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Abstract

This thesis investigates the pair cache problem, a unique variation of the classic cache
replacement problem where each element is stored in two pages, and the cache only needs
one of these pages to respond to a query. The thesis formalizes the definition of the pair
cache problem, explores relevant historical background, and investigates both offline and
online cases. In the offline case, we show that approximating the problem with a factor less
than two is NP-hard, while in the online case, we extend the FIFO algorithm and prove
that it works as a 4-factor approximation. The proposed pair cache scheme has practical
applications in systems where data retrieval times are slow, and most processes require
information stored in two different data sources. The goal of a pair cache management
algorithm is to minimize the number of retrievals by deciding which page to retrieve on a
miss and which page to discard when the cache is full.
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Chapter 1

Introduction

1.1 Motivation

In this thesis, we delve into a unique variation of the classic cache replacement problem
that we call the pair cache problem. Unlike the usual cache replacement problem where
each element is stored on a single page, in the pair cache problem, each element is stored
on two pages, and the cache only needs one of these pages to respond to a query. This
requires the cache replacement algorithm to not only make decisions about which page to
discard to make room for new pages but also which page to retrieve to respond to a query.

The introduction of this new aspect of the problem increases its complexity. The tra-
ditional Belady’s algorithm[1] is efficient in solving the offline cache replacement problem,
but we will show that the offline pair cache problem is NP-hard, meaning it probably can-
not be solved in polynomial time. Moreover, we prove that finding a polynomial algorithm
that approximates the offline pair cache problem with a constant factor of less than two
is hard, i.e. the 2-factor approximation is NP-hard if the unique games conjecture[4] is
true. This conjecture is well known in computational complexity theory. However, we
propose the “FPIFO” algorithm(“first pair in first out”), an extension of the classic first
in first out algorithm, that shows promising results in the online version of the pair cache
problem, where page requests are not known in advance. We prove that it offers a 4-factor
approximation, retrieving four times the optimal with four times as much cache.

The proposed pair cache scheme has practical applications in systems where data re-
trieval times are slow and most processes require information stored in two different data
sources. Imagine a third-party service interacting with a vast social media network, seeking
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to optimize the number of requests it makes to the network for shortest-path trees among
users, without compromising on storage limits or user privacy. The third-party service is
allowed to query the social media network for a shortest-path tree from a vertex at a fixed
cost and is tasked with responding to a sequence of shortest-path queries among pairs of
vertices. The service is allowed to only store a limited number of the given shortest-path
trees at a time so that it does not learn about the whole network over time. The shortest
path between two vertices can be easily found using a shortest-path tree rooted from either
of the two ends. The pair cache algorithm can come into play and store the allowed number
of shortest-path trees, minimizing the number of shortest-path tree queries while respond-
ing to all the shortest path queries. Later in the thesis, we will explore more applications
by giving a general example of graph algorithms that can be assisted with a pair cache
algorithm when running on a large graph.

The pair cache problem, while having practical implications, is also of theoretical signifi-
cance. We will show that the vertex cover problem—an established computational problem
concerning the covering of graphs— can be reduced to the offline pair cache problem.

The journey of this thesis begins by formally defining the pair cache problem, followed
by a historical overview of the cache replacement problem and related issues such as the
vertex cover in the section on related works. From there, we delve deeper into the relation-
ship between the pair cache problem and the vertex cover problem. We then examine the
offline pair cache problem and establish its computational difficulty. Lastly, we probe into
the online version of the pair cache problem, propose the FPIFO algorithm, and illustrate
its efficacy. Along the way, we will further illustrate practical applications of the pair cache
problem ensuring that our theoretical investigation translates to real-world utility.

1.2 Problem

The cache problem is a common issue faced by operating systems in order to speed up
the process of querying elements stored in the main memory. The main memory stores
elements on pages of equal size and each element is associated with only one page. To
speed up the process, the operating system uses a small and fast cache as an intermediary
memory.

When a query is made, if the page associated with the required element is present in
the cache, the query is considered a “hit”, and the result is returned almost instantly.
However, if the page is not present in the cache, the query is considered a “miss”. In this
case, the system retrieves the page from the main memory, which is time-consuming, and
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stores it in the cache before responding to the query. Cache replacement policies manage
the cache memory by deciding which page to discard when a new page should be retrieved
and the cache is full.

The pair cache problem is a variation of the cache problem, where elements are stored
on two pages, instead of just one. In order to respond to a query, the cache must have
access to at least one of the two pages. If either of the two pages is present in the cache,
the query is considered a “hit”. Otherwise, it is considered a “miss”, and the system must
retrieve at least one of the two pages, store it in the cache, and then respond to the query.
The goal of a pair cache management algorithm is to minimize the number of retrievals by
deciding which page to retrieve on a miss and which page to discard when the cache is full.

For example, consider a scenario where we are storing information on a complete graph.
This graph is divided into n pages, with each page representing a node. Each edge in the
graph is represented as an element, and there are n(n− 1)/2 elements in total.

Let us denote a page as pi and an element as ei,j, where 0 < i < j <= n. Each element
ei,j is stored on two pages: pi and pj.

Now, let us assume that our cache can store k pages, where k is less than or equal to
n − 2. If the cache currently stores pages p1, p2, ..., pk, and we receive three queries for
elements e1,k, ek−1,k+1, ek+1,k+2, the cache can respond to the first two queries using the
pages it currently stores. However, for the third query, the cache will need to retrieve
either pk+1 or pk+2 from the main memory, which means it will need to discard one of the
pages it currently stores.

In this scenario, the pair cache management algorithm’s goal is to decide which page
to retrieve and which page to discard in order to minimize the number of retrievals from
the main memory.

It is important to note that the problem is agnostic to the elements themselves and only
focuses on the pages that the elements are on. From this point forward, we will represent
a query as a combination of the two pages that contain the queried element.

1.3 Notation and Problem Statement

In this section, we will formally define the pair cache problem and introduce the notation
that we will use throughout this thesis.

A sequence of queries, denoted as Q : q1, q2, ..., qn is given and an empty cache with a
capacity of k is available. The algorithm is tasked with answering the queries one by one.

3



The query qi is specified by a pair of pages in the notation (ai|bi), i.e., qi is asking for an
element which is in both pages ai and bi.

To respond to each query, the algorithm can perform the following operations:

• Retrieve(p): This operation retrieves page p from the main memory and stores it
in the cache. This operation is only possible if there is sufficient unused space in
the cache. For example, if the cache is full and a query for a page not in the cache
is made, the algorithm would need to perform a Discard operation before it could
Retrieve the new page.

• Discard(p): This operation removes page p from the cache to create space for a
subsequent Retrieve operation.

• Respond(p): This operation answers the query using page p (p = ai or p = bi),
provided that page p is present in the cache.

The goal of the algorithm is to answer all queries while minimizing the frequency of the
“Retrieve” operation.

There are two variants of the pair cache problem:

• Offline: In this variant, the sequence of queries is known in advance. The algorithm
must manage the cache to respond to the queries one by one. This variant might be
used in scenarios where the queries can be predicted, such as in a batch processing
system.

• Online: In this variant, the queries are presented one by one after the algorithm has
responded to the preceding query. This variant might be used in scenarios where the
queries cannot be predicted, such as in a real-time system.

Understanding both variants is crucial. The offline version offers insights into the the-
oretical aspects of the problem, its computational complexity, and the inherent challenges
in optimization. The online version, on the other hand, is more directly applicable to
real-world scenarios, and understanding its behaviour is key to devising efficient, practical
cache management strategies.

We also categorize the efficiency of an algorithm into three levels:
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• Optimal: An optimal algorithm minimizes the number of retrievals. This is the ideal
level of efficiency, but it may not always be achievable in practice.

• t-factor approximation: A t-factor approximation algorithm uses a cache that is t
times larger and incurs t times the number of retrievals compared to an optimal
algorithm. This level of efficiency might be acceptable in scenarios where a larger
cache is available.

• α, β-factor approximation: An α, β-factor approximation algorithm uses a cache that
is α times larger and incurs a maximum of β times more retrievals compared to an
optimal algorithm. This level of efficiency might be acceptable in scenarios where a
balance between cache size and retrieval frequency is needed.

The idea of an approximation to the optimal is natural, where approximation means
just more cache misses. At first blush, giving a larger cache for the online approximation
seems strange, until an old observation is recalled. Suppose we have a cache of size n− 1,
then an online method could remove the element required next at each step, whereas an
offline method would require at most one miss for each n steps. For this reason Sleator
and Tarjan[9] allowed the online approximation method to have twice the cache than the
offline optimal. We consider even more “cache flexibility” for our online approximation,
making comparisons between the two methods more fair.

1.4 Theorems

This section outlines the primary theorems established in this thesis. In Section 3.1, we
demonstrate the similarities of the pair cache problem and the vertex cover problem. The
first theorem shows that the pair cache problem can be viewed as a generalization to the
vertex cover problem.

Theorem 1. Let G(E, V ) be a graph with edges ei = (vi, ui). The graph has a vertex cover
of size k if and only if an offline pair cache of size k can respond to the sequence of queries
Q : (v1|u1), (v2|u2), ..., (v|E||u|E|) with at most k retrievals.

In Section 3.2, we prove that the offline pair cache problem’s optimal solution is NP-
Hard. We further extend this result by demonstrating that finding a polynomial 2-factor
approximation for the problem is also a hard task.
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Theorem 2. The task of determining an optimal solution for the offline pair cache problem
is NP-Hard.

Theorem 3. If the unique games conjecture holds true, then approximating the offline pair
cache problem with a constant factor less than 2 is NP-Hard.

Section 3.3 focuses on the online variant of the pair cache problem. We begin by
extending the FIFO algorithm to the pair cache problem by retrieving the pair of pages
when it misses. Furthermore we illustrate that FPIFO(first pair in first out) provides
a 4-factor approximation and construct worst case sequences in which it does not work
significantly better than that.

Theorem 4. The FPIFO algorithm provides a 4-factor approximation for the online pair
cache problem.

Theorem 5. In the worst case, if the cache size of the FPIFO algorithm is 4 times larger,
it uses β = 4− o(1) times retrievals compared to an optimal cache baseline.

In Section 3.4, we extend the results from Section 3.3 to the α, β-factor approximations.

Theorem 6. For constants α, β > 2, if the cache size of the FPIFO algorithm is α times
larger and uses β times retrievals compared to an optimal cache baseline, then β ≤ 2α

α−2
.

Theorem 7. Under worst-case conditions, if FPIFO’s cache size is α times larger, provided
that α > 2 and the condition (α ∗ k) mod 2 = 0 is satisfied, the number of retrievals used
by FPIFO in comparison to the optimal cache baseline is: β = 2α

α−2
− o(1)
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Chapter 2

Related Work

This thesis undertakes the task of studying the pair cache problem, a unique variant of the
cache replacement problem, where each item resides on two pages, and the cache only needs
to retrieve one of these pages to satisfy a query. We propose an extension of the first in
first out (FIFO) algorithm and evaluate its effectiveness for this problem. Furthermore, we
investigate the complexity of finding an optimal algorithm, referred to as a MIN algorithm,
for this problem. Our investigation builds upon previous research on the classical cache
replacement problem and its variants. In proving the complexity, we utilize principles from
the Vertex Cover problem and Unique Games Conjecture.

2.1 Cache Replacement Problem and Algorithms

We begin by reviewing the classical cache replacement problem. This problem encompasses
maintaining a cache of fixed size and determining which item in the cache to replace
when a new item arrives, and the cache is at capacity. The aim is to minimize cache
misses—instances where a requested item is not in the cache.

Various cache replacement algorithms have been proposed in the literature, including
Least Recently Used (LRU), First-In First-Out (FIFO), Least Frequently Used (LFU),
and Random Replacement (RR), each offering different performance characteristics and
suitability to various types of workloads.

A classic algorithm for the offline cache replacement problem is Belady’s MIN algorithm,
proposed by Belady in 1966[1]. This algorithm replaces the item with the furthest future
use—the item whose next reference has the largest distance. Belady’s algorithm offers
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optimal performance for a given cache size and workload. It is also simple to comprehend
and implement; however, its main limitation is the requirement of knowledge of the entire
sequence of requests in advance, a condition often unfeasible in practice.

In scenarios where a query specifies when the next page request will occur, Belady’s
can be efficiently implemented using a balanced tree. This allows for identifying a page
on a hit (by accessing the leftmost item) or replacing a page (by removing the rightmost
item), then adding a new page on a miss—all in logarithmic time. However, if the focus
is solely on the misses, a more streamlined data structure like a self-organizing priority
queue can be utilized to process the miss in logarithmic time. This approach mirrors the
techniques discussed in [11] and [10].

LRU, a widely used online cache replacement algorithm, operates by keeping track of
the least recently used item in the cache and replacing it with the new item when the cache
is full. LRU has been proven to have good worst-case performance, with cache misses being
at most k times the optimal, where k is the cache size [12].

FIFO is another online cache replacement algorithm. It operates with a queue, replacing
the oldest item with the new item when the cache is full.

FIFO and LRU both miss at most n/(n− nMIN + 1) times the optimal if n and nMIN

are the size of the cache in the LRU/FIFO and MIN algorithm respectively[12].

We can represent both these algorithms as an α, β-factor approximation (α: Cache size
ratio, and β: Miss ratio), using the following equations:

α = n/nMIN

β = n/(n−nMIN +1) = α∗nMIN/(α∗nMIN −nMIN +1) < α∗nMIN/((α−1)∗nMIN +1)

Here, if β >= α/(α−1), FIFO and LRU serve as α, β-factor approximation algorithms.
Assuming α = 2, They offer 2-approximations.

Having reviewed the classical cache replacement problem and its algorithms, we now
move to discuss a variant of this problem, the pair cache problem. The unique feature of
this problem is that each item is stored on two pages, and the cache only needs to retrieve
one of these pages to respond to a query. This thesis aims to investigate the complexity
of finding an optimal offline algorithm (MIN) for the pair cache problem and proposes
extensions of FIFO and LRU algorithms for the online version of the pair cache problem.
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2.2 Vertex Cover Problem and Unique Games Con-

jecture

Our journey to understand the complexity of the pair cache problem brings us to the
Vertex Cover problem—a classical optimization problem in computer science, and the
Unique Games Conjecture (UGC).

The Vertex Cover problem is a classical optimization problem in computer science that
has been extensively studied. It involves finding a minimum-size subset of vertices S ⊆ V
from a given undirected graph G = (V,E) such that every edge in E is incident to at least
one vertex in S. This problem is NP-complete, suggesting it is computationally difficult
to find an exact solution within polynomial time[3], but approximations within a factor
of the optimal solution are achievable. The question of how well we can approximate the
Vertex Cover problem has been the subject of much research.

The Unique Games Conjecture (UGC), on the other hand, is a central hypothesis in
computational complexity theory that relates to the Vertex Cover problem. The conjecture
states that it is NP-hard to distinguish between instances of a certain type of constraint
satisfaction problem (CSP) that has some assignments that satisfy most constraints and
instances in which at most a small fraction of the constraints can be satisfied. We describe
UCG as Khot[4] formulated it in the unique label cover context.

Given a bipartite graph G = (V,E), each vertex v ∈ V is associated with a label set
Lv from a finite domain [k] (where k is a positive integer). Each edge (u, v) ∈ E has an
associated permutation πu,v : Lu → Lv. A labeling of the graph assigns a label from Lv to
each vertex v.

An assignment of labels to the vertices satisfies an edge (u, v) if the label assigned to
vertex u maps to the label assigned to vertex v under the permutation πu,v.

The conjecture posits that for a sufficiently small constant ϵ > 0, it is NP-hard to
distinguish between the following two cases:

1. There exists a labeling that satisfies 1 − ϵ fraction of the edges (i.e., almost all of
them).

2. Every labeling satisfies at most an ϵ fraction of the edges (i.e., almost none of them).

UCG has direct implications for the approximability of various optimization problems,
including the Vertex Cover problem. Significant findings in this area include Khot’s work,
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showing that assuming UGC to be true, approximating the Vertex Cover problem within
a constant factor less than

√
2 is NP-hard[4]. Khot and Regev further strengthened this

result, demonstrating that approximating the Vertex Cover problem within any factor less
than 2 is NP-hard, under the assumption of UGC’s truthfulness[6].

Since its introduction, UGC has been extensively studied in the literature, and many
works have explored its consequences for various optimization problems. Khot and Regev
showed that UGC implies the hardness of approximating fundamental problems like Max
Cut, Max 2-Sat and MAX-2LIN[5].

Overall, UGC is an important hypothesis that has led to significant advances in the
theory of approximation algorithms. Its implications for the Vertex Cover problem demon-
strate the difficulty of the problem and the challenges involved in designing efficient ap-
proximation algorithms for it.

In the next chapter, we aim to show the reducibility of the Vertex Cover problem to the
offline pair cache problem and examine the implications of the Unique Games Conjecture
on approximating the pair cache problem.

2.3 k-server Problem and the CNN Problem

Many cache problem variants have been explored in academic research over the past
decades. One such variant is the k-server problem, a generalization of the cache prob-
lem and a fundamental issue in the field of online algorithms and competitive analysis.
This problem focuses on efficiently moving k servers to service requests that appear online
at the points of a metric space, with the objective to minimize the total distance travelled
by the servers. The problem was first defined by Manasse, McGeogh, and Sleator, and it
has been a major driving force for the development of the area of online algorithms [9].

The k-server problem is defined by an initial configuration and a sequence of requests.
A solution is a sequence of configurations such that each request is included in the corre-
sponding configuration. The cost of a solution is the total distance travelled by the servers.
An online algorithm computes each configuration based only on the past, and the central
question in competitive analysis is how good an online algorithm is compared to an optimal
algorithm which is based also on future requests[7]. A cache problem with a cache of size
k can be viewed as a k-server problem in a uniform metric space.

The k-server problem and its variants, including the CNN problem, are crucial in shap-
ing our understanding of the pair cache problem. In the CNN problem(named after a
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scenario in which the Cable News Network crew are trying to shoot scenes on Manhattan),
a server services requests in the Euclidean plane but only needs to move to a point that
lies in the same horizontal or vertical line with the request. This problem is applicable
in situations where the server’s exact location is not as crucial as being in the request’s
general vicinity[8]. The pair cache problem can be viewed as a CNN problem in uniform
distances, albeit the CNN problem is primarily evaluated with a low number of servers (up
to two).

These cache problem variants have considerably aided academic progress in online prob-
lems, finding practical applications in database systems and disk management. This re-
search suggests that the pair cache problem, given its unique characteristics, can contribute
to this progress as well.

In the next chapter, we will delve deeper into the pair cache problem, exploring its
computational complexity and proposing an extension of the FIFO algorithm that performs
well for this problem.
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Chapter 3

Methods

3.1 Pair Cache and Vertex Cover

In this section, we delve into the relationship between the pair cache scheme and the
vertex cover problem. Understanding the interplay between these two provides a unique
perspective into the theoretical essence of this new variant of the cache problem and its
computational complexity.

The discussion begins with the offline version of the pair cache problem. We establish
that the well-known minimum vertex cover problem can be reformulated as the pair cache
problem. This is stated formally in the following theorem:

Theorem 1. Let G(E, V ) be a graph with edges ei = (vi, ui). The graph has a vertex cover
of size k if and only if an offline pair cache of size k can respond to the sequence of queries
Q : (v1|u1), (v2|u2), ..., (v|E||u|E|) with at most k retrievals.

Proof. The two problems have a deep-seated similarity. Each edge in the graph can be
interpreted as an element shared by two pages, i.e., the two vertices at its ends. Suppose
an offline pair cache of size k can respond to queries Q, by retrieving at most k′ ≤ k pages
P = p1, p2, ..., pk′ . Each element queried in Q represents an edge in graph G, which is
responded to by a page in P corresponding to one of the edge’s endpoints. This implies
every edge in G has one of its endpoints in P , which is the definition of a vertex cover for
G.

Conversely, let C = c1, c2, ..., ck be a vertex cover for G. Every query in Q encompasses
the endpoints of an edge in G, and at least one endpoint will be found in C. The cache
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of size k can retrieve all items in C to respond to all queries without needing to remove
any element in the process. Thus, the cache can respond to all queries with at most k
retrievals.

This theorem concludes that the offline pair cache problem is as complex as the mini-
mum vertex cover problem. It offers significant insights into the computational complexity
of the pair cache problem, and it paves the way for further exploration into this topic in
the following section.

Next, we introduce an online variant to the vertex cover problem that we call the “edge
serving problem”. This problem finds its relevance to the online pair cache problem. Unlike
the static set of vertices chosen in the vertex cover problem to cover a given set of edges,
the edge serving problem revolves around maintaining a dynamic set of vertices of limited
size, aiming to cover requested edges one at a time.

Here is an illustration of the edge serving problem: consider a scenario where a city is
under air-bombing, with one road being targeted each day. As a defence general, you have
k anti-bomb squads at your disposal. A road r = {v, u} can be protected if a squad is
deployed at intersection v or u. A spy reports the targeted road to you at midnight every
day. As squad movements entail high costs, the goal is to minimize the number of times
you relocate a squad while ensuring the city’s protection.

To put it formally, in the edge serving problem, we have a sequence of marked edges Q :
ev1,u1 , ev2,u2 , ..., evt,ut revealed one by one, and an initially empty vertex set S of maximum
size k. At time i, the edge evi,ui

is marked. The algorithm should ensure the edge evi,ui

at time i is covered by including either vi or ui in the vertex set S. The challenge is to
minimize the number of times a vertex is added to the set.

The edge serving problem can be seen as equivalent to the pair cache problem where
vertices are pages, edges are elements, and the goal is to maintain a cache of size k (similar
to the vertex set) that serves a sequence of pair queries (like edges) while minimizing the
number of retrievals (akin to adding a vertex to the set).

This variation of the vertex cover problem sheds light on the practical applications of
pair cache problems. For instance, in maintaining a memory of size k << n that can
store the adjacency lists of k vertices in a large complete graph of n vertices. To cater
to an algorithm’s needs that request one edge data si at each step i, an online pair cache
algorithm can be employed to maintain a set of k adjacency lists at minimum cost.

In conclusion, we have successfully bridged the gap between the offline pair cache prob-
lem and the vertex cover problem. We introduced the edge serving problem as an online

13



version of the vertex cover problem, discussed its real-world implications, and established
its equivalence to the online pair cache problem. In the subsequent sections, sections 3.2
and 3.3, we will delve into the computational complexity of the offline and online pair cache
problems.

3.2 Offline Pair Cache Problem

For the offline case of the standard cache problem, Belady’s algorithm provides an optimal
solution. The strategy is straightforward: discard the page that will not be required for
the longest period in the future. Despite its simplicity, it works effectively. If provided
with the subsequent usage time of the queried page (as elaborated in Section 2.1), it can
execute each query in logarithmic time. However, when it comes to the pair cache problem,
things become considerably more complicated.

Extending Belady’s algorithm to the pair cache problem involves answering a complex
question: when will each page be needed again, considering whether it will truly be neces-
sary the next time it is requested? This predicament leads to a branching problem: which
page should be used to respond to each query?

By considering all possible choices, we realize that the pair cache problem can be
reduced to an exponential number of standard cache problems by determining the page to
use for each query.

Theorem 2 further supports our argument by demonstrating that the pair cache problem
is NP-Hard. The result is interesting as it suggests our initial intuition about the complexity
of the problem was not an overestimation.

Theorem 2. The task of determining an optimal solution for the offline pair cache problem
is NP-Hard.

Proof. Building upon Theorem 1, any minimum vertex cover problem can be transformed
into an offline optimal pair cache problem. Given that the minimum vertex cover problem
is a known NP-Hard problem, the same complexity carries over to the offline optimal pair
cache problem.

In the preceding Theorem, we substantiated that the offline pair cache problem poses
a greater challenge than the regular offline cache problem. Proceeding forward, we aim
to broaden this comparison in the ensuing theorem by demonstrating that the offline pair
cache problem, even armed with complete foreknowledge of future queries, does not find

14



itself more straightforward than the online cache problem, which is resolvable utilizing
LRU with a 2-factor approximation. The complexity of the offline pair cache problem, as
affirmed by theorems 1 and 2, is analogous to that of the Vertex Cover problem. Therefore,
proving this theorem should not present an inordinate challenge.

Theorem 3. If the unique games conjecture holds true, then approximating the offline pair
cache problem with a constant factor less than 2 is NP-Hard.

Proof. As demonstrated by Theorem 1, a minimum vertex cover problem can be reduced
to an offline pair cache problem. Hence, any algorithm that can solve the offline pair cache
problem with c∗MIN retrievals can equivalently solve the minimum vertex cover problem
with c ∗MIN vertices. It is known that approximating the minimum vertex cover with a
factor less than 2 is NP-Hard, assuming the unique games conjecture holds true [6]. The
same complexity, therefore, applies to the offline pair cache problem.

To conclude, the aforementioned theorems establish the intricacy of the offline pair
cache problem. Compared to the standard cache problem, it presents more sophisticated
challenges. Moreover, its complexity is akin to well-recognized NP-Hard problems such as
the Vertex Cover problem. Hence, our initial suspicion about the problem’s complexity
was well-founded. Even with complete knowledge of future queries, the offline pair cache
problem remains as complex as the online version of the standard cache problem solvable
with the LRU’s 2-factor approximation.

3.3 Online Pair Cache Problem

In the previous section, we explored the offline pair cache problem. Now, let us turn our
attention to the online pair cache problem, where future query information is unknown.
To establish a comparison, remember that in the standard cache problem, both FIFO and
LRU algorithms solve the online case with a 2-factor approximation, which is twice the
optimal solution achieved in the offline case (as discussed in section 2.1). As we delve into
the online pair cache problem, a natural question to ask is if a 4-factor approximation is
possible, which would be twice as bad as the lower bound we proved for the offline case.

An α, β-approximation cache replacement algorithm, given α times more cache, can
use up to β times more retrievals than the optimal algorithm. We will discuss the bounds
considering unequal α and β in section 3.4. For now, we focus on a version of the problem
where α = β = 4 and aim to extend a classic cache replacement algorithm for achieving a
4-factor approximation.
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FIFO and LRU are the most natural algorithms to consider extending since they per-
form well in the standard cache replacement problem. However, adapting these algorithms
to the pair cache context is not straightforward.

The FIFO algorithm, when it misses, removes the page that has been retrieved earliest
before retrieving the required page. However, in a pair cache scenario, it becomes compli-
cated to decide which page to retrieve when a query is missed. To navigate this challenge,
we propose the first pair in first out (FPIFO) algorithm, a simple method where we con-
sider pages as pairs that are retrieved and removed together. Specifically, for a queried
element, if none of its pages is present in the cache, we retrieve both pages, and to free up
space, we remove a pair of pages that were retrieved together.

Algorithm 3.3 outlines the operation of the FPIFO algorithm when a query q : (a|b)
arrives, where the query q is present on pages a and b.

Algorithm 1 First pair in first out (FPIFO) Cache Algorithm

1: Input: A query q with pages (a, b), cache as a queue.
2: Output: cache after processing the query.
3: function FPIFO Handle Query(q)
4: if a /∈ cache and b /∈ cache then
5: if cache is full then
6: cache.pop front()
7: cache.pop front() ▷ Remove the oldest pair of pages
8: end if
9: cache.push back(a)
10: cache.push back(b) ▷ Add the new pair of pages
11: end if
12: return cache ▷ The output cache includes either a or b
13: end function

Similarly, we can extend the LRU algorithm to the pair cache context using the same
technique. The standard LRU removes the page that has not been used for the longest
time. In a pair cache scenario, we can consider pages as pairs that are retrieved and
removed together. This means that for a queried element, if none of its pages is present
in the cache, we fetch both pages. To free up space, we remove a pair of pages that were
retrieved together. We maintain a “used time” for each pair, which records the last time
any of the two pages in a pair were used.

Algorithm 2 outlines the operation of the least recently used pair (LRUP) algorithm
when a query q : (a|b) arrives, where the query q is present on pages a and b.
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Algorithm 2 Least Recently Used Pair (LRUP) Cache Algorithm

1: Input: A query q with pages (a, b).
2: function LRUP Handle Query(q)
3: if ai /∈ cache and bi /∈ cache then
4: Retrieve((ai, bi))
5: (ai, bi)usedtime ← i
6: if cache is full then
7: (amin, bmin)← argmin(a,b)∈cache(a, b)usedtime

8: Remove((amin, bmin))
9: end if
10: else if ai = aj and bi = bt and (aj, bj) ∈ cache and (at, bt) ∈ cache then
11: Choose x ∈ {j, t} arbitrarily
12: (ax, bx)usedtime ← i
13: else if (ai = aj or bi = aj) and (aj, bj) ∈ cache then
14: (aj, bj)usedtime ← i
15: end if
16: end function

While it seems more natural to prove a good approximation with the LRUP algorithm,
we found it challenging to prove that it can achieve a 4-factor approximation. However,
the FPIFO algorithm is simpler to analyze and can achieve our 4-factor approximation
goal more easily.

Theorem 4. The FPIFO algorithm provides a 4-factor approximation for the online pair
cache problem.

Proof. Our aim is to prove that on any query sequence Q, |Q| ≥ 1, FPIFO with a cache
of size 4k, retrieves at most 4k/(k + 1) < 4 times the number of elements retrieved by an
optimal algorithm (which we call the MIN algorithm), which has a cache of size k.

Starting from the end, we break the query sequence into subsequences S0, ..., Sm such
that MIN has k+1 misses in each, and Sm is the subsequence that includes the last query.
If MIN had exactly m ∗ (k + 1) misses, S0 would be empty. Note that while breaking the
sequence, every subsequence begins with a miss by MIN.

In S0, both caches are empty at the start. Thus, if FPIFO misses a query, MIN would
miss it as well. So if MIN retrieves 0 ≤ l ≤ k elements, then FPIFO would retrieve at most
2l elements. Observe that 2l/l = 2 ≤ 4k/(k + 1).
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In St(t > 0), MIN misses (and retrieves) k + 1 times. We define GoldenSett as the set
of elements that MIN uses to respond to the queries in St. By demonstrating Lemmas 1-5,
we prove that FPIFO retrieves at most 2k times while responding to St, each time a pair
that includes a unique member of GoldenSett. Thus, it retrieves at most 4k/(k+1) times
the number of elements retrieved by MIN while responding to St.

Adding all the retrievals in S0, ..., Sm, FPIFO retrieves at most 4k/(k + 1) times the
number of elements retrieved by MIN.

Lemmas 1-5 address critical characteristics of the GoldenSett and the retrieval be-
haviour of FPIFO during St(t > 0). Lemma 1 bounds the size of GoldenSett, Lemma 2
explains the retrieval policy of FPIFO, Lemma 3 establishes that once a pair is retrieved,
it is not removed during the same sequence, Lemma 4 confirms that each element in
GoldenSett is retrieved at most once, and Lemma 5 caps the number of retrievals FPIFO
makes during any sequence St.

Lemma 1. The size of the set GoldenSett is less than or equal to 2k.

Proof. According to our definition, MIN, having k spaces in the cache, misses the first query
in St and retrieves a new element. After that query, it can contain at most k elements in
the cache, and it needs to retrieve up to k additional elements during St. These 2k elements
are the only ones that MIN can use to respond to the queries in St. Consequently, these
are the only elements that can constitute the GoldenSett.

Lemma 2. During St, FPIFO retrieves a pair (ai, bi) only if either ai ∈ GoldenSett or
bi ∈ GoldenSett, and neither of them is already in the cache.

Proof. FPIFO algorithm follows a policy where it does not retrieve a pair if it can answer
the query using an element already in the cache. Suppose FPIFO retrieves a pair (ai, bi).
This pair is included in the queries in St and to answer this query, MIN has to use at least
one of the two elements. Hence, as per the definition of GoldenSett, it should include that
element.

Lemma 3. Once FPIFO retrieves a pair (ai, bi) during St, it does not remove it from the
cache during St.

Proof. Assume p = (ai, bi) is the first pair that FPIFO both retrieves and removes during
St. This pair must have been retrieved earlier than all other 2k − 1 pairs that are in the
cache (consider that the cache size is 4k). Hence all other pairs should have been retrieved
during St as well. Based on Lemma 2, any of these pairs (including p) must include a
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unique element in GoldenSett(if not unique, then the pair retrieved later should have not
been retrieved in the first place). Therefore, all members of GoldenSett must be in the
cache, which means there cannot be a query that FPIFO cannot answer using elements
already in the cache. Therefore, there is no need for FPIFO to remove any pair to make
space for new retrievals.

Lemma 4. FPIFO retrieves each element ai ∈ GoldenSett, at most once during St.

Proof. Based on Lemma 3, the algorithm does not remove a retrieved pair during St. Thus,
when ai is retrieved in a pair, it will remain in the cache during St. Based on Lemma 2,
the algorithm does not retrieve it again if it is in the cache.

Lemma 5. FPIFO retrieves at most 4k elements during St.

Proof. Based on Lemma 2, the algorithm only retrieves pairs that include an element in
GoldenSett. Based on Lemma 4, it does not retrieve a member of GoldenSett more than
once. Thus it cannot retrieve more than 2|GoldenSett| elements. Based on Lemma 1, it
can be at most 4k elements.

To summarize, this proof demonstrates that, regardless of the query sequence, the
FPIFO algorithm retrieves at most 4k/(k + 1) times the number of elements retrieved by
the optimal MIN algorithm.

Theorem 5 proposes that in the worst-case scenario, the first pair in first out (FPIFO)
algorithm uses β = 4 times more retrievals compared to an optimal cache baseline if its
cache size is 4 times larger. The FPIFO algorithm can thus be deemed as a 4-factor
approximator for the pair cache problem. We conjecture that no other algorithm can do
significantly better than FPIFO. We formulate this later in conjecture 2. In the next
theorem, we show that FPIFO does not challenge our conjecture.

Theorem 5. In the worst case, if the cache size of the FPIFO algorithm is 4 times larger,
it uses β = 4− o(1) times retrievals compared to an optimal cache baseline.

Proof. Let us consider any constant β = 4− ϵ, (ϵ > 0), any c ∈ N, and any k > (4c+8)
ϵ·c . We

aim to construct a sequence of queries Q of length l = c ∗ 2k2 + 2k + 1, such that FPIFO
with a cache of size 4k uses more than β times retrievals compared to MIN, the optimal
cache baseline with a cache of size k.

19



To achieve this, we construct a sequence where FPIFO misses all c∗2k2+2k+1 queries
and MIN misses almost half, ck2 + (c + 2)k + 1 times. By design, FPIFO retrieves twice
the number of misses.

The constructed sequence uses 2k + 1 elements located in 4k + 2 different pages,
queried in rotation. For the sequence Q : (a1|b1), (a2|b2), ..., (al, bl), we define ai = ((i− 1)
mod (2k + 1)) + 1 and bi = −ai.

FPIFO misses all queries since no two pages are used in two queries with a distance of
less than 2k + 1. (2k misses in between, fills the 4k sized cache with other pages). On the
other hand, MIN faces a simpler problem: 2k+1 elements are queried that do not share a
page, thus it does not matter which page it brings in on a miss. This effectively reduces the
problem to a normal cache replacement problem, and MIN can apply Belady’s algorithm
on the ai sequence to achieve the minimum number of retrievals. Using Belady’s, MIN
can effectively use the k sized cache to hit about k queries in each 2k + 1 queries, i.e.,
approximately half the number of queries.

Delving into the details of how MIN works, it is not straightforward to hit exactly k
queries in each 2k+1 queries. This is because it might need to remove one of the k values
it has cached from the past 2k+ 1 queries before using it to hit a query, in order to create
room for a retrieval required to respond to a missed query. This observation necessitates
a detailed analysis of MIN’s behaviour to accurately count the misses.

We analyze how MIN manages the cache to respond to the queries using Table 3.1.
We process MIN in ck + 1 query batches (numbered from 0 to ck) in order. Batch b > 0,
operates as shown in row ((b− 1) mod k) + 1 (row 0 for batch 0).

In row r, we have simulated Belady’s algorithm, responding to the queries of any batch
b (where r = ((b− 1) mod k) + 1, given the cache final state after processing the previous
batch, represented on row r− 1. (The cache is empty when responding to queries of batch
0). While following Belady’s, we observe that the sequence will be off by k compared to
the table, when the algorithm wants to respond to the queries from row 1 right after the
queries of row k. (last page queried in row k is k+1 and we should expect a query for page
k+2, however page 1 is the first page queries in in row 1). This happens when b ̸= 1 and (b
mod k) = 1. To continue simulating the algorithm as the table has, we need to ensure the
cache final state is as mentioned in row 0 after processing row k. Thus, after simulating
batch b − 1 (b ̸= 1 and b mod k = 1), we shift all the numbers in the ai sequence and in
the cache by +k. Then, the cache state would be like row 0, and the queries in the next
batch would be like row 1.

Now that we have described the construction of the sequence, we can count the number
of misses and retrievals in FPIFO and MIN.
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Row ai sequence Query count MIN: miss count MIN: cache final state
0 1, 2, . . . , 2k+1 2k+1 2k+1 1, 2, . . . , k-1, 2k+1
1 1, 2, . . . , 2k+1 2k+1 k+1 1, 2, . . . , k-2, 2k, 2k+1
. . . . . . . . . . . . . . .
k-1 1, 2, . . . , 2k+1 2k+1 k+1 k+2, k+3, . . . , 2k+1
k 1, 2, . . . , k+1 k+1 k+1 k+2, k+3, . . . , 2k, k+1

Shift +k - - 1, 2, . . . , k-1, 2k+1

Table 3.1: The table shows the ai sequence used in each batch, the number of times the
MIN misses in the batch, and what would be the MIN’s cache at the end of processing the
batch. The queries start from row 0 and go towards row k. They return and start again
from row 1 for (c − 1) times. To simplify simulation we shift all the numbers queried or
stored in the cache before each returning to row 1.

FPIFO cannot hit any query as no page is used twice in a distance of less than 2k+ 1,
so it retrieves 2 ∗ l = 2 ∗ (c ∗ 2k2 + 2k + 1) times.

As Table 3.1 shows at row 0, MIN misses the first 2k + 1 queries that are in batch 0,
and thus retrieves 2k + 1 times.

Batches b > 0, go through rows 1, 2, ..., k for c times. MIN misses ck(k+1) queries and
retrieves ck(k + 1) times.

The following math shows us that FPIFO uses more than 4−ϵ times retrievals compared
to MIN in the constructed sequence.

FPIFOretrievals = c · 4k2 + 4k + 2 > 4k(ck + 1) = 4k(ck + c+ 3)− (4kc+ 8k)

MINretrievals = ck(k + 1) + (2k + 1) ≤ k(ck + c+ 3)

FPIFOretrievals

MINretrievals

>
4k(ck + c+ 3)− (4kc+ 8k)

k(ck + c+ 3)
= 4− 4c+ 8

ck + c+ 3

k >
(4c+ 8)

ϵ · c
→ (4c+ 8) < ϵ · ck < ϵ · (ck + c+ 3)→ 4c+ 8

ck + c+ 3
< ϵ

FPIFOretrievals

MINretrievals

> 4− ϵ→ LRU(4k)

MIN(k)
= 4− o(1)
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As Theorem 4 shows that FPIFO uses at most 4 times the retrievals, we conclude
that the constructed sequence is a worst case example and 4 − o(1) is a tight worst case
bound.

Now that we have established that the FPIFO algorithm cannot achieve an approxima-
tion factor smaller than 4, a natural question arises: Can the LRUP algorithm achieve a
better approximation and thereby challenge Conjecture 2? Unfortunately, it can be easily
deduced that the worst-case sequence constructed in Theorem 5 is also applicable to the
LRUP algorithm, with exactly the same proof and bound. Thus, Conjecture 2 remains
unchallenged.

3.4 General online problem

Building on the success of FPIFO in providing a 4-factor approximation for the cache
problem, we delve into its generalization. Consider a scenario where the algorithm employs
a cache that is α times larger and performs β times more retrievals. We call this an α, β-
approximation. To put this into perspective, let us compare it with the conventional FIFO
and LRU. They both works as a α, β-approximation if β < α/(α− 1) in a standard cache
problem.

Theorem 6. For constants α, β > 2, if the cache size of the FPIFO algorithm is α times
larger and uses β times retrievals compared to an optimal cache baseline, then β ≤ 2α

α−2
.

Proof. We prove that on any long enough sequence of queries, FPIFO with a cache of size
α ∗ k, retrieves at most β ≤ 2α/(α− 2) times the optimal algorithm with a cache of size k.
The proof follows the same scheme as Theorem 4. we break the sequence into subsequences
S0, ..., Sm where MIN misses (α−2)k/2+1 times in each. For any St, there is a GoldenSett
of size at most α ∗ k/2 that MIN uses to respond to the queries. Similar to the lemmas
proved in Theorem 4, FPIFO retrieves at most α ∗ k/2 pairs, each including a member of
GoldenSett, and responds to all the queries in St with those, resulting in α ∗ k retrievals
(note that all fit in the cache). In any St, MIN retrieves (α− 2)k/2 + 1 times and FPIFO
retrieves α ∗ k times. Thus:

β = α ∗ k/((α− 2)k/2 + 1) <= 2α/(α− 2)
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Following this, we delineate a boundary for the worst-case scenario in the context of
α, β approximations, building upon Theorem 5. It is important to note that the same
proof applies to LRUP as well.

Theorem 7. Under worst-case conditions, if FPIFO’s cache size is α times larger, provided
that α > 2 and the condition (α ∗ k) mod 2 = 0 is satisfied, the number of retrievals used
by FPIFO in comparison to the optimal cache baseline is: β = 2α

α−2
− o(1)

Proof. The proof is similar to the one for Theorem 5. For any constant β = 2α
α−2
−ϵ, (ϵ > 0),

and for any c ∈ N, we create a sequence of length l = α
2
· ck2+ α

2
· k+1 for any k > (4c+8)

ϵ·c ),
that an FPIFO with a cache of size α · k uses more than β times retrievals compared to
MIN, the optimal cache baseline with a cache of size k.

We construct the sequence Q : (a1|b1), (a2|b2), ..., (al, bl), similar to how we constructed
the worst case sequence in Theorem 5. We set ai = ((i−1) mod (α·k

2
+1))+1 and bi = −ai.

All pages occur in queries with distance α·k
2

+ 1 and no two elements share a page.

FPIFO misses all the queries as it keeps the cache of size α · k filled with the pages
in the previous α·k

2
queries, which are not of any use in the next query. It retrieves both

pages in a miss, so it retrieves αck2 + αk + 2 times in total. MIN operates like Belady’s
algorithm on the ai sequence.

To simulate MIN, we use table 3.2. When responding to the sequence Q, MIN misses
ck · ( (α−2)

2
· k + 1) + α·k

2
+ 1 queries and retrieves the same number of times.

Row ai sequence Query count MIN: miss count MIN: cache final state

0 1, 2, . . . , α·k
2

+ 1 α·k
2

+ 1 α·k
2

+ 1 1, 2, . . . , k-1, α·k
2

+ 1

1 1, 2, . . . , α·k
2

+ 1 α·k
2

+ 1 (α−2)·k
2

+ 1 1, 2, . . . , k-2, α·k
2
, α·k

2
+ 1

. . . . . . . . . . . . . . .

k-1 1, 2, . . . , α·k
2

+ 1 α·k
2

+ 1 (α−2)·k
2

+ 1 (α−2)·k
2

+ 2, (α−2)·k
2

+ 3, . . . , α·k
2

+ 1

k 1, 2, . . . , (α−2)·k
2

+ 1 (α−2)·k
2

+ 1 (α−2)·k
2

+ 1 (α−2)·k
2

+ 1, (α−2)·k
2

+ 2, . . . , α·k
2

Shift +k 1, 2, . . . , k-1, α·k
2

+ 1

Table 3.2: The table simulates MIN, working like Belady’s algorithm on the ai sequence.
The queries start from row 0 and go toward row k. They return and start again from row
1 for (c − 1) times. To simplify simulation we shift all the numbers queried or stored in
the cache before each returning to row 1.

Now we compare FPIFO and MIN:
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MINretrievals =
(α− 2)

2
·ck2+ck+

α · k
2

+1 =
(α− 2)

2
k(ck+1)+ck+k+1 ≤ (α− 2)

2
k(ck+1+

6c

α− 2
)

FPIFOretrievals = αck2 + αk + 2 = αk(ck + 1) + 2 > αk(ck + 1 +
6c

α− 2
)− 6αck

α− 2

→ β =
FPIFOretrievals

MINretrievals

>
αk(ck + 1 + 6c

α−2
)− 6αck

α−2

(α−2)
2

k(ck + 1 + 6c
α−2

)
=

2α

α− 2
− 12αc

(α− 2)2(ck + 1 + 6c
α−2

)

k >
ϵ(α− 2)2 + ϵ6c(α− 2)− 12ac

−ϵ(α− 2)2c
→ ϵ((α− 2)2ck + (α− 2)2 + 6c(α− 2))− 12ac > 0

→ 12αc

(α− 2)2(ck + 1 + 6c
α−2

)
< ϵ

→ FPIFOretrievals

MINretrievals

>
2α

α− 2
− ϵ→ β =

2α

α− 2
− o(1)

We showed in Theorem 6 that FPIFO uses at most 2α
α−2

times the retrievals. So we can

conclude that the constructed sequence is a worst case example and 2α
α−2
− o(1) is a tight

worst case bound.
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Chapter 4

Discussion

The essence of this master’s thesis lies in its approach toward understanding caching,
specifically through the introduction and formulation of the pair cache problem. The new
lens applied to this problem has led to key contributions:

This chapter outlines the contributions of this thesis and provides guidance for future
researchers to build upon it. Firstly, we introduced and formulated the pair cache problem
as a variant of the cache replacement problem. Secondly, we established a connection
between the pair cache problem and the minimum vertex cover problem. This connection
highlights the theoretical significance of the pair cache problem and its computational
complexity.

In addition to defining the pair cache problem, we also defined the edge serving problem
as a variant of the vertex cover problem. This definition sheds light on the practical
applications of pair cache problems, such as maintaining a limited memory of size k << n
that can store the adjacency lists of k vertices in a large complete graph of n vertices based
on the queries that need to be resolved about the edges. Future research is needed to
find specific problems with real-world impact that can benefit the edge serving problem
formulation.

We showed that the offline pair cache problem is an NP-Hard problem and demon-
strated that even with complete knowledge of future queries, it is not easier than the
online version of the normal cache problem, which is solvable using LRU or FIFO with a
2-factor approximation. This result establishes a lower bound on the computational com-
plexity of the offline pair cache problem. We believe that this lower bound is tight, and we
formulate this belief in Conjecture 1.
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Conjecture 1. There is an offline pair cache algorithm that offers a 2-factor approxima-
tion in polynomial time.

We also introduced the FPIFO and LRUP algorithms and demonstrated that FPIFO
can solve the online version of the pair cache problem with a 4-factor approximation.
This gives a practical solution to the pair cache problem. Additionally, we generalized
the FPIFO approximation bounds and showed that it provides a α, β-approximation if
β < α/(α − 1). We also established that neither FPIFO nor LRUP can achieve a better
approximation. Based on our findings, we posit that the FPIFO algorithm outperforms
any other online algorithm, a belief we encapsulate in Conjecture 2.

Conjecture 2. For constants α, β > 2, if the cache size of an online algorithm is α times
larger and it uses β times more retrievals compared to an optimal cache baseline, then
β ≥ 2α

α−2
.

Overall, this thesis contributes to the theoretical understanding of the pair cache prob-
lem and its practical applications. It provides a foundation for the development of efficient
algorithms for the pair cache problem and sheds light on the computational complexity of
the problem. Future research can build upon these findings and explore further practical
applications of the pair cache problem.
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