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A theorem of Mader shows that every graph with average 
degree at least eight has a K6 minor, and this is false if 
we replace eight by any smaller constant. Replacing average 
degree by minimum degree seems to make little difference: we 
do not know whether all graphs with minimum degree at least 
seven have K6 minors, but minimum degree six is certainly 
not enough. For every ε > 0 there are arbitrarily large graphs 
with average degree at least 8 − ε and minimum degree at 
least six, with no K6 minor.
But what if we restrict ourselves to bipartite graphs? The first 
statement remains true: for every ε > 0 there are arbitrarily 
large bipartite graphs with average degree at least 8 − ε and 
no K6 minor. But surprisingly, going to minimum degree 
now makes a significant difference. We will show that every 
bipartite graph with minimum degree at least six has a K6
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minor. Indeed, it is enough that every vertex in the larger 
part of the bipartition has degree at least six.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

The graphs with no K5 minor are well understood. A theorem of Wagner [9] gives an 
explicit construction for all such graphs: they can all be built by piecing together planar 
graphs and copies of one eight-vertex graph by a sum operation that we do not describe 
here. Consequently, every graph with n ≥ 3 vertices and more than 3n − 6 edges has a 
K5 minor. (All graphs in this paper are finite and have no loops or parallel edges.) This 
is tight: there are graphs with n vertices and with exactly 3n − 6 edges that have no K5
minor. Indeed, one can make such graphs that are almost 6-regular: for infinitely many 
values of n there is an n-vertex planar graph (which therefore has no K5 minor) with all 
vertices of degree six except for twelve of degree five. In summary:

• all graphs with average degree at least six contain K5 minors, and this is false if we 
replace six by any smaller real number;

• all graphs with minimum degree at least six have K5 minors, and this is false if we 
replace six by any smaller integer;

• this is all still true even if we insist that maximum degree is at most six.

What if we look just at bipartite graphs? One can make n-vertex bipartite graphs 
with no K5 minor that have 3n − 9 edges (the complete bipartite graph K3,n−3 – in 
fact this is the only such graph, which can easily be shown by induction using 1.1). So 
the situation for average degree is virtually unchanged: average degree six is enough to 
guarantee a K6 minor, and no smaller constant works. But K3,n−3 has vertices with 
degree much larger than the average, and also vertices with degree much smaller than 
average (if three is much smaller than six). So what happens if we insist that maximum 
degree is close to the average degree, or minimum degree is large?

It turns out that:

1.1. Every non-null bipartite graph with minimum degree at least four has a K5 minor.

This can be derived from Wagner’s construction [9], although the proof is rather long 
and we omit it. The result is already known: it was stated (in a stronger form, replacing 
“bipartite” by “girth at least four”) in a lecture by János Barát [1], as joint work with 
David Wood, and also (without proof) in an early version of the paper [2] (unfortunately 
it was removed in a later version of the paper). When excluding K5, imposing a bound 
on maximum degree is perhaps not so interesting: there are n-vertex bipartite graphs 
with average degree at least four and maximum degree at most five, with no K5 minor. 
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(For example, take five disjoint copies of K3,5, and for 1 ≤ i ≤ 5 let vi be a vertex 
with degree three from the ith copy. Now add two more vertices both adjacent to each 
of v1, . . . , v5. To make bigger examples, take disjoint unions.) Perhaps average degree 
at least five and maximum degree at most six will guarantee a K5 minor in a bipartite 
graph, but we have not worked this out.

In this paper, we ask what happens for K6 minors. A theorem of Mader [7] says:

1.2. For n ≥ 4, every n-vertex graph with more than 4n − 10 edges has a K6 minor.

There are graphs with n vertices and 4n − 10 edges with minimum degree at least six 
that have no K6 minor: for instance, take a planar graph on n −1 vertices with 3(n −1) −6
edges and minimum degree five, and add a new vertex adjacent to everything. So we need 
average degree at least eight to guarantee a K6-minor; no smaller constant works. Again, 
we might ask what happens if we insist that maximum degree is close to average degree, 
or minimum degree is large. We have found K6-minor-free graphs with minimum degree 
six and maximum degree at most nine; and K6-minor-free graphs with minimum degree 
five, maximum degree seven, and average degree arbitrarily close to 98/15 (we omit the 
details). But as far as we know, both the following are open:

1.3 Conjecture. Every non-null 6-regular graph has a K6 minor.

(Indeed, as far as we know, every non-null graph with minimum degree at least six 
and maximum degree at most eight has a K6 minor.)

1.4 Conjecture. Every non-null graph with minimum degree at least seven has a K6

minor.

Conjecture 1.4 was proposed by Barát, Joret and Wood [3]. There is a well-known 
conjecture of Jørgensen [5] that is related:

1.5 Conjecture. Every six-connected graph with no K6 minor can be made planar by 
deleting some vertex, and therefore has a vertex of degree at most six.

Either of the last two conjectures would imply the following, which was raised by 
Kawarabayashi and Toft [6], and which also seems to be still open:

1.6 Conjecture. Every seven-connected graph has a K6 minor.

But in this paper we will restrict ourselves to bipartite graphs. Still no constant 
smaller than eight works as a bound on average degree to guarantee a K6 minor, since 
the complete bipartite graph K4,n−4 has 4n − 16 edges and has no K6 minor. But what 
about minimum degree? We will show:
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1.7. Every non-null bipartite graph with minimum degree at least six has a K6 minor.

We do not know whether “six” can be replaced by “five” in 1.7. Minimum degree is 
more difficult than average degree to work with inductively, and fortunately there is a 
strengthening of 1.7 that is more amenable to induction:

1.8. Let G admit a bipartition (A, B) with |A| ≥ |B| > 0, such that every vertex in A
has degree at least six. Then G has a K6 minor.

We remark that 1.8 becomes false if we replace “six” by “five”; we will show this in 
the next section.

This was also motivated by one of the steps in the proof of [8] that every graph with no 
K6 minor is five-colourable. Let G be a minor-minimal graph with no K6 minor that is 
not five-colourable, if such a graph exists; then in [8], section 12 was devoted to showing 
that G has a matching with at least (|G| − 1)/2 edges. If not, then by Tutte’s theorem, 
there is a set X ⊆ V (G) such that G \ X has more than |X| odd components, and it 
was known that G is six-connected, and so each of these components has an edge to at 
least six vertices in X. By contracting these components to single vertices we obtain a 
bipartite graph satisfying the hypotheses of 1.8, which would be a contradiction, since 
G has no K6 minor. In [8], Mader’s theorem [7] was used in place of 1.8, with additional 
analysis of the components that had only six or seven neighbours in X. But it should be 
added that 1.8 is not going to shorten the proof of the main theorem of [8]; the proof of 
1.8 is considerable longer than section 12 of [8]. It will take up almost all the paper, but 
we begin with proving the statements for K5 mentioned above.

2. Some definitions, and the results for K5

Let us be more precise. If X ⊆ V (G), G \X is the graph obtained from G by deleting 
X, and G[X] = G \ (V (G) \X) denotes the subgraph of G induced on X. A graph H
is a minor of G if H can be obtained by edge-contraction from a subgraph of G. (We 
repeat that graphs in this paper have no loops or parallel edges, so any loops or parallel 
edges produced by edge-contraction should be deleted.) We will only be concerned with 
complete graph minors. Let us say a cluster in G is a set of disjoint subsets X1, . . . , Xk

of V (G), such that G[Xi] is connected for 1 ≤ i ≤ k, and for 1 ≤ i < j ≤ k there is 
an edge of G between Xi, Xj ; and a t-cluster means a cluster of cardinality t. Thus G
contains the complete graph Kt as a minor if and only if G contains a t-cluster.

A word on taking minors of bipartite graphs: we start with a graph with a bipartition 
(A, B), choose a subset X ⊆ V (G) that induces a connected subgraph, and contract X
to a single vertex. As we said, if this produces parallel edges we delete them, since we 
only work with simple graphs in this paper. But there is another issue: the graph we 
obtain by contraction might not be bipartite, and we want to produce a bipartite graph 
at the end, so in general we must delete some of the edges incident with the new vertex. 
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Fig. 1. Counterexample to 2.1 with t = 5.

We could explicitly list the edges that we need to delete, but since we will apply this 
operation many times, let us set up a more convenient method. Let us say we contract X
into A if we first contract X to a single vertex, x say, and then delete all edges between x
and A. Thus the graph we produce has a bipartition ((A \X) ∪{x}, B \X). “Contracting 
into B” is defined similarly.

Let us see first:

2.1. For t = 1, 2, 3, 4, if G admits a bipartition (A, B) with |A| ≥ |B| > 0 such that every 
vertex in A has degree at least t − 1 then G has a Kt minor.

Proof. For t ≤ 2 the result is clear. For t = 3, the graph has at least 2|A| ≥ |G| edges 
and so has a cycle, and hence a K3 minor.

Next let t = 4; we proceed by induction on |A|. We may assume that G has a vertex 
of degree at most two, b say (necessarily b ∈ B), because otherwise it has a K4 minor, 
by a theorem of Hadwiger [4]. If b has degree zero we may delete it, and if it has degree 
one we may delete it and its neighbour, and in either case the result follows from the 
inductive hypothesis. So we assume that b has two neighbours a1, a2. If there are at least 
three vertices in B \ {b} with a neighbour in {a1, a2}, we may contract {a1, b, a2} into 
A and apply the inductive hypothesis; so we assume that a1, a2 have exactly the same 
neighbours b, b1, b2. If some vertex different from a1, a2 is adjacent to both b1, b2 then G
has a K4 minor: and otherwise we may contract {b1, b2, a1, a2, b} into B and apply the 
inductive hypothesis. This proves 2.1. �

Since all bipartite graphs with minimum degree at least four have K5 minors, one 
might hope that 2.1 would hold with t = 5, but that is false. Here is a counterexample 
(see Fig. 1). Let H be the graph obtained from K3,5 by deleting three edges that form 
a matching. Now take k copies of H, say H1, . . . , Hk, and for 1 ≤ i ≤ k let ai, bi, ci
be the three vertices of Hi that have degree two. Let G be obtained from the disjoint 
union of H1, . . . , Hk by making the identifications a1 = · · · = ak, b1 = · · · = bk and 
c1 = · · · = ck. Then G admits a bipartition (A, B) with |A| = 3k and |B| = 2k + 3, 
and every vertex in A has degree four, and G has no K5 minor. Thus taking k ≥ 3 we 
obtain a counterexample to 2.1 with t = 5. By taking k = 4 instead, and then adding a 
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new vertex adjacent to every vertex in A, we obtain a graph that shows that we cannot 
replace “six” by “five” in 1.8.

We have:

2.2. If G admits a bipartition (A, B) with |A| ≥ |B| > 0 such that every vertex in A has 
degree at least five then G has a K5 minor.

This is turn is a consequence of 1.8 as we show now.

Proof of 2.2, assuming 1.8. Suppose that G admits a bipartition (A, B) with |A| ≥ |B| >
0 such that every vertex in A has degree at least five and G has no K5 minor. We may 
assume that |A| = |B|. Choose b ∈ B. Now take k copies of G, say G1, . . . , Gk, and let 
bi be the vertex of Gi that corresponds to b. Let H be obtained from the disjoint union 
of G1, . . . , Gk by identifying b1, . . . , bk. Then H has no K5 minor, and has a bipartition 
(C, D) with |C| = k|A| and |D| = k(|B| − 1) + 1 = k(|A| − 1) + 1, and every vertex in 
C has degree at least five. Now add one more vertex d to H adjacent to every vertex in 
C; then the graph we produce admits a bipartition (C, D ∪ {d}) where every vertex in 
C has degree at least six, and it has no K6 minor (because H has no K5 minor). So if 
we choose k such that k|A| ≥ k(|A| − 1) + 2, that is, k ≥ 2, we obtain a contradiction to 
1.8. This proves 2.2. �
3. Some lemmas

Let us begin on the proof of 1.8. Thus, let G be a graph that admits a bipartition 
(A, B) with |A| ≥ |B| > 0 such that every vertex in A has degree at least six; we need 
to show that G admits a 6-cluster. Let us say G is a candidate if it admits a bipartition 
(A, B) with |A| ≥ |B| > 0 such that every vertex in A has degree at least six, and G has 
no 6-cluster. We need to show that there is no candidate. We call (A, B) the bipartition
of the candidate. If G is a candidate with |G| + |E(G)| minimum, we say it is a minimal 
candidate.

Let us begin with some easy observations.

3.1. Let G be a minimal candidate with bipartition (A, B). Then

(i) |A| = |B|;
(ii) every vertex in A has degree exactly six;
(iii) if X ⊆ B is nonempty then G \X has at most |X| components;
(iv) if X ⊆ A is nonempty then G \X has at most |X| components; and
(v) if X ⊆ A is nonempty and G \X has exactly |X| components then at most one of 

them has more than one vertex.

Proof. If |A| > |B| we could delete a vertex in A and obtain a smaller candidate; and if 
some vertex in A has degree more than six we could delete an edge incident with it to 
obtain a smaller candidate, in either case contradicting minimality.
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For (iii), let X ⊆ B be nonempty, and let G1, . . . , Gk be the components of G \X. For 
1 ≤ i ≤ k, let |V (G) ∩A| = pi and |V (G) ∩B| = qi. Then for 1 ≤ i ≤ k, since G \ V (Gi)
is not a candidate, it follows that |A| − pi < |B| − qi, and so pi ≥ qi + 1 since |A| = |B|; 
but then

|A| = p1 + · · · + pk ≥ q1 + · · · + qk + k = |B| − |X| + k,

and since |A| = |B| it follows that k ≤ |X|. This proves (iii).
For (iv), let X ⊆ A be nonempty, and let G1, . . . , Gk be the components of G \ X. 

For 1 ≤ i ≤ k, let |V (G) ∩A| = pi and |V (G) ∩B| = qi. For 1 ≤ i ≤ k, since Gi is not a 
candidate, it follows that pi ≤ qi − 1; but

|A| = p1 + · · · + pk + |X| ≤ q1 + · · · + qk − k + |X| = |B| − k + |X|,

and since |A| = |B| it follows that k ≤ |X|. This proves (iv).
Finally, in the same notation, suppose that k = |X|, and G1, G2 both have at least two 

vertices. Thus pi ≤ qi − 1 for 1 ≤ i ≤ k, and since k = |X|, it follows that pi = qi − 1 for 
1 ≤ i ≤ k. From the third and fourth bullets it follows that G is two-connected, and so 
there are two vertex-disjoint paths of G, say R, S each with first vertex in V (G1) and last 
vertex in V (G2), and each with no other vertices in V (G1) ∪ V (G2). Consequently R, S
each have first vertex in V (G1) ∩B and last vertex in V (G2) ∩B. By contracting V (R)
and V (S) into B we see that G contains as a minor the graph obtained from G1 ∪ G2
by identifying the ends of R and identifying the ends of S. But this graph admits a 
bipartition with parts of cardinalities p1 + p2 and q1 + q2 − 2 = p1 + p2, and so it is a 
smaller candidate, a contradiction. This proves (v) and so proves 3.1. �

3.1 has two useful corollaries, first that every minimal candidate is two-connected, 
and second the following:

3.2. Let G be a minimal candidate with bipartition (A, B), and let X ⊆ A or X ⊆ B with 
|X| = 4. Then there do not exist five connected subgraphs C1, . . . , C5 of G \X, pairwise 
vertex-disjoint, such that for 1 ≤ i ≤ 5, every vertex in X has a neighbour in Ci.

Proof. Let X = {x1, x2, x3, x4}. Suppose that such C1, . . . , C5 exist, and choose them 
with maximal union. By 3.1(iii) and 3.1(iv) they are not all components of G \X, and so 
from the maximality of their union, some two of them are joined by an edge, say C4, C5. 
But then there is a 6-cluster

{V (C1) ∪ {x1}, V (C2) ∪ {x2}, V (C3) ∪ {x3}, V (C4), V (C5), {x4}},

which is impossible. This proves 3.2. �
Here is another way of using the minimality of the candidate. Let a1, . . . , ap ∈ A

be distinct and b1, . . . , bq ∈ B be distinct. The cover graph H (with respect to 
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a1, . . . , ap, b1, . . . , bq) is the graph with vertex set {b1, . . . , bq} in which two distinct ver-
tices u, v are adjacent if there is a vertex w ∈ A \{a1, . . . , ap} adjacent in G to both u, v. 
We denote the chromatic number of H by χ(H). A partition of V (H) = {b1, . . . , bq} into 
sets that are stable in H is a colouring of H, and a partition {Y1, . . . , Yk} of V (H) is fea-
sible if there are pairwise disjoint subsets X1, . . . , Xk of {a1, . . . , ap} such that G[Xi∪Yi]
is connected for 1 ≤ i ≤ k. (Note that the sets Xi might be empty.)

3.3. Let G be a minimal candidate with bipartition (A, B), and let a1, . . . , ap ∈ A and 
b1, . . . , bq ∈ B be distinct, with cover graph H, and with p > 0. Then no colouring of H
of cardinality at most q − p is feasible.

Proof. Suppose that the colouring {Y1, . . . , Yk} of H is feasible, where k ≤ q − p, and 
let X1, . . . , Xk be the corresponding subsets of {a1, . . . , ap}. By contracting each of the 
sets Xi ∪ Yi into B, and deleting each vertex in {a1, . . . , ap} that does not belong to 
X1 ∪ · · · ∪Xk, we obtain a graph with a bipartition (C, D) say, where |C| = |A| − p and 
|D| = |B| − q + k ≤ |B| − p ≤ |C|. Every vertex in C has degree at least six, since each 
of Y1, . . . , Yk is stable in H, and so this graph is a candidate, which is impossible from 
the minimality of G (since p > 0). This proves 3.3. �

A special case of 3.3 is used so frequently that it is worth stating explicitly:

3.4. Let G be a minimal candidate with bipartition (A, B). If b1, b2 ∈ B are distinct and 
have a common neighbour in A then they have at least two common neighbours in A.

Proof. Let a ∈ A be adjacent to b1, b2. If b1, b2 have no other common neighbour, then 
the covering graph of a, b1, b2 admits a colouring of cardinality one, which is therefore 
feasible, contrary to 3.3. �
4. Excluding K(3, 5, 0)- and K(4, 4, 1)-subgraphs

We will prove a series of results about minimal candidates, which eventually allow to 
show that there is no such graph. Most of these results are of the form “If G is a minimal 
candidate, then G has no subgraph of the following type”, where the types describe 
subgraphs that become smaller and simpler as the sequence goes on. For instance, one 
of our result will say that there do not exist two vertices in A and six vertices in B
such that each of the first is adjacent to each of the second. We need some notation to 
describe these “types”. For integers p, q, r ≥ 0 with r ≤ min(p, q), let us say a subgraph 
H of G is a K(p, q, r)-subgraph if it consists of p vertices a1, . . . , ap ∈ A and q vertices 
b1, . . . , bq ∈ B, where the pairs a1b1, a2b2, . . . , arbr are nonadjacent, and otherwise each 
ai is adjacent to each bj. Thus H is obtained from a complete bipartite graph Kp,q by 
deleting a matching with r edges; but it matters that the p vertices belong to A and the 
q belong to B, and not the other way around.



76 M. Chudnovsky et al. / Journal of Combinatorial Theory, Series B 164 (2024) 68–104
In this section we will prove that a minimal candidate has no K(3, 5, 0)-subgraph and 
no K(4, 4, 1)-subgraph. We begin with:

4.1. Let G be a minimal candidate with bipartition (A, B). Then G has no K(4, 4, 0)-
subgraph.

Proof. Suppose that a1, . . . , a4 ∈ A are adjacent to b1, . . . , b4 ∈ B. Let Z =
{a1, . . . , a4, b1, . . . , b4}. For each component C of G \ Z, let N(C) denote the set of 
vertices in Z with a neighbour in V (C).

(1) For each component C of G \Z, {a1, a2, a3, a4} � N(C), and {b1, b2, b3, b4} � N(C).

This is immediate from two applications of 3.2, setting X = {a1, a2, a3, a4} and X =
{b1, b2, b3, b4}.

a1 a2 a3 a4

b1 b2 b3 b4

Fig. 2. K(4, 4, 0)-subgraph.

Since a1, a2, a3, a4 have degree six, and so each of them belongs to N(C) for some 
component C of G \ Z, it follows from (1) that there are at least two such components.

(2) If v ∈ B\Z has a neighbour in {a1, a2, a3, a4} then it has at least two such neighbours.

Let C be the component of G \ Z that contains v. We may assume that v is adjacent 
to a1, and by (1), we may assume that b1 /∈ N(C). By 3.4, b1, v have another common 
neighbour, which must be in {a2, a3, a4} since b1 /∈ N(C). This proves (2).

(3) For each component C of G \ Z, one of |N(C) ∩A|, |N(C) ∩B| ≥ 2.

If |N(C) ∩ A| ≤ 1 then N(C) ∩ A = ∅ by (2), and so by 3.1(iii), taking X = N(C), it 
follows that |N(C) ∩B| ≥ 2. This proves (3).

(4) |N(C) ∩B| ≤ 1 and |N(C) ∩A| ∈ {2, 3} for every component C of G \ Z.

Suppose that |N(C) ∩ B| ≥ 2, and let b1, b2 ∈ N(C) say. By (1), there is a component 
C ′ 	= C of G \ Z with N(C ′) ∩ A 	= ∅, and hence with |N(C ′) ∩ A| ≥ 2 by (2). Let 
a1, a2 ∈ N(C ′) say. Then there is a 6-cluster

{{a1}, V (C ′) ∪ {a2}, {b1}, V (C) ∪ {b2}, {a3, b3}, {a4, b4}},
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a contradiction. This proves that |N(C) ∩B| ≤ 1 for every component C of G \ Z; and 
so |N(C) ∩A| ∈ {2, 3} for every component C of G \ Z by (3) and (1). This proves (4).

(5) If u, v ∈ B \ Z have a common neighbour in {a1, a2, a3, a4} and belong to different 
components of G \ Z then they have at least two common neighbours in {a1, a2, a3, a4}. 
Consequently, if C, C ′ are distinct components of G \ Z then |N(C) ∩N(C ′) ∩A| 	= 1.

The first claim follows from 3.4 applied to u, v; and the second is a consequence. This 
proves (5).

(6) |N(C) ∩A| = 2 for each component C of G \ Z.

Suppose not; then by (4) |N(C) ∩ A| = 3, and we may assume that N(C) ∩ A =
{a1, a2, a3}. Let C ′ be a component of G \Z with a4 ∈ N(C ′). By (4), N(C) ∩N(C ′) 	= ∅, 
and so by (5), |N(C ′) ∩ A| = 3 and we may assume that a2, a3, a4 ∈ N(C ′). Since a2
has a neighbour in each of C, C ′ and is also adjacent to b1, b2, b3, b4, it has no more 
neighbours, and the same holds for a3. Consequently if C ′′ 	= C, C ′ is a component of 
G \ Z then N(C ′′) ∩ A ⊆ {a1, a4}, and so equality holds by (4), contrary to (5). Thus 
C, C ′ are the only components of G \ Z. Hence a1 has two neighbours d1, d2 ∈ V (C), 
and a2, a3 each have exactly one neighbour in V (C ′). By (2), each of d1, d2 is adjacent 
to two of a1, a2, a3, a4, and so we may assume that d1 is adjacent to a2 and not to a3. 
Similarly there exists d′ ∈ V (C ′) adjacent to a2 and not to a3. But then d1, d′ have a 
unique common neighbour, contrary to (5). This proves (6).

By (4), b1, b2, b3, b4 belong to different components of G \ {a1, a2, a3, a4}, and so by 
3.1(iv) and 3.1(v), these are the only components of G \ {a1, a2, a3, a4}, and three of 
them have only one vertex. Consequently we may assume that b2, b3, b4 have degree four 
in G, and b1 ∈ N(C) for each component C of G \Z. By (6) and (5), we may assume that 
for each component C of G \ Z, N(C) ∩ A = {a1, a2} or {a3, a4}. Let G1 be the union 
of the components C with N(C) ∩ A = {a1, a2}, and define G2 similarly for {a3, a4}. 
Thus a1, a2 each have two neighbours in V (G1), and a3, a4 each have two in V (G2). 
Hence by contracting {a1, b2, a3} and {a2, b3, a4} into A we obtain a smaller candidate, 
a contradiction. This proves 4.1. �
4.2. Let G be a minimal candidate with bipartition (A, B). Then G has no K(3, 6, 0)-
subgraph.

Proof. Suppose that a1, a2, a3 ∈ A are all adjacent to each of b1, . . . , b6 ∈ B. Let H be 
the cover graph with respect to a1, a2, a3, b1, . . . , b6.

(1) If b1, b2, b3 are pairwise adjacent in H, there is a vertex a 	= a1, a2, a3 adjacent to all 
of b1, b2, b3, and no other vertex in A \ {a1, a2, a3} is adjacent to any two of b1, b2, b3.
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Fig. 3. K(3, 6, 0)-subgraph.

Since b1b2 ∈ E(H), there exists c3 ∈ A \ {a1, a2, a3} adjacent to b1, b2; and similarly 
there exists c1 adjacent to b2, b3 and c2 adjacent to b3, b1. If c1, c2, c3 are all different, 
there is a 6-cluster

{{c2, b1}, {c3, b2}, {c1, b3}, {a1, b4}, {a2, b5}, {a3, b6}},

a contradiction. So c1, c2, c3 cannot be chosen all different. In particular we may assume 
that some c ∈ A \ {a1, a2, a3} is adjacent to b1, b2, b3. If some other vertex d ∈ A \
{a1, a2, a3} is adjacent to two of b1, b2, b3, say to b1, b2, there is a 6-cluster

{{b1, d}, {b2}, {c, b3}, {a1, b4}, {a2, b5}, {a3, b6}},

a contradiction. This proves (1).

Every colouring of H of cardinality three is feasible (as we can add one ai to each 
vertex class), so χ(H) ≥ 4 by 3.3. Consequently either H consists of an induced cycle 
of length five together with one more vertex adjacent to every vertex of the cycle, or 
H has a clique of size four. In either case there are four vertices of H such that five of 
the six pairs of them are adjacent in H. We may assume that b1b2, b1b3, b1b4, b2b3, b2b4
are all edges of H. By (1) there exists c ∈ A \ {a1, a2, a3} adjacent to b1, b2, b3, and 
d ∈ A \ {a1, a2, a3} adjacent to b1, b2, b4; and by (1) again, c = d. Thus c is adjacent 
to b1, b2, b3, b4, and so G[{a1, a2, a3, c, b1, b2, b3, b4}] is a K(4, 4, 0)-subgraph, contrary to 
4.1. This proves 4.2. �

If P is a path, we denote by P ∗ the set of vertices in the interior of P , that is, the 
vertices that have degree two in P .

4.3. Let G be a minimal candidate with bipartition (A, B). Then G has no K(3, 5, 0)-
subgraph.

Proof. Suppose that a1, a2, a3 ∈ A are all adjacent to each of b1, . . . , b5 ∈ B.
Each of a1, a2, a3 has exactly one neighbour different from b1, . . . , b5, and they are not 

all equal since G has no K(3, 6, 0)-subgraph by 4.2. So some vertex is adjacent to exactly 
one of a1, a2, a3; say b6 is adjacent to a1 and not to a2, a3. By 3.4, for 1 ≤ i ≤ 5 bi, b6
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Fig. 4. K(3, 5, 0)-subgraph.

have a common neighbour different from a1. Choose a set X of neighbours of b6, with 
a1, a2, a3 /∈ X, minimal such that b1, . . . , b5 each have a neighbour in X. Consequently 
for each x ∈ X there exists i ∈ {1, . . . , 5} such that x is the unique neighbour of bi in X.

(1) Every vertex different from a1, a2, a3 with two neighbours in {b1, . . . , b5} is in X.

Suppose that a ∈ A \ {a1, a2, a3} is adjacent to b1, b2 say, and a /∈ X. Then there is a 
6-cluster

{{b1}, {a, b2}, {b6, b3} ∪X, {a1}, {a2, b4}, {a3, b5}},

a contradiction. This proves (1).

(2) Some vertex different from a1, a2, a3 has at least three neighbours in {b1, . . . , b5}.

Let H be the cover graph with respect to a1, a2, a3, b1, . . . , b5. By 3.3, χ(H) ≥ 3. So either 
it is a cycle of length five, or it has a triangle. (A triangle means a clique with cardinality 
three.) Suppose first that H is a cycle of length five, with edges b1b2, b2b3, b3b4, b4b5, b5b1
say. Some vertex d1,2 	= a1, a2, a3 is adjacent in G to b1, b2, from the definition of H, 
and it is nonadjacent to b3, b4, b5 since H is a cycle. Define d2,3 and so on similarly. By 
(1), each of these five vertices is in the set X; but then none of b1, . . . , b5 has a unique 
neighbour in X, contrary to the minimality of X.

It follows that H has a triangle, say with vertices b1, b2, b3. Some vertex d1,2 	=
a1, a2, a3 is adjacent in G to b1, b2, from the definition of H; define d2,3, d3,1 similarly. 
Suppose that d1,2, d2,3, d3,1 are all different. Then there is a 6-cluster

{{d1,2, b1}, {d2,3, b2}, {d3,1, b3}, {a1}, {a2, b4}, {a3, b5}},

a contradiction. So two of d1,2, d2,3, d3,1 are equal. This proves (2).

Let a4 be adjacent to b1, b2, b3 say. It is nonadjacent to b4, b5 since G has no K(4, 4, 0)-
subgraph by 4.1. By 3.3 the cover graph with respect to a1, a2, a3, a4, b1, . . . , b5 has 
chromatic number at least two, and so has an edge. Choose a5 different from a1, . . . , a4
with two neighbours in {b1, . . . , b5}. By (1), a4, a5 are both adjacent to b6.
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Fig. 5. For the last part of the proof of 4.3. a5 is adjacent to two of b1, . . . , b5.

Up to symmetry there are three cases: a5 is adjacent to b1, b2; a5 is adjacent to b1, b4; 
and a5 is adjacent to b4, b5.

First, if a5 is adjacent to b1, b2, there is a 6-cluster

{{b1}, {a5, b2}, {a4, b3}, {a1}, {a2, b4}, {a3, b5}},

a contradiction. If a5 is adjacent to b1, b4, there is a 6-cluster

{{b1}, {a4, b2}, {a5, b4, b6}, {a1}, {a2, b3}, {a3, b5}},

a contradiction. So a5 is adjacent to b4, b5.
By 3.1(iv), the graph G \{a1, a2, a3, a4, a5} has at most five components; and so some 

two of b1, . . . , b6 belong to the same component. So there is a path P of G between two 
of b1, . . . , b6 with no other vertices in {a1, . . . , b5, b1, . . . , b6}. Let P have ends bi, bj say. 
The subgraph induced on {a4, a5, b1, . . . , b6} is a tree, and its union with P includes a 
cycle that contains P ; and in all cases we can use this cycle to make three of b1, . . . , b5
adjacent and thereby produce a K6 minor. In detail (up to symmetry these are the only 
possibilities):

• If (i, j) = (1, 2), there is a 6-cluster {{b1}, {P ∗ ∪ {b2}}, {a4, b3}, {a1}, {a2, b4}, {a3,

b5}}.
• If (i, j) = (1, 4), there is a 6-cluster {{b1}, {a4, b2}, P ∗ ∪ {b4, b6}, {a1}, {a2, b3}, {a3,

b5}}.
• If (i, j) = (1, 6) there is a 6-cluster {{b1}, {a4b2}, P ∗ ∪{b6, a5, b4}, {a1}, {a2, b3}, {a3,

b5}}.
• If (i, j) = (4, 5) there is a 6-cluster {{b1, a4, b6, a5}, {b4}, P ∗∪{b5}, {a1}, {a2, b2}, {a3,

b3}}.
• If (i, j) = (4, 6) there is a 6-cluster {P ∗ ∪{b6}, {b4}, {a5, b5}, {a1}, {a2, b2}, {a3, b3}}.

In each case we have a contradiction. This proves 4.3. �
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4.4. Let G be a minimal candidate with bipartition (A, B). Then G has no K(4, 7, 4)-
subgraph.

Proof. Suppose that a1, . . . , a4 ∈ A are all adjacent to each of b1, . . . , b7 ∈ B, except the 
pairs a1b1, a2b2, a3b3, a4b4. Let H be the cover graph with respect to a1, . . . , a4, b1, . . . , b7. 
We claim that every partition of V (H) into at most three sets is feasible. To see this, 
let {Y1, . . . , Yk} be a partition of V (H) with k ≤ 3. We must show there are disjoint 
subsets X1, . . . , Xk of {a1, . . . , a4} such that Xi ∪ Yi is connected for 1 ≤ i ≤ k. If some 
Yi, say Y1, contains all of b1, . . . , b4 we may set X1 = {a1, a2} and X2, . . . , Xk each to 
contain one of a3, a4; so we may assume that for 1 ≤ i ≤ k, there exists j ∈ {1, . . . , 4}
such that bj /∈ Yi. But then (from Hall’s “marriage” theorem, for instance), there is an 
injection φ : {1, . . . , k} → {1, . . . , 4} such that bφ(i) /∈ Yi for 1 ≤ i ≤ k; so we may set 
Xi = {aφ(i)} for 1 ≤ i ≤ k. This proves that every partition of V (H) into at most three 
sets is feasible, and so χ(H) ≥ 4 by 3.3.

(1) b1, b2, b3, b4 are pairwise adjacent in H, and H has no other edges.

Suppose that say b5b6 are adjacent in H, and let c ∈ A \ {a1, . . . , a4} be adjacent to 
b5, b6. There is a 6-cluster

{a1, b2}, {a2, b3}, {a3, b4}, {a4, b1}, {b5}, {c, b6}},

a contradiction. So b5, b6, b7 are pairwise nonadjacent in H. Let S be the set of edges of 
H with both ends in {b1, . . . , b4}, and T the set of edges of H with one end in {b1, . . . , b4}
and the other in {b5, b6, b7}. Thus every edge of H belongs to exactly one of S, T . If say 
b3b4 and b4b5 are edges of H, choose c, c′ ∈ A \ {a1, . . . , a4} adjacent to b3, b4 and to 
b4, b5 respectively (possibly c = c′); then there is a 6-cluster

{{a1, b2}, {a2, b6}, {a3, b7}, {a4, b2}, {c, c′, b3, b4}, {b5}},

a1 a2 a3 a4

b1 b2 b3 b4

b5 b6 b7

Fig. 6. K(4, 7, 4)-subgraph.
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a contradiction. Hence no edge in S shares an end with an edge in T , and so no component 
of H has an edge in S and an edge in T . But some component H ′ of H has chromatic 
number at least four, and so not all its edges are in T , since then it would be bipartite. 
Hence all its edges are in S, and so V (H ′) ⊆ {b1, . . . , b4}; and since H ′ has chromatic 
number four, H ′ is a complete graph. This proves (1).

Choose c 	= a1, . . . , a4 adjacent to b1, b2, and c′ 	= a1, . . . , a4 adjacent to b3, b4. Then 
c = c′, since otherwise the connected subgraphs with vertex sets {b1, c, b2}, {b3, c′, b4},
{b5}, {b6}, {b7} violate 3.2 (taking X = {a1, . . . , a4}). Consequently c is adjacent to 
b1, b2, b3, b4. By the same argument, no other vertex has two neighbours in {b1, . . . , b4}, 
and hence no other vertex has two neighbours in {b1, . . . , b7}, since b5, b6, b7 have degree 
zero in H. But then the cover graph with respect to a1, . . . , a4, c, b1, . . . , b7 has no edges 
and 3.3 is violated. This proves 4.4. �
4.5. Let G be a minimal candidate with bipartition (A, B). Then G has no K(4, 5, 2)-
subgraph.

Proof. Suppose that a1, . . . , a4 ∈ A are all adjacent to each of b1, . . . , b5 ∈ B, except the 
pairs a1b1, a2b2. Let A′ = {a1, . . . , a4} and B′ = B \ {b1, . . . , b5}.

(1) Every vertex in B′ with a neighbour in A′ has exactly two neighbours in A′.

Suppose that some vertex b6 ∈ B′ is adjacent to exactly one of a1, . . . , a4. By 3.4, for 
i = 3, 4, 5 there is a vertex ci adjacent to bi, b6 and not in A′. But then

{{a1, b2}, {a2, b3}, {a3, b1}, {b4}, {a4}, {b5, c5, b6, c4}}

is a 6-cluster, a contradiction.
So every vertex in B′ with a neighbour in A′ has at least two neighbours in this set. 

No vertex is adjacent to all of a1, a3, a4 or to all of a2, a3, a4, since there is no K(3, 5, 0)-
subgraph by 4.3. If some vertex b6 ∈ B′ is adjacent to a1, a2, a3, then each of a1, a2, a4

a1 a2a3 a4

b1b2

b3 b4 b5

Fig. 7. K(4, 5, 2)-subgraph.
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has exactly one neighbour different from b1, . . . , b6, and these must all be equal since no 
vertex has exactly one neighbour in A′; but then G has a K(4, 7, 4)-subgraph, contrary 
to 4.4. Similarly no vertex in B′ is adjacent to a1, a2, a4. This proves (1).

(2) b3, b4, b5 each have degree four in G.

There are four edges between {a1, a2} and B′, and only two between {a3, a4} and B′; 
and so by (1) there is a vertex b6 ∈ B′ adjacent to a1, a2 and not to a3, a4. By 3.4, there 
is a vertex different from a1, . . . , a4 adjacent to b6, b1 (because b6, b1 are adjacent to a2), 
and similarly there is a vertex different from a1, . . . , a4 adjacent to b6, b2. Consequently 
there is a path P between b1, b2 with no other vertices in {a1, . . . , a4, b1, . . . , b5} (possibly 
containing b6).

We claim that P, b3, b4, b5 all belong to different components of G \A′. Because suppose 
not; then, either there is a path Q of G between two of b3, b4, b5 with no other vertex in 
{a1, . . . , a4, b1, . . . , b5}, or there is a path Q between one of b1, b2 and one of b3, b4, b5 with 
no other vertex in {a1, . . . , a4, b1, . . . , b5}. In the first case, say Q has ends b3, b4; then

{{b3}, Q∗ ∪ {b4}, {a4}, {a1, b2}, {a2, b5}, {a3, b1}}

is a 6-cluster, a contradiction. In the second case, let Q have ends b1, b3 say; then

{{P ∗ ∪Q∗ ∪ {b1}, {a1, b2}, {b3}, {a2, b4}, {a3, b5}, {a4}}

is a 6-cluster, a contradiction.
This proves that P, b3, b4, b5 all belong to different components of G \ {a1, a2, a3, a4}. 

By 3.2, the components containing b3, b4, b5 are all singletons. This proves (2).

Now for i = 3, 4, ai has one neighbour in B′, say ci. Either c3 = c4 and c3 has 
no neighbour in {a1, a2}, or each of c3, c4 has a unique neighbour in {a1, a2}, and not 
the same one. Thus in either case we may assume that c3 is not adjacent to a1 and 
c4 is not adjacent to a2. Consequently, there are at least six vertices in B \ {b1, b2}
with a neighbour in {a1, a3}, namely b3, b4, b5, c3 and the two neighbours of a1 not in 
{b1, . . . , b5}. Similarly there are at least six vertices in B \ {b1, b2} with a neighbour in 
{a2, a4}. Since b1, b2 both have degree four, by contracting {a1, b2, a3} and {a2, b1, a4}
into A we obtain a smaller candidate, a contradiction. This proves 4.5. �
4.6. Let G be a minimal candidate with bipartition (A, B). Then G has no K(4, 4, 1)-
subgraph.

Proof. Suppose that a1, . . . , a4 ∈ A are all adjacent to each of b1, . . . , b4 ∈ B, except the 
pair a1b1. Let A′ = {a1, . . . , a4} and B′ = B \ {b1, . . . , b4}. No vertex in B′ is adjacent 
to all of a2, a3, a4 since G has no K(3, 5, 0)-subgraph by 4.3. No vertex is adjacent to a1
and to two of a2, a3, a4 since G has no K(4, 5, 2)-subgraph by 4.5. So every vertex in B′

′
with a neighbour in A has at most two neighbours in this set.
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Fig. 8. K(4, 4, 1)-subgraph.

Suppose that some vertex b5 ∈ B′ has only one neighbour in A′, and that neighbour 
is different from a1; let it be a2 say. By 3.4, for i = 1, 2, 3, 4 there is a vertex ci 	= a2
adjacent to both b5, bi. But then

{{b5, c1, c2, c3, c4}, {a2}, {a3, b1}, {a4, b2}, {a1, b3}, {b4}}

is a 6-cluster. So every vertex in B′ with a neighbour in {a2, . . . , a4} has exactly two 
neighbours in A′.

But there are an odd number of edges (nine) between A′ and B′; so some vertex 
b5 ∈ B′ has a unique neighbour in A′, and consequently this neighbour is a1. It follows 
that at most two edges between {a2, a3, a4} and B′ are incident with a neighbour of a1. 
But there are six edges between {a2, a3, a4} and B′, and so there is a vertex b6 ∈ B′

adjacent to two of a2, a3, a4, say a2, a3. (Indeed there are two such vertices, but one will 
suffice.) By 3.4, for i = 2, 3, 4 there is a vertex ci 	= a1 adjacent to both b5, bi. But then

{{a2}, {a3, b6}, {a4, b1}, {a1, b3}, {b4}, {b5, c2, c3, c4, b2}}

is a 6-cluster, a contradiction. This proves 4.6. �

5. Excluding K(3, 4, 0)-subgraphs

Our main goal in this section is to eliminate K(3, 4, 0)-subgraphs; and to do this, we 
first eliminate K(3, 7, 3)-subgraphs.

5.1. Let G be a minimal candidate with bipartition (A, B). Then G has no K(3, 7, 3)-
subgraph.

Proof. Suppose that a1, a2, a3 ∈ A are all adjacent to each of b1, . . . , b7 ∈ B except for 
the pairs a1b1, a2, b2, a3b3.

(1) No vertex different from a1, a2, a3 has at least three neighbours in {b4, b5, b6, b7}.
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This is immediate since G has no K(4, 4, 1)-subgraph by 4.6.

a1 a2 a3

b1b2b3

b4 b5 b6 b7

Fig. 9. K(3, 7, 3)-subgraph.

(2) No vertex different from a1, a2, a3 has at least four neighbours in {b1, . . . , b7}.

Suppose a4 has at least four neighbours in {b1, . . . , b7}. Let I be the set of i ∈ {1, . . . , 7}
such that a4 is adjacent to bi. Thus |I| ≥ 4. By (1), there is a neighbour b8 of a4 not in 
{b1, . . . , b7}. Thus b8 is nonadjacent to a1, a2, a3, since the latter have degree only six. 
By 3.4, for each i ∈ I there exists ci 	= a1, . . . , a4 adjacent to bi, b8.

Suppose first that 1, 2, 3 ∈ I; and we may assume that 4 ∈ I since |I| ≥ 4. Then

{{a4}, {b8, c1, c2, c3, c4}, {a1, b2}, {a2, b3}, {a3, b1}, {b4}}

is a 6-cluster. So not all 1, 2, 3 belong to I; and hence by (1), since |I| ≥ 4, we may 
assume that I = {1, 2, 4, 5}. But then

{{a4}, {b8, c1, c2, c4, c5}, {a1, b2}, {a2, b3, b4}, {a3, b1}, {b5}}

is a 6-cluster. This proves (2).

Let H be the cover graph with respect to a1, a2, a3, b1, . . . , b7. By an argument like 
that in the proof of 4.4, it follows that every partition of V (H) into four sets is feasible, 
and so χ(H) ≥ 5 by 3.3. For each edge bibj of H let ci,j ∈ A \ {a1, a2, a3} be adjacent to 
bi, bj .

(3) The subgraph H[{b4, b5, b6, b7}] has no triangle, and so is bipartite; and hence b1, b2, b3
are pairwise adjacent in H.

Suppose that say b4, b5, b6 are pairwise adjacent in H. By (1), c4,5, c5,6, c4,6 are all distinct. 
But then

{{a1, b2}, {a2, b3}, {a3, b1}, {c4,5, b4}, {c5,6, b5}, {c4,6, b6}}
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is a 6-cluster. So H[{b4, b5, b6, b7}] is bipartite. Since χ(H) ≥ 5 it follows that b1, b2, b3
are pairwise adjacent in H. This proves (3).

(4) Let i ∈ {1, 2, 3}, and let j, k ∈ {4, 5, 6, 7} be distinct. If bi, bj , bk are pairwise adjacent 
in H, then ci,j , ci,k, cj,k are all equal.

Let i = 3, j = 4 and k = 5 say. Suppose first that c3,4, c4,5, c3,5 are all different. Since 
c4,5 is different from c2,3 by (2) it follows that

{{a1}, {a2, b6}, {a3, b7}, {b3, c2,3, b2, c3,4, c3,5}, {b4}, {c4,5, b5}}

is a 6-cluster. Thus one of c3,4, c4,5, c3,5 (say c) is adjacent to all of b3, b4, b5. Suppose 
that some d ∈ {c3,4, c4,5, c3,5} is different from c. Then d is different from one of c1,3, c2,3
by (2), say d 	= c2,3, and

{{a1}, {a2, b6}, {a3, b7}, {b3, c2,3, b2, c}, {b4}, {d, b5}}

is a 6-cluster. This proves (4).

(5) There exists a clique X ⊆ V (H) of H containing two of b1, b2, b3 and two of b4, . . . , b7.

If H is perfect, then it has a clique of cardinality five, which therefore contains all of 
b1, b2, b3 by (3) and the claim holds. Otherwise, H has an odd hole or antihole as an 
induced subgraph; and since H has only seven vertices and χ(H) ≥ 5, it follows that H
has an induced cycle C of length five, and the other two vertices of H are adjacent to 
each other and to every vertex of C. Since b1, b2, b3 are pairwise adjacent, at least one 
of them is not in V (C), say b1; and so at least three vertices of C are not in {b1, b2, b3}, 
and consequently an edge of C has both ends in {b4, . . . , b7}. But this set contains no 
triangle of C by (3), and so the second vertex of H not in V (C) belongs to {b1, b2, b3}. 
This proves (5).

From (5) we may assume that b2, b3, b4, b5 are pairwise adjacent in H. By (4), 
c1,4, c1,5, c4,5 are all equal, and also c1,5, c1,6, c5,6 are all equal. But then c1,4 = c5,6
contrary to (2). This proves 5.1. �
5.2. Let G be a minimal candidate with bipartition (A, B). Then G has no K(3, 4, 0)-
subgraph.

Proof. Suppose that a1, a2, a3 ∈ A are all adjacent to each of b1, . . . , b4 ∈ B.
No vertex in A \ {a1, a2, a3} has more than two neighbours in {b1, . . . , b4}, since 

G has no K(4, 4, 1)-subgraph or K(4, 4, 0)-subgraph by 4.6 and 4.1. Also no vertex in 
B \ {b1, . . . , b4} is adjacent to all three of a1, a2, a3, since G has no K(3, 5, 0)-subgraph 
by 4.3.
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a1 a2 a3

b1 b2 b3 b4

Fig. 10. K(3, 4, 0)-subgraph.

Let B0 be the set of vertices in B with exactly one neighbour in {a1, a2, a3}. Thus 
|B0| is even.

(1) B0 	= ∅ and hence |B0| ≥ 2.

Suppose that B0 = ∅. Since there are exactly six edges between {a1, a2, a3} and B \
{b1, . . . , b4}, it follows that there are exactly three vertices each adjacent to exactly two 
of a1, a2, a3, and each of a1, a2, a3 is adjacent to exactly two of these three vertices; but 
then G contains a K(3, 7, 3)-subgraph, contrary to 5.1. This proves (1).

(2) Every vertex adjacent to exactly two of b1, . . . , b4 is adjacent to every vertex in B0.

Let a4 be adjacent to b1, b2 say, and let b5 be adjacent to a1 and not to a2, a3. Suppose 
that a4, b5 are nonadjacent. By 3.4, for 1 ≤ i ≤ 4 there is a vertex ci 	= a1 adjacent to 
b5, bi; and ci 	= a2, a3, a4 since these are not adjacent to b5. But then

{{a4, b1}, {b2}, {b5, c1, c2, c3, c4}, {a1}, {a2, b3}, {a3, b4}}

is a 6-cluster. This proves (2).

Contracting {a1, a2, a3, b1, b2, b3, b4} into B does not yield a smaller candidate, so some 
vertex a4 different from a1, a2, a3 has at least two (and hence exactly two) neighbours 
in {b1, b2, b3, b4}. From the symmetry we may assume that a4 is adjacent to b1, b2. Since 
a4 has degree six, and is adjacent to every vertex in B0, it follows that |B0| ≤ 4, and so 
some vertex is adjacent to exactly two of a1, a2, a3.

(3) There is a vertex different from a1, . . . , a4 adjacent to b3, b4.

Suppose not. Choose distinct b5, b6 ∈ B0. By 3.4, for i ∈ {3, 4} and j ∈ {5, 6} there 
is a vertex ci,j /∈ {a1, . . . , a4} adjacent to bi, bj ; and ci,j 	= a4 since a4 has only two 
neighbours in {b1, . . . , b4}. Moreover {c3,5, c3,6} is disjoint from {c4,5, c4,6}, since these 
vertices only have one neighbour in {b3, b4} by hypothesis. Let b7 be a vertex adjacent 
to exactly two of a1, a2, a3, say a2, a3; then since a4 is adjacent to b5, b6 by (2),
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{{a1, b1}, {a2}, {a3, b7}, {c3,5, c3,6, b3, b5}, {c4,5, c4,6, b4}, {a4, b2, b6}}

is a 6-cluster. This proves (3).

a1 a2 a3

a4 a5

b1 b2 b3 b4

Fig. 11. For the proof of 5.2.

Let a5 	= a1, . . . , a4 be adjacent to b3, b4. By (2) a5 is adjacent to every vertex in B0.

(4) There is no path P of G \ {a1, . . . , a5} with ends in distinct sets in the list 
{b1}, {b2}, {b3}, {b4}, B0.

Suppose that P is such a path. By choosing P minimal we may assume that no internal 
vertex of P belongs to {b1, b2, b3, b4} ∪B0; and from the symmetry we may assume that 
b1 is an end of P . Let the other end be bi say. Up to symmetry there are three cases: 
i = 2, i = 3, and i = 5 for some b5 ∈ B0, and in the third case we may assume that a1
is adjacent to b5 from the symmetry.

• If i = 2 then {{a1}, {a2, b3}, {a3, b4}, {b1}, P ∗ ∪ {b2}, B0 ∪ {a4, a5}} is a 6-cluster.
• If i = 3 then {{a1}, {a2, b2}, {a3, b4}, {b1}, P ∗ ∪ {b3}, B0 ∪ {a4, a5}} is a 6-cluster.
• If i = 5 then {{a1}, {a2, b3}, {a3, b4}, P ∗ ∪ {b1}, {a4, b2}, {a5, b6}} is a 6-cluster.

This proves (4).

(5) b1, . . . , b4 all have degree four in G.

From (4), b1, b2, b3, b4, b5 all belong to different components of G \{a1, . . . , a5}, and none 
of these four components contains any vertex of B0. By 3.1(iv) and 3.1(v), G \{a1, . . . , a5}
has exactly five components, and four of them are singletons; and therefore one contains 
all of B0 and so is not a singleton. This proves (5).

As we observed earlier, there is a vertex c ∈ B that is adjacent to exactly two of 
a1, a2, a3, say to a2, a3. Moreover, since B0 	= ∅, not both neighbours of a1 in B \
{b1, . . . , b4} have a neighbour in {a2, a3}; and so a1 has a neighbour in B0, say b5. Since 
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we cannot obtain a smaller candidate by contracting {a1, . . . , a5, b1, . . . , b5, c} into B, 
there exists a6 ∈ A different from a1, . . . , a5 with two neighbours in {b1, . . . , b5, c}. By 
(5), a6 is adjacent to b5, c. Let b6 ∈ B0 \ {b5}. Then

{{a1}, {a2, b1}, {a3, b3}, {a4, b2}, {a5, b4}, {a6, c, b5}}

is a 6-cluster. This proves 5.2. �
6. Excluding K(2, 5, 0)-subgraphs

Our next goal is to eliminate K(2, 5, 0)-subgraphs. We begin with:

6.1. Let G be a minimal candidate with bipartition (A, B). Then G has no K(2, 6, 0)-
subgraph.

Proof. Suppose that a1, a2 ∈ A are both adjacent to each of b1, . . . , b6 ∈ B. The cover 
graph H with respect to a1, a2, b1, . . . , b6 has chromatic number at least five, by 3.3 (note 
that every partition of {b1, . . . , b6} into four sets is feasible, since at least two of them 
will be singletons and therefore already induce connected subgraphs). Consequently H
has a clique of size five, and so we may assume that b1, . . . , b5 are pairwise adjacent in 
H. By 5.2, no vertex in A \ {a1, a2} has more than three neighbours in {b1, . . . , b6}.

a1 a2

b1 b2 b3 b4 b5 b6

Fig. 12. K(2, 6, 0)-subgraph.

For 1 ≤ i < j ≤ 5 let ci,j ∈ A \ {a1, a2} be adjacent to bi, bj . If the six vertices 
ci,j (1 ≤ i < j ≤ 4) are all distinct, there is a 6-cluster

{{b1, c1,2, c1,3, c1,4}, {b2, c2,3, c2,4}, {b3, c3,4}, {b4}, {a1}, {a2, b5}},

a contradiction. So we may assume that some two are equal, and hence some vertex in 
A \ {a1, a2} is adjacent to three of b1, b2, b3, b4; say a3 is adjacent to b1, b2, b3. If none of 
the vertices ci,j (i ∈ {1, 2, 3}, j ∈ {4, 5}) is adjacent to both b4, b5, then

{{b1}, {b2, a3}, {b4, c1,4, c2,4}, {b5, c1,5, c2,5, c4,5}, {a1}, {a2, b6}},

is a 6-cluster, a contradiction; so we may assume that some a4 is adjacent to b3, b4, b5
say. (See Fig. 13.)
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a1 a2

b1 b2
b3

b4 b5

b6

a3 a4

Fig. 13. For the proof of 6.1.

If some a5 different from a1, . . . , a4 is adjacent to three of b1, b2, b4, b5, say to b1, b2, b4, 
then

{{b1}, {b2, a3}, {b4, a5}, {b5, a4, c1,5, c2,5}, {a1}, {a2, b6}}

is a 6-cluster, a contradiction; so we may assume that no vertex different from a1, . . . , a4
is adjacent to three of b1, b2, b4, b5. Consequently c1,4, c2,4, c1,5, c2,5 are all different. But 
then

{{b1}, {b2, a3}, {b4, c1,4, c2,4}, {b5, a4, c1,5, c2,5}, {a1}, {a2, b6}}

is a 6-cluster, a contradiction. This proves 6.1. �
6.2. Let G be a minimal candidate with bipartition (A, B). Then G has no K(2, 5, 0)-
subgraph.

Proof. Suppose that a1, a2 ∈ A are both adjacent to each of b1, . . . , b5 ∈ B. Let b6, b7 be 
the neighbours of a1, a2 respectively that are not in {b1, . . . , b5}. Thus b6 	= b7 since there 
is no K(2, 6, 0)-subgraph by 6.1. No vertex different from a1, a2 has four neighbours in 
{b1, . . . , b5} since there is no K(3, 4, 0)-subgraph by 5.2.

a1 a2

b1 b2 b3 b4 b5

Fig. 14. K(2, 5, 0)-subgraph.

The cover graph H with respect to a1, a2, b1, . . . , b5 has chromatic number at least 
four, by 3.3, and so has a clique of cardinality four, say {b1, b2, b3, b4}. For all distinct 
i, j ∈ {1, 2, 3, 4, 6, 7} let ci,j ∈ A \ {a1, a2} be adjacent to bi, bj , if there is such a vertex. 
Thus ci,j exists for 1 ≤ i < j ≤ 4, and also for all i ∈ {1, . . . , 5} and j ∈ {6, 7}, by 3.4.
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(1) Some vertex in A \ {a1, a2} has three neighbours in {b1, . . . , b4}.

Suppose not. Then each of the vertices ci,j (1 ≤ i < j ≤ 4) has only two neighbours in 
{b1, . . . , b4}, and in particular they are all different. But then

{{b1}, {c1,2, b2}, {c1,3, c2,3, b3}, {c1,4, c2,4, c3,4, b4}, {a1}, {a2, b5}}

is a 6-cluster. This proves (1).

Thus we may assume that some a3 is adjacent to b1, b2, b3.

(2) Some vertex in A \ {a1, a2, a3} is adjacent to b4 and to two of b1, b2, b3.

Suppose not; so c1,4, c2,4, c3,4 are all different. Suppose that some vertex c 	= a1, a2, a3 is 
adjacent to two of b1, b2, b3, say to b1, b2. Then

{{b1}, {c, b2}, {a3, b3}, {c1,4, c2,4, c3,4, b4}, {a1}, {a2, b5}}

is a 6-cluster. Thus there is no such c. There is a vertex b8 ∈ B \ {b1, . . . , b7} adjacent 
to a3; and by 3.4, for i = 1, 2, 3 there exists di ∈ A \ {a1, a2, a3} adjacent to b8, bi. Since 
no c 	= a1, a2, a3 is adjacent to two of b1, b2, b3, it follows that d1, d2, d3 are all different. 
Consequently ci,4 	= dj for all distinct i, j ∈ {1, 2, 3}. But then

{{c1,4, d1, b1}, {a3, c2,4, d2, b2}, {c3,4, d3, b3, b8}, {a1}, {a2, b5}}

is a 6-cluster. This proves (2).

Thus we may assume that a4 ∈ \{a1, a2, a3} is adjacent to b2, b3, b4. Since 
{b1, b2, b3, b4} is a clique of H, there exists a5 ∈ A \ {a1, a2, a3, a4} adjacent to b1, b4. 
(See Fig. 15.)

a1 a2

b1 b2 b3 b4

b5

a3 a4a5

b6 b7

Fig. 15. For the proof of 6.2.
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(3) No vertex in A different from a1, a2, a3, a4 has two neighbours in {b1, b2, b3}, or has 
two neighbours in {b2, b3, b4}.

Suppose that a6 is such a vertex, adjacent to two of b1, b2, b3 say. (Possibly a6 = a5.) If 
a6 is adjacent to b2, b3, then a6 	= a5 (by 5.2), and

{{a3, b1}, {b2}, {a6, b3}, {a4, a5, b4}, {a1}, {a2, b5}}

is a 6-cluster. Thus from the symmetry we may assume that a6 is adjacent to b1, b2, and 
now possibly a6 = a5. Then

{{a5, a6, b1}, {b2}, {a3, b3}, {a4, b4}, {a1}, {a2, b5}}

is a 6-cluster. This proves (3).

(4) Every vertex in B \ {b1, . . . , b7} adjacent to one of a3, a4 is adjacent to both a3, a4.

Suppose that b8 ∈ B \ {b1, . . . , b7} is adjacent to a3 and not to a4. By 3.4, for i = 2, 3
there exists ci,8 ∈ A \ {a3} adjacent to bi, b8; ci,8 	= a1, a2, a4 since a1, a2, a4 are not 
adjacent to b8, and ci,8 	= a5 since a5 is not adjacent to bi by (3). But then

{{a3, b1}, {c2,8, c3,8, b8, b2}, {b3}, {a4, a5, b4}, {a1}, {a2, b5}}

is a 6-cluster. This proves (4).

(5) Each of b6, b7 is adjacent to at least one of a3, a4.

Suppose that b6 is nonadjacent to both a3, a4. Thus ci,6 	= a3, a4 for 1 ≤ i ≤ 4. But then

{{a3, b1}, {b2}, {a4, b3}, {a5, c2,6, c4,6, b4, b6}, {a1}, {a2, b5}}

is a 6-cluster. This proves (5).

(6) Each of b6, b7 is adjacent to both of a3, a4.

Suppose that a4, b6 are nonadjacent. By (5), a3b6 is an edge. From (4), since a3, a4 both 
have degree six, and have the same number of neighbours in B \ {b1, . . . , b7}, it follows 
that they have the same number of neighbours in {b6, b7}; and so a4 has at least one 
neighbour in {b6, b7}, and therefore a4b7 is an edge, and a3, b7 are not adjacent. Suppose 
that c4,6, c1,7 are different; then from the symmetry we may assume that c1,7 	= a5. Then

{{c1,7, b1}, {a3, b2, b6}, {a4, b3, b7}, {a5, c4,6, b4}, {a1}, {a2, b5}}

is a 6-cluster. So c1,7 = c4,6, and we may assume that they both equal a5. Since a5 has 
at most five neighbours in {b1, . . . , b7}, it has a neighbour b8 different from b1, . . . , b7. 



M. Chudnovsky et al. / Journal of Combinatorial Theory, Series B 164 (2024) 68–104 93
a1 a2

b1 b2 b3 b4

b5

a3 a4

a5

b6 b7

b8

Fig. 16. For the proof of 6.2, step (6).

Consequently b8 is nonadjacent to a1, a2. Suppose that b8 is nonadjacent to both a3, a4. 
By 3.4, for i = 1, 4, 6, 7 there exists ci,8 adjacent to bi, b8, and different from a5. Since b8
is nonadjacent to a1, a2, a3, a4, it follows that ci,8 	= a1, . . . , a5. But then

{{a5, b1}, {a3, b2}, {a4, b3, b7}, {c4,8, c6,8, b4, b6, b8}, {a1}, {a2, b5}}

is a 6-cluster. So b8 is adjacent to one of a3, a4, and hence to both a3, a4 by (2). By 3.4, 
there is a vertex a6 	= a5 adjacent to b6, b7; and so a6 	= a1, a2, a3, a4 since none of these 
four vertices is adjacent to both b6, b7. But then

{{a1, b1}, {a3, b2}, {a4, b3}, {a5, b4}, {a2}, {a6, b6, b7}}

is a 6-cluster. This proves (6).

a1 a2

b1

b2 b3

b4

b5

a3 a4

b6 b7

b8

Fig. 17. For the last part of the proof of 6.2. (a5 is not drawn.)

From (6), there is a unique vertex b8 ∈ B\{b1, . . . , b7} adjacent to a3, and it is adjacent 
to both of a3, a4 by (4). The subgraph induced on {a1, a2, a3, a4, b1, b2, b3, b4, b5, b6, b7, b8}
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(note that a5 is not included) has some significant symmetry, which will help reduce the 
case analysis to come. There are symmetries that exchange

• b2 with b3;
• a1 with a2, and b6 with b7;
• a3 with a4, and b1 with b4;
• a1 with a3, a2 with a4, b5 with b8, b6 with b1, and b7 with b4.

Let us call these symmetries the first, second, third and fourth symmetries respectively. 
In the argument to come, we will avoid making use of a5, in order to maintain these 
symmetries.

(7) Let C2 be the component of G \{a1, a2, a3, a4} that contains b2; then it contains none 
of b1, . . . , b8 except b2.

Suppose not. By 3.4, c5,6, c5,7, c1,8, c4,8 exist, and they are different from a1, . . . , a4. Let 
X = {c5,6, c5,7, b5, b6, b7} and Y = {c1,8, c4,8, b1, b4, b8}. (X, Y might not be disjoint.) 
Since C2 contains one of b1, b3, . . . , b8, there is a minimal path P of G \ {a1, a2, a3, a4}
with one end b2 and the other end in {b3} ∪X ∪ Y . From the minimality of P it has no 
other neighbour in {b3} ∪X ∪ Y . Let z be the end of P different from b2. If z = b3 then

{{b3}, P ∗ ∪ {b2}, {a1}, {a2, b5}, {a3, b1}, {a4, b4}}

is a 6-cluster. Thus z ∈ X ∪ Y , and from the fourth symmetry we may assume that 
z ∈ X, and from the second symmetry we may assume that z ∈ {a1, b5, b6}. But then

{P ∗ ∪X, {a1, b4}, {a2}, {a3, b1}, {b2}, {a4, b3}}

is a 6-cluster. This proves (7).

Similarly, let C3 be the component of G \ {a1, a2, a3, a4} that contains b3; then it 
contains none of b1, . . . , b8 except b3. Now a1, . . . , a4 are the only vertices in A \ V (Ci)
that have a neighbour in V (Ci), for i = 2, 3, and in particular, no vertex in V (Ci) ∩ A

has a neighbour in V (G) \V (Ci). Since Ci is not a smaller candidate, it follows that |A ∩
V (Ci)| < |B∩V (Ci)|, for i = 2, 3. But there are at least six vertices in B\(V (C2) ∪V (C3))
that have a neighbour in {a1, a3}, namely b1, b4, b5, b6, b7, b8; and similarly there are six 
such vertices that have a neighbour in {a2, a4}. Hence contracting V (C2) ∪ {a1, a3} and 
V (C2) ∪{a2, a4} into A makes a smaller candidate, a contradiction. This proves 6.2. �
7. Excluding K(4, 4, 2)-subgraphs

7.1. Let G be a minimal candidate with bipartition (A, B). Then G has no K(4, 4, 2)-
subgraph.
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Proof. Suppose that a1, . . . , a4 ∈ A are all adjacent to each of b1, . . . , b4 ∈ B except the 
pairs a1b1, a2b2.

a1 a2a3 a4

b1 b2b3 b4

Fig. 18. K(4, 4, 2)-subgraph.

For i = 3, 4, ai has two neighbours, d1,i, d2,i say, not in {b1, . . . , b4}. Since there is no 
K(2, 5, 0)-subgraph by 6.2, none of d1,3, d2,3, d1,4, d2,4 is adjacent to both a3, a4, and so 
they are all distinct.

(1) Each of d1,3, d2,3, d1,4, d2,4 has a neighbour in {a1, a2}.

Suppose that d1,3 say is nonadjacent to both a1, a2. By 3.4, for 1 ≤ i ≤ 4 there is a 
vertex ci different from a3 that is adjacent to both d1,3, bi. But then

{{a3}, {c1, c2, c3, c4, d1,3}, {a1, b2}, {a2, b3}, {a3, b1}, {b4}}

is a 6-cluster. This proves (1).

Not both d1,3, d2,3 are adjacent to a1, since there is no K(2, 5, 0)-subgraph by 6.2, and 
similarly they are not both adjacent to a2, so we may assume that d1,3 is nonadjacent 
to a2, and d2,3 is nonadjacent to a1. The same applies for d1,4, d2,4; so for each i ∈ {1, 2}
and each j ∈ {3, 4}, di,j is adjacent to ai, aj and nonadjacent to the other two vertices 
in {a1, . . . , a4}.

a1 a2a3 a4

b1 b2b3 b4

d1,3 d1,4 d2,3 d2,4

Fig. 19. For the proof of 7.1, step (2).
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(2) There is a vertex b5 not in {b1, . . . , b4} adjacent to a1, a2.

Suppose not. Let d be the neighbour of a1 different from d1,3, d1,4, b2, b3, b4. Thus d is 
adjacent to a1 and to none of a2, a3, a4. By 3.4, for 2 ≤ i ≤ 4 there exists ci different 
from a1 that is adjacent to both d, bi. Also by 3.4, there is a vertex f different from a3
that is adjacent to both b2, d2,3. So c2, c3, c4, f are all in A \ {a1, . . . , a4}. But then

{{c2, c4, f, b2}, {b3}, {a2, d2,3}, {a3, b1}, {a4, d2,4}, {b4}}

is a 6-cluster. This proves (2).

By 3.4, there is a vertex c1 different from a2 and adjacent to b5, b1; and so c1 	=
a1, . . . , a4. Similar there exists c2 	= a1, . . . , a4 adjacent to b5, b2. By 3.4, there is a vertex 
f1,3 different from a3 that is adjacent to both b1, d1,3; and similarly there exists f1,4
different from a4 that is adjacent to both b1, d1,4; there exists f2,3 different from a3 that 
is adjacent to both b2, d2,3; and there exists f2,4 different from a4 that is adjacent to 
both b2, d1,4. Consequently none of f1,3, f1,4, f2,3, f2,4 belongs to {a1, . . . , a4}. If they are 
all equal, equal to a5 say, then a5 is adjacent to b1, b2, d1,3, d1,4, d2,3, d2,4; but then

{{c1, c2, b1, b2, b5}, {a5}, {a1, d1,4}, {a2, d2,3, b3}, {a3, d1,3}, {a4, d2,4, b4}}

is a 6-cluster. Thus they are not all equal, and so there exist i, j ∈ {3, 4} such that f1,i
is different from f2,j .

a1 a2a3 a4

b1 b2b3 b4b5

d1,3 d1,4 d2,3 d2,4

c1 c2

f1,i f2,j

Fig. 20. For the last part of the proof of 7.1. f1,i is adjacent to d1,i for some i ∈ {3, 4}, and similarly for 
f2,j . The vertices c1, c2 might be equal, but f1,i is different from f2,j .

(3) There are two disjoint subsets X, Y of {b1, f1,i, b2, f2,j , c1, c2, b5}, both inducing con-
nected subgraphs, with b1, f1,i ∈ X and b2, f2,j ∈ Y , such that there is an edge between 
X, Y .
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If f1,i is adjacent to b2 we may take X = {b1, f1,i} and Y = {b2, f2,j}, so we assume that 
f1,i is nonadjacent to b2, and similarly f2,j is nonadjacent to b1. It follows that f1,i 	= c2
and f2,j 	= c1. So the only possible equalities between two of f1,i, f2,j , c1, c2 are f1,i = c1, 
f2,j = c2, and c1 = c2. If f1,i = c1, then c1 is different from f2,j , c2 and we may set 
X = {b1, c1, b5} and Y = {b2, f2,j , c2}, so we assume f1,i 	= c1, and similarly f2,j 	= c2. 
But then we may set X = {b1, f1,i} and Y = {b5, c1, c2, b2, f2,j}. This proves (3).

But then

{X,Y, {a1, d1,3, d1,4}, {a2, d2,3, d2,4, b4}, {a3, b3}, {a4}}

is a 6-cluster. This proves 7.1. �
8. Excluding K(2, 4, 0)-subgraphs

We begin with:

8.1. Let G be a minimal candidate with bipartition (A, B). Then G has no K(3, 4, 1)-
subgraph.

Proof. Suppose that a1, a2, a3 ∈ A are all adjacent to each of b1, . . . , b4 ∈ B except a1b1. 
We observe:

(1) No vertex in A \ {a1, a2, a3} is adjacent to b1 and to two of b2, b3, b4. No vertex 
in B \ {b1, . . . , b4} is adjacent to both a2, a3. At most one vertex in B \ {b1, . . . , b4} is 
adjacent to both a1, a2, and at most one is adjacent to a1, a3,

The first is because there is no K(4, 4, 2)-subgraph by 7.1, and the other three because 
there is no K(2, 5, 0)-subgraph by 6.2. This proves (1).

a1 a2 a3

b1b2 b3 b4d1 d2 d3

ci,j

Fig. 21. The start of the proof of 8.1. ci,j is adjacent to di and bj .
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Let B0 be the set of vertices that have exactly one neighbour in {a1, a2, a3}. Thus 
|B0| is odd. From (1) it follows that each of a1, a2, a3 has a neighbour in B0; let us call 
these neighbours d1, d2, d3 respectively. For i = 1, 2, 3 and j = 1, 2, 3, 4 (except when 
(i, j) = (1, 1)), by 3.4 there is a vertex ci,j different from ai and adjacent to di, bj . Hence 
ci,j 	= a1, a2, a3. For i = 2, 3 choose the set {ci,1, ci,2, ci,3, ci,4} minimal, and choose the 
set {c1,2, c1,3, c1,4} minimal.

(2) Some vertex a4 ∈ A \ {a1, a2, a3} has more than one neighbour in {b2, b3, b4}.

Suppose not. Thus c2,2, c2,3, c2,4 are all different. We chose {c2,1, c2,2, c2,3, c2,4} minimal; 
so we may assume that either

• c2,1, c2,2, c2,3, c4,4 are all distinct, and each has only one neighbour in {b1, . . . , b4}; or
• c2,1 = c2,2. In this case c2,1 is nonadjacent to b3, b4 by (1).

In both cases neither of c2,1, c2,2 have a neighbour in {b3, b4}, and so {c1,3, c1,4} is disjoint 
from {c2,1, c2,2}. But then

{{c2,1, c2,2, d2}, {a2}, {c1,3, c2,3, d1, b3}, {c1,4, c2,4, b4}, {a3, b1}, {a1, b2}}

is a 6-cluster. This proves (2).

We assume that a4 is adjacent to b2, b3 (and possibly to b4, but not to b1, by (1)).

(3) a4 is adjacent to d2, d3.

Suppose that a4, d2 are nonadjacent, say. Then

{{c2,1, c2,2, c2,3, c2,4, d2}, {a2}, {b2}, {a4, b4}, {a3, b1}, {a1, b4}}

is a 6-cluster. This proves (3).

a1 a2 a3

b1b2 b3 b4d1 d2 d3

a4

Fig. 22. For the proof of 8.1, step (4).
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(4) If a4 is nonadjacent to b4, then no vertex in A \ {a1, . . . , a4} has a neighbour in 
{b2, b3} and a neighbour in {d2, d3}.

Suppose that some a5 ∈ A \ {a1, . . . , a4} is adjacent to b2, d2 say. By (1), c2,1 	= a4, and 
since a4, b4 are nonadjacent, c2,4 	= a4. Hence

{{a2}, {c2,1, c2,4, a5, d2}, {a1, b4}, {a3, b1}, {b2}, {a4, b3}}

is a 6-cluster. This proves (4).

(5) a4 is adjacent to d1 and hence to every vertex in B0.

Suppose that a4 is nonadjacent to d1. Thus c1,2, c1,3, c1,4 	= a4. If a4 is adjacent to b4, then 
c2,4 = a4 by (3) (with b3, b4 exchanged), and at most one of c1,2, c1,3, c1,4 = c2,1 by (1), 
and so we may assume that {c2,1, c2,4} is disjoint from {c1,2, c1,3}. If a4 is nonadjacent to 
b4, then by (4), neither of c2,1, c2,4 has a neighbour in {b2, b3}, and so again c2,1, c2,4 	=
c1,2, c1,3. In either case

{{b2}, {b3, c1,2, c1,3, d1}, {d2, c2,1, c2,4, a4}, {a1, b4}, {a2}, {a3, b1}}

is a 6-cluster. Hence a4 is adjacent to each of d1, d2, d3, and hence to every vertex in B0. 
This proves (5).

(6) a4 is adjacent to b4.

Suppose not. Since a4 has degree six and is nonadjacent to b1 by (1), it has a neighbour 
b5 	= b1, . . . , b4, d1, d2, d3. By 3.4, for each v ∈ {b2, b3, d1, d2, d3} there is a vertex c(v)
different from a4 adjacent to b5, v; and hence c(v) 	= a1, . . . , a4. But then

{{a4}, {b5, c(b2), c(b3), c(d1), c(d2), c(d3)}, {a1, d1, b4}, {a2, b1, d2}, {a3, d3}, {b2}}

is a 6-cluster. This proves (6).

Since a4 has degree only six, it follows from (5) that |B0| ≤ 4. Since |B0| is odd, it 
follows that B0 = {d1, d2, d3}, and there are two vertices d4, d5 ∈ B \ {b1, . . . , b4} that 
have two neighbours in {a1, a2, a3}. By (1) we may assume that d4, d5 are adjacent to 
a1, a2 and to a1, a3 respectively.

We do not obtain a smaller candidate by contracting {d4, a1, b2}, {d5, a3, b3}, {b1, a2, b4}
into B; and so there is a vertex a5 	= a1, . . . , a4, adjacent either to both b2, d4, or to both 
b3, b5, or to both b1, b4. There is symmetry between b1, d4, d5 (see Fig. 23), so we may as-
sume that a5 is adjacent to b1, b4. By 3.4, there is a vertex c(d2) different from a2 adjacent 
to both b1, d2; a vertex c(d3) different from a3 adjacent to both b1, d3; and a vertex c(d5)
different from a3 adjacent to both b1, d5. It follows that c(d2), c(d3), c(d5) 	= a1, . . . , a4. 
But then
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a1 a2 a3

b1

b2 b3 b4d1 d2 d3

a4

d4 d5

Fig. 23. For the last part of the proof of 8.1.

{{b1, a5, c(d2), c(d3), c(d5), d2}, {a2, b3}, {a1, d5}, {a3, d3}, {a4, b2}, {b4}}

is a 6-cluster. This proves 8.1. �
8.2. Let G be a minimal candidate with bipartition (A, B). Then G has no K(2, 4, 0)-
subgraph.

Proof. Suppose that a1, a2 ∈ A are both adjacent to each of b1, . . . , b4 ∈ B. No other ver-
tex is adjacent to both a1, a2, since there is no K(2, 5, 0)-subgraph by 6.2. Let b5, b6, b7, b8
be the vertices in B that have exactly one neighbour in {a1, a2}, where b5, b6 are adjacent 
to a1, and b7, b8 to a2.

No other vertex is adjacent to more than two of b1, . . . , b4, since there is no K(3, 4, 0)-
or K(3, 4, 1)-subgraph by 5.2 and 8.1. Let H be the cover graph with respect to 
a1, a2, b1, b2, b3, b4; then χ(H) ≥ 3 by 3.3, and so H has a triangle, say with vertices 
b1, b2, b3. Consequently there are three vertices c1, c2, c3, such that ci is adjacent to the 
two vertices in {b1, b2, b3} \ {bi}, and ci is nonadjacent to bi (see Fig. 24).

Let Z = {a1, a2, b1, b2, b3, b4, c1, c2, c3}, and let C be the set of components of G \ Z
that contain at least one of b5, b6, b7, b8. For each C ∈ C, let N(C) be the set of vertices 
in {b1, b2, b3, c1, c2, c3} that have a neighbour in V (C).

(1) If C ∈ C, then b4 has a neighbour in V (C), and either

• N(C) = {bi, ci} for some i ∈ {1, 2, 3}; or
• N(C) = {ci, cj} for some two distinct i, j ∈ {1, 2, 3}.

Let b5 ∈ V (C) say. By 3.4, for i = 1, 2, 3, 4 there is a vertex different from a1 adjacent 
to both b5, bi. Since none of c1, c2, c3 is adjacent to b4, it follows that b4 has a neigh-
bour in V (C). Also, for 1 ≤ i ≤ 3, either bi ∈ N(C) or N(C) contains a vertex in 
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a1 a2

b1 b2 b3

b4

b5 b6 b7 b8

c1c2c3

Fig. 24. For the proof of 8.2.

{c1, c2, c3} \ {ci}. In summary, N(C) contains a member of each of the sets {b1, c2, c3}, 
{b2, c3, c1}, {b3, c1, c2}. Consequently, if |N(C)| = 2 then the claim holds, so we assume 
that |N(C)| ≥ 3. Since

{{c3, b1}, {c2, b3}, {c1, b2}, {a1}, {a2, b4}, V (C)}

is not a 6-cluster, it follows that N(C) is disjoint from one of the sets {c3, b1}, {c2, b3},
{c1, b2}, and we may assume from the symmetry that b1, c3 /∈ N(C). Since N(C) contains 
a member of {b1, c2, c3}, it follows that c2 ∈ N(C). By a similar argument, N(C) is 
disjoint from one of {c3, b2}, {c2, b1}, {c1, b3}, and hence from one of {c3, b2}, {c1, b3}. 
Since |N(C)| ≥ 3, N(C) ∩ {c1, b3} 	= ∅; and hence b2 /∈ N(C). Since |N(C)| ≥ 3 it 
follows that c1, b3 ∈ N(C). But then

{{c2, c3, b1}, {c1, b2}, {b3}, {a1}, {a2, b4}, V (C)}

is a 6-cluster. This proves (1).

(2) If C ∈ C, then every vertex of V (C) ∩ {b5, b6, b7, b8} is adjacent to every vertex of 
N(C) ∩ {c1, c2, c3}.

We may assume that b5 ∈ V (C) and c3 ∈ N(C), and we must show that b5, c3 are 
adjacent. It follows from (1) that b1, b2 /∈ N(C). But for i = 1, 2 there is a vertex different 
from a1 adjacent to both b5, bi, and this vertex is one of c1, c2, c3 since b1, b2 /∈ N(C). 
Thus b5 is adjacent to one of c1, c3, and also to one of c2, c3. But b5 is not adjacent to 
both c1, c2 since not all c1, c2, c3 ∈ N(C); and so b5 is adjacent to c3. This proves (2).

(3) If C ∈ C, then N(C) ∩ {b1, b2, b3} = ∅.

Suppose that b1, b5 ∈ N(C) say. Thus N(C) contains c1 and none of b2, b3, c2, c3. Let 
C ′ ∈ C contain b6. We claim that b6 is also adjacent to c1; because suppose not. Then 
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b6 /∈ V (C), by (2), and so C ′ 	= C. Since b6 is nonadjacent to c1, (2) implies that 
c1 /∈ N(C ′). Since b5, b6 are both adjacent to a1, they have a second common neighbour 
c say. But c /∈ {c1, c2, c3}, since c1 is not adjacent to b6, and c2, c3 /∈ N(C) and so are 
not adjacent to b5. Also c 	= a1, a2; so c /∈ Z, contradicting that C 	= C ′ are components 
of G \ Z. This proves that b6 is adjacent to c1.

We claim also that c2, c3 /∈ N(C ′). There is a symmetry exchanging c2, c3 and fixing 
c1, so we suppose without loss of generality that c2 ∈ N(C ′), and hence C 	= C ′. But 
then

{{V (C ′) ∪ {c2}, V (C) ∪ {c1, b3}, {b1}, {b2, c3}, {a1}, {a2, b4}}

is a 6-cluster. This proves that c2, c3 /∈ N(C ′), and hence N(C ′) = N(C).
Now a1, c1 have four common neighbours, namely b2, b3, b5, b6; and so they satisfy 

the same conditions as a1, a2. At the start of this proof, we showed the existence of 
c1, c2, c3, that with three of b1, b2, b3 induce a 6-cycle. Consequently the same is true 
for b2, b3, b5, b6, and in particular there are two vertices c4, c5, different from a1, c1, that 
have a neighbour in {b2, b3}. Since c2, c3 /∈ N(C) = N(C ′), it follows that c4, c5 /∈ Z, 
and hence at least one of b2, b3 belongs to N(C) = N(C ′), contrary to (1). This proves 
(3).

For i = 5, 6, 7, 8, let Ci ∈ C contain bi (they are not necessarily all different). From 
(1), (2) and (3) it follows that each of b5, b6, b7, b8 is adjacent to two of c1, c2, c3. They 
are not all adjacent to the same two of c1, c2, c3, since there is no K(2, 5, 0)-subgraph by 
6.2; so there exists C ∈ {C5, C6} and C ′ ∈ {C7, C8} with N(C) 	= N(C ′). Thus we may 
assume that c2, c3 ∈ N(C5) and c1, c2 ∈ N(C7). In particular C5 	= C7; and by (2), b5, b7
are adjacent to c2. By 3.4 they have another common neighbour, say c. Thus c /∈ {a1, a2}
because b5, b7 each have only one and different neighbours in that set; c /∈ {c1, c2, c3}, 
since c 	= c2 from its definition, and c1 /∈ N(C5), and c3 /∈ N(C7); and c /∈ V (G) \ Z

since C 	= C ′, a contradiction. This proves 8.2. �
9. The end

Next we need the following lemma. Let H be a complete graph with six vertices. If 
C is a triangle (that is, a three-vertex clique) of H, a C-path means a path of H with 
vertex set C. Let C1, . . . , Ck be triangles of H, not necessarily all different. We denote 
by M(C1, . . . , Ck) the graph with vertex set V (H) and edge set the set of all edges uv
of H such that {u, v} is not a subset of any of C1, . . . , Ck. Let J be the graph obtained 
from a six-vertex complete graph by deleting four edges, the edges of two vertex-disjoint 
three-vertex paths. We observe that J admits a 5-cluster (one of the five sets contains 
the two vertices of degree three, the others are singletons).
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9.1. Let H, C1, . . . , Ck be as above. Then for 1 ≤ i ≤ k there is a Ci-path Pi, such that

M(C1, . . . , Ck) ∪ P1 ∪ · · · ∪ Pk

has a subgraph isomorphic to J .

Proof. We proceed by induction on k. Suppose first that u, v ∈ V (H) and two of 
C1, . . . , Ck contain u, v, say C1, C2. Let C1 = {u, v, w} say. Let P1 be the path 
u-w-v. From the inductive hypothesis, for 2 ≤ i ≤ k there is a Ci-path Pi such that 
M(C2, . . . , Ck) ∪ P2 ∪ · · · ∪ Pk contains a copy of J . But every edge of M(C2, . . . , Ck)
that is not an edge of M(C1, . . . , Ck) is one of uw, vw, and they are edges of P1; so 
M(C1, . . . , Ck) ∪ P1 ∪ · · · ∪ Pk contains a copy of J as required.

So we may assume that no two of C1, . . . , Ck share more than one vertex. Every 
subgraph of H obtained by deleting at most two edges contains a copy of J , so we may 
assume that k ≥ 3 and hence no two of C1, . . . , Ck are disjoint (because if C1 ∩ C2 = ∅
then C3 shares two vertices with one of them). Let V (H) = {h1, . . . , h6}; then we may 
assume that C1 = {h1, h2, h3}, C2 = {h1, h4, h5}, C3 = {h2, h4, h6} and either k = 3, or 
k = 4 and C4 = {h3, h5, h6}. Define P1 = h2-h1-h3, P2 = h1-h5-h4, P3 = h4-h2-h6, and 
if k = 4, define P4 = h3-h6-h5. If k = 4, M(C1, . . . , Ck) ∪ P1 ∪ · · · ∪ Pk is isomorphic to 
J , and if k = 3, M(C1, . . . , Ck) ∪P1 ∪ · · · ∪Pk contains a copy of J . This proves 9.1. �

We deduce 1.8, which we restate as follows:

9.2. No graph is a candidate.

Proof. Assume some graph is a candidate, and let G be a minimal candidate, with 
bipartition (A, B). Let a ∈ A, and let its neighbours be b1, . . . , b6. By 3.3 (or by 
3.4), the cover graph H with respect to a, b1, . . . , b6 is complete. No vertex different 
from a has more than three neighbours in {b1, . . . , b6}, since there is no K(2, 6, 0)-, 
K(2, 5, 0)- or K(2, 4, 0)-subgraph, by 6.1, 6.2 and 8.2. Consequently there is a set of 
vertices a1, . . . , a� ∈ A \ {a}, each with two or three neighbours in {b1, . . . , b6}, such 
that for all distinct u, v ∈ {b1, . . . , b6}, there exists i ∈ {1, . . . , �} such that ai is adja-
cent to u, v. We may assume that each of a1, . . . , ak has three neighbours in {b1, . . . , b6}
and ak+1, . . . , a� have two. (Possibly k = 0.) For 1 ≤ i ≤ k let Ci be the set of three 
neighbours of ai in {b1, . . . , b6}. By 9.1, for 1 ≤ i ≤ k there is a Ci-path Pi such that 
M(C1, . . . , Ck) ∪ P1 ∪ · · · ∪ Pk contains a copy of J as a subgraph, and hence admits a 
5-cluster {X1, . . . , X5} say. Let pi be the middle vertex of Pi for 1 ≤ i ≤ k, and let pi be 
one of the two neighbours of ai for k + 1 ≤ i ≤ �.

For each v ∈ {b1, . . . , b6} let C(v) be the set consisting of v and all the vertices 
ai with 1 ≤ i ≤ � such that pi = v. For 1 ≤ j ≤ 5 let Yj be the union of the sets 
C(v) over all v ∈ Xj . We claim that {{a}, Y1, . . . , Y5} is a 6-cluster. To see this, we 
must check that these six sets are pairwise disjoint subsets of V (G), which is clear; that 
Y1, . . . , Y5 each contain a neighbour of a, which is true since X1, . . . , X5 are nonempty 



104 M. Chudnovsky et al. / Journal of Combinatorial Theory, Series B 164 (2024) 68–104
subsets of {b1, . . . , b6}; that each of the sets Yi induces a connected subgraph of G; 
and that for 1 ≤ i < i′ ≤ 5, some vertex in Yi has a neighbour in Yi′ . To see both 
these final statements, it suffices to show that if u, v ∈ {b1, . . . , b6} are adjacent in 
M(C1, . . . , Ck) ∪P1 ∪ · · ·∪Pk, there is an edge of G between C(u) and C(v). To see this, 
there are two cases: uv ∈ E(M(C1, . . . , Ck)), and uv ∈ E(Pi) for some i ∈ {1, . . . , k}. 
In the first case, there exists i with k + 1 ≤ i ≤ � such that ai is adjacent to both u, v, 
and since pi is one of u, v, the claim holds. In the second case, let uv ∈ E(Pi) for some 
i ∈ {1, . . . , k}; then one of u, v equals pi, say v; the other, u, is an end of Pi; and in G
there is an edge between ci and u. This proves 9.2. �
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