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Abstract

In multi-agent urban scenarios, autonomous vehicles navigate an intricate network of in-
teractions with a variety of agents, necessitating advanced perception modeling and tra-
jectory prediction. Research to improve perception modeling and trajectory prediction in
autonomous vehicles is fundamental to enhance safety and efficiency in complex driving
scenarios. Better data association for 3D multi-object tracking ensures consistent identifi-
cation and tracking of multiple objects over time, crucial in crowded urban environments to
avoid mis-identifications that can lead to unsafe maneuvers or collisions. Effective context
modeling for 3D object detection aids in interpreting complex scenes, effectively dealing
with challenges like noisy or missing points in sensor data, and occlusions. It enables the
system to infer properties of partially observed or obscured objects, enhancing the robust-
ness of the autonomous system in varying conditions. Furthermore, improved trajectory
prediction of surrounding vehicles allows an autonomous vehicle to anticipate future actions
of other road agents and adapt accordingly, crucial in scenarios like merging lanes, making
unprotected turns, or navigating intersections. In essence, these research directions are key
to mitigating risks in autonomous driving, and facilitating seamless interaction with other
road users.

In Part I, we address the task of improving perception modeling for AV systems. Con-
cretely our contributions are: (i) FANTrack introduces a novel application of Convolutional
Neural Networks (CNNs) for real-time 3D Multi-object Tracking (MOT) in autonomous
driving, addressing challenges such as varying number of targets, track fragmentation, and
noisy detections, thereby enhancing the accuracy of perception capabilities for safe and
efficient navigation. (ii) FANTrack proposes to leverage both visual and 3D bounding
box data, utilizing Siamese networks and hard-mining, to enhance the similarity functions
used in data associations for 3D Multi-object Tracking (MOT). (iii) SA-Det3D introduces a
globally-adaptive Full Self-Attention (FSA) module for enhanced feature extraction in 3D
object detection, overcoming the limitations of traditional convolution-based techniques
by facilitating adaptive context aggregation from entire point-cloud data, thereby bol-
stering perception modeling in autonomous driving. (iv) SA-Det3D also introduces the
Deformable Self-Attention (DSA) module, a scalable adaptation for global context assimi-
lation in large-scale point-cloud datasets, designed to select and focus on most informative
regions, thereby improving the quality of feature descriptors and perception modeling in
autonomous driving.

In Part II, we focus on the task of improving trajectory prediction of surrounding agents.
Concretely, our contributions are: (i) SSL-Lanes introduces a self-supervised learning ap-
proach for motion forecasting in autonomous driving that enhances accuracy and general-
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izability without compromising inference speed or model simplicity, utilizing pseudo-labels
from pretext tasks for learning transferable motion patterns. (ii) The second contribution
in SSL-Lanes is the design of comprehensive experiments to demonstrate that SSL-Lanes
can yield more generalizable and robust trajectory predictions than traditional supervised
learning approaches. (iii) SSL-Interactions presents a new framework that utilizes pretext
tasks to enhance interaction modeling for trajectory prediction in autonomous driving.
(iv) SSL-Interactions advances the prediction of agent trajectories in interaction-centric
scenarios by creating a curated dataset that explicitly labels meaningful interactions, thus
enabling the effective training of a predictor utilizing pretext tasks and enhancing the
modeling of agent-agent interactions in autonomous driving environments.
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Chapter 1

Introduction

Autonomous driving is an exciting and rapidly evolving field that holds the promise of rev-
olutionizing road transportation. With the potential to significantly enhance road safety,
improve traffic efficiency, and increase transportation accessibility, autonomous driving
has attracted immense attention from researchers, industry leaders, and policymakers [96].
The continuous advancements in computer vision, deep learning, and sensor technologies
and curated large-scale datasets have paved the way for remarkable progress in perception
modeling for autonomous vehicles. These vehicles can now perceive their surroundings,
detect objects, and make informed decisions based on the analyzed data. However, there
are still significant challenges that need to be overcome to achieve the full potential of
autonomous driving systems. The deployment of self-driving cars, also known as Level
5 autonomous vehicles [167], may face different theoretical and practical limitations. In-
stances of accidents involving autonomous vehicles, have also, in rare cases, resulted in
fatalities [210, 124].

Better perception modeling in urban multi-object settings is essential to improve the
safety and efficiency of autonomous driving. In densely populated urban environments,
there is a multitude of dynamic objects, including vehicles, pedestrians, and cyclists. These
objects often interact in complex and unpredictable ways. For an autonomous vehicle
(AV) to navigate safely, it must accurately detect, identify, and track all such objects in
its surroundings. Better data association for multi-object tracking is essential because
AVs need to maintain an accurate and consistent understanding of each detected object’s
identity and state (position, velocity, orientation, etc.) over time. Poor data association
can lead to identity switches or track terminations, which may cause the AV to lose track of
an object’s trajectory. For instance, in a scenario where two cyclists cross paths, a failure
in data association might lead the AV to lose track of one or both cyclists, potentially
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resulting in unsafe maneuvers or even collisions. Similarly, context-aware 3D detection
systems enhance the robustness of autonomous driving systems by effectively handling
noisy point clouds, missing points, and occlusions. Missing or noisy points can lead to
incomplete or erroneous representation of an object. A car with only its rear half visible
might be erroneously classified as a motorcycle. Here, context-aware modeling can infer
the full extent of the object by leveraging the typical size and shape of cars and the likely
presence of a larger vehicle partially occluded by another object or landscape feature in the
scene. Occlusions are particularly challenging in crowded urban scenarios where multiple
objects might partially obscure each other. Conventional detection models might struggle
to separate overlapping objects. However, context-aware detection systems can infer the
presence of fully or partially occluded objects by incorporating the understanding of typical
urban scenarios, like a pedestrian obscured by a parked car or a cyclist behind a bus.

In Part I of this dissertation, we focus on two key questions: (a) How can we improve
the data-association step for multi-object 3D tracking? (b) How can we improve context
modeling in current 3D point-cloud based object-detection systems?

Beyond perception, the capability to reason about the goals and intentions of other
road users and accurately predict their future motion is fundamental for AVs. Effective
trajectory prediction of surrounding agents is paramount in preventing accidents, particu-
larly in busy urban multi-object environments. Consider an urban multi-lane road where
the AV needs to perform a lane change to prepare for a forthcoming turn. Simultaneously,
multiple other vehicles around it could also be initiating their own lane changes or over-
taking maneuvers. The AV must predict the trajectories of these vehicles, ensuring it has
enough space and time to change lanes safely. A miscalculation could lead to potential
near-miss situations or accidents. Another common scenario involves the AV needing to
make an unprotected left turn across oncoming traffic at a busy intersection. In this case,
the AV must predict the speed and trajectory of oncoming vehicles to determine a safe
gap for executing the turn. Simultaneously, it should also be aware of vehicles behind that
might also be trying to make a similar turn or proceed straight. If the AV incorrectly
predicts the trajectories of the oncoming vehicles or misjudges the intent of the vehicle
behind, it could result in situations ranging from traffic disruptions to potential collisions.

In Part II of our dissertation, we focus on two key questions: (a) How can we improve
the trajectory prediction of surrounding agents, specifically in terms of improving general-
ization and learning from unlabeled data? (b) How can we improve agent-agent interaction
modeling for trajectory prediction?

In the next sections, we discuss our research objectives, themes and contributions in
more detail.
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1.1 Research Themes

1.1.1 Perception Modeling for Multi-Agent Urban Scenarios

Data-association for 3D Multi-Object Tracking

The central theme of Chapter 3 concerns the development and application of a new method-
ology for 3D Multi-object Tracking (MOT) in the domain of autonomous driving, particu-
larly focusing on urban environments. The main challenge in such scenarios lies in the data
association problem of MOT, where optimal trajectories for multiple objects, or agents,
need to be identified and tracked over consecutive frames in real-time. While current
strategies, such as ‘tracking-by-detection,’ have made substantial progress, they still strug-
gle to reach the accuracy of human perception, and face particular difficulty with issues
such as varying number of targets, track fragmentation, and noisy detections. This work
proposes an innovative solution to these challenges through the implementation of Convo-
lutional Neural Networks (CNNs) in the data association process. By being, to the best
of our knowledge, the first work to cast the data association problem as inference within a
CNN, the proposed method not only simplifies optimization compared to the conventional
Recurrent Neural Networks (RNNs) but also effectively manages the aforementioned is-
sues inherent in real-time, multi-agent urban scenarios. This research, therefore, presents
advancement in the perception capabilities for autonomous vehicles, bringing us one step
closer to achieving reliable and safe autonomous navigation in complex urban environments.

Similarity Functions for Data-Association

The second research theme of Chapter 3 revolves around enhancing the effectiveness of the
data associations in 3D Multi-object Tracking (MOT) by focusing on the improvement of
similarity functions used for matching targets and detections. Historically, these functions
were built manually utilizing color histograms, bounding box position, and linear motion
models, but have shown limitations in their ability to generalize across tasks and complex
tracking scenarios. More modern techniques have employed deep neural network archi-
tectures for learning pairwise costs, which have yielded better performance across various
vision-based tasks. This research advances these techniques by leveraging both visual and
3D bounding box data to develop robust matching costs. The computed pairwise simi-
larities can be used to predict discrete target assignments, as mentioned in the research
theme in Sec. 1.1.1. Differing from traditional approaches that use distance functions or
hand-crafted features for data association, this study employs Siamese networks to learn

3



generalized and discriminative features from 3D object configurations and visual data.
Moreover, the model’s objective function is adapted to use cosine-similarity metric with
hard-mining, offering a positive impact on the convergence. This simple approach to op-
timizing the similarity function for data-association in 3D MOT shows promising results
for improving the performance of autonomous vehicles’ perception capabilities in complex
scenarios.

Context-Aware Feature Aggregation for 3D Object Detection

Chapter 4 focuses on the necessity for an improved feature extractor for 3D object detec-
tion, a crucial component of perception modeling for autonomous driving. Our research
proposes a context-aware module that capitalizes on self-attention mechanisms to over-
come the limitations of current convolution-based detection techniques. 3D object detec-
tion architectures, including BEV-based, voxel-based, point-based, and point-voxel-based
methods, utilize a fixed-weight convolution operator. However, these models, due to the
convolution operator’s fixed nature, lack the ability to adapt to feature content or focus
selectively on salient elements. Additionally, the scaling of parameters with an increased
size of the receptive field is inefficient, and capturing global correlations in point-cloud data
is challenging. This inspires our exploration of self-attention mechanisms to enhance the
context modeling of 3D object detection. While self-attention has been pivotal in achieving
superior results in fields like machine translation, image recognition, 2D object detection,
activity recognition, person re-identification, and reinforcement learning, its application
for global context modeling in point-clouds for 3D object detection remains relatively un-
explored. We propose a globally-adaptive Full Self-Attention (FSA) module, which is
simple, generic, and permutation-invariant, thereby providing an effective solution to the
limitations of convolution-based methods. It facilitates direct communication between re-
mote regions of point-cloud data and enable the learning of relationships across objects.
Their application leads to an adaptive aggregation of context information from the entire
point-cloud and can be integrated within the backbone of modern point-cloud based de-
tector architectures. The study advances the feature extraction capabilities of 3D object
detection architectures, potentially contributing to more robust perception modeling in
autonomous driving.

Scalable Context-Aware Feature Aggregation

The second research theme of Chapter 4 focuses on a scalable adaptation of the self-
attention module discussed in Sec. 1.1.1. This adaptation is referred to as the Deformable
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Self-Attention (DSA) module. The DSA module has been designed to assimilate global con-
text in large-scale point-cloud datasets such as nuScenes and the Waymo Open dataset.
The functioning of the DSA module involves selecting a representative subset from the
original node vectors to aggregate the global context. The module then up-samples this
collected structural information back to all nodes. The subset selection process is made
efficient by introducing a geometry-guided vertex refinement procedure inspired by de-
formable convolution networks. This allows the nodes to adapt and spatially reposition
themselves to focus on significant locations that are key for semantic recognition. The DSA
module has been trained to gather information primarily from the most informative regions
within the point-cloud. This approach substantially enhances the quality of the feature
descriptors. Consequently, the DSA module provides improvements in perception model-
ing for autonomous driving through efficient assimilation of global context in large-scale
point-clouds.

1.1.2 Predicting Trajectories of Surrounding Agents

Self-Supervision meets Motion Forecasting

Traditionally, motion prediction has relied on handcrafted rules, kinematic constraints, and
road map data, which often fall short in capturing complex long-term behaviors and inter-
actions in diverse scenarios. While recent data-driven methods using vector representations
and transformer architectures have shown significant progress, they suffer from complexity
and low inference speeds, making them unsuitable for real-world applications. In Chap-
ter 5, we propose to bring self-supervised learning into motion forecasting to improve
accuracy and generalizability without compromising inference speed or model simplicity.
By leveraging pseudo-labels from pretext tasks, our model learns a more transferable and
generalized representation of motion patterns. This does not require additional parame-
ters or computations during inference, thus maintaining an optimal balance of accuracy,
simplicity, and efficiency. The approach was demonstrated to be effective on a large scale
trajectory prediction benchmark, indicating its potential for improving trajectory predic-
tion in real-world autonomous driving scenarios.

Exploration into why Self-Supervision helps Motion Forecasting

Chapter 5’s second contribution involves designing a series of experiments to explore why
motion forecasting benefits from self-supervised learning (SSL). We hypothesize that the
model acquires richer features from SSL training compared to conventional supervised
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learning models. We propose that SSL training with pretext tasks improves motion
forecasting by assuming feature similarity or smoothness in small map neighborhoods
(topology-based context prediction), grouping distant nodes with similar features together
(clustering and classification), and by learning richer features from more frequent classes
in imbalanced datasets. Our paper’s experimental design involves six training and testing
setups. The conclusion drawn from these experiments is that there is substantial evidence
suggesting that SSL-based tasks yield superior generalization capabilities. Consequently,
these tasks demonstrate greater effectiveness than purely supervised training approaches
in predicting the trajectories of surrounding agents.

Modeling Agent-Agent Interactions

The research in Chapter 6 introduces a framework that improves interaction modeling
for trajectory prediction of surrounding agents. By incorporating pretext tasks designed
to model agent interactions, this model reconciles the gap between marginal and joint
predictions, striking a balance between computational feasibility and prediction accuracy.
The pretext tasks in SSL-Interactions focus on various aspects of agent interaction including
range gap, closest distance, direction of movement, and interaction type. This design
not only captures crucial interaction-specific patterns but also imparts domain-specific
knowledge to the model thereby acting as effective regularizer. A unique advantage of
these tasks is their ability to generate pseudo-labels from unlabeled data.

Annotating Interaction Labels

In Sec. 1.1.2, to enable training a predictor that utilizes pretext tasks, we first need to
generate a dataset featuring explicit interaction labels. Upon visual examination of a ran-
dom subset of the data, we uncover several constraints that hinder effective interaction
modeling. For instance, in certain cases, the target agent is the only vehicle in a large sur-
rounding area, which severely limits potential interactions. In other scenarios, the target
agent remains unaffected by nearby vehicles due to factors like distance or lack of spatio-
temporal conflict. It’s evident that a model trained solely on this data would offer little
benefit in terms of interaction modeling. Consequently, to enhance our model’s capacity for
capturing interactions, we compile a dataset specifically crafted to address these issues and
incorporate instances of meaningful interactions in Chapter 6. This addresses the impor-
tance of annotating interaction-specific data for predicting surrounding agent trajectories
in interaction-centric scenarios.
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1.2 Contributions and Outline

In summary, the autonomous driving system involves several interconnected components:
perception, prediction, planning, and control. This dissertation focuses on the first two
components, perception and prediction, specifically as they pertain to 3D object detection,
multi-object tracking, and motion forecasting. We begin this dissertation with an explo-
ration of foundational literature in Chapter 2. We delve into relevant research that serves
as the basis for our proposed work. In this chapter, we also draw clear distinctions between
our approach and the existing literature, underscoring the unique aspects of our proposed
methodology. We then present our 3D multi-object tracker FANTrack in Chapter 3 fol-
lowed by our improved 3D object detector SA-Det3D in Chapter 4. Chapter 5 presents
SSL-Lanes, which is the first principled study to combine self-supervised learning and mo-
tion forecasting. In Chapter 6 we propose pretext tasks to improved interaction modeling
for motion forecasting. Finally, Chapter 7 ends this dissertation with a conclusion and
future directions that are yet to be explored for perception and prediction in autonomous
driving. The key contributions of each chapter are summarized as follows.

1.2.1 FANTrack: 3D Multi-Object Tracking with Feature Asso-
ciation Network

In Chapter 3, we propose a data driven approach to online multi-object tracking (MOT)
that uses a convolutional neural network (CNN) for data association in a tracking-by-
detection framework. The problem of multi-target tracking aims to assign noisy detections
to a-priori unknown and time varying number of tracked objects across a sequence of
frames. A majority of the existing solutions focus on either tediously designing cost func-
tions or formulating the task of data association as a complex optimization problem that
can be solved effectively. Instead, we exploit the power of deep learning to formulate the
data association problem as inference in a CNN. To this end, we propose to learn a sim-
ilarity function that combines cues from both image and spatial features of objects. Our
solution learns to perform global assignments purely from data, handles noisy detections
and varying number of targets, and is easy to train. We evaluate our approach on the chal-
lenging KITTI [43] dataset and show competitive results. FANTrack is associated with the
following conference publication [9]:

E Baser, V Balasubramanian*, P Bhattacharyya*, K Czarnecki. Fantrack: 3d multi-
object tracking with feature association network. IEEE Intelligent Vehicles Symposium
(IV), 2019.
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1.2.2 SA-Det3D: Self-Attention Based Context-Aware 3D Ob-
ject Detection

Existing point-cloud based 3D object detectors use convolution-like operators to process
information in a local neighbourhood with fixed-weight kernels and aggregate global con-
text hierarchically. However, non-local neural networks and self-attention for 2D vision
have shown that explicitly modeling long-range interactions can lead to more robust and
competitive models. In Chapter 4, we propose two variants of self-attention for contextual
modeling in 3D object detection by augmenting convolutional features with self-attention
features. We first incorporate the pairwise self-attention mechanism into the current state-
of-the-art BEV, voxel and point-based detectors and show consistent improvement over
strong baseline models of up to 1.5 3D AP while simultaneously reducing their parame-
ter footprint and computational cost by 15-80% and 30-50%, respectively, on the KITTI
validation set. We next propose a self-attention variant that samples a subset of the most
representative features by learning deformations over randomly sampled locations. This
not only allows us to scale explicit global contextual modeling to larger point-clouds, but
also leads to more discriminative and informative feature descriptors. Our method can
be flexibly applied to most state-of-the-art detectors with increased accuracy and param-
eter and compute efficiency. We show our proposed method improves 3D object detection
performance on KITTI [43], nuScenes [19] and Waymo Open datasets [156]. SA-Det3D is
associated with the following publications [14, 15]:

P Bhattacharyya, K Czarnecki. Deformable PV-RCNN: Improving 3D Object De-
tection with Learned Deformations. ECCV 2020 - Perception for Autonomous Driving
Workshop.

P Bhattacharyya, C Huang, K Czarnecki. Sa-det3d: Self-attention based context-
aware 3d object detection. ICCV 2021 AVVision Workshop.

1.2.3 SSL-Lanes: Self-Supervised Learning for Motion Forecast-
ing in Autonomous Driving

Self-supervised learning (SSL) is an emerging technique that has been successfully employed
to train convolutional neural networks (CNNs) and graph neural networks (GNNs) for more
transferable, generalizable, and robust representation learning. However its potential in
motion forecasting for autonomous driving has rarely been explored. In Chapter 5, we
report the first systematic exploration and assessment of incorporating self-supervision
into motion forecasting. We first propose to investigate four novel self-supervised learning
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tasks for motion forecasting with theoretical rationale and quantitative and qualitative
comparisons on the challenging large-scale Argoverse [26] dataset. Secondly, we point out
that our auxiliary SSL-based learning setup not only outperforms forecasting methods
which use transformers, complicated fusion mechanisms and sophisticated online dense
goal candidate optimization algorithms in terms of performance accuracy, but also has
low inference time and architectural complexity. Lastly, we conduct several experiments
to understand why SSL improves motion forecasting. SSL-Lanes is associated with the
following conference publication [16]:

P Bhattacharyya, C Huang, K Czarnecki. SSL-Lanes: Self-Supervised Learning for
Motion Forecasting in Autonomous Driving. Conference on Robot Learning (CoRL), 2022.

1.2.4 SSL-Interactions: Pretext Tasks for Interactive Trajectory
Prediction

In Chapter 6, we address motion forecasting in multi-agent environments, crucial for safety
of autonomous vehicles. Traditional prediction methods struggle to accurately model non-
linear interactions while recent popularly-used data-driven marginal trajectory prediction
methods struggle to properly learn agent-to-agent interactions. In this chapter, we present
SSL-Interactions, a framework that proposes pretext tasks to enhance interaction model-
ing in trajectory prediction. These tasks encapsulate various aspects of interaction from
domain-specific knowledge which can support better model regularization, and also pro-
vides a computationally efficient solution to balance marginal and fully-joint predictions.
We introduce four interaction-aware pretext tasks—range gap prediction, closest distance
prediction, direction of movement prediction, and type of interaction prediction. We further
propose an approach to curate interaction-specific scenarios from datasets and explicitly
label pairs of interacting agents. This facilitates generation of pseudo-labels for interaction-
centric pretext tasks. The use of pretext tasks and pseudo-labels allows the model to learn
from unlabeled data. We also propose three new metrics specifically designed to evalu-
ate predictions in interactive scenes. Our empirical evaluations indicate SSL-Interactions
outperforms state-of-the-art motion forecasting methods both quantitatively (with up to
8% improvement) and qualitatively for interaction-heavy scenarios on the Argoverse [26]
dataset. SSL-Interactions is associated with the following preprint:

P Bhattacharyya, C Huang, K Czarnecki. SSL-Interactions: Pretext Tasks for In-
teractive Trajectory Prediction. Preprint, 2023.
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Chapter 2

Related Work

This chapter provides an overview of the related work that this dissertation is built upon.
This research is primarily related to three major topics: 3D Multi-Object Tracking, dis-
cussed in Sec. 2.1.1; 3D Object Detection, discussed in Sec. 2.1.5; and Trajectory Predic-
tion, as discussed in Sec. 2.2. We emphasize the unique aspects of our proposed work,
contrasting it with existing studies within each section.

2.1 Perception Modeling for Multi-Agent Urban Sce-

narios

2.1.1 3D Multi-Object Tracking

In this section, we provide a concise review of recent advancements in the domain of data
association for multi-object tracking. Additionally, we discuss the methods employed for
quantifying similarity within the context of data association. We finally discuss how our
propose multi-object tracking approach advances the literature.

2.1.2 Data Association in MOT

The data association problem forms the core of the multi-object tracking problem. At
time instant τ , let us consider a set of objects that have been observed n the past, that
is, from the first frame until τ . The set of trajectories corresponding to these objects are
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called targets or tracks (T ). The set of objects observed at time τ are called measurements
(M).Data association finds assignments of the form (ti,mj), where ti ∈ T and mj ∈ M are
the ith target and jth measurement, respectively, and not two tracks are assigned the same
measurement. This is done by minimizing a cost function or maximizing the similarity
metric between the corresponding target and the measurement. Data association gives us
pairs that have the highest similarity scores, which helps in the encompassing problem of
tracking.

Classical approaches solve the data association problem by considering multiple hy-
potheses for an assignment (MHT) [5], or by jointly considering all possible assignment
hypotheses (JPDA) [37]. These formulations prove to be very computationally intensive,
however. Many recent works process sequences in batch mode, using a graph-based repre-
sentation with detections as nodes and possible assignments as edges. The optimization is
then cast as a linear program solved to (near) global optimality with relaxation, min-cost
or shortest path algorithms [18, 201, 176]. More complex optimization schemes include
MCMC [72] and discrete-continuous settings [4]. However, global optimization formula-
tions are unsuited to real-time applications like autonomous navigation.

Online methods estimate the current state using the information only from the past
frames and the current one. Commonly used state-estimators include the Kalman filter [71]
for linear motion and particle filters [49] for multi-modal posteriors. The two-frame associa-
tion problem is often solved using a greedy or Hungarian algorithm [80]. Approaches based
on local associations tend to be susceptible to track fragmentation and noisy detections,
however.

Deep learning has achieved state-of-the-art results in perception tasks like image clas-
sification, segmentation, and single object tracking. Milan et al. proposed the first fully
end-to-end multi-object tracking method based on deep learning. The method predicts the
assignment of each target, one at a time, using an RNN [106].

2.1.3 Measuring Similarity

Tracking algorithms have used distance functions such as Euclidean [148] and Mahalanobis
distance [39] as matching costs for data association. Other similarity measures include
color-based appearance features [134], SIFT-like features [101], and linear and non-linear
motion models and their various weighted combinations [31]. These tediously hand-crafted
features fail to generalize across complex scenarios and backgrounds, however. Recent
works explore learning pairwise costs using deep structured SVM [1], CNNs [151], and
RNNs [136]. For CNNs, similarity learning often exploits Siamese networks. Leal-Taix̂e et
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al. [84] and Frossard et al. [40] use them to learn descriptors for matching with multi-modal
inputs.

2.1.4 FANTrack relative to literature

We propose FANTrack in Chapter 3. In contrast to the current multi-object tracking
systems [40, 106, 84], our approach feeds all detections and their learned similarity scores
at once into a CNN to predict the assignments. Our model is easier to optimize than
an RNN, handles noisy detections and a varying number of targets, and considers all
targets at once when performing assignments. While we also use Siamese networks to
learn generalized and discriminative features from 3D object configurations and visual
information conditioned on similarity, we adapt our objective function to use the cosine-
similarity metric with hard-mining which has a positive impact on convergence.

2.1.5 3D Object Detection

Current 3D object detectors include BEV, voxel, point or hybrid (point-voxel) methods.
BEV-based methods like MV3D [29] fuse multi-view representations of the point-cloud
and use 2D convolutions for 3D proposal generation. PointPillars [83] proposes a more
efficient BEV representation and outperforms most fusion-based approaches while being
2-4 times faster. Voxel-based approaches, on the other hand, divide the point-cloud into
3D voxels and process them using 3D CNNs [207]. SECOND [184] introduces sparse 3D
convolutions for efficient 3D processing of voxels, and CBGS [208] extends it with multiple
heads. Point-based methods are inspired by the success of PointNet [129] and PointNet++
[130]. F-PointNet [128] first applied PointNet for 3D detection, extracting point-features
from point-cloud crops that correspond to 2D camera-image detections. Point-RCNN [144]
segments 3D point-clouds using PointNet++, and uses the segmentation features to better
refine box proposals. Point-Voxel-based methods like STD [191], PV-RCNN [143] and
SA-SSD [55] leverage both voxel and point-based abstractions to produce more accurate
bounding boxes.

2.1.6 Attention for Context Modeling

Self-attention [164] has been instrumental to achieving state-of-the-art results in machine
translation and combining self-attention with convolutions is a theme shared by recent
work in natural language processing [174], image recognition [10], 2D object detection
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Method Task Modality Context Scalability
Attention + Convolution

Combination
Stage Added

HG-Net [27] detection points global-static - gating Attention modules are
PCAN [203] place-recognition points local-adaptive - gating added at the end.

Point-GNN [146] detection points local-adaptive - -
GAC [168] segmentation points local-adaptive - - Attention modules fully
PAT [187] classification points global-adaptive randomly sample points subset - replace convolution and
ASCN [182] segmentation points global-adaptive randomly sample points subset - set-abstraction layers.

Pointformer [120] detection points global-adaptive sample points subset and refine -
MLCVNet [181] detection points global-static - residual addition
TANet [100] detection voxels local-adaptive - gating Attention modules are
PMPNet [192] detection pillars local-adaptive - gated-recurrent-unit inserted into
SCANet [102] detection BEV global-static - gating the backbone.

A-PointNet [117] detection points global-adaptive attend sequentially to small regions gating

Ours
(FSA/DSA)

detection
points, voxels,
pillars, hybrid

global-adaptive
attend to salient regions

using learned deformations
residual addition

Attention modules are
inserted into
the backbone.

Table 2.1: Properties of recent attention-based models for point-clouds

[114], activity recognition [169], person re-identification [204] and reinforcement learning
[195].
Using self-attention to aggregate global structure in point-clouds for 3D object detection
remains a relatively unexplored domain. PCAN [203], TANet [100], Point-GNN [146],
GAC [168], PMPNet [192] use local context to learn context-aware discriminative features.
However relevant contextual information can occur anywhere in the point-cloud and hence
we need global context modeling. HGNet [27], SCANet [102], MLCVNet [181] use global
scene semantics to improve performance of object detection, but the global context vector
is shared across all locations and channels and does not adapt itself according to the input
features leading to a sub-optimal representation. PAT [187], ASCN [182], Pointformer
[120] build globally-adaptive point representations for classification, segmentation and 3D
detection. But because they use the costly pairwise self-attention mechanism, the self-
attention does not scale to the entire point-cloud. Consequently, they process a randomly
selected subset of points, which may be sensitive to outliers. To process global context for
3D object detection and scale to large point-clouds, Attentional PointNet [117] uses GRUs
[32] to sequentially attend to different parts of the point-cloud. Learning global context
by optimizing the hidden state of a GRU is slow and inefficient, however.

2.1.7 SA-Det3D relative to literature

Instead of repeatedly stacking convolutions, we propose SA-Det3D in Chapter 4. It con-
sists of a simple, scalable, generic and permutation-invariant block called FSA/DSA to
adaptively aggregate context information from the entire point-cloud. This allows remote
regions to directly communicate and can help in learning relationships across objects. This
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module is flexible and can be applied in parallel to convolutions within the backbone of
modern point-cloud based detector architectures. Our method can also processes context
adaptively for each location from the entire point-cloud, while also scaling to large sets using
learned deformations. Since the global context is fused with local-convolutional features,
the training is stable and efficient as compared to GRUs or stand-alone attention networks
[132]. Tab. 2.1 compares our work with recent point-cloud based attention methods.

2.2 Predicting Trajectories of Surrounding Agents

In this section, we provide an overview of recent developments in the field of multi-agent
trajectory prediction. We also briefly describe literature related to self-supervised learning.
Furthermore, we discuss the application of pretext tasks for the purpose of interaction
modeling. Lastly, we elaborate on how our proposed motion forecasting systems augment
the current state-of-the-art methods.

2.2.1 Motion Forecasting

Traditional methods for motion forecasting primarily use Kalman filtering [71] with a prior
from HD-maps to predict future motion states [180, 60]. With the huge success of deep
learning, recent works use data-driven approaches for motion forecasting. These methods
explore different architectures involving rasterized images and CNNs [25, 8, 125], vectorized
representations and graph neural networks (GNNs) [41, 197, 107, 105, 73], point-cloud rep-
resentations [189], transformers [111, 98, 47, 66] and sophisticated fusion mechanisms [88],
to generate features that predict final output trajectories. While the focus of these works
is to find more effective ways of feature extraction from HD-maps and interacting agents,
they need huge model capacity, heavy parameterization, and extensive augmentations or
large amounts of data to converge to a general solution. Other works [205, 24, 152, 198]
build on them to incorporate prior knowledge in the form of predefined candidate trajecto-
ries from sampling or clustering strategies from training data. However the disadvantage
of these methods is that their performance is highly related to the quality of the trajec-
tory proposals, which becomes an extra dependency. End-to-end solutions for optimizing
end-points of these candidates trajectories are proposed by Dense-TNT [51] and HOME
[45]. Dense-TNT has state-of-the-art accuracy with a reasonable parameter budget, but
its online dense goal candidate optimization strategy is computationally very expensive,
which is unrealistic for real-time operations like autonomous driving. Lately, ensembling
techniques like MultiPath++ [163] and DCMS [190] have been proposed. While they have
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high forecasting performance, a major disadvantage is their high memory cost for training
and heavy computational cost at inference.

2.2.2 Self-supervised Learning

SSL is a rapidly emerging learning framework that generates additional supervised signals
to train deep learning models through carefully designed pretext tasks. In the image
domain, various self-supervised learning techniques have been developed for learning high-
level image representations, including predicting the relative locations of image patches
[35], jigsaw puzzle [112], image rotation [44], image clustering [20], image inpainting [123],
image colorization [202] and segmentation prediction [122]. In the domain of graphs and
graph neural networks, pretext tasks include graph partitioning, node clustering, context
prediction and graph completion [193, 70, 99, 64].

2.2.3 Interactive Trajectory Prediction

In recent years, approaches driven by data have shown superior results as they learn interac-
tions directly from the input, particularly in the context of real-world driving scenarios. To
predict interactive pedestrian trajectories in crowded scenes, Social-LSTM[3] and Social-
GAN[53] leverage social pooling mechanisms that effectively capture social influences from
neighboring agents. These mechanisms enable the model to incorporate the collective be-
havior of nearby individuals when making trajectory predictions. Graph neural networks
(GNNs) possess robust relational inductive biases and have exhibited remarkable perfor-
mance in tasks that involve relational reasoning, including visual question answering and
complex physical systems [138]. GNNs have been extensively used in traffic scenarios to
model interactions between agents [88, 22, 23, 137]. [111, 159] typically use a form of
attention mechanism, which is a special case of GNNs, that allow the model to weigh the
importance of different entities in the scene relative to each other. GNNs implicitly model
agent-to-agent interactions by structuring the data as a graph, where each node repre-
sents an agent and edges signify the relationship or interaction between agents. Through
propagation and update rules, GNNs can capture the influence of one agent on another
during prediction, encoding the interactive dynamics implicitly within the traffic scenario.
However, this prediction is marginal because it’s made independently for each agent, con-
sidering only the current state of its neighbors in the graph. It does not account for the joint
interaction effects that could arise from the simultaneous movement of multiple agents.
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Joint prediction of trajectories in a traffic scene, while providing a comprehensive view
of the interactions between multiple agents, comes with its own set of challenges. It re-
quires modeling the dependencies between all agents, which can increase the computational
complexity exponentially with the number of agents, making it impractical for real-time
applications. [154] proposes utilizing explicit latent interaction graphs via multiplex at-
tention to infer high-level abstractions for improved multi-agent system forecasting. The
M2I model [157] leverages a marginal predictor to produce predictive samples for the ‘in-
fluencer’ agents, and employs a conditional predictor to project the future trajectories of
the ’reactor’ agents based on the influencer’s anticipated path. This approach, however,
requires the training of a relation predictor capable of discerning the influencer and reactor
roles even during the inference stage. This may introduce noise and potentially struggle
to scale effectively when dealing with multiple interactive agents.

2.2.4 Pretext tasks for interactive modeling

In related research, the use of pretext tasks has enhanced the modeling of interactions and
relational reasoning across different contexts. [82] demonstrates that predicting language
descriptions and explanations as an auxiliary task can significantly enhance reinforcement-
learning (RL) agents’ abilities to infer abstract relational and causal structures in complex
environments. [81] introduces a trajectory prediction model that utilizes linguistic inter-
mediate representations to enhance forecasting accuracy and model interpretability. [155]
uses pseudo-labels in a multi-agent trajectory prediction setting to induce an informative,
interactive latent space for a conditional variational auto-encoder (CVAE), thereby miti-
gating posterior collapse and improving the trajectory prediction accuracy. The work most
similar to ours is Social-SSL [162], which leverages self-supervised pre-training to enhance
data efficiency and the generalizability of Transformer networks in pedestrian only trajec-
tory prediction. Nonetheless, its proposed pretext tasks do not necessarily exert a direct
influence on the subsequent motion forecasting task. This is primarily due to the lack
of a strong correlation between success in their pretext tasks and enhanced performance
in motion forecasting. For example, predicting potentially non-informative regions of a
trajectory through auxiliary loss may not consistently result in downstream performance
improvement. Moreover, Social-SSL calculates pretext losses across all agents within a
given scene, regardless of whether they are actively interacting. For example, a vehicle
maintaining a straight course may not be significantly influenced by an oncoming vehicle
if they occupy distinct lanes.

16



2.2.5 SSL-Lanes relative to literature

To the best of our knowledge, SSL-Lanes proposed in Chapter 5 is the first principled
approach that explores motion forecasting for autonomous driving with self-supervision.
We use this sub-section to distinguish our work from methods that we believe have similar
intuition but very different construction, in order to highlight its novelty and value.

• SSL-Lanes vs. VectorNet [41]: Vector-Net is the only other motion forecasting work
that proposes to randomly mask out the input node features belonging to either
scene context or agent trajectories, and ask the model to reconstruct the masked
features. Their intuition is to encourage the graph networks to better capture the
interactions between agent dynamics and scene context. However, our motivation
differs from VectorNet in two respects: (a) We propose to use masking to learn
local map-structure better, as opposed to learning interactions between map and the
agent. This is an easier optimization task, and we out-perform VectorNet. (b) A lane
is made up of several nodes. We propose to randomly mask out a certain percentage
of each lane. This is a much stronger prior as compared to randomly masking out
any node (which may correspond to either a moving agent or map) and ensures that
the model pays attention to all parts of the map.

• SSL-Lanes vs. CS-LSTM [34]: CS-LSTM appends the encoder context vector with a
one-hot vector corresponding to the lateral maneuver class and a one-hot vector cor-
responding to the longitudinal maneuver class. Subsequently, the added maneuver
context allows the decoder LSTM to generate maneuver specific probability distri-
butions. This construction however is quite different from our work because it is not
auxiliary in nature - it always outputs and appends a maneuver to the decoder, even
during inference. This we believe is too strong of a bias for the prediction model,
especially given the fact that the maneuvers are generated using very simple velocity
profiles and not from careful mining of the data. In our conditioning, the maneuvers
are mined from data and the final motion prediction does not depend directly on
them. We believe this design is much more flexible since it allows to generate more
supervisory signals in the form of maneuvers during training, but at the same time
does not require an explicit maneuver to condition the final future forecast trajectory
output during inference.

• SSL-Lanes vs. MultiPath [25]: MultiPath is also not auxiliary in nature: it fac-
torizes motion uncertainty into intent uncertainty and control uncertainty; models
the uncertainty over a discrete set of intents with a softmax distribution; and then
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outputs control uncertainty as a Gaussian distribution dependent on each waypoint
state of the anchor trajectory (corresponding to the intent). While this construction
is highly intuitive and effective by design, it is very different from our SSL-based
construction. Ours is an auxiliary task which provides supervision during training,
and effectively functions as a regularizer, while being general enough to be used with
any other data-driven motion forecasting model.

2.2.6 SSL-Interactions relative to literature

SSL-Interactions proposed in Chapter 6 is a framework that factorizes and scales joint
distribution prediction into marginal prediction and pretext task distribution prediction
during the training stage. This is in contrast to M2I [157] which leverages a marginal pre-
dictor to produce predictive samples for the ’influencer’ agents, and employs a conditional
predictor to project the future trajectories of the ’reactor’ agents based on the influencer’s
anticipated path. This approach, however, requires the training of a relation predictor
capable of discerning the influencer and reactor roles even during the inference stage. This
may introduce noise and potentially struggle to scale effectively when dealing with multiple
interactive agents.

Marginal predictions, which are usually only implicitly considering interaction informa-
tion for predicting future trajectories, may not be sufficiently influential in an end-to-end
learning setting aimed at optimizing future prediction [88, 3]. SSL Interactions is condi-
tioned to consider this interaction information explicitly during motion forecasting, thereby
improving interaction modeling.

The proposed pretext tasks for SSL-Interactions, driven by domain-specific knowledge,
are closely linked to the efficacy of downstream motion forecasting, in contrast to proxy
tasks proposed in [81, 155, 162]. Our pretext tasks not only enforce interaction regulariza-
tion in the data-driven forecasting model but also come with the advantage of not adding
any additional parameters during the inference phase. Significantly, they also offer the
capability to learn from unlabeled data.
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Part I

Perception Modeling for Multi-Agent
Urban Scenarios
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Chapter 3

FANTrack: 3D Multi-Object
Tracking with Feature Association
Network

3D object tracking is of great importance for autonomous driving systems because it not
only identifies objects within the environment but also monitors their movement over time.
By continuously tracking detected objects, it provides insights into the dynamic nature
of the surroundings. This capability allows autonomous systems to make more accurate
predictions about the future states of these objects, thus facilitating safer and more efficient
decision-making. In this chapter, we describe our proposed 3D object tracker FANTrack
[9]. This tracker is specifically designed to enhance the data association step in multi-
object tracking, thereby resulting in superior tracking performance. FANTrack code and
documentation is open-source.1

3.1 Motivation and Contributions

Multi-object tracking (MOT) is the problem of finding the optimal set of trajectories of
objects of interest over a sequence of consecutive frames. Most of the successful computer
vision approaches to MOT have focused on the tracking-by-detection principle [115, 172].
This paradigm allows the problem to be divided into two steps. First, an object detector
is used to identify the potential locations of objects in the form of bounding boxes, and

1https://git.uwaterloo.ca/wise-lab/fantrack
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Figure 3.1: Overall architecture of the proposed FANTrack

then a discrete combinatorial problem is solved to link these noisy detections over time
to form trajectories. Despite decades of research, the status quo of tracking is far from
reaching human accuracy. Current challenges to the problem include a varying and a-
priori unknown number of targets; incorrect and missing detections; changing appearances
of targets due to sensor motion, illumination, and angle of view; frequent occlusions, and
abrupt changes in motion.

The linking step called data association is arguably the most difficult component of
MOT. Traditional batch methods usually formulate MOT as a global optimization prob-
lem, with the assumption that detections from all future frames are available, and solve it
by mapping it to a graph based min-cost flow algorithm [1, 12]. Online Markovian formula-
tions of MOT on the other hand often employ greedy or bipartite graph matching methods
like the Hungarian algorithm to solve the assignment problem [109, 158, 17]. Online ap-
proaches are well suited to real-time applications such as tracking road-traffic participants.
The success of the final associations is also dependent on the similarity functions used
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to match the targets and detections. Traditionally cost functions have been handcrafted
with representations based on color histograms, bounding box position, and linear motion
models [74, 113], but have failed to generalize across tasks and for complex tracking sce-
narios. Recently, deep neural network architectures have shown superior performance in
many vision based tasks. Milan et al. proposed the first end-to-end formulation for MOT,
using a recurrent neural network (RNN) to solve the assignment problem for each target
independently based on Euclidean cost [106]. However, the use of convolutional neural
networks (CNNs), which are easier to train than RNNs, in order to solve the association
problem while also learning the cost function has not yet been investigated.

In this chapter, we propose an online MOT formulation that casts the assignment
problem as inference in a CNN. We present a two-step learning based approach (see
Fig. 3.1). The first step learns a similarity function that takes advantage of both visual and
3D bounding box data to yield robust matching costs. The second step trains a CNN to
predict discrete target assignments from the computed pair-wise similarities. The benefit
of our proposal is that it is easy to train, takes care of a varying number of targets and noisy
detections, and provides a simple way to consider all the targets while making associations.

Contributions: We empirically demonstrate on the KITTI tracking dataset [43] that:

• Our approach can solve the multi-target association problem by performing inference
using CNNs.

• It can integrate image based appearance and 3D bounding box features to get a
discriminative as well as generalized feature representation, thereby learning a robust
cost function for association.

• We show competitive qualitative and quantitative 3D tracking results compared to
the state of the art.

3.2 FANTrack

Our proposed framework is based on tracking by detection paradigm. Our problem setup
assumes at any time instant t we have N number of targets, M number of detections and
track labels for every ith track. We use AVOD [79] as our 3D object detector since it
achieves state-of-the-art results on KITTI and is open-source, but in principle, any other
3D object detector could be used. The motivation for building FANTrack is to leverage
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the power of Siamese networks to model the similarities between targets and detections,
CNNs to solve the data association problem in MOT, and an online track management
module to update, initialize and prune tracks. We describe these modules in the following
sections.

3.2.1 SimNet: Similarity Network

The similarity network, also called SimNet, is the first network in our combined architecture
for data association, as shown in Fig. 3.2. The main role of the network is to compute a
similarity metric between every target and measurement pair and to structure the results
as localized maps, which are then used by another network for data association. The
SimNet uses three instances of a Siamese Network architecture, one for each of the two
types of features (i.e., bounding boxes and appearance), and a third one for weighting
the relative importance of each feature. The input to the SimNet consists of bounding
box parameters and appearance features of the targets and measurements. We follow the
approach of combining each of the two Siamese branches in the cost function [84] [36], by
separately processing the target and measurement specific inputs. Though this approach
leads to slightly reduced accuracy [84], it is faster than the approach of input stacking.
The output from SimNet is a set of maps called local similarity maps, with dimensions
21x21 pixels and Nmax channels, one for each target from the t − 1 frame. Each map is
centered around the corresponding target and records the similarity score of the target
with every measurement within the 10 m × 10 m bird’s eye view region around the target.
The resolution of the maps is 0.5 m.

The SimNet has two main branches: a bounding box branch and an appearance branch.
Each of the two branches, being a Siamese network, applies the same set of weights to
each of its input, i.e., target or measurement representation, separately and outputs the
corresponding normalized feature vector for each of these two inputs. The respective con-
tribution of the bounding box and appearance branch towards the final similarity score
computation is weighted using the importance branch. Finally, the weighted average of the
cosine-similarities of each target-measurement unit vector pairs for each branch are com-
puted and the scalars are mapped to their corresponding positions on the above-mentioned
set of local maps. We describe the individual branches and the similarity and map gener-
ation processes in detail in the subsequent subsections.

23



Figure 3.2: Architecture of the proposed Siamese network for similarity learning. The
branches highlighted in blue have trainable parameters.

A. Bounding Box Branch

The bounding box branch outputs normalized vectors, each representing a target or mea-
surement bounding box. The cosine similarity between any one of the target unit vectors
and any one of the measurement unit vectors is obtained as the dot product of the two
vectors. We train a Siamese network with input pairs of target and detection 3D bounding
boxes for this purpose. The 3D bounding boxes are defined by their centroids (x, y, z),
dimensions (l, w, h), and rotation around the z-axis (θz) in the ego-car’s IMU/GPS co-
ordinates. To prevent learning variations induced due to ego-motion, detection centroids
are converted to coordinates at a common time-step using GPS data. The bounding box
parameters are obtained from the object detector (AVOD) and are represented as follows,

[x, y, z, l, w, h, ry] (3.1)

The input to this branch is an (N+M)×1×7 tensor for N targets and M measurements
where the third dimension consists of the 7 bounding box parameters defined above. The
inputs are fed to a convolutional layer with 256 1×1 filters to capture complex interactions
across the 7 channels, followed by two convolutional layers with 512 1 × 1 filters. Thus,
the parameters of each target and detection are processed independently in order to be
later combined in the loss function [93]. We apply L2 normalization on the output features
and henceforth refer to the result as unit features. The unit features have dimensions
(N + M) × 512. These unit features are sliced on the first dimension according to the
number of targets T to obtain target and measurement bounding box features. These sliced
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Figure 3.3: Detailed architecture of the bounding box branch. The inputs are bounding
box parameters of N targets and M measurements. In training, N and M are 128 (batch
size) respectively. Outputs are sliced unit feature vectors.

unit features along with those obtained from the appearance branch are used to compute
the cosine similarities, which will be discussed in the subsequent sections. We use batch
normalization and leaky-ReLU activation across all the layers. A detailed architecture of
the bounding box branch is shown in Fig. 3.3.

B. Appearance Branch

The appearance branch is used to analyze the 2D visual cues in the targets and measure-
ments for the computation of the similarity scores. We train another Siamese network for
this purpose. The input to this branch are the appearance features produced by a VGG16
image feature extractor pre-trained on the ImageNet dataset. The dimensions of the in-
put appearance feature maps are (7x7x640). The architecture of the branch is shown in
Fig. 3.4. First, we apply 256 3× 3 convolutions to obtain promising features for similarity
learning while preserving the spatial size of the input. Before flattening the feature maps
for the fully-connected layers with 512 neurons, the Global Average Pooling (GAP) [93]
layer extracts one abstract feature from each feature map. Similar to the bounding box
branch, L2 normalization yields a vector of dimension (N +M)×512. As in the case of the
bounding box branch, the (N + M) × 512 features are sliced along the first dimension to
obtain the unit appearance features of detections and targets. These are used to compute
the appearance cosine similarities.
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Figure 3.4: Detailed architecture of the appearance branch

C. Importance Branch

The aim of the importance branch is to determine the relative importance of the bounding
box and appearance features in the computation of the final cosine similarity score. The
inputs to this branch are the unit bounding box and unit appearance features of both
targets and measurements as shown in Fig. 3.5. First, the vector representation of objects
obtained from the appearance and bounding box branches are concatenated to form a single
vector (dimension 1024). This, in turn, is connected to a fully-connected layer having two
neurons. Finally, the softmax layer computes two scalars representing the importance
weights as probabilities of each of the two branches. The weights are sliced along the first
and second dimensions to obtain the appearance and bounding box branch weight pair
individually for each target t and measurement m. For a given target and measurement
pair, the appearance/bounding box weight is aggregated as follows

ωβ =
ω
(t)
β × ω

(m)
β

Ω
for β ∈ {bbox, appear} , (3.2)

where Ω is the normalization constant which ensures that the weights are summed up to
unity.

D. Similarity Maps

The output of the SimNet are Nmax local similarity maps, one map per target. The choice
of the parameter Nmax is a design choice, and it directly relates to the maximum number
of objects the tracker can associate at a given time instant. Initially, N occupancy maps
of measurement indices are constructed on the Bird’s Eye View IMU/GPS frame. The
resolution of the maps is chosen as 0.5 m, and with a range of 10 m×10 m, centered around
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Figure 3.5: Detailed architecture of the importance branch

the respective targets locations we get maps of size 21 × 21 pixels. Next the unit feature
vectors of size 512 computed by the similarity network for each measurement in the maps
are placed in the respective measurement locations. For every local map the corresponding
target’s unit target feature vector of size 512 is convolved with the measurement features
on the locations where the measurement is present. In effect, this operation computes the
dot product of the unit vectors, which is their cosine similarity. This selective convolution
operation for a typical map channel is shown in Fig. 3.6.

The process of building these maps is done for bounding box and appearance branches,
yielding two sets of maps. Next, two weight maps are built by placing the bounding box
and appearance specific weights, respectively, at the measurement locations. The two
sets of similarity maps discussed earlier are weighted using these weight maps to produce
a consolidated set of similarity maps. Finally, the convolved output of the map will now
have the similarity scores between the corresponding target with every measurement as the
features are normalized to unit vectors by the network branches. Similarity maps are only
built during inference. In training, the dot product of the target and measurement unit
feature vectors is directly fed to the loss function. Finally, additional Nmax −N channels
are added to the similarity maps as dummy maps (with zeros) for consistency. The result
is the local Similarity map with dimensions 21 × 21 ×Nmax.

E. SimNet Loss Function

The SimNet is a mixed architecture of trainable and non-trainable components. The
bounding box branch, appearance branch, and importance branches have trainable compo-
nents, which need a loss function during training to measure the deviation of the prediction
from the ground truth. As the problem is defined as finding the similarity score between
a target and a measurement, we use weighted cosine distance as the loss function. Cosine
distance is widely used as a metric to measure the similarity or dissimilarity between two
elements, especially in natural language processing models. The training examples gener-
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Figure 3.6: Construction of local similarity map for a target. Local similarity maps are
built only during inference.

ated from the training dataset have some skewness with respect to the number of positive
and negative examples (similar and dissimilar pairs). To account for this skewness, we use
the weighted cosine distance. The loss function for the learnable parameters Θ1 is given
by

L(Θ) =
1

N+

∑N

i=1
w

(i)
skew × w

(i)
cost×(

1 − y(i) × ŷ(i) (Θ)
)

(3.3)

where N+ is the number of examples with nonzero weights, y(i) denotes the ground truth
value of the ith example, i.e., y(i) ∈ {−1, 1}. ŷ(i) is the estimated cosine similarity score
computed using the cosine similarities from the two branches and their normalized impor-
tance weights as follows:

ŷ(i) (Θ) = ωbbox (Θ)(i) × ŷ
(i)
bbox (Θ) +

ω(i)
appear (Θ) × ŷ(i)appear (Θ) (3.4)

w
(i)
skew is the weight used to remove the imbalance of negative examples in the training

dataset. It is based on the ratio of positive and negative examples (18:25), and is given by
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w
(i)
skew =

{
18/43 if y(i) = 1,
25/43 if y(i) = −1,

(3.5)

w
(i)
cost is given by

w
(i)
cost =

{
− log

(
1 − cos−1

(
ŷ(i) (Θ)

)/
π + ϵ

)
if y(i) = 1,

− log
(
cos−1

(
ŷ(i) (Θ)

)/
π + ϵ

)
if y(i) = −1,

(3.6)

scales the loss function according to how easy or hard it is to distinguish between each
pair of examples, so that the training can revolve around a sparse set of the selected hard
examples [94]. In Eq. (3.6), ϵ is a small constant (1e− 10) that prevents taking log of zero.

3.2.2 AssocNet: Data Association Network

The second network in the architecture is AssocNet. It performs the actual data association
between the targets and measurements using the similarity scores provided by the SimNet.
Fig. 3.7 gives an overview of AssocNet. The input to this network is a set of local similarity
maps from SimNet, having dimensions 21× 21×Nmax. The outputs from the network are
the probability distributions for each target of being associated to any measurement or to
none.

We now discuss the data flow through AssocNet. The input local similarity maps are
fed through a series of dilated convolutional layers [54] with dilation factors 2, 4, and 6.
The neighbouring fields have slightly overlapping fields of view due to increased dilation
size [135]. The final convolutional layer enables interactions between these neighbouring
units, which effectively results in considering all the detections simultaneously while making
assignments. Thus to aggregate information, we use a 3× 3 convolutional layer at the end
to compute the maps of logits (the vector of non-normalized predictions).

AssocNet is trained to predict assignment probabilities between a target and its proba-
ble detections. Since the locations of probable detections are known in each local similarity
map, there is no need to train AssocNet to predict assignment probabilities of other lo-
cations as zero. This reduces the training efforts for regions that are not measurement
locations, thereby helping in faster convergence. To implement this idea, we generate as-
sociation masks for each local similarity map. In the association masks, cells of probable
detections are set to zero, while the other cells are set to the smallest floating point neg-
ative number (approximating −∞). This ensures the locations that do not contain the
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Figure 3.7: Detailed architecture of Assocnet

measurements remain blocked. Then the association masks are added to the map of logits
obtained from the convolutional layer with 3×3×Nmax filters (see Fig. 3.7). This masking
approach maintains the values of the logits computed for probable detections, but makes
other logits insignificant for further computation.

After masking the maps of logits, AssocNet splits into two branches. The first branch
has two fully connected layers with 512 neurons each and then another fully connected
layer with Nmax neurons. The output of this branch predicts the Nmax logit values of
spurious detections. These are the probabilities that the corresponding target has gone
un-detected in the current frame, which also means that no association with any of the
measurements could be possible. The output from this branch thus has a shape of [1, Nmax]
representing one value of probability for each of the Nmax (we consider Nmax instead of
N for consistency and for ease of implementation ) targets. The second branch flattens
the maps by maintaining the channels dimension such that the shape of the second branch
would be [21 × 21, Nmax].

The first dimension of size 21×21 corresponds to the logits for associating the target to
all possible measurements in the spatial neighborhood of the target. The network itself does
not handle duplicate assignments. For example, the same measurement could be assigned
to two different targets. We handle this later by removing duplicate assignments based on
the association score. If there is a tie, we choose an assignment in random. Thus, finally
we solve the data association problem by modeling it as a classification problem. Further
we concatenate the two branches along the first dimensions such that the final shape would
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be [21×21 + 1, Nmax]. Here we add another class to the existing 21×21 classes, which will
correspond to the scenario where the target has gone undetected, for example as occlusion.
Finally a softmax is applied to this tensor to compute the probabilities of the classes for
each target. The resulting tensor is sliced to obtain the class probabilities for the 21 × 21
measurement locations and the ’occluded’ class separately. The probabilities are reshaped
to [21, 21, Nmax], and the last unused channels are pruned, resulting in the final association
maps. The probabilities of occlusions are also pruned to remove the unused target channels
and to obtain the final vector with the probabilities of occlusions. From the association
maps we can obtain the associated measurements for every target by computing the max
index locations where the probabilities are maximum.

(xi
pred, y

i
pred) = argmax

x∈Xi,y∈Y i

p(x, y) ∀i ∈ N (3.7)

where X i Y i correspond to the spatial indices of the map for a given target channel
i and (xi

pred, y
i
pred) gives the predicted location of the target for the current frame which

will coincide with the measurement in that location. By maintaining a dictionary of the
measurement identities and their corresponding locations, we could easily obtain the mea-
surement corresponding to the predicted location. The targets that were not associated
to any of the measurements can be handled by using predictions from state estimation
algorithm, discussed in the track management section.

A. AssocNet Loss Function

Training the AssocNet is a classification problem in which the labels are the association
maps showing the true associations for every target. For this purpose, we use the following
loss function:’

L (Θ) = l (Θ)assoc + l (Θ)occ + l (Θ)reg (3.8)

where Θ is the set parameters of the association network, and l (Θ)reg is the L2 regular-
ization loss. l (Θ)assoc is the binary cross-entropy computed for the association maps as
follows:
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qvec = q(t)assoc (i, j) × log
(
q̂(t)assoc (i, j; Θ) + ϵ

)
pvec = p(t)assoc (i, j) × log

(
p̂(t)assoc (i, j; Θ) + ϵ

)
l (Θ)assoc =

∑N

t=1

∑21

i,j=1
(−qvec) + (−pvec)

(3.9)

where q
(t)
assoc (i, j) = 1 − p

(t)
assoc (i, j) and ϵ is a very small number to avoid taking log of

0. The loss term for probability of occlusion p
(t)
occ is given by

l (Θ)occ =
∑N

t=1

[
−q(t)occ log

(
q̂(t)occ (Θ)

)
− p(t)occ log

(
p̂(t)occ (Θ)

)]
(3.10)

3.2.3 Track Management

The track management module takes care of state estimation, initiation, update, and
termination of tracks. We use a Kalman filter for motion prediction and state estimation.
We initiate, update and prune tracks with a Bayesian estimation model as specified in
[119] with a probability of existence Pe. Our complete tracking algorithm is described in
Algorithm 1.

3.3 Experiments

This section details the datasets employed for network training, outlines our experimental
procedures, and presents both quantitative and qualitative results from our study.

3.3.1 Dataset

The KITTI Tracking benchmark dataset serves as the basis for both training and evaluation
in our study. This dataset is composed of 21 training sequences and 29 test sequences.
Given the varied levels of difficulty, occlusion, and clutter in the training sequences, we
partition each sequence into an 80% training set and a 20% validation set. This division
ensures a balanced representation of the different scenarios in both training and validation
sets, mitigating dataset skewness. When training SimNet, we create a training dataset from
the training sequences, crafting both positive and negative examples in consecutive frames,
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Algorithm 1 Tracker Algorithm

1: Psurv = 0.60 ▷ Probability of Survival
2: θex = 0.40 ▷ Existence threshold
3: while true do
4: Get measurements mk at time τ = k
5: if k = 0 then
6: for each m0

i do
7: Create new track i
8: end for
9: else
10: PredictTracks:
11: Perform Kalman Filter Prediction
12: Compute prior P k

ei

13: DataAssociation:
14: Data Association for tk and mk

15: UpdateTracks:
16: Perform Kalman Filter Update
17: Update P k

ei

18: For all (None,mk
j ) Create a new track

19: for all i ∈ T do
20: if P k

ei
< θex then

21: Prune i
22: end if
23: end for
24: end if
25: end while
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as well as in odd and even frames, guided by ground truth data. To simulate detector
noise, we implement geometric transformations—translation, rotation, and scaling—on
the ground-truth bounding box parameters. The resulting training set has a negative to
positive ratio of approximately 18 : 25, providing a large, diverse sample for our model.

The object detector was trained on a composite dataset derived from the KITTI 3D
object detection dataset and the 80% segment of the previously mentioned KITTI training
dataset, with an initial pre-training phase on a synthetic dataset [67]. This pre-training
with the synthetic dataset augments the detection accuracy by approximately 3%. The
most effective checkpoint for the object detector was selected based on the highest 3D
object detection AP (Average Precision) obtained on the combined dataset’s validation
set. We plot the P-R curve as shown in Fig. 3.8 and find the best threshold corresponding
to the maximum F1 score as 0.28.
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Figure 3.8: PR curve of the object detector (AVOD) on the combined dataset for the car
class. The best threshold 0.28 corresponds to the point where F1 score is maximum.

3.3.2 Training Parameters

A. SimNet

SimNet is trained with mini-batches of size 128. Each mini-batch consists of the spatial
indices of detections in the global map, the number of targets (N), target centroids in
x-y coordinates, target and detection appearance features, their bounding box parameters,
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and the labels of each example. To optimize the loss function Eq. (3.3) we used Adam
optimizer and exponentially-decaying learning rate [75]. The learning rate is initially set
to 1e− 5 and then decreased every 100 epochs with a base of 0.95.

B.AssocNet

To optimize the loss function in Eq. (3.8), we used Adam optimizer and exponentially-
decaying learning rate. The learning rate was initially set to 1e − 6 and then decreased
every 20 epochs with a base of 0.95.

3.3.3 Evaluation Metrics

The accuracy in SimNet is measured Eq. (3.11) by counting the number of correct predic-
tions (similar or dissimilar) by comparing them to the ground truth. We obtain a training
accuracy of 90.5% and validation accuracy of 91.3%.

accuracysimnet =

∑N
i=1(y

i == ŷi)

N
y ∈ {0, 1} (3.11)

The AssocNet predicts the (x,y) locations of the probable measurement in the local
map of every target. Hence its accuracy is given by considering all the correct predictions
in all the target channels as shown in Eq. (3.12). We obtain a training accuracy of 99.71 %
and validation accuracy of 99.78 %. We compare these spatial predictions with the ground
truth according to the following equation:

accuracyassocnet =

∑N
i=1(x

i == x̂i) ∧ (yi == ŷi)

N
x, y ∈ [−10, 10] (3.12)

where xi and yi are the spatial predictions of associated measurement locations for the
target i.

While these metrics are used to evaluate the performance of the individual networks,
overall performance of a multi-object tracking algorithm is determined with the help of the
CLEAR MOT metrics [13]. The performance of the tracking is measured by two important
metrics: Multi-Object Tracking Precision (MOTP) and Multi-Object Tracking Accuracy
(MOTA). MOTP is given by:
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Method MOTA ↑ MOTP ↑ MT ↑ PT ↑ ML ↓ IDS ↓ FRAG ↓
Euclidean+AssocNet 56.16 % 84.84 % 72.22 % 18.51 % 9.25 % 269 320

Manhattan+AssocNet 56.75 % 84.83 % 73.14 % 17.59 % 9.25 % 265 319
Bhattacharyya+AssocNet 56.69 % 84.81 % 72.22 % 18.51 % 9.25 % 256 307

ChiSquare+AssocNet 57.17 % 84.81 % 73.14 % 18.51 % 8.33 % 262 311
SimNet+Hungarian 74.59 % 84.92 % 65.74 % 23.14 % 11.11 % 26 93
SimNet+AssocNet 76.52 % 84.81 % 73.14 % 17.59 % 9.25 % 1 54

(↑ denotes higher values are better. ↓ denotes lower values are better)

Table 3.1: Ablation study on KITTI validation set for ’Car’ class

MOTP =

∑
i,τ d

i
t∑

τ cτ
(3.13)

and it measures the total position error for the associated hypotheses over all frames
averaged by the total number of matches made. Here diτ is the distance between the ith

associated hypothesis and the ground truth detection, and cτ denotes the total number of
associations made at time τ . It represents how precise are the position estimations for the
matched target-measurement pairs over all the frames, averaged by the total number of
associations made. Multi-Object Tracking Accuracy (MOTA) is given by:

MOTA = 1 −
∑

τ (fpτ + fnτ + IDS)∑
τ gτ

(3.14)

where fpτ denotes the number of false positives, fpτ denotes the number of false negatives,
and IDS denotes the number of ID switches. An ID switch is a case when two tracks
interchange their IDs when observed at two time instants τ − 1 and τ .

Mostly Tracked (MT), Mostly Lost (ML), and Fragmentation (FRAG) are three addi-
tional metrics [87]. Mostly Tracked is given by the proportion of tracks tracked for more
than 80% of their lifetime. Mostly Lost is given by the proportion of tracks tracked for
less than 20% of their lifetime. Fragmentation denotes the total number of times a ground
truth trajectory is interrupted in the tracking result.
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Method MOTA ↑ MOTP ↑ MT ↑ ML ↓ IDS ↓ FRAG ↓
MOTBeyondPixels [142] 84.24 % 85.73 % 73.23 % 2.77 % 468 944

JCSTD [179] 80.57 % 81.81 % 56.77 % 7.38 % 61 643
3D-CNN/PMBM [139] 80.39 % 81.26 % 62.77 % 6.15 % 121 613

extraCK [52] 79.99 % 82.46 % 62.15 % 5.54 % 343 938
MDP [177] 76.59 % 82.10 % 52.15 % 13.38 % 130 387

FANTrack (Ours) 77.72 % 82.32 % 62.61 % 8.76 % 150 812

Table 3.2: Results on Kitti Test set for ‘Car’ class

3.4 Results

3.4.1 Ablation Study

We do an ablation study to evaluate the components in our approach by comparing them
with traditional approaches. Firstly, we study the impact of the similarity network. In
Tab. 3.1, Euclidean and Manhattan denote the baseline distances modeled with the 3D posi-
tion estimates. Bhattacharyya and ChiSquare metrics are built from the image histograms
of the cropped targets and detections to study the image-only configuration. SimNet and
AssocNet denote our Similarity and Association networks respectively. From Tab. 3.1, we
could infer that conventional similarity approaches were not able to achieve comparable
accuracy (MOTA) as the features involved in the computation of the similarity scores were
not robust. We also study the impact of our association network by replacing it with a
baseline Hungarian approach. Again, we could observe that the baseline approaches like
Hungarian couldn’t fare better than ours.

3.4.2 Benchmark Results

We evaluate our approach on the test sequences on the KITTI evaluation server for the
’Car’ class. The results are presented in Tab. 3.2. Due to the challenging nature of online
tracking approach and to do a fair comparison, we only consider published online tracking
approaches for our comparison. We achieve competitive results with respect to the state
of the art in online tracking with improved MOTP which is better than most of the online
methods. Our Mostly Tracked and Mostly Lost (MT & ML) values are also competitive
which show the effectiveness of our data association approach. Further, our approach
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Figure 3.9: Qualitative Evaluation - In this example (video 17 in test set) the detection
was missed by the detector and reappears in the next frame. But the tracker was able to
successfully maintain the track.

gives inferences in 3D and KITTI evaluations are done in 2D, which is not completely
representative of our approach. It should also be noted that none of these approaches use
deep learning for data association. On the other side, we have used a simple Kalman filter
for state estimation and motion prediction which could potentially be improved by better
tuning of parameters or trying out more sophisticated approaches for track management.

After optimizing the convolution operation in Sec. 3.2.1 with selective dot products our
tracking algorithm has an average runtime of 0.04s per frame ( 25 Hz) on Nvidia GeForce
GTX 1080 Ti and with a single thread on Intel Core i7-7700 CPU @ 3.60GHz.

3.4.3 Qualitative Evaluation

We perform a qualitative evaluation by running our tracker on the KITTI tracking vali-
dation and testing sequences. We analyze different scenarios including occlusions, clutter,
parked vehicles and false negatives from the detector. Sec. 3.4.2 shows an example from
sequence 14 in the test set. Different tracks representing the vehicles are color coded, and
the track IDs are displayed for reference. The tracker is able to perform well in spite of the
clutter from the closely parked cars. In Sec. 3.4.2 we see an example from test sequence
17 in which the false negative by the detector is overcome with the help of the prediction
of the tracker. These examples show the robustness of the tracker and its ability to per-
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Figure 3.10: Qualitative Evaluation - An example from video 15 in test set where ID
switching occurs for Track 35 due to low-lit conditions.

form better in scenarios of missed detections. There were also some cases where the data
association fails and as a result ID switching and fragmentation happen. In Sec. 3.4.2 the
track 38 was previously assigned to a nearby car, but after a missed detection, ID switching
happens. This could be due to the low-lit conditions of the two cars.
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Figure 3.11: Qualitative Evaluation - An example from video 14 in test set where the
tracker performs well in a cluttered scene with parked cars.
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3.5 Chapter Conclusion

In this chapter, we presented a solution to the problem of data association in 3D online
multi-object tracking using deep learning with multi-modal data. We have shown that
a learning-based data association framework helps in combining different similarity cues
in the data and provides more accurate associations than conventional approaches, which
helps in increased overall tracking performance. We demonstrated the effectiveness of the
tracker built using this model with a multitude of experiments and evaluations and show
competitive results in the KITTI tracking benchmark.

In this chapter, we proposed an improved solution to the data-association problem,
without modifying the features of the 3D object detector. Nevertheless, data-association
could also be improved through enhancing the features of the 3D object detection itself.
Consequently, in the next chapter, Chapter 4, we will investigate a technique designed to
boost the efficacy of 3D object detection.
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Chapter 4

SA-Det3D: Self-Attention Based
Context-Aware 3D Object Detection

Following the exploration of data-association improvement for 3D object tracking in Chap-
ter 3, this chapter focuses on another facet of the problem — improving the quality of object
detectors. We hypothesize that improving the quality of object detectors can also enhance
data-association performance in object tracking. Accurate and reliable object detectors
streamline data association by delivering precise spatial and temporal data, facilitating
correspondence across successive frames, thus diminishing ambiguity and mismatches. Fur-
ther, advanced detectors can more accurately identify occluded or partially visible objects,
boosting track continuity and reducing track fragmentation.

To this end, we present two self-attention variants for 3D object detection aimed at
augmenting convolutional features with self-attention features, and at explicitly modeling
long-range interactions. Moreover, we introduce a technique that samples a subset of the
most representative features, permitting the model to scale to larger point-clouds and
generate more distinguishing and informative feature descriptors. Our proposed method
exhibits versatility, enhancing detection performance when applied to most state-of-the-art
detectors. SA-Det3D code and documentation is open-source.1,2

1https://github.com/AutoVision-cloud/SA-Det3D
2https://github.com/AutoVision-cloud/Deformable-PV-RCNN
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4.1 Motivation and Contributions

3D object detection has been receiving increasing attention in the computer vision com-
munity, driven by the ubiquity of LiDAR sensors and its widespread applications in au-
tonomous driving. Point-cloud based 3D object detection has especially witnessed tremen-
dous advancement in recent years [83, 184, 144, 143, 128, 188, 191, 55, 207, 127]. Grid-based
methods first transform the irregular point-clouds to regular representations such as 2D
bird’s-eye view (BEV) maps or 3D voxels and process them using 2D/3D convolutional net-
works (CNNs). Point-based methods sample points from the raw point-cloud and query a
local group around each sampled point to define convolution-like operations [130, 161, 173]
for point-cloud feature extraction. Both 2D/3D CNNs and point-wise convolutions process
a local neighbourhood and aggregate global context by applying feature extractors hierar-
chically across many layers. This has several limitations: the number of parameters scales
poorly with increased size of the receptive field; learned filters are stationary across all lo-
cations; and it is challenging to coordinate the optimization of parameters across multiple
layers to capture patterns in the data [200].

In addition, point-cloud based 3D object detectors have to deal with missing/noisy
data and a large imbalance in points for nearby and faraway objects. This motivates the
need for a feature extractor that can learn global point-cloud correlations to produce more
powerful, discriminative and robust features. For example, there is a strong correlation
between the orientation features of cars in the same lane and this can be used to produce
more accurate detections especially for distant cars with fewer points. High-confidence
false positives produced by a series of points that resemble a part of an object can be also
be eliminated by adaptively acquiring context information at increased resolutions.

Self-attention [164] has recently emerged as a basic building block for capturing long-
range interactions. The key idea of self-attention is to acquire global information as a
weighted summation of features from all positions to a target position, where the corre-
sponding weight is calculated dynamically via a similarity function between the features
in an embedded space at these positions. The number of parameters is independent of the
scale at which self-attention processes long-range interactions. Inspired by this idea, we
propose two self-attention based context-aware modules to augment the standard convo-
lutional features—Full Self-Attention (FSA) and Deformable Self-Attention (DSA). Our
FSA module computes pairwise interactions among all non-empty 3D entities, and the
DSA module scales the operation to large point-clouds by computing self-attention on a
representative and informative subset of features. Our experiments show that we can im-
prove the performance of current 3D object detectors with our proposed FSA/DSA blocks
while simultaneously promoting parameter and compute efficiency.
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Contributions

• We propose a generic globally-adaptive context aggregation module that can be ap-
plied across a range of modern architectures including BEV [83], voxel [184], point
[144] and point-voxel [143] based 3D detectors. We show that we can outperform
strong baseline implementations by up to 1.5 3D AP (average precision) while simul-
taneously reducing parameter and compute cost by 15-80% and 30-50%, respectively,
on the KITTI validation set.

• We design a scalable self-attention variant that learns to deform randomly sampled lo-
cations to cover the most representative and informative parts and aggregate context
on this subset. This allows us to aggregate global context in large-scale point-clouds
like nuScenes and Waymo Open dataset.

• Extensive experiments demonstrate the benefits of our proposed FSA/DSA modules
by consistently improving the performance of state-of-the-art detectors on KITTI
[43], nuScenes [19] and Waymo Open dataset [156].

4.2 Standard Feature Extractors for 3D Object De-

tection

In this section, we briefly review the standard feature extractors for 3D object detection
to motivate our design. 2D and 3D convolutions have achieved great success in processing
pillars [83] and voxel grids [184] for 3D object detection. Point-wise feature learning meth-
ods like PointNet++ [130] have also been successful in directly utilizing sparse, irregular
points for 3D object detection [144].

Given a set of vectors {x1, x2, ...xn}, which can represent pillars, voxels or points, with
xi ∈ RC , one can define a function f : X −→ RC′

that maps them to another vector. In
this case, standard convolution at location p̂ can be formulated as:

f(p̂) =
∑
l∈Ω1

xp̂+lwl (4.1)

where w is a series of C ′ dimensional weight vectors with kernel size 2m + 1 and Ω1 =
[l ∈ (−m, ...m)] representing the set of positions relative to the kernel center. Similarly, a
point-feature approximator at p̂ can be formulated as:

f(p̂) = max
l∈Ω2

h(xl) (4.2)
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(a) Self-attention induced graph (b) Full self-attention module (FSA) (c) Deformable self-attention module (DSA)
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Figure 4.1: Architectures of the proposed FSA and DSA modules.

where h is a C ′ dimensional fully connected layer, max denotes the max-pooling operator
and Ω2 denotes the k-nearest neighbors of p̂. The operator f thus aggregates features with
pre-trained weights, h and w, from nearby locations.

Limitations One of the disadvantages of this operator is that weights are fixed and can-
not adapt to the content of the features or selectively focus on the salient parts. Moreover,
since the number of parameters scales linearly with the size of the neighborhood to be
processed, long range feature-dependencies can only be modeled by adding more layers,
posing optimization challenges for the network. Since useful information for fine-grained
object recognition and localization appears at both global and local levels of a point-cloud,
our work looks for more effective feature aggregation mechanisms.

4.3 SA-Det3D

In this section, we first introduce a Full Self-Attention (FSA) module for discriminative
feature extraction in 3D object detection that aims to produce more powerful and robust
representations by exploiting global context. Next, inspired by 2D deformable convolutions
[33] we introduce a variant of FSA called Deformable Self-Attention (DSA). DSA can reduce
the quadratic computation time of FSA and scale to larger and denser point-clouds. The
two proposed modules are illustrated in Fig. 4.1.
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4.3.1 Formulation

For the input set X = {x1,x2, ...xn} of n correlated features and i ∈ {1, ...n}, we propose
to use self-attention introduced by Vaswani et al. [164] to exploit the pairwise similarities
of the ith feature node with all the feature nodes, and stack them to compactly represent
the global structural information for the current feature node.

Mathematically, the set of pillar/voxel/point features and their relations are denoted by
a graph G = (V , E), which comprises the node set V = {x1,x2, ...xn ∈ Rd}, together with
an edge set E = {ri,j ∈ RNh , i = 1, ..., n and j = 1, ..., n}. A self-attention module takes
the set of feature nodes, and computes the edges (see Fig. 4.1 (a)). The edge ri,j represents
the relation between the ith node and the jth node, and Nh represents the number of heads
(number of attention maps in Fig. 4.1 (b)) in the attention mechanism across d feature
input channels as described below. We assume that Nh divides d evenly. The advantage of
representing the processed point-cloud features as nodes in a graph is that now the task of
aggregating global context is analogous to capturing higher order interaction among nodes
by message passing on graphs for which many mechanisms like self-attention exist.

4.3.2 Full Self-Attention Module

Our Full Self-Attention (FSA) module projects the features xi through linear layers into
matrices of query vectors Q, key vectors K, and value vectors V (see Fig. 4.1(b)). The
similarities between query qi and all keys, kj=1:n, are computed by a dot-product, and
normalized into attention weights wi, via a softmax function. The attention weights are
then used to compute the pairwise interaction terms, rij = wijvj. The accumulated global
context for each node vector ai is the sum of these pairwise interactions, ai =

∑
j=1:n rij.

As we mentioned in our formulation, we also use multiple attention heads, applied in
parallel, which can pick up channel dependencies independently. The final output for the
node i is then produced by concatenating the accumulated context vectors ah=1:Nh

i across
heads, passing it through a linear layer, normalizing it with group normalization [175] and
summing it with xi (residual connection).

Advantages: The important advantage of this module is that the resolution at which
it gathers context is independent of the number of parameters and the operation is
permutation-invariant. This makes it attractive to replace a fraction of the parameter-
heavy convolutional filters at the last stages of 3D detectors with self-attention features
for improved feature quality and parameter efficiency.

Complexity: The pairwise similarity calculation is O(n2d) in nature. The inherent
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sparsity of point-clouds and the efficient matrix-multiplication based pairwise computation
makes FSA a viable feature extractor in current 3D detection architectures. However, it is
necessary to trade accuracy for computational efficiency in order to scale to larger point-
clouds. In the next section, we propose our Deformable Self-Attention module to reduce
the quadratic computation time of FSA.

4.3.3 Deformable Self-Attention Module

Our primary idea is to attend to a representative subset of the original node vectors in order
to aggregate global context. We then up-sample this accumulated structural information
back to all node locations. The complexity of this operation is O(m2d), where m << n is
the number of points chosen in the subset. In order for the subset to be representative, it is
essential to make sure that the selected nodes cover the informative structures and common
characteristics in 3D geometric space. Inspired by deformable convolution networks [33]
in vision, we propose a geometry-guided vertex refinement module that makes the nodes
self-adaptive and spatially recomposes them to cover locations which are important for
semantic recognition. Our node offset-prediction module is based on vertex alignment
strategy proposed for domain alignment [131, 48]. Initially m nodes are sampled from
the point-cloud by farthest point sampling (FPS) with vertex features xi and a 3D vertex
position vi. For the ith node, the updated position v′i is calculated by aggregating the local
neighbourhood features with different significance as follows:

x∗
i =

1

k
ReLU

∑
j∈N (i)

Woffset(xi − xj) · (vi − vj) (4.3)

v′i = vi + tanh(Walignx
∗
i ) (4.4)

where Ni gives the i-th node’s k-neighbors in the point-cloud and Woffset and Walign are
weights learned end-to-end. The final node features are computed by a non-linear process-
ing of the locally aggregated embedding as follows:

x′
i = max

j∈N (i)
Woutxj (4.5)

Next, the m adaptively aggregated features {x′
1....x

′
m} are then passed into a full self-

attention (FSA) module to model relationships between them. This aggregated global
information is then shared among all n nodes from the m representatives via up-sampling.
We call this module a Deformable Self-Attention (DSA) module as illustrated in Fig. 4.1(c).
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Upsampling for DSA: Given the features for m sampled, deformed and attended
points, we explore two up-sampling methods to distribute the accumulated structural in-
formation back to all n node locations. We first test the feature propagation method
proposed in PointNet++ [130] to obtain point features for all the original nodes. This
works well for most of our experiments, especially on the KITTI and the Waymo Open
Dataset. While this is simple and easy to implement, a draw-back is that the interpolation
radius has to be chosen empirically. To avoid choosing an interpolation radius for the
diverse classes present in the nuScenes dataset, we explore an attention-based up-sampling
method as proposed in [86]. The set of m points is attended to by the n node features to
finally produce a set of n elements. This up-sampling method works well for the nuScenes
dataset.

Advantages: The main advantage of DSA is that it can scalably aggregate global
context for pillar/voxel/points. Another advantage of DSA is that it is trained to collect
information from the most informative regions of the point-cloud, improving the feature
descriptors.

4.4 Experiments

In this section, we provide details regarding the implementation of SA-Det3D and the
dataset used in our study.

4.4.1 Network Architectures

We train and evaluate our proposed FSA and DSA modules on four state-of-the-art archi-
tecture backbones: PointPillars [83], SECOND [184], Point-RCNN [144], and PV-RCNN
[143]. The architectures of the backbones are illustrated in Figure 4.2. The augmented
backbones can be trained end-to-end without additional supervision.
For the KITTI dataset, the detection range is within [0,70.4] m, [-40,40] m and [-3,1] m
for the XYZ axes, and we set the XY pillar resolution to (0.16, 0.16) m and XYZ voxel-
resolution of (0.05, 0.05, 0.1) m. For nuScenes, the range is [-50,50] m, [-50,50] m, [-5,3] m
along the XYZ axes and the XY pillar resolution is (0.2, 0.2) m. For the Waymo Open
dataset, the detection range is [-75.2, 75.2] m for the X and Y axes and [-2, 4] m for the
Z-axis, and we set the voxel size to (0.1, 0.1, 0.15) m. Additionally, the deformation radius
is set to 3 m, and the feature interpolation radius is set to 1.6 m with 16 samples. The
self-attention feature dimension is 64 across all models. We apply 2 FSA/DSA modules
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Figure 4.2: Proposed FSA/DSA module augmented network architectures for different
backbone networks.

with 4 attention heads across our chosen baselines. For DSA, we use a subset of 2,048 sam-
pled points for KITTI and 4,096 sampled points for nuScenes and Waymo Open Dataset.
We use standard data-augmentation for point clouds. For baseline models, we reuse the
pre-trained checkpoints provided by OpenPCDet [160]. More implementation details are
presented in the Appendix.

4.4.2 Implementation Details

KITTI: KITTI benchmark [43] is a widely used benchmark with 7,481 training samples
and 7,518 testing samples. We follow the standard split [29] and divide the training samples
into train and val split with 3,712 and 3,769 samples respectively. All models were trained
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Method
PointPillars [83] SECOND [184]

3D BEV Param FLOPs 3D BEV Param FLOPs
Baseline 78.39 88.06 4.8 M 63.4 G 81.61 88.55 4.6 M 76.9 G
DSA 78.94 88.39 1.1 M 32.4 G 82.03 89.82 2.2 M 52.6 G
FSA 79.04 88.47 1.0 M 31.7 G 81.86 90.01 2.2 M 51.9 G

Improve. +0.65 +0.41 -79% -50% +0.42 +1.46 -52% -32%

Method
Point-RCNN [144] PV-RCNN [143]

3D BEV Param FLOPs 3D BEV Param FLOPs
Baseline 80.52 88.80 4.0 M 27.4 G 84.83 91.11 12 M 89 G
DSA 81.80 88.14 2.3 M 19.3 G 84.71 90.72 10 M 64 G
FSA 82.10 88.37 2.5 M 19.8 G 84.95 90.92 10 M 64.3 G

Improve. +1.58 - -37% -38% +0.12 - -16% -27%

Table 4.1: Performance comparison for moderate difficulty Car class on KITTI val split
with 40 recall positions

on 4 NVIDIA Tesla V100 GPUs for 80 epochs with Adam optimizer [75] and one cycle
learning rate schedule [150]. We also use the same batch size and learning rates as the
baseline models.

nuScenes nuScenes [19] is a more recent large-scale benchmark for 3D object detection.
In total, there are 28k, 6k, 6k, annotated frames for training, validation, and testing,
respectively. The annotations include 10 classes with a long-tail distribution. We train
and evaluate a DSA model with PointPillars as the backbone architecture. All previous
methods combine points from current frame and previous frames within 0.5 s, gathering
about 300 k points per frame. FSA does not work in this case since the number of pillars
in a point cloud is too large to fit the model in memory. In DSA, this issue is avoided by
sampling a representative subset of pillars. The model was trained on 4 NVIDIA Tesla
V100 GPUs for 20 epochs with a batch size of 8 using Adam optimizer [75] and one cycle
learning rate schedule [150].

Waymo Open Dataset Waymo Open Dataset [156] is currently the largest dataset
for 3D detection for autonomous driving. There are 798 training sequences with 158,081
LiDAR samples, and 202 validation sequences with 39,987 LiDAR samples. The objects
are annotated in the full 360◦field of view. We train and evaluate a DSA model with
SECOND as the backbone architecture. The model was trained on 4 NVIDIA Tesla V100
GPUs for 50 epochs with a batch size of 8 using Adam optimizer [75] and one cycle learning
rate schedule [150].
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Model
Car - 3D Car - BEV Cyclist - 3D Cyclist - BEV

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
MV3D [29] 74.97 63.63 54.00 86.62 78.93 69.80 - - - - - -

PointPillars [83] 82.58 74.31 68.99 90.07 86.56 82.81 77.10 58.65 51.92 79.90 62.73 55.58
SECOND [184] 83.34 72.55 65.82 89.39 83.77 78.59 71.33 52.08 45.83 76.50 56.05 49.45

PointRCNN [144] 86.96 75.64 70.70 92.13 87.39 82.72 74.96 58.82 52.53 82.56 67.24 60.28
STD [191] 87.95 79.71 75.09 94.74 89.19 86.42 78.69 61.59 55.30 81.36 67.23 59.35

3DSSD [188] 88.36 79.57 74.55 92.66 89.02 85.86 82.48 64.10 56.90 85.04 67.62 61.14
SA-SSD [55] 88.75 79.79 74.16 95.03 91.03 85.96 - - - - - -
TANet [100] 83.81 75.38 67.66 - - - 73.84 59.86 53.46 - - -

Point-GNN [146] 88.33 79.47 72.29 93.11 89.17 83.90 78.60 63.48 57.08 81.17 67.28 59.67
PV-RCNN [143] 90.25 81.43 76.82 94.98 90.65 86.14 78.60 63.71 57.65 82.49 68.89 62.41

PV-RCNN + DSA (Ours) 88.25 81.46 76.96 92.42 90.13 85.93 82.19 68.54 61.33 83.93 72.61 65.82

Table 4.2: Performance comparison of 3D detection on KITTI test split with AP cal-
culated with 40 recall positions. The best and second-best performances are highlighted
across all datasets.

4.5 Results

4.5.1 3D Detection on the KITTI Dataset

On KITTI, we report the performance of our proposed model on both val and test split.
We focus on the average precision for moderate difficulty and two classes: car and cyclist.
We calculate the average precision on val split with 40 recall positions using IoU threshold
of 0.7 for car class and 0.5 for cyclist class. The performance on test split is calculated using
the official KITTI test server. Comparison with state-of-the-art: Tab. 4.1 shows the
results for car class on KITTI val split. For all four state-of-the-art models augmented with
DSA and FSA, both variants were able to achieve performance improvements over strong
baselines with significantly fewer parameters and FLOPs. On KITTI test split, we evaluate
PV-RCNN+DSA and compare it with the models on KITTI benchmark. The results are
shown in Tab. 4.2. On the car class DSA shows an improvement of 0.15 3D AP on the hard
setting, while for the smaller cyclist class we achieve significantly better performance than
all other methods with upto 4.5 3D AP improvement on the moderate setting. Overall,
the results consistently demonstrate that adding global contextual information benefits
performance and efficiency, especially for the difficult cases with smaller number of points.
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Model Mode mAP NDS Car Truck Bus Trailer CV Ped Moto Bike Tr. Cone Barrier
PointPillars [83] Lidar 30.5 45.3 68.4 23.0 28.2 23.4 4.1 59.7 27.4 1.1 30.8 38.9
WYSIWYG [63] Lidar 35.0 41.9 79.1 30.4 46.6 40.1 7.1 65.0 18.2 0.1 28.8 34.7

PointPillars+ [165] Lidar 40.1 55.0 76.0 31.0 32.1 36.6 11.3 64.0 34.2 14.0 45.6 56.4
PMPNet [192] Lidar 45.4 53.1 79.7 33.6 47.1 43.0 18.1 76.5 40.7 7.9 58.8 48.8

SSN [209] Lidar 46.3 56.9 80.7 37.5 39.9 43.9 14.6 72.3 43.7 20.1 54.2 56.3
Point-Painting [165] RGB + Lidar 46.4 58.1 77.9 35.8 36.2 37.3 15.8 73.3 41.5 24.1 62.4 60.2

PointPillars + DSA (Ours) Lidar 47.0 59.2 81.2 43.8 57.2 47.8 11.3 73.3 32.1 7.9 60.6 55.3

Table 4.3: Performance comparison of 3D detection with PointPillars backbone on
nuScenes test split. “CV”, ”Ped” , “Moto”, “Bike”, “Tr. Cone” indicate construction
vehicle, pedestrian, motorcycle, bicycle and traffic cone respectively. The values are taken
from the official evaluation server https://eval.ai/web/challenges/challenge-page/356/
leaderboard/1012.

4.5.2 3D Detection on the nuScenes Dataset

To test the performance of our methods in more challenging scenarios, we evaluate Point-
Pillars with DSA modules on the nuScenes benchmark using the official test server. In
addition to average precision (AP) for each class, nuScenes benchmark introduces a new
metric called nuScenes Detection Score (NDS). It is defined as a weighted sum between
mean average precision (mAP), mean average errors of location (mATE), size (mASE),
orientation (mAOE), attribute (mAAE) and velocity (mAVE).
Comparison with state-of-the-art: We first compare our PointPillars+DSA model with
PointPillars+ [165], a class-balanced re-sampled version of PointPillars inspired by [208].
DSA achieves about 7% improvement in mAP and 4.2% improvement in NDS compared to
PointPillars+, even for some small objects, such as pedestrian and traffic cone. Compared
with other attention and fusion-based methods like PMPNet and Point-Painting, DSA per-
forms better in the main categories of traffic scenarios such as Car, Truck, Bus and Trailer
etc. Overall, our model has the highest mAP and NDS score compared to state-of-the-art
PointPillars-based 3D detectors.

4.5.3 3D Detection on the Waymo Open Dataset

We also report performance on the large Waymo Open Dataset with our SECOND+DSA
model to further validate its effectiveness. The objects in the dataset are split into two
levels based on the number of points in a single object, where LEVEL1 objects have at-least
5 points and the LEVEL2 objects have at-least 1 point inside. For evaluation, the average
precision (AP) and average precision weighted by heading (APH) metrics are used. The
IoU threshold is 0.7 for vehicles.
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Difficulty Method Vehicle
3D AP 3D APH

StarNet [110] 53.7 -
PointPillars [83] 56.6 -

PPBA [30] 62.4 -
MVF [29] 62.9 -

L1 AFDet [42] 63.7 -
CVCNet [28] 65.2 -

Pillar-OD [170] 69.8 -
†SECOND [184] 70.2 69.7
PV-RCNN [143] 70.3 69.7

SECOND + DSA (Ours) 71.1 70.7
L2 †SECOND [184] 62.5 62.0

PV-RCNN [143] 65.4 64.8
SECOND + DSA (Ours) 63.4 63.0

Table 4.4: Comparison on Waymo Open Dataset validation split for 3D vehicle detec-
tion. Our DSA model has 52% fewer parameters and 32% fewer FLOPs compared to
SECOND and 80% fewer parameters and 41% fewer FLOPs compared to PV-RCNN. †Re-
implemented by [160]

Comparison with the state-of-the-art: Tab. 4.4 shows that our method outper-
forms previous state-of-the-art PV-RCNN with a 0.8%AP and 1%APH gain for 3D object
detection while having 80% fewer parameters and 41% fewer FLOPs on LEVEL1. This
supports that our proposed DSA is able to effectively capture global contextual informa-
tion for improving 3D detection performance. Better performance in terms of APH also
indicates that context helps to predict more accurate heading direction for the vehicles. On
LEVEL2, we outperform the SECOND baseline by 0.9% AP and 1.0% APH. Overall SEC-
OND+DSA provides the better balance between performance and efficiency as compared
to PV-RCNN. The experimental results validate the generalization ability of FSA/DSA on
various datasets.

4.5.4 Ablation studies and qualitative analysis

Ablation studies are conducted on the KITTI validation split [29] for moderate Car class
using AP@R40, in order to validate our design choices.

Model variations In our ablation study with PointPillars backbone in Tab. 4.5, we
represent the number of 2D convolution filters as Nfilters, self-attention heads as Nh, self-
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Model Nfilters Nh Nl Nkeypts rdef rup 3D AP Params FLOPs
baseline (64,128,256) - - - - - 78.39 4.8M 63.4G

(64,64,128) - - - - - 78.07 1.5M 31.5G
(64,64,64) 2 2 - - - 78.67 1.0M 31.3G

(A) 4 1 - - - 78.34 1.0M 31.5G
4 2 - - - 79.04 1.0M 31.7G
4 4 - - - 78.56 1.0M 32.0G

(64,64,64) 4 2 512 3 1.6 78.70 1.1M 32.4G
(B) 1024 78.95 1.1M 32.4G

2048 78.94 1.1M 32.4G
4096 78.90 1.1M 32.4G

(64,64,64) 4 2 2048 2 1.6 78.93 1.1M 32.4G
(C) 1.4 1.6 78.22 1.1M 32.4G

3 2 78.10 1.1M 32.4G
3 1 78.96 1.1M 32.4G

(D) (64,128,256) 4 2 2048 2 1 79.80 5.1M 73.5G

Table 4.5: Ablation of model components with PointPillars backbone on KITTI moderate
Car class of val split.

attention layers as Nl, sampled points for DSA as Nkeypts, deformation radius as rdef and
the up-sampling radius as rup.

Effect of number of filters: We note that both FSA and DSA outperform not
only the models with similar parameters by 0.97% and 0.87% respectively, but also the
state-of-the-art models with 80% more parameters by 0.65% and 0.55%. This indicates
that our modules are extremely parameter efficient. Finally, we also note that if the
number of parameters and compute are kept roughly the same as the baseline(Row-D),
DSA outperforms the baseline by a large margin of 1.41%. We also illustrate consistent
gains in parameter and computation budget across backbones in Fig. 4.3.

Effect of number of self-attention heads and layers (Row-A): We note that
increasing heads from 2 to 4 leads to an improvement of 0.37% for PointPillars. Since
increasing number of self-attention layers beyond a certain value can lead to over-smoothing
[133], we use 2 FSA/DSA layers in the backbone and 4 heads for multi-head attention.

Effect of number of sampled points (Row-B): For DSA, we also vary the number
of keypoints sampled for computation of global context. We note that the performance is
relatively robust to the number of sampled points.

Effect of deformation and upsampling radius (Row-C): For DSA, we note that
the performance is generally robust to the deformation radius upto a certain threshold,
but the up-sampling radius needs to be tuned carefully. Generally an up-sampling radius
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Figure 4.3: 3D AP on moderate Car class of KITTI val split (R40) vs. number of param-
eters (Top) and GFLOPs (Bottom) for baseline models and proposed baseline extensions
with Deformable and Full SA.

of 1.6m in cars empirically works well.

Effect of noise on performance We introduce noise points to each object similar
to TANet [100], to probe the robustness of representations learned. As shown in Fig. 4.4,
self-attention-augmented models are more robust to noise than the baseline. For example,
with 100 noise points added, the performance of SECOND and Point-RCNN drops by 3.3%
and 5.7% respectively as compared to SECOND-DSA and Point-RCNN-DSA, which suffer
a lower drop of 2.7% and 5.1% respectively.

Effect of number of object points on performance We sort the cars based on the
numbers of points in them in increasing order, and divide them into 3 groups based on the
sorted order. Then we calculate the 3D AP across every group. As shown in Fig. 4.5, the
effect of the self-attention module becomes apparent as the number of points on the cars
decreases. For objects with very few points, FSA can increase the 3D AP for PointPillars
by 2.8% and PV-RCNN by 1.5%.
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Figure 4.4: 3D AP of SECOND-DSA (orange) & Point-RCNN-DSA (violet) vs. SECOND
& Point-RCNN baseline (light-steel-blue) for noise-points per ground-truth bounding box,
varying from 0 to 100 on KITTI val moderate

Qualitative results In Fig. 4.6, we first show that our FSA-based detector identifies
missed detections and eliminates false positives across challenging scenes for different back-
bones. Next, we identify objects for which addition of self-attention shows the largest
increase in detection confidences as shown in Fig. 4.7(a). We then copy-paste the point-
clouds for these cars into different scenes. Our expectation is that the FSA is a more
robust detector and can detect these examples even when randomly transplanted to dif-
ferent scenes. The first two rows of Fig. 4.7(b) show that FSA is capable of detecting the
copy-pasted car in different scenes while the baseline consistently misses them. This sup-
ports our motivation that adding contextual self-attention features to convolutional maps
results in a more accurate and robust feature extractor. In the third row of Fig. 4.7(b), we
show cases for Point-Pillars and PV-RCNN where the orientation is flipped for our FSA-
based detector even though the detection confidence remains high. We expect that this
confusion occurs because FSA aggregates context from nearby high-confidence detections
thereby correlating their orientations.
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Figure 4.6: Performance illustrations on KITTI val. Red bounding box is ground truth,
green is detector outputs. From left to right: (a) RGB images (b) Result of state-of-the-art
methods: PointPillars [83], SECOND [184], Point-RCNN [144] and PV-RCNN [143]. (c)
Result of our full self-attention (FSA) augmented baselines. Our method identifies missed
detections and removes false positives.
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Figure 4.7: (a) RGB images and point-clouds of cars on KITTI-val in which addition
of context via FSA had the largest increase in the detection confidence. (b) We use a
simple copy and paste method on these cars to create new point-clouds for testing our
attention-based context aggregation detector for Point-Pillars and PV-RCNN backbone.
We find that our FSA-based detector is more accurate and robust across scenes compared
to the baseline.
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Detailed Comparison with Baseline: In this section, we provide additional qualita-
tive results across challenging scenarios from real-world driving scenes and compare them
with the baseline performance (see Fig. 4.8). The ground-truth bounding boxes are shown
in red, whereas the detector outputs are shown in green. We show consistent improve-
ment in identifying missed detections across scenes and with different backbones including
PointPillars [83], SECOND [184], Point-RCNN [144] and PV-RCNN [143]. We note that
we can better refine proposal bounding box orientations with our context-aggregating FSA
module (Rows 1, 2, and 4). We also note that cars at distant locations can be detected
by our approach (Rows 3, 4 and 6). Finally we analyze that cars with slightly irregular
shapes even at nearer distances are missed by the baseline but picked up by our approach
(Rows 7 and 8).

4.5.5 Visualization of Attention Weights

We also visualize the attention weights for FSA-variant for the SECOND [184] backbone in
Fig. 4.9. In this implementation, voxel features down-sampled by 8-times from the point-
cloud space are used to aggregate context information through pairwise self-attention. We
first visualize the voxel space, where the center point of each voxel is represented as a yellow
point against the black scene-background. We next choose the center of a ground-truth
bounding box as a reference point. We refer this bounding box as the reference bounding
box. The reference bounding box is shown in yellow, and the rest of the labeled objects in
the scene are shown in orange. We next visualize the attention weights across all the voxel
centers with respect to the chosen reference bounding box center. Of the 4 attention maps
produced by the 4 FSA-heads, we display the attention map with the largest activation
in our figures. We find that attention weights become concentrated in small areas of the
voxel-space. These voxel centers are called attended locations and are represented by a
thick cross in our visualizations. The color of the cross represents the attention weight
at that location and the scale of attention weights is represented using a colorbar. The
size of the cross is manipulated manually by a constant factor. In an effort to improve
image-readability, we connect the chosen reference object to the other labelled objects in
the scene that it pays attention to (with blue boxes and blue arrows) as inferred from the
corresponding attended locations while aggregating context information.

In our work, we speculate that sometimes for true-positive cases, CNNs (which are
essentially a pattern matching mechanism) detect a part of the object but are not very
confident about it. This confidence can be increased by looking at nearby voxels and in-
ferring that the context-aggregated features resemble a composition of parts. We therefore
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first ask the question if our FSA module can adaptively focus on its own local neighbour-
hood. We show in Rows 1 and 2 of Fig. 4.9 that it can aggregate local context adaptively.
We also hypothesize that, for distant cars, information from cars in similar lanes can help
refine orientation. We therefore proceed to show instances where a reference bounding box
can focus on cars in similar lanes, in Rows 3 and 4 of Fig. 4.9. We also show cases where
FSA can adaptively focus on objects that are relevant to build structural information about
the scene in Rows 5 and 6 of Fig. 4.9. Our visualizations thus indicate that semantically
meaningful patterns emerge through the self-attention based context-aggregation module.
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Figure 4.8: Qualitative comparisons of our proposed approach with the baseline on the
KITTI validation set. Red represents Ground-Truth bounding box while Green represents
detector outputs. From left to right: RGB images of scenes; Baseline performance across
state-of-the-art detectors PointPillars [83], SECOND [184], Point-RCNN [144] and PV-
RCNN [143]; Performance of proposed FSA module-augmented detectors. Viewed best
when enlarged.
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Figure 4.9: Visualization of attention maps produced by our proposed FSA-variant on
SECOND [184] backbone. We analyze the implications of the produced attention maps in
Sec. 4.5.5.
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4.6 Chapter Conclusion

In this chapter, we propose a simple and flexible self-attention based framework to augment
convolutional features with global contextual information for 3D object detection. Our
proposed modules are generic, parameter and compute-efficient, and can be integrated into
a range of 3D detectors. Our work explores two forms of self-attention: full (FSA) and
deformable (DSA). The FSA module encodes pairwise relationships between all 3D entities,
whereas the DSA operates on a representative subset to provide a scalable alternative for
global context modeling. Quantitative and qualitative experiments demonstrate that our
architecture systematically improves the performance of 3D object detectors.

In the next chapter, Chapter 5 we will explore how, given 3D object detections and
object correspondences in the form of tracks, we can use it in an autonomous driving
framework to forecast the future.
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Part II

Predicting Trajectories of
Surrounding Agents

64



Chapter 5

SSL-Lanes: Self-Supervised Learning
for Motion Forecasting in
Autonomous Driving

In the preceding chapters, Chapter 3 and Chapter 4, our primary focus was enhancing 3D
object tracking and 3D object detection. However, the knowledge of surrounding objects is
only part of the equation. Equally important is the ability to anticipate where these objects
will be positioned in the future. Autonomous vehicles need to predict the future motion
of other vehicles, pedestrians, and cyclists in the environment to plan their own path and
maneuvers effectively and safely. Wrong predictions can result in false alarms, inefficient
path planning, and in worst cases, accidents. Thus, it’s crucial to develop accurate and
robust motion forecasting models to avoid such potentially hazardous situations.

This chapter assumes that 3D object detections and object tracks are given, and focuses
on improving motion forecasting methods thereby laying the groundwork for safer and more
reliable autonomous driving systems. SSL-Lanes code and documentation is open-sourced.1

5.1 Motivation and Contributions

Motion forecasting in a real-world urban environment is an important task for autonomous
robots. However, this is a very challenging problem. Difficulties include inherent stochas-

1https://github.com/AutoVision-cloud/SSL-Lanes
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ticity and multimodality of driving behaviors, and that future motion can involve com-
plicated maneuvers such as yielding, nudging, lane-changing, turning and acceleration or
deceleration.

The motion prediction task has traditionally been based on kinematic constraints and
road map information with handcrafted rules. These approaches however fail to capture
long-term behavior and interactions with map structure and other traffic agents in complex
scenarios. Tremendous progress has been made with data-driven methods in motion fore-
casting [25, 105, 205, 51, 73, 111, 98, 24]. Recent methods use a vector representation for
HD maps and agent trajectories, including approaches like Lane-GCN [88], Lane-RCNN
[197], Vector-Net [41], TNT [205] and Dense-TNT [51]. More recently, the enormous suc-
cess of transformers [164] has been leveraged for forecasting in mm-Transformer [98], Scene
transformer [111], Multimodal transformer [66] and Latent Variable Sequential Transform-
ers [47]. Most of these methods however are extremely complex in terms of architecture
and have low inference speeds, which makes them unsuitable for real-world settings.

In this chapter, we extend ideas from self-supervised learning (SSL) to the motion fore-
casting task. Self-supervision has seen huge interest in both natural language processing
and computer vision [21] to make use of freely available data without the need for annota-
tions. It aims to assist the model to learn more transferable and generalized representation
from pseudo-labels via pretext tasks. Given the recent success of self-supervision with
CNNs, transformers, and GNNs, we are naturally motivated to ask the question: Can self-
supervised learning improve accuracy and generalizability of motion forecasting, without
sacrificing inference speed or architectural simplicity?

Contributions: Our work, SSL-Lanes, presents the first systematic study on how
to incorporate self-supervision in a standard data-driven motion forecasting model. Our
contributions are:

• We demonstrate the effectiveness of incorporating self-supervised learning in motion
forecasting. Since this does not add extra parameters or compute during inference,
SSL-Lanes achieves the best accuracy-simplicity-efficiency trade-off on the challeng-
ing large-scale Argoverse [26] benchmark.

• We propose four self-supervised tasks based on the nature of the motion forecasting
problem. The key idea is to leverage easily accessible map/agent-level information to
define domain-specific pretext tasks that encourage the standard model to capture
more superior and generalizable representations for forecasting, in comparison to pure
supervised learning.
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Figure 5.1: Illustration of the overall SSL-Lanes framework for self-supervision on motion
forecasting through joint training. SSL-Lanes improves upon a standard-motion forecasting
baseline, that consists of an agent encoder, map encoder, interaction model and a trajectory
decoder, trained using a supervised loss Lsup. SSL-Lanes proposes four pretext tasks: (1)
Lane Masking: which recovers feature information from the perturbed lane graphs. (2)
Distance to Intersection: which predicts the distance (in terms of shortest path length)
from all lane nodes to intersection nodes. (3) Maneuver Classification: predicts the form
of a ‘maneuver’ the agent-of-interest intends to execute (4) Success/Failure Classification:
which trains an agent specialized at achieving end-point goals.

• We further design experiments to explore why forecasting benefits from SSL. We
provide extensive results to hypothesize that SSL-Lanes learns richer features from
the SSL training as compared to a model trained with vanilla supervised learning.

5.2 Problem Formulation

We are given the past motion of N actors. The i-th actor is denoted as a set of its center
locations over the past L time-steps. We pre-process it to represent each trajectory as a
sequence of displacements Pi = {∆p−L+1

i , ...,∆p−1
i ,∆p0

i }, where pl
i is the 2D displacement

from time step l − 1 to l. We are also given a high-definition (HD) map, which contains
lanes and semantic attributes. Each lane is composed of several consecutive lane nodes,
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with a total of M nodes. X ∈ RM×F denotes the lane node feature matrix, where xj =
X[j, :]T is the F -dimensional lane node vector. Following the connections between lane
centerlines (i.e., predecessor, successor, left neighbour and right neighbour), we represent
the connectivity among the lane nodes with four adjacency matrices {Af}f∈{pre,suc,left,right},
with Af ∈ RM×M . This implies that if Af,gh = 1, then node h is an f -type neighbor
of node g. Our goal is to forecast the future motions of all actors in the scene O1:T

GT =
{(x1

i , y
1
i ), ..., (xT

i , y
T
i )|i = 1, ..., N}, where T is our prediction horizon.

5.3 Background

We first briefly introduce a standard data-driven motion forecasting framework.

Feature Encoding: We first encode the agent and map inputs similar to Lane-GCN
[88]. The agent encoder includes a 1D convolution with a feature pyramid network,
parameterized by genc, as given by Eq. (5.1). For map-encoding, we adopt two Lane-
Conv residual blocks, parameterized by Θ = {W0,Wleft,Wright,Wpre,k,Wsuc,k}, where
k ∈ {1, 2, 4, 8, 16, 32}, as given by Eq. (5.2).

p̂i = genc(Pi) (5.1)

Y = XW0 +
∑

j∈{left,right}

AjXWj +
∑
k

Ak
preXWpre,k +Ak

sucXWsuc,k (5.2)

Modeling Interactions: Since the behavior of agents depends on map topology and social
consistency, each encoded agent i subsequently aggregates context from the surrounding
map features and its neighboring agent features, via spatial attention [164] as given by
Eq. (5.3):

p̃i = p̂iWM2A +
∑
j

ϕ(concat(p̂i,∆i,j ,yj)W1)W2

ṕi = p̃iWA2A +
∑
j

ϕ(concat(p̃i,∆i,j , p̃j)W3)W4

(5.3)

Here, yj is the feature of the j-th node, p̂i is the feature of the i-th agent, ϕ the composition
of layer normalization and ReLU, and ∆ij = MLP(vj −vi), where v denotes the (x, y) 2-D
BEV location of the agent or the lane node. The parameters for map and agent feature
aggregation is represented by Λ = {WM2A,W1,W2,WA2A,W3,W4}.

Trajectory Prediction: Finally, we decode the future trajectories from the features ṕi

corresponding to the agents of interest as given by: O1:T
pred = {gdec(ṕi)|i = 1, ..., N}, where
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SSL Task Property Level Primary Assumption Type

Lane-Masking
Map features

Local map structure Aux. auto-encoder
Distance to Intersection Global map structure Aux. regression

Maneuver Classification Map-aware
agent features

Agent feature similarity
Aux. classification

Success/Failure Classification Distance to success state

Table 5.1: Overview of our proposed self-supervised (SSL) tasks

gdec is the parameterized trajectory decoder. The parameters for the motion forecasting
model are learned by minimizing the supervised loss (Lsup) calculated between the predicted
output and the ground-truth future trajectories (O1:T

GT), as given by Eq. (5.4):

g⋆enc,Θ
⋆,Λ⋆, g⋆dec = arg min

genc,Θ,Λ,gdec

Lsup(O1:T
pred,O1:T

GT) (5.4)

5.4 SSL-Lanes

The goal of our proposed SSL-Lanes framework is to improve the performance of the
primary motion forecasting baseline by learning simultaneously with various self-supervised
tasks. Fig. 5.1 shows the pipeline of our proposed approach, and Tab. 5.1 summarizes the
self-supervised tasks.

5.4.1 Self-Supervision meets Motion Forecasting

Before we discuss designing pretext tasks to generate self-supervisory signals, we consider a
scheme that will allow combined training for self-supervised pretext tasks and our standard
framework.

How to combine motion forecasting and SSL? Self-supervision can be combined
with motion forecasting in various ways. In one scheme we could pre-train the forecasting
encoder with pretext tasks (which can be viewed as an initialization for the encoder’s
parameters) and then fine-tune the pre-trained encoder with a downstream decoder as
given by Eq. (5.4). In another scheme, we could choose to freeze the encoder and only
train the decoder. In a third scheme, we could optimize our pretext task and primary task
jointly, as a kind of multi-task learning setup. Inspired by relevant discussions in GNNs,
we choose the third-scheme, i.e., multi-task learning, which is the most general framework
among the three and is also experimentally verified to be the most effective [193, 70].
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Joint Training: Considering our motion forecasting task and a self-supervised task,
the output and the training process can be formulated as:

Ψ⋆,Ω⋆,Θ⋆
ss = arg min

Ψ,Ω,Θss

α1Lsup(Ψ,Ω) + α2Lss(Ψ,Θss) (5.5)

where, Lss(·, ·) is the loss function of the self-supervised task, Θss is the corresponding
linear transformation parameter, and α1, α2 ∈ R>0 are the weights for the supervised and
self-supervised losses. If the pretext task only focuses on the map encoder, then Ψ = {Θ}
and Ω = {genc,Λ, gdec}. Otherwise, Ψ = {genc,Θ,Λ} and Ω = {gdec}. Henceforth, we
also define the following representations. We will represent the primary task encoder as
function fΨ, parameterized by Ψ. Furthermore, given a pretext task, which we will design
in the next section, the pretext decoder pΘss is a function that predicts pseudo-labels and
is parameterized by Θss.

Benefit of SSL-Lanes: In Eq. (5.5), the self-supervised task as a regularization term
throughout network training. It acts as the regularizer learned from unlabeled data under
the minor guidance of human prior (design of pretext task). Therefore, a properly designed
task would introduce data-driven prior knowledge that improves model generalizability.

5.4.2 Pretext tasks for Motion Forecasting

At the core of our SSL-Lanes approach is defining pretext tasks based upon self-supervised
information from the underlying map structure and the overall temporal prediction prob-
lem itself. Our proposed prediction-specific self-supervised tasks are summarized in
Tab. 5.1, and assign different pseudo-labels from unannotated data to solve Eq. (5.5).
Our core approach is simple in contrast to state-of-the-art that rely on complex encoding
architectures [197, 98, 111, 73, 88, 66, 205], ensembling forecasting heads [190, 163], in-
volved final goal-set optimization algorithms [51, 152] or heavy fusion mechanisms [88], to
improve prediction performance.

A. Lane-Masking

Motivation: The goal of the Lane-Masking pretext task is to encourage the map en-
coder Ψ = {Θ} to learn local structure information in addition to the forecasting task that
is being optimized. In this task, we learn by recovering feature information from the per-
turbed lane graphs. VectorNet [41] is the only other motion forecasting work that proposes
to randomly mask out the input node features belonging to either scene context or agent
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trajectories, and ask the model to reconstruct the masked features. Their intuition is to
encourage the graph networks to better capture the interactions between agent dynamics
and scene context. However, our motivation differs from VectorNet in two respects: (a) We
propose to use masking to learn local map-structure better, as opposed to learning interac-
tions between map and the agent. This is an easier optimization task, and we outperform
VectorNet. (b) A lane is made up of several nodes. We propose to randomly mask out a
certain percentage of each lane. This is a much stronger prior as compared to randomly
masking out any node and ensures that the model pays attention to all parts of the map.

Formulation: Formally, we randomly mask (i.e., set equal to zero) the features of ma

percent of nodes per lane and then ask the self-supervised decoder to reconstruct these
features.

Ψ⋆,Θ⋆
ss = arg min

Ψ,Θss

1

ma

ma∑
i=1

Lmse

(
pΘss([fΨ(X̃,Af )]vi),Xi

)
(5.6)

Here, X̃ is the node feature matrix corrupted with random masking, i.e., some rows of
X corresponding to nodes vi are set to zero. pΘss is a fully connected network that
maps the representations to the reconstructed features. Lmse is the mean squared er-
ror (MSE) loss function penalizing the distance between the reconstructed map features
pΘss([fΨ(X̃,Af )]vi

) for node vi and its GT features Xi.

Benefit of Lane-Masking: Since Argoverse [26] has imbalanced data with respect to
maneuvers, there are cases when right/left turns, lane-changes, acceleration/deceleration
are missed by the baseline even with multi-modal predictions. We hypothesize that stronger
map-features can help the multi-modal prediction header to infer that some of the predic-
tions should also be aligned with map topology. For example, even if an agent is likely
to go straight at an intersection, some of the possible futures should also cover accelera-
tion/deceleration or right/left turns guided by the local map structure.

B. Distance to Intersection

Motivation: The Lane-Masking pretext task is from a local structure perspective based
on masking and trying to predict local attributes of the vectorized HD-map. We further
develop the Distance-to-Intersection pretext task to guide the map-encoder, Ψ = {Θ}, to
maintain global topology information by predicting the distance (in terms of shortest path
length) from all lane nodes to intersection nodes. Datasets like Argoverse [26] provide lane
attributes which describe whether a lane node is located within an intersection. This will
force the representations to learn a global positioning vector of each of the lane nodes.
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Formulation: We aim to regress the distances from each lane node to pre-labeled in-
tersection nodes annotated as part of the dataset. Given K labeled intersection nodes
Vintersection = {vintersection,k|k = 1, ...K}, we first generate reliable pseudo labels using
breadth-first search (BFS). Specifically, BFS calculates the shortest distance di ∈ R for
every lane node vi from the given set Vintersection. The target of this task is to predict the
pseudo-labeled distances using a pretext decoder. If pΘss([fΨ(X,Af )]vi

) is the prediction
of node vi, and Lmse is the mean-squared error loss function for regression, then the loss
formulation for this SSL pretext task is as follows:

Ψ⋆,Θ⋆
ss = arg min

Ψ,Θss

1

M

M∑
i=1

Lmse

(
pΘss([fΨ(X,Af )]vi

), di

)
(5.7)

Benefit of Distance to Intersection Task: We hypothesize that since change of
speed, acceleration, primary direction of movement etc. for an agent can change far more
dramatically as an agent approaches or moves away from an intersection, it is beneficial
to explicitly incentivize the model to pick up the geometric structure near an intersection
and compress the space of possible map-feature encoders, thereby effectively simplifying
inference. We also expect this to improve drivable area compliance nearby an intersection,
which is often a problem for current motion forecasting models.

C. Maneuver Classification

Motivation: The Lane-Masking and Distance to Intersection pretext tasks are both
based on extracting feature and topology information from a HD-map. However, pretext
tasks can also be constructed from the overall forecasting task itself. Thus we propose
to obtain free pseudo-labels in the form of a ‘maneuver’ the agent-of-interest intends to
execute, and define a set of ‘intentions’ to represent common semantic modes (e.g. change
lane, speed up, slow down, turn-right, turn-left etc.) We call this pretext task Maneuver
Classification, and we expect it to provide prior regularization to Ψ = {genc,Θ,Λ}, based
on driving modes.

Formulation: We aim to construct pseudo label to divide agents into different
clusters according to their driving behavior and explore unsupervised clustering algo-
rithms to acquire the maneuver for each agent. We find that using naive k-Means
(on agent end-points) or DBSCAN (on Hausdorff distance between entire trajectories
[2]) leads to noisy clustering. We find that constrained k-means [166] on agent end-
points works best to divide trajectory samples into C clusters equally. We define
C = {maintain-speed, accelerate, decelerate, turn-left, turn-right,

72



lane-change} and the clustering function as ρ. If pΘss(fΨ(Pi,X,Af )) is the prediction of
agent i’s intention and Ei = (xT

i,GT, y
T
i,GT) is its ground-truth end-point, then the learning

objective is to classify each agent maneuver into its corresponding cluster using cross-
entropy loss Lce as:

Ψ⋆,Θ⋆
ss = arg min

Ψ,Θss

Lce

(
pΘss(fΨ(Pi,X,Af )), ρ(Ei)

)
(5.8)

Benefit of Maneuver Classification Task: We hypothesize if one can identify the
intention of a driver, the future motion of the vehicle will match that maneuver, thereby
reducing the set of possible end-points for the agent. We also expect that agents with
similar maneuvers will tend to have consistent semantic representations.

D. Forecasting Success/Failure Classification

Motivation: In contrast to maneuver classification, which provides coarse-grained pre-
diction of the future, self-supervision mechanisms can also offer a strong learning signal
through goal-reaching tasks which are generated from the agent’s trajectories. We propose
a pretext task called Success/Failure Classification, which trains an agent specialized at
achieving end-point goals which directly lead to the forecasting-task solution. We expect
this to constrain Ψ = {genc,Θ,Λ} to predict trajectories ϵ distance away from the correct
final end-point. Conceptually, the more examples of successful goal states we collect, the
better understanding of the target goal of the forecasting task we have.

Formulation: Similar to maneuver classification, we wish to create pseudo-labels for
our data samples. We label trajectory predictions as successful (c = 1) if the final prediction
(xT

i,pred, y
T
i,pred) is within ϵ < 2m of the final end-point Ei, and as failure (c = 0) otherwise.

We choose 2m as our ϵ threshold because it is also used for miss-rate calculation (Sec. 5.5).
In this case, c ∈ C = {0, 1} is the pseudo-label which belongs to label set C. If the pretext
decoder predicts agent i’s final-endpoint as pΘss(fΨ(Pi,X,Af )), and given ground-truth
end-point Ei its success or failure label is ci, then the pretext loss can be formulated as:

Ψ⋆,Θ⋆
ss = arg min

Ψ,Θss

Lce

(
pΘss(fΨ(Pi,X,Af )), ci

)
(5.9)

Benefit of Success/Failure Classification Task: We hypothesize that this task
will especially provide stronger gains for cases where the final end-point is not aligned with
the general direction of agent movement for majority of samples given in the dataset, and
is thus not well captured by average displacement based supervised loss functions.
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5.4.3 Learning

As all the modules are differentiable, we can train the model in an end-to-end way. We use
the sum of classification, regression and self-supervised losses to train the model. Specifi-
cally, we use:

L = Lcls + Lreg + Lterminal + Lss (5.10)

For classification and regression loss design, we adopt the formulation proposed in [88].

Lterminal = 1
N

∑N
i=1 L2

(
(xT

i,pred, y
T
i,pred), (xT

i,GT, y
T
i,GT)

)
is a simple L2 loss that minimizes the

distance between predicted final-endpoints and the ground-truth. This is because Lreg is
averaged across all time-points 1 : T , and from a practical end user perspective, minimizing
the endpoint loss is much more important than weighting loss from all time-steps equally.
Our proposed pretext tasks contributes to Lss. During evaluation, we study each pretext
task separately, and their corresponding loss formulations defined in Eq. (5.6), Eq. (5.7),
Eq. (5.8), Eq. (5.9) are used for joint training.

5.5 Experiments

We present the experimental and implementation details in this section.

Dataset: Argoverse provides a large-scale dataset [26] for the purpose of training, val-
idating and testing models, where the task is to forecast 3 seconds of future motions, given
2 seconds of past observations. This dataset has more than 30K real-world driving se-
quences collected in Miami (MIA) and Pittsburgh (PIT). Those sequences are further split
into train, validation, and test sets, without any geographical overlap. Each of them has
205,942, 39,472, and 78,143 sequences respectively. In particular, each sequence contains
the positions of all actors in a scene within the past 2 seconds history, annotated at 10Hz.
It also specifies one actor of interest in the scene, with type ‘agent’, whose future 3 seconds
of motion are used for the evaluation. The train and validation splits additionally provide
future locations of all actors within 3 second horizon labeled at 10Hz, while annotations
for test sequences are withheld from the public and used for the leaderboard evaluation.
HD map information is available for all sequences.

We have two main requirements for the dataset: (a) Scale of Data: Modern motion
forecasting methods and self-supervised learning systems require a large amount of training
data to imitate human maneuvers in complex real-world scenarios. Thus, the dataset
should be large-scale and diverse, such that it has a wide range of behaviors and trajectory
shapes across different geometries represented in the data. (b) Interesting Scenarios
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for Forecasting Evaluation: The dataset should be collected for interesting behaviours
by biasing sampling towards complex observed behaviours (e.g., lane changes, turns) and
road features (e.g., intersections), since we wish to focus on these cases. We find that
on the basis of these requirements, as well as its popularity in the the motion forecasting
community, Argoverse [26] is the best candidate to showcase our method. Please refer to
the supplementary for more details regarding why we choose to focus on it in comparison
to other motion forecasting benchmarks.

Metrics: ADE is defined as the average displacement error between ground-truth
trajectories and predicted trajectories over all time steps. FDE is defined as displacement
error between ground-truth trajectories and predicted trajectories at the final time step.
We compute K likely trajectories for each scenario with the ground truth label, where
K = 1 and K = 6 are used. Therefore, minADE and minFDE are minimum ADE and
FDE over the top K predictions, respectively. Miss rate (MR) is defined as the percentage
of the best-predicted trajectories whose FDE is within a threshold (2 m). Brier-minFDE
is the minFDE plus (1 − p)2, where p is the corresponding trajectory probability.

Experimental Details: To normalize the data, we translate and rotate the coordinate
system of each sequence so that the origin is at current position t = 0 of ‘agent’ actor and
x-axis is aligned with its current direction, i.e., orientation from the agent location at
t = −1 to the agent location at t = 0 is the positive x axis. We use all actors and lanes
whose distance from the agent is smaller than 100 meters as the input. We train the model
on 4 TITAN-X GPUs using a batch size of 128 with the Adam [75] optimizer with an
initial learning rate of 1×10−3, which is decayed to 1×10−4 at 100,000 steps. The training
process finishes at 128,000 steps and takes about 10 hours to complete. For our final
test-set submission, we use success/failure classification as the pretext task, and initialize
the map-encoder with the parameters from a model trained with the lane-masking pretext
task. To avoid overfitting to the general directions that agents move, we augment the data
from each scene for the test-set submission. We rotate all trajectories in a scene around
the scene’s origin by γ, where γ varies from 0◦ to 360◦ in 30◦ intervals. We provide more
implementation details in the supplementary.

5.6 Results

5.6.1 Ablation Studies

Effectiveness of Pretext tasks: We first examine the effect of incorporating our pro-
posed pretext tasks (Sec. 5.4) with the standard data-driven motion forecasting baseline
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Method minADE1 minFDE1 MR1 minADE6 minFDE6 MR6

Baseline 1.42 3.18 51.35 0.73 1.12 11.07

Lane-Masking 1.36 2.96 49.45 0.70 1.02 8.82
Distance to Intersection 1.38 3.02 49.53 0.71 1.04 8.93
Maneuver Classification 1.33 2.90 49.26 0.72 1.05 9.36

Success/Failure Classification 1.35 2.93 48.54 0.70 1.01 8.59

Table 5.2: Motion forecasting performance on Argoverse validation with our proposed
pretext tasks

(Sec. 5.3). While evaluating the importance of our proposed pretext tasks, we wish to un-
derline that motion prediction for autonomous driving is a safety-critical task, especially
at intersections where most of our data is collected, and most accidents also happen. We
thus posit that in this situation, even a small error in predicting final locations (FDE) for
a given agent can lead to dangerous potential collisions.

Results in Tab. 5.2 show that all proposed pretext tasks improve motion forecasting
performance for Argoverse. Specifically, the lane-masking pretext task improves min-FDE
by 8.9% and MR@2m by 20.3%. distance to intersection improves min-FDE by 7.1% and
19.3%. Maneuver classification improves min-FDE by 6.3% and MR@2m by 15.4%. We
expect that improving the quality of clustering for maneuvers and thus creating better
pseudo-labels will improve this further. Finally, success/failure classification improves
min-FDE by 9.8% and MR@2m by 22.4%. Moreover, since pretext tasks are not used
for inference and only for training, they also do not add any extra parameters or FLOPs
to the baseline, thereby increasing accuracy but at no cost to computational efficiency or
architectural complexity. We present qualitative results with the different pretext tasks on
several hard cases in Fig. 5.4.

Similarity in feature space: We analyze the CKA similarity [77] between the rep-
resentations learnt by: a model trained with pretext task ‘D2I’ (refers to distance to in-
tersection task) and baseline; two models trained with different pretext tasks. In Fig. 5.3,
Base(M2A) refers to p̃i, Base(A2A) refers to ṕi (see Eq. (5.3)), ‘Mask’ refers to lane-
masking, ‘success/fail’ refers to success or failure classification task and ‘intention’ suggests
maneuver classification.

Our main questions are: (a) how much does the pretext task feature differ from the
baseline? (b) do the features from different pretext tasks collapse to the same feature? First
we note that representation learned by D2I does not collapse to the same representation
learned by Mask or Success/Fail or Intention. Secondly we note that D2I features are

76



Method minADE1 minFDE1 MR1 minADE6 minFDE6 MR6 b-FDE6

NN + Map [26] 3.65 8.12 94.0 2.08 4.02 58.0 -
Jean [105] 1.74 4.24 68.56 0.98 1.42 13.08 2.12

Lane-GCN [88] 1.71 3.78 58.77 0.87 1.36 16.20 2.05
LaneRCNN [197] 1.68 3.69 56.85 0.90 1.45 12.32 2.15

TNT [205] 1.77 3.91 59.70 0.94 1.54 13.30 2.14
DenseTNT [51] 1.68 3.63 58.43 0.88 1.28 12.58 1.97
PRIME [152] 1.91 3.82 58.67 1.22 1.55 11.50 2.09
WIMP [73] 1.82 4.03 62.88 0.90 1.42 16.69 2.11
TPCN [189] 1.66 3.69 58.80 0.87 1.38 15.80 1.92
HOME [45] 1.70 3.68 57.23 0.89 1.29 8.46 1.86

mmTransformer [98] 1.77 4.00 61.78 0.87 1.34 15.40 2.03
MultiModalTransformer [66] 1.74 3.90 60.23 0.84 1.29 14.29 1.94

LatentVariableTransformer [47] - - - 0.89 1.41 16.00 -
SceneTransformer [111] 1.81 4.06 59.21 0.80 1.23 12.55 1.88

SSL-Lanes (Ours) 1.63 3.56 56.71 0.84 1.25 13.26 1.94

Table 5.3: Comparison of our (best) proposed model and top approaches on the Argoverse
Test. The best results are in bold and underlined, and the second best is also underlined.

quite different from Base-M2A features p̃i and Base-A2A features ṕi, which suggests that
task-specific regularization has indeed resulted in different parameters.

5.6.2 Comparison with State-of-the-Art

Performance: We compare our approach with top entries on Argoverse motion forecasting
leaderboard [26] in Tab. 5.3. SSL-Lanes improves the metrics for K = 1 convincingly and
outperforms existing approaches w.r.t. min-ADE1, min-FDE1 and MR1. We are also
strongly competitive w.r.t. min-ADE6, min-FDE6 and MR6 against top approaches, with
a relatively simple architecture.

Trade-off between min-FDE and Miss-Rate: min-FDE6 and MR6 are both im-
portant for autonomous robots to optimize. Ideally we wish for both of these metrics
to be low. However, there exists a frequent trade-off between them. We compare this
trade-off in Fig. 5.2(a) with six other popular motion forecasting models (in terms of ci-
tations and GitHub stars), namely: Lane-GCN [88], Lane-RCNN [88], MultiPath [25],
mm-Transformer [98], TNT [205] and Dense-TNT [51] on the Argoverse validation set. We
are on the lowest-left of meaning we optimize both min-FDE6 and MR6 successfully in
comparison to other top models.

Trade-off between accuracy, efficiency and complexity: We are the first to
point out a trade-off that exists for current state-of-the-art motion forecasting models
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Figure 5.2: Left: min-FDE6 - Miss-Rate6 trade-off on Argoverse Validation. Lower-
left is better. We optimize both successfully in comparison to other popular approaches.
Right: We plot min-FDE on Argoverse Test Set against number of model parameters (in
millions) and inference time (in milli-seconds). We find that there is a trade-off between
min-FDE performance, architectural complexity (as measured by number of parameters)
and computational efficiency (as measured by inference time). Our work achieves the best
trade-off (lower-left).

between forecasting performance, architectural complexity and inference speed. This is
illustrated in Fig. 5.2(b)-(c). NN+Map [26] (see Tab. 5.3) is a simple nearest-neighbor
based approach that also uses map-features, and while it has advantages in terms of fast
inference and low model complexity, the forecasting performance is very low. MultiPath
[25] is a very popular approach that has reasonable accuracy and inference speed but
is parametrically heavy due to it’s use of convolutional kernels. Lane-GCN is a vector
based approach [88] has comparatively fast inference time and high accuracy, but uses
multiple GNN layers which can lead to problems with over-smoothing for map-encoders
[133] and also has a complicated four-stage fusion mechanism. Lane-RCNN [197] proposes
to capture interactions between agents and map using not just a single vector, but a local
interaction graph per agent - this adds huge number of hyper-parameters to the model
and makes it very complex. Transformer-based models [98, 66, 111, 47] also suffer in this
regard. Scene-transformer for example has 15M parameters and uses heavy augmentation
to prevent overfitting. A light high-performing model is Dense-TNT [51]. However, Dense-
TNT’s inference speed on average is 50ms per agent, because it proposes a time-intensive
optimization algorithm to find a dense goal set that minimizes the expected error of the
given set. In contrast to these popular models, our approach has high accuracy (min-FDE:
1.25m, MR: 13.3%) while also having low architectural complexity (1.84M parameters)
and high inference speed (3.30 ms). Thus it provides a great balance for application to
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Figure 5.3: CKA Feature similarity between feature pairs of baseline and different pre-
text tasks. Similarity score is 1 for completely overlapping features and 0 for completely
divergent features.

real-time safety-critical autonomous robots.

Qualitative Results: We present some multi-modal prediction trajectories on several
hard cases shown in Fig. 5.4. The yellow trajectory represents the observed 2s. Red repre-
sents ground truth for the next 3s and green represents the multiple forecasted trajectories
for those 3s. In Row 1, the agent turns right at the intersection. The baseline misses this
mode completely, despite having access to the map. The model trained with lane-masking
successfully predicts this right turn within 2m of the ground-truth end-point. In Row 2, the
agent has a noisy past history and accelerates while turning left at the intersection. The
pretext task distance-to-intersection can correctly capture this, while the baseline has only
one trajectory covering this mode but vastly overshoots the ground-truth. Interestingly,
we note that the success/failure pretext task is unable to capture this mode. We believe
this is due to a stronger prior imposed by the model during learning. In Row 3, we have
an agent accelerating while going straight at an intersection. We find that the maneuver
classification pretext task is the only model that correctly predicts trajectories aligned with
the ground-truth. In Row 4, we have an agent turning left at an intersection. Most of the
predictions of other models predicts that the agent will go straight. The success/failure
pretext task however picks up on the left-turn, possibly due to the priors imposed upon it
by end-point conditioning.
Overall, SSL-Lanes can capture left and right turns better, while also being able to discern
acceleration at intersections. Our pretext tasks provide priors for the model and provides
data-regularization for free. We believe this can improve forecasting through better under-

79



Description
Experimental Setup

Method minADE6 minFDE6 MR6Training Validation

Effects of limited
training data

25% of train All
Baseline 0.82 1.33 14.66
Ours 0.78 1.22 12.63

Effects of
new domain

100% PIT +
20% MIA

MIA val
Baseline 0.88 1.46 17.21
Ours 0.85 1.34 14.96

Performance on
difficult maneuvers

All
Turning &

lane changing
Baseline 0.90 1.53 19.90
Ours 0.84 1.34 14.93

Effects of
imbalanced data

2x straight
1x other maneuvers

Turning &
lane changing

Baseline 0.94 1.65 21.53
Ours 0.90 1.49 17.97

Effects of
noisy data

All
Gaussian noise (σ = 0.2)

with p = 0.25
Baseline 1.01 1.37 15.59
Ours 0.96 1.24 11.98

Effects of
noisy data

All
Gaussian noise (σ = 0.2)

with p = 0.5
Baseline 1.19 1.56 20.64
Ours 1.13 1.40 15.65

Table 5.4: Different experimental settings to provide evidence for why SSL-based training
helps motion forecasting

standing of map topology, agent context with respect to the map, and generalization with
respect to imbalance implicitly present in data.

5.6.3 When does SSL help Motion Forecasting?

Hypotheses: We hypothesize that training with SSL pretext tasks probably helps motion
forecasting as following: (a) Topology-based context prediction assumes feature similarity
or smoothness in small neighborhoods of maps. Such a context-based feature representa-
tion can greatly improve prediction performance, especially when the neighborhoods are
small. (b) Clustering and classification assumes that feature similarity implies target-label
similarity and can group distant nodes with similar features together, leading to better gen-
eralization. (c) Supervised learning with imbalanced datasets sees significant degradation
in performance. Although most of the data samples in Argoverse are at an intersection, a
significantly large number involve driving straight while maintaining speed. Recent studies
[97] have shown that SSL tends to learn richer features from more frequent classes which
also allows it to generalize to to other classes better.
Experiments: In order to provide evidence for our hypotheses, we propose to design 6
different training and testing setups as shown in Tab. 5.4. We use success/failure clas-
sification as the pretext task, and all models are trained for 50,000 steps. We initialize
the map-encoder with the parameters from a model trained with the lane-masking pretext
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Baseline Pretext Task 1
(lane masking)

Pretext Task 4
(success/failure classification)

Pretext Task 3
(maneuver classification)

Other agents
Lane centerline
Past trajectory
GT trajectory
Pred trajectory

Pretext Task 2
(distance to intersection)

Ego vehicle

Figure 5.4: Motion forecasting on Argoverse [26] validation. We show four challenging
scenarios at intersections. The baseline [88] misses all the predictions. In the first row, our
proposed lane masking successfully captures the right-turn. For the second row, predicting
distance to intersection helps the most in capturing the left turn. In the third row, accel-
eration at an intersection is best captured by the model that is made to classify maneuvers
of traffic agents. Finally, in the fourth row, classifying successful final goal states is the
most effective at capturing the left turn. These tasks are trained with pseudo-labels which
are obtained for free from data. Please refer to Sec. 5.6.2 for details.

task.
Our first setting is to train with 25% of the total data available for training and testing
on the full validation set. We expect the SSL-based task to capture richer features and
generalize better than the baseline. Our second setting assumes that SSL also generalizes
to topology from different cities and trains on 100% of data from Pittsburgh (PIT) but only
20% of data from Miami (MIA). For evaluation, we only test on data examples taken from
the city of MIA. For our third setting, we assume that SSL learns superior features and can
thus perform better in difficult cases like lane-changes and turning cases. For evaluation,
we only test on data examples which involves these difficult cases. In our fourth setting, we
choose to explicitly train with data that contains 2× ‘straight-with-same-speed’ maneuver
and 1× all other maneuvers. We test only on lane-changes and turning cases from valida-
tion. Finally in order to test the effect of noise on motion forecasting performance, we take
two models already trained on full data. We now take the full validation set, randomly
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select agent trajectories or map nodes with probability p = 0.25 and p = 0.5, and then
add Gaussian noise with zero mean and 0.2 variance to their features. We expect this to
have the most impact on forecasting performance as compared to all other settings since
this is the most aggressive form of corruption. But we also expect SSL-based pretext task
training to provide robustness to noise for free due to better generalization capabilities.
Our takeaway from these experiments is that there is strong evidence SSL-based tasks do
provide better generalization capabilities and can thus prove to be more effective than pure
supervised training based approaches.

5.7 Chapter Conclusion

We propose SSL-Lanes to leverage supervisory signals generated from data for free in the
form of pseudo-labels and integrate it with a standard motion forecasting model. We
design four pretext tasks that can take advantage of map-structure and similarities be-
tween agent dynamics to generate these pseudo-labels, namely: lane masking, distance to
intersection prediction, maneuver classification and success/failure classification. We vali-
date our proposed approach by achieving competitive results on the challenging large-scale
Argoverse benchmark. The main advantage of SSL-Lanes is that it has high accuracy com-
bined with low architectural complexity and high inference speed. We further demonstrate
that each proposed SSL pretext task improves upon the baseline, especially in difficult
cases like left/right turns and acceleration/deceleration. We also provide hypotheses and
experiments on why SSL-Lanes can improve motion forecasting.

In the upcoming chapter, Chapter 6, we focus on pretext tasks to enhance interaction
modeling, particularly in scenarios where agent interaction plays a significant role.
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Chapter 6

SSL-Interactions: Pretext Tasks for
Interactive Trajectory Prediction

Autonomous vehicle safety is contingent on effective multi-agent prediction. Previously, we
presented the SSL-Lanes framework in Chapter 5, utilizing pretext tasks to enhance mo-
tion forecasting. Despite its merits, this framework overlooks interaction-specific domain
knowledge, crucial for improving interactive trajectory prediction. This chapter introduces
the SSL-Interactions framework, which integrates specially designed pretext tasks to ad-
vance interaction modeling in trajectory prediction. These tasks, rich in interaction-specific
domain knowledge, not only facilitate effective model regularization, but also provide a bal-
anced and computationally efficient solution between marginal and fully-joint predictions.
We will examine the design and practical application of these interaction-aware pretext
tasks within the SSL-Interactions framework. SSL-Interactions code and documentation
is open-sourced.1

6.1 Motivation and Contributions

By accurately predicting the future trajectories of other agents in a dynamic environment,
autonomous vehicles can strategically plan and execute maneuvers without collisions. How-
ever, in a multi-agent environment, numerous entities simultaneously interact and influence
each other’s behaviors. The main challenge lies in accurately capturing these complex in-

1https://github.com/AutoVision-cloud/SSL-Interactions
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(a) Marginal distribution P0(Y)

...Y1 Y2 YnY3

(b) Full joint distribution P(Y)

Y1 Y2

Yn
...

Y3

...Y1 Y2 YnY3

Pretext task conditional on subset 
of interacting agent P(T | Ai)

(c)                                                         + marginal distribution P0(Y)

Figure 6.1: Comparison of approaches for training multi-agent forecasting systems. (a)
Interactions between agents are not considered explicitly. Each node represents an agent’s
state, and arrows denote the aggregation of these marginal distributions P0(Y ). (b) In-
teractions between all pairs of agents are considered. The nodes represent the random
variables, and the bidirectional edges between every pair of nodes denote the dependencies
among all pairs of random variables. P (Y ) indicates the estimation of the full joint in-
teraction distribution. (c) SSL-Interactions considers interactions between pseudo-labeled
pairs of agents. The nodes represent the random variables, grouped by interaction-specific
dependencies in subset Ai enclosed by dashed-line rectangles. P (T |Ai) represents the con-
ditional distributions for pretext task. This is used to train the interaction-module in a
self-supervised setup, and drives Lpretext in Fig. 6.3. P0(Y ) captures the marginal distri-
butions of all the agents. This is used to train the forecasting framework similar to the
approach in (a), and drives Lmain in Fig. 6.3.

teractions and developing models that can account for the coordination and cooperation
between various agents.

In this chapter, we propose utilizing pretext tasks as a method for improved inter-
action modeling in motion forecasting. This approach offers several advantages. Firstly,
pretext tasks offer a way to decompose the joint distribution into a conditional and a
marginal, presenting a computationally feasible yet effective solution for training the in-
teraction module as shown in Fig. 6.1. Secondly, pretext tasks enable the incorporation
of interaction-specific domain knowledge during the learning process. By designing tasks
that reflect meaningful aspects of agent interaction, we can guide the model to capture rel-
evant patterns in the data, which acts as an effective regularization technique. This helps
enhance the model’s understanding of the underlying dynamics and improves the model’s

84



accuracy in forecasting agent motion. Thirdly, pretext tasks can be designed in a manner
that allows pseudo-labels to be generated from the available data itself. This enables us to
leverage large amounts of unlabeled data, which can be invaluable in training the model
effectively.

We introduce four interaction-aware pretext tasks for motion forecasting: range gap
prediction, closest distance prediction, direction of movement prediction, and type of in-
teraction prediction. These pretext tasks are designed to capture specific aspects of agent
interaction, improving the model’s understanding of complex scenarios. In addition, we
propose an approach to curate interactive scenarios from a large dataset and explicitly
pseudo-label interaction pairs. This curation process facilitates pretext task learning and
adds to the model’s ability to capture meaningful interactions.

To evaluate the effectiveness of our proposal, we introduce three metrics that provide
a better assessment of predictions in interactive scenarios. These metrics include interac-
tive min-FDE(i-min-FDE), non-interactive min-FDE(ni-min-FDE), and collision awareness
metric(CAM). We also demonstrate the benefits of SSL-Interactions over the state-of-the-
art, in terms of quantitative metrics and qualitative analysis.

Contributions: The contributions of this work are threefold:

• We propose a framework called SSL-Interactions, that leverages pretext tasks to
improve interaction modeling for motion forecasting. Specifically, we develop four
pretext tasks, designed to capture various aspects of interaction based on domain-
specific knowledge.

• The majority of recent motion forecasting datasets do not clearly identify pairs of
interacting agents, relying instead on the implicit interaction modeling conducted
via end-to-end training [88, 98]. We propose a simple but effective way to curate
interaction-specific scenarios from datasets and to explicitly label pairs of interacting
agents within a given scenario. This approach is crucial for generating pseudo-labels
for interaction-based pretext tasks.

• Through empirical evaluation, we demonstrate that our proposed framework can
surpass a state-of-the-art motion forecasting method both quantitatively, with up to
an 8% improvement, and qualitatively. Furthermore, we introduce three new metrics
specifically designed to evaluate predictions within interactive scenes.

85



6.2 Problem Formulation

6.2.1 Notations

We are given as input a dataset of past movements for N actors. Each actor is represented
by a set of (x, y) coordinates indicating their center locations during the preceding Tp − 1
time steps. To prepare the data for analysis, we preprocess each trajectory into a sequence

of displacements denoted by Si = {∆s
−{Tp−1}+1
i , ...,∆s−1

i ,∆s0i }. Here, s
tp
i represents the

2D displacement from the time-step tp − 1 to tp. This pre-processing ensures that the
model concentrates on forecasting relative coordinates rather than absolute positions. The
set of past motions of all N actors is given by M = {S1, ...,SN}. Additionally, we have
access to a high-definition (HD) map that includes lane and semantic attributes. We use
a scene-centric embedding where we use an agent of interest’s position as the origin, and
encode all roadgraph and agents with respect to it. The map elements are encoded into
an embedding h0.

The ground-truth future motion of each actor in the scene is also provided and denoted
by YGT

i = {(x1
i , y

1
i ), ..., (xTc

i , yTc
i )} over a prediction horizon of Tc. The set of ground-truth

futures is given by OGT = {YGT
i |i = 1, ..., N}. The future trajectory prediction for agent

i is represented by Yi = {(x̂1
i , ŷ

1
i ), ..., (x̂Tc

i , ŷTc
i )} and Opred = {Yi|i = 1, ..., N}. But there

could be multiple feasible future predictions for a given past input. Our goal is to predict
K possible future trajectories, PF , where PF = {Opred, 1,Opred, 2, ...,Opred, K}. We assume
that the agents interacting in a given scene are not provided with specific interaction
labels. Thus we want a trajectory prediction model that learns to model the distribution
p(Y |M,h0).

6.2.2 Standard Interaction Modeling

The encoder for the input motion of the agents is parameterized by fenc, and the encoding
can be represented by Eq. (6.1). To incorporate contextual information such as lane se-
mantics, a graph convolutional neural network (GCN) parameterized by fmap, is employed
to operate on a graph representation of the scene depicted in Eq. (6.2) and called a M2A
layer. Finally, to model agent-to-agent interactions, the representation of nearby agents is
aggregated using a graph convolutional neural network (GCN) parameterized by finteract.
This is called an A2A layer. The graph representation is constructed such that agents
are represented as nodes in the graph, and edges are established between agents if they
are within a certain distance of each other. Specifically, the neighboring set of node i is
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represented as Ne, and the distance between agents i and j is given by dij. The input
to the GCN includes the agent i’s embedding v̂i, the contextual embedding obtained for
each neighboring agent {v̂j|j ∈ Ne}, and dij. During the GCN operation, the interaction
information from neighboring agent states is implicitly incorporated by performing mes-
sage passing between nodes in the graph, as depicted in Eq. (6.3). By incorporating the
temporal representation of nearby agents and their relative distances into the final agent
state ṽi to be used for future prediction, agent-to-agent interactions are modeled within
the data-driven motion forecasting framework.

ŝi = fenc(Si) (6.1)

v̂i = fmap(ŝi,h0) (6.2)

ṽi =
∑
j∈Ne

finteract(v̂i, v̂j, dij) (6.3)

6.2.3 Pretext Task Regularization

Pretext task regularization is a technique that involves training a model on a auxiliary
task, called a pretext task, in order to improve the model’s performance on the main task.
The idea is to leverage the structure of the pretext task to encourage the model to learn
representations that are transferable to the main task of interest [91]. A pretext task is
designed using domain-knowledge to capture some inherent structure or pattern in the
data. The most effective pretext tasks exploit the underlying structure in such a way that
the learned representations are meaningful and generalizable. This does not add to model
complexity, as the pretext tasks parameters are discarded at inference time.

The existing literature for trajectory prediction predominantly focuses on supervised
learning scenarios where the learner has access to a large, annotated dataset that can be
revisited multiple times to learn the optimal feature extractor fθ. However, in numerous
real-world scenarios, we often have access to vast amounts of unlabeled data, which can
potentially make the learning process more efficient and cost-effective. In this context,
our objective is to investigate if designing pretext tasks that emphasize the semantics of
inter-object interactions can lead to more meaningful representations for agents, ultimately
enhancing the model’s ability to make accurate future predictions.

To incorporate a pretext task into the learning process, we train a model on both the
main task and the pretext task simultaneously. Let the model parameters be denoted by
Θ. Let the main task loss function be Lmain(Θ), and the pretext task loss function by
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Lpretext(Θ). The overall loss function for the combined learning problem can be expressed
as Eq. (6.4). λ is a regularization hyper-parameter that controls the balance between the
main task and the pretext task. The model’s parameters are updated using gradient-based
optimization.

Ltotal(Θ) = Lmain(Θ) + λ ∗ Lpretext(Θ) (6.4)

In summary, pretext tasks provide a powerful framework for leveraging the structure of
unlabeled data to learn useful representations that can be transferred to the main task.

6.3 SSL-Interactions

We introduce SSL-Interactions, a trajectory prediction framework that leverages self-
supervised learning to capture social interaction from our designed pretext tasks. SSL-
Interactions trains on both the main task of trajectory prediction and the self-supervised
pretext tasks simultaneously, using the latter to augment the model’s ability to capture
relevant features. The overall architecture is illustrated in Fig. 6.3.

Advantages: Unlike transformers, which require large amounts of data to learn effec-
tively, SSL-Interactions can be trained on smaller datasets by leveraging the pretext tasks.
By generating self-supervised labels related to the downstream task, we can use a larger
amount of training data to train the data representation, rather than relying solely on the
downstream task’s labels. Additionally, this approach ensures that the model learns use-
ful features relevant to the main task, while benefiting from the additional self-supervised
data.

6.3.1 Design Considerations for Interaction Modeling

(A) Marginal Prediction: In general, a trajectory prediction model learns to model the
distribution p(Y |M,h0). In the case of multiple agents, trajectory prediction is often eval-
uated independently for each agent. This means that accurately predicting the marginal
distribution of vehicle trajectories is sufficient for achieving good results on benchmark
tasks. Although the agent-to-agent (A2A) layer implicitly models interactions within the
framework, the training parameters may focus solely on optimizing the final forecasting
loss. In Sec. 6.2.2, we consider a representative motion forecasting model of this type. This
model captures interactions between agents implicitly, using message passing via graph con-
volutions to model p(Yi|M,h0). However, models that focus solely on predicting marginal
distributions may generate joint behaviors that are infeasible or unrealistic.
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(B) Full Joint Prediction: To properly evaluate and assess such interactive behaviors,
it is necessary to predict the joint distribution of the future trajectories of all interacting
agents. Directly modeling the joint distribution p(Y1,Y2, ...,YN |M,h0) however grows
exponentially with the number of agents. This presents a significant challenge for models
that aim to accurately predict joint behaviors for complex interactions between multiple
agents.

(C) SSL-Interactions: We propose to use pseudo-labeled interacting pairs to train the
interactions explicitly via pretext tasks. A pretext task is defined as T . Each pretext task
T is associated with a subset of agents Ai ∈ {Y1,Y2, ...,Yki}, where ki < N is the number of
agents involved in task T for agent i. Under the assumption that the pretext tasks capture
important conditional independence properties among the agents, we can factorize the joint
probability distribution p(Y1,Y2, ...,YN |M,h0) into a product of a marginal distribution
p0(Yi|M,h0) and pretext task-specific conditional distributions P (T |Ai). This is shown in
Eq. (6.5).

p(Y1,Y2, ...,YN |M,h0) =
N∏
i=1

p0(Yi|M,h0)
N∏
i=1

P (T |Ai) (6.5)

p0(Yi|M,h0) is a distribution that captures the marginal dependencies among the agents
as described in Sec. 6.3.1(A), and drives Lmain in Fig. 6.3. P (T |Ai) is the conditional
probability distribution of pretext task T given the states of the agents in Ai, which
captures interaction information between them explicitly, and drives Lpretext in Fig. 6.3.

The factorization in Eq. (6.5) reduces the complexity of the joint distribution by decom-
posing it into simpler components. To model each component, one can employ maximum
likelihood estimation. For the our proposed pretext tasks Sec. 6.3.3, the negative log-
likelihood loss for the pretext tasks corresponds to a Mean Squared Error (MSE) loss for
regression setting when we incorporate the Gaussian likelihood assumption, and cross-
entropy loss for the classification setting.

Identifying the optimal decomposition and pretext tasks for a given problem can be a
challenging task, and may require domain-specific knowledge. In this chapter, we propose
both pretext tasks tailored for interactive trajectory prediction, and a method to pseudo-
label the optimal subset of interacting agents Ai.

6.3.2 Labeling Interactions

In Sec. 6.2, our assumption is that agents in a given scene do not have access to explicit
interaction labels. To train a predictor that utilizes pretext tasks, we first produce a dataset
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Algorithm 2 Label Interacting Trajectories

1: procedure LabelInteractingTrajectories(T )
2: Input: Scene Trajectories T = {YGT

1 , ...,YGT
n }

3: Output: Filtered interacting pairs I
4: for each pair of trajectories (YGT

i ,YGT
j ) do

5: Calculate dij = min(||pt1i − pt2j ||) as Eq. (6.6)
6: if dij < dth then
7: Mark pair (YGT

i ,YGT
j ) as interacting

8: end if
9: end for
10: for each target agent t do
11: Classify target agent’s intent as It
12: end for
13: for each interacting pair (YGT

i ,YGT
j ) do

14: if It ∈ {‘Left-Turn’, ‘Left-Turn-Waiting’} then
15: Keep oncoming agents
16: else
17: Remove oncoming agents
18: end if
19: end for
20: return Filtered interacting pairs I
21: end procedure

that contains explicit interaction labels. Specifically, we wish to label Ai for agent i, as
described in Sec. 6.3.1.

To ensure effective interaction modeling, we visually query a random subset of the
data and discover several limitations. In some cases, the target agent is the only vehicle
present in a large area around it, limiting the potential for interaction with surrounding
vehicles. In other cases, the target agent cannot be influenced by surrounding vehicles
due to factors such as distance or the absence of spatio-temporal conflict. It is clear
that a model trained solely on this data would not contribute significantly to interaction
modeling. Therefore, to improve our model’s ability to capture interactions, it is necessary
to curate a dataset that specifically addresses these limitations and includes instances
where meaningful interactions occur.

We propose a simple but effective approach to identify interacting pairs of trajectories
based on the spatial distance between the agents and their intents. The method consists
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Figure 6.2: Illustration of the proposed data curation method for explicitly labeling
pairwise interactions. The future trajectory of the target agent is denoted in yellow, while
the past inputs are given in black. The first step involves identifying agents within a
specified distance threshold, indicated by the violet color. Nonetheless, only distance
thresholding is inadequate, as vehicles moving in opposite directions frequently do not
interact. In the second step, oncoming agents are filtered out if the target agent intends to
proceed straight, but are retained if the target’s intended action is a left turn. The final
interacting agents’ future trajectories are given in red.

of three main steps, as described below. We do not label trajectories if they are too short.

• Defining interaction between a pair of trajectories: We define two trajectories, YGT
i

and YGT
j , as interacting if the closest spatial distance between the two agents at

any time point in the ground-truth (GT) future is less than a threshold distance,
dth = 5m. Mathematically, we are given trajectories YGT

i = {p1i , p2i , ..., pTc
i } and

YGT
j = {p1j , p2j , ..., pTc

j }. ||pt1i − pt2j || denotes the Euclidean distance between point

pt1i from trajectory YGT
i and point pt2j from trajectory YGT

j . For time points t1 ∈
{1, ..., Tc} and t2 ∈ {1, ..., Tc}, dij is given by:

dij = min(||pt1i − pt2j ||) (6.6)

The two agents i and j are interacting if dij < dth. This is Step-1.
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Figure 6.3: Schematic diagram of the proposed model incorporating a pretext task as
an auxiliary loss. The agent encoder processes each agent’s observed trajectory, while the
map encoder handles high-definition (HD) map encoding. These representations are ini-
tially passed to a context encoder, generating map-conditioned agent features. These are
subsequently processed by an agent-to-agent attention-based encoder, which encodes inter-
agent dependencies. This comprehensive representation informs both the future trajectory
decoder and the proposed pretext task component. The pretext task loss, benefiting from
a stop gradient, exclusively trains the agent-to-agent encoder, ensuring only interaction-
specific features are harnessed by the pretext tasks. Consequently, any improvements can
be specifically attributed to enhanced interaction modeling within the agent-to-agent en-
coder. The pretext task loss, serving as an auxiliary task, is discarded during the inference
phase.

• Classifying target agent intent: Given a target agent, proximity does not guarantee
interaction. For example: if the target agent is going straight, an oncoming agent
in a different lane is unlikely to contribute to its future motion. However, if the
target agent is turning left, then the oncoming agent is likely to contribute to its
future motion. We thus propose a heuristic conditioned on the target agent intent
to filter out agents identified by Step-1. Given the trajectory information of a target
agent i, we classify its intent into six categories: {Straight, Lane-Change, Right-turn,
Left-turn, Right-turn-Waiting, Left-turn-waiting, Other}. This is Step-2.

• Filtering agents based on target agent’s intent: In this step, we use the target agent’s
intent from Step-2 to filter out spatially close agents that are not interacting. We pro-
pose the following heuristic: if the target agent’s intent belongs to either ‘Left-turn’
or ‘Left-turn-waiting’, we retain oncoming agents; otherwise, we exclude oncom-
ing agents. In summary, this step scrutinizes the target agent’s intent to ascertain
whether to retain or exclude oncoming agents, effectively filtering out non-interacting
agents in close proximity. This is Step-3.
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The overall algorithm is given in Algorithm 2. For every scene, we simplify our problem to
filter only (YGT

target,YGT
j ). This is because datasets like Argoverse have already pre-selected

the target agent of interest, and we can focus our attention solely on the interactions
between the target agent and the other agents in the scene. Thus Ai for agent i is the
output of Algorithm 2. A visual illustration of the data curation process is given by Fig. 6.2.

6.3.3 Proposed Pretext Tasks

In this section, we present four pretext tasks for interaction and motion modeling: 1)
range-gap prediction, 2) closest distance prediction, 3) direction of movement prediction
and 4) type of interaction prediction. The overall setup of the pretext task is given by
Fig. 6.4.

A. Range-gap Prediction

In this pretext task, the main idea is to predict the range-gap between pairs of agents
at a future time step t = 2s, given their past trajectory information. The range-gap
can be defined as the difference in the distance traveled by two agents during a specific
time interval. This task focuses on learning the interaction patterns between agents by
considering the spatial and temporal correlations in their trajectories.

Formulation: Let the pretext task feature extractor for this task to be denoted by fRG

with the parameters ΘRG. We consider the ground-truth range gap between two agents i
which is the target agent and j to be ||pt1target − pt2j || at time t1 = 2s and t2 = 2s.
The auxiliary range gap feature predictor takes the following inputs: the agent-to-agent
interaction feature from the standard motion forecasting architecture as described in
Sec. 6.2.2 represented by ṽtarget and ṽj, and the distance between them at tp = 0 given by
d0target:j. The output is a predicted range gap distance between the target agent and j.

dRG
j = fRG(ṽtarget − ṽj, d

0
target:j) (6.7)

The objective function LRG for guiding the range-gap prediction is formulated using
Smooth-L1 loss as shown in Eq. (6.8). ktarget is the number of interacting agents with
respect to the target agents as obtained from Sec. 6.3.2.

LRG(ΘRG) =
1

ktarget

ktarget∑
j=1

Lreg(d
RG
j , ||pt1target − pt2j ||) (6.8)
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Benefit to final forecasting performance: By predicting range-gaps, the model
learns to represent and capture the dependencies between the agents’ movements more
effectively. For example, if the range gap predicted between two agents is low, it could
indicate that the two agents are getting closer to each other and may potentially collide.
Conversely, if the range gap predicted is high, it could indicate that the two agents are
moving away from each other and may not interact. This helps the model understand the
underlying structure and patterns of agent interactions better, ultimately leading to more
accurate motion forecasts.

B. Closest-distance Prediction

In this pretext task, the main idea is to predict the minimum distance between two agents
in the future. In other words, we directly predict the closest distance that will occur
between the agents at corresponding time steps in the Tc time step future, without explicitly
analyzing the distance at each future time step. This task enables the model to acquire
meaningful representations of agent interactions in dynamic environments.

Formulation: Let the pretext task feature extractor for this task to be denoted by
fCD with the parameters ΘCD. We consider the ground-truth closest distance between two
agents i, which is the target agent, and j to be calculated as: DGT

j = min{Dtarget:j(t)|t ∈
1, ..., Tc}, where, Dtarget:j

j (t) = ||pttarget − ptj||. Additionally, we want to setup this task as
a classification task instead of a regression task. Thus we choose four classes with labels
yCD
j :

yCD
j =


0 if 0 < DGT

j ≤ 5

1 if 5 < DGT
j ≤ 10

2 if 10 < DGT
j ≤ 15

3 if DGT
j > 15

(6.9)

The auxiliary closest distance feature predictor takes the following inputs: the agent-
to-agent interaction feature from the standard motion forecasting architecture as described
in Sec. 6.2.2 represented by ṽtarget and ṽj, and the distance between them at tp = 0 given
by d0target:j. The output is a predicted closest distance between the target agent and j.

dCD
j = Softmax(fCD(ṽtarget − ṽj, d

0
target:j)) (6.10)

The objective function LCD for guiding the closest distance prediction is formulated
using cross-entropy loss as shown in Eq. (6.11). ktarget is the number of interacting agents
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Figure 6.4: Our proposed interaction-based pretext tasks, range-gap prediction(top-left),
closest-distance prediction(top-right), direction of movement prediction(bottom-left) and
type of interaction prediction(bottom-right), as described in Sec. 6.3.3.

with respect to the target agents as obtained from Sec. 6.3.2.

LCD(ΘCD) =
1

ktarget

ktarget∑
j=1

Lcross-entropy(d
CD
j , yCD

j ) (6.11)

Benefit to final forecasting performance: Estimating the closest distance between
agents enables the model to better capture spatial relationships and constraints between
them. The model can identify potential collisions and navigate around them. This is
valuable in constrained environments where agents must avoid collisions while planning
their trajectories. Predicting the closest distance between agents can also help the model
understand interactions such as yielding or merging, leading to more accurate forecasts in
these complex scenarios.
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C. Direction of Movement Prediction

In this pretext task, the main idea is to learn to predict whether two agents are moving
closer or receding from each other based on their past trajectory information. This pretext
task focuses on understanding the relative motion between agents and determining the
nature of their interaction. By predicting the direction of movement between agents, the
model can learn to understand the influence agents exert on each other and gain insights
into potential collisions or coordinated movements.

Formulation: Let the pretext task feature extractor for this task to be denoted by fDM

with the parameters ΘDM. We consider the ground-truth direction of movement between
two agents i, which is the target agent, and j to be calculated by the difference in intial
and final distances between them. Dinit

j = ||pt=1
target − pt=1

j ||, and Dfinal
j = ||pt=Tc

target − pt=Tc
j ||.

The direction of movement can be determined by calculating the difference between the
initial and final distances as: DirGT

j = Dfinal
j −Dinit

j . If DirGT
j > 0, then agents are receding.

If DirGT
j < 0, the agents are moving closer. We want to setup this task as a classification

task, and choose three classes with labels yDM
j :

yDM
j =


0 if DirGT

j ≥ 2

1 if DirGT
j ≤ −2

2 otherwise

(6.12)

The auxiliary direction of motion feature predictor takes the following inputs: the
agent-to-agent interaction feature from the standard motion forecasting architecture as
described in Sec. 6.2.2 represented by ṽtarget and ṽj, and the distance between them at
tp = 0 given by d0target:j. The output is a predicted direction of movement between the
target agent and j.

dDM
j = Softmax(fDM(ṽtarget − ṽj, d

0
target:j)) (6.13)

The objective function LDM for guiding the direction of motion prediction is formulated
using cross-entropy loss as shown in Eq. (6.14). ktarget is the number of interacting agents
with respect to the target agents as obtained from Sec. 6.3.2.

LDM(ΘDM) =
1

ktarget

ktarget∑
j=1

Lcross-entropy(d
DM
j , yDM

j ) (6.14)

Benefit to final forecasting performance: By predicting the direction of movement
between agents, the model learns to represent and capture the relative motion between
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them more effectively. If the agents are predicted to move closer, the model can anticipate
a possible collision and adjust the motion forecasts to avoid it. Predicting the direction
of movement can help the model identify coordinated movements between agents, such as
merging. This is also useful in scenarios when vehicles are accelerating or decelerating,
where ego can adjust their trajectories to move safely. In a multi-lane traffic scenario,
vehicles may need to change lanes to navigate around slower vehicles or prepare for an
upcoming exit. Predicting the direction of movement between vehicles in adjacent lanes
can help the model identify when a vehicle is actively changing lanes or maintaining its
position.

D. Type of Interaction Prediction

In this pretext task, the main idea is to enhance interaction modeling for trajectory pre-
diction by classifying the types of interactions between agents. This is a classification
task that involves predicting among five interaction types {‘close-lead’, ‘close-follow’, ‘left-
turn-lead’, ‘left-turn-follow’, ‘weak’}, based on the past trajectory information of agents.
By classifying the type of interaction, the model can better capture the nuanced dynam-
ics of agent behavior, cooperation and collision, which can lead to more accurate motion
forecasts.

Formulation: Let the pretext task feature extractor for this task to be denoted by fTI

with the parameters ΘTI. We first describe how we create the pseudo ground-truth labels
for this setup, influenced by M2I [157]. We consider the type of interaction between two
agents i, which is the target agent, and j. We want to setup this task as a classification
task with the pseudo-label for agent j represented as yTI

j . We first check the target agent
intention (obtained from Sec. 6.3.2. If the target agent intention is straight, we classify
the j agents not in the same lane as ‘weak’. If the target agent intention is ‘left-turn’ or
‘left-turn-waiting’, we label the agents j in the right neighboring lane as ‘weak’. If the
target agent intention is ‘right-turn’ or ‘right-turn-waiting’, we label the agents j in the
left neighboring lane as ‘weak’.

For the strong interactions, we first compute the closest spatial distance the target
agent and agent j:

dI =
Tc

min
t1=1

Tc

min
t2=1

||pt1target − pt2j || (6.15)

If dI > ϵd, where ϵ is a user defined threshold, the agents never get close to each other and
thus we label the relation yTI

j as ‘weak’. Otherwise, we obtain the time step from each
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agent at which they reach the closest spatial distance, such that:

t1 = arg
Tc

min
t1=1

Tc

min
t2=1

||pt1target − pt2j || (6.16)

t2 = arg
Tc

min
t2=1

Tc

min
t1=1

||pt1target − pt2j || (6.17)

When t1 > t2, we define that target agent follows agent j, as it takes longer for target
agent to reach the interaction point. The label yTI

j for agent j is ‘left-turn-lead’ if the target
intention is {‘left’, ‘left-turn-waiting’}, and ‘close-lead’ otherwise. Similarly, if t1 < t2, we
define that target agent leads agent j. The label yTI

j for agent j is ‘left-turn-follow’ if the
target intention is {‘left’, ‘left-turn-waiting’}, and ‘close-follow’ otherwise.

The auxiliary direction of motion feature predictor takes the following inputs: the
agent-to-agent interaction feature from the standard motion forecasting architecture as
described in Sec. 6.2.2 represented by ṽtarget and ṽj, and the distance between them at
tp = 0 given by d0target:j. The output is a predicted type of interaction relation between the
target agent and j.

dTI
j = Softmax(fTI(ṽtarget − ṽj, d

0
target:j)) (6.18)

The objective function LTI for guiding the type of interaction relation prediction is for-
mulated using cross-entropy loss as shown in Eq. (6.19). ktarget is the number of interacting
agents with respect to the target agents as obtained from Sec. 6.3.2.

LTI(ΘTI) =
1

ktarget

ktarget∑
j=1

Lcross-entropy(d
TI
j , yTI

j ) (6.19)

Benefit to final forecasting performance: Knowing the type of interaction can aid
the model in making more informed decisions when predicting trajectories. For example,
if the model classifies an interaction as ‘close-follow’, it can adjust the following agent’s
trajectory to maintain a safe distance from the leading agent. At intersections, vehicles may
engage in different types of interactions, such as taking a left turn in front of another vehicle
or following closely behind a vehicle making a left turn. In multi-lane traffic scenarios,
vehicles may engage in different types of interactions, such as leading or following another
vehicle during a lane change or overtaking maneuver. By predicting the type of interaction
(e.g., ‘close-lead’, ‘close-follow’), the model can better understand the dynamics of lane
changing and overtaking. This leads to more accurate motion forecasts that account for
the specific interaction types.
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6.3.4 Training Scheme

We train both the pretext losses and the main task in a simultaneous manner, as described
in equation Eq. (6.4). A crucial aspect of our approach is the design of loss functions that
specifically aid in the modeling of interactions between agents. To achieve this objective,
we restrict the propagation of pretext loss gradients solely to the agent-to-agent interaction
module. As a result, the gradients only affect the function finteract, as defined in equation
Eq. (6.3). In practice, this can be accomplished through the use of a stop-gradient opera-
tion. We only back-propagate the loss through the target agent of interest and the other
agents that interact with it, given a particular scene. Furthermore, since we predict K
modes, as described in Sec. 6.2, the pretext task predictions for interactions must reflect
this. Therefore, we predict K modes for each of the following functions: fRG, fCD, fDM ,
and fTI . For each target agent, we select the mode that produces the minimum loss with
respect to the main forecasting task.

6.4 Experiments

To train and evaluate the model using pretext tasks, we first introduce the dataset used.
Then we describe the models used to evaluate forecasting performance, and illustrate the
situations where pretext tasks can enhance predictions.

6.4.1 Dataset

The Argoverse v1.1 [26] platform offers a comprehensive dataset designed for the training
and evaluation of models. The main objective here is the prediction of 3 seconds of future
movements, leveraging 2 seconds of past observations. There is a clear division between
training and validation sets, avoiding any geographical overlap. In particular, each sequence
presents the positions of every actor in a scene, annotated at a frequency of 10Hz, for
the past 2 seconds. Each sequence identifies an ‘agent’ of interest whose future 3-second
movement is considered for assessment. Both training and validation sets also indicate the
future positions of all actors within a 3-second time frame, labeled at 10Hz. The dataset
provides HD map information for all sequences labeled in Miami and Pittsburgh.

The original training set consists of 205,942 sequences, while the validation set has
39,472 sequences. We curate and augment the Argoverse v1.1 using Algorithm 2 with
interaction information and pretext task pseudo labels, as described in Sec. 6.3.2 and
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Sec. 6.3.3. In terms of data statistics, this results in 93,200 unique training sequences
and 18592 unique validation sequences. In terms of size, the Waymo Interactive Split
[38] and our dataset are comparable. While Waymo Interactive Split assesses on 20,000
scenes with 2 agents, our validation set tests 18,502 scenes, encompassing 47,400 agents.
Comparatively, the Waymo Interactive Split, features only two interacting agents per scene,
whereas our samples may contain two or more interacting agents.

6.4.2 Metrics

We follow the Argoverse [26] benchmark and use the following metrics for evaluation:
minimum final displacement error(min-FDE), and miss rate (MR). Where the choice of
K is required, to define the top K trajectories to be used for evaluation of a metric (for
example min-FDE (K = k) on Argoverse), we use k=6.

We also propose three additional metrics to assess the quality of interaction prediction.
The first one, termed as interactive min-FDE (i-min-FDE), is calculated for all agents
interacting with the agent of interest. The i-min-FDE is examined in two scenarios: one
including all interacting agents, and the other involving only strongly interacting agents,
explicitly excluding any weak interactions as delineated in Sec. 6.3.3.
The second one is termed as non-interactive-min-FDE (ni-min-FDE) which is calculated
for all non-interactive sequences. The motivation here is that since pretext tasks are
proposed to improve interaction modeling, non-interactive sequences should have similar
performance as baseline.
The third metric called Collision Avoidance Measure (CAM) is designed to evaluate the
performance of predictive models in terms of their ability to forecast and avoid potential
collision scenarios between multiple agents in a given environment. The CAM is calculated
by iterating over all time steps and pairwise combinations of agents. For each pair of
agents i and j at time t, we calculate the Euclidean distance between their predicted
positions and their actual positions. If predicted distance is less than a distance-threshold
(indicating a predicted collision or near-collision scenario) and ground-truth is greater than
or equal to the distance-threshold (indicating that no collision or near-collision actually
occurred), we increment a counter. The final value of CAM is the total number of these
predicted collisions or near-collision scenarios across all time steps and pairs of agents,
divided by the total number of scenes. CAM = 1

stotal

∑T
t=1

∑N−1
i=1

∑N
j=i+1 I{||Yi,t − Yj,t|| <

dCAM ∩ ||YGT
i,t − YGT

j,t || >= dCAM}. Here, the function I(.) is an indicator function that
equals 1 if the condition in parentheses is true and 0 otherwise, and stotal is the total
number of evaluation sequences. Thus, a lower CAM indicates a better predictive model
in terms of its ability to avoid potential collisions.
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6.4.3 Implementation Details

We discuss data pre-processing, training details and base model architecture in this section.

Data pre-processing: In order to achieve normalize data, the coordinate system corre-
sponding to each sequence is subjected to translation and rotation. The objective is to
reposition the origin at the present position of the acting agent (defined as ’target agent’)
when t = 0, while aligning the positive x-axis with the agent’s current direction. This di-
rection is determined based on the orientation of the agent between the location at t = −1
and the location at t = 0.

Training: The model input includes all actors and lanes that interact with the target
agent, including the agent itself. The model’s training is executed on four TITAN-X GPUs
with a batch size of 32. The optimizer used was Adam, with an initial learning rate of
1 × 10−3. The rate was decayed to 1 × 10−4 at 93k steps, taking approximately five hours
in total to finish. λ in Eq. (6.4) is set to 1.

Base Model Architecture: For the agent feature extractor, the architecture is similar
to Lane-GCN [88]. We use a 1D CNN to process the trajectory input. The output is a
temporal feature map, whose element at t = 0 is used as the agent feature. The network
has three groups/scales of 1D convolutions. Each group consists of two residual blocks,
with the stride of the first block as 2. Feature Pyramid Network (FPN) fuses the multi-
scale features, and applies another residual block to obtain the output tensor. For all
layers, the convolution kernel size is 3 and the number of output channels is 128. Layer
normalization and Rectified Linear Unit (ReLU) are used after each convolution. The map
feature extractor has two LaneConv residual blocks which are the stack of a LaneConv(1)
and a linear layer, as well as a shortcut. All layers have 128 feature channels. Layer
normalization and ReLU are used after each LaneConv and linear layer.
For the map-aware agent feature (M2A) module, the distance threshold is 12m. The one
M2A interaction module has two residual blocks, which consist of a stack of an attention
layer and a linear layer, as well as a residual connection. The A2A layer has four such
blocks. All layers have 128 output feature channels. The pretext task encoder that takes
as input the A2A vector has two residual blocks, which also have 128 dimensional output.
Taking the A2A actor features as input, our trajectory decoder is a multi-modal prediction
header that outputs the final motion forecasting. For each agent, it predicts K = 6 possible
future trajectories and confidence scores. The header has two branches, a regression branch
to predict the trajectory of each mode and a classification branch to predict the confidence
score of each mode.
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Model A2A Pretext Task minFDE1 ↓ minFDE6 ↓ MR6 ↓ ImprovementminFDE6
↑

Without A2A ✗ ✗ 4.006 1.516 19.879 -
Without A2A With Pretext ✗ ✓(All) 3.999 1.512 19.441 -

Baseline ✓ ✗ 3.814 1.351 16.686 -

Ours ✓ Range-gap 3.253 1.305 15.382 +3.4%
Ours ✓ Closest-distance 3.230 1.295 15.209 +4.1%
Ours ✓ Direction of Movement 3.284 1.279 14.866 +5.3%
Ours ✓ Type Of Interaction 3.340 1.306 15.539 +3.3%

Table 6.1: Motion forecasting performance for target agent on Argoverse v1.1 [26] vali-
dation set curated with only interactive examples via Algorithm 2, with and without our
proposed pretext tasks (see Sec. 6.3.3)

6.4.4 Baselines and Proposed Model

We train different versions of our base model with and without the interaction component
(A2A layer) and the pretext tasks. We compare the performance of these models on our
validation set. We have the following four variants:

• Without A2A: Train the base model described in Sec. 6.4.3 with the A2A layer, but
without the pretext tasks.

• Without A2A With Pretext: Train the base model without the A2A layer, but with
the pretext task losses added. The A2A layer has a stop gradient for the pretext loss
as described in Sec. 6.3.4.

• Baseline: Train the base model without the A2A layer and without the pretext tasks.

• Proposed Model: Train the baseline model with both the A2A layer and the proposed
pretext tasks. This model also has a stop gradient operation so that the pretext loss
only affects the A2A layer.

6.5 Results

In this section, we describe our ablation studies and quantitative and qualitative results.

Ablation: Our findings reveal several distinct trends, as displayed in Tab. 6.1. This
table outlines the metrics of the target agent, as defined by Argoverse, on our specially-
selected, interaction-dense validation dataset.
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We observe that the model lacking the A2A layer (shown in the first row) under-
performs our established baseline (shown in the third row) by a notable 11%. This un-
derscores the considerable influence of the A2A layer when assessing performance on our
interaction-heavy dataset.

The second model, which is without the A2A layer but incorporates pretext tasks (cal-
culated as the cumulative loss from all proposed pretext tasks), mirrors the performance
of the first model closely. This suggests that the pretext tasks do not impact the M2A
layer, the map, or the agent encoder, due to the application of the stop gradient opera-
tion. Instead, they only influence the A2A layer. This finding is pivotal in validating our
proposition that the pretext tasks assist in interaction modeling.

Comparison with state-of-the-art: Across all proposed pretext tasks, we also no-
ticed a significant improvement in the model’s performance w.r.t state-of-the-art baseline
— ranging from 3.3% to 5.3% across the minFDE6 metric. We centered our attention on
min-FDE in this table because of its importance in making precise long-term predictions,
which are vital for safety. The most effective predictors for this dataset were direction
of movement and closest distance. The range-gap prediction and the type of interaction
prediction under-perform the above mentioned tasks. In examining the reasons for this
disparity, we hypothesize that the structure of the range-gap prediction task, which is a
regression task, could have contributed to its lesser performance. Regression tasks are
typically more challenging to learn compared to classification tasks due to their demand
for more complex learning mechanisms. Furthermore, the task of type of interaction pre-
diction presented two significant difficulties. Firstly, the task was heavily imbalanced, and
secondly, it did not offer precise information about the trajectory endpoints. The lack
of fine-grained information in this task could have inhibited the model’s ability to make
accurate long-term predictions. These observations underscore the need to carefully select
and design pretext tasks when building models for interaction-heavy datasets.

Evaluation on Proposed Metrics: A consistent pattern can be observed in Tab. 6.2,
where we evaluate our proposed metrics for both the baseline and the suggested pretext
tasks. We assess the performance using the metrics i-minFDE6 and CAM6, not only for the
target agent but also for all interacting agents. This comprehensive evaluation is crucial
as it is not only the predictions for the primary agent that matter, but also those for the
surrounding agents in an interactive scenario. Our findings indicate that there are more
substantial improvements (upto 8.1% for all interacting agents, 7.9% for only strongly in-
teracting agents, 8.6% for collision awareness) over the baseline when using these proposed
metrics. This suggests that the final positions of the interacting agents are predicted more
accurately than with the baseline, and there’s improved collision awareness. These metrics
provide a more detailed understanding of the model’s performance in predicting interac-
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Model A2A Pretext Task i-minFDE6 ↓ ni-min-FDE6 ↓ CAM6 ↓
All-Interactive Strong-Interactive

Baseline ✓ ✗ 1.279 1.320 1.459 1.472

Ours ✓ Range-gap 1.202 (+6.0%) 1.242 (+5.9%) 1.468 1.394 (+5.3%)
Ours ✓ Closest-distance 1.192 (+6.8%) 1.235 (+6.4%) 1.446 1.346 (+8.6%)
Ours ✓ Direction of Movement 1.175 (+8.1%) 1.216 (+7.9%) 1.441 1.375 (+6.6%)
Ours ✓ Type Of Interaction 1.183 (+7.5%) 1.226 (+7.1%) 1.455 1.376 (+6.5%)

Table 6.2: Motion forecasting performance for interactive agents on Argoverse v1.1 [26]
validation set curated with only interactive examples via Algorithm 2, with our proposed
pretext metrics (see Sec. 6.4.2)

tive scenarios. In addition to the interactive dataset, we maintain a set of non-interactive
validation data. Upon evaluating this data using the ni-minFDE6 metric, we observe that
the baseline model’s performance is nearly on par with the models employing pretext
tasks. This observation is interesting — it indicates that the improvements resulting from
the inclusion of pretext losses are primarily manifested in datasets with heavy interaction.
Specifically, the pretext tasks do not notably enhance performance on non-interactive data.
This finding aligns with our objective to demonstrate that pretext tasks are particularly
beneficial in modeling interactions.

Qualitative Results: Illustrations of improvements provided by the pretext task mod-
els are shown in Fig. 6.5. Each illustration portrays a unique urban driving scenario, and
details how the introduction of the pretext task model enhances the predictive capabilities.
In these diagrams, we compare the ground-truth with the baseline model’s prediction, the
model’s prediction when interactions with other agents have been disconnected, and the
proposed model’s prediction. These illustrations serve to underscore the effectiveness of
our pretext task models in a real-world context.
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Figure 6.5: Motion forecasting on curated, interaction-heavy Argoverse [26] validation.
We present four challenging scenarios for analysis. The first column depicts the scene
featuring the target agent and the curated interactive agents. The second column contains
predictions made by the baseline model [88]. The third column displays the predictions
of our proposed model when the connections to the interactive agents are disconnected.
The fourth and final column features predictions from our model when regularized with
the pretext loss. The baseline model fails to accurately forecast any of the scenarios. The
first row illustrates a case where the predicted range-gap accurately anticipates at least one
future trajectory that evades collision with the forward vehicle. The second row presents a
congested situation in which forecasting the closest-distance with interacting agents leads
to a future trajectory devoid of collision with the vehicle in front. The third row depicts
a similar situation, but in the context of predicting direction of movement - both the
baseline and the model without interacting agent information result in a collision course
with the agent ahead, whereas our model proposes a trajectory closely aligned with the
ground truth, avoiding collision.The final row presents a turning scenario wherein the type
of interaction is predicted. Our proposed model forecasts a ‘close-follow’ situation with the
interacting vehicle and identifies a potential future trajectory that is most closely aligned
with the ground truth, while the baseline and the model without knowledge of interacting
agents fail in terms of the MR6 metric. Please refer to Sec. 6.3.3 for details.
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6.6 Chapter Conclusion

In this work, we improve motion forecasting with a particular focus on interactive sce-
narios. Our first contribution is a simple yet effective approach for interaction modeling.
We introduce four interaction-specific pretext tasks, which incorporate domain knowledge
and are learned concurrently with the main task. This methodology enables the pretext
task to effectively capture the dependencies between agents’ movements. Our second con-
tribution is a novel method for curating datasets, which allows for the explicit labeling
of interacting pairs. This approach is crucial for the training of interaction-specific pre-
text tasks and the generation of necessary pseudo-labels. The third contribution is the
development of new metrics designed to offer a more accurate evaluation of performance
in scenarios characterized by a high degree of interaction. These metrics provide a detailed
and nuanced understanding of the model’s performance. Finally, we demonstrate that our
proposed methodology significantly outperforms the baseline in both quantitative mea-
surements and qualitative assessments. In summary, our work advances the understanding
and application of interaction modeling in motion forecasting, providing useful tools and
methods that can be further built upon in future research.
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Part III

Conclusions and Future Work
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Chapter 7

Conclusion

This dissertation presents multiple contributions related to perception and prediction in
the context of autonomous driving, with an emphasis on improving context modeling using
attention mechanisms and self-supervised learning. We close with a summary of our novel
contributions followed by a discussion of challenges and directions for future work in this
area.

7.1 Summary of Contributions

7.1.1 FANTrack: 3D Multi-Object Tracking with Feature Asso-
ciation Network (Chapter 3)

We presented FANTrack, an advanced 3D object tracking framework that significantly
enhances the data association phase inherent to multi-object tracking tasks. This new
formulation exhibits potential to mitigate common challenges associated with correctly as-
sociating detections across time and space, thus fostering advancements in the domain of
dynamic scene understanding in autonomous driving. Our contributions can be summa-
rized as follows:

• Our approach can solve the multi-target association problem by performing inference
using CNNs.
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• It can integrate image based appearance and 3D bounding box features to get a
discriminative as well as generalized feature representation, thereby learning a robust
cost function for association.

• We show competitive qualitative and quantitative 3D tracking results compared to
the state of the art on the KITTI tracking dataset.

7.1.2 SA-Det3D: Self-Attention Based Context-Aware 3D Ob-
ject Detection (Chapter 4)

We proposed SA-Det3D, which includes self-attention variants for 3D object detection that
augment convolutional features, model long-range interactions and can sample representa-
tive features for scalability and distinct feature descriptor generation. Our contributions
can be summarized as follows:

• We propose a generic globally-adaptive context aggregation module that can be ap-
plied across a range of modern architectures including BEV, voxel, point and point-
voxel based 3D detectors. We show that we can outperform strong baseline imple-
mentations by up to 1.5 3D AP (average precision) while simultaneously reducing
parameter and compute cost by 15-80% and 30-50%, respectively, on the KITTI
validation set.

• We design a scalable self-attention variant that learns to deform randomly sampled lo-
cations to cover the most representative and informative parts and aggregate context
on this subset. This allows us to aggregate global context in large-scale point-clouds
like nuScenes and Waymo Open dataset.

• Extensive experiments demonstrate the benefits of our proposed FSA/DSA modules
by consistently improving the performance of state-of-the-art detectors on KITTI,
nuScenes and Waymo Open dataset.

7.1.3 SSL-Lanes: Self-Supervised Learning for Motion Forecast-
ing in Autonomous Driving (Chapter 5)

We proposed SSL-Lanes, an approach that extends self-supervised learning (SSL) prin-
ciples to motion forecasting, presenting the first systematic study on incorporating self-
supervision in a standard data-driven motion forecasting model. Our contributions can be
summarized as follows:
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• We demonstrate the effectiveness of incorporating self-supervised learning in motion
forecasting. Since this does not add extra parameters or compute during inference,
SSL-Lanes achieves the best accuracy-simplicity-efficiency trade-off on the challeng-
ing large-scale Argoverse benchmark.

• We propose four self-supervised tasks based on the nature of the motion forecasting
problem. The key idea is to leverage easily accessible map/agent-level information to
define domain-specific pretext tasks that encourage the standard model to capture
more superior and generalizable representations for forecasting, in comparison to pure
supervised learning.

• We further design experiments to explore why forecasting benefits from SSL. We
provide extensive results to hypothesize that SSL-Lanes learns richer features from
the SSL training as compared to a model trained with vanilla supervised learning.

7.1.4 SSL-Interactions: Pretext Tasks for Interactive Trajectory
Prediction(Chapter 6)

We proposed SSL-Interactions, which improves motion forecasting by utilizing pretext tasks
to capture interaction dynamics and regularize the model by incorporating interaction-
specific knowledge. Our contributions can be summarized as follows:

• We propose a framework called SSL-Interactions, that leverages pretext tasks to
improve interaction modeling for motion forecasting. Specifically, we develop four
pretext tasks, designed to capture various aspects of interaction based on domain-
specific knowledge.

• The majority of recent motion forecasting datasets do not clearly identify pairs of
interacting agents, relying instead on the implicit interaction modeling conducted
via end-to-end training. We propose a simple but effective way to curate interaction-
specific scenarios from datasets and to explicitly label pairs of interacting agents
within a given scenario. This approach is crucial for generating pseudo-labels for
interaction-centric pretext tasks.

• Through empirical evaluation, we demonstrate that our proposed framework can
surpass a state-of-the-art motion forecasting method both quantitatively, with up to
an 8% improvement, and qualitatively. Furthermore, we introduce three new metrics
specifically designed to evaluate predictions within interactive scenes.
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7.2 Future Work

We end this dissertation with potential future work for perception and prediction with
application to autonomous driving.

7.2.1 End-to-End Learning for 3D Object Detection and Data-
Association

While FANTrack in Chapter 3 has proven effective with its two-step process - 3D object
detection followed by data-association - this methodology inherently treats these tasks as
distinct stages. The learning from the data association stage do not influence the object de-
tection stage, thereby potentially omitting valuable information. An end-to-end trainable
framework could mitigate this issue, as back-propagation during training would fine-tune
both the 3D object detection and data-association sub-components simultaneously. This
could lead to an object detection process that is intrinsically optimized to improve data
association, potentially producing more distinctive detections that enable more reliable
object identification across different frames. In addition to refining the training process,
an end-to-end framework could allow the data association process to consider information
about the uncertainty or quality of individual detections when determining associations. A
preliminary approach is presented by PnP [90], which can be extended. Another valuable
future direction might involve balancing the improved performance offered by end-to-end
learning with maintaining a model’s interpretability, to ensure alignment with human rea-
soning in decision-making processes.

One of the other crucial avenues for improving FANTrack involves robustness to oc-
clusions and low-illumination conditions. These are scenarios where an object is either
temporarily obscured by another or lacks clear visibility due to poor lighting. Utilizing
generative models such as diffusion models [58] could bring novel solutions to problems of
occlusion and low-illumination in 3D object tracking. For handling occlusions, one way
of employing diffusion models could be to generate probable trajectories of the occluded
objects. Training the diffusion model on a large dataset of object trajectories could enable
it to generate plausible predictions during occlusions that follow the physical laws of mo-
tion. When addressing low-illumination scenarios, generative models can be used for image
enhancement, essentially reconstructing a well-lit version of a low-light scene. For instance,
diffusion models, trained on a large dataset of low-light and corresponding normal-light
images, could be tasked with transforming a low-light image into its normal-light version.
It would be essential to ensure that the computational cost of the diffusion model does not
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slow down the tracking process too much, which could limit the real-world applicability
of the system. Future work could explore efficient ways of integrating these generative
models into the tracking system to maintain a balance between performance improvement
and computational efficiency.

7.2.2 Representation Learning for 3D Object Detection Using
Unlabeled Data

A major challenge in 3D object detection, as presented in Chapter 4 is the limited avail-
ability of annotated data, largely due to the labor-intensive nature of the labeling process.
By designing methods that can learn meaningful representations from unlabeled data, or
that can effectively transfer knowledge from labeled to unlabeled data, the reliance on
extensively annotated datasets could be significantly reduced.

Segment Anything (SAM [76]) recently introduces a novel “foundation model” approach
for image segmentation, drawing inspiration from natural language processing (NLP). The
core idea involves training a model that can segment images based on a range of prompts,
much like a language model predicting the next token given prior context. Prompts can
vary from foreground/background points, rough box or mask annotations, to free-form text.
The model is trained to always predict a valid segmentation mask, even when the prompt
is ambiguous. This capability enables the model to generalize to a variety of downstream
segmentation tasks, simply by feeding in different prompts. The training algorithm is
based on simulating a sequence of prompts for each training sample and comparing model
predictions against ground truth.

When extended to 3D object detection, the foundation model approach could address
several limitations of current state-of-the-art models. Similar to the segmentation task, a
model could be trained to perform 3D object detection given a range of prompts, improving
the model’s flexibility and generalization capability. Training the model to produce valid
object detections even in the presence of ambiguous prompts could enhance its robustness
to varying real-world conditions. Furthermore, the use of prompts could facilitate zero-shot
transfer, reducing the need for extensive task-specific training. Lastly, this approach could
provide a novel way to leverage unlabeled data, by training the model to make sensible
predictions even when only partial or ambiguous annotations are available.
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7.2.3 Effective Pretext Tasks for Motion Forecasting

One potential limitation of our SSL-Lanes in Chapter 5 and SSL-Interactions in Chapter 6
framework for motion forecasting lies in the fact that we employ different losses for our
formulation at a fixed 1:1 ratio without optimizing them. Additionally, we only leverage
one pretext task at a time, not exploring the synergy that might come from combining
different tasks. A promising area for future work would be to incorporate meta-learning
approaches to determine an optimal mix of pretext tasks and automatically adjust their
balance [68], which we anticipate could further boost forecasting performance.

Another aspect to consider is that in our SSL-Lanes framework, we observe improve-
ments with SSL-pretext tasks predominantly in scenarios that do not involve multiple in-
teracting agents. Conversely, for SSL-Interactions, we specifically construct pretext tasks
to model interaction. Going forward, it would be intriguing to investigate how to merge
geometric and interaction-based pretext tasks, considering both road features and agent
interactions. We are particularly interested in examining this within the context of the
interaction split of the Waymo Open Motion dataset [38].

Lastly, in terms of generalization, our exploration in SSL-Lanes only addresses implicit
data imbalance in comparison to strictly supervised training on the same dataset from
which training samples are drawn. We are keen to examine the capacity of both SSL-Lanes
and SSL-Interactions to generalize to other datasets without the need for re-training.

7.2.4 Interaction Modeling for Motion Forecasting and Large
Language Models

The work presented in [81] is one of the first works that proposed to co-train a sentence
generator with an attention-based trajectory predictor, generating sentences that hypoth-
esize the description of the full trajectory, given the past. Comparing this work with
Chapter 6, predicting the linguistic description for a trajectory can also be viewed as a
regularizing pretext task. However, the focus of the paper leans more towards establishing
an interpretability mechanism to ensure autonomous vehicles make decisions based on valid
reasoning, not merely achieving benchmark results. The methodology does not leverage
large language models and mainly generates straightforward descriptions of trajectories.
Thus, the realm of interaction modeling for trajectory prediction using large language
models remains largely unexplored.

A more recent study, [199], takes initial steps in examining the potential of large lan-
guage models (LLMs) for modeling human behavior to enhance human-robot interaction
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(HRI). Given the complexities associated with accurately modeling human behavior, which
often requires extensive prior knowledge or substantial interaction data, the authors sug-
gest employing LLMs. These models, trained on copious amounts of human-generated text
data, could function as zero-shot human models in HRI contexts.

Therefore, it would be intriguing to investigate further the zero-shot modeling capabil-
ities of LLMs. Specifically, it would be beneficial to determine whether these capabilities
could be effectively transferred to the task of interaction modeling for motion forecasting
within the context of autonomous driving.
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Appendix A

SA-Det3D: Implementation Details
and Supplementary Results

In this document, we provide technical details and additional experimental results for
SA-Det3D.

A.1 Network Architectures and Training Details

A.1.1 Architectural details

The detailed specification of the various layers in our FSA and DSA augmented baselines—
PointPillars [83], SECOND [184], Point-RCNN [144] and PV-RCNN [143]—is documented
in Tab. A.2, Tab. A.3, Tab. A.4, and Tab. A.5, respectively. We also provide the details
of a reduced parameter baseline that aims to compare the performance of the model with
similar number of parameters and FLOPs compared to their FSA and DSA counterparts.

A.1.2 Experimental settings

Additional details on encoding, training, and inference parameters are as follows. For pillar
and voxel-based detection, we use absolute-position encoding for the full self-attention
blocks [164]. For the test submissions to KITTI and nuScenes official servers, we retain
the full parameterization of the original baselines. For the nuScenes test submission, we
follow the configuration for PP described in Tab. A.2, while adding the DSA module with
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Backbone Batch Size Start LR Max LR
PointPillars

16 0.0003 0.003
SECOND

Point-RCNN
8 0.001 0.01

PV-RCNN

Table A.1: Batch size and learning rate configurations for each backbone model on KITTI
benchmark

4 heads, 2 layers, 64-dimensional context, 2 m deformation radius, 4096 sampled pillars
and an up-sampling method described in the following subsection. For the Waymo Open
dataset validation evaluation, we use the configuration for DSA-SECOND as described
in Tab. A.3, except that we use 4096 sampled keypoints, 2 m deformation radius and
1 m interpolation radius. We use Pytorch [121] and the recently released OpenPCDet
[160] repository for our experiments. Our models are trained from scratch in an end-to-
end manner with the ADAM optimizer [75]. The learning rates used for the different
models are given in Tab. A.1. For the proposal refinement stage in two-stage networks
[144], [143], we randomly sample 128 proposals with 1:1 ratio for positive and negative
proposals. A proposal is considered positive if it has at-least 0.55 3D IoU with the ground-
truth boxes, otherwise it is considered to be negative. For inference, we keep the top-500
proposals generated from single stage approaches [83], [184] and the top-100 proposals
generated from two stage approaches [144], [143] with a 3D IoU threshold of 0.7 for non-
maximum-suppression (NMS). An NMS classification threshold of 0.1 is used to remove
weak detections.
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Attribute PP [83] PPred FSA-PP DSA-PP

Layer: 2D CNN Backbone
Layer-nums [3, 5, 5] [3, 5, 5] [3, 5, 5] [3, 5, 5]
Layer-stride [2, 2, 2] [2, 2, 2] [2, 2, 2] [2, 2, 2]
Num-filters [64, 128, 256] [64, 64, 128] [64, 64, 64] [64, 64, 64]

Upsample-stride [1, 2, 4] [1, 2, 4] [1, 2, 4] [1, 2, 4]
Num-upsample-filters [128, 128, 128] [128, 128, 128] [128, 128, 128] [128, 128, 128]

Layer: Self-Attention

Stage Added - - Pillar feature Pillar feature
Num layers - - 2 2
Num heads - - 4 4

Context Linear Dim - - 64 64
Num Keypoints - - - 2048
Deform radius - - - 3.0m

Feature pool radius - - - 2.0m
Interpolation MLP Dim - - - 64
Interpolation radius - - - 1.6m
Interpolation samples - - - 16

Table A.2: Architectural details of PointPillars [83], our reduced parameter PointPillars
version, proposed FSA-PointPillars and DSA-PointPillars

Attribute SECOND [184] SECONDred FSA-SECOND DSA-SECOND

Layer: 3D CNN Backbone
Layer-nums in Sparse Blocks [1, 3, 3, 3] [1, 3, 3, 2] [1, 3, 3, 2] [1, 3, 3, 2]

Sparse tensor size 128 64 64 64

Layer: 2D CNN Backbone

Layer-nums [5, 5] [5, 5] [5, 5] [5, 5]
Layer-stride [1, 2] [1, 2] [1, 2] [1, 2]
Num-filters [128, 256] [128, 160] [128, 128] [128, 128]

Upsample-stride [1, 2] [1, 2] [1, 2] [1, 2]
Num-upsample-filters [256, 256] [256, 256] [256, 256] [256, 256]

Layer: Self-Attention

Stage Added - - Sparse Tensor Sparse Tensor
Num layers - - 2 2
Num heads - - 4 4

Context Linear Dim - - 64 64
Num Keypoints - - - 2048
Deform radius - - - 4.0m

Feature pool radius - - - 4.0m
Interpolation MLP Dim - - - 64
Interpolation radius - - - 1.6m
Interpolation samples - - - 16

Table A.3: Architectural details of SECOND [184], our reduced parameter SECOND
version, and proposed FSA-SECOND and DSA-SECOND
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Attribute Point-RCNN [144] Point-RCNNred FSA-Point-RCNN DSA-Point-RCNN

Layer: Multi-Scale Aggregation
N-Points [4096, 1024, 256, 64] [4096, 1024, 256, 64] [4096, 1024, 256, 64] [4096, 1024, 128, 64]

Radius
[0.1, 0.5], [0.5, 1.0],
[1.0, 2.0], [2.0, 4.0]

[0.1, 0.5], [0.5, 1.0],
[1.0, 2.0], [2.0, 4.0]

[0.1, 0.5], [0.5, 1.0],
[1.0, 2.0], [2.0, 4.0]

[0.1, 0.5], [0.5, 1.0],
[1.0, 2.0], [2.0, 4.0]

N-samples [16, 32] [16, 32] [16, 32] [16, 32]

MLPs

[16, 16, 32], [32, 32, 64],
[64, 64, 128], [64, 96, 128]

[128, 196, 256], [128, 196, 256]
[256, 256, 512], [256, 384, 512]

[16, 32], [32, 64],
[64, 128], [64, 128]

[128, 256], [128, 256]
[256, 512], [256, 512]

[16, 32], [32, 64],
[64, 128], [64, 128]

[128, 256], [128, 256]
[256, 512], [256, 512]

[16, 32], [32, 64],
[64, 128], [64, 128]

[128, 256], [128, 256]
[256, 512], [256, 512]

FP-MLPs

[128, 128],
[256, 256],
[512, 512],
[512, 512]

[128, 128],
[128, 128],
[128, 128],
[128, 512]

[128, 128],
[128, 128],
[128, 128],
[128, 128]

[128, 128],
[128, 128],
[128, 128],
[128, 128]

Layer: Self-Attention

Stage Added - - MSG-3 and MSG-4 MSG-3 and MSG-4
Num layers - - 2 2
Num heads - - 4 4

Context Linear Dim - - 64 64
Num Keypoints - - - (128, 64)
Deform radius - - - (2.0, 4.0)m

Feature pool radius - - - (1.0, 2.0)m
Interpolation MLP Dim - - - (64, 64)
Interpolation radius - - - (1.0, 2.0)m
Interpolation samples - - - (16, 16)

Table A.4: Architectural details of Point-RCNN [144], our reduced parameter Point-
RCNN version, proposed FSA-Point-RCNN and DSA-Point-RCNN
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Attribute PV-RCNN [143] FSA-PVRCNN DSA-PVRCNN

Layer: 3D CNN Backbone
Layer-nums in Sparse Blocks [1, 3, 3, 3] [1, 3, 3, 2] [1, 3, 3, 3]

Sparse tensor size 128 64 128

Layer: 2D CNN Backbone

Layer-nums [5, 5] [5, 5] [5, 5]
Layer-stride [1, 2] [1, 2] [1, 2]
Num-filters [128, 256] [128, 128] [128, 256]

Upsample-stride [1, 2] [1, 2] [1, 2]
Num-upsample-filters [256, 256] [256, 256] [256, 256]

Layer: Self-Attention

Stage Added - Sparse Tensor and VSA VSA
Num layers - 2 2
Num heads - 4 4

Context Linear Dim - 128 128
Num Keypoints - - 2048

Deform radius - -
[0.4, 0.8], [0.8, 1.2],
[1.2, 2.4], [2.4, 4.8]

Feature pool radius - - Multi-scale: (0.8, 1.6)m
Interpolation MLP Dim - - Multi-scale: (64, 64)
Interpolation radius - - Multi-scale: (0.8, 1.6)m
Interpolation samples - - Multi-scale: (16, 16)

Table A.5: Architectural details of PV-RCNN [143], and proposed FSA-PVRCNN and
DSA-PVRCNN
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A.2 Detailed Results

We provide additional experimental details on the validation split of the KITTI [43] data-
set in this section. In Tab. A.6, we first show the 3D and BEV AP for moderate difficulty on
the Cyclist class for PV-RCNN and its variants. The table shows that both our proposed
modules improve on the baseline results. This showcases the robustness of our approach
in also naturally benefiting smaller and more complicated objects like cyclists. We then
proceed to list the 3D AP and BEV performances with respect to distance from the ego-
vehicle in Tab. A.7. We find that the proposed blocks especially improve upon detection at
further distances, where points become sparse and context becomes increasingly important.
These results hold especially for the cyclist class - as opposed to the car class, which shows
that context is possibly more important for smaller objects with reduced number of points
available for detection. In Tab. A.8, we provide results for all three difficulty categories
for the car class. We see consistent improvements across backbones with various input
modalities on the hard category. This is consistent with our premise that samples in the
hard category can benefit more context information of surrounding instances. We also note
that PointPillars [83], which loses a lot of information due to pillar-based discretization of
points, can supplement this loss with fine-grained context information.
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3D BEV
PV-RCNN [143] 70.38 74.5

PV-RCNN + DSA 73.03 75.45
PV-RCNN + FSA 71.46 74.73

Table A.6: Performance comparison for moderate difficulty cyclist class on KITTI val
split.

Distance Model Car Cyclist Pedestrian

0-30m
PV-RCNN [143] 91.71 73.76 56.82

DSA 91.65 74.89 59.61
FSA 93.44 74.10 61.65

30-50m
PV-RCNN [143] 50.00 35.15 -

DSA 52.02 47.00 -
FSA 52.76 39.74 -

Table A.7: Comparison of nearby and distant-object detection on the moderate level of
KITTI val split with AP calculated by 40 recall positions
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Model Modality Params GFLOPs Car 3D AP
(M) Easy Moderate Hard

PP [83] BEV 4.8 63.4 87.75 78.39 75.18
PPred BEV 1.5 31.5 88.09 78.07 75.14

PP-DSA BEV 1.1 32.4 89.37 78.94 75.99
PP-FSA BEV 1.0 31.7 90.10 79.04 76.02

SECOND [184] Voxel 4.6 76.7 90.55 81.61 78.61
SECONDred Voxel 2.5 51.2 89.93 81.11 78.30

SECOND-DSA Voxel 2.2 52.6 90.70 82.03 79.07
SECOND-FSA Voxel 2.2 51.9 89.05 81.86 78.84

Point-RCNN [144] Points 4.0 27.4 91.94 80.52 78.31
Point-RCNNred Points 2.2 24.1 91.47 80.40 78.07

Point-RCNN-DSA Points 2.3 19.3 91.55 81.80 79.74
Point-RCNN-FSA Points 2.5 19.8 91.63 82.10 80.05

Table A.8: Detailed comparison of 3D AP with baseline on KITTI val split with 40 recall
positions
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Appendix B

SSL-Lanes: Implementation Details
and Supplementary Results

In this document, we provide technical details and additional experimental results for
SSL-Lanes.

B.1 Detailed Network Architecture for Baseline

We provide the detailed network architecture of our baseline in Fig. B.1.
For the agent feature extractor, the architecture is similar to [88]. We use an 1D CNN to
process the trajectory input. The output is a temporal feature map, whose element at t = 0
is used as the agent feature. The network has three groups/scales of 1D convolutions. Each
group consists of two residual blocks [56], with the stride of the first block as 2. Feature
Pyramid Network (FPN) [95] fuses the multi-scale features, and applies another residual
block to obtain the output tensor. For all layers, the convolution kernel size is 3 and
the number of output channels is 128. Layer normalization [6] and Rectified Linear Unit
(ReLU) are used after each convolution.
The map feature extractor has two LaneConv residual [56] blocks which are the stack of a
LaneConv(1, 2, 4, 8, 16, 32) and a linear layer, as well as a shortcut. All layers have 128
feature channels. Layer normalization [6] and ReLU are used after each LaneConv and
linear layer.
For the map-aware agent feature (M2A) module, the distance threshold is 12m. It is 100m
for the agent-to-agent (A2A) interaction module. The two interaction modules have two
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Figure B.1: Architecture of the baseline model
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residual blocks, which consist of a stack of an attention layer and a linear layer, as well as
a residual connection. All layers have 128 output feature channels.
Taking the interaction-aware actor features as input, our trajectory decoder is a multi-
modal prediction header that outputs the final motion forecasting. For each agent, it
predicts K possible future trajectories and confidence scores. The header has two branches,
a regression branch to predict the trajectory of each mode and a classification branch to
predict the confidence score of each mode.
Key differences with Lane-GCN [88]: Our main difference is we use two Lane-Conv blocks
instead of four as map-feature extractor in order to prevent over-smoothing in GNNs [133].
We also do not use the four-way fusion proposed by Lane-GCN and do away with the agent
to map (A2M) and the map to map (M2M) interaction blocks, which saves compute and
memory.

B.2 Implementation of Pretext Tasks

In this section, we discuss various design decisions for the proposed pretext tasks.

B.2.1 Lane-Masking

For this pretext task, we mask ma percent of every lane and reconstruct its features. In

Method ma minADE6 minFDE6 MR6

Baseline - 0.73 1.12 11.07

Random Masking 0.4 0.71 1.03 9.11

Lane-Masking 0.3 0.71 1.04 9.02

Lane-Masking 0.4 0.70 1.02 8.84

Lane-Masking 0.5 0.71 1.05 9.31

Table B.1: Effect of masking ratio (ma) on forecasting performance for lane-masking task

Tab. B.1, we study the influence of masking ratio on the final forecasting performance.
Random masking refers to masking out ma percent random map nodes and lane-masking
refers to masking out ma percent of lanes in the map. We finally choose ma = 0.4 as the
most effective parameter for the lane-masking pretext task, which outperforms random
masking. The model infers missing lane-nodes to produce plausible outputs during recon-
struction. We hypothesize that this reasoning is linked to learning useful representations.
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B.2.2 Distance to Intersection

For this pretext task, we explore two different options for framing the problem of predicting
the distance to the nearest intersection node in Tab. B.2. We first explore predicting this
distance as a classification task. We group the lengths into four categories: dij = 1, dij = 2,
dij = 3, dij = 4 and dij >= 5. We however find that this is harder to optimize than the
regression loss proposed in Eq. (5.7), which we finally choose as our loss for the distance
to intersection pretext task.

Method Pretext Loss minADE6 minFDE6 MR6

Baseline - 0.73 1.12 11.07

Distance to Intersection Classification 0.72 1.06 9.64

Distance to Intersection Regression 0.71 1.04 8.93

Table B.2: Effect of pretext loss type on forecasting performance for distance to inter-
section task

B.2.3 Maneuver Classification

For this pretext task, we first divide the lateral and longitudinal maneuvers by choosing
a threshold angle of 20◦ from the vertical. We next find that constrained k-means [166]
on agent end-points for lateral and longitudinal maneuvers works best to separate the
trajectory samples into different clusters. This is illustrated in Fig. B.2. For differentiating
the longitudinal maneuvers from the lane-change maneuver, we check a combination of the
distance from the lane centerlines for start and stop positions and the orientations of the
nearest centerline for start and stop positions.

B.2.4 Success/Failure Classification

For this pretext task, the primary bottleneck is the fact that the number of positive ex-
amples if far fewer than the number of negative examples. This is because there are only
a few success examples in a 2m area near the end-point of a single recorded ground-truth
trajectory, while the rest of the points in the scene can be considered as failure examples.
We consider first setting ϵ = 3m, i.e. a wider area for success examples, and then reducing
it to ϵ = 2m linearly over the total number of training steps. We find that this can actually
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Figure B.2: Modes of driving from unsupervised clustering of data

harm the final forecasting performance. We thus follow [206] to use focal loss to train our
auxiliary classification task.

B.3 Qualitative Results

We first present some multi-modal prediction trajectories on several hard cases shown
in Fig. 5.4. SSL-Lanes can capture left and right turns better, while also being able
to discern acceleration at intersections. Our pretext tasks provide priors for the model
and provides data-driven regularization for free. This can improve forecasting because of
better understanding of map topology, agent context with respect to the map, and also
improve generalization for maneuver imbalance implicitly present in data. We next provide
more visual results of our proposed SSL-Lanes on the Argoverse validation set in Fig. B.3.
Generally, these qualitative results demonstrate the effectiveness of our proposed pretext
tasks.
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Baseline Pretext Task 1
(lane masking)

Pretext Task 4
(success/failure classification)

Pretext Task 3
(maneuver classification)

Other agents
Lane centerline
Past trajectory
GT trajectory
Pred trajectory

Pretext Task 2
(distance to intersection)

Ego vehicle

Figure B.3: Qualitative results for our proposed SSL-Lanes pretext tasks on the Argoverse
[26] validation set. We outperform the baseline on several difficult cases at intersections
and lane-changes.
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B.4 Discussion: Choice of Dataset

We now compare the commonly used motion-forecasting datasets, i.e., nuScenes [19],
Waymo-Open-Motion-Dataset (WOMD) [38] and Argoverse [26]. We individually discuss
why Argoverse is best positioned to bring out the benefits of our proposed work.

• Scale of Data: We first compare the dataset size and diversity. We note that Argov-
erse is not only larger and more diverse than nuScenes, but also has greater number
of training samples and unique trajectories compared to WOMD.

nuScenes WOMD Argoverse

Number of Unique Tracks: 4.3k 7.65m 11.7m

Number of Training Segments: 1k 104k 324k

• Interesting Scenarios for Forecasting Evaluation: We next compare if the datasets
specifically mines for interesting scenarios, which is the area we want to improve the
current baseline. nuScenes was not collected to capture a wide diversity of complex
and interesting driving scenarios. WOMD on the other hand specifically mines for
pairwise interaction scenarios, where the main objective is to improve forecasting
for interacting agents. However, the scope of our study is to primarily focus on
motion at intersections undergoing lane-changes and turns. We expect the SSL-
losses to improve understanding of the context/environment, trajectory embeddings
and address data-imbalance w.r.t. maneuvers. We leave heavy interaction-based use
cases for future work. Finally, Argoverse mines for interesting motion patterns at
intersections, which involve lane-changes, acceleration/deceleration, and turns. We
thus find this dataset best suited to showcase our proposed method.

• Community focus on Argoverse: We also find that many popular motion forecasting
methods published by the robotics community have also included evaluations only on
the Argoverse dataset including: Lane-GCN, Lane-RCNN, PRIME, DCMS, TPCN,
mm-Transformer, HiVT, Multi-modal Transformer, DSP etc. This makes it easier
for us to position our work with respect to these approaches.
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B.5 Discussion: Potential of this Work

We expect this work to influence real world deployment of SSL forecasting methods for
autonomous driving. Another use case for this work is realistic behavior generation in
traffic simulation. The general construction of the prediction problem, inspired by [88],
enables a generic understanding of how an object moves in a given environment without
memorizing the training data. A neural network may learn to associate particular areas
of a scene with certain motion patterns. To prevent this, we centre around the agent of
interest and normalize all other trajectory and map coordinates with respect to it. We
predict relative motion as opposed to absolute motion for the future trajectory. This
helps to learn general motion patterns. Reconstructing the map or predicting distances
from map elements are conducted in a frame-of-reference relative to the agent of interest.
This helps in learning general map connectivity. Following work in pedestrian trajectory
prediction, we also additionally add random rotations to the training trajectories to reduce
directional bias. Furthermore, we provide strong evidence that SSL-based tasks provide
better generalization compared to pure supervised training, thereby having the ability to
effectively reuse the same prediction model across different scenarios.
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