conventions concerning e

and R.

13. Estimates for smooth Weyl sums: a uniform bound

The principal conclusions of the previous two sections can be combined to provide an
estimate for smooth Weyl sums of use no matter what range the modulus g may lie in. In
this section we derive such a bound, and also optimise parameters so as to obtain conclu-
sions asymptotically as strong as are attainable via our methods.

Theorem 13.1. Suppose that l is a real number with 1=2 < l < 1. Let a A Ky,
and suppose that whenever a and g are elements of Fq½t� with g monic, ða; gÞ ¼ 1 and

hga� aie P̂Pl�k, then one has hgi > P̂PlR̂R. Then provided that l; s;w A N satisfy

2sf k þ 1, and Dl , Ds, Dw are permissible exponents, one has

f ða;P;RÞf P̂PeðP̂Pl þ P̂P1�m þ P̂P1�nÞ;

where

m ¼ kð1 � lÞ � lDw � ð1 � lÞDl

2lw
and n ¼ l� ð1 � lÞDs

2s
:

Proof. For the sake of concision, let us write M ¼ lP. By the function field ana-
logue of Dirichlet’s theorem on diophantine approximation (see [14], Lemma 3), given

a A T, there exist polynomials a and g in Fq½t� with g monic, ða; gÞ ¼ 1, hgie ðM̂MR̂RÞk and
hga� ai < ðM̂MR̂RÞ�k. For the latter pair of polynomials, we have, in particular, the upper
bound hga� ai < hgi�1. Consequently, we may apply Lemma 11.2 to deduce that when
hgi > ðP̂P=M̂MÞk, one has

f ða;P;RÞf P̂P1þe
�
P̂PlDwþð1�lÞDl ðP̂P�kð1�lÞ þ P̂P�klÞ

�1=ð2lwÞ þ P̂Plð13:1Þ

f P̂PeðP̂Pl þ P̂P1�mÞ:
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Suppose, on the other hand, that hgie ðP̂P=M̂MÞk. If hga� aif M̂MP̂P�k, then the hypotheses
of the statement of Lemma 12.1 are satisfied. If hga� ai < M̂MP̂P�k, meanwhile, the hypo-
theses of the present lemma ensure that hgi > M̂MR̂R, and so the hypotheses of the statement
of Lemma 12.1 are again satisfied. We therefore conclude from Lemma 12.1 that when
hgie ðP̂P=M̂MÞk, then one has

f ða;P;RÞf P̂Pe
�
P̂Pl þ P̂PðP̂P�lþð1�lÞDsÞ1=ð2sÞ�ð13:2Þ

f P̂PeðP̂Pl þ P̂P1�nÞ:

The proof of the lemma follows on combining (13.1) and (13.2).

As is more or less apparent from the conclusion of Theorem 13.1, the optimal choice
of l is that satisfying the condition m ¼ n. A modest calculation therefore leads to the fol-
lowing corollary.

Corollary 13.2. Suppose that l; s;w A N satisfy 2sf k þ 1, and Dl , Ds, Dw are permis-

sible exponents. Define l and s by means of the relations

s ¼ k � Dl � DsDw

2
�
sðk þ Dw � DlÞ þ lwð1 þ DsÞ

�
and

l ¼ sðk � DlÞ þ lwDs

sðk þ Dw � DlÞ þ lwð1 þ DsÞ
:

Suppose in addition that 1=2 < l < 1 � s. Then one has

sup
a AmðlPÞ

j f ða;P;RÞje sup
a AmðPÞ

j f ða;P;RÞjf P̂P1�sþe:

Proof. The desired conclusion follows directly from Theorem 13.1 provided that one
is able to show that whenever a lies in mðPÞ, then a satisfies the hypotheses of the statement
of Theorem 13.1. Consider then a point a in mðPÞ. Suppose that a and g are elements of
Fq½t� with g monic, ða; gÞ ¼ 1 and hga� aie P̂Pl�k. If one were to have hgie P̂P, then nec-
essarily a A MðPÞ, contradicting our earlier assumption that a A mðPÞ. We are therefore
forced to conclude that hgi > P̂P > P̂Pl. Consequently, whenever a lies in mðPÞ, then a sat-
isfies the hypotheses of the statement of Theorem 13.1. The proof of the corollary is com-
pleted on verifying that with the choice of l made in the statement, one has m ¼ n ¼ s in
the conclusion of Lemma 13.1.

On making use of Theorem 9.4 to supply permissible exponents within this corollary,
we obtain a conclusion simple enough to use directly in subsequent applications.

Corollary 13.3. Suppose that k and q are natural numbers with chðFqÞF k. Define

g ¼ gqðkÞ as in the preamble to the statement of Theorem 1.1, and in addition define

B ¼ BqðkÞ by putting

BqðkÞ ¼
1; when k e 2g�2;

ð1 � 2�gÞ�1; when k > 2g�2:

�
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Then there is a positive absolute constant C4 with the property that, with the exponent sðkÞ
defined by means of the relation

sðkÞ�1 ¼ BkðLog k þ B Log Log k þ C4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Log Log k

p
Þ;

there exists a positive number t satisfying t < 1=2 for which

sup
a Amðð1�tÞPÞ

j f ða;P;RÞje sup
a AmðPÞ

j f ða;P;RÞjf P̂P1�sðkÞþe:

Proof. We begin by considering the situation in which k is large. Put

s ¼ 1

2
Bkðlog k þ log log log k þ 1Þ

� 

;ð13:3Þ

w ¼ 1

2
Bkðlog log k þ 1Þ

� 

; and l ¼ dBk=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log k

p
e:ð13:4Þ

Then from Theorem 9.4, we find that the exponents D�
s and D�

w are permissible, where

D�
s ¼ ke1�2s=ðBkÞ

e 1=log log k and D�
w ¼ ke1�2w=ðBkÞ

e k=log k:

We also see from Theorem 9.4 that the exponent D�
l is permissible, where D�

l satisfies the
equation

ðD�
l =kÞ þ logðD�

l =kÞ ¼ 1 � 2l=ðBkÞ:

But dþ log d is an increasing function of d, and so it follows that

D�
l =k < 1 � l=ðBkÞ þ l2=ðB2k2Þ:

We therefore deduce that the exponents

Ds ¼ 1=log log k; Dw ¼ k=log k and Dl ¼ k � l=B þ l2=ðB2kÞð13:5Þ

are permissible.

We next recall the conclusion of Corollary 13.2. Define the exponents lðkÞ and sðkÞ
by

lðkÞ ¼ 1 � sDw þ lw

sðk þ Dw � DlÞ þ lwð1 þ DsÞ
ð13:6Þ

and

sðkÞ�1 ¼ 2s þ 2ðsDw þ lwÞð1 þ DsÞ
k � Dl � DsDw

:ð13:7Þ

Then whenever 1=2 < lðkÞ < 1 � sðkÞ, and in addition a satisfies the hypotheses of Theo-
rem 13.1, one has f ða;P;RÞf P̂P1�sðkÞþe. But for su‰ciently large values of k, it follows
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from (13.3), (13.4) and (13.5) that the permissible exponents in the previous paragraph yield
the formulae

2ðsDw þ lwÞ ¼ Blk log log k
�
1 þ Oð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log k

p
Þ
�
;ð13:8Þ

k � Dl � DsDw ¼ l

B

�
1 þ Oð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log k

p
Þ
�

ð13:9Þ

and

sðk � DlÞ þ lwð1 þ DsÞ þ sDw ¼ sl

B

�
1 þ Oð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log k

p
Þ
�
:ð13:10Þ

On substituting (13.8) and (13.9) together with (13.3) and (13.5) into (13.7), we find that the
exponent sðkÞ satisfies the upper bound

sðkÞ�1
eBk log k þ B2k log log k

�
1 þ Oð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log k

p
Þ
�
:

Thus, when k is su‰ciently large, there is a positive absolute constant C4 for which

sðkÞ�1
eBkðlog k þ B log log k þ C4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log k

p
Þ:ð13:11Þ

Likewise, now making use also of (13.10), we deduce from (13.6) that

1 � lðkÞ ¼ B
log log k

log k

�
1 þ Oð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log k

p
Þ
�
:

When k is su‰ciently large, therefore, it follows from (13.11) that 1=2 < lðkÞ < 1 � sðkÞ.
We may thus conclude that whenever k is su‰ciently large, one has

sup
a AmðlPÞ

j f ða;P;RÞje sup
a AmðPÞ

j f ða;P;RÞjf P̂P1�sðkÞþe;ð13:12Þ

where sðkÞ satisfies the upper bound (13.11).

The argument up to this point is applicable for su‰ciently large values of k, say for
k > k0. We now seek to establish an estimate of the shape

sup
a AmðPÞ

j f ða;P;RÞjf P̂P1�d;ð13:13Þ

for some positive number d, for each exponent k with k e k0. By suitably increasing the
size of the absolute constant C4 in (13.11), it follows from (13.12) that the estimate (13.13)
holds for all exponents k, and thus the conclusion of the corollary follows at once.

For simplicity, we now take D to be a su‰ciently large, though fixed, positive number,
and we set

s ¼ d9BDk log k þ 1e; w ¼ dBDk log k þ 1e and l ¼ 2:
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It follows from Theorem 9.4 that the exponents D�
s and D�

w are permissible, where

D�
s ¼ ke1�2s=ðBkÞ

e k�17D and D�
w ¼ ke1�2w=ðBkÞ

e k�D:

Thus, on recalling the conclusion of Lemma 9.1, we find that the exponents Ds ¼ k�17D,
Dw ¼ k�D and Dl ¼ k � 2 are permissible. On substituting these exponents into (13.6) and
(13.7), and noting that D has been chosen su‰ciently large, we obtain

0 < 1 � lðkÞe 2BDk log k þ 5

20BDk log k
<

1

9

and

sðkÞ�1
e 2s þ lw þ 1 < 21BDk log k:ð13:14Þ

On noting that the exponent lðkÞ satisfies the condition 1=2 < lðkÞ < 1 � sðkÞ, we may
apply Corollary 13.2 to establish that (13.12) holds in the present situation, though now
with the upper bound (13.14) in place of (13.11). This conclusion confirms the desired esti-
mate (13.13), and the conclusion of the corollary now follows.

14. An upper bound for Gq(k): the proof of Theorem 1.1

The conclusions of §13 enable us to establish minor arc estimates of the shape (6.1),
and from there we are able to bound GqðkÞ by means of Lemma 6.4.

Lemma 14.1. Let lðkÞ and sðkÞ be defined as in the statement of Corollary 13.2, and

suppose that 1=2 < lðkÞ < 1 � sðkÞ. Suppose also that v is a natural number with vf k � 1,
and that Dvþ1 is a permissible exponent. Then whenever u is a natural number with

u > 2v þ Dvþ1=sðkÞ, there exists a positive number d for which

Ð
p

jFðaÞ2
f ðaÞuj daf P̂Puþ2�k�d:

Proof. We begin by recalling that p ¼ mðPÞ, so that the hypotheses of the lemma
lead from Corollary 13.2 to the upper bound

sup
a A p

j f ða;P;RÞjf P̂P1�sðkÞþe:ð14:1Þ

Let w ¼ ½Dvþ1=sðkÞ� þ 1. Then on combining (14.1) with the conclusion of Lemma 9.3, we
deduce that

Ð
p

jFðaÞ2
f ðaÞ2vþwj dae

	
sup
a A p

j f ðaÞj

w Ð

T

jFðaÞ2
f ðaÞ2vj da

f ðP̂P1�sðkÞþeÞw
P̂P2vþ2�kþDvþ1þe:

Since wsðkÞ > Dvþ1, it follows that there is a positive number d for which

Ð
p

jFðaÞ2
f ðaÞ2vþwj daf P̂P2vþwþ2�k�d:

The conclusion of the lemma now follows by making use of the trivial estimate j f ðaÞjf P̂P.
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Observe that Lemma 14.1 establishes that whenever u > 2v þ Dvþ1=sðkÞ, and
u > 2k � 2, then u is accessible to the exponent k. It therefore follows from Lemma 6.4
that when s is an even integer with sf u þ 2, and m A Jk

q ½t�, then Rsðm;PÞg P̂Ps�k. But
under the same hypotheses, one finds from (6.1) that there is a positive number d with the
property that Ð

p

FðaÞ2
f ðaÞs�2

eð�amÞ daf P̂Ps�u�2
Ð
p

jFðaÞ2
f ðaÞuj daf P̂Ps�k�d:

Consequently,

Rsðm;TÞ ¼ Rsðm;PÞ þRsðm; pÞg P̂Ps�k þ OðP̂Ps�k�dÞg P̂Ps�k:

We summarise this conclusion in the form of a theorem.

Theorem 14.2. Let lðkÞ and sðkÞ be defined as in the statement of Corollary 13.2,
and suppose that 1=2 < lðkÞ < 1 � sðkÞ. Suppose also that v is a natural number with

vf k � 1 and that Dvþ1 is a permissible exponent. Then whenever s is an even integer

with s > 2v þ 2 þ Dvþ1=sðkÞ, and m A Jk
q ½t�, one has RðmÞghmis=k�1. In particular, when

Dv ðvf k � 1Þ are permissible exponents, one has GqðkÞeGqðkÞ, where we write

GqðkÞ ¼ min
vfk�1

�
2v þ 4 þ 2

�
Dvþ1=

�
2sðkÞ

���
:

Corollary 14.3. There is an absolute constant C5 with the property that

GqðkÞeBk Log k þ Log Log k þ 2 þ B
Log Log k

Log k
þ C5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Log Log k

p
Log k

 !
:

Proof. We apply the conclusions of Corollary 13.3 and Theorems 9.4 and 14.2 to
deduce that

GqðkÞe min
vfk�1

2v þ 4 þ 2
1

2
Bk2e1�ð2vþ2Þ=ðBkÞLðkÞLog k

� �	 

;ð14:2Þ

where we write

LðkÞ ¼ 1 þ B
Log Log k

Log k
þ C4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Log Log k

p
Log k

;

and with C4 chosen to be a suitably large positive absolute constant. On taking

v ¼ 1

2
Bk Log k þ Log Log k þ 1 þ B

Log Log k

Log k

	 
� 

;

we find that

ke1�ð2vþ2Þ=ðBkÞ
e

1

Log k
exp �B

Log Log k

Log k

	 


¼ 1

Log k

0
@1 � B

Log Log k

Log k
þ O

ðLog Log kÞ2

ðLog kÞ2

 !1A:
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The upper bound for GqðkÞ provided by (14.2) therefore becomes

GqðkÞeBkðLog k þ Log Log k þ 1 þ B Log Log k=Log kÞ

þ Bk
�
1 þ Oð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Log Log k

p
=Log kÞ

�
:

The conclusion of the corollary follows on taking C5 to be a su‰ciently large positive ab-
solute constant.

On comparing the definition of BqðkÞ with that of AqðkÞ given in (1.2), we see that
when k f 4, one has BqðkÞ ¼ AqðkÞ for k > 2g�2, and BqðkÞeAqðkÞ for k e 2g�2. The first
conclusion of Theorem 1.1 consequently follows at once from that of Corollary 14.3. When
p ¼ chðFqÞ divides k, on the other hand, the relation GqðkÞ ¼ Gq

�
k=chðFqÞ

�
follows on not-

ing that every sum of kth powers in Fq½t� belongs to Fq½tp�, and that when m A Jk
q ½t�, the re-

presentation problem (1.1) may therefore be reduced to the simpler one

m1 ¼ x
k=p
1 þ x

k=p
2 þ � � � þ xk=p

s ;

where m1ðtpÞ ¼ mðtÞ. This completes our proof of Theorem 1.1.

We finish this section by remarking that it should be possible to adapt the methods of
[24] and [25] to the function field setting, at least when chðFqÞ > k. With su‰cient e¤ort,
therefore, it should be feasible to establish under the latter condition that Gqð5Þe 17,
Gqð6Þe 24, Gqð7Þe 33, Gqð8Þe 42, and so on.

15. An upper bound for GB
q (k): the proof of Theorem 1.2

A modification of the classical argument familiar from Z yields a straightforward
proof of the upper bound for Gþ

q ðkÞ recorded in Theorem 1.2. We therefore economise on
details.

Lemma 15.1. Suppose that k and q are natural numbers with chðFqÞF k. Let

lðkÞ and sðkÞ be defined as in the statement of Corollary 13.2, and suppose that

1=2 < lðkÞ < 1 � sðkÞ. Suppose also that v is a natural number with vf k � 1, and that

Dvþ1 is a permissible exponent. Then one has Gþ
q ðkÞeG

þ
q ðkÞ, where we write

G
þ
q ðkÞ ¼ max

�
2k þ 1; v þ 3 þ

�
Dvþ1=

�
2sðkÞ

���
:

Proof. Let M be a large natural number, and suppose that v is a natural number
satisfying the hypotheses of the lemma. We put s ¼ G

þ
q ðkÞ, and let Z�ðMÞ ¼ Z�

s;kðMÞ de-
note the set of non-exceptional polynomials m in Jk

q ½t�, with ord m ¼ M, that fail to admit a
strict representation as a sum of s kth powers. The set of exceptional polynomials may be
handled in like manner with trivial modifications to the argument, so we suppress addi-
tional discussion of this set. Next, defining P ¼ dM=ke as in the preamble to the statement
of Theorem 1.1, we define ZðMÞ ¼ Zs;kðMÞ to be the set of non-exceptional polynomials
m in Jk

q ½t�, with ord m ¼ M, for which the equation (2.4) fails to possess a solution with

hxiie P̂P ði ¼ 1; 2Þ and yj A AðP;RÞ ð1e j e s � 2Þ. For the sake of concision, we write
Z�ðMÞ ¼ card

�
Z�ðMÞ

�
and ZðMÞ ¼ card

�
ZðMÞ

�
. Note that Z�ðMÞeZðMÞ, and
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hence, in order to establish the conclusion of the lemma it su‰ces to show that
ZðMÞ ¼ oðM̂MÞ as M ! y.

Next we define the exponential sum

KðaÞ ¼
P

m AZðMÞ
eð�maÞ:

Then as a consequence of Lemma 5.4, one has

Ð
N

FðaÞ2
f ðaÞs�2

KðaÞ da ¼
P

m AZðMÞ
Rsðm;NÞgZðMÞP̂Ps�k:

But if m A ZðMÞ, then Rsðm;TÞ ¼ 0, whence

Ð
N

FðaÞ2
f ðaÞs�2

eð�maÞ daþ
Ð
n

FðaÞ2
f ðaÞs�2

eð�maÞ da ¼ 0:

Thus we see that

����Ð
n

FðaÞ2
f ðaÞs�2

KðaÞ da

���� ¼ Ð
N

FðaÞ2
f ðaÞs�2

KðaÞ dagZðMÞP̂Ps�k:

An application of Schwarz’s inequality now yields

ZðMÞP̂Ps�k f

	Ð
T

jKðaÞj2 da


1=2	Ð
n

jFðaÞ4
f ðaÞ2s�4j da


1=2

:ð15:1Þ

In order to estimate the second integral on the right-hand side of (15.1), we begin by
noting that Lemma 14.1 implies that whenever

2s � 4 > 2v þ Dvþ1=sðkÞ;ð15:2Þ

then there is a positive number d for which

Ð
p

jFðaÞ2
f ðaÞ2s�4j daf P̂P2s�2�k�d:ð15:3Þ

Under the same conditions, we therefore find that 2s � 4 is accessible to the exponent k,
whence Lemma 6.3 yields

Ð
PnN

jFðaÞ2
f ðaÞ2s�4j daf P̂P2s�2�kV̂V�1=ðksÞ:ð15:4Þ

Since n ¼ pW ðPnNÞ, the trivial estimate FðaÞf P̂P leads from (15.3) and (15.4) to the
upper bound

Ð
n

jFðaÞ4
f ðaÞ2s�4j daf P̂P2

Ð
n

jFðaÞ2
f ðaÞ2s�4j daf P̂P2s�kV̂V�1=ðksÞ:

Finally, by orthogonality, the first integral on the right-hand side of (15.1) is equal to
ZðMÞ. We therefore conclude from (15.1) that

ZðMÞP̂Ps�k fZðMÞ1=2ðP̂P2s�kV̂V�1=ðksÞÞ1=2;
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whence

ZðMÞf P̂PkV̂V�1=ðksÞ f M̂Mðlog M̂MÞ�1=ð12ksÞ:

We have shown in this way that ZðMÞ ¼ oðM̂MÞ as M ! y, and from this, in view of our
earlier comments concerning exceptional polynomials, it follows that Gþ

q ðkÞe s. The proof
of the lemma is completed by reference to (15.2).

We note that one variable may be saved in the argument above with only modest ad-
ditional e¤ort. In our discussion we made use of two variables not restricted to be smooth
in (2.4), where only one is required in our minor arc treatment. This expedience allowed us
easy reference to Lemmata 5.4 and 6.3. However, by a straightforward modification of the
arguments of §§5 and 6, the two classical Weyl sums may be replaced by one classical Weyl
sum together with a smooth Weyl sum, and thereby a variable is saved.

A comparison of Lemma 15.1 with the conclusion of Theorem 14.2 reveals that the
upper bounds G

þ
q ðkÞ and GqðkÞ established by these lemmata for Gþ

q ðkÞ and GqðkÞ, respec-

tively, are essentially related by the equation G
þ
q ðkÞ ¼

1

2
GqðkÞ þ 1. The argument of the

proof of Corollary 14.3 therefore yields the following upper bound for Gþ
q ðkÞ.

Corollary 15.2. There is an absolute constant C6 with the property that

Gþ
q ðkÞe

1

2
Bk Log k þ Log Log k þ 2 þ B

Log Log k

Log k
þ C6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Log Log k

p
Log k

 !
:

In view of the discussion completing §14, the conclusion of Theorem 1.2 now follows
at once without additional complications.

16. The solubility of diagonal equations: the proof of Theorem 1.3

The application of the Hardy-Littlewood method to equations of the shape (1.4) over
Fq½t� is essentially routine, and so we confine ourselves to an abbreviated discussion of the
proof of Theorem 1.3. We consider an equation of the shape (1.4) satisfying the hypotheses
of the statement of Theorem 1.3. Let P be a natural number su‰ciently large in terms of
s, k, q and a. We seek to establish a lower bound for the number NsðP; aÞ of solutions
x A Fq½t�s with hxiie P̂P ð1e ie sÞ by means of the Hardy-Littlewood method. Recalling
the notation introduced in (2.3), we now define Fi ¼ Fiða;PÞ and fi ¼ fiða;P;RÞ by

Fiða;PÞ ¼ Fðaia;PÞ and fiða;P;RÞ ¼ f ðaia;P;RÞ:

Then it follows from (2.1) that a lower bound for NsðP; aÞ is provided by the quantity
N �

s ðP;R; aÞ, defined by

N �
s ðP;R; aÞ ¼

Ð
T

F1F2 f3 . . . fs da:ð16:1Þ

Next define sðkÞ as in the statement of Corollary 13.3, and let t be the asso-
ciated positive number satisfying t < 1=2. Suppose that c A Fq½t�, and that P is su‰ciently
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large in terms of ord c. Then it is a straightforward exercise to verify that when-
ever ca A M

�
ð1 � tÞP

�
, then a A M

�
ð1 � tÞP þ ord c

�
LMðPÞ. Consequently, whenever

a A mðPÞ, then ca A m
�
ð1 � tÞP

�
. We therefore deduce that when P is su‰ciently large in

terms of the degrees of the coe‰cients a1; . . . ; as, then

sup
a Ap

j fiðaÞj ¼ sup
a AmðPÞ

j f ðaia;P;RÞje sup
b Amðð1�tÞPÞ

j f ðb;P;RÞjf P̂P1�sðkÞþe:

A modification of the argument of the proof of Lemma 14.1 now shows that whenever v is
a natural number with vf k � 1, and Dvþ1 is a permissible exponent, and provided that
u is a natural number with u > 2v þ Dvþ1=sðkÞ, then there is a positive number d with the
property that

Ð
p

jFiðaÞ2
fjðaÞuj daf P̂Puþ2�k�d ð1e i; j e sÞ:ð16:2Þ

In order to justify this assertion, one must note in particular that the e‰cient di¤erenc-
ing arguments underlying §§7, 8 and 9 may be modified so as to incorporate non-zero
coe‰cients in the underlying variables. Thus, when b and c are fixed non-zero polynomials,
one finds that whenever Dsþ1 is a permissible exponent, then

Ð
T

jFðba;PÞ2
f ðca;P;RÞ2sj daf P̂Plsþ1þe;

where lsþ1 ¼ 2s þ 2 � k þ Dsþ1.

Next, by a straightforward modification of the argument of the proof of Lemma 6.3,
we deduce from (16.2) that when Du ðu ¼ 1; 2; . . .Þ are permissible exponents, and

sf min
vfk�1

�
2v þ 4 þ 2

�
Dvþ1=

�
2sðkÞ

���
;ð16:3Þ

then Ð
PnN

jFiðaÞ2
fjðaÞs�2j daf P̂Ps�kV̂V�2=ðksÞ ð1e i; j e sÞ:

On recalling that n ¼ pW ðPnNÞ, therefore, an application of Hölder’s inequality in com-
bination with (16.2) and the last estimate reveals that

Ð
n

jF1F2 f3 . . . fsj daf P̂Ps�kV̂V�2=ðksÞ:ð16:4Þ

Turning next to the analysis of the major arcs N, we may follow the arguments un-
derlying the discussion of §5. Thus we find that

Ð
N

F1F2 f3 . . . fs da� rðP=RÞs�2
Ss;kJs;k f P̂Ps�kV̂V�1=k;ð16:5Þ

where

Js;k ¼
Ð

hbi<ðqP̂PÞ1�k

Fða1b;PÞ . . .Fðasb;PÞ db;ð16:6Þ

and

Ss;k ¼
Py

g A Fq½t�
AsðgÞ;
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with

AsðgÞ ¼ hgi�s P
hbi<hgi
ðb;gÞ¼1

Sðg; a1bÞ . . .Sðg; asbÞ:

Here, the exponential sums Sðg; aibÞ are defined via (4.1) for 1e ie s.

Defining next

W$; s ¼ 1 þ
Py
h¼1

Asð$hÞ;

an argument paralleling that of the proof of Lemma 5.2 shows that
Q
$
W$; s converges

absolutely to Ss;k. In addition, if we write MsðgÞ for the number of solutions of the congru-
ence a1xk

1 þ � � � þ asx
k
s 1 0 ðmod gÞ, with hxii < hgi ð1e i e sÞ, then

W$; s ¼ lim
h!y

h$ihð1�sÞMsð$hÞ;

and

jW$; s � 1jfh$i�1�1=k:

But by the hypotheses of Theorem 1.3, the equation (1.4) possesses a non-trivial solution
x ¼ a in K$. Since chðFqÞF k, therefore, we may apply Hensel’s Lemma to show that
Msð$hÞgh$ihðs�1Þ, whence W$; s > 0 for each irreducible polynomial $. We thus con-
clude that for some positive number A ¼ Aðq; s; k; aÞ, one has

Ss;k g
Q
$
ð1 þ Ah$i�1�1=kÞ�1 g 1:

Moreover, by an argument paralleling that employed in the proof of Lemma 5.1, one has
Ss;k f 1. Consequently, the hypotheses of Theorem 1.3 ensure that

1fSs;k f 1:ð16:7Þ

It remains only to estimate the singular integral Js;k. Here we observe that the argu-
ment of the proof of [14], Lemma 15 leads from (16.6) to the relation

Js;k ¼ ðqP̂PÞ1�kMs;kðP; aÞ;ð16:8Þ

where Ms;kðP; aÞ denotes the number of solutions of the inequality

ha1xk
1 þ � � � þ asx

k
s i < ðqP̂PÞk�1;

with hxiie P̂P ð1e ie sÞ. The existence of a solution x A Ks
y of the equation (1.4) ensures

that Ms;kðP; aÞf 1 when P is su‰ciently large. A variant of the argument of the proof of
[14], Lemma 16 therefore shows that Ms;kðP; aÞg P̂Ps�kðqP̂PÞk�1, and thus we deduce from
(16.8) that Js;k g P̂Ps�k. The argument of the proof of Lemma 5.1 leading to (5.8), more-
over, establishes that Js;k f P̂Ps�k. The hypotheses of Theorem 1.3 therefore guarantee that

P̂Ps�k f Js;k f P̂Ps�k:ð16:9Þ
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On substituting (16.7) and (16.9) into (16.5), we are able to conclude that, under the
hypotheses of the statement of Theorem 1.3, one has

Ð
N

F1F2 f3 . . . fs dag P̂Ps�k:

In view of (16.1) and (16.4), therefore, provided that the lower bound (16.3) is satisfied, we
arrive at the lower bound

N �
s ðP;R; aÞ ¼

Ð
N

F1F2 f3 . . . fs daþ
Ð
n

F1F2 f3 . . . fs da

g P̂Ps�k þ OðP̂Ps�kV̂V�2=ðksÞÞ:

The conclusion of Theorem 1.3 now follows on verifying that the argument of the proof of
Corollary 14.3 leads from (16.3) to the upper bound

min
vfk�1

�
2v þ 4 þ 2

�
Dvþ1=

�
2sðkÞ

���
e ĜGqðkÞ þ C7k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Log Log k

p
=Log k;

for a suitable positive absolute constant C7. This completes our discussion of the proof of
Theorem 1.3.
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