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Abstract

In the rapidly evolving field of robotics, the ability to accurately grasp and manipu-
late objects—known as robotic grasping—is a cornerstone of autonomous operation. This
capability is pivotal across a multitude of applications, from industrial manufacturing au-
tomation to supply chain management, and is a key determinant of a robot’s ability to
interact effectively with its environment. Central to this capability is the concept of scene
understanding, a complex task that involves interpreting the robot’s environment to facili-
tate decision-making and action planning. This thesis presents a comprehensive exploration
of scene understanding for robotic grasping, with a particular emphasis on pose estimation,
a critical aspect of scene understanding.

Pose estimation, the process of determining the position and orientation of objects
within the robot’s environment, is a crucial component of robotic grasping. It provides the
robot with the necessary spatial information about the objects in the scene, enabling it
to plan and execute grasping actions effectively. However, many current pose estimation
methods provide relative pose compared to a 3D model, which lacks descriptiveness without
referencing the 3D model. This thesis explores the use of keypoints and superquadrics as
more general and descriptive representations of an object’s pose. These novel approaches
address the limitations of traditional methods and significantly enhance the generalizabil-
ity and descriptiveness of pose estimation, thereby improving the overall effectiveness of
robotic grasping.

In addition to pose estimation, this thesis briefly touches upon the importance of uncer-
tainty estimation and explainable AI in the context of robotic grasping. It introduces the
concept of multimodal consistency for uncertainty estimation, providing a reliable measure
of uncertainty that can enhance decision-making in human-in-the-loop situations. Fur-
thermore, it explores the realm of explainable AI, presenting a method for gaining deeper
insights into deep learning models, thereby enhancing their transparency and interpretabil-
ity.

In summary, this thesis presents a comprehensive approach to scene understanding for
robotic grasping, with a particular emphasis on pose estimation. It addresses key challenges
and advances the state of the art in this critical area of robotics research. The research
is structured around five published papers, each contributing to a unique aspect of the
overall study.
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Chapter 1

Introduction

This introductory chapter provides a high-level overview of the entire thesis. First, in
Section 1.1, an overview of robotic grasping and scene understanding will be given. Then,
in Section 1.2, the problem of pose estimation and the need for better scene understanding
will be discussed. Finally, in Section 1.3, the main scientific contributions and outline of
the thesis will be presented.

1.1 Motivation

The field of robotics has seen significant advancements in recent years, with robots becom-
ing increasingly prevalent in a variety of sectors including manufacturing, healthcare, and
logistics. A key capability that underpins many of these applications is robotic grasping -
the ability of a robot to accurately identify, grasp, and manipulate objects in its environ-
ment. This is a fundamental requirement for autonomous operation and has the potential
to revolutionize many industries by automating tasks that were previously labor-intensive
or challenging for humans. However, despite the progress made, robotic grasping remains
a complex problem due to the diversity and unpredictability of real-world environments.

A key aspect of robotic grasping is scene understanding, which involves the interpreta-
tion of the robot’s environment to facilitate decision-making and action planning. Scene
understanding encompasses several tasks, including object detection, segmentation, and
pose estimation. Among these, pose estimation plays a crucial role as it provides the robot
with the necessary spatial information about the objects in the scene, enabling it to plan
and execute grasping actions effectively.
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Scene understanding is a critical aspect of robotic grasping, providing the robot with
the necessary information to interact effectively with its environment. This understanding
is crucial at all stages of the grasping process: before, during, and after the grasp.

Before the Grasp: Prior to executing a grasp, the robot must identify and localize
objects, especially in applications like bin picking where items are randomly oriented and
placed. Additionally, understanding the scene can help the robot determine the optimal
order for grasping objects, a crucial factor in cluttered environments.

During the Grasp: As the robot executes the grasp, it must navigate safely within its
environment. This requires the ability to identify potential obstacles and plan a path that
avoids them, a task made more challenging by the close proximity and random arrangement
of objects in applications like bin picking.

After the Grasp: Once an object is grasped, the robot often needs to manipulate it,
such as placing it in a specific location or orienting it for a task. These manipulation tasks
require knowledge of not only the grasped object’s pose but also the spatial layout and
properties of other objects in the scene. This understanding can help the robot determine
where to place the grasped object without disturbing other objects or causing instability.

In essence, scene understanding is a cornerstone of effective robotic grasping, influencing
every stage of the process. However, achieving this understanding is a complex task,
requiring the integration of various techniques and methodologies. This thesis aims to
address this challenge, exploring innovative approaches to enhance scene understanding
and, consequently, improve the efficiency and reliability of robotic grasping. The following
sections will delve into the specific problems this thesis aim to solve and the contributions
made towards this goal.

1.2 Overview of Problem

The task of robotic grasping is inherently complex, involving a multitude of sub-tasks that
each present their own unique challenges. One of the most critical of these sub-tasks is pose
estimation, the process of determining the position and orientation of objects within the
robot’s environment. Accurate pose estimation is crucial for successful robotic grasping, as
it provides the spatial information necessary for the robot to plan and execute its grasping
actions.

However, many current pose estimation methods provide relative pose compared to a
3D model. This approach, while useful in certain contexts, lacks descriptiveness without
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referencing the 3D model, limiting its applicability and generalizability. This limitation
underscores the need for more general descriptors.

Keypoints, distinctive features of an object that can be reliably detected and tracked
across different views, offer the advantage of defining important features and locations
independent of having to reference a 3D model, and can generalize to an entire class of
objects. However, keypoints also present their own set of challenges. They are difficult
to consistently define for arbitrary objects, especially those with uniform or repetitive
patterns. Issues related to symmetry and proximity of objects can further complicate the
pose estimation process, leading to confusion and inaccuracies.

Beyond pose estimation, uncertainty estimation is another challenge in the field of
robotic grasping. In real-world applications, it is often necessary to have a human-in-the-
loop for situations where the model is uncertain. However, current methods for estimating
uncertainty in robotic grasping are often inadequate, lacking the ability to provide reliable
and interpretable measures of uncertainty.

Understanding the model and the dataset is another critical aspect of robotic grasping.
With the increasing complexity of models used in robotic grasping, there is a growing need
for methods that can provide deeper insights into the model’s behavior and the character-
istics of the dataset. This is particularly important in human-in-the-loop situations, where
the ability to provide actionable insights can significantly improve the effectiveness of the
human-robot collaboration.

In summary, the central issue this thesis aims to address is the enhancement of scene
understanding for robotic grasping. This involves addressing challenges in pose estimation,
uncertainty estimation, and understanding of the model and the dataset. Each of these
aspects presents its own unique challenges. Addressing these challenges is not only crucial
for advancing the field of robotic grasping, but also sets the stage for the contributions
of this thesis, which are aimed at improving the scene understanding model, an essential
component of the overall robotics grasping pipeline. These contributions will be outlined
in the following section.

1.3 Thesis Contributions & Outline

This thesis makes several contributions to the field of robotic grasping and scene under-
standing, each addressing a unique aspect of the problem statement outlined in Section
1.2. These contributions are encapsulated in the five chapters that follow this introduction,
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with each chapter corresponding to a published paper that delves into a specific aspect of
the overall study.

Contribution 1: MetaGraspNet v0 (Chapter 3)

The first contribution of this thesis is the creation of MetaGraspNet v0, a large-scale
benchmark dataset for vision-driven robotic grasping via physics-based metaverse synthe-
sis. This dataset provides a comprehensive resource for training and evaluating models
for robotic grasping, offering a diverse range of objects and grasp scenarios. The cre-
ation of MetaGraspNet v0 addresses the need for high-quality, diverse datasets in the field
of robotic grasping, providing a foundation for further research and development. This
dataset also provides scene layout labels, emphasizing the importance of scene understand-
ing in a robotics grasping scenario. Subsequent chapters will use the dataset introduced in
this chapter for deeper exploration of various challenges.

Contribution 2: Keypoint-based Pose Estimation (Chapter 4)

Chapter 4 investigates the use of keypoints for object pose recognition. This approach
offers a more general and descriptive representation of an object’s pose compared to tradi-
tional methods that provide relative pose compared to a 3D model. The use of semantically
important keypoints for object pose estimation presents a way to directly gain an under-
standing of where important features of an object are located without having to reference
an exact 3D model, enabling more effective robotic manipulation and understanding of
object affordances. However, the implementation of keypoints also presents its own set of
challenges, which are discussed in detail in this chapter. The exploration of keypoint-based
pose estimation contributes to the ongoing efforts to improve the accuracy and generaliz-
ability of pose estimation methods.

Contribution 3: Superquadric-based Pose Estimation (Chapter 5)

To address the limitations of keypoint-based methods, Chapter 5 introduces ShapeShift,
a superquadric-based object pose estimation method for robotic grasping. Superquadrics
provide a more flexible and robust representation of object shape, enhancing the ability of
the robot to understand and interact with its environment. Through predicting the poses
of shape primitives used to represent object parts, the method is able to directly predict
useful geometric properties of the scene for use in robotic grasping.

Contribution 4: Multimodal Consistency for Uncertainty Estimation (Chap-
ter 6)

To address the need for reliable and interpretable measures of uncertainty in robotic
grasping, thus enhancing the robot’s ability to make informed decisions and facilitating
effective human-in-the-loop collaboration, Chapter 6 presents MMRNet. Through a gated
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fusion module and a dynamic ensemble learning strategy, MMRNet trains for multimodal
redundancy, enabling reliable prediction even when only one modality of input is present.
Through looking at the consistency in model behaviour with different input modalities
enabled, the multimodal consistency (MC) introduced here can be used as an estimation
for model uncertainty.

Contribution 5: Second-order Explainable AI (Chapter 7)

Finally, Chapter 7 delves into the realm of explainable AI, presenting a method for gain-
ing deeper actionable insights into deep learning through second-order explainability. This
approach not only helps understand the model better but also aids in human-in-the-loop
situations by providing actionable insights. The exploration of second-order explainable AI
contributes to the ongoing efforts to make AI models more transparent and interpretable,
enhancing their usability and trustworthiness in real-world applications such as robotics
grasping.

In summary, this thesis presents a comprehensive approach to scene understanding
for robotic grasping, addressing key challenges and advancing the state-of-the-art in this
critical area of robotics research. The following chapters will delve into each of these con-
tributions in detail, providing a thorough exploration of the methodologies, experiments,
and results associated with each aspect of the study.
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Chapter 2

Background

This chapter provides an overview of the foundational concepts and prior works that un-
derpin the research presented in this thesis. We begin by discussing prior work for direct
predictions of robotic grasping and the challenges associated with it. We then delve into
the various methodologies and techniques that have been proposed to address these chal-
lenges, focusing on improvements for scene understanding including keypoints, and pose
estimation. After discussing some disadvantages of those works, we then explore the use
of geometric primitives and superquadrics representations in robotic grasping. The chap-
ter concludes by looking at the need for uncertainty estimation and Explainable AI in a
robotics grasping task.

2.1 Robotic grasping

Robotic grasping is a fundamental capability for robots, enabling them to interact with
and manipulate objects in their environment. The end goal of robotic grasping is not
just to pick up an object but to do so in a manner that is efficient, safe, and suitable
for subsequent tasks. This section reviews the key advancements in the domain of grasp
predictions.

2.1.1 Jaw Grippers

Jaw grippers are among the most common tools used in robotic grasping. They function
by clamping down on an object, much like a human hand. Several works have focused
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on improving the efficiency of jaw grippers. There exists a multitude of prior works for
direct robotics grasp prediction using jaw grippers. Jiang et al. [6] introduced an efficient
grasping approach from RGBD images, utilizing a new rectangle representation paradigm.
This method has been used by many subsequent works, such as Kumra et al. [7], who
applied deep convolutional neural networks for robotic grasp detection. The field has seen
continuous advancements with contributions like GraspNet by Asif et al. [8], GraspNet-
1Billion by Fang et al. [9], and Dex-Net 2.0 by Mahler et al. [10]. Yan et al. [11] explored
learning 6-DOF grasping interaction via deep geometry-aware 3D representations, while
Zhang et al. [12] focused on ROI-based robotic grasp detection for object overlapping
scenes. More recent works include Contact-GraspNet by Sundermeyer et al. [13] and a
real-time, generative grasp synthesis approach by Morrison et al. [14].

2.1.2 Suction Grasping

Suction grasping involves using a vacuum to pick up objects. This method is particularly
useful for objects that are difficult to grasp with jaw grippers. Suction grasping has also
been extensively studied, with works like SuctionNet-1Billion by Cao et al. [15] and a
CNN-based grasp planning method by Zhang et al. [16] for random picking of unknown
objects with a vacuum gripper.

2.1.3 Challenges and Advantages

Despite the progress, direct grasp prediction suffers from several issues. A separate model is
often needed for each type of grasper, and the models generally predict many possible grasp
points for each given object. This makes it difficult to integrate for later manipulation task
reasoning, such as navigating around other objects or considering fragile areas of the object.
However, direct grasp prediction does have some advantages, such as being object-agnostic
and capable of picking up any general object.

2.1.4 Spatial relationship reasoning

Some researchers have attempted to integrate reasoning between object relationships, such
as manipulation order. Works like REGRAD by Zhang et al. [17] and Graph-Based
Visual Manipulation Relationship Reasoning Network by Zuo et al. [18] have explored
this direction. However, these outputs usually only simple graphs about the occlusion
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or superposition relationship and may be difficult to reason about more complex spatial
relationships, such as path planning for navigating an object around another object.

2.2 Pose estimation

Pose estimation [19] offers a way to have more information about objects in a scene,
including their orientation and spatial relation to each other. There has been extensive
work in this area, ranging from early works using template-based and context descriptor-
based approaches [20–23] to more modern techniques utilizing deep learning.

2.2.1 Datasets

Several datasets have been introduced to facilitate research in pose estimation. PAS-
CAL3D+ [24] augments 12 rigid categories, including cars, planes, sofas, and so forth, of
the PASCAL VOC 2021 [25] with 3D annotations. 3d meshes are labeled according to
their semantic keypoint locations on an image. There are multiple meshes available for
each category but none are guaranteed to be an exact match to the image.

In contrast, datasets used in the BOP challenges [26–28] are geared directly towards
smaller objects that may be used for robotic grasping. These objects generally match di-
rectly with the 3D models used in labelling, and are labeled by the transformation necessary
to move the provided 3d mesh or CAD model to the right location and orientation on the
image rather than by any keypoints. BOP datasets contain both synthetic and real images.
However, not all objects in the scene are guaranteed to be labeled with the corresponding
pose. Recent iterations of the BOP challenge evaluates on the VIVO task (varying num-
ber of instances of a varying number of objects), while previous iterations evaluated on
the SISO task (single instance of a single object). Some major datasets included within
the challenges includes LineMOD [29], the updated linemod-occluded dataset [21], YCB-V
[30, 31], T-LESSS [32], HOPE [33], and HomebrewedDB [34].

Knowing what datasets the methods are being evaluated on can often be informative
about some of the problems it attempts to solve. For example, the T-LESS [32] dataset
has a significant number symmetrical objects which may make poses ambiguous, and can
have repeated instances of each class per image, unlike with LineMOD [29] and YCB-V
[31].
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2.2.2 Direct 6DOF prediction

Direct methods go directly from input image to pose estimation without any intermediate
representation or keypoint matching. These methods have the advantage of generally being
fully differentiable and also tend to deal better with occlusion out of the box.

PoseCNN [31] is a model introduced with the YCB-V dataset, and pose is predicted
through localizing its center in the image, predicting its distance from the camera, and
and a direct regression for the rotation quaternerion. SSD-6D [35] extends the SSD object
detection architecture (as suggested in the name) to cover the 6D pose space, generating an
additional score for possible viewpoints and rotation. EfficientPose [36] similarily expands
upon the EfficientDet architecture [37]. Other techniques include using iterative refinement
[38–40], implicit learning [41], segmentation mask [42], and multiple view points [43].

However, since the output of direct pose estimation methods are only the location and
rotation matrix of the object, it only becomes useful for robotics grasping when a corre-
sponding 3D model is referenced. This not only creates further computational requirement
on the system, it also necessitates a close match with a 3D mesh or point-cloud, which
makes the data collection process for new objects significantly more difficult than other
tasks like object detection or segmentation.

2.2.3 Keypoints based methods

The use of semantic keypoints is common for the task of human pose estimation [44–47] but
can be difficult to translate well into the object pose estimation domain. There are several
works exploring the advantages and challenges in this approach, using a number of different
keypoints definitions. These methods would use the point correspondence outputs as an
intermediate representation to be taken as input for a secondary stage, either RANSAC-
based [48] or another network prediction head [49–51] for the final pose prediction.

Box corner points representation

Some methods simply takes the 8 corners of the orientated 3D bounding boxes [52–55] or
interpolated bounding box [7] as the keypoint labels. Even though such methods utilize
keypoints as intermediate representations, they do not provide much further geometric
information compared to direct prediction methods beyond a rough spatial occupancy.
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Furthest point sampling

Other methods have looked at sampling a set number of points on the object surface
which are furthest away from each other as a way to identify keypoints, known as furthest
point sampling (FPS). This was first introduced in Pvnet [56] which argued that the
floating points of the 3D bounding box corners would be more difficult to find due to being
disconnected from the object itself. PVN3D followed by predicting 3D keypoints rather
than 2d [57], ffb6d [58] uses SIFT-FPS to distinctive texture in 2D, to then resample using
FPS.

Furthest point sampling has proven very popular in many subsequent works [49, 50, 59–
63] due to being fully automatic and can be computed on any point cloud. However,
this also means that each keypoint does not contain any information on the geometric or
semantic properties of the surface region around it.

Dense correspondence maps

While the prior two keypoints representations can be thought of as sparse point correspon-
dences, a more popular method uses dense correspondences between the image and its 3D
model. One significant reason is due a higher sensitivity to occlusion in sparse keypoint
representation methods [64]. Some methods handle this through predicting each pixel’s
relationship to its sparse keypoint locations [57, 60] while others focuses on augmentation
techniques [62] or explicitly modeling self-occlusion [61].

Dense correspondence methods [51, 64–71] predicts a mapping of each pixel or point
cloud vertex, making each individual correspondence prediction less important for the final
pose calculation. These methods have proven very robust, with GDR-Net [51] in particular
dominating the 2022 BOP challenge [28], as variations of the model won 8 out of 11 awards.

Semantically important keypoints

Other works have elected to use semantically important keypoints as an intermediate rep-
resentation. Pavlakos et al. [72] uses the pre-defined points from the PASCAL3D+ dataset
[24], while Kundu et al. [73] uses the same dataset but also samples a denser skeleton of
keypoints between the originally structurally important points. Merrill et al. [74] used the
YCB-V dataset [31] and annotated the 3D objects for structurally important segments.

Semantically important keypoints does not have any advantages in terms of accuracy
in the pose estimation task compared to other representation methods. Dense keypoints
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have shown to be more robust to occlusion compared to sparse keypoints methods [64].
In addition compared to other sparse methods, requiring each keypoint to be of semantic
importance makes the definition of keypoint placement significantly more difficult to label
and maintain consistency between different object classes.

However, such keypoint definition has shown some advantages in the downstream task of
robotics manipulation. Specifically, semantically important keypoints enables task-specific
grasps [75] as well as understanding object affordances during robotic manipulation [76].

In addition, although semantically keypoints struggle with inter-category consistency,
it is able to maintain intra-category consistency as they’re based off semantic details rather
than a particular 3D model. As such, these methods are able to applied to category-level
pose estimation rather than instance-level. Other methods targeting this specific problem
will also be addressed in the following section.

2.2.4 Beyond instance-level pose estimation

Beyond instance-level pose estimation is the task of category-level pose estimation. Here,
there is no one-to-one match between the input image and a reference 3D model, and
the model must instead generalize across the intra-category variations. Sparse semantic
keypoints can do this through maintaining a consistent intra-category keypoint definition,
but other methods [77–86] were also introduced to specifically target this problem.

Pose can also be defined as a relative pose from another image or shape. Rather than
trained for a specific finite set of 3D objects, these techniques look at an arbitrary object
in a reference pose, and attempt to predict the transformation needed for another input
pose. These works [87–92] are generally referred to as one-shot pose estimation methods.

However, due to large intra-category variation, it is very difficult to use category-level
pose information for robotic grasping and manipulation, as there is little information on the
physical structure of the object. One-shot methods still may require 3D models [87, 89],
or, when photos or video based, would either generate a point cloud that needs to be
referenced for grasping prediction [90, 91], or would only predict the pose, and there would
be no structural information that can be passed on to the robotics grasping pipeline [88, 92].

2.3 Primitive shapes

Another way to represent 3D shapes while directly predicting geometric properties of the
object is to represent an object as a composition of shape primitives. This concept of an
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object as a composition of primitive parts has been thought about by researchers very early
on [93]. This sort of 3D shape approximation offers advantages over 3D reconstruction,
including directly describing the predicted geometric features and object or part segmen-
tation without further processing, less computational intensity, and less noise, but will not
exactly describe the 3D scene.

Such shape abstractions include using a collection of shape primitive categories such
as cylinders, rings, cuboid, sticks, and so forth [94–97], parametric surface patches [98],
generalized sweeps with cuboids or cylinders [7, 99, 100], cuboids [101–106], ellipsoidal
structures [107], category-specific structures [108, 109], as well as superquadrics.

Superquadrics are 3D structures defined through a simple implicit function. Through
changing the shape parameters of the function, it can become cubes, spheres, cylindars,
and intermediate shapes in between. The concept was first introduced in 1981 by Barr
[110], Solina and Bajcsy [111] and Jakli [112] offers a more detailed introduction to these
parameterized structures.

Many works explore fitting superquadrics to objects. However, prior works have pri-
marily focused on approximating point clouds or 3D meshes [113–116], or a single object
without complex background or occlusions [117]. Other works have also learned to predict
the pose and shape of objects exactly matching the primitive shape rather than real objects
approximated using primitive shapes [118, 119]

In addition, superquadrics have shown to be useful in learning grasping behaviour
[120–122]. However, these works did not use any deep learning methods to compute the
superquadric pose directly. Makhal et al. [120] used Principal Component Analysis (PCA)
on the depth data, Vezzani et al. [121] used a classifier to determine the discrete cate-
gory of superquadric (parallelepipeds, cylinders, spheres) before continuing with classical
optimization methods, and Wu et al. [122] utilized the non-deep-learning optimization
described by Liu et al. [114].

One constraint of the superquadric representation is that, in its basic form, it is re-
stricted to symmetrical and convex parts. This means that, to describe a single concave
shape, most superquadric fitting techniques elect to fill the object with many thin blobs
of superquadrics. A solution would be to add further complexity to the superquadric
definition through the sue of deformable superquadrics.
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2.4 Uncertainty Estimation

In situations where a human is actively interacting with a robot, communication regarding
uncertainty is highly important [123, 124]. However, using only the softmax output of most
computer vision models is insufficient for an estimation of the model’s certainty, as that
output can become overinflated even in very uncertain, out of domain situations [125].

There are two separate types of uncertainty that needs to be modeled: aleatoric and
epistemic [126, 127]. Aleatoric uncertainty is also commonly known as data uncertainty,
and is caused by inherent noise inside the data, such as poor sensor quality. This type of
uncertainty cannot be reduced through more data or better training. Epistemic uncertainty
is also called model uncertainty, and is produced due poor training data in that particular
group. Aleatoric uncertainty is more important in large data situations, where epistemic
uncertainty can be largely resolved through having enough data samples, while epistemic
uncertainty is highly important for safety-critical applications, sparse training data, and
when there may be expectations of distribution shift from the training data [128].

Popular ways of estimating uncertainty include bayesian inference [125, 129–134], en-
semble approaches [135–140], and explicit prediction approaches [141, 141–145].

Bayesian inference approaches perform multiple forward passes of a single model, where
each pass produces a different output. This can be achieved through dropout [125] or
through a bayesian neural network [146, 147]. The variation within the samples of the
output can be used to approximate the model uncertainty.

Ensemble approaches are similar except instead of using a single model, outputs of
multiple deterministic models are sampled.

Finally, explicit prediction approaches seeks to directly predict an uncertainty score for
each input as an additional output of the model. This is computationally less intensive
than the other two methods, requiring only a single forward pass rather than sampling
many outputs, but is highly sensitive to the training process.

2.5 Explainable AI

In order to better understand the model’s prediction, we can also explore the realm of
model explainability, or explainable AI.

A significant number of publications focuses on identifying salient areas of the input.
These generally come in the form of heat-maps identifying important areas in the input
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image [148–150]. These can be classified as local approaches and generally aid in under-
standing a model’s reasoning behind a single image.

A different approach seeks to provide a more global understanding of the model through
probing at the layer within the model itself, such as through generating or finding images
which would most maximally activate particular layers [151–153].

Both approaches require a heavy amount of human interpretation of results and are
highly qualitative. Local approaches only provide information on the single image input
provided, and usually one must manually go through the heat map results to identify
potential patterns of interest that may be present in the dataset. Global approaches
promise data agnostic results that offer a more comprehensive view of how the model may
react in different circumstances. However, the highly abstract visualizations common in
these methods are not generally understandable by a human viewer without significant,
case-by-case investigation.
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Chapter 3

MetaGraspNet v0: A Large-Scale
Benchmark Dataset for Vision-driven
Robotic Grasping via Physics-based
Metaverse Synthesis

This chapter delves into the creation and application of MetaGraspNet v0, a large-scale
benchmark dataset designed to enhance the capabilities of vision-driven robotic grasping.
Developed through physics-based metaverse synthesis, MetaGraspNet v0 offers a diverse
range of scenarios with 100,000 images and 25 different object types. The chapter will
discuss the unique features of the dataset, such as object layout labels and layout-based
difficulty levels. This chapter will explore how these features contribute to a more nu-
anced understanding of the scene, thereby facilitating more effective robotic grasping. The
insights gained from this dataset will serve as a stepping stone towards addressing the
broader challenges in the field of robotic grasping. The MetaGraspNet benchmark dataset
will be available open-source on Kaggle 1, with the first phase consisting of detailed object
detection, segmentation, layout annotations, and a script for layout-weighted performance
metric (https://github.com/y2863/MetaGraspNet).

1https://www.kaggle.com/metagrasp/metagraspnetdifficulty1-easy,
https://www.kaggle.com/metagrasp/metagraspnetdifficulty2-medium,
https://www.kaggle.com/metagrasp/metagraspnetdifficulty3-hard1,
https://www.kaggle.com/metagrasp/metagraspnetdifficulty4-hard2,
https://www.kaggle.com/metagrasp/metagraspnetdifficulty5-very-hard
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3.1 Introduction

There has been increasing interest in smart factories powered by robotics systems to tackle
repetitive, laborious tasks such as handing and sorting objects or managing the mate-
rial flow. One particular impactful yet challenging task in robotics-powered smart factory
applications is robotic grasping which involves using robotic arms to grasp objects. A com-
mon robotic grasping scenario found in production system or warehouses includes moving
a specific object from one bin to another (order picking). The seemingly simple task for hu-
man is quite complex for the robots to perform, requiring a variety of computer vision tasks
such as object detection, segmentation, grasp prediction, pick planning, etc. While signif-
icant progress has been made in the leveraging of machine learning strategies for robotic
grasping [9, 13, 14, 154], particularly with deep learning, a very big challenge in tackling
this problem is the need for large-scale, high-quality RGBD datasets that cover a wide
diversity of scenarios and permutations (e.g., different combination of objects, different
ordering and orientation of objects, different ways of stacking objects.).

Many existing grasping datasets [8–12, 31] provide large-scale and high image quality
data, but they have simple and similar environment settings, such as objects are placed
in a common way without stacking. Another important attribute current large grasping
datasets lack is environment layout on how the objects are positioned and stacked, espe-
cially in a cluttered environment. In scenarios where robotic arms are required to pick a
specific item from a cluttered scene, picking an obstructed object before removing obstacles
could lead to significant damage as the objects covering it are forced out of the way. With
environment layout labels, pick planning can be trained more intelligently to avoid object
damages [18, 155, 156]. However, there are only a few datasets [155–157] providing layout
labels. Most of the datasets [155, 156] have limited training value as they lack in data size,
depth information, as well as segmentation labels. In addition, objects should be picked
sequentially. Occluded objects will be revealed once top objects are picked. Thus, not all
the objects in a scene are equally important, and top objects are more important to eval-
uate. An object detection and segmentation metric weighted according the environment
layout would better reflect the performance of a model for a robotic grasping task.

Motivated to tackle this big, diverse data problem, we are inspired by the recent rise in
the concept of metaverse, which has greatly closed the gap between virtual worlds and the
physical world. In particular, metaverses allow us to create digital twins of real-world man-
ufacturing scenarios and enter these metaverses to virtually create different scenarios from
which large volumes of high quality data can be generated for training models. this chapter
presents MetaGraspNet: a large-scale benchmark dataset for vision-driven robotic grasp-
ing via physics-based metaverse synthesis. This dataset contains 100,000 RGBD images,
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(a) (b) (c) (d)

Figure 3.1: Example data in MetaGraspNet benchmark dataset: a) RGB image. b) Depth
image. c) Instance annotations. d) Occlusion percentage annotations. Objects are marked
with their occlusion percentage, while background is marked with a value of -0.1 .

11,000 scenes, and 25 classes of objects. The dataset is split into 5 difficulties to evaluate
object detection and segmentation model performance in different grasping scenarios. In
addition, this chapter propose a new layout-weighted performance metric alongside the
MetaGraspNet benchmark dataset for evaluating object detection and segmentation per-
formance in a manner that is more appropriate for robotic grasp applications compared to
existing general-purpose performance metrics. The proposed MetaGraspNet benchmark
dataset will be available in an open-source form on Kaggle [158], with the first phase
consisting of detailed object detection, segmentation, layout annotations, and a script for
layout-weighted performance metric (https://github.com/y2863/MetaGraspNet).

3.2 Dataset

3.2.1 Physics-based Data Synthesis in the Metaverse

Manually capturing object detection datasets in real-world robotic bin picking environ-
ments is intractable in most practical scenarios for a number of key reasons. First of all,
this manual capturing process involves repeatedly setting up physical grasping environ-
ment, physically placing different objects into the physical environment, recording images
with sensors, and removing objects. As such, this process is very time consuming, labori-
ous, and unscalable in most practical scenarios as it requires the entire capture process to
be manually repeated for each environment and scenario. Second, the manual process of
placing different objects into different layouts by a human operator also means that the way
the objects are arranged in three dimensional space often does not reflect how objects are
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physically dropped together into a pile during the material handling processes in real-world
warehouses or industry related scenarios. Third, manually labeling the sensor data is very
time consuming, therefore static, and cannot keep up with the emerging demand for data
needed for training deep neural networks. In [9], Fang et al. have come up with an intuitive
way to overcome the enormous labeling effort for each viewpoint by mounting the camera
to the robotic end effector and recording the relative movement between image frames,
however their approach still needs precise initial manual annotations for each scene and is
restricted to known objects and physical environments with a robotic manipulator. Image
synthesis approaches that generated images based on randomizing object counts, poses,
and positions can be used to cut down the data collection time significantly, but creates
unrealistic or physically impossible layouts where an object can overlap with other objects
in the same spatial location. As such, the effectiveness of training deep learning models
using images generated in this fashion can be very limited for real-world deployment sce-
narios. Therefore, a way to generated large-scale benchmark datasets with highly diverse
environments and layout permutations for vision-driven robotic grasping in a scalable yet
realistic manner is highly desired.

Motivated by this, this chapter take inspiration from the recent rise of metaverses, which
are highly immersive virtual environments that facilitates for significant interaction. The
significant advancements in metaverses have significantly closed the gap between virtual
worlds and the physical world, particularly in physics-based metaverse creation platforms
such as the Nvidia Omniverse [159].

To create the proposed MetaGraspNet benchmark dataset, we leverage Nvidia Omni-
verse to create photorealistic, physics-driven digital twins of different real-world manufac-
turing scenarios. Within these digital twins, we then randomly drop objects under differ-
ent environment configurations and let the objects interact through physics simulation to
ensure the object layouts as captured within the MetaGraspNet dataset are realistic and
physically accurate (as shown in Figure 3.2). Performing the data capturing process in such
realistic manufacturing digital twin metaverses enables us to greatly scale in data quantity
and diversity beyond what is possible with real-world manual capturing approaches in a
very efficient and effective manner, but also allow us to obtain high quality, realistic data
that mimics real-world physical scenarios well beyond what is possible with image synthesis
approaches.

3.2.2 Object Layout Label

In addition to the typical semantic mask labels, we propose three more labels to characterize
the object layouts.
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Figure 3.2: Physics-based data synthesis: Items are dropped into the photorealistic,
physics-driven metaverse digital twin of different manufacturing scenarios.

The first label, occlusion percentage describes the percentage area of each object being
occluded. This score provides an indirect measure for each object on their relationship
with other objects in the layout. This score is calculated as the percent of pixels removed
in the instance segmentation mask compared to the total number of pixels of the object if
all other objects in the image are removed.

The second label is a matrix storing the relation between each pair of objects, providing
a comprehensive layout representation. To construct the relation matrix, we define three
types of relationship for a pair of objects A and B. If A is occluding B, we define the
relationship between (A,B) as positive, with a numerical value of 1. If A is occluded by
B, we define the relationship between (A,B) as negative, with a numerical value of -1. If
A and B have no direct relationship or A = B, we define the relationship between (A,B)
as neutral, with a numerical value of 0. Based on these definitions, for a layout with N
objects, we create a relation matrix with NxN elements, where element (i, j) in the matrix
is the relationship between object i and object j.

The third label is aiming to provide a simpler layout description in line with the robotic
grasping task. For each object in the environment, we want to answer to the following
question. How many other objects are on top of the current object that need to be moved
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Figure 3.3: Example of how a graph of objects is categorized into the different layers (Top,
secondary, others). Each graph edge represents an instance of an object covering the other.

away before picking? To better understand the order in which objects must be grasped,
we create a directed graph to represent each layout. Each node represents an object in
the layout and each edge represents an obstruction relationship where the parent object
is covering the child. From this representation, we can see what objects and how many
objects are occluding the same object. As robots pick objects sequentially, occluded objects
will be revealed entirely once the objects on top of them are picked. Therefore, it is not
necessary to evaluate occluded objects that are at the bottom of the scene. Sometimes,
the occlusion between objects is small enough that can be ignored, so objects occluded by
only a single other objects are also important to be evaluated. Given this, we categorize
each object in a layout into 3 different layers. Top layer contains objects that are clear
of any obstructions. Secondary layer includes objects that are covered by only a single
other object. Others layer includes the rest of the objects. In some cases, there could
be groups of interlocked objects. Interlocked objects that are being directly covered by
only one object would be considered to be within the secondary layer. An example of a
environment of objects from the top down view and the resulting graph can be seen in
Figure 3.3.

3.2.3 Layout-based Difficulty Levels

While per category object detection metrics can measure performance on specific categories
of objects, a difficulty rating for the overall environment would better allow us to elimi-
nate hard examples and better understand how the model would perform under different
environment conditions.
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Figure 3.4: Example images from 5 difficulty levels in MetaGraspNet benchmark dataset.
a) level 1: minimal occlusion. b) level 2: some occlusion. c) level 3: incomplete objects
(scissors is crosscut by the banana). d) level 4: multiple instances of the same object class.
e) level 5 includes all difficult characteristics.

We label images according to 5 different levels of difficulty. Those levels are defined by
4 different characteristics: Number of layers, occlusion percentage, instance completeness,
and class uniqueness. Instance completeness refers to if a single object instance is visually
crosscut into multiple segments due to occlusion. In such case, we refer to this kind of
objects as incomplete objects, and refer to objects without visual crosscuts as complete
objects. Incomplete objects often result in an object over-detection or over-segmentation,
and thus it is a good characteristic to test object detection and segmentation models.
Class uniqueness refers to if all objects in an image belong to different categories, or are
visually distinct from each other. This characteristic is to evaluate object detection and
segmentation models on distinguishing objects with similar visual features while clustered.

The first two levels of difficulty will be primarily concerned with understanding how
a model deals with different levels of occlusion and layers. The layer limit for level 1
difficulty is set to 1, and the occlusion limit is set to 5% empirically. The next Three
levels are primarily concerned with measuring the model’s ability to correctly label object
instances. Level 3 includes incomplete objects in an image, and level 4 includes non-unique
objects. Level 5 includes both incomplete as well as non-unique objects. Table 3.1 describes
all the difficulty levels, and Figure 3.4 shows images from each difficulty level.

3.2.4 Dataset Details

The proposed MetaGraspNet benchmark dataset contains 100,000 images, with 11,000
different scenes and 25 different household objects whose 3D models are provided by the
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Level layer
limit

occlusion
limit

complete
object

unique
class

1 2 5% ✓ ✓
2 N/A N/A ✓ ✓
3 N/A N/A ✓
4 N/A N/A ✓
5 N/A N/A

Table 3.1: Table description for difficulty levels

Yale-CMU-Berkeley Object and Model Set [160]. The objects are placed in a red plastic
box in the metaverse environment, and represents an universal small load carrier which is
used in many intralogistics use-cases. A scene is a single arrangement of objects in the bin
and multiple images are taken of that scene at various viewpoints.

3.3 Layout-weighted Evaluation Metric

As discussed in Section 3.2.2, not all objects are of the same importance in a grasping
task. Top and secondary layer objects have a priority to be picked, while picking the
rest of objects requires moving away top and secondary layer objects. Therefore, our
proposed metric focuses on evaluating top and secondary layer objects. Besides evaluating
model performance for top and secondary objects separately, we propose a layout-weighted
metric which considers the model performance on both top and secondary layer objects.
In particular, we use objects’ percentage of unoccluded area to weigh objects’ evaluation
score in each grasping scene. Occlusion percentage measures the maximum percentage
area an object could be in contact with other objects, which indirectly measures how much
disturbance moving the object can cause to other objects. The less disturbance an object
creates, the more likely it is picked first, and thus the more important it is in a scene.

Given the occlusion percentage of an object, p, let the object’s weight be w = 1−p. We
consider a scene S = {oi|i ∈ [1, n]} containing n objects, where each object oi is indexed
by i. Let A contain all indices for top layer objects, and B contain all indices for secondary
layer objects. Let the evaluation score for object oi be vi. This score can be produced
by any standard object detection and segmentation metric such as average precision, and
intersection over union (IoU). Then the per-scene layout-weighted score VS for the scene
S is calculated as in (3.1):
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VS =
∑

i∈{A+B}

wi∑
j∈{T+S}wj

vi (3.1)

Objects from others layers are not considered during the evaluation. Once we compute
all the per-scene layout-weighted score, we take the mean as our layout-weighted score.

3.4 Conclusion

In this chapter, we proposed MetaGraspNet: a large-scale benchmark dataset for vision-
driven robotic grasping via physics-based metaverse synthesis. This dataset contains
100,000 RGBD images, 11,000 scenes, and 25 classes of objects. The proposed Meta-
GraspNet benchmark dataset consists of detailed object detection, segmentation, layout
annotations, and a script for layout-weighted performance metric. We presented 5 difficul-
ties to evaluate model performance in different grasping scenarios. Moreover, we proposed
a new layout-weighted performance metric to evaluate object detection and segmentation
performance in a manner that is more appropriate for robotic grasp applications. Sub-
sequent chapters will then use the dataset provided here to explore the problem of scene
understanding for robotic grasping.
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Chapter 4

Investigating Use of Keypoints for
Object Pose Recognition

This chapter delves into the exploration of keypoints for object pose recognition, a critical
aspect of scene understanding for robotic grasping. The chapter is based on a study that
demonstrates the feasibility of a pose estimation network based on detecting semantically
important keypoints on the MetagraspNet dataset, which contains heavy occlusion and
greater scene complexity. The chapter discusses various challenges in using semantically
important keypoints as a way to perform object pose estimation. These challenges in-
clude maintaining consistent keypoint definition, as well as dealing with heavy occlusion
and similar visual features. The chapter also presents experimental results and discusses
the impact of occlusion and similar keypoints on the performance of the pose estimation
model. The insights gained from this study contribute to the ongoing efforts to improve
the accuracy and generalizability of pose estimation methods, thereby enhancing scene un-
derstanding for robotic grasping. The chapter is structured to first introduce the concept
and importance of keypoints in Section 4.1, then delve into the implementation details in
Section 4.2, followed by a presentation of experimental results in Section 4.3, and finally a
discussion of the findings and their implications in Section 4.4.

4.1 Introduction

In recent years, there has been a rising interest in the use of robotic systems to handle
object manipulation tasks in scenarios ranging from manufacturing to domestic settings.
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Figure 4.1: An example of keypoints detection results for drills.

One important hurdle to performing automated object manipulation is estimating accurate
object pose. Object pose provides important knowledge both before, during, and after a
grasp action. Before a grasp, pose information can allow the robot to target different parts
of the object depending on its task. During a grasp, pose information is vital for moving
objects through space without collision, as well as to operate tools that are being grasped.
Finally, it can be important to place an object in the correct orientation when releasing a
grasp.

Object pose estimation methods can be categorised as direct pose estimation methods
or Perspective-n-Point(PnP) methods. Direct pose estimation predict the 3D rotation and
translation matrix of an object relative to a reference pose, such as an exact 3D model of
the object in question [31, 35, 38, 42]. Perspective-n-Point(PnP)/RANSAC methods use
an intermediate representation that is used to match up with the 3D model pose. Those
representations can be categorized as either dense or sparse representations. Dense PnP
methods [51, 61, 64–66] predicts a correspondence to a reference model for each input
point. In contrast, sparse methods only predicts a limited number of correspondences or
keypoints, typically in the range of 5-20. These keypoints may be defined as the corners of
the 3D object bounding box [52, 53] or a set of points defined relative to the object surface
[55, 57, 58, 62, 72, 76, 161]. These surface keypoints are most similar to pose estimation
methods used in human pose estimation.
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Direct pose estimation and dense PnP pose estimation methods both have a heavy
reliance on exact 3D reference models. Such 3D models are costly to collect and makes
it difficult to expand the dataset to new objects. Sparse keypoints are more flexible, and
do not require exact matches with a reference mode. The Pascal3D+ dataset [162] for
example uses semantic keypoints based on a limited number of 3D models to represent the
pose of a much wider variety of real world examples that do not match exactly.

Furthermore, because direct and dense PnP methods are informative only relative to a
reference model, the resultant prediction contains little intrinsic information. In contrast,
surface keypoints may directly inform us of part locations or surface properties. For in-
stance, a particular keypoint can be defined as the ”tip” of a object, while another may
be the ”end” of the handle. This direct description without the need to refer back to
a reference model can decrease computation requirement during inference, removing the
need to load a 3D CAD model into the system for each predicted object.

Previous work using semantically important sparse keypoints for robotic grasping are
very limited in the complexity of its environment and the variety of available object classes.
There is often very little occlusion, and only two or three object categories are considered.

In this work, we investigate the feasibility of using semantically important keypoints
in object pose estimation in complex, clustered environments. We train a heatmap-based
keypoint detection model on the MetagraspNet dataset [163]. Our model is evaluated based
on both pose estimation performance as well as 2D keypoint similarity scores. Through
experiments, we conclude that the model performance is heavily impacted by occlusion
and similar nearby points.

4.2 Implementation Details

The keypoint detection network is implemented using mmpose [164] with a ResNet [165]
backbone and a heatmap-based keypoint predictor head based off of Simple Baseline 2D
[46]. A separate head is used for each prediction class. An example of keypoint detection
results for the drill class can be seen in Figure 4.1.

The model is trained on the synthetic MetagraspNet Dataset [163]. Each object cate-
gory is labelled with keypoints containing unique ids at semantically important locations
on the object surface. Boxes, for example, are labeled with 8 keypoints on each corner.
Some example classes are displayed in Figure 4.2.

The 2D keypoints detected on an image can then be converted into an estimated pose
through solving for the rotation and translation matrices to minimize the reprojection error
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Figure 4.2: Example keypoint labels for various classes.

from 3D-2D point correspondences using the RANSAC algorithm. Example pose results
can be seen in Figure 4.3.

4.2.1 Keypoints Definition

The most difficult component of using keypoints for object pose recognition is defining
keypoint placement. A popular option is to use furthest point sampling [57], where a fixed
number of keypoints are sampled evenly around a 3D shape. However, such a sampling
method offers no semantic information.

Instead, a method similar to Manuelli et al. [76] is preferable, where keypoints are
defined in areas significant to the object, such as the top, bottom, and handle. Such
keypoints offer important semantic information, but can be more difficult to implement for
both model prediction and in defining where keypoints are placed.

During model prediction, semantically important keypoints can be less robust to occlu-
sion due to being fewer in number. It can also be difficult to ensure that they are located
in areas that are visually distinct.

During keypoint definition, it is difficult to define a generalized pattern for placing
keypoints, especially for more complex objects like scissors or drills. The complexity and
uniqueness of their geometric shapes makes such objects less likely to fit into any previous
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pattern of keypoint placement, or can even conflict. For example, corners areimportant in
boxes but labelling all corners of a more complex shape that contains many corners may
not be necessary or even desired.

Another challenge is symmetry. Symmetrical objects with theoretically different poses
may visually be exactly identical. Human pose estimation only needs to handle bi-radial
symmetry, but objects with more than a single plane of symmetry are very common.
Pose estimation specific metrics, such as those in [27] often take into account symmetry
in the final loss calculations, where visually identical poses are not punished, while [76]
defines keypoints on the line of symmetry itself to reduce ambiguity. However, important
object properties such as edges or corners often lies outside that line or plane of symmetry,
and makes it difficult to limit keypoints to only along such axis. A box, for example, is
intuitively defined with keypoints at the corners. However, this definition causes ambiguity
for flipped or rotated poses where the particular keypoints may not necessarily match.

Our implementation defines keypoints along axis of symmetry, such as one on center-
top, and another on center-bottom, but also on important features such as corners of boxes
or edges of cups. Examples of keypoints on various object classes can be seen in Figure
4.2.

4.3 Experimental Results

4.3.1 Metrics

We evaluate the pose prediction on the average distance (ADD) [20] metric :

eADD =
1

m

∑
x∈M

||(Rx+ T )− (R̃x+ T̃ )|| (4.1)

WhereM is the set of 3D model points, m is the number of points, R and T are the
ground truth rotation and translation matrices, and R̃ and T̃ are the estimated rotation
and translation matrices. This can be computed in both world coordinates using only
the estimated pose matrices, as well as after projecting both poses into image coordinates
based on the camera’s intrinsic matrix. This metric can be converted into an accuracy
score by the following equation:

AccuracyADD =
1

n

∑
eADD∈N

{
1 if eADD < t

0 otherwise
(4.2)
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Where N is the set of predictions, n is the number of predictions, and t is the distance
threshold.

We also look at the object keypoint similarity (OKS) score for the 2D keypoints based
on the COCO evaluation metrics:

OKS =
∑
i

[
exp

(
−d2i
2s2k2

i

)]
(4.3)

where di is the euclidean distance between detected and ground truth keypoint, si is object
scale, and ki is a per-keypoint constant to control falloff. Precision and recall metrics are
computed with OKS at 0.5 threshold. Results can be seen in Table 4.1.

4.3.2 Pose

After solving for rotation and translation matrices using RANSAC, pose estimation exam-
ple results can be seen in Figure 4.3.

Our model is trained on cereal box and drill classes. The accuracy curve for different
ADD score threshold can be seen in Figure 4.4.

4.4 Discussion

4.4.1 Occlusion

The average precision and recall scores are heavily impacted by occlusion, as shown in
Table 4.1.

Table 4.1: Average precision and recall performance for occluded and visible keypoints in
drills

AP AR
all 83.1 87.2
occluded points 69.4 78.8
visible points 86.7 89.4

When a keypoint is occluded and not visible from the camera,, there are no longer
local features for the model to identify, making it significantly more difficult to predict
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(a) (b)

(c) (d)

Figure 4.3: Visualization of pose results.

that keypoint’s location. This issue has also been pointed out by Pavlakos et al. [72].
Chen et al. [62] works to improve this weakness through heavy augmentation, the lack of
robustness to occlusion is a key reason for the popularity of dense PnP and direct pose
estimation methods compared to sparse PnP methods.

Occlusion is especially problematic with semantically important keypoints. Often, the
number of defined points are fewer than those defined in automatically sampled methods,
and thus the loss of one point more heavily impacts the pose prediction. An example of
this can be seen in Figure 4.3b and 4.3d.
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Figure 4.4: ADD accuracy scores given different thresholds for world coordinates (left) and
projected image coordinates (right).

4.4.2 Similar keypoints

The model can be easily confused by keypoints where the local features are very similar
to each other. This can happen in two different scenarios: between keypoints on the same
object as well as if a similar object is within the bounding box.

An example of confusion between similar keypoints shown in Figure 4.5, where keypoints
0, 1, 2, and 3 are misclassified with each other.

We demonstrate this phenomenon through calculating the percentage of keypoint ob-
servations which contain more than one peak above the detection threshold of 0.3. As
seen in Table 4.2, 15 to 24 percent of predictions for keypoints 0-3 are confused between
different possible locations. This compares to the around 5% probability for keypoints 4
and 5, which are more visually unique.

In comparison, cracker boxes have more visual graphics that aid in distinguishing be-
tween the different keypoints. An example of a cracker box can be seen in figure 4.6.

Those visual graphics result decrease the likelihood of there being multiple peaks in the
heatmap prediction in comparison to keypoints 0-3 on drills, but are still less unique than
keypoints 4 and 5.

Using this multiple-peaks probability, we can iteratively improve the location of various
keypoints to more visually distinct locations through identifying keypoint locations to
minimize this value. However, it can be difficult to do so while maintaining their semantic
significance.
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(a) keypoint 0 (b) keypoint 1 (c) keypoint 2

(d) keypoint 3 (e) keypoint 4 (f) keypoint 5

Figure 4.5: Visualization of heatmap for predicting a keypoint for example in Figure 4.1,
overlayed on the original image.

This confusion between keypoints is sometimes caused by symmetry. Human pose
estimation deals with symmetry pre-defined pairs of key-points that can be flipped with
each other (eg. left-ear, right-ear) when the image itself is flipped as a data augmentation.
However, there are often more than a single axis of symmetry in objects, and it may be
non-obvious which keypoints to flip.

Similar to Manuelli et al. [76], we primarily define keypoints on the line of symmetry
itself to reduce ambiguity. However, important object properties such as edges or corners
often lies outside that line or plane of symmetry, and makes it difficult to limit keypoints
to only along such axis. A box, for example, is intuitively defined with keypoints at the
corners.

The second scenario which causes confusion between similar keypoints is the presence
of nearby objects of the same class. A great example of this can be seen in Figure 4.3d.
The bounding box for the bottom drill (blue model, green keypoints) overlaps heavily with
the top drill. When predicting the keypoints, only keypoint 4 (see Figure 4.5e for location)
was correctly predicted on the bottom drill. The other points were all placed on the top
drill. This suggests that the model is only focusing on the local features in the near vicinity
of the keypoint location rather than the overall object. A comparison of ADD accuracy
scores for images containing multiple objects of a given class vs those with a single object
of a given class can be seen in Figure 4.7, with the former case performing notably worse.
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Table 4.2: Probability that each keypoint would contain multiple detected peaks above the
0.3 confidence threshold for drills.

keypoint id probability of multiple peaks (%)
0 22.1
1 20.3
2 15.6
3 23.7
4 5.8
5 4.2

Table 4.3: Probability that each keypoint would contain multiple detected peaks above the
0.3 confidence threshold for cracker boxes.

keypoint id probability of multiple peaks (%)
0 7.9
1 9.6
2 6.8
3 7.2
4 11.1
5 13.2
6 16.2
7 15.8

4.5 Summary

Through training a heatmap-based pose detection model on the MetagraspNet dataset, we
demonstrate that semantically important keypoints can be an effective way to estimate the
pose of objects. However, the complexity of the available object classes results in keypoint
definitions that do not have a consistent pattern, leading to ambiguities on where to place
them on new objects.

Furthermore, the complex scenes with high level of occlusion, sometimes with similar
objects on top of each other, present in the MetagraspNet dataset reveal challenges that
were not well observed in previous implementations. In particular, the model struggles
heavily with occluded keypoints as well as with the presence of points with similar visual
features nearby. Those similar local features may be present on the same object, or on
other objects close-by. We demonstrate this issue through observing that the probability
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(a) keypoint 0 (b) keypoint 1 (c) keypoint 2 (d) keypoint 3

(e) keypoint 4 (f) keypoint 5 (g) keypoint 6 (h) keypoint 7

Figure 4.6: Visualization of heatmap predictions for a cracker box.

of multiple peaks in the heat-map prediction varies based for different keypoints based
on the local visual uniqueness of that point (as shown in Tables 4.2 and 4.3). We further
demonstrate this problem through the decrease in ADD performance when multiple objects
of the same class are present in the same object (as shown in Figure 4.7).

Future work may use the multi-peak probability to identify poor keypoints and iter-
atively improve the keypoint definition to ensure easy recognizably. In addition, we may
also explore alternative ways to represent object poses, such as with categorical keypoints
(as opposed to keypoints with unique ids), as well as volumetric primitives, so that the
representation is less arbitrarily defined, and enable easier integration with the downstream
robotics grasping pipeline.
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Figure 4.7: ADD accuracy scores given different thresholds in projected image coordinates
for images with multiple objects of the same class compared to images with only a single
object of a given class.
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Chapter 5

ShapeShift: Superquadric-based Pose
Estimation for Enhanced Scene
Understanding in Robotic Grasping

This chapter introduces ShapeShift, a superquadric-based object pose estimation method
that offers a flexible approach to understanding the scene for robotic grasping. By pre-
dicting an object’s pose relative to a primitive shape fitted to the object, ShapeShift
provides intrinsic descriptiveness and information about the 3D object without the need
for a reference 3D model. This approach enhances the robot’s ability to interact with its
environment, thereby contributing to more effective robotic grasping. The chapter will
detail the development of ShapeShift, its underlying principles, and its application in the
context of scene understanding for robotic grasping.

5.1 Introduction

Object pose estimation is a crucial task in robotics, enabling precise manipulation of ob-
jects in the environment. However, a common challenge faced by current object pose
estimation techniques is their heavy reliance on a reference 3D object. Adding new ob-
ject categories into the model incurs a substantial expense, as it necessitates accurate 3D
scans. Furthermore, these models have limited generalizability and are confined to a small
set of objects. In practice, referring back to the 3D model to obtain useful information
about grasp points and positions can limit the effectiveness of these techniques in robotic
grasping applications.
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Figure 5.1: An example of ShapeShift on a typical scene.

Keypoint-based methods for object pose estimation, such as those described in [75] offer
intrinsic descriptiveness about the 3D object without the need to reference a 3D model.
However, these methods can be arbitrary in their definition and lack consistency between
objects. Such methods deal poorly with multiple degrees of symmetry and heavy occlusion.

To overcome these challenges, this paper proposes ShapeShift, a framework for object
pose estimation based on primitive shapes. By fitting a primitive shape to an object, the
proposed approach provides intrinsic descriptiveness and information about the 3D object
without relying on a 3D model. In this paper, we specifically utilize superquadrics, which
are three-dimensional shapes described by a mathematical equation that has been used to
simplify shape representation in previous works [114, 117, 119]. The proposed approach
predicts the object’s pose in reference to a predicted primitive shape fitted to the object.
This not only provides intrinsic descriptiveness but also enables generalization to arbitrary
geometric shapes not present in the training set, making it a promising solution to the
challenges faced by current object pose estimation techniques.
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5.2 Method

The proposed ShapeShift framework can be described as follows. In the first phase, primi-
tive shapes are fitted to each geometric part of an object using superquadrics. In the second
phase, the superquadrics fits are leveraged as “ground truth“ for a superquadric-guided
direct regression network to directly predict pose and shape information.

5.2.1 Phase 1: Superquadric fitting

Superquadrics, described by Equation 5.2 are characterized by parameters in Equation 5.1.

θ = {ϵ1, ϵ2, ax, ay, az, R, t} (5.1)

az are the scale, ϵ1 and ϵ2 define the shape of the surface, R defines the rotation matrix,
and t is translation.

F (x) =

((
x

ax

) 2
ϵ2

+

(
y

ay

) 2
ϵ2

) ϵ2
ϵ1

+

(
z

az

) 2
ϵ1

(5.2)

The equation represents the surface implicitly, returning F (x) = 1 for points on the
surface, F (x) < 1 for points inside the object, and F (x) > 1 for points outside. Through
varying the parameters in (5.1), different 3D shapes can be expressed. Examples of different
superquadrics are shown in Figure 5.2a.

The first phase of ShapeShift leverages the superquadric fitting technique from Liu
[114] to fit superquadrics to parts. This primarily serves to provide ground truths for
superquadric poses, shapes, and scales for Phase 2: Superquadric-guided Pose Estimation
described Section 5.2.2. After each 3D model is fitted with a collection of superquadrics, as
seen in Figure 5.2b, each image can then be labelled with the superquadric pose, replacing
the original object pose.

It is possible to go without Phase 1, and instead compare the superquadric prediction in
Phase 2 directly with the original object, either through comparing point cloud differences
or through an implicit loss similar to [119]. However, that would require significantly more
compute per loss calculation, and would likely be more difficult to regress to compared to
a pre-labeled superquadric pose.
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(a) (b)

Figure 5.2: Superquadrics shape space and when fitted to an object.

Regardless of whether superquadrics are explicitly fit to the 3D models for ground
truth labels, or compared directly to the original objects, there arises a problem of similar
superquadrics characterized by different parameters, which was explored by Liu in [114].

Recall that superquadrics are characterized by shape, scale, rotation, and translation
parameters (5.1). Axis mismatch similarity occurs when ϵ1 ≈ ϵ2, and similar superquadrics
can be achieved through reassigning the principal axis to either x or y, then applying a
corresponding rotation. In Equation 5.3, θc1 and θc2 shows the parameters for the two
possible similar superquadrics.

θc1 = {ϵ2, ϵ1, ay, az, ax, [r2, r3, r1], t}
θc2 = {ϵ2, ϵ1, az, ax, ay, [r3, r1, r2], t}

(5.3)

where [r1, r2, r3] are orthonormal column vectors of R, the rotation matrix

There also exists duality similarity when ax ≈ ay and ϵ ∈ [0, 2]. The new parameter for
this similar superquadric is shown in Equation 5.4

θc3 = {ϵ1, 2− ϵ2, s · ā, s · ā, az, R ·Rz(π/4), t} (5.4)

where
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s =

{
((1−

√
2)ϵ2 +

√
2) if ϵ2 < 1

(
√
2/2− 1)ϵ2 + 2−

√
2/2 otherwise

ā = (ax + ay)/2

(5.5)

Duality similarity exists because, as ϵ2 becomes greater than 1, the shape that it rep-
resents becomes the same as when ϵ2 = 2− ϵ2, or the same as the shapes mirrored about
ϵ2 = 1. The only difference is that the shapes are rotated by 45◦ about the z axis, and the
x and y scales are different, while az remains the same. Rz(π/4) in equation 5.4 represents
this rotation about the z axis, while s in equation 5.5 represents the scale change.

To avoid cases of duality similarity, we maintain ϵ2 within the range [0, 1], while re-
defining the scale as a warp transformation rather than directly in the implicit equation in
5.2. Additionally, the rotation can be transformed into a new rotation using the following
approach:

S =
[
ax ∗ s, ay ∗ s, az

]T
I

Swarp = R−1
d SRd

Rnew = RRd

(5.6)

where Rd = Rz(π/4) is a rotation of π/4 about the z axis

Instead of a 3x3 transformation matrix for S, it can be further expanded to a pure
scale and a shear transformation. Reversely, S and R can be combined into a single 3x3
transformation matrix (S).

Other situation of similar superquadrics are solved through defining a series of discrete
and continuous symmetrical transformations for the loss calculation in Phase 2.

5.2.2 Phase 2: Superquadric-guided Pose Estimation

The second phase of ShapeShift involves superquadric-guided pose estimation to directly
predict pose and shape. The proposed architecture (see Figure 5.3) uses depth images as
input and extends upon [51] in several ways. To reduce search dimensions, superquadrics
were discretized based on shape parameters and treated as different object categories. This
also allows for easily defining symmetry (discrete and continuous) for error calculations.
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Figure 5.3: The proposed superquadric-guided pose estimation architecture extends
upon [51] by introducing a new scale and shear head. The main difference is defining
the 3D correspondences in reference to a superquadric shape rather than the 3D model of
the full object.

To generate an intermediate representation, un-scaled primitive shapes were sampled using
furthest point sampling. Additionally, the proposed architecture introduces additional scale
and shear heads. An additional head can be added in the future to predict shape parameter
offsets.

5.3 Experimental results and discussion

We conducted experiments on a subset of the MetaGraspNet benchmark dataset [163] con-
taining 54 object categories of objects that are composable using multiple superquadrics.
We evaluated the performance of our proposed ShapeShift framework for object pose es-
timation using the Maximum Symmetry-Aware Surface Distance (MSSD) and Maximum
Symmetry-Aware Projection Distance (MSPD) metrics [27]. For evaluation, we combined
rotation, scale, and shear into a single transformation matrix. The accuracy scores based
on both metrics are shown in Figure 5.5.

During experimentation, we observed three challenges.

First, the method’s performance was lower for underrepresented shape categories, as
shown in Figure 5.5.

Second, shear is underrepresented in the ground truth, but there exists a head dedicated
to predicting it, causing a number of false predictions. False predictions of shear caused
projected error to be higher than 3D surface distance error for ϵ = (0, 0) shapes.
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(a) (b)

(c) (d)

Figure 5.4: Superquadrics pose and shape prediction examples.
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Figure 5.5: MSSD (left) and MSPD (right) based accuracy scores over different thresholds
on discrete superquadric shapes

Finally, the proposed method is robust to partial occlusion on objects composed of
multiple primitive shapes. As illustrated in Figures 5.4b, 5.4c, parts of the object that are
not occluded can still be properly predicted, even while the method struggles on heavy
occlusion. Further work exploring data augmentation methods and an addition amodal
mask prediction head should help with overall occluded object performance.

5.3.1 Summary and future work

In this paper, we introduced ShapeShift, a superquadric-based framework for object pose
estimation is proposed that predicts an object’s pose relative to a primitive shape fitted
to the object. This approach provides intrinsic descriptiveness and information about
the 3D object without relying on a 3D model. The approach was further tested on the
MetaGraspNet benchmark dataset, and has demonstrated the ability to approximate the
shapes present in the image. Future work would focus on optimizing performance in cases
of occlusion, dealing with the imbalanced distribution of shape types, adding an additional
head to predict precise shape parameters, evaluating performance on novel objects not seen
in the training set, and evaluating performance on a full robotics grasping pipeline.
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Chapter 6

MMRNet: Multimodal Consistency
for Reliable Uncertainty Estimation

This chapter presents MMRNet, a novel method for improving the reliability of multi-
modal object detection and segmentation for bin picking. By introducing the concept of
multimodal consistency (MC) for uncertainty estimation, MMRNet aims to provide reliable
and interpretable measures of uncertainty, which is critical in robotic grasping involving
human-in-the-loop scenarios. The chapter will discuss the development of MMRNet, the
concept of MC, and the impact of these advancements on robotic grasping.

6.1 Introduction

Global labor shortages and the need for resilient supply chains has accelerated companies’
upgrades to industry 4.0 and introduced a range of technologies such as big data, cloud
computing, internet of things (IoT), robotics, and artificial intelligence (AI) into produc-
tion systems. With warehouses and manufacturing units becoming smart environments, a
crucial objective is to develop an autonomous flow of both material and information, and
robotic bin picking plays an essential role in this task.

Robotic bin picking has been an active area of research for many decades given the
complexity of the task, ranging from joint control and trajectory planning [166] to object
identification [167] and grasp detection [15].. In particular, we examine the object detection
and segmentation task in autonomous bin picking. Different from object detection and
segmentation in other areas such as autonomous driving, robotic vision system works in
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Figure 6.1: The dynamic modality weight shifting of our network ensures a reliable overall
performance when a modality is missing. Row 2-4 heatmaps describe the average gate
weights of each modality at a single feature scale. Yellow indicates high weight, dark
purple indicates low weight.

environments that are very close to the camera, dealing with heavy occlusions, shadows,
dense object layouts, and complex stacking relations. It plays an essential role in a robot’s
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perception system.

Deep neural networks have been proven effective for object detection and segmentation
[168, 169]. But, deploying such systems in robotic picking applications is challenging due
to the many sources of uncertainty present in practical scenarios. Real-world bin scenes
may consist of a wide variety of unknown or occluded items arranged in an infinite number
of poses and illuminated with variable lighting conditions. In addition to the variability
of real-world bin scenes, errors in the camera system can make a computer vision system
unreliable. Camera sensors are prone to noise and can fail in various situations such as
specular reflections (missing values), black areas (missing depth), overexposure, blur, and
artifacts. In practice, commercial systems are expected to run 24/7 to be feasible, which
increases the risk of imaging sensor failures compared to research environments. If not
accounted for, sensor failures can lead to wrongly commissioned orders and in the worst
case to product and hardware damages, leading to expensive recall campaigns or production
downtime. Therefore, vision systems capable of handling uncertain inputs and producing
reliable predictions under sensor errors are critical to creating fail-safe applications.

One approach to creating fault-tolerant object detection and segmentation systems is
to introduce system duplication, where portions of the system are duplicated to allow
the system to continue to operate despite failures of its constituent parts. This approach
assumes that failures are caused by either input sensor failures or computational failures.
However, duplication may not provide fault-tolerance in situations where the system is
operating correctly but its sensors are unable to adequately measure the inputs. For
example, a camera may fail to adequately image a piece of glass due to its transparency,
and so the use of a second identical camera cannot address this issue. In addition, deep
neural networks as a data-driven approach are designed to capture feature distributions
of the input dataset. A simple duplication of these networks will not detect features that
are not in the training distribution. Instead, we add image data from depth sensor as an
additional modality to capture object feature characteristics from a different perspective.
More specifically, depth data has very simple texture yet rich geometric features, that are
more transferable to unseen objects than RGB data.

A good system duplication design duplicates components that are more likely to fail,
preventing any disruption in the information flow from the system input to output. Non-
data-driven methods have well defined explicit logic to control the information flow. In
comparison, deep learning system learns the input and output mapping through high-
dimensional implicit feature representations. A typical deep learning model encodes input
information through a backbone network into a high-dimensional latent representation,
and downstream tasks use the representation to predict low-dimensional outputs. Con-
sequently, a large amount of information is lost during the dimensionality reduction of
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downstream tasks. However, in robotic bin-picking, unseen items may contain highly com-
plex image characteristics that require both RGB and depth to work collaboratively. For
example, RGB backbones are better at detecting transparent objects and depth backbones
are better at detecting dark objects. A pair of eyeglasses with black frame will require the
RGB backbone to focus on glass parts while the depth backbone to focus on the frame for
a complete detection and segmentation. With the reduction of dimensionality, a simple
result aggregation on two low quality detections will create another low quality detection.
Additional result merging networks or explicit merging logic will introduce errors and in-
stabilities into the system. An effective modality fusion technique that will dynamically
fuse modality features with limited loss of information is therefore greatly desired. In
addition, modality features merging may introduce dependencies between them, causing
unexpected model behavior when one of the modality feature is absent. We tackle this
problem with a multimodal redundancy framework consists of two key techniques: 1) we
use a multi-scale soft-gating mechanism to make the network learn to weigh and combine
features between modalities dynamically, and 2) we use a dynamic ensemble learning strat-
egy to train the sub-system independently and collaboratively in an alternating fashion.
With this framework, only one modality needs to be present for the model to operate.

Finally, we propose a novel multimodal consistency (MC) score as a more objective
reliability indicator for the system output based on the overlaps of detected bounding
boxes and segmentation masks. This can be used as an indicator for model uncertainty on
individual predictions, as well as model reliability on particular datasets.

Through experiments, we demonstrate that in an event of missing modality, our MMR-
Net provides a much more reliable performance compared to baseline models. When depth
is removed, our network’s performance drop is within 1% where other models have a per-
formance drop greater than 6%. When RGB is removed, our network’s performance drop
is within 11% where other models have a performance drop greater than 80%. Further-
more, we demonstrate that our MC score is a more reliable indicator for output confidence
during inference compared to the often overly-confident confidence scores. We summarize
our contribution as the following:

• A multimodal redundancy framework consisting of a multi-scale soft-gating feature
fusion module and a dynamic ensemble learning strategy allowing trained sub-systems
to operate both independently and collaboratively.

• A multimodal consistency score to describe the reliability of the system output.
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6.2 Related Work

Reliability study for deep learning-based systems: Deep learning-based methods
are data-driven, encoding the decision making process through continuous latent vectors,
which makes the model behavior hard to predict and fix. Only a few of the studies focus
on the reliability aspect of the deep learning-based systems. In [170], Santhanam et al.
list differences between traditional and deep learning-based software systems and discuss
the challenges involved in the development of reliable deep learning-based systems. In
[171], Xu et al. study the reliability of object detection systems in autonomous driving. In
[172], dos Santos et al. study the relationship between reliability and GPU precision (half,
single, and double) for object detection tasks. Other reliability related work can be found
in model uncertainty estimation [173]. To the best of our knowledge, none of the work
investigates reliability or uncertainty for multimodal applications, in particular for robotic
bin picking.

Multimodal Data Fusion: Multimodal learning [174–178] has been rigorously stud-
ied. In multimodal learning, there are three types of data fusion: early fusion, intermediate
fusion, and late fusion. Each corresponds to merging information at input, intermediate,
and output stage respectively. Early fusion involves combining and pre-processing inputs.
A simple example is replacing the blue channel of RGB with depth channel [7]. Late fusion
merges the low-dimensional output of all networks. For example, Simonyan et al. [179]
combine spatial and temporal network output with i) averaging, and ii) linear Support
Vector Machine [180]. Early fusion and late fusion are simpler to implement but have a
lower dimensional representation compared to the intermediate fusion. Intermediate fusion
involves merging high-dimensional feature vectors. Common intermediate fusion includes
concatenation [174], and weighted summation [167]. Recently, more advanced techniques
are developed to dynamically merge the modalities. In [181], Wang et al. propose a feature
channel exchange technique based on Batch Normalization’s [182] scaling factor to dynam-
ically fuse the modalities. In [183], Cao et al. propose to replace the basic convolution
operator with Shapeconv to achieve RGB and depth fusion at the basic operator level.
In [184], Xue et al. focus on the efficiency aspect of multimodal learning and propose a
hard gating function which outputs an one-hot encoded vector to select modalities. In
robotic grasping, Back et al. [167] take the weighted summation approach and propose
a multi-scale feature fusion module by applying a 1x1 convolutional layer to the feature
layers before passing them into a feature pyramid network (FPN) [185].

The aforementioned works are designed to optimize the overall network performance
but at the same time introduce dependencies among modality features, which are extremely
vulnerable in case of an abnormal event, such as an input sensor failure. In this paper, we
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address the multimodal fusion strategy from the system reliability perspective, where our
goal is to design a simple yet effective network architecture that enables sub-modal systems
to work independently as well as collaboratively to increase the overall system reliability.

Figure 6.2: Block diagram of our multimodal redundancy framework. Gate fusion module
allows simple switching between modalities. Trained with dynamic ensemble learning, our
system is able to use both modalities independently (RGB or depth output) as well as
collaboratively (RGB+depth output). A multimodal consistency score is computed at the
end to indicate the reliability of the output.

Ensemble learning: Ensemble learning typically involves training multiple weak
learners and aggregating their predictions to improve predictive performance [186]. One
of the simplest approaches to construct ensembles is bagging [187], where weak learners
are trained on randomly-sampled subsets of a dataset and subsequently have their predic-
tions combined via averaging or voting techniques [186]. Instead of aggregating predictions
directly, one may also use a meta-learner which considers the input data as well as each
weak learner’s predictions in order to make a final prediction, a technique known as stack-
ing [188]. Boosting [189] is another common approach where weak learners are added
sequentially and leverage the previous learner’s mistakes to re-weight training samples,
effectively attempting to correct the previous learner’s mistakes.

While ensemble learning has long been a common technique in classical machine learn-
ing, it can be expensive to apply to deep learning due to the increased computational
complexity and training time of deep neural networks. Of particular relevance to this work
is the application of ensemble learning to multimodal deep learning problems. In mul-
timodal problems, the data distributions typically differ significantly between modalities
and thus may violate the assumptions of certain ensembling techniques [190]. Nevertheless,
ensemble methods have been applied to a variety of multimodal problems [190–193]. For
example, Menon et al. [191] trained modality-specific convolutional neural networks on
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three different magnetic resonance imaging modalities and combined the models’ predic-
tions via majority voting. In [193], Zhou et al. used a stacking-based approach to combine
the outputs of neural networks trained on text, audio, and video inputs, thereby reducing
noise and inter-modality conflicts.

Rather than combining multiple models with a typical ensembling strategy, in this work
we consider a dynamic ensemble where multiple unimodal systems are dynamically fused
into a single network. This network is capable of both unimodal operation using each of its
inputs independently as well as multimodal operation through the fusion of the constituent
unimodal systems.

6.3 Methodology

The subsequent sub-sections outline the key components of our MMRNet architecture.
Firstly, we introduce a multi-scale soft gating mechanism that effectively combines in-
formation from the two modalities. Secondly, we propose a dynamic ensemble learning
strategy, which, in conjunction with the multi-scale soft gating mechanism, constitutes the
multimodal redundancy framework. This framework helps to remove the inter-modality
dependencies. Lastly, we present the formulation of the multimodal consistency score,
which serves as our system’s reliability measure. We show our system block diagram in
Figure 6.2.

6.3.1 Multimodal Redundancy Framework

Multi-scale Soft-Gate Feature Fusion (MSG Fusion): Fusing high-dimensional la-
tent representation from two data distribution involves integrating information from mul-
tiple scales as well as multiple modalities. While a simple convolution as proposed in [167]
can merge the information, it also constrains the information exchange between modalities
to be within the same scale. The other modality’s high-level features may contain cru-
cial contextual information for localizing and segmenting objects with intricate RGB and
depth features. In order to maximize the utilization of contextual information from both
modalities, we concatenate the features and input them into a Feature Pyramid Network
(FPN) [185]. This FPN fuses multi-scale modality features in a hierarchical manner, en-
abling effective contextualization. Nonetheless, this process can result in inter-modality
dependencies. To address this issue, we draw inspiration from [194] and incorporate a soft
gating mechanism. This mechanism enables the dynamic adjustment of feature weights
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Figure 6.3: Gate fusion module fuses the multi-scale feature from each modality.

from each backbone, thereby facilitating modality feature selection that is optimized for
detecting individual object classes. More importantly, this method enables the model to
disentangle features from different modality backbones. We define the total number of
modalities to be N and denote the jth scale feature layer in modality m as fm,j. Features
of all modalities pass through a 1x1 convolution layer Gm. The convolution layer takes N
jth scale modality features with C channels and outputs one feature layer with C channels
for modality m. We obtain gm,j:

gm,j = Gm ({fm,j|m ∈ [0, N)}) (6.1)

The output gate weight wm,j is calculated by:

wm,j = σ({gm,j|m ∈ [0, N)}) (6.2)

, where σ is the softmax function ensuring modality weights sum to one. Finally, the gated
feature layer for scale j and modality m is updated by:

fm,j ← fm,jwm,j (6.3)
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Figure 6.4: Soft gating architecture applied to every scale of feature layers.

We show the gate fusion module architecture in Figure 6.3 and Figure 6.4.

Dynamic Ensemble Learning Strategy: Although the proposed soft gating mecha-
nism enables dynamic re-weighting of features extracted from each input modality, it does
not inherently allow for modalities to be used independently. Ideally, the network would
be capable of operating reasonably using a single input modality, with each additional
modality providing improved performance or reliability. This accounts for the practical
scenario where the sensor used to capture an input modality fails, forcing the system to
leverage its other inputs.

Classic ensemble approaches combine weak models according to their standalone per-
formance by a simple discrete process such as weighted sum [186]. In comparison, our
gating module allows more dynamic interaction since information can be exchanged across
different modalities and scales with respect to different input items, poses, and scene lay-
outs. Instead of independently training each modality model and combine them with a
weighted sum, we propose a novel dynamic ensemble learning strategy to train multimodal
deep learning models, allowing for different modalities to be used both collaboratively and
independently.

Specifically, in each training iteration we randomly select one of the possible input
conditions: both inputs, RGB-only input, or depth-only input. In the unimodal conditions,
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we force the system to make predictions with only one of its usual inputs in order to
encourage rich features to be extracted from both modalities. This training scheme prevents
the model from learning to rely heavily on a single modality while simultaneously allowing
the model to learn how to combine data from both modalities.

6.3.2 Multimodal Consistency Score

Existing object detection and segmentation networks contain a confidence score calculated
by the softmax classifier for each detection. The reliability information in this score is
somewhat subjective as it is estimated from the same network. Instead, we leverage the
multimodal property of our model. In an ideal scenario, if we train a separate model
for each modality, all models would converge to produce the same output describing the
same object in the physical space. Less reliable models will produce results that deviated
from the ground truth. Models trained with different modalities capture distinct feature
distributions and characteristics such as textures and geometries. We assume the output
deviation between the modalities is very different from each other. If the network output
is reliable, then the outputs between modalities are well-aligned. This can be measured by
the percentage overlap between output bounding boxes as well as the segmentation masks.
Based on this assumption, we argue that the more deviations between the modalities there
are, the less certain the output is. To estimate the deviation, we use Intersection Over
Union (IOU). It is a ratio between the intersection of the two modalities and their union
and can be applied to boxes as well as masks. Given a pair of detection/segmentation
output x0 and x1. Each represents a set of pixels. x0 and x1 can either be a pair of boxes
or a pair of masks. Then, IOU can be calculated by:

IOU(x0, x1) =
|x0 ∩ x1|
|x0 ∪ x1|

(6.4)

Where |.| is a function that computes the number of pixels for the given input. When
deviation becomes larger, IOU will be smaller. When there is less deviation, IOU will be
larger and close to 1. This behavior captures well the output alignment between modalities.
When comparing results in object detection/segmentation, object matching is involved.
There can be multiple detections for one object, so we average the IOU score for all related
detections associated with this object. For simple annotation, we call the two models
being compared source and target. Source results are matched to the target results. Let
the set of all ns detections in source be Ds = {ds,l|l ∈ [0, ns)}. We compute the IOU
of all items in Ds associated with the kth target detection dt,k, and obtain a set of IOUs
IDs,dt,k = {IOU(ds,i, dt,k)|ds,i ∈ Ds}. We define objects with IOU lower than 30%, a typical

53



threshold value used in the Non-Maximum Suppression (NMS) step in object detection
networks such as [168], as non-matched and remove them. The updated IOU set is

I
′

Ds,dt,k
=
{
a|a ∈ IDs,dt,k , a > 0.3

}
(6.5)

Next, we compute the average IOU A(Ds, dt,k) for source detectionsDs and target detection
dt,k:

A(Ds, dt,k) = mean(I
′

Ds,dt,k
) (6.6)

We further compute the mean IOU for all nt detections in target Dt:

mIOU(Ds, Dt) = mean({A(Ds, dt,k)|k ∈ [0, nt)}) (6.7)

We extend this mIOU score to describe the alignment between our network output and all
the modalities. We name this score multimodal consistency (MC) score. MC can be used
to describe the alignment of one modality or multiple modalities in a multimodal system.
Let Do to be the network output with no number of detections, and Dm to be the network
output using only modality m. The MC score Sm for a single modality m is calculated by:

Sm = mIOU(Dm, Do) (6.8)

The MC score S for all modalities is computed by:

S = mean({A(Dm, do,k)|m ∈ [0, N), k ∈ [0, no)}) (6.9)

The higher the MC score is, the more reliable the system is. A score of 100% means all
modalities predict the exact same output, and the system is very reliable. A score of 0%
means each modality predicts a different output, and the system is unreliable.

6.4 Experiments

6.4.1 Dataset and Implementation Details

Among robotic grasping datasets, the MetaGraspNet dataset [163] provides large-scale,
high-resolution simulated RGB and depth data as well as real-world data from an industry-
grade sensor system. In addition, the dataset contains 82 objects and has a novel object
set for testing. We divide the real dataset into train, validation, test, and test novel. We
first exclude all scenes with novel objects, adding them to a separate novel test data split.
Then we split the rest of the real dataset into 80% train, 10% validation, and 10% test.
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Due to the unique characteristics of each modality, we normalize and pre-process RGB
inputs and depth inputs differently. We use the standard mean variance normalization for
RGB inputs and we apply min-max normalization per scene for depth inputs, where depth
values are min-max normalized to [0, 1]. We further flip the depth values to make 0 as the
depth of the background and 1 as the closes point to the camera. With this value flip,
background values are aligned to be 0 in each scene. In addition, this normalization added
a data augmentation to the dataset as it stretches and compress object shapes in depth,
allowing a fully utilized depth range where every depth value is used by an object.

Near objects’ edges, reflective surfaces, and transparent surfaces, there are often unde-
fined values caused by a lack of signal returning to the depth sensor. As a pre-processing
step, we apply image inpainting [195] to the depth images to replace any invalid values.

We use a classic object detection and segmentation network Mask-RCNN [168] with
ResNet50 [196] backbone as our baseline. All the networks in our experiment are initialized
by the same ImageNet [197] pretrained weights. We train all models with the same training
configuration in terms of batch size, training epoch, and optimizer. We pretrain all the
models on the simulated dataset of MetaGraspNet, and finetune on the real dataset. We
report the performance of our method on the real test set with bounding box mean average
precision (box mAP) and segmentation mask mean average precision (mask mAP).

6.4.2 Results and Discussions

MC Score: The model exhibits a steady decline in MC score between the training set,
test set, and test-novel set as seen in Table 6.1. This shows that the MC score decreases
accordingly the more out-of-distribution a dataset is, correlating well with theoretically
how reliable the model will be on each dataset. The MC score also differs dramatically
between objects of different classes. Objects with poor MC scores include disinfection
bottle, glass bottle, cables in transparent bag, eyeglasses, and so forth, while boxes, cups,
cables (not in plastic bags), and pears have higher MC scores, as seen in Table 6.2. This
shows the ability of the MC score to identify challenging objects in the dataset. We also
compute the MC score against only RGB input or only depth input. Some objects exhibit
a significant difference in MC score between those two options in Table 6.3. The starkest
contrast appears when the object’s material properties result in significant noise in one
sensor, such as when transparent or reflective objects causes errors in the depth sensor.
Through this, we can identify when the model is highly reliant on a particular sensor for
its predictions. Eyeglasses, for example, performs both poorly overall (Table 6.2, Figure
6.5d), and relies heavily on RGB input due to the transparency and reflection of its glass
component.
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Data Split MC Score - Box MC Score - Mask

train 91.4 92.7
test 82.9 84.7
test-novel 73.4 73.7

Table 6.1: Class-agnostic MC scores from different
data splits

MC Score (%)

Class Box Mask

non-novel
objects

disinfection bottle 60.5 62.6
glass bottle 76.9 64.7
cups d 96.0 96.5

novel
objects

cables in
transparent bag

68.4 61.0

eyeglasses 73.6 63.7
pear 77.6 91.4

Table 6.2: MC scores for different object classes

Mask MC Score (%)

Class RGB only Depth only

power drill 68.4 73.3
wineglass 89.8 76.5
eyeglasses 69.6 58.0

Table 6.3: Comparing MC score using only RGB or depth
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Examples of object-level MC scores for segmentation mask detections can be seen in
in Figure 6.5. Note that the confidence score predictions for each object remains at an
inflated 0.999 for all four examples, while the MC score shows a greater distinction between
the objects depending on difficulty. This is especially true in Figure 6.5d, where the
model outputs a poor detection, but with high confidence. This, supported by previous
dataset-level results, shows that the MC score is a better indicator for model reliability
and uncertainty compared to the confidence score.

6.5 Conclusion

This paper has addressed the crucial aspect of reliability in deep learning-based computer
vision systems for robotic grasping through the introduction of a multimodal redundancy
framework called MMRNet. Specifically, we have achieved multimodal redundancy by
leveraging a multi-scale soft-gate feature fusion and dynamic ensemble learning strategy
to train modality models both independently and collaboratively. Additionally, we have
proposed a multimodal consistency score as a reliable indicator of network output certainty.
The results demonstrate that our MMRNet delivers robust performance in the event of a
modality input failure, and that the MC score serves as a well-suited output reliability
indicator that is independent of the network’s confidence score. Through such methods,
a computer vision system would be able to effectively warn a human supervisor regarding
uncertain scenarios for tasks such as robotics grasping.
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(a) Train set object
MC score: 0.964
Confidence score: 0.999

(b) Test set object
MC score: 0.778
Confidence score: 0.999

(c) Test-novel set object
MC score: 0.966
Confidence score: 0.999

(d) Test-novel set object
MC score: 0.633
Confidence score: 0.999

Figure 6.5: Examples of object level MC scores. Gate fusion output is marked in red
contour. RGB and depth only are marked in yellow and green contours respectively. In
Figure 6.5b, some predictions identified the object as separate boxes, decreasing the MC
score.
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Chapter 7

Second-Order Explainable AI:
Unveiling Actionable Insights for
Enhanced Scene Understanding in
Robotic Grasping

This chapter delves into the realm of second-order explainable AI (SOXAI), a concept that
extends explainable AI from the instance level to the dataset level. SOXAI provides a
higher-level interpretation of a deep neural network’s behavior, allowing us to ”explain the
explainability” for actionable insights. In the context of scene understanding for robotic
grasping, these insights can help uncover biases in the model’s decision-making process or
in the training data, which can then guide improvements in the training framework. This
chapter will detail the development and application of SOXAI, demonstrating how it can
enhance the efficiency and reliability of robotic grasping by providing deeper insights into
the model’s behavior and the characteristics of the dataset.

7.1 Introduction

Although quantitative performance metrics such as accuracy are essential indicators of a
deep neural network’s performance, they do not offer insights into the decision-making
process. To fill this gap in the performance analysis, explainable AI (XAI) can facilitate
the auditing of model behaviour. This auditing helps ensure that the decisions are based
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(a)

(b)

Figure 7.1: SOXAI visualizations of a classification model on chainsaws 7.1a and a segmen-
tation model on hand drills 7.1b. Different regions show groupings of related quantitative
explanations via first-order XAI, with significance discussed in Section 7.3.
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on relevant visual indicators. Additionally, it can uncover potential biases in the training
data, which may then be used to guide improvements to the training framework.

First-order explainability techniques such as Grad-CAM [198], integrated/expected gra-
dients [199, 200], LIME [201], GSInquire [202], and SHAP [203] yield per-instance visual-
izations of explanations. However, reviewing these visualizations can be time-consuming,
particularly for large-scale datasets with multiple classes or high intra-class variability. In
addition, human biases can impact manual review.

In this work, we explore the concept of second-order explainable AI (SOXAI) [204] for
obtaining actionable insights and demonstrate, for the first time, that such insights can be
used to enhance model performance. SOXAI extends XAI from the instance level to the
dataset level to enable the auditing of the model and dataset during development. Rather
than relying on manual reviews of visual explanations to explore patterns in a model’s
decision-making behavior, SOXAI seeks to automatically unveil these patterns through
the analysis of the relationships between quantitative explanations. This expedites the
identification of the shared visual concepts utilized by a model during inference and can
uncover apparent model and dataset biases. Furthermore, this improves transparency by
uncovering problematic patterns that exist among a groupings of examples in the dataset,
which can adversely impact the model’s decision-making process. In essence, SOXAI en-
ables us to ”explain the explainability” by providing higher-level interpretations of model
behaviour for actionable insights.

7.2 Methods

The concept of SOXAI takes first-order instance-level quantitative explanations of samples
in a dataset and groups similar embeddings of these explanations to generate a user-friendly
visualization that enables the uncovering of patterns among different groupings of data to
unveil trends.

Here, we employ GSInquire [202] to generate first-order quantitative explanations of
a neural network’s decision-making process across a dataset. GSInquire examines the
network’s activation signals in response to the input image and employs them to identify
critical features within the sample that quantitatively led to the network’s decision.

61



7.2.1 Second-order explainability

Second-order explainability is treated as an embedding problem: given an image I and
the corresponding quantitative explanation α for the trained model M , we define the nth

element of the embedding f : (I, α)→ RN as:

f(I, α)n =

∑H
i=1

∑W
j=1 M(I)ijnαij∑H

i=1

∑W
j=1 αij

, (7.1)

producing an N -dimensional vector embedding from the regions of I weighted by α. No-
tably, M is truncated such that its output is a convolutional feature map of size H×W×N ,
and α is resized to H ×W to match. Equation 7.1 ignores regions not identified as crit-
ical and only considers regions with higher weighting score provided by α – in essence, f
performs a weighted average of M(I) with weights α.

Here, we use t-distributed stochastic neighbour embedding (t-SNE) [205] to group the
resulting embeddings across a full dataset [204]. In addition, embeddings were reduced to
50 dimensions via principal component analysis before applying t-SNE to map them to a
2D space for visualization.

7.3 Experimental Results and Discussion

We present two example cases of SOXAI visualization: image classification and foreground
instance segmentation, discuss the actionable insights gained from each, and demonstrate
how such actionable insights can be used to enhance model performance.

Chainsaw classification: To explore SOXAI for classification, we apply it to a
ResNet-50 trained on ImageNet 1k [206]. An example result for the chainsaw class can
be seen in Figure 7.1a, which also highlights four groupings of interest. Groupings 1 and 2
show the frontal part of chainsaws (i.e., the cutting chain and guide bar) and the handle,
respectively, demonstrating that the model has learned important features representing
the target class. However, smaller groupings highlighted in areas 3 and 4 also reveal biases
that the model has learned over time. In grouping 3, we see that the model has learned
a relationship between earmuffs commonly worn when using chainsaws and the actual
class prediction. Grouping 4 shows images of logs and even wooden sculptures instead of
chainsaws directly.

Through the use of SOXAI, we were able to quickly identify reoccurring biases learned
by the model towards objects that commonly appear in the same frame as the target class.
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(a) (b)

Figure 7.2: Example of a drill with incomplete segmentation 7.2a, and with the label filled
in 7.2b. Model prediction is outlined in green.

This was accomplished without the need to manually inspect each example in the validation
set, as would be necessary for first-order XAI algorithms. Based on the identified biases,
enhanced model performance may be achieved by better-targeted elimination of biases in
future training and data collection or cleaning.

Drill segmentation: Here, we apply SOXAI to a MaskRCNN model [207] trained on
the MetaGraspNet dataset [163] to detect foreground objects. As an example, we analyze
the segmentation of drills, an object category not seen in the training set, chosen for its
geometric and textural complexity. Figure 7.1b presents the SOXAI result, highlighting
two groupings representing different faces of the drill.

The face shown in grouping 1 exhibits a high level of focus on the large logo. Since the
model was not explicitly trained to recognize drills, some other foreground object must have
biased it towards recognizing letters. We observe that the large logo is over-represented in
the grouping, while the frontal black head of the drill is underrepresented.

To investigate further, we evaluate the prevalence of incomplete segmentations of the
drill when each face is visible, such as the incomplete segmentation shown in Figure 7.2a.
We find that 37% of predictions for drills with the large logo facing up are incomplete
segmentations, with much of the frontal black segment missing, while only 14% of segmen-
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tation predictions on the other face are incomplete.

To confirm the model’s bias towards text, we mask out the logo (see Figure 7.2b),
and evaluate the mAP score. We observe an increase from 0.592 to 0.618, suggesting
that allowing the model to ignore its learned bias and focus on a fuller representation of
the object improves its performance. These example cases demonstrate the usefulness of
SOXAI for unveiling actionable insights into model biases that can be used to enhance a
model’s performance.
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Chapter 8

Conclusion

This thesis focuses on various problems relating to robotic grasping and scene understand-
ing, as encapsulated in the five main contributions in chapters 3 to 7. Each of these
contributions corresponds to a unique aspect of the overall study and has helped to push
the boundaries of what is currently possible in the field.

The creation of MetaGraspNet v0, as discussed in Chapter 3, has provided a compre-
hensive resource for training and evaluating models for robotic grasping. This large-scale
benchmark dataset for vision-driven robotic grasping has addressed the need for high-
quality, diverse datasets in the field, and contains 100,000 RGBD images, 11,000 scenes,
and 25 classes of objects. The dataset includes detailed object detection, segmentation,
layout annotations, and a script for a layout-weighted performance metric. Five difficulty
levels were presented to evaluate model performance in different grasping scenarios. A
new layout-weighted performance metric was proposed to evaluate object detection and
segmentation performance in a manner that is more appropriate for robotic grasp appli-
cations. The development of this dataset has laid the groundwork for the exploration of
more advanced pose estimation techniques for better scene understanding, as discussed in
the subsequent two chapters.

Building upon the foundation laid by MetaGraspNet v0, Chapter 4 explored the use
of keypoints for object pose recognition. This approach offers a more descriptive repre-
sentation of an object’s pose compared to traditional methods that provide relative pose
compared to a 3D model. However, the complexity of the available object classes and the
high level of occlusion in the MetaGraspNet dataset revealed challenges that were not well
observed in previous implementations. In particular, the model struggles heavily with oc-
cluded keypoints as well as with the presence of points with similar visual features nearby.
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Those similar local features may be present on the same object, or on other objects close-
by. We demonstrate this issue through observing that the probability of multiple peaks
in the heat-map prediction varies based for different keypoints based on the local visual
uniqueness of that point (as shown in Tables 4.2 and 4.3). We further demonstrate this
problem through the decrease in ADD performance when multiple objects of the same
class are present in the same object (as shown in Figure 4.7). Despite these challenges,
the exploration of keypoint-based pose estimation has contributed to ongoing efforts to
improve the accuracy and generalizability of pose estimation methods. This exploration of
keypoints has set the stage for the introduction of a novel pose estimation method in the
next chapter.

Chapter 5 introduced ShapeShift, a superquadric-based object pose estimation method.
Through representing objects as a composition of primitive shapes, this method provides
a more flexible and robust representation of object geometry. It improves upon many
shortcomings in the keypoints based method of the prior chapter, such as a consistent
definition between different classes of objects, higher robustness to partial occlusion, and
mechanisms to deal with symmetry.

Building on the advancements in scene understanding, the thesis then addressed the
challenge of uncertainty estimation in robotic grasping. In real-world applications, it is
often necessary to have a human-in-the-loop for situations where the model is uncertain.
To do so, it is necessary to detect when a model is uncertain in its understanding of
a scene.. In Chapter 6, a multimodal consistency score built on top of a multimodal
redundancy framework called MMRNet was introduced to address this issue. MMRNet
leverages a multi-scale soft-gate feature fusion and dynamic ensemble learning strategy
to train modality models both independently and collaboratively. Through looking at
the output consistency between independent and collaborative outputs of each modality,
a multimodal consistency score was proposed as a reliable indicator of network output
certainty. The results demonstrate that MMRNet delivers robust performance in the event
of a modality input failure, and that the multimodal consistency score serves as a well-
suited output reliability indicator that is independent of the network’s confidence score.

Understanding the model and the dataset is another critical aspect of robotic grasping.
With the increasing complexity of models used in robotic grasping, there is a growing need
for methods that can provide deeper insights into the model’s behavior and the charac-
teristics of the dataset. Chapter 7 delved into the realm of explainable AI, presenting a
method for gaining deeper actionable insights into deep learning through second-order ex-
plainability. This approach not only helps understand the model better but can also provide
actionable insights, allowing for debugging and improvement of the model or dataset. The
exploration of second-order explainable AI contributes to the ongoing efforts to make AI
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models more transparent and interpretable, enhancing their usability and trustworthiness
in real-world applications.

8.1 Future Work

For each major contribution of this thesis, there are several potential directions for fu-
ture research. Enhancing the diversity of the MetaGraspNet v0 dataset to include more
complex and challenging scenarios, such as non-rigid objects, could be a valuable area of
focus. Additionally, the current difficulty scoring method is primarily based on a instance
segmentation task. Comparing different difficulty scores between multiple computer vision
tasks, such as pose estimation, and direct grasp prediction, may be able to provide a more
holistic understanding of a scene.

Further refinement and improvement of the keypoint-based and superquadric-based
pose estimation methods, particularly in handling objects with uniform or repetitive pat-
terns and addressing issues related to symmetry and proximity of objects, could also be
beneficial. Improving the performance of the superquadric-based pose estimation method
on novel, out of distribution objects would also be an important step in realizing the full
potential of the superquadratic-based object representation format.

The concept of multimodal consistency (MC) introduced in this thesis provides a novel
approach to uncertainty estimation, and future work could focus on further refining this
approach and exploring other methods for estimating uncertainty in robotic grasping. In
particular, it would be important to do a more in depth study comparing different uncer-
tainty estimation methods to this one.

Lastly, while second order explainable AI provides a very useful visualization of features
grouped by their distance to each other, possible boundaries of each cluster is not marked
automatically and still need to be manually identified. Further automation in detecting,
marking, and even possibly describing regions and clusters of interest would be a way to
provide further automated insights of a model performance.
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