Cracking the Code: Unraveling
Gender Disparities in Open-Source
Contributions

by

Norhan Abbas

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2023

© Norhan Abbas 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Abstract

Within the world of open source software (OSS) development, previous research has
shown that the success rate of pull requests (PRs) may exhibit gender-related imbalances.
In this work, we seek to examine which factors may contribute to this imbalance; we do
so by performing a comprehensive study on a corpus of over 50,000 accepted PRs taken
from a set of well-known Python projects. We perform both stylometric and quality-based
analyses on the submitted PRs by both female and male developers, and we find that the
results vary across gender. For example, we found that code written by male developers is
more prone to both bugs and blocker issues. Based on our experiences, we propose a set of
actionable recommendations, aimed at fostering diversity and equal opportunities within
the OSS ecosystem.

111

Acknowledgements

I deeply appreciate my supervisors Diogo Barradas and Mei Nagappan for their significant
contributions to this thesis. Mei’s guidance was crucial in directing the research, and
Diogo’s support, feedback, and open-door policy were instrumental in the thesis’s successful
completion.

Moreover, the sense of community and shared aspirations within our CrySP lab, com-
bined with the support and encouragement of friends Menna, Mona, Diaa, Lucas, Nils,
Vecna, Adrian, Thomas, and Bailey have collectively enriched my experience and embold-
ened my efforts. I am truly grateful for your presence and contributions, which have played
an integral role in the achievements of this journey. In a personal note, I must express
my profound gratitude to my mother for her unconditional love and unwavering support
throughout my life’s endeavors. I also wish to express my gratitude to my sister, who has
been by my side through thick and thin. I genuinely wish her all the success she deserves
in her endeavors.

Last but not least, I’d like to thank my readers, Joanne Atlee and Michael Godfrey, for
their interest and engagement with this work. Your time and insights are deeply valued
and appreciated. This work benefited from the use of the CrySP RIPPLE Facility at the
University of Waterloo.

v

Table of Contents

Author’s Declaration ii
Abstract iii
Acknowledgements iv
List of Figures viii
List of Tables ix
1 Introduction 1
1.1 Overview o e 1
1.2 Contributions 3
1.3 Organization 4

2 Related Work 5
2.1 Gender Diversity in Software Development 6
2.2 Gender-Bias in Open Source Software (OSS) 7
2.3 Promoting Gender Diversity in CS 7
2.4 Techniques for Gender Identification in OSS 8
2.4.1 Name-Based Approach 9

2.4.2 Image Processing Technique 9

2.4.3 Stylometry 9

3 Methodology
3.1 Data Collection and Scaling,
3.1.1 Pull Requests Dataset,
3.1.2 Dealing with Data Imbalance
3.2 Feature Selection
3.2.1 Featuresets L
3.2.2 Feature pre-processing
3.3 Experimental Setup
3.3.1 Laboratory testbed oL
3.3.2 Data Extraction
3.3.3 Feature Extraction oL
3.4 Models and Metricso
3.4.1 Machine Learning Models
3.4.2 Evaluation Metrics oo

4 Analysis and Results
4.1 Analysis of the Pull Request Dataset
4.1.1 Analysis on Imbalanced Training Data
4.1.2 Analysis on Balanced Training Data
4.2 Impacts of Feature Removal Threshold
4.3 Comparative Analysis of Feature Sets
4.3.1 Feature Set 1 — Pull request characteristics
4.3.2 Feature Set 2 — Code Quality Indicators
4.3.3 Feature Set 3 — Keyword Frequency

5 Discussion and Conclusions
5.1 Contributions
5.2 Recommendations for the OSS community

5.3 Limitations and Future Work

vi

11
11
11
13
14
14
15
16
16
17
17
18
18
19

22
22
23
28
31
33
33
34
36

References

APPENDICES

A Details on Feature Sets
A.1 Pull requests’ characteristics
A.2 Code quality indicators
A.3 Keyword frequencies

vii

List of Figures

4.1
4.2
4.3

4.4

4.5
4.6
4.7

4.8

4.9

4.10

4.11

4.12

Confusion matrix of the classifier after imbalanced training (¢ > 0.9). . . .
Precision-recall curve of the classifier after imbalanced training (¢t > 0.9). .

Top-10 most important features, as selected by the XGBoost classifier when
applied to imbalanced data (after filtering with ¢ > 0.9).

Differences on per-class feature values’ distributions for the top-3 most im-
portant features in the imbalanced dataset.

Confusion matrix of the classifier after balanced training set(¢ > 0.9)
Precision-recall curve of the classifier after balanced training (¢ > 0.9).. . .

Top-10 most important features, as selected by the XGBoost classifier when
applied to balanced data (after filtering with ¢ >0.9).

Differences on per-class feature values’ distributions for the top-3 most im-
portant features in the balanced dataset(after filtering with ¢ > 0.9).

Top-10 most important features, as selected by the XGBoost classifier when
trained with balanced data (after feature removal).

Top-10 most important features, as selected by the XGBoost classifier when
applied to balanced data. L0

Top-10 most important features, as selected by the XGBoost classifier when
applied to balanced SonarQube feature set (after filtering with ¢ > 0.90).

Top-10 most important features, as selected by the XGBoost classifier when
applied to balanced data. L

viil

27

27
28
29

30

30

32

35

36

List of Tables

3.1
3.2

4.1

4.2
4.3
4.4

4.5
4.6
4.7

Summary statistics about our dataset containing pull requests in Python. .

Number of attributes considered in each feature set.

Number of attributes considered in each feature set (after filtering with
£>0.9). .

Results of the XGBoost classifier on the unbalanced dataset(¢ > 0.9). . . .
Results of the XGBoost classifier on the balanced dataset.

Results of the XGBoost classifier on the balanced dataset at different thresh-
olds. . .

Results of the classifier on the pull requests’ characteristics feature set.
Results of the classifier on the code quality indicators’ feature set (¢t > 0.90).

Results of the classifier on the keyword frequency feature set.

X

14

23
24
28

32
35
36

Chapter 1

Introduction

1.1 Overview

In recent years, the open-source software (OSS) community has emerged as a dynamic and
thriving landscape, uniting developers from various origins/diverse backgrounds to collab-
orate on the development and improvement of software applications. The OSS ecosystem
has long been marked by a significant gender imbalance, with male developers comprising
the majority of participants engaged with the community [9]. Indeed, this gender dispar-
ity is reflected in different aspects, including sheer developer demographics and a skew of
participation levels towards male developers.

Previous research has revealed numerous challenges encountered by female develop-
ers within this predominantly male-dominated environment at large. This encompasses
instances of gender bias, discrimination, and even exclusion. To illustrate, a study [54]
conducted on collaborative online software development platforms like GitHub have un-
veiled a distinct degree of negative treatment experienced by female developers upon their
gender being disclosed to the community. A tangible case in point arises from findings of
Terral et al.[65], which exposed that when a female developer’s gender is revealed during
the submission of pull requests (e.g., due to a clearly marked female nickname, or gender
information contained in public user profiles), the integration of these contributions into
upstream code repositories tends to encounter a higher rate of rejection.

In light of these gender-related biases, two intriguing research questions arise:

o Are there substantial disparities in coding styles and patterns between female and
male developers?

e Does a potential bias against gender lead to a higher rate of rejection for pull requests
submitted by females?

In this thesis, and towards addressing these questions, we develop a study that aims
to explore whether code stylometry characteristics and code quality indicators can help
us shed light over the actual differences (if any) on how male and female developers craft
computer code. While code stylometry techniques [10, 12] offer a means to examine and
quantify various aspects of code (e.g., indentation preferences, naming conventions, and
usage of comments), other static code analyzers help us define the overall quality of code
(e.g., resorting to standard-conformance checks, verifying the absence of vulnerabilities,
etc.). We employ these techniques to analyze the underlying structures and patterns that
shape code and potentially uncover distinguishing features between code written by male
and female developers. This analysis also holds the potential to reveal any implicit biases
or gender-specific coding practices that may exist within the open-source community.

To assess the presence of gender-based differences in code written by male and female
developers, we leveraged machine classification tools, fueled with the above sets of features,
and quantified the success of these classifiers in distinguishing male from female code. To
conduct our experiments, we leveraged a fraction of a prominent dataset on the pull-
based development model [71], and which includes annotations describing the gender of
the developer that submitted a given accepted pull request. Specifically, we curated a
dataset that spans over 50000 accepted pull requests from four relevant OSS projects
written in the Python language, including a total of 40 500 contributors.

Our findings show that training XGBoost classifier on a balanced dataset offers valuable
insights into the disparities within pull request acceptance rates among female and male
developers in the OSS community. Particularly noteworthy is the classifier’s ability to
achieve a robust recall rate of 0.55 for female developers, effectively capturing more than
half of the actual female-initiated pull requests. Although precision for the female class
stands at 0.34, the balanced interplay between these metrics yielded an F1 score of 0.42.

Our analysis uncovered a distinct coding divergence, as male developers’ pull requests
exhibited a notably higher frequency of bugs and blocker issues, accompanied by dis-
cernible differences in Python keywords usage. These quantitative insights, along with our
comprehensive exploration, underscore the importance of reevaluating gender-associated
assumptions and fostering inclusive coding culture in OSS community.

Overall, our findings support the hypothesis that there are indeed significant stylistic
differences in how male and female developers produce code. We argue that, through the
examination and understanding of disparities such as the above, this study can contribute

to the ongoing discussions surrounding gender inclusivity and diversity within the open-
source software community. Specifically, our study highlights the need to recognize and
address gender biases towards dismantling preconceived notions about coding abilities and
encouraging a more meritocratic evaluation of developers’ skills and contributions. This, in
turn, promotes inclusivity by valuing and respecting the diverse range of coding styles and
approaches that individuals, regardless of gender, can bring to the open-source community.

1.2 Contributions

We initiate an investigative expedition into the domain of gender-associated coding pat-
terns within the context of open-source, aiming to illuminate the intricacies that influence
the approval of pull requests, in light of gender revelation.

Our list of contributions is as follows:

1. We construct a dataset characterized by individual records, each intricately detailed
with descriptive attributes pertaining to pull requests. These records are meticu-
lously annotated with the respective gender of the contributing code author. Our
dataset synthesis draws inspiration from the work of Zhang et al. [71], encompassing
a compilation of over 50,000 approved pull requests sourced from prominent Python
projects. This compilation spans across four popular projects and involves the col-
lective contributions of 40,500 distinct contributors. Our feature ensemble comprises
three distinct sets of code stylometry and quality indicators, consisting of one adapted
from the seminal study by Zhang et al. [71], and two uniquely devised by our team.

2. Our analysis peels back the layers of code stylometry and quality, unveiling the
nuances that distinguish coding contributions from female and male developers. We
uncover that stylistic features, along with some code quality indicators, and hold the
key to distinguishing these coding habits.

3. Our study goes beyond the realm of traditional research, serving as a compelling
call for awareness and transformation within the open-source software landscape.
By spotlighting the presence of gender biases and disparities, we prompt a collec-
tive reckoning. Through practical recommendations grounded in our findings, we
advocate for diversity, equality, and inclusivity as essential drivers of advancement
in open-source software ecosystem.

1.3 Organization

This thesis is organized as follows. In Chapter 2, we provide background knowledge on
existing gender diversity issues in the open-source software community and discuss tech-
niques that can help perform the identification of developers of open-source software. In
Chapter 3, we detail the methodology of our study, providing details on data collection,
processing, and analysis methods. In Chapter 4, we present the results of our analysis.
Lastly, in Chapter 5, we summarize the main takeaways of our study, discuss the limitations
of our analysis, and introduce directions for future work.

Chapter 2

Related Work

Over the past few decades, researchers have devoted significant attention to investigate the
concept of diversity in the field of Software Engineering. In a study conducted by Miller
et al [50], cognitive diversity was defined as the variation in beliefs and preferences among
team members, which contributes to shaping the objectives of the organization. Cognitive
diversity encompasses both observable distinctions, such as race, as well as less apparent
differences, including disparities in background and levels of experience [19]. Examining the
relationship between diversity among team members and the team outcomes has yielded
some remarkable findings, indicating that diverse teams are more inclined to outperform
teams with more homogeneous cognitive team [37]. These findings highlight the significance
of diversity within Software Engineering, showing that a wider range of perspectives have
a greater likelihood of improving team performance and achieving favorable outcomes.

A team is a collection of individuals [64], with different tasks that can require syn-
chronization, who share responsibility for the project outcomes. A positive correlation has
been established in research between team diversity and team performance. To illustrate, it
was found out that functional diversity could be a catalyst for faster product development

in the computer industry [25]. Various stages of product development require different
multifunctional expertise, for that reason multifunctional involvement was correlated to
successful projects [55][16]. Additionally, Keller [11] found out that functional diversity

had indirectly improved scheduling and budgeting and served as a job distressor. Since
job stress could hinder the team from moving forward and interfere with the development
process, functional diversity is useful in this case [11]. From a financial point of view [3(],
it has been noticed that gender-diverse teams could perform better, especially when a sig-
nificant proportion of management is women. Emphasizing on the previous, a business
case study [31] has proved that gender-diverse teams have better team dynamics, collegial

5

relationships, and productivity. Even though diversity in teams could result in knowledge
increase [17], it could be a source of conflict due to different team members’ perception
and gaps between their interpretation [18] [53].

As researchers have made progress in studying cognitive diversity in Software Engi-
neering, the lack of gender diversity has emerged as a challenge. In response to that, the
workforce has started prioritizing diversity and inclusion polices [21], and some organiza-
tions, such as Google and IBM, have even devoted to create a diversity and inclusion office
[68]. Despite the corporate effort to diversify their workforce and broaden the profiles of
their employees, the proportion of female developers in the industry has barely seen any
change. A study [46] in 2014 documented that only 18% of bachelor’s degrees in Computer
Science were earned by women; in addition, a labor market consensus in 2015 revealed
that men still dominate the software industry, accounting for 79% of developers [65]. One
prominent obstacle that is regarded as a barrier to altering gender ratio, which has been
extensively documented, is gender-bias. Female underrepresentation in the Software De-
veloper workforce is attributed to being subjected to judgement and prejudice based on
gender. Consequently, around 41% of females leave the tech industry after 10 years [69].

2.1 Gender Diversity in Software Development

Gender stereotypes pertaining to women and men could potentially strengthen and solidify
particular gender roles, ultimately influencing women’s role within the information tech-
nology (IT) industry. To illustrate, studies [7] [59] [23] sought to identify and analyze traits
attributed to female and male gender roles. It was found out that empathy, emotionality,
and dependency were commonly affiliated with femininity, while decisiveness, dominance,
and aggression were associated with masculinity. Consequently, that perception uninten-
tionally contributed to organizational segregation as some managers [57] lean more towards
hiring female employees in socially oriented positions, such as project management. Hence,
a gender gap [16] [67] [24] has been noticed in the field of Computer Science (CS). Other
studies [17] dived into possible factors that affects gender gap in IT, they found out that
the lack of female role models is one of the obstacles in the way of more female entering
the software industry. For example, young women are usually attracted to fields where
they have some female icons and can see women succeeding.

2.2 Gender-Bias in Open Source Software (OSS)

Although gender bias behaviour is not a recent occurrence within the software industry, it
has reached an alarming level in the Free and Open-Source Software (FOSS) community.
The severity of the situation became apparent through a survey [29] that was carried out
within the FOSS community. The survey showed that female participation was remarkably
low, ranging from 2% to 5%. Consequently, some women [51] tried to protect themselves
from potential discrimination as they used gender-neutral names when participating in
online forums.

Terrell et al. [65] studied biases against women in Open Source Software (OSS); they
compared women’s and men’s contribution to OSS as they examined different pull requests
submitted by women and men on GitHub. To their surprise, they found out that it
is much likely for pull requests submitted by women to be merged unless the gender is
visible. Possible justifications for Terrell’s findings could include i) survivorship bias, where
men could possibly be perceived as always successful developers, as a result this type of
bias predicts the future performance of any male developer ii) self-selection bias, where
repositories’ owners choose who could contribute to their projects iii) women could possible
be held to higher performance.

Later on, Bosu and Sultana [9] studied the level of gender diversity in some popular OSS
projects, and even though they noticed how badly gender diversity was in some of the OSS
projects they investigated, they found no significant differences between female and male
developers, in terms of productivity. By the same token, when Canedo et al. [13] studied
the vertical segregation in OSS, they found no substantial differences between female and
male developers, work practice wise. Moreover, another study investigated how biased code
review processes could possibly be, and it was noted that female developers have way lower
code participation than male ones, which indicated that that the code reviewer selection
has potential affinity biases [63]. Due to such biases, promoting diversity and inclusion has
been so challenging that some women switch careers due to their negative experiences.

2.3 Promoting Gender Diversity in CS

In order to address the underrepresentation of women in the software industry, several in-
terventions have been proposed [5]. One factor contributing to the lower representation of
women in Computer Science (CS) is the lack of pre-college experience in the field of comput-
ing. Accordingly, some of these interventions have focused on college students, specifically

targeting first year students who have no prior exposure to programming. These interven-
tions have taken the form of free and informal workshops, designed to provide hands-on
experience with some simple tasks in a stress-free and dynamic learning environment. In
these workshops, students actively participate in a range of hands-on programming ac-
tivities. Another suggested approach is peer-to-peer interaction, through pairing more
experienced students with less experienced ones. This setup encourages teamwork and
cooperation among students as they collaborate on tasks and assignments that involve
programming concepts.

Moreover, “live coding” sessions have emerged as a recommended strategy to bridge
the gender diversity gap in the field of computing. During these sessions, experienced CS
tutors guide students to follow examples and gain hands-on experience in real-time. These
sessions are combined with an introductory course in programming language and can be
conducted on a weekly basis. Ultimately, the goal of these interventions is to increase
gender diversity within the field of computing by equipping students with the necessary
skills and boosting their confidence to thrive in the field.

Another research [20] conducted at Cardiff University in UK proposed the review of
CS course materials with the aim of identifying potential examples of unconscious bias or
stereotypes. This study highlighted the importance of reviewing instances because they can
unintentionally reinforce biased or hetero-normative ideas. For example, some books use
phrases like every man loves a women, which promotes a stereotype that could negatively
affect the confidence and inclusivity of individuals from minority groups.

2.4 Techniques for Gender Identification in OSS

Currently, heterosexual men have a strong presence in the software development organiza-
tions, which has resulted in a disparity as it comes to gender diversity [62]. Consequently,
individuals from other demographic backgrounds, such as women witness gender-bias and
discrimination within this realm. As a result, many women try to seek other opportunities
in different career paths, where the work environment is more inclusive. Accordingly, it
is important to recognize biases, identify and understand the impact of them. For the
previous reasons, some researchers have studied gender identification. It is an approach
to predict the class to be “female”, “male”, or “unknown” when the gender cannot be
determined.

2.4.1 Name-Based Approach

This approach is dependent on gender resolution [66], based on some database with pre-
viously collected names labeled as either “female” or “male”. In some cases, if the name
in question is not disclosed (aka not included in the database), it gets categorized as “un-
known”. For example, several studies [11], [33] based their name-based gender approach on
the public data provided by the US Census Bureau and US Social Security Administration.
When some common names were found to be given to both women and men, the authors
considered the frequency of use for each gender, and assign the gender with the most usage
to that common name.

2.4.2 Image Processing Technique

Lu et al. [18] introduced image processing as a method to identify gender. The following
approach offers a potential alternative to the conventional avatar analysis. However, it is
crucial to note that a significant number of avatars, which are used in various platforms, are
not actual facial images but rather symbolic representation, cartoon, or even isolated body
parts. The previous poses a challenge to the proposed technique, as it primarily relies on
facial images for accurate gender identification. Additionally, the implementation of this
technique involves a series of manual preprocessing steps, including cropping, resizing, and
rotation of images. These manual preprocessing adds another layer of complexity to the
overall process as it requires human intervention.

2.4.3 Stylometry

Stylometry, a “metric” that could determine the originality level of a writing style [22],
has been regarded as a discriminator to detect plagiarism in early age. It quantifies and
characterizes different styles using a set of various features, which could later point fingers
to a pool of candidates with similar style, based on previously investigated samples. Some
studies have shown that style could be quantifiably measurable using some statistical and
quantitative description of the disputed work, whether it was text, code, etc. Tools using
a stylometric approach [31] usually compare the piece in question against a collection of
other referenced pieces in that tool, under the assumption that they stem from different
authors.

Code Stylometry

The pursuit of attributing code to its creators has demonstrated its potential in various
aspects of software analysis, including the identification of potential cyber threats through
forensic examination, as highlighted by the research conducted by Amuchi et al.[3]. Be-
yond its application in cybercrime detection, this methodology extends its significance to
the realm of addressing cyberbullying incidents. Nevertheless, this endeavor introduces
a complex ethical dilemma: while authorship attribution serves as a tool for unveiling
individuals involved in malicious online activities, it concurrently encroaches upon their
privacy by revealing their identities without explicit consent.

This intricate scenario underscores the critical importance of unraveling the origins of
code within the domain of software investigation. For instance, it proves instrumental in
tackling the intricate challenge of determining whether a specific set of malicious software
can be attributed to a particular programmer. This feat presents a formidable endeavor
in the broader context of classifying software entities globally. The illustrative example
magnifies the value of associating code with its authorship, illuminating its potential in
unraveling intricate enigmas within the realm of software intricacies. In a bid to recon-
cile this limitation, Caliskan-Islam et al.[12] adopt a balanced approach by leveraging the
capabilities of the fuzzy parser Joern, meticulously designed to navigate incomplete code
fragments[70]. This dynamic parser generates abstract syntax trees from code segments,
prioritizing viable parsing while bypassing fragments requiring additional context.

As our study transitions to the methodology chapter, we leverage these foundational
insights to embark on an exploration of gender-based disparities in pull request acceptance
rates and coding patterns.

10

Chapter 3

Methodology

This chapter introduces different dimensions of the methodology followed in our study. We
start by providing details about how we collected the necessary data for conducting our
study (Section 3.1), and describe our feature selection process (Section 3.2). Then, we
describe our experimental setup (Section 3.3) and introduce the machine learning models
and metrics used in our evaluation (Section 3.4).

3.1 Data Collection and Scaling

In this section, we describe the source of pull requests analyzed in the context of our study
(Section 3.1.1) and describe the techniques we used to tackle the class imbalance identified
in our dataset (Section 3.1.2).

3.1.1 Pull Requests Dataset

Data sources and acquisition of pull request data. A fundamental requirement for
our study is that of selecting a dataset comprised of pull request data that is annotated
with information about the gender of the pull request submitter. Recently, Zhang et
al. [71] have investigated the pull-based development model and created a large dataset that
includes records tied to pull requests across multiple open-source projects hosted in GitHub.
This dataset aggregates different pieces of information about these projects, including
various aspects about contributors, pull requests, and meta-information about the projects

11

Table 3.1: Summary statistics about our dataset containing pull requests in Python.

Projects Contributors Total Pull Requests Pull Requests by Females (%) Pull Requests by Males (%)
4 40500 56 126 13.08% 86.92%

themselves. Fortunately, this dataset includes the gender of project contributors as a
feature.

In essence, the above dataset enables us to use the gender feature as a ground-truth
class label and to link the gender of a contributor to a specific pull request. In our study,
we will gather multiple features that characterize the code of a pull request and then
apply machine learning classifiers toward understanding whether these features can help us
distinguish the way male and female programmers write code. In Section 3.2, we elaborate
on our approach to extract features from our pull requests dataset.

It should be noted that the dataset of Zhang et al. does not include the code for
the pull requests themselves, albeit it includes an identifier for each pull request. During
the preliminary steps of our analysis, we use these identifiers to fetch the corresponding
pull requests from GitHub and then build a dataset where each record contains different
features for each pull request and are labeled according to the pull request submitter’s
gender, as annotated by Zhang et al..

Data preprocessing. We preprocessed and categorized the pull requests present in Zhang
et al. [71]’s dataset based on the programming language utilized to write code. We placed
particular emphasis on pull requests submitted to projects written in Python, a popular
programming language which emerged as the second most prominent one amongst the set
of considered open-source projects in terms of size, including more than 700k pull requests.
Yet, it is crucial to note that our study’s primary focus revolves around the exploration
of coding styles related to gender attributes. Since we found that not all contributors in
Zhang et al.’s dataset are tagged with a specific gender (some records are effectively marked
as unknown), we took the necessary step of excluding from our analysis all pull requests
whose submitter’s gender attribute was missing.

We focused our analysis on a subset of the projects considered by Zhang et al. and
that adhered to the constraints spelled out in the previous paragraph. We selected the four
largest projects based on the number of pull requests. This decision was motivated by the
complexity involved in analysing a large number of pull requests for extracting code quality
features (see more details on our feature extraction procedures in Section 3.3.3). Table 3.1
presents a summary of the composition of our dataset. As shown in the table, (and after
conducting the above preprocessing operations) our dataset is composed of a total of 56 126

12

pull requests (~13% submitted by females and ~87% submitted by males), split amongst
4 large projects, and including a total of 40500 unique contributors, out of which 5,297
were identified as female developers and 35 203 were identified as male developers. We can
observe that there exists a large majority of male coders, further revealing the need for a
deeper look into whether there are meaningful differences in the style of code written by
male and female developers.

3.1.2 Dealing with Data Imbalance

As seen in the previous section, the dataset we obtained is unbalanced and largely skewed
toward male developers. In the realm of data analysis, imbalanced datasets refer to the
fact that there might be a minority class with too few samples or that one specific class
outweighs the others. This imbalance may present a challenge for learning algorithms, pos-
sibly leading to biased model performance. In our evaluation, we present results both when
learning over this imbalanced data (Section 4.1.1), and after applying data oversampling
techniques (Section 4.1.2) that help us close the gap between the number of pull requests
produced by male and female developers, as considered in our training dataset.

Strawman approaches to learn over imbalanced datasets rely on data oversampling and
undersampling techniques. For instance, random oversampling relies on duplicating some
of the data points of the minority class, while undersampling could simply rely on trimming
the number of instances in the majority class. However, these methods do not come without
their own specific drawbacks; for oversampling, our model is not being fed with entirely
new information, while for undersampling we might potentially discard records that bring
important information for training a machine learning model.

A popular oversampling technique for dealing with imbalanced datasets is called Syn-
thetic Minority Over-Sampling Technique (SMOTE), having been introduced by Chawla
et al. [11] in 2002. SMOTE aims to balance the dataset of the minority class as it increases
its representation through selection of an instance, finding its & nearest neighbors, then
creating a synthetic data point from the shared feature space. This helps the model trained
in the SMOTE-produced data to be less biased.

In our evaluation, we will also gauge the utility of using SMOTE to compensate for data
imbalance during training and assess whether the use of oversampling can help us better
identify the differences between the ways male and female developers write computer code.

13

Table 3.2: Number of attributes considered in each feature set.

Feature set Pull request characteristics Code quality indicators Keyword frequency

Number of features 17 94 35

3.2 Feature Selection

In this section, we describe the feature sets used in our study (Section 3.2.1), and how we
pre-processed these features prior to conducting our analysis (Section 3.2.2).

3.2.1 Feature sets

Here, we describe the three different feature sets we used to gather insights on how male and
female programmers write code. These features rely on a) general pull request character-
istics, b) code quality indicators, and c¢) language keywords’ frequency. All the considered
feature sets rely on information that is statically obtained from the code of the pull requests
considered in our dataset. In our evaluation, we analyse the contribution of each feature
set in our ability to distinguish male and female coders, and analyse how the combination
of different feature sets impacts our results. Table 3.2 depicts a summarized breakdown of
the number of attributes included in each feature set, comprising a total of 152 features.

Feature Set 1 — Pull request characteristics. The first feature set that we leveraged
in our work corresponds to the set of pull request attributes previously documented by
Zhang et al. [71], who focused on the analysis of the pull-based development model. While
the original work of Zhang et al. relied on a more comprehensive set of features (which
also included project and contributor characteristics), we filtered the original feature set
to exclusively retain the features directly associated with pull requests’ data. This filtering
step aimed to produced a feature set that is exclusively focused on code-related attributes,
excluding features that provide details related to the project itself or its contributors.
Thus, the pull request characteristics we retain are intended to provide us with information
regarding different coding styles, allowing us to explore if women and men do indeed code
differently.

In particular, we retain information about properties that describe each pull request,
such as its complexity, the number of lines added, whether it fixes a bug, or whether it
includes any tests. Other features that we ignore comprise a) contributor characteristics,
which are factors associated with both the pull request submitter and integrator, including
country of origin, gender, experience level, and response time, or b) project characteristics,

14

which primarily focus on attributes such as the programming language used, the project’s
popularity, and the workload it entails.

We extracted a total of 17 features based on pull request characteristics. The full listing
of considered features is shown in Appendix A.1.

Feature Set 2 — Code quality indicators. The second set of features considered in
our study focuses on code quality features, as measured by automatic static code analysis
tools which analyse code and provide developers with suggestions on how to improve their
programs across different metrics like readability, extensibility, or security. Specifically,
we used SonarQube, a software tool designed for static code analysis that can evaluate
code quality and identify potential software vulnerabilities. Developers use SonarQube to
automate code reviews, detect code smells, evaluate code duplication, and provide sugges-
tions based on coding standards and best practices. SonarQube provides a wide range of
features for analysing source code in different programming language.

Amongst the features extracted by SonarQube, we highlight the identification of poten-
tial vulnerabilities (and their type), the recognition of code smells, and general statistics
about the analysed code such as the number of lines of code found in a given pull request.

We extracted a total of 93 features based on the results of the analysis conducted by
SonarQube. The full listing of considered features is shown in Appendix A.2.

Feature Set 3 — Keyword count. The third feature set considered in our study is
based on the quantification of different language-specific keywords which are included in
the pull requests submitted by programmers. More specifically, we counted how often
Python keywords (such as if, with, or try) appeared in each pull request.

We counted all 35 Python keywords. The full listing of the keywords is shown in
Appendix A.3

3.2.2 Feature pre-processing

After obtaining the features for each of the feature sets described in the previous section,
we observed that a substantial number of features associated with code quality indicators
were not available for all the pull requests included in our dataset. This was due to the
kind of information SonarQube requires to generate values for some of its quality indicators.
For instance, the number of classes per source code file is a feature that will be missing
when a pull request’s modifications consist of only a few lines which do not include class
declarations. In such cases, SonarQube does not make the number of classes available
for that specific sample. Another example is the cognitive complexity indicator, which

15

assesses the difficulty of understanding the code’s control flow. This feature often has a
large number of missing values since our pull request data mostly comprises small snippets
of code over which SonarQube’s control flow analysis cannot be performed.

To prevent potential biases and inaccuracies that could arise from the absence of feature
values across the dataset [2], we undertook a preprocessing step with the goal of tackling
the issue of missing feature values. This procedure took place as follows.

First, we assessed the percentage of missing values for each feature in the dataset. By
quantifying the ratio of missing values for each feature, we could determine the usefulness
of each feature included in one of the considered feature sets.

Second, we undertook a feature filtering process where if the number of records missing
a given feature exceeded a threshold percentage t, we would exclude that feature from our
analysis. (For instance, if a feature is missing in 60% of the records in the dataset, it would
be excluded if ¢ > 0.6.) In our evaluation, we analyse the impact of the choice of this
threshold in our ability to distinguish female from male coders.

Lastly, for the remaining samples including features with missing values (but whose
overall ratio is not above threshold t), we filled missing feature values resorting to well-
known methods [2]. Specifically, we filled numerical attributes with the average value for
that feature amongst all non-empty records sharing the same class in the dataset, and
similarly filled categorical attributes with the mode of that feature amongst all non-empty
records that share a same given class.

3.3 Experimental Setup

In this section, we describe the laboratory testbed we used to perform our experiments
(Section 3.3.1), detail the process through which we identified and acquired the pull re-
quests of interest to our study (Section 3.3.2), and explain how we extracted each of our
feature sets from the pull request code we collected (Section 3.3.3).

3.3.1 Laboratory testbed

To conduct our research, we benefited from the RIPPLE Facility at the University of
Waterloo. The RIPPLE machines facilitated the collection of data, the generation of
feature sets, and were used to speed up the generation of machine learning models during
our analysis.

16

3.3.2 Data Extraction

Our analysis pipeline was run in the RIPPLE machines and includes various stages related
to data extraction, starting with the retrieval of pull requests from GitHub. Then, we
retrieve the most meaningful changes made by each pull request, which serves as valuable
input for our analysis. Below, we provide additional details on each step of this data
extraction pipeline.

Download of pull requests’ code. We used the RIPPLE machines to access GitHub and
retrieve the set of pull requests we were ultimately interested in for our analysis. We used
the PyGitHub library to streamline the fetching of pull requests from GitHub given their
identifier. PyGitHub is a valuable Python library that is regarded as a tool for developers
to interact with GitHub. It offers a wide range of functions that enable developers to create
and modify repositories, retrieve data, and manage pull requests.

Identification and extraction of useful pull request data. As part of our study,
we are mostly interested in analysing the contributions that male and female developers
submit through pull requests, as annotated in Zhang et al.’s dataset. Thus, our initial task
was then to access and retrieve each pull request we considered as part of our dataset. To
facilitate this process, we required the pull request ID (mentioned in Zhang et al.’s paper,
but not included in their public dataset), which would allow us to access these pull requests
effectively in GitHub. To this end, we reached out to the authors and were given access
to the private version of the dataset [73] containing the necessary identifiers. However,
the code contained in the pull requests also includes existing and deleted lines that are
largely uninformative. Thus, once we fetched the pull requests, we ran a script aimed at
extracting the added and modified lines for each pull request, keeping those lines of code
as the defining data of a pull request in the context of our work. We accomplished this by
extracting the difference between files included in the pull request right before and after
the pull request was submitted.

3.3.3 Feature Extraction

Once the pull request changes were acquired, we used different methods to extract features
about the coding style and quality of each pull request.

Feature Set 1 — Pull request characteristics. We leveraged Zhang et al.’s [71] study,
which has already characterized the features related to pull requests in the dataset. The
dataset they provided [72] encompassed various attributes, such as features about contrib-

17

utors, submitters, projects, and pull requests. As our investigation solely concerns pull
requests, we concentrated only on the features directly related to pull requests.

Feature Set 2 — Code quality indicators. To utilize SonarQube’s static code analy-
sis [58], we uploaded each pull request as an individual project to be scanned on SonarQube.
Through the use of a REST API, we were able to extract SonarQube’s analysis for each pull
request. Since we were using SonarQube’s community edition, obtaining the tool’s code
quality analysis report containing the full set of features we were interested in collecting
was not immediately possible. Instead, we had to submit 99 separate requests via REST
API to extract each feature individually.

We observed that the community edition of SonarQube does not seem to be optimized
for handling large amounts of concurrent code analysis conducted over different projects.
Therefore, to handle our substantial dataset of 56 126 pull requests (where again, each
had to be submitted as an individual project to SonarQube), we opted to run multiple
SonarQube instances on separate machines in the RIPPLE infrastructure and craft multiple

Python scripts to fetch and parse the necessary feature values from each running instance
of SonarQube.

Feature Set 3 — Keyword count. For extracting keyword-based features, we leveraged
the keyword module in Python to obtain a comprehensive list of reserved keywords in
Python (by inspecting keyword.kwlist, a read-only attribute that returns a list of all
keywords reserved for the Python interpreter). Next, we iterated over the added and
modified lines of each pull request to count the occurrences of these keywords.

3.4 Models and Metrics

In this section, we describe the machine learning models we used to analyse pull request
data, and introduce the metrics we relied on to assess how effectively these models can
differentiate between code submitted by female and male developers.

3.4.1 Machine Learning Models

We now present a description of the decision-tree based algorithm we chose for conducting
our experiments, and detail how we train and evaluate this model on our dataset.

Model selection. We chose to use the extreme gradient boosting (XGBoost)[15] classifier
for the analysis conducted in our study. XGBoost is an optimized version of the gradient

18

boosting algorithm, and it is particularly adept at solving classification and regression
problems. It has recently become a popular machine classification model due to its excellent
performance (comparable to deep learning classifiers in multiple different settings) and
efficiency (typically easier and less expensive to train than deep learning architectures).
The main advantage of XGBoost over other conventional decision-tree based techniques like
Random Forests hinges on the fact that the former relies on a gradient boosting technique.
To illustrate, Random Forest trains multiple decision trees independently on a subset of
the training data, which is selected randomly. Then, a majority voting among the tress
determines the final prediction. On the other hand, XGBoost builds trees iteratively such
that each tree improves on the mistakes made by the previous one, and the final prediction
is determined by summing up the outputs from all trees. Additionally, XGBoost mitigates
the risk of overfitting through its regularized learning.

Training and evaluating the model. For training and evaluating our model’s effective-
ness, we partitioned the dataset into an 80% training subset and a 20% testing subset. This
strategic division carries notable benefits, especially when tackling imbalanced datasets.
When dealing with imbalanced datasets, this separation strategy ensures that both the
majority and minority classes are well-represented in both the training and testing stages.
This safeguards against undue bias towards the majority class during the model’s training
phase, promoting learning from a more equitable range of examples. Subsequently, during
testing, the model is subjected to a varied array of instances, encompassing those from
the minority class. This method furnishes a comprehensive gauge of the model’s capacity
to generalize across different categories, thus enhancing the dependability of assessing its
performance on both majority and minority classes. To guarantee a thorough assessment,
we meticulously retained the original class distribution in both the training and test sets.
This meticulous choice takes on heightened significance within the context of imbalanced
datasets. By upholding the proportion of instances from both the majority and minority
classes, we aimed to construct training and test subsets that accurately mirror the traits
of the primary dataset. This approach amplifies the model’s exposure to the intricacies in-
herent in imbalanced class distributions during its training phase and establishes a robust
foundation for appraising its performance across a diverse range of instances, including
those from the minority class, during the testing phase.

3.4.2 FEvaluation Metrics

We leverage well-known metrics for assessing the performance of our classifiers and to better
understand the settings under which a classifier is able to distinguish code developed by
male or female coders. In our evaluation setting, we consider (i) true positives to be a

19

pull request submitted by a female and that is classified as a female’s submission, (ii)
false positives to be a pull request submitted by a male and that is classified as a female’s
submission, (iii) true negatives to be a pull request submitted by a male that is classified
as a male’s submission, and (iv) false negatives to be a pull request submitted by a female
and that is classified as a male’s submission.

The specific classification performance metrics we consider are as follows:

Accuracy. Often the most simple metric that can be used to evaluate a classification
model’s performance, it describes the number of correctly predicted instances over the
total number of instances. However, accuracy can fail to showcase the performance of
classifiers that possess an internal threshold for tuning the trade-off between true positives
and false positives. Moreover, it does not reflect the model’s ability to distinguish between
the correctly identified examples of different classes, especially in data imbalance settings.
For this reason, we used other metrics (described below), which help in providing a more
comprehensive evaluation of the model’s performance across different classes.

Recall. Also referred to as true positive rate or sensitivity, recall is a fundamental perfor-
mance metric that evaluates how well a classifier can correctly predict positive samples. It
is defined as the ratio of the number of correctly identified instances to the total number
of instances the classifier deems positive. In our case, we consider recall to be the ratio
between the number of pull requests submitted by females that are indeed classified as
females’ submissions, and the total number of pull requests by females in the dataset (see
Equation 3.1). A higher recall value indicates that the model is more sensitive in terms of
predicting a larger portion of positive samples.

TP

—_— A
TP+ FN (3:1)

Precision. This metric is defined as the ratio of the correctly positive predictions to all
samples predicted as positive. In our case, it is the ratio between the number of pull requests
submitted by females classified as being submitted by females’, to the total number of pull
requests classified as females’ (see Equation 3.2). A higher precision value indicates that
the model can identify true positive samples effectively (identify pull requests by females
as females’).

TP
TP+ FP

Precision-recall curve. The use of precision and recall in tandem is particularly useful
to assess prediction success in scenarios with highly imbalanced classes. More concretely,

(3.2)

20

the precision-recall curve illustrates the trade-off between precision and recall at various
internal thresholds of the classifier. High precision corresponds to a low false positive
rate, while high recall corresponds to a low false negative rate. Achieving high scores for
both metrics demonstrates that the classifier produces accurate results (high precision)
while capturing a substantial portion of all positive outcomes (high recall). We use the
precision-recall curve to visually inspect the performance of our classifier on our original
dataset of pull requests which exhibits a majority of pull requests submitted by male
developers (and a minory class composed of pull requests submitted by female developers).

F1 score. Finally, we also resort to the F1 score, a metric that combines precision and
recall into a single value by calculating the harmonic mean of precision and recall (see
Equation 3.3). It is especially useful when the classes are imbalanced because it gives
equal weight to both metrics. The precision-recall curve and the F'1 score are also closely
related. By examining the precision-recall curve, we can identify the optimal internal
classifier’s threshold that maximizes the F1 score. This threshold represents the point on
the curve where precision and recall are both high. Thus, the F1 score can be considered
a summary measure derived from the precision-recall curve.

5 5 Precision X Recall (3.3)

Precision + Recall

21

Chapter 4

Analysis and Results

In this chapter, we present the outcomes of our analysis on the pull request dataset. Our
aim is to discern whether the application of machine learning techniques allows us to
differentiate between pull requests submitted by female and male developers. Perhaps
more interestingly, we wish to shed light on the main differences between the ways female
and male developers write code, and which ultimately lead to machine learning classifiers
being able to perform such distinction.

To achieve our goals, we initiate the process by conducting an in-depth analysis of
our dataset, wherein we apply a set of simplifying assumptions to determine a) which
attributes of pull requests should be considered in our study, and b) how to identify and
exclude potentially irrelevant features. Throughout this chapter, we will build upon the
baseline analysis, initially presented in Section 4.1, to explore the impact of additional
feature filtering operations on our findings.

4.1 Analysis of the Pull Request Dataset

In this section, we discuss the results of our analysis on the pull request dataset obtained
from GitHub. We start by analyzing the imbalanced dataset (Section 4.1.1), which we
collected following the methodology explained in Section 3.1. Afterwards, we perform
a separate analysis by applying data oversampling techniques to our initial dataset (see
Section 4.1.2).

Baseline configuration. Towards analysing the two settings mentioned above, we con-
sider a dataset of pull requests whose feature set is a combination of the three individual

22

Table 4.1: Number of attributes considered in each feature set (after filtering with ¢ > 0.9).

Pull requests characteristics = Code quality indicators Keyword frequency
Total Considered Removed | Total Considered Removed | Total Considered Removed
17 17 0 94 42 51 35 35 0

feature sets detailed in Section 3.2.1, yielding a total of 145 features. We also assume that
features with a percentage of missing values equal to or exceeding 90% are discarded from
the analysis (i.e., t > 0.9, where ¢ is the missing value ratio). After this step, we were left
with 94 features to inform our analysis. Accordingly, we imputed the missing values for
the remaining attributes, which survived this filtering step, as described in Section 3.2.2.

Table 4.1 reveals the number of attributes considered in each feature set composing our
merged feature set, after applying our filtering operations. We can see from the table that
the code quality indicators feature set (extracted via SonarQQube) underwent substantial
feature reduction, from a total of 94 features down to 42. In contrast, when examining the
dataset of pull request characteristics utilized by Zhang et al.[71], the features of interest
were entirely devoid of any missing values for the pull requests we considered. As a result,
the application of filtering techniques to address missing data in this specific feature set
was deemed unnecessary. For Python keywords, we considered the following: the absence
of a keyword in a pull request source code resulted in its corresponding frequency being
recorded as 0. In this sense, we end up with no records missing attributes related to the
keyword-based feature set. From this analysis, it becomes evident that the primary focus
of feature removal is centered around SonarQube attributes.

In Section 4.2, we will assess how the selection of different values of the filtering thresh-
old t impact our findings. Later, in Section 4.3, we compare the results obtained by our
merged feature set with each of the individual feature sets considered in Section 3.2.1.

4.1.1 Analysis on Imbalanced Training Data

Overall classification performance. After training our XGBoost classifier on the im-
balanced pull request dataset, we gathered the following metrics of interest: precision,
recall, and F1 score to evaluate the classifier’s performance. The results, presented in Ta-
ble 4.2, demonstrate how effectively the classifier identifies pull requests from female and
male developers.

The model shows a moderate level of precision for pull requests by females, which means
that when it predicts a pull request as females’, it is correct about 44% of the time. Yet, it

23

Table 4.2: Results of the XGBoost classifier on the unbalanced dataset(¢t > 0.9).

Class Precision Recall F1 score

Female 0.44 0.38 0.41
Male 0.91 0.93 0.92

9000

Q 8000
(]
=
= 707 7000
]
‘b, 6000
<

- 5000
Q - 4000
@©
g 3000
o 901 558
©
35 -2000
2
o
< -1000

Predicted Male Predicted Female

Figure 4.1: Confusion matrix of the classifier after imbalanced training (¢ > 0.9).

has a relatively low recall, indicating that the model misses 62% of the actual female pull
requests, incorrectly predicting them as males’. Combining both precision and recall into
one measure, the F1 score for the female class stands at 0.41.

On the other hand, we observed that the precision for the male class sits at 91%.
This suggests that our XGBoost classifier attains a high degree of certainty in correctly
identifying an element of the male class, given that a sample is deemed as being a pull
request submitted by a male developer. A distinguishing factor, however, is the 93% recall
obtained by the classifier when identifying pull requests submitted by males. In this case,
we observe that substantial proportion of the actual male pull requests included in the
dataset were captured by the model. The F1 score translates into 0.92, a large value given
the high individual scores obtained in precision and recall.

Figure 4.1 shows the classifier’s confusion matrix, providing valuable insights into the
classifier’s performance, by presenting a detailed breakdown of its predictions on the test
set. We divided our dataset into 80% for training and 20% test set. In addition, we carefully
maintained the proportional class distribution in the test set to ensure its representation
of the original dataset.

24

The confusion matrix shows how identifying pull requests submitted by females is chal-
lenging for our model. The classifier struggled with correctly classifying female pull re-
quests, as evidenced by the relatively low true positive count (TP=558). In addition, the
relatively low precision value for the female class (0.44) indicates that only 44% of the pull
requests predicted as female were actually female. On the other hand, the classifier shows
impressive ability to correctly predict a substantial number of pull requests submitted by
males (9058 out of 9765). The male class’ high precision value (0.91) further corroborates
this observation; 91% of the pull requests classified as male were indeed by male devel-
opers. Since the model exhibited a relatively low number of false negatives (707 out of
9765), where pull requests by males were incorrectly predicted as females’, the model’s
proficiency in correctly classifying male pull requests is strengthened. Nonetheless, it ex-
hibits a considerable number of misclassifications as it incorrectly identified pull requests
made by females as belonging to the male class.

Trade-offs between precision and recall. So far, our results rely on a default internal
threshold set in the XGBoost classifier. As such, studying the tradeoff between precision
and recall is a critical aspect in evaluating the classifier’s performance. To analyze the
impact of varying this threshold, we plotted the precision-recall curve of the classifier in
Figure 4.2. The figure illustrates that the classifier exhibits a precision of 0.60, indicating
that when it predicts the class of a pull request as positive (submitted by a female devel-
oper), it is correct 60% of the time. Alternatively, the recall value of 0.25 signifies that
the classifier can capture only 25% of the actual positive instances. As the recall increases
beyond this point, precision tends to decrease. Consequently, we face a trade-off when
setting the classifier’s threshold. The area under the precision-recall curve is 0.39, which
suggests that the classifier faces difficulties in achieving a balanced performance in terms
of precision and recall.

When dealing with pull requests submitted by female developers, the selection of the
classifier’s threshold plays a pivotal role in balancing key aspects of performance. By setting
a lower threshold, we can increase the number of correctly identified positive instances
(higher recall) and capture most of the pull requests by females. However, this comes at
the cost of reduced overall confidence in the classifier’s predictions due to increased number
of false positives.

Analysis of feature importance. Through the above experiments, we gained insights
into the significance of various features in distinguishing between pull requests submitted
by females and males. Leveraging the capabilities of the XGBoost classifier, we obtained
a measure of each feature’s impact for classification. Figure 4.3 provides a visual represen-
tation of the classifier’s heavy reliance on these attributes when making predictions.

25

o
0

o
o

Precision

o©
I

i [AUCPR: 0.39

00 02 04 06 08 1.0
Recall

Figure 4.2: Precision-recall curve of the classifier after imbalanced training (¢t > 0.9).

The top ten most crucial features predominantly consist of attributes from the Zhang
et al.[71] feature set (nine features), and one extracted from SonarQQube. The results sug-
gest that general pull request characteristics play a pivotal role in enabling the classifier to
distinguish between pull requests submitted by female and male developers. To shed more
light on the specific differences between the way male and female developers write code,
Figure 4.4 presents the difference on per-class feature values for the three most important
features identified by XGBoost. Namely, test inclusion (Figure 4.4(a)), the use of hash tags
(Figure 4.4(b)), and whether the pull request was merged or not (Figure 4.4(c)). These
figures suggest that there are some noticeable differences in the way female and male devel-
opers write their code. For instance, we can see that, proportionally, male developers tend
to include a larger number of hash tags in their code, suggesting a more systematic utiliza-
tion of comments compared to their female counterparts. Additionally, male developers
tend to include more tests in their submitted code as compared to their female counter-
parts. This shows a difference in testing practices based on gender. This may be suggestive
of diverse factors at play, such as variation in coding styles or approaches to ensuring code
quality and reliability. Yet, it is important to note that this observation does not necessar-
ily imply that one gender’s coding style is better than the other’s. Moreover, the discovery
that whether a pull request is merged or not emerges as one of the most important features
in our research on pull requests by female and male developers carries significant implica-
tions. It suggests that the outcome of whether a pull request gets merged has an influence
on the classifier’s ability to distinguish between coding contributions from female and male
developers. This observation could reflect underlying gender-related differences in how pull

26

Il Zhang et al
HEl keywords
SonarQube

files_modified
files_added
comment_lines_density
other _files
num_commits

at_tag
description_length
merged_or_not
hash_tag

test_inclusion

0.00 0.02 004 006 0.08 0.10
Feature Importance

Figure 4.3: Top-10 most important features, as selected by the XGBoost classifier when
applied to imbalanced data (after filtering with ¢t > 0.9).

1.07 mm test_inclusion=0 1.07 mm hash_tag=0 1.0, HEEE merged_or_not=0

El test_inclusion=1 H hash_tag=1 EEE merged_or_not=1
0.8 0.8 0.8
0.6 0.6 06
0.4 0.4 0.4
0.2 0.2 0.2
0.0 0.0 0.0

Female Male Female Male Female Male

contrib_gender contrib_gender contrib_gender
(a) test_inclusion (b) hash_tag (¢) merged_or_not

Figure 4.4: Differences on per-class feature values’ distributions for the top-3 most impor-
tant features in the imbalanced dataset.

requests are evaluated, considered, or prioritized within the open-source community. The
difference in the number of tests included could be influenced by multiple factors, includ-
ing but not limited to project requirements and team dynamics. We note, however, that
our limited data sample (i.e., four GitHub projects) precludes us from confirming that the
above findings generally apply to the behavior of female and male developers across the
whole OSS ecosystem. We discuss this limitation in Section 5, and suggest possible ways
to enlarge the scope of our study in future work.

27

Table 4.3: Results of the XGBoost classifier on the balanced dataset.

Class Precision Recall F1 score

Female 0.34 0.55 0.42
Male 0.93 0.84 0.88

8000

Q@
(] 7000
=
= 1528
o] 6000
=
Q
<
5000
@ - 4000
©
g - 3000
u 662 797
g -2000
2
Q
<
-1000
Predicted Male Predicted Female

Figure 4.5: Confusion matrix of the classifier after balanced training set(¢ > 0.9)

4.1.2 Analysis on Balanced Training Data

Overall classification performance. Upon training our XGBoost classifier on the bal-
anced dataset of pull requests achieved through the implementation of Synthetic Minority
Over-sampling Technique (SMOTE), we collected the same set of metrics used in Sec-
tion 4.1 to assess the classifier’s performance: precision, recall, and the F1 score. Our
results are summarized in Table 4.3, and disclose the performance of the classifier when
attempting to specifically identify the pull requests that were submitted by either females
or males.

The classifier trained with the balanced dataset exhibits different set of strengths and
weaknesses. Despite its low precision for females of 0.34, it compensates with a higher recall
of 0.55. The previous demonstrates that the model with the balanced dataset successfully
captures 55% of the actual female pull requests. The F1 Score of 0.42 implies a balanced
performance between precision and recall for females. Overall, the model trained on a
balanced dataset exhibits better recall for females, suggesting its advantage in correctly
capturing a higher portion of actual female pull requests.

Given the emphasis on capturing more information about the female class, training the

28

o
o

Precision

o©
I

i (AUCPR:0.38

00 02 04 06 08 1.0
Recall

Figure 4.6: Precision-recall curve of the classifier after balanced training (¢ > 0.9).

classifier with a balanced dataset seems to be the more suitable choice. It has a better
recall for females, allowing it to identify a greater number of female pull requests, which is
significant when dealing with a minority class in an imbalanced dataset.

Figure 4.5 depicts the confusion matrix of the classifier, providing valuable insights
into how well the classification model performed. For the female class, the model correctly
predicted 797 pull requests made by females as females and misclassified 662 female pull
requests as males. This suggest that the model was able to identify a significant number of
actual female pull requests but also misclassified a considerable number of them as males.

On the other hand, for the male class, the model correctly predicted 8237 pull requests
submitted by males. These findings illustrate the model’s strong accuracy in correctly
identifying male requests. Notably, the model exhibits better performance in handling
male pull requests compared to female ones; the number of misclassifications is lower for
males. This adds to our previous evidence that the classifier is limited in its ability to
recognize certain patterns that may be specific to the female class.

Trade-offs between true positive and false positive rates. The tradeoff between
precision and recall plays a critical role in explaining the classifier’s performance under
various circumstances. When giving priority to precision, the classifier becomes cautious
in labeling positive instances, resulting in fewer false positives. However, it might miss
some true positives (lower recall). Conversely, if recall takes precedence, the classifier
becomes more lenient in predicting positive instances, which leads to higher recall but
could also increase false positives (lower precision). Figure 4.6 demonstrates the trade-off

29

Il Zhang et al
HEl keywords
SonarQube

pass
continue
and
from

duplicated files
security_review_rating

0.00 002 0.04 006 0.08 0.10
Feature Importance

Figure 4.7: Top-10 most important features, as selected by the XGBoost classifier when
applied to balanced data (after filtering with ¢ > 0.9).

40 1.0 E at tag=0 8
g 32 . N at tag=1 w !
830 Y6
& 25 g5 *
320 g4
o o 3
O 15 o
519 62
* 5 #1] *
: Female Male 0 *
IQemaIe Male contrib_gender Female Male
(a) bugs. (b) at_tag. (c) security_review_rating

Figure 4.8: Differences on per-class feature values’ distributions for the top-3 most impor-
tant features in the balanced dataset(after filtering with ¢ > 0.9).

between the precision and recall obtained by the classifier, according to different thresholds.
The figure shows when the classifier exhibits a precision value of 0.5, the recall stands at
0.25, suggesting that only 25% of actual positive instances were correctly identified by the
classifier.

The precision-recall area under the curve provides a comprehensive evaluation of the
classifier’s performance at various thresholds (tradeoff points between precision and recall).
An obtained area of 0.38 suggests that the classifier has moderate performance, signifying
that the classifier possess some capacity to strike a balance between precision and recall.

Analysis of feature importance. Figure 4.7 highlights the top ten most important
features that the classifier relies on to make predictions when trained over the balanced
dataset. The top ten features include the count of some keywords (6 features), along with

30

3 features extracted from SonarQube, and 1 attribute from pull request-related feature
set from Zhang et al. [71]. We can find in figures (Figure 4.8(a)), (Figure 4.8(b)), and
(Figure 4.8(c)), that there are differences between how female and male developers code.
We can see that male developers tend to have higher number of bugs in their code com-
pared to female developers. This observation could be correlated to some factors, such as
coding practices, experience level, or potential gender biases that influences code evalua-
tion. Moreover, the higher prevalence of @ tags usage among male developers in Python
compared to female ones suggests a potential gender-related differences in coding prac-
tices. This variation could be due to the difference in their level of experience, variations
in confidence level when using complex features, and maybe the exposure to programming
concepts in diverse learning environments.

4.2 Impacts of Feature Removal Threshold

In this section, the primary focus is to discern whether such variations can yield significant
differences in classification results. Also, we would like to obtain meaningful insights into
the classifier’s evaluation of feature importance while discerning pull requests submitted
by male and female developers. In particular, our analysis involves evaluating the classi-
fier’s performance under different scenarios where specific features are removed based on
the percentage of missing values across our dataset. We specifically explore the impact of
removing features that have at least 20% or 75% of their values missing. Then, we com-
pare these results with the previous findings obtained using a threshold of 90% or more
missing values. We selected ¢t >0.2 and ¢ >0.75 after observing that removing features
with a missing ratio of 75% left the remaining features with approximately 24% missing
data. This suggests our interest in evaluating the classifier’s performance when adopting
a less stringent approach to eliminate attributes with lower proportions of missing values
compared to the previous threshold Section 4.1.

For our analysis, we will focus on the balanced training dataset obtained via the SMOTE
data oversampling technique. As seen Section 4.1.2, a model trained on balanced data pro-
vides a slightly higher effectiveness in correctly identifying the gender of pull requests
submitted by females (the minority class). Further, as discussed in Section 4.1, we ob-
served that changes in the feature removal threshold only affect the number of attributes
considered from the code quality feature set.

Overall classification performance. The classification metrics obtained by the classifier
when we use the different feature removal thresholds are shown in Table 4.4. We can observe
that the classification scores obtained when using different values of ¢ are quite similar.

31

Table 4.4: Results of the XGBoost classifier on the balanced dataset at different thresholds.
Threshold Class Precision Recall F1 score

0.20 Female 0.36 0.50 0.42
Male 0.92 0.87 0.89
0.75 Female 0.34 0.52 0.41
Male 0.93 0.85 0.88
0.90 Female 0.34 0.55 0.42
Male 0.93 0.84 0.88

E Zhang et al for
SonarQube
Hl keywords

SonarQube
Hl Zhang et al
Hl keywords

pass

from
security_review_rating
return

at_tag bugs
blocker_violations at_tag
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
Feature Importance Feature Importance

(a) t >0.75 (b) t >0.20

Figure 4.9: Top-10 most important features, as selected by the XGBoost classifier when
trained with balanced data (after feature removal).

Upon comparing the performance metrics of the different thresholds, we can see that
results obtained from ¢ > 0.90 exhibits certain strengths that make it a more favorable
choice. While ¢t > 0.20 and ¢t > 0.90 share a similar F1 score of 0.42 for the females class,
t > 0.90 stands out with a higher recall of 0.55, suggesting its ability to correctly identify
a larger proportion of pull requests by females as true positives among all actual positive
instances for females. This improved recall serves as evidence of the model proficiency
in correctly identifying a larger number of instances from the female class. Furthermore,
when it comes to the males class, ¢ > 0.90 displays a precision value of 0.93, which means
that a substantial majority of its predicted positive instances for males are accurate.

Analysis of feature importance. Figure 4.9 depicts the top ten most important fea-
tures identified by the classifier when assuming a feature removal threshold of ¢ > 0.75
(Figure 4.9(a)) and t > 0.20 (Figure 4.9(b)). We perform the following observations. First,
we can observe that the usage of @ tags, the security review rating, and the frequency of
some Python keywords, (such as if, and, as) remain in the top ten most important features,
when considering the different thresholds (¢ > 0.90, ¢ > 0.75, t > 0.20).

32

Second, we can observe that, in both cases, the top two most important features have a
similar importance (close to 0.10), and which is close to double the importance attributed
to the feature located in the top three. Interestingly, this trend is also observed when
considering ¢ > 0.90 (see Figure 4.7).

Lastly, we can see that the overall proportion of features drawn from each of the con-
sidered feature sets remains constant, despite the tuning of the feature removal threshold
values. Specifically, we see that, for all cases, the top ten most important features consist
of one feature from Zhang et al.’s dataset [71] (i.e., pull request characteristics), two code
quality indicators extracted from SonarQube, and some attributes extracted tied to the
frequency of Python keyword usage.

The fact that male developers use the Python keyword if more frequently may indicate
that they rely more on branching in their code. On the other hand, female developers’ lower
usage of that keyword suggests that they might follow different control flow constructs.

4.3 Comparative Analysis of Feature Sets

In this section, we aim at understanding the individual contribution of each feature set to
the ability of our classifier to distinguishing between pull requests submitted by male and
female developers. The following paragraphs present the classification results and feature
importance scores obtained when training our classifier with each of the feature sets we
considered throughout this work. For each of the considered feature sets, we analyze
the contribution of the most important features, as selected by the classifier, to gather
additional insights on different aspects of how female and male developers write code.

Similarly to Section 4.2, we focus our analysis on the classifier trained with a balanced
dataset obtained via SMOTE and perform our analysis when considering a feature removal
threshold of ¢ > 0.90 (found to be the best performing threshold we explored).

4.3.1 Feature Set 1 — Pull request characteristics

The pull request characteristics’ feature set compromised a total of 17 attributes. Below,
we describe the performance metrics obtained by the classifier when considering this feature
set to infer whether a given pull request was submitted by a female or male developer.

Overall classification performance. Table 4.5 summarizes the classification results.
Using the pull request characteristics feature set from [71], the model highlights notable

33

disparities in its gender classification accuracy. It demonstrates a robust precision of 0.88
for pull requests by male developers, which signifies its ability to accurately identify a
significant portion of male instances. However, its precision sharply declines to 0.19 for
female instances, indicating a higher likelihood of misclassifying pull requests by females.
This contrast is further underscored by the recall values, with males achieving a recall of
0.81, implying a successful capture of true male instances. For the female class, the model
exhibits a lower recall of 0.3, which obviously indicates that the classifier is struggling
in identifying actual female instances. Despite how impressive the F1 score of 0.84 for
males is, which undoubtedly signifies a good compromise between precision and recall, the
F1 score for females drops to 0.23, revealing an uneven tradeoff between precision and
recall. Overall, the following model excels in identifying pull requests by males but faces
challenges in accurately identifying female instances, leading to an overall performance
disparity between the genders.

Analysis of feature importance. The feature that stands out as the most crucial in
this model is the usage of the @ tag, ranking among the top 10 most significant features
in all other models. The previous indicates that the model heavily relies on this particular
feature to make gender-based predictions. This suggests that there might be differences
in how female and male developers code in terms of structure. As a result, the classifier
has learned to pick up on these patterns. Yet, it is absolutely essential to interpret such
results cautiously to avoid drawing broad conclusions about gender differences in coding
based solely on the model’s performance. Further analysis and investigation are required
to understand the underlying reasons for why the classifier emphasises on the @ tag.

Moreover, the utilization of the hash tag is a prevalent and significant feature shared
between this model and the other model in Figure 4.3. The shared importance of this fea-
ture suggests its relevance across different models, potentially indicating that it is essential
in distinguishing between how female and male developers code.

For this classifier, whether a pull request is merged or not is one of the top 3 most
important features in distinguishing between female and male developers. This findings
implies that there might be some possible differences in how female and male developers’
pull requests are handled or evaluated in OSS community.

4.3.2 Feature Set 2 — Code Quality Indicators

This feature set includes a total of 42 attributes from our code quality indicators feature
set, after filtering the initial feature set with a feature removal threshold of ¢ > 0.90.

34

Table 4.5: Results of the classifier on the pull requests’ characteristics feature set.

Class Precision Recall F1 score

Female 0.19 0.30 0.23
Male 0.88 0.81 0.84

files_modified
other files
test_inclusion
test_churn
num_commits
files_added
description_length
hash_tag
merged_or_not
at_tag

0.00 0.02 0.04 0.06 0.08 0.10
Feature Importance

Figure 4.10: Top-10 most important features, as selected by the XGBoost classifier when
applied to balanced data.

Overall classification performance. Table 4.6 summarizes the classification results.
Regarding pull requests by females, only 15% of the pull requests predicted as female are
actually female pull requests. Also, the model shows success in identifying 17% of all actual
female pull requests present in the test set. The F1 score of 0.16 for the female class implies
that the model is limited in classifying female pull requests.

For pull requests by males, 87% of pull requests predicted as male are, in fact, male
pull requests. Similarly, the recall of 0.87 shows that the classifier accurately identify 87%
of all the actual male pull requests present in the test set. The F1 score of 0.87 confirms
the model’s great performance in classifying male requests.

Analysis of feature importance. Figure 4.11 highlights the top ten most important
features that the classifier relies on to predict the gender of the source code author, using
the code quality indicators feature set. The following features have been extracted from
SonarQube. The three most important features in this model are security review rating,
the number of files, and file complexity. The security review rating serves as a measure

35

Table 4.6: Results of the classifier on the code quality indicators’ feature set (¢t > 0.90).

Class Precision Recall F1 score

Female 0.15 0.17 0.16
Male 0.87 0.87 0.87

reliability_rating
security_hotspots
comment_lines_density
major_violations
functions

classes

bugs

file_complexity

files
security_review_rating

0.00 0.02 0.04 0.06 0.08 0.10
Feature Importance

Figure 4.11: Top-10 most important features, as selected by the XGBoost classifier when
applied to balanced SonarQube feature set (after filtering with ¢ > 0.90).

of the code’s security, and it suggests potential gender-related differences in the level of
security scrutiny applied to code changes. The number of files provides insights into the
breadth of a developer’s contributions, which could potentially hold some gender-related
differences too. File complexity is the average complexity of the files included, quantifies
using cyclomatic complexity. File complexity feature could indicate gender-related patterns
in how developers approach code organization.

4.3.3 Feature Set 3 — Keyword Frequency

In order to capture a broader range of characteristics from the source code of pull requests,
we computed the frequency of 35 different Python keywords included in each pull request.

Overall classification performance. Let’s break down the model performance for fe-
male pull requests. The precision of 0.12 shows that when the model predicts a pull request

36

Table 4.7: Results of the classifier on the keyword frequency feature set.

Class Precision Recall F1 score

Female 0.12 0.51 0.19
Male 0.85 0.43 0.57

TRUE
return
in

while
else
continue
try
class
global
pass

0.00 0.02 0.04 0.06 0.08 0.10
Feature Importance

Figure 4.12: Top-10 most important features, as selected by the XGBoost classifier when
applied to balanced data.

as a female’s, it is correct only 12% of the time. The recall score tells us that the model
manages to spot 51% of the actual female pull requests in the test set. The previous shows
that the classifier struggles to accurately identify pull requests by females and might miss
a substantial proportion of them.

Now let’s take a look at how the model performs for pull requests by male developers.
The precision value of 0.85 shows that the model is right 85% of the time when predicting
a pull request as male’s. The recall score of 0.43 means that the model accurately spots
43% of all the male pull request in the test set. Considering the previous, the model
performance in classifying male pull requests is comparatively better than its performance
in identifying female pull requests.

Analysis of feature importance. Figure 4.12 highlights the top ten most important
features that the classifier relies on to predict the gender of the source code author, using the
keywords frequency feature set. The top three important Python keywords: pass, global,
and class provide some insights into how the classifier learned to identify source code

37

by female and male developers. The presence of pass keyword could potentially indicate
areas where the developer creates some stubs that would need further implementation.
Developers use global to declare variables that are accessible throughout the entire code.
Since the classifier relies on this keyword, among others, to distinguish between how female
and male developers code, investigating how developers use it might reveal some differences
in how different genders manage program-wide data. Lastly, the appearance of the Python
keyword class could infer a difference in how female and male developers utilize object-
oriented programming concepts.

In conclusion, our comparative analysis of three distinct sets of features for classify-
ing pull requests originating from male and female developers offers intriguing glimpses
into potential gender-related coding tendencies. The classifier consistently excels in ac-
curately identifying pull requests authored by males, exhibiting high precision and recall
rates. However, its performance exhibits variations when discerning pull requests from
female authors, often displaying lower precision and recall scores. The examined features
encompass a spectrum from pull request attributes to code quality indicators and keyword
frequencies, revealing potential dissimilarities in coding styles, behaviors, and practices
between genders. Noteworthy, certain features stand out as pivotal discriminators, such as
the utilization of specific tags, security review evaluations, and the occurrence of keywords
like pass and class.

38

Chapter 5

Discussion and Conclusions

5.1 Contributions

This thesis delved into the gender discrepancies that have been recognized for a considerable
time as a challenge within the open-source software (OSS) community. Existing literature
and documented findings suggest that the involvement of female developers in the OSS
realm has consistently faced persistent marginalization and prejudice. This bias has often
been presumed to stem from gender-related factors.

In this document, we presented a comprehensive investigation to shed the light on
potential disparities in coding practices between female and male developers. Our objective
was to comprehend whether substantive distinctions exist and to investigate any possible
underlying factors contributing to the higher rate of rejection for pull requests from female
contributors compared to their male counterparts. We curated a dataset that encompasses
diverse dimensions of code style and quality. This careful compilation provided us with the
means to undertake a more comprehensive investigation into the unique coding approaches
utilized by female and male developers. We elaborate on potential approaches to expand
this dataset and undertake a thorough analysis of coding behaviour across the vast expanse
of the open-source software ecosystem.

As we conducted a more thorough exploration into the coding patterns exhibited by
female and male developers, our investigation unveiled significant distinctions that may po-
tentially contribute to the observed variations in how pull requests are accepted. Notably,
we identified that source code by male developers displayed a higher incidence of bugs,
alongside an elevated occurrence of blocker issue, as compared to code written by female

39

developers. This intriguing insight challenges preconceived notions and disrupts the narra-
tive that coding quality is inherently linked to gender. Similarly, the diverse employment
of Python keywords emerged as a captivating facet, with females demonstrating a tendency
to utilize if and @ tag keywords less frequently, thereby introducing an additional layer
of intricacy to the multifaceted landscape of coding practices.

5.2 Recommendations for the OSS community

Given the results of our study, we draft a set of recommendations that may positively
contribute to addressing gender disparities amongst the OSS community.

1. Encouraging the development of gender-annotated datasets for compre-
hensive analysis of coding patterns. We find that the gender-annotated dataset
curated by Zhang et al. [71], along with features extracted from SonarQube, allowed
us to perform a meaningful analysis of which stylistic and code quality features
can help us identify the gender of pull request submitters. To further enhance this
dataset’s richness, we propose that after a decision has been made regarding the
merging of a pull request, the submitter could be asked, on a voluntary basis, to
provide their gender. Initiatives such as this one should be encouraged, as similar
datasets can help researchers build a more complete understanding of gender-based
coding patterns in the open-source community.

2. Leveraging automated code analysis. We should explore the integration of
automated code analysis tools to impartially evaluate the technical merit of pull
requests. This additional layer of evaluation will be uninfluenced by gender, so it can
elevate the consistency of the review process.

3. Fostering gender-neutral stylistic coding guidelines. Our analysis suggested
that code stylistic features may help one distinguish whether a given pull request
has been submitted by a male or female developer. To prevent the use of similar
analysis procedures to reinforce the prevalence of accepted contributions put forth
by developers of a single gender, the OSS community could strive to enforce stylistic
coding guidelines. These guidelines would aim at reducing disparities between the
way individuals from different genders write code, thus contributing to the reduction
of gender-related biases.

40

4. Enhancing reviewer standards and guidelines. We can create a comprehensive
training initiatives aimed at cultivating reviewers’ awareness of unconscious biases
and gender-related assumptions.

5. Collaborative coding hackathons. We suggest organizing some collaborative
hackathons and coding workshops to facilitate the convergence of developers from
diverse gender backgrounds to work on projects collectively. Such events can help
bridge the gap in coding styles while encourage knowledge sharing.

6. Promoting inclusive project cultures through proposing outreach initia-
tives. The OSS community could put forward a set of outreach initiatives to ex-
plicitly seek contributions from underrepresented groups, thus contributing to the
equity, diversity, and inclusion of individuals across the vast spectrum of open-source
software.

5.3 Limitations and Future Work

A key limitation of our study is that our analysis has been conducted over a limited set of
four Python-based repositories on GitHub. While the over fifty thousand pull requests un-
der analysis spanned the contributions of over forty thousand developers, our data sample
might still be considered too narrow to encompass an analysis that is fully representative
of the entire OSS ecosystem. For instance, our study overlooks different pieces of code
that may a) have been written for other specific purposes; b) that are written in different
programming languages; c¢) that focus repositories with a small and tightly knit contribu-
tor base, or; d) that include a potentially larger diversity of contributors. In light of the
above, an interesting direction for future work would be that of extending our study in all
the aforementioned dimensions, for instance, scraping pull requests across a larger span of
repositories curated by Zhang et al. [71].

An additional constraint inherent in our study pertains to the finite array of analytical
tools we employed to extract potential features from the code within pull requests. It
is noteworthy to emphasize that our investigation did not encompass the utilization of a
specific category of code stylometry tools, which are predicated upon the extraction and
analysis of abstract syntax trees, as highlighted in the work by Caliskan-Islam et al.[12].
These tools have demonstrated notable efficacy within the domain of code authorship at-
tribution, showcasing their ability to unravel the distinctive nuances embedded in coding
styles and contributing to the identification of code creators. While we acknowledge the

41

potential insights that could have arisen from integrating these tools, their omission un-
derscores a focused exploration of other facets of the pull request analysis process in our
study.

42

Moreover, the limitation concerning gender complexity within the study pertains to
the binary categorization of gender into female and male might fail to adequately cap-
ture the intricate diversity and multifaceted nature of gender identities, which exist within
the developer community. One of the contributing factors to this binary classification is
the absence of a dataset that includes gender labels beyond the traditional binary clas-
sification. By exclusively relying on this binary framework, this study unintentionally
overlooks the contributions and experiences of individuals, who identify as non-binary and
gender-noncomforming. Neglecting this dimension not only constrains a comprehensive
exploration of coding styles, but also sustains an incomplete understanding of the full
spectrum of gender diversity in software development.

Finally, we observed that one interesting attribute extracted by the SonarQube analysis
tool is related to the security review rating of a piece of code. While we did not delve in
depth on the kind of security bugs present in the analyzed pull request code, it is possible
that the kind and number of vulnerabilities introduced by male and female developers may
differ, providing further information that may help a classifier distinguish code written by
individuals of different gender. A potential direction for future work would be to collect a
set of prominent static code analysis tools focused on finding security vulnerabilities, and
leverage their reports to build an additional set of features that could also be used for
enriching our analysis methodology.

43

References

1]

[4]

[5]

(6]

Andrea E Abele and Bogdan Wojciszke. Communal and agentic content in social
cognition: A dual perspective model. In Advances in experimental social psychology,
volume 50, pages 195-255. Elsevier, 2014.

Edgar Acuna and Caroline Rodriguez. The treatment of missing values and its effect
on classifier accuracy. In Classification, Clustering, and Data Mining Applications:
Proceedings of the Meeting of the International Federation of Classification Societies
(IFCS), Illinois Institute of Technology, Chicago, 15-18 July 2004, pages 639-647.
Springer, 2004.

Faith Amuchi, Ameer Al-Nemrat, Mamoun Alazab, and Robert Layton. Identifying
cyber predators through forensic authorship analysis of chat logs. In 2012 Third
Cybercrime and Trustworthy Computing Workshop, pages 28-37. IEEE, 2012.

Shlomo Argamon, Moshe Koppel, Jonathan Fine, and Anat Rachel Shimoni. Gender,
genre, and writing style in formal written texts. Text € talk, 23(3):321-346, 2003.

Maya Bar-Hillel. The base-rate fallacy in probability judgments. Acta Psychologica,
44(3):211-233, 1980.

Shaowen Bardzell. Feminist hci: taking stock and outlining an agenda for design. In
Proceedings of the SIGCHI conference on human factors in computing systems, pages
13011310, 2010.

Sandra L Bem. The measurement of psychological androgyny. Journal of consulting
and clinical psychology, 42(2):155, 1974.

Valeria Borsotti. Barriers to gender diversity in software development education:
actionable insights from a danish case study. In Proceedings of the 40th International
Conference on Software Engineering: Software Engineering Education and Training,
pages 146-152, 2018.

44

[9]

[11]

[12]

[13]

Amiangshu Bosu and Kazi Zakia Sultana. Diversity and inclusion in open source
software (oss) projects: Where do we stand? In 2019 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), pages 1—
11. TEEE, 2019.

Steven Burrows and Seyed MM Tahaghoghi. Source code authorship attribution using
n-grams. In Proceedings of the twelth Australasian document computing symposium,
Melbourne, Australia, RMIT University, pages 32—39. Citeseer, 2007.

Carole Cadwalladr and Emma Graham-Harrison. Revealed: 50 million facebook pro-
files harvested for cambridge analytica in major data breach. The guardian, 17(1):22,
2018.

Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind Narayanan, Clare Voss,
Fabian Yamaguchi, and Rachel Greenstadt. De-anonymizing programmers via code
stylometry. In 24th {USENIX} Security Symposium ({USENIX} Security 15), pages
255-270, 2015.

Edna Dias Canedo, Rodrigo Bonifacio, Marcio Vinicius Okimoto, Alexander Sere-
brenik, Gustavo Pinto, and Eduardo Monteiro. Work practices and perceptions from
women core developers in oss communities. In Proceedings of the 14th ACM/IEEE In-
ternational Symposium on Empirical Software Engineering and Measurement (ESEM),
pages 1-11, 2020.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of artificial intelligence
research, 16:321-357, 2002.

Tiangi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining, pages 785-794, 2016.

Kim B Clark. Product development performance: Strategy. Organization, and Man-
agement in the World Auto Industry, 1991.

Jody Clarke-Midura, Frederick Poole, Katarina Pantic, Megan Hamilton, Chongning
Sun, and Vicki Allan. How near peer mentoring affects middle school mentees. In
Proceedings of the 49th ACM Technical Symposium on Computer Science Education,
pages 664-669, 2018.

45

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Matthew A Cronin and Laurie R Weingart. Representational gaps, information pro-
cessing, and conflict in functionally diverse teams. Academy of management review,
32(3):761-773, 2007.

Edwin Dauber, Rebekah Overdorf, and Rachel Greenstadt. Stylometric authorship
attribution of collaborative documents. In Cyber Security Cryptography and Machine
Learning: First International Conference, CSCML 2017, Beer-Sheva, Israel, June
29-30, 2017, Proceedings 1, pages 115-135. Springer, 2017.

Helene De Ribaupierre, Kathryn Jones, Fernando Loizides, and Yulia Cherdantseva.
Towards gender equality in software engineering: the nsa approach. In Proceedings of
the 1st International Workshop on Gender Equality in Software Engineering, pages
10-13, 2018.

Natalia Pinheiro Ramos de Souza and Kiev Gama. Diversity and inclusion: Culture
and perception in information technology companies. IEFE Revista Iberoamericana
de Tecnologias del Aprendizage, 15(4):352-361, 2020.

Christian Delcourt. Stylometry. Revue belge de philologie et d’histoire, 80(3):979-1002,
2002.

AH Eagly. Sex differences in social behavior: a social role interpretation. psychology
press, 1987.

Joyce Ehrlinger, E Ashby Plant, Marissa K Hartwig, Jordan J Vossen, Corey J
Columb, and Lauren E Brewer. Do gender differences in perceived prototypical com-
puter scientists and engineers contribute to gender gaps in computer science and en-
gineering? Sex roles, 78:40-51, 2018.

Kathleen M Eisenhardt and Behnam N Tabrizi. Accelerating adaptive processes:
Product innovation in the global computer industry. Administrative science quarterly,
pages 84-110, 1995.

Anirudh Ekambaranathan. Using stylometry to track cybercriminals in darknet fo-
rums. Master’s thesis, University of T'wente, 2018.

Georgia Frantzeskou, Stephen MacDonell, Efstathios Stamatatos, and Stefanos
Gritzalis. Examining the significance of high-level programming features in source
code author classification. Journal of Systems and Software, 81(3):447-460, 2008.

46

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Lex Fridman, Steven Weber, Rachel Greenstadt, and Moshe Kam. Active authen-
tication on mobile devices via stylometry, application usage, web browsing, and gps
location. IEEE Systems Journal, 11(2):513-521, 2016.

Rishab A Ghosh, Ruediger Glott, Bernhard Krieger, and Gregorio Robles. Free/libre
and open source software: Survey and study. 2002.

Michel Goossens, Frank Mittelbach, and Alexander Samarin. The BTEX Companion.
Addison-Wesley, Reading, Massachusetts, 1994.

Stefan Gruner and Stuart Naven. Tool support for plagiarism detection in text doc-
uments. In Proceedings of the 2005 ACM symposium on Applied computing, pages
776781, 2005.

Jonathan Heawood. Pseudo-public political speech: Democratic implications of the
cambridge analytica scandal. Information polity, 23(4):429-434, 2018.

Amag Herdagdelen and Marco Baroni. Stereotypical gender actions can be extracted
from web text. Journal of the American Society for Information Science and Tech-
nology, 62(9):1741-1749, 2011.

Cedric Herring. Does diversity pay?: Race, gender, and the business case for diversity.
American sociological review, 74(2):208-224, 2009.

David I Holmes. A stylometric analysis of mormon scripture and related texts. Journal
of the Royal Statistical Society: Series A (Statistics in Society), 155(1):91-120, 1992.

Sander Hoogendoorn, Hessel Oosterbeek, and Mirjam Van Praag. The impact of gen-
der diversity on the performance of business teams: Evidence from a field experiment.
Management science, 59(7):1514-1528, 2013.

Sujin K Horwitz and Irwin B Horwitz. The effects of team diversity on team outcomes:
A meta-analytic review of team demography. Journal of management, 33(6):987-1015,
2007.

Farkhund Igbal. Messaging forensic framework for cybercrime investigation. PhD
thesis, Concordia University, 2011.

Farkhund Iqgbal, Hamad Binsalleeh, Benjamin CM Fung, and Mourad Debbabi. Min-
ing writeprints from anonymous e-mails for forensic investigation. digital investigation,
7(1-2):56-64, 2010.

47

[40]

[41]

[42]
[43]

[45]

[46]

[51]

Vaibhavi Kalgutkar, Ratinder Kaur, Hugo Gonzalez, Natalia Stakhanova, and Alina
Matyukhina. Code authorship attribution: Methods and challenges. ACM Computing
Surveys (CSUR), 52(1):1-36, 2019.

Robert T Keller. Cross-functional project groups in research and new product develop-
ment: Diversity, communications, job stress, and outcomes. Academy of management
journal, 44(3):547-555, 2001.

Donald Knuth. The TgXbook. Addison-Wesley, Reading, Massachusetts, 1986.

Jonathan J. Koehler. The base rate fallacy reconsidered: Descriptive, normative, and
methodological challenges. Behavioral and Brain Sciences, 19(1):1-17, 1996.

Victor Kuechler, Claire Gilbertson, and Carlos Jensen. Gender differences in early
free and open source software joining process. In Open Source Systems: Long-Term
Sustainability: Sth IFIP WG 2.13 International Conference, OSS 2012, Hammamet,
Tunisia, September 10-13, 2012. Proceedings 8, pages 78-93. Springer, 2012.

Leslie Lamport. BTpX — A Document Preparation System. Addison-Wesley, Reading,
Massachusetts, second edition, 1994.

Kathleen J Lehman, Linda J Sax, and Hilary B Zimmerman. Women planning to
major in computer science: Who are they and what makes them unique? Computer
Science Education, 26(4):277-298, 2016.

Ting-Peng Liang, James Jiang, Gary S Klein, and Julie Yu-Chih Liu. Software quality
as influenced by informational diversity, task conflict, and learning in project teams.
IEEE Transactions on Engineering Management, 57(3):477-487, 2009.

Xiaoguang Lu, Hong Chen, and Anil K Jain. Multimodal facial gender and ethnicity
identification. In Advances in Biometrics: International Conference, ICB 2006, Hong
Kong, China, January 5-7, 2006. Proceedings, pages 554-561. Springer, 2005.

Abby L Mello and Joan R Rentsch. Cognitive diversity in teams: A multidisciplinary
review. Small Group Research, 46(6):623-658, 2015.

C Chet Miller, Linda M Burke, and William H Glick. Cognitive diversity among upper-
echelon executives: implications for strategic decision processes. Strategic management
journal, 19(1):39-58, 1998.

Dawn Nafus. ‘patches don’t have gender’: What is not open in open source software.
New Media € Society, 14(4):669-683, 2012.

48

[52]

[53]

[54]

[55]

[56]

[57]

A Omar and BD Aldawsari. Towards a linguistic stylometric model for the authorship
detection in cybercrime investigations. International Journal of English Linguistics,
9(5):182-192, 2019.

Lisa Hope Pelled, Kathleen M Eisenhardt, and Katherine R Xin. Exploring the black
box: An analysis of work group diversity, conflict and performance. Administrative
science quarterly, 44(1):1-28, 1999.

Whitney E Powell, D Scott Hunsinger, and B Dawn Medlin. Gender differences
within the open source community: An exploratory study. Journal of Information
Technology, 21(4):29-37, 2010.

James Brian Quinn. Managing innovation: controlled chaos: harvard business review.
Harvard Business Review, 2(4):485, 1987.

Hoshiladevi Ramnial, Shireen Panchoo, and Sameerchand Pudaruth. Authorship at-
tribution using stylometry and machine learning techniques. In Intelligent Systems
Technologies and Applications: Volume 1, pages 113-125. Springer, 2016.

Esther Ruiz Ben. Defining expertise in software development while doing gender.
Gender, Work & Organization, 14(4):312-332, 2007.

SonarSource. Sonarqube documentation, 2023.

Janet T Spence. Gender-related traits and gender ideology: evidence for a multifac-
torial theory. Journal of personality and social psychology, 64(4):624, 1993.

Benno Stein, Nedim Lipka, and Peter Prettenhofer. Intrinsic plagiarism analysis.
Language Resources and Evaluation, 45:63-82, 2011.

Ariel Stolerman, Rebekah Overdorf, Sadia Afroz, and Rachel Greenstadt. Breaking
the closed-world assumption in stylometric authorship attribution. In Advances in
Digital Forensics X: 10th IFIP WG 11.9 International Conference, Vienna, Austria,
January 8-10, 2014, Revised Selected Papers 10, pages 185-205. Springer, 2014.

Sayma Sultana. Identification and mitigation of gender biases to promote diversity
and inclusion among open source communities. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering, pages 1-5, 2022.

Sayma Sultana, Asif Kamal Turzo, and Amiangshu Bosu. Code reviews in open source
projects: How do gender biases affect participation and outcomes? arXiv preprint
arXiw:2210.00159, 2022.

49

[64]

[65]

[66]

[67]

[68]

Eric Sundstrom, Kenneth P De Meuse, and David Futrell. Work teams: Applications
and effectiveness. American psychologist, 45(2):120, 1990.

Josh Terrell, Andrew Kofink, Justin Middleton, Clarissa Rainear, Emerson Murphy-
Hill, Chris Parnin, and Jon Stallings. Gender differences and bias in open source: Pull
request acceptance of women versus men. PeerJ Computer Science, 3:el111, 2017.

Bogdan Vasilescu, Andrea Capiluppi, and Alexander Serebrenik. Gender, represen-
tation and online participation: A quantitative study. Interacting with Computers,
26(5):488-511, 2014.

Anna Vitores and Adriana Gil-Juarez. The trouble with ‘women in computing’: a
critical examination of the deployment of research on the gender gap in computer
science. Journal of Gender Studies, 25(6):666-680, 2016.

Yi Wang and David Redmiles. Implicit gender biases in professional software de-
velopment: An empirical study. In 2019 IEEE/ACM 41st International Conference
on Software Engineering: Software Engineering in Society (ICSE-SEIS), pages 1-10.
IEEE, 2019.

Joan C Williams. Hacking tech’s diversity problem. Harvard Business Review,
92(10):94-100, 2014.

Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Modeling and discov-
ering vulnerabilities with code property graphs. In 201 I[EEE Symposium on Security
and Privacy, pages 590-604. IEEE, 2014.

Xunhui Zhang, Ayushi Rastogi, and Yue Yu. On the shoulders of giants: A new
dataset for pull-based development research. In Proceedings of the 17th international
conference on mining software repositories, pages 543-547, 2020.

[72] Yu Zhang, Rastogi. New pull request dataset (new_pullreq-msr2020), 2020. Last

73]

accessed on 07-25-2023.

Zhang, Rastogi, Yu. Zhang et al. restricted dataset, 2020.

20

APPENDICES

ol

Appendix A

Details on Feature Sets

A.1 Pull requests’ characteristics

Listing A.1 provides a complete listing of the 17 features composing our pull requests’
characteristics feature set, as curated from the overall set of attributes considered in the
pull-based development study of Zhang et al. [71].

Listing A.1: Pull requests’ characteristics features

© 00N O WN -

10

12
13
14
15
16
17

merged_or_not
num_commits
src_churn
test_churn
files_added
files_deleted
files_modified
files_changed
src_files
- doc_files
- other_files.
churn_addition
churn_deletion
hash_tag
at_tag
test_inclusion
description_length

o2

A.2 Code quality indicators

Listing A.2 provides a complete listing of the 94 features composing our feature set based
on code quality indicators, as extracted from the SonarQube static analysis tool.

Listing A.2: SonarQube features

1 - new_technical_debt
2 - blocker_violations
3 - bugs

4 - classes
5 - code_smells
6 - cognitive_complexity

7 - comment_lines

8 - comment_lines_density

9 - comment_lines_data

10 - class_complexity

11 - file_complexity.

12 - function_complexity

13 - complexity_in_classes

14 - complexity_in_functions

15 - branch_coverage

16 - new_branch_coverage

17 - conditions_to_cover

18 - new_conditions_to_cover

19 - confirmed_issues

20 - coverage

21 - new_coverage

22 - critical_violations

23 - complexity

24 - development_cost

25 - new_development_cost

26 - directories

27 - duplicated_blocks

28 - new_duplicated_blocks

29 - duplicated_files

30 - duplicated_lines

31 - duplicated_lines_density

32 - new_duplicated_lines_density

33 - new_duplicated_lines

34 - duplications_data

35 - effort_to_reach_maintainability_rating_a
36 - executable_lines_data

37 - false_positive_issues

38 - file_complexity_distribution

39 - files

40 - function_complexity_distribution

41 - functions

42 - generated_lines

43 - generated_ncloc

44 - info_violations

45 - violations

46 - line_coverage

47 - new_line_coverage

48 - lines

49 - ncloc

23

50 - ncloc_language_distribution

51 - lines_to_cover

52 - new_lines_to_cover

53 - sqale_rating

54 - new_maintainability_rating

55 - major_violations

56 - minor_violations

57 - ncloc_data

58 - new_blocker_violations

59 - new_bugs

60 - new_code_smells

61 - new_critical_violations

62 - new_info_violations

63 - new_violations

64 - new_lines

65 - new_major_violations

66 - new_minor_violations

67 - new_security_hotspots

68 - new_vulnerabilities

69 - open_issues

70 - projects

71 - public_api

72 - public_documented_api_density

73 - public_undocumented_api

74 - alert_status

75 - reliability_rating

76 - new_reliability_rating

77 - reliability_remediation_effort

78 - new_reliability_remediation_effort
79 - reopened_issues

80 - security_hotspots

81 - security_hotspots_reviewed

82 - new_security_hotspots_reviewed

83 - security_rating

84 - new_security_rating

85 - security_remediation_effort

86 - new_security_remediation_effort
87 - security_review_rating

88 - new_security_review_rating

89 - security_hotspots_reviewed_status
90 - new_security_hotspots_reviewed_status
91 - security_hotspots_to_review_status
92 - new_security_hotspots_to_review_status
93 - skipped_tests

94 - statements

A.3 Keyword frequencies

Listing A.3 provides a complete listing of the 35 features composing our feature set based
on the usage frequency of the Python language keywords by each developed.

54

Listing A.3: Pythom Keywords features

FALSE
TRUE
None
and
as
assert
async
await
break
class
continue
def
del
elif
else
except
finally
for
from
global
if
import
in
is
lambda
nonlocal
not
or
pass
raise
return
try
while
with
yield

95

	Author's Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Overview
	Contributions
	Organization

	Related Work
	Gender Diversity in Software Development
	Gender-Bias in Open Source Software (OSS)
	Promoting Gender Diversity in CS
	Techniques for Gender Identification in OSS
	Name-Based Approach
	Image Processing Technique
	Stylometry

	Methodology
	Data Collection and Scaling
	Pull Requests Dataset
	Dealing with Data Imbalance

	Feature Selection
	Feature sets
	Feature pre-processing

	Experimental Setup
	Laboratory testbed
	Data Extraction
	Feature Extraction

	Models and Metrics
	Machine Learning Models
	Evaluation Metrics

	Analysis and Results
	Analysis of the Pull Request Dataset
	Analysis on Imbalanced Training Data
	Analysis on Balanced Training Data

	Impacts of Feature Removal Threshold
	Comparative Analysis of Feature Sets
	Feature Set 1 – Pull request characteristics
	Feature Set 2 – Code Quality Indicators
	Feature Set 3 – Keyword Frequency

	Discussion and Conclusions
	Contributions
	Recommendations for the OSS community
	Limitations and Future Work

	References
	APPENDICES
	Details on Feature Sets
	Pull requests' characteristics
	Code quality indicators
	Keyword frequencies

