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Abstract

Modern cosmological datasets have grown substantially in size and the precision of their
measurements. While the improvement has had a beneficial impact on our understanding
of the cosmological model, it requires equal improvements in our analysis methods and
the treatment of systematic biases to achieve optimal results. The model that best fits
current observations is a spatially flat model with a cold dark matter (CDM) component
that dominates the matter density and a cosmological constant (Λ) that dominates the
energy density (ΛCDM). The objective of most cosmological datasets is to precisely mea-
sure the parameters of the model, discover an extension, or identify a tension with the
expectations from another probe, with the eventual goal of discovering new physics. A
probe of particular interest for this thesis is measurements of Redshift Space Distortions
(RSD), which constrain the growth of structure through the parameter combination fσ8,
consisting of the logarithmic growth rate of density perturbations, f , and the amplitude
of density fluctuations normalized using the standard deviation of fluctuations in a sphere
of radius 8h−1Mpc, defined as σ8. Not only do these measurements constrain core param-
eters of the ΛCDM model, they are also particularly interesting because they come from
the velocity field rather than the density field directly. This makes them complementary to
many other large-scale probes, and particularly useful for constraining theories of modified
gravity.

One of the new datasets is the extended Baryon Oscillation Spectroscopic Survey
(eBOSS), which spectroscopically observed over 1 million galaxies between 2014-2019 as
part of the Sloan Digital Sky Survey (SDSS). I present the full eBOSS pipeline, from survey
design to the cosmological analysis of the final data release (DR 16), with a focus on my
contributions to its development. A key element is the treatment of observational system-
atics, which must be removed from the data to obtain reliable cosmological results. One
of the most significant systematics for small-scale measurements is fibre collisions, where
an observational limitation prevents observing close pairs of targets, producing a biased
clustering measurement. I present the work of myself and my collaborators within eBOSS
to generate Pairwise-Inverse-Probability (PIP) weights and combine them with Angular
Upweighting (ANG) to fully remove the effect of fibre collisions, obtaining unbiased clus-
tering measurements on all scales. I also describe my work to correct an observational
systematic in the eBOSS Emission Line Galaxy (ELG) sample, caused by inconsistent
calibration in the surveys used to identify targets for eBOSS, using a weight-based correc-
tion that does not require discarding already observed data. From the final cosmological
analyses I present measurements of the Baryon Acoustic Oscillation (BAO) scale and RSD
signal from each eBOSS sample. These measurements constrain the expansion history and
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growth history over the range 0.6 < z < 2.2, finding good agreement with the expectation
from the 2018 Planck Cosmic Microwave Background (CMB) data for a flat ΛCDM model.
When combined with other SDSS BAO measurements, as well as CMB and supernovae
observations, we obtain precise measurements of the curvature of the Universe and the
equation-of-state of the dark matter component, two of the simplest possible extensions
to the cosmological model, and find both to be in agreement with flat ΛCDM to high
precision.

Constraints on fσ8 using small-scale RSD measurements have a significant statistical
advantage over those made on large scales. My collaborators and I measure the small-scale
clustering of the DR 16 eBOSS Luminous Red Galaxy (LRG) sample, using the PIP+ANG
weights to correct for fibre collisions. We fit to the monopole and quadrupole moments of
the 3D correlation function and to the projected correlation function over the separation
range 7−60h−1Mpc with a model based on the aemulus cosmological emulator to measure
fσ8. We obtain a measurement of fσ8(z = 0.737) = 0.408 ± 0.038, which is 1.4σ lower
than the value expected from Planck 2018 measurements for a flat ΛCDM model, and is
more consistent with recent weak-lensing measurements. The level of precision achieved is
1.7 times better than more standard measurements made using only the large-scale modes
of the same sample. We also fit to the data using the full range of scales modelled by the
aemulus cosmological emulator, 0.1−60h−1Mpc, and find a 4.5σ tension in the amplitude
of the halo velocity field with the Planck+ΛCDM model, driven by a mismatch on the non-
linear scales. We perform a robust analysis of possible sources of systematics, including
the effects of redshift uncertainty and incompleteness due to target selection that were not
included in previous analyses fitting to clustering measurements on small scales.

The restriction of constraining fσ8 using only the measurement scales 7 − 60h−1Mpc
was motivated by the minimum scale at which the velocity scaling parameter used in the
emulator to replicate changes in the growth rate still matched the expectation for a change
in fσ8. This issue highlights an important concern for small-scale RSD measurements: the
need to carefully disentangle the linear and non-linear information when interpreting RSD
in terms of fσ8. It is particularly important to do this given the significant deviation from
the expectation based on the Planck+ΛCDM model derived using the full range of scales
modelled by the emulator in the previous analysis. We construct a new emulator-based
model for small-scale galaxy clustering with scaling parameters for both the linear and
non-linear velocities of galaxies, allowing us to isolate the linear growth rate. We train the
emulator using simulations from the AbacusCosmos suite, estimating the linear velocity
of galaxies by evolving the velocities of the simulations’ Zel’dovich approximation initial
conditions using linear growth. We apply a tophat smoothing kernel of radius 5h−1Mpc to
the field to remove the remaining small-scale velocity dispersion, finding good agreement
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between the behaviour of our linear velocity scaling parameter and the expectation for a
change in fσ8 on all scales. We apply the new emulator to the eBOSS LRG sample, obtain-
ing a value of fσ8(z = 0.737) = 0.368 ± 0.041, in 2.3-σ tension with the Planck+ΛCDM
expectation. We also find less dependence on the minimum measurement scale than the
previous analysis, validating our improved emulator.

The small- and large-scale eBOSS results provide a precise test of ΛCDM from both
the expansion and growth history. While consistent with ΛCDM, these measurements give
interesting insight into the current H0 and S8 tensions between various cosmological probes,
and give some evidence for a third tension between the fσ8 measurements of small-scale
RSD analyses and the Planck 2018+ΛCDM expectation. The observations and analysis
of the eBOSS samples, particularly the treatment of observational systematics, pave the
way for the next generation of surveys, such as those currently being done by the Dark
Energy Spectroscopic Instrument (DESI) and Euclid space mission. Applying the small-
scale RSD analysis method to these surveys will be critical to achieving optimal constraints,
which have the potential to revolutionize the ΛCDM model and our understanding of the
Universe.
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Chapter 1

Introduction

This chapter provides an introduction to the key concepts used in the remainder of this
thesis. The majority of this chapter was written by me, with certain sections modified from
the papers presented later in the thesis. Sec. 1.3.2 was adapted from a subsection originally
written by Faizan Mohammad as part of [57]; a paper for which I lead the analysis of the
data and the preparation of the paper (see Ch. 2). Sec. 1.4.2 and Sec. 1.4.3 were adapted
from [23] (presented in Sec. 2.7), an analysis for which I was an author based on my
contributions to the data catalogues and that I participated in proofreading. In both cases
the content has been reformatted and rewritten by me for this thesis. All non-original plots
contain a citation at the end of their captions detailing the source.

The modern field of cosmology is often described as the "era of precision cosmology".
While past "eras" were focused on discriminating between very different models of the
Universe, in the modern era we believe we have a firm understanding of much of the
theory underlying the cosmological model of our Universe. The focus is instead on refining
that model and identifying possible extensions through increasingly precise observations.
Improved precision necessitates improved analysis tools and lower tolerances for systematic
uncertainty, which in the context of Redshift Space Distortion (RSD) measurements form
the basis of my thesis work.

In this chapter I will introduce the theoretical concepts applied and investigated in
future chapters, including the currently leading cosmological model and the measurements
that have defined it. I will also present the key analysis tools that are fundamental to later
chapters.

I begin by providing an overview of our current standard model of cosmology in Sec. 1.1.
In particular I introduce the key parameters that will be measured in later chapters, and
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provide a detailed description of the growth of structure in the Universe, which is the
aspect of the standard model most directly tested throughout my thesis. I also briefly
introduce extensions to the standard model, with particular attention to those tested by
RSD measurements.

Moving from theory to observations, in Sec. 1.2 I describe the key observables that
have contributed to our cosmological knowledge. I discuss the methods and constraints
from the local distance ladder, Cosmic Microwave Background (CMB), and weak lensing
observations. I also introduce galaxy spectroscopic surveys and the ways in which they
can be used to constrain the cosmological model, which will be central to later work. I end
this section with a discussion of the current tensions between these measurements, which
provide promising avenues for expanding our understanding of the cosmological model.

In Sec. 1.3 I expand on the subject of galaxy spectroscopic surveys by describing the
measurement statistics that are used in their analysis. In particular I discuss two-point
functions, which are the type of statistic measured and analyzed throughout this thesis,
and give an overview of how they are measured in both configuration- and Fourier-space.

In Sec. 1.4 I focus on Redshift Space Distortion measurements, which are the key source
of cosmological information from galaxy spectroscopic surveys used in much of my research.
I discuss the connection between the growth of structure and RSD, and the theory behind
RSD measurements. I then present the models commonly used for modern RSD analyses,
and the current state of RSD measurements.

I expand on the particular type of RSD model used in my most significant analyses,
emulator-based models, in Sec. 1.5. I first describe the N-body simulations that form the
basis of this model. I then introduce the halo model, which is a framework for describing
how the continuous density field of the simulation can be analyzed in terms of discrete
tracers, and the methods of connecting the galaxies we observe to those halos. Lastly, I
give an overview of cosmological emulators, which combine these tools to efficiently predict
the clustering of galaxies. These emulators are one of the core pillars of the small-scale
RSD analyses that make up the later parts of this thesis.

After introducing these key concepts, in Sec. 1.6 I provide an overview of the remaining
chapters. I introduce the data and analyses that have resulted in this completed thesis,
and the implications for our understanding of the cosmological model.
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1.1 Cosmological theory

The standard model of cosmology has found great success in matching a variety of mea-
surements using a small set of well understood parameters. In this section I will give an
overview of this cosmological model, with a focus on the aspects most closely related to
RSD. In Sec. 1.1.1 I introduce the model, the key parameters, and the current constraints
on their values. In Sec. 1.1.2 I go into more detail about the growth of structure in this
model, which is the progenitor of the RSD effect. Then in Sec. 1.1.3 I describe a few of
the possible extensions to the standard model, with particular attention to those that are
relevant for RSD analyses.

1.1.1 Standard model of cosmology

The standard model of cosmology is rooted in Albert Einstein’s theory of General Relativity
(GR), which provides a framework for the evolution of the Universe. The key element from
GR for cosmology is Einstein’s field equation:

Rµν −
1

2
gµνR− gµνΛ =

8πG

c4
Tµν , (1.1)

where Rµν is the Ricci tensor that describes the local curvature of space-time, R is the
scalar curvature, gµν is the metric, Λ is the cosmological constant, and T µν is the energy-
momentum tensor of the contents of the Universe. In essence, this equation relates the
curvature of space-time to the energy content of the Universe.

Einstein’s field equation can be solved to give a description of how the size of the
Universe changes with time, one of the core fields of study for cosmology. Solutions are
generally calculated under the assumptions that the Universe is homogeneous and isotropic
on sufficiently large scales (≳ 100 Mpc [113]). Together these assumptions are referred to
as the cosmological principle, and have so far been supported by extensive observations of
the Universe (see Sec. 1.2).

Typically the size of the Universe is characterized by a scale factor, a(t) = l(t)/l(t0),
that measures how the distance, l, between two points fixed with respect to the cosmological
background changes in time. A related quantity is the redshift, z, of light emitted at time
t that we observe at time t0. The expansion also affects the wavelength of light, with the
change from the wavelength emitted at t, λemit, to the wavelength we observe at t0, λobs,
given by 1 + z = λobs/λemit. The redshift can then be related to the scale factor using:

a

a0
=

1

1 + z
, (1.2)
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where a0 is the scale factor at the present day, commonly normalized to 1. Redshift is a
common method of measuring the distance to objects in the Universe, and so will be used
throughout this thesis as a distance scale and to define the epoch of various cosmological
events.

Alexander Friedmann was the first to publish the solution to Einstein’s field equation
for an expanding Universe, now called the Friedmann equation:

(
ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
+

Λc2

3
, (1.3)

where H = ȧ/a measures the expansion rate of the universe at scale factor a, called
the Hubble parameter, and ρc2 is the combined energy density of the components of the
Universe.

ρ can be separated into the contribution from each component, which also allows us
to examine how the density of each component evolves with the scale factor. The matter
component will dilute as the inverse change in volume of the universe, so ρM ∝ a−3. The
number density of photons will also scale as a−3, while the energy of each photon will scale
as a−1, meaning the overall scaling of the radiation component is ρR ∝ a−4. These scalings
are often given in terms of an equation-of-state parameter, w, that relates the density and
pressure of a component as P = wρc2. The scale factor dependence of a component goes
as ρ ∝ a−3(1+w), meaning that the equation-of-state parameters of the various components
are w = 0 for matter, consistent with a pressureless fluid; w = 1/3 for radiation, consistent
with an ultra-relativistic fluid; and Λ behaves like a component with w = −1, consistent
with a negative pressure fluid and such that the energy density does not change with scale
factor.

In Eq. 1.3 K is the curvature signature of the Universe that has values:

K =





+1 Closed
0 Flat
−1 Open

(1.4)

In the absence of Λ, K determines the dynamics of the universe at very late times because
the K term scales as a−2, while the matter and radiation density terms scale as a−3 and
a−4 respectively. If K = +1 then the right hand side of Eq. 1.3 will become negative,
reversing the expansion of the universe and leading to collapse. We refer to this as a closed
geometry of the universe, and occurs when the energy densities are sufficiently large enough
that gravity counteracts the expansion of the universe, slowing and ultimately reversing it.
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Alternatively, if K = −1 then the right side of the equation will remain positive, meaning
the expansion will continue infinitely and the universe possesses an open geometry. This
can be understood as the energy densities being too small to effectively counteract the
expansion through gravitation, because as the scale factor increases the gravitational force
between distant parts of the universe will diminish, resulting in a universe that expands
without end. The final case is when K = 0, which is the critical boundary between the
two cases and describes a universe with a flat geometry. In this case the Universe will also
continue to expand forever as the right side of Eq. 1.3 approaches zero.

In order to determine the geometry of the universe it is useful to define the critical
density,

ρcrit ≡
3H2

8πG
, (1.5)

and describe the densities of the various components in units of the critical density:

Ω =
ρ

ρcrit
, (1.6)

Using these definitions, Eq. 1.3 can be re-arranged to give:

K =

(
Ha

c

)2

(Ω− 1) , (1.7)

where Λ has been included in Ω as a component with density ρΛ = c2Λ/(8πG). From Eq. 1.7
it is clear the comparison of ρ to ρcrit determines the sign of K, and thus the geometry of
the Universe. Current cosmological measurements (see Sec. 1.2) favour ρ = ρcrit to high
precision, implying the geometry of the Universe is flat [213, 11].

The densities of each of the major components of the Universe have been measured to
high precision. The component most familiar to humans is baryonic matter (Ωb; protons,
electrons, neutrons, etc.), and has been determined to be only a small fraction of the
energy density of the Universe. Making up a considerably larger portion is a mysterious
dark matter (Ωc for dark matter only, Ωm for total matter density when combined with
baryonic matter). Dark matter is known to interact gravitationally [284, 198, 89, 236], but
only weakly, if at all, using other mechanisms, making it currently impossible to observe
through radiation. Observations point to the majority of this dark matter having non-
relativistic velocities, so it is referred to as "cold" dark matter (CDM) [71]. The dominant
component of the Universe at the current time is the even more mysterious dark energy
(ΩΛ) that accelerates the expansion of the Universe [228, 205]. Current observations find it
to be consistent with a cosmological constant, Λ [213]. Together these two dark components
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give the abbreviation for the standard model, ΛCDM. The final component of the standard
model is radiation (Ωr), which was dominant in the early Universe and is still observable
today, but is now small compared to the other components. The measurements of these
densities at the present time, denoted by a subscript "0", from the Cosmic Microwave
Background [213] for a flat-ΛCDM universe are:

Ωm,0 = 0.311± 0.0056 , Ωb,0h
2 = 0.02242± 0.00014 , ΩΛ,0 = 0.6889± 0.0056. (1.8)

The density of the baryon component is reported as Ωb,0h
2, where h ≡ H0/(100 km s−1Mpc−1)

is a variable defined for convenience (see Sec. 1.2.1), because this is the physical density
most directly measured by CMB observations (see Sec. 1.2.2). The radiation density can be
calculated from the blackbody temperature of the CMB, TCMB = 2.72548± 0.00057 [100],
and the effective number of neutrino species, Neff = 2.99±0.17 [213], which are the largest
radiation-like components of the Universe. They give a value of Ωr,0 = 9.2 × 10−5 [187].
Throughout this thesis measurements of the density of each component, as well as other
cosmological parameters, will typically be made using their values at the present time, so
in most cases I will drop the subscript "0", and specify the redshift of the measurement
only if it occurs at an earlier time (e.g. Ωm(z = 0.7) or Ωm(0.7)). The only exceptions
are measurements of fσ8 from Redshift Space Distortion (RSD) (see Sec. 1.4), which are
always presented at the effective redshift of the sample they are measured from.

In addition to these parameters, in order to specify the expansion history we need
to know the rate of expansion at the present day, given by H0. There is some tension
in current measurements of H0 (see Sec. 1.2.5), with the best CMB measurement giving
H0 = 67.66±0.42 km s−1Mpc−1 [213] and the best local measurements giving H0 = 73.04±
1.04 km s−1Mpc−1 [229].

In addition to measuring the expansion of the Universe, the field of cosmology is also
occupied with investigating the distribution of matter and structure within the Universe.
The origin of this structure is believed to be quantum fluctuations in the very early Uni-
verse. These fluctuations introduce perturbations to the density field that closely follow a
Gaussian random field. The initial conditions of this field can be predicted by theory, and
the resulting power spectrum is well matched by a power law, parameterized by two values.
The first is the exponent of the initial power law, ns, and the second is the amplitude, As.
It is worth noting that for measurements of the late-Universe it is common to use the
standard deviation of density fluctuations in a sphere of 8h−1Mpc, σ8, to normalize the
power spectrum of density perturbations instead of As. The best CMB estimates for these
parameters, again for a flat-ΛCDM universe, are [213]:

ns = 0.9665± 0.0038 , As = 2.105× 109 ± 0.030 . (1.9)
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Together these parameters for the densities of the components of the Universe, the
expansion rate, and the power law of density perturbations define the key characteristics
of the standard cosmological model, and can be used to make accurate predictions for the
expansion of the universe and the distribution of matter within it. Within the last several
decades cosmological observations have improved to the point where all basic components
of the model are well understood and the parameters precisely constrained, defining the
era of "precision cosmology". The focus of new cosmological measurements, such as the
ones presented in Ch. 2, 3, and 4, is to investigate deviations from and extensions to the
standard model through increasingly precise measurements of the key parameters.

1.1.2 Growth of structure

While fluctuations in the initial density field are small due to their quantum origins, they
do not remain that way due to the influence of gravity. Overdense areas have stronger
gravitational attraction than the surrounding area, and so will become even denser, while
the opposite is true for underdense regions. It is this growth that leads to the structure of
the Universe we see today, including clusters, groups, and individual galaxies. While this
growth would be of interest purely for the structures it produces, it can also be used as
a method of measuring the parameters of the cosmological model and testing the ability
of that model to match observations. This aspect of the growth of structure is a major
focus of this thesis, and is the fundamental aspect of the cosmological model investigated
in Ch. 3 and 4.

When working with the density field it is useful to define the density contrast, δ =
(ρ − ρ̄)/ρ̄, where ρ̄ is the mean density of the universe, so that δ > 0 corresponds to an
overdensity and δ < 0 corresponds to an underdensity. Rather than working directly with
δ it is convenient to define the Fourier expansion of the density contrast at wavenumber k:

δk(t) =
1√
V

∫
δ(r, t)e−ik·rd3r, (1.10)

where V is the volume being integrated. Working in terms of δk, the density contrast of the
mode with Fourier wavelength k, leads to several simplifications. One of the most useful
is that perturbations at different k are independent in a Gaussian random field.

We can derive a differential equation for how these overdensities change in time by
combining the continuity, Euler, and Poisson equations, under the assumption of small
fluctuations, |δ| ≪ 1, yielding:

∂2δk
∂t2

+ 2
ȧ

a

∂δk
∂t

=

(
4πGρM − k2c2s

a2

)
δk −

2

3

T

a2
k2Sk, (1.11)
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where ρM is the mean matter density, cs is the speed of sound, T is temperature, and
all derivatives are with respect to cosmic time t. Sk is the Fourier expansion of entropy
perturbations at wavenumber k, equivalent to the Fourier expansion of perturbations in
the density field defined in Eq. 1.10.

Eq. 1.11 can be simplified under a series of conditions. One is in the form of the initial
perturbations, of which there are two usual types. The first is isentropic initial conditions,
where the fluctuations of all components of the density field (matter, radiation, etc.) are
proportional to each other, meaning the entropy is constant across the field (Sk ∝ ∇S = 0)
and the curvature varies. The second is isocurvature initial conditions, where the curvature
is constant across the field, meaning the fluctuations in the various components are not
proportional and the entropy varies. Isentropic initial conditions are predicted by currently
favoured models and a better match to data [215], so we will assume that they are the
correct form of initial conditions for the Universe, which eliminates the last term of Eq. 1.11.

The other key condition is the scales being investigated. It is helpful to refer to the
Jeans length, kJeans =

√
4πGρM(a/cs), above which (smaller wavenumber in Fourier space)

gravitational instability overcomes pressure and overdensities can grow through collapse.
Defining a sphere with a diameter equal to the Jeans length gives a characteristic mass
for which collapse is possible. Prior to recombination the Jeans mass is approximately
∼ 1019M⊙, meaning perturbations on the scales of galaxies or clusters are unable to grow.
However, shortly after recombination the Jeans mass drops significantly to ∼ 106M⊙, well
below galactic scales [187]. Therefore, the second condition is to restrict the analysis to
scales larger (smaller Fourier wavenumber) than the Jeans scale, effectively eliminating the
term proportional to k2 in Eq. 1.11. Using these two conditions, the differential equation
for the growth of perturbations becomes:

δ̈ + 2Hδ̇ − 4πGρMδ = 0. (1.12)

While Eq. 1.12 can be solved numerically for an arbitrary cosmological model, it is
informative to examine the solutions for a flat universe dominated by a single component,
matching the different epochs in the cosmic history of our Universe. For a radiation
dominated universe a ∝ t1/2 → H ∝ 1/(2t) and 4πGρM ≪ H2, so that the solution to
Eq. 1.12 is:

δ(t) = A1 + A2 ln(t) , (1.13)

where A1 and A2 are constants. So in the radiation dominated era perturbations grew
logarithmically in time, i.e. very slowly.

For a matter dominated universe a ∝ t2/3 → H ∝ 2/(3t) and 4πGρM = (3/2)H2. The
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solution is therefore:
δ(t) = B1t

2/3 +B2t
−1 , (1.14)

where B1 and B2 are again constants. These two terms are referred to as the growing
and decaying modes respectively. The growing mode increases proportional to t2/3 ∝ a,
meaning perturbations grow significantly during this epoch. Perturbations in the decaying
mode will rapidly decrease as t−1.

The final epoch is that of a dark energy dominated universe, which is expected to occur
in the future of our Universe. In that case a ∝ eHt → H = const and 4πGρM ≪ H2, so
that the solution to Eq. 1.12 is:

δ(t) = C1 + C2e
−2Ht ≃ const , (1.15)

where once again C1 and C2 are constants. So once dark energy becomes dominant per-
turbations will cease to grow at all.

When investigating the growth of structure it is useful to define a couple of quantities.
The first is the growth factor,

D(a) =
δ(a)

δ(1)
, (1.16)

which characterizes the factor by which perturbations have grown between scale factor a
and the present time. Within the matter dominated era D can be calculated as a function
of redshift using the approximation D(z) ∝ g(z)/(1 + z), where [55]

g(z) ≈ 5

2
Ωm(z)

{
Ω4/7

m (z)− ΩΛ(z) +

[
1 +

Ωm(z)

2

] [
1 +

ΩΛ(z)

70

]}−1

. (1.17)

The second quantity is the growth rate,

f(a) =
d lnD

d ln a
, (1.18)

which is the rate of change of the growth factor, and is particularly useful for analyses of
the velocity field, as discussed in Sec. 1.4. Like D, f is not a fundamental parameter in
the ΛCDM cosmological model, and can instead be calculated from the values of the other
parameters, most importantly Ωm. In our Universe a good approximation is f(Ωm) ≈ Ω0.55

m

[201].

Eq. 1.11 and subsequent derivations were constructed under the assumption of small
fluctuations, so that calculations could be limited to linear order. However, as perturba-
tions grow to δ ∼ 1 these approximations are no longer valid. Instead, we need a method
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for calculating the non-linear evolution of a density perturbation. One of the simplest
models is to assume spherical symmetry for the overdensity, and that that symmetry is
maintained throughout the collapse. This model, referred to as spherical collapse [116],
relies on modelling the overdensity as a series of spherical shells with no mass mixing,
i.e. the order of the shells is preserved. The result is that the collapse of the spherical
overdensity can be calculated down to a radius of zero, when the collapse is determined to
be complete. At this point the assumption that there is no mass mixing has been violated,
called "shell-crossing", and rather than collapsing to a point the mass shells will form an
extended and quasi-static virialized structure that we refer to as a halo (see Sec. 1.5.2).

A key consequence of this model is the critical density for collapse, δc = 1.69, which
is the overdensity a perturbation that finishes collapsing today would have at the present
day if it had continued to grow linearly. It can be used to identify initial perturbations
that will have finished collapse today if they exceed that threshold. This is in turn useful
for determining the transition between the linear and non-linear regimes. In terms of
separations of pairs of galaxies, s, which is the key independent variable of the clustering
measurements described in Sec. 1.3, s ≳ 40h−1Mpc corresponds to the linear regime,
20 ≲ s ≲ 40h−1Mpc corresponds to the quasi-linear regime where linear theory with
corrections can still be successfully applied, 5 ≲ s ≲ 20h−1Mpc corresponds to the mildly
non-linear regime, and s ≲ 5h−1Mpc corresponds to the strongly non-linear regime where
structures begin to virialize and reach an equilibrium. These different regimes can be
identified using the pairwise velocity between objects, as shown in Fig. C.1 of Appendix C.

The growth of structure provides several important methods for measuring and testing
the cosmological model. Both the amplitude of perturbations and the rate at which they
grow can be measured in observations (see Sec. 1.2). These measurements can be used
either to constrain fundamental cosmological parameters, such as As and Ωm, or to test for
extensions to the standard model. Part of the strength of these constraints is that they are
complementary to direct probes of the cosmological parameters, so can be used to validate
other observations or falsify extensions that have been tuned to match a different set of
observations. It is this aspect that makes RSD measurements (see Sec. 1.4) unique, and
motivates their use in Ch. 3 and 4.

1.1.3 Extensions to the standard model

While the ΛCDM model has had great success predicting the growth of structure and
matching a variety of observations (Sec. 1.2), there remain some tensions (see Sec. 1.2.5)
and unexplained phenomena that motivate extensions to the model. One of the most
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impactful for cosmology is the nature of dark energy. Observations of the expansion history
of the universe are largely consistent with dark energy as a cosmological constant [213, 11],
however there is not a compelling theoretical basis for the origin of a cosmological constant
of this magnitude [270]. There exist many alternative models [14], such as a scalar field that
behaves similarly to a cosmological constant, but has some deviation from an equation-of-
state of exactly w = −1. Such models are generally parameterized as having an equation-
of-state that has a constant term that differs from a cosmological constant, w0 ̸= −1, that
varies with scale factor, wa(a), or both. More complicated models feature dark energy with
multiple sub-components arising from different scalar fields, or interactions within the dark
sector between dark energy and dark matter [82].

An alternative to the set of dark energy models is to construct a modified gravity
model that differs from GR, and is able to produce accelerated expansion without invoking
dark energy (see reviews in [252, 98]). These models are typically constructed to match the
expansion history while leaving galaxy dynamics unaffected through a screening mechanism
in order to be consistent with observations at both these scales. These models are therefore
inherently difficult to test through observation.

This difficulty is a great motivator for measurements of the growth of structure, because
that growth is very sensitive to the model of gravity. These measurements can also be used
to constrain dark energy models through their dependence on the expansion rate, which
opposes the formation of structure. RSD measurements in particular are very valuable
because they probe the velocity field, making them complementary to other probes of
cosmology.

1.2 Cosmological observations

The greatest success of the ΛCDM cosmological model is the ability to match a wide variety
of observations with a small set of parameters. In this section I will introduce some of the
key observations that have led to the acceptance of the ΛCDM model and provided our
most important constraints on its parameters.

In Sec. 1.2.1 I discuss one of the earliest sources of cosmological information, and
still one of the most impactful today: using a chain of calibrated distance measurements,
called the distance ladder, to measure the local expansion rate. Then in Sec. 1.2.2 I
discuss measurements of the Cosmic Microwave Background (CMB), which provide some
of our most complete and precise measurements of the ΛCDM cosmological parameters. In
Sec. 1.2.3 I give an overview of spectroscopic galaxy surveys, such as the Extended Baryon
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Oscillation Spectroscopic Survey (eBOSS) presented in Ch. 2, and the unique constraints
they provide on both the expansion and growth history of the Universe. In Sec. 1.2.4 I
discuss weak lensing surveys, and the complementary information they provide on structure
growth and the matter content of the Universe. Finally, in Sec. 1.2.5 I discuss tensions
between the results of these different probes, and the opportunities they provide to expand
our knowledge of the cosmological model.

1.2.1 Local distance ladder

One could argue that Edwin Hubble’s measurements of the recession velocities of nearby
galaxies through the local distance ladder [146] were the first cosmological measurements.
The principle of the measurement is simple. In an expanding universe distant galaxies will
appear to be receding from us, with more distant galaxies receding more quickly. Locally,
the relationship between recession velocity and distance is linear, and goes as:

vr = H0r + vpec,r (1.19)

where vr is the radial velocity of the galaxy (that is, along the line-of-sight), H0 is the
Hubble constant at present time, and vpec,r is the radial velocity of the galaxy caused by
the growth of structure that is in addition to the recession velocity, termed the peculiar
velocity. This relationship can be used to measure H0, one of the fundamental parameters
of the ΛCDM model (see Sec. 1.1.1). However, in order to obtain an accurate and precise
measurement we require vpec,r to be small compared to the recession velocity. Typical
peculiar velocities are on the order of hundreds of km/s while H0 is now known to have
a value of ∼ 70 km s−1Mpc−1 [213, 229], so objects with distances on the order of tens of
Mpc or greater are required.

Determining accurate and precise measurements to such distant objects is non-trivial
because of the difficulty in determining the intrinsic size or brightness of astrophysical
objects. The basis of the distance ladder technique is to begin with a distance measurement
that is known absolutely, such as through geometric means, and use that to calibrate the
distance to nearby objects that are known to have a standard observational quantity, such
as the luminosity. Those objects can then be used to calibrate the distance to more distant
objects, and so on, until accurate distances are obtained for objects sufficiently far away
to measure H0.

Modern distance ladder measurements use parallax measurements of stars in the Milky
Way and the Magellanic clouds, which are purely geometric measurements and do not
require knowledge of the intrinsic qualities of the objects. Measurements from the GAIA
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space telescope [107] provide the most accurate parallax measurements to date [106]. There
are multiple options for further rungs of the ladder, the most well-known being Cepheid
variable stars, which are what Hubble originally used to measure the distance to nearby
galaxies. Cepheids vary in brightness cyclically with a fixed period [172], and the period of
that cycle is highly correlated with the total luminosity of the star [43]. This allows them
to be used as a standard candle: an object whose brightness is intrinsically known, and as
such the distance to the object can be determined from the flux received from the object.
Cepheids are bright enough to observe at a distance on the order of tens of Mpc, so that
they can be used for a basic distance ladder measurement and to calibrate more distant
standard objects.

The final rung of the distance ladder is type-Ia supernovae, which are supernovae from
white dwarf stars that through accretion have exceeded the maximum mass for which elec-
tron degeneracy pressure can prevent collapse, 1.44M⊙ [144, 16, 63]. Because this event is
related to a fixed mass the peak luminosities of type-Ia supernovae have little dispersion,
and that dispersion is correlated with the rate at which the luminosity decays, allowing
them to be calibrated as an accurate standard candle [127]. Type-Ia supernovae are also
extremely bright, with peak luminosities on the order of ∼ 1010 L⊙ [62]. This allows dis-
tance ladder measurements to be extended to high redshift where the matter dominated
epoch transitioned to the current dark energy dominated epoch, making them sensitive to
the densities of those components, Ωm and ΩΛ. Type-Ia supernovae observations provided
the first evidence for the accelerated expansion of the universe [228, 205], unveiling the role
of dark energy in the evolution of our Universe. Currently, type-Ia supernovae observa-
tions calibrated using Cepheid variables from the SH0ES collaboration provide the tightest
constraints on the expansion rate from the distance ladder, with a most recent result of
H0 = 73.04± 1.04 km s−1Mpc−1 [229].

An alternative for Cepheids as the intermediate rung of the ladder is the Tip of the
Red Giant Branch (TRGB) [105]. As helium builds up in the core of main sequence
stars hydrogen fusion will continue in a shell around the core, causing the star’s internal
temperature to increase and the star to expand, transitioning to a red giant. This process
will continue until the core temperature reaches the threshold required to start helium
fusion, at which point the star will undergo a rapid increase in temperature and decrease in
luminosity, leaving a sharp cutoff in colour-space. Like the trigger of type-Ia supernovae,
this phenomenon is linked to a universal mechanism, the temperature required to fuse
helium, so will occur in the same way for all stars and in all galaxies, with only weak
dependencies on mass and metallicity. The observations of the TRGB in the halos, where
observational systematics are easier to correct for, of supernovae type-Ia host galaxies have
provided a strong intermediate rung on the distance ladder. A recent result from the
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Carnegie-Chicago Hubble Program (CCHP) measured H0 = 69.8±2.4 km s−1Mpc−1 using
TRGB calibrations for type-Ia supernovae distances [105].

The value of H0 has now been determined to high precision using a variety of probes,
although there remains some tension over the true value (see Sec. 1.2.5). In the second
half of the 20th century this tension was even greater and generated significant debate
amongst astronomers, with estimates ranging from 50− 100 km s−1Mpc−1 [240]. This was
particularly concerning because it is standard in cosmology to use comoving distances,
which are distances corrected for the expansion of the Universe such that two points that
are stationary with respect to the background expansion will maintain the same comoving
separation throughout cosmic time. Unless otherwise specified, all distances described
in this thesis are in comoving units. The issue in using comoving units to describe the
distance to objects is that one must integrate over the expansion history up to the redshift
of the object, which introduces a factor of 1/H0. Changing the value of H0 would therefore
require updating all comoving distance measurements. To avoid this problem it has become
standard to calculate distances assuming a value of H0 = 100 km s−1Mpc−1 and introduce
an additional parameter, h = HT

0 /(100 km s−1Mpc−1), where HT
0 is the true value for

the Universe. Comoving distance measurements can then be described in units of Mpc/h
or h−1Mpc. In this way comoving distances can be calculated consistently regardless of
values of H0, and comoving distances for a particular cosmology can be easily calculated by
dividing by the value of h for a given value of HT

0 . Throughout this thesis many distances
will be described in units of h−1Mpc.

1.2.2 Cosmic Microwave Background

While the distance ladder provided some of the first cosmological measurements, many
of the most precise and comprehensive tests of the ΛCDM model have come from obser-
vations of the Cosmic Microwave Background (CMB). By tracing the expansion of the
Universe backwards we arrive at a very early Universe that was much denser and hotter
than today, such that all baryonic matter was in the form of an ionized plasma that was
coupled to the photons making up the radiation component. As expansion continued and
temperatures decreased the ions combined to form neutral elements, a time referred to
as recombination, and decoupled from the photons. With only small interaction cross-
sections the photons began free streaming, and are observable today moving through the
Universe in all directions, and following a blackbody spectrum with effective temperature
TCMB = 2.72548± 0.00057 [100], which we refer to as the Cosmic Microwave Background.

The CMB provides a wealth of cosmological information. Since it can be observed in
all directions it presents a rigorous test of homogeneity and isotropy, which is passed with
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high precision [216]. CMB radiation also contains information from a variety of interactions
with matter post-recombination, such as gravitational lensing by foreground matter [39,
145, 175, 214]; fluctuations in the gravitational potential along the path of the photons,
called the Sachs-Wolfe effect [237]; and scattering by moving charge particles, called the
Sunyaev-Zel’dovich effect [254, 255, 256]. Together, the variations in the temperature of
the CMB caused by these effects are referred to as secondary CMB anisotropies, because
they occur after the photons were last scattered by the baryonic component, called the
last scattering surface. The various secondary anisotropies contain significant information
about the matter content and growth of structure in the Universe, and can also be combined
with a variety of other probes for joint analyses.

While secondary anisotropies can be used to test many aspects of the cosmological
model, the most powerful constraints come from the primary CMB anisotropies, arising
from perturbations imprinted in the photon temperature before last scattering. Prior to
decoupling perturbations in the photon temperature were correlated with perturbations in
the matter density field. This correlation means that the temperature power spectrum of
the CMB can be used to measure the initial amplitude, As, and slope, ns, of the matter
power spectrum.

As well as the initial power spectrum of density perturbations, the CMB temperature
power spectrum also includes the imprint of the matter-radiation equality scale through
the growth of perturbations. As explained in Sec. 1.1.2, prior to recombination density
perturbations below super-cluster scales are unable to collapse. Instead, standing waves
are produced in the baryonic density field driven by the balance between gravitational
attraction and the photon pressure of the radiation component. The maximum scale of
these Baryon Acoustic Oscillation (BAO)s is determined by the sound horizon, rd: the
maximum distance the waves are able to propagate before last scattering. The scale of
this first peak can be used as a standard ruler in the CMB power spectrum, constraining
H0, Ωm, and ΩΛ through the expansion history. The position and relative heights of later
peaks are determined by the physical densities of dark matter and baryons, wc = Ωch

2 and
wb = Ωbh

2, which combine to give wm = wc +wb = Ωmh
2, providing additional constraints

on these parameters. Together, the CMB primary and secondary anisotropies provide tight
constraints on all of the key ΛCDM parameters [213].

Observations of the CMB are difficult to complete from the Earth due to atmospheric
absorption by water vapour. Some of the most successful missions have been completed
from space, including COBE [250], WMAP [28], and Planck [211]. Planck provides the
most precise measurements of many cosmological parameters to date and is commonly
used as the default parameter set for ΛCDM. As such it will commonly be referred to
throughout this thesis, especially in terms of the results from the final major data release
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in 2018. Additional observations of the CMB have been completed from the ground,
especially focused on using larger diameter telescopes to exceed the angular resolution
possible for space-based mission. The best resolution ground-based telescopes currently
operating are the Atacama Cosmology Telescope (ACT) [104] and South Pole Telescope
(SPT) [53].

1.2.3 Spectroscopic galaxy surveys

The distance ladder and CMB provide constraints from the very late and very early Uni-
verse respectively. We can obtain complementary observations by examining the matter
field at intermediate redshifts through surveys of galaxies. Because distant galaxies have
recession velocities that far exceed their peculiar velocities, we can use spectroscopic ob-
servations to determine the distance to the galaxies and build a 3D map of the Universe.
While the positions of individual galaxies may have significant uncertainty because of their
peculiar velocity and the limited exposure time that can be dedicated to each object, by
observing large numbers of galaxies we can use their clustering to make statistically reliable
measurements.

There are two main features targeted by these surveys for cosmological measurements.
The first is the BAO scale discussed in Sec. 1.2.2, that remains imprinted in the mat-
ter density field after recombination and can be observed in the distribution of galaxies
[94, 61]. Because the BAO is a fixed length scale, assuming the sound horizon is indepen-
dently known it can be used as a standard ruler to constrain the expansion history [203].
These constraints are particularly useful because they occur in a different redshift regime
than the distance ladder measurements, and can be observed back through cosmic history
to before the transition from the matter dominated era to the dark energy dominated era.
As such, the measurements of BAO from spectroscopic galaxy surveys provide an indepen-
dent constraint of the expansion history with complementary degeneracies in the various
parameters with distance ladder and CMB measurements (see Sec. 2.7.3 or e.g. [11]).

In addition to using the BAO scale as a standard ruler, galaxy surveys also contain
a wealth of information about the growth history of structure from the velocities of the
galaxies. While the recession velocity due to the expansion of the universe dominates our
relative velocity with distant galaxies, those galaxies also possess an additional velocity
arising from the growth of structure, termed the ‘peculiar velocity’. When the redshift of
a galaxy is used to infer the radial distance to the galaxy assuming that all of the velocity
comes from the expansion of the Universe, as is the case for spectroscopic galaxy surveys,
the peculiar velocities cause the radial positions of the galaxies to shift, called Redshift

16



Space Distortion (RSD) [152]. These RSD produce changes in the observed clustering of
the galaxies in redshift space, and because of the link to structure growth are another
source of significant cosmological information. A full description of RSD and their use as
a cosmological observable is given in Sec. 1.4.

Many spectroscopic galaxy surveys have been used to constrain the expansion and
growth histories of the Universe over the last several decades. Early surveys include the
first observations made as part of the Sloan Digital Sky Survey (SDSS) [274], catego-
rized as SDSS-I and -II and collected in the Main Galaxy Sample (MGS) [1]. There have
also been several major surveys outside of the SDSS, such as the 6-degree Field Galaxy
Survey (6dFGS) [151], Galaxy and Mass Assembly (GAMA) survey [84], WiggleZ Dark
Energy Survey [83], and VIMOS Public Extragalactic Redshift Survey (VIPERS) [208].
The Baryon Oscillation Spectroscopic Survey (BOSS) [73], part of SDSS-III [93], observed
the largest galaxy sample to date and provides the most precise measurements from both
BAO and RSD. The Extended Baryon Oscillation Spectroscopic Survey (eBOSS) [72] is
the successor to BOSS from SDSS-IV, expanding to higher redshift and introducing new
galaxy samples. This thesis focuses on the analysis of eBOSS data. The Dark Energy
Spectroscopic Instrument (DESI) [79, 80] is an on-going spectroscopic survey expected to
increase the number of observed galaxies by an order of magnitude, and will be closely
followed by the Euclid space mission [168].

There are several methods for constructing a multi-object spectrograph, with the choice
of the SDSS and many other large surveys being a fibre-fed spectrograph. While fibres
provide a versatile method of targeting many objects across a field-of-view, there are some
challenges in this method. Fibre-fed surveys are limited in the radius on the sky for
which two fibres can be simultaneously targeted due to the physical size of the fibres
and their housing, referred to as "fibre collision". This limitation causes close objects to
be systematically missed, which leads to a biased galaxy catalogue because galaxies that
have correlated angular positions also have correlated radial positions. This bias becomes
stronger for measurements made using smaller galaxy separation ranges, which are a focus
of this thesis [226]. For that reason, an effective method is required to correct for fibre
collisions. For the eBOSS analyses detailed in Ch. 2, 3, and 4, I use the combined method
of Pairwise-Inverse-Probability (PIP) weighting [36] with Angular Upweighting (ANG)
[202], which provides an unbiased correction to fibre collisions on all scales provided the
probability that each pair of galaxies could have been observed in the survey is known,
and no pairs have zero probability of being observed. Generating and applying PIP+ANG
weights for eBOSS is described in Sec. 2.5.
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1.2.4 Galaxy lensing surveys

In addition to spectroscopic surveys to measure galaxy clustering, purely photometric
surveys of galaxies also provide significant cosmological information. The most common
application of such surveys is measuring the gravitational lensing of background galaxies
by foreground matter. When the source galaxy and lens matter are not closely aligned
the change in the observed source galaxy is small, and the phenomenon is referred to as
"weak lensing" [115, 87]. Because the intrinsic shape of galaxies varies widely it is not
possible to obtain tight constraints from any single object. However, in the same way as
the 3D clustering of galaxies in spectroscopic surveys can be used to produce informative
clustering measurements, a statistical analysis of the correlations between galaxy shapes
and foreground galaxies provides significant cosmological information [185, 40, 153].

Modern weak lensing surveys typically extract information from a set of three, two-point
statistics (see e.g. [3, 136]). Two-point statistics refer to measurements that correlate the
positions of two objects (see Sec. 1.3.1). In weak lensing analyses the first statistic used
are the correlations between distortions in the shapes of galaxies, referred to as the galaxy
shear [153, 21]. This measurement is therefore referred to as the shear-shear correlation,
or the shear auto-correlation. The second is the correlation between the galaxy shear and
the position of galaxies: the galaxy-shear cross-correlation. The third is the correlation
between the positions of the galaxies themselves, the galaxy-galaxy correlation or galaxy
auto-correlation, which provides complementary information to the shear statistics.

Because weak lensing is sourced from the foreground distribution of matter it is most
sensitive to two parameters. The first is the total amount of matter, parameterized by
Ωm. The second is how clumped together the matter field is, which is described on various
scales by the amplitude of the matter power spectrum, P (k) (see Sec. 1.3.3). Because the
shape of the initial power spectrum is known from the initial conditions (see Sec. 1.1.1),
and in the linear regime the growth of structure is scale independent (see Eq. 1.12 in
Sec. 1.1.2), the amplitude of the power spectrum only needs to be measured at an arbitrary
scale to specify its behaviour. Typically, the standard deviation of the amplitude of mass
fluctuations within a sphere of radius R, σR, is used for this normalization, and can be
calculated from the power spectrum using:

σ2
R(z) =

∫ ∞

0

P (k)

(
3

(kR)2
[sin(kR)− kR cos(kR)]

)2

k2dk . (1.20)

For historical reasons the radius of the sphere is typically taken to be R = 8h−1Mpc.
Weak lensing measurements provide a degenerate measurement of Ωm and σ8, which is
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often re-parameterized as

S8 ≡ σ8

√
Ωm

0.3
, (1.21)

because S8 is perpendicular to the degeneracy direction of the weak lensing parameter
measurements, and so is the best constrained quantity.

There have been many weak lensing measurements since the first successful detection in
the year 2000 [155, 264, 271]. The current leading constraints come from the Dark Energy
Survey (DES) [70], Kilo-Degree Survey (KiDS) [163], and Hyper Suprime-Cam (HSC) [5]
collaborations. The best constraints from these three surveys at the time of writing are
S8 = 0.776 ± 0.017 [3] from DES, S8 = 0.766+0.020

−0.014 [136] from KiDS, and S8 = 0.804+0.032
−0.029

[126] from HSC, which are all mutually consistent.

1.2.5 Tensions between observations

While the ΛCDM model has been successful in matching observations from all these probes
with a very small set of parameters, there do exist some tensions in the values of some
parameters between probes. The most significant is between the values of H0 determined
by the distance ladder (e.g. [229]) and other probes of the late time expansion rate (e.g.
[272, 206]), and the values determined from the CMB (e.g. [213, 6]) and BAO scale within
spectroscopic galaxy surveys (e.g. [11]), which are calibrated by early-Universe physics.
The measurements from each of these camps are generally in agreement with each other
and in mild tension with the measurements of the other camp, producing an overall tension
that is on the order of 4−6σ depending on analysis choices and the treatment of systematic
uncertainties [4]. Fig. 1.1 shows a collection of recent H0 measurements, where this division
is clear, although exceptions do exist (e.g. [105]).

It is very difficult to reconcile these measurements through a modification to the late-
Universe expansion rate because the BAO measurements from spectroscopic galaxy surveys
span a wide range of redshifts and are individually consistent with a ΛCDM model, and
because complementary measurements from other probes constrain many of the simplest
modifications to the model [160]. Thorough investigations of possible sources of systematic
error and their treatments have also been conducted for each probe without uncovering a
source that can convincingly explain the difference, particularly because each camp consists
of multiple probes containing measurements conducted by a variety of groups using a
variety of instruments. Efforts continue to find an explanation using a modification to
early-Universe physics, such as introducing early-Dark Energy to change the sound horizon
and thus shift the BAO scale (e.g. [137]), but a perfect solution has yet to be discovered. As
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Moresco et al. (2022), open wCDM with systematics: 67.8-7.2
+8.7

Moresco et al. (2022), flat ΛCDM with systematics: 66.5 ± 5.4

Hotokezaka et al. (2019): 70.3-5.0
+5.3

Mukherjee et al. (2019), GW170817+VLBI: 68.3-4.5
+4.6

Mukherjee et al. (2020), GW170817+ZTF: 67.6-4.2
+4.3

Gayathri et al. (2020), GW190521+GW170817: 73.4-10.7
+6.9

Palmese et al. (2021), GW170817: 72.77-7.55
+11

Abbott et al. (2021), GWTC–3: 68-8.0
+12.0

Mukherjee et al. (2022), GW170817+GWTC–3: 67-3.8
+6.3

Wong et al. (2019), H0LiCOW 2019: 73.3-1.8
+1.7

Shajib et al. (2019), STRIDES: 74.2-3.0
+2.7

Liao et al. (2019): 72.2 ± 2.1
Liao et al. (2020): 72.8-1.7

+1.6
Qi et al. (2020): 73.6-1.6

+1.8
Millon et al. (2020), TDCOSMO: 74.2 ± 1.6

Yang, Birrer, Hu (2020): 73.65-2.26
+1.95

Birrer et al. (2020), TDCOSMO+SLACS: 67.4-3.2
+4.1

Birrer et al. (2020), TDCOSMO: 74.5-6.1
+5.6

Denzel et al. (2021): 71.8-3.3
+3.9

Wang, Meng (2017): 76.12-3.44
+3.47

Fernandez Arenas et al. (2018): 71.0 ± 3.5

Schombert, McGaugh, Lelli (2020): 75.1 ± 2.8
Kourkchi et al. (2020): 76.0 ± 2.6

Pesce et al. (2020): 73.9 ± 3.0

de Jaeger et al. (2020): 75.8-4.9
+5.2

de Jaeger et al. (2022): 75.4-3.7
+3.8

Cantiello et al. (2018): 71.9 ± 7.1
Khetan et al. (2020) w/ LMC DEB: 71.1 ± 4.1

Blakeslee et al. (2021) IR-SBF w/ HST: 73.3 ± 2.5

Huang et al. (2019): 73.3 ± 4.0

Yuan et al. (2019): 72.4 ± 2.0
Reid, Pesce, Riess (2019), SH0ES: 71.1 ± 1.99

Freedman et al. (2020): 69.6 ± 1.9
Soltis, Casertano, Riess (2020): 72.1 ± 2.0
Kim, Kang, Lee, Jang (2021): 69.5 ± 4.2

Freedman (2021): 69.8 ± 1.7
Anand, Tully, Rizzi, Riess, Yuan (2021): 71.5 ± 1.8

Jones et al. (2022): 72.4 ± 3.3
Dhawan et al. (2022): 76.94 ± 6.4

Camarena, Marra (2019): 75.4 ± 1.7
Riess et al. (2019), R19: 74.03 ± 1.42
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Figure 1.1: Measurements of H0 from a variety of probes, divided into direct probes of the
local expansion rate and indirect probes that assume a particular cosmological model. The
purple band shows the Planck 2018 constraint [213], while the orange band shows a recent
measurement from the SH0ES collaboration [229]. LSS refers to large-scale structure, SBF
to surface brightness fluctuations, and GW to gravitational waves. Source [4].
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a result, the H0 tension remains one of the most significant unsolved problems of modern
cosmology, and one of the most promising clues to discover new physics in the cosmological
model.

The other most famous tension is between the measurements of S8 inferred from ob-
servations of the CMB (e.g. [213, 6]) and the value found by weak lensing surveys (e.g.
[3, 136, 126]) and other probes of the Universe at late times (e.g. [60]), shown in Fig. 1.2.
While less significant than the H0 tension, typically quoted as a 2− 3σ tension depending
on analysis choices, it is nonetheless concerning because it is found in all major weak lens-
ing measurements, which are also found to agree with several other cosmological probes
sensitive to the growth history of the Universe. This issue is further complicated because
many theoretical methods of raising H0 for CMB measurements also increase S8 [148],
making a simultaneous resolution for both tensions difficult to achieve. The S8 tension
remains another major unsolved issue within modern cosmology, and an important area of
future research.

Each of the observations discussed above, in isolation, find a good fit to a ΛCDM
cosmological model, so these tensions provide the most promising avenues for deepening
our understanding of Universe and extending that model. For that reason new cosmological
measurements, particularly ones that provide complementary constraints or make use of
a different observational probe, are very valuable. This is particularly true of the eBOSS
survey presented in Ch. 2, which extended spectroscopic galaxy surveys into a new redshift
regime through observations of several novel galaxy populations to place greater constraints
on H0 and other parameters, and the small-scale RSD measurements presented in Ch. 3
and 4, which used new modelling techniques to improve constraints on structure growth,
providing a complementary constraint to those presented for the S8 tension.

1.3 Clustering measurements

In this section I introduce the two most common statistics used in galaxy clustering mea-
surements. I begin by describing the larger class of two-point functions in Sec. 1.3.1, and
the reasons that they are primary tools used for the cosmological analysis of galaxy cluster-
ing. Next, in Sec. 1.3.2, I describe the correlation function, which is a two-point function
of galaxy clustering in configuration space. I provide a description of the correlation func-
tion, the methods used to calculate it, and the variations used for clustering analyses in
the remainder of this thesis. Then, in Sec. 1.3.3, I provide the same details for the Fourier
transform of the correlation function: the power spectrum.
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1.3.1 Two-point functions

N -point functions in general describe a class of statistics that use correlations between
N different points in the data catalogue to summarize the information contained within.
There exist many possible statistics for a range of possible values of N , but here I will
focus on two-point statistics due to their wide application in the field. The reason for
the popularity of two-point functions is that the statistics of a Gaussian random field,
which is a good approximation for the initial density field, are completely specified by the
field’s Two-point Correlation Function (2PCF) or its power spectrum. This compression
of information is beneficial because for large datasets it is often expensive in terms of
modelling complexity and computing resources to extract information from each individual
object in a catalogue. Instead, by using a two-point function we are able to access the same
information, but reduced to a smaller and more manageable set of values.

Of course, under the influence of gravity the initial field will undergo some non-linear
evolution that will introduce more pronounced non-Gaussianities. Two-point statistics are
thus not a complete description of the late-Universe density field, and higher order statistics
are required to extract complete information [239, 200, 182]. Nevertheless, because higher
order statistics require significantly more computation time, are higher-dimensional and
thus require larger data vectors, and are noisier, in most analyses only two-point statistics
are used because they are still able to access the majority of the information from the field.

1.3.2 Correlation function

The first two-point statistic I will discuss is the correlation function, ξ(s). It describes
the excess probability of finding another object in the catalogue at a given separation, s,
compared to a Poisson distribution. In galaxy clustering analyses, such as those described
in this thesis, it is typically calculated using pair counting, where counts of each pair
of objects in the data catalogue are binned in terms of the pair separation. Due to the
complex nature of galaxy surveys it is often necessary to apply weights to the objects
in the catalogue, either to remove observational systematics or to optimize the clustering
signal. In that case a pair consisting of object i and object j will contribute a value of
wTot

ij = wiwjwij, where wi and wj are the weights of objects i and j respectively, and wij

is any additional weight applied to the specific pair formed by i and j.

In order to assess the expected clustering for a Poisson distribution a catalogue of
random points is constructed over the same angular and radial footprint, and pair counting
is completed for the random catalogue as well. It is typical to use a random catalogue with
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many times more points than the data catalogue to reduce the impact of shot-noise on the
estimated correlation function. For example, in the eBOSS analyses described in Ch. 2 a
factor of 50 times more randoms compared to the data catalogue were used [231].

The simplest estimator for the correlation function, called the natural estimator, can
then be calculated as:

ξ(s) =
DDs)

RR(s)
− 1, (1.22)

where DD and RR are the weighted data-data and random-random pair counts respec-
tively. However, while the natural estimator is simple, there exist better alternatives. The
most commonly used is the Landy-Szalay estimator, which was shown to be least-bias and
least-variance in [164]. The Landy-Szalay estimator is calculated as:

ξ (s) =
DD (s)− 2DR (s)

RR (s)
+ 1, (1.23)

where DR are weighted pair counts, with one object taken from the data catalogue and
the other from the random catalogue.

For any estimator it is important to account for the difference in the number of galaxies
and randoms by normalising the pair counts by the total number of distinct pairs. For the
data-data pair counts this normalization is

(NormDD)
−1 =

ND(ND − 1)

2
, (1.24)

where ND is the weighted number of objects in the data catalog. The normalization for
the random-random pair counts is equivalent after substituting NR, the weighted num-
ber of randoms, for ND, and the normalization of the data-random pair counts is simply
(NormDR)

−1 = NDNR. It should be noted that this calculation is valid when only indi-
vidual object weights wi and wj are used, and not pair-based weights wij. In the case of
pair-based weights, such as the Pairwise-Inverse-Probability (PIP) weights applied in later
chapters, the normalization must be calculated by summing each weighted pair.

The pair separation, s, is a vector quantity, and as such measuring the full 3D corre-
lation function requires a large number of bins to measure the correlations along different
directions. This is an issue for clustering measurements that empirically estimate the co-
variance between data points, a necessary ingredient in fitting a model to data. In order
to obtain a stable estimate of the covariance matrix the number of realizations used to
estimate the covariance typically must exceed the number of data points. Two of the most
common methods of empirical covariance matrix estimation are from simulations and by
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resampling the data, either using jackknife or bootstrap. In simulation-based estimates
each simulation requires significant computing resources, while additional resampling real-
izations require reducing the size of the subsamples used in the resampling, which must be
balanced against maintaining sufficient size that the subsamples remain an accurate repre-
sentation of all the clustering information used in the analysis. As such, both methods face
limitations in the number of realizations they can accommodate, so most analyses elect to
compress the information of the full 3D correlation function to more manageable statis-
tics. If the clustering of objects is isotropic it would be possible to reduce the correlation
function to one-dimension by measuring in terms of the distance between pairs, s = |s|.
While this is the case for the real-space clustering of galaxies, in redshift-space the peculiar
velocities of galaxies change their apparent position along the line-of-sight, as described in
Sec. 1.4. In that case it is typical to also bin pairs in µ = r∥/s, the cosine of the angle
between the line-of-sight direction and the pair separation vector.

The most common compression is to measure the multipoles of the redshift-space cor-
relation function, ξ(s, µ). Multipole moments ξℓ are defined as,

ξℓ(s) = (2ℓ+ 1)

∫ 1

0

ξs (s, µ)Lℓ(µ)dµ, (1.25)

where Lℓ is the ℓ-order Legendre polynomial. Only the even multipole moments are non-
zero, with progressively larger moments becoming noisier. For that reason the most com-
mon multipoles to use in clustering analyses are the monopole, ξ0; quadrupole, ξ2; and
hexadecapole, ξ4.

An alternative compression mechanism is to integrate along the line-of-sight to measure
the projected correlation function, wp(r⊥). This has the added benefit of removing the
effect of RSD on the clustering. The projected correlation function wp(r⊥) is estimated
through,

wp (r⊥) = 2

∫ r∥,max

0

ξs(r⊥, r∥)dr∥, (1.26)

where r⊥ and r∥ are the normal and parallel to the line-of-sight components of the pair
separation, s. r∥,max is the maximum line-of-sight separation included in the integral.
Integrating over the entire line-of-sight of the catalogue would completely remove RSD
effects, but would require a much larger data vector. As such r∥,max is usually taken to
be a sufficiently large distance that the effects of RSD become minimal, on the order of
∼ 100h−1Mpc.
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1.3.3 Power spectrum

The Fourier transform of the 2PCF is the power spectrum, and while it contains the same
information about the density field it also has one important advantage for large-scale
analyses that target the linear regime. The Fourier modes of a Gaussian random field are
independent (see Sec. 1.1.2), so the large-scale modes that evolve linearly and whose growth
can be predicted analytically have little contamination from small-scale non-linear modes
whose evolution is much more difficult to predict. This is not the case for the correlation
function, where all modes contribute to the amplitude on all scales, meaning small-scale
corrections must be applied even in large-scale analyses.

Rather than pair counting, the power spectrum is estimated from the Fourier transform
of the density field. The geometry of the data catalogue must still be accounted for,
particularly in galaxy surveys where the geometry is highly irregular due to angular masks
and a complicated radial selection function, so a random catalogue is again used to replicate
the boundaries of the survey, called the survey window function. In the case of the power
spectrum this is typically accomplished by dividing the survey volume into a grid and
constructing a weighted over-density field using [97, 273]:

F (r) = nD(r)− αnR(r) , (1.27)

where ng(r) and nR(r) are the density of data objects and randoms at position r. The
scaling α corrects for the different effective numbers of data and randoms, including con-
tributions from weights, and is calculated as:

α =

∑ND

i=1wD,i∑NR

i=1 wR,i

(1.28)

where wD,i and wR,i are the weights for the i-th data and random objects respectively.

As was the case with the correlation function, power spectrum analyses are usually
compressed to analyze the information in the power spectrum multipoles, Pl(k). The
power spectrum multipoles can be estimated from the Fourier transform of F (r) using
[35]:

Pl(k) =
2l + 1

I

∫
dΩk

4π
F0(k)Fl(−k)− P noise

l (k) , (1.29)

where I is a normalization term calculated as

I = α

NR∑

i=1

wR,inD,i , (1.30)
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and P noise
l (k) is a scale-independent shot noise component given by

P noise
0 =

1

I

[
ND∑

i=1

w2
D,i + α2

NR∑

i=1

w2
R,i

]
. (1.31)

Fl(k) is the l-th multipole of the Fourier transform of F (r):

Fl(k) =

∫
d3rF (r)Ll(k̂ · η̂)eik·r , (1.32)

where η̂ is the line-of-sight direction.

1.4 Redshift space distortions

Redshift Space Distortion (RSD) are a powerful cosmological probe, and provide a unique
measurement of structure growth in the Universe. I give an overview of RSD in Sec. 1.4.1,
discussing the origin of RSD, how they can be used for cosmological constraints, and their
effects on galaxy clustering. I then introduce the two RSD models used for the analysis
of the eBOSS data in Ch. 2: Convolutional Lagrangian Perturbation Theory (CLPT)
with Gaussian Streaming (GS) (Sec. 1.4.2) and the Taruya-Nishimichi-Saito (TNS) model
(Sec. 1.4.3). Next, in Sec. 1.4.4 I introduce two classes of models used to extend RSD
analyses towards non-linear scales: Effective Field Theory (EFT) models and simulation-
based approaches. Lastly, in Sec. 1.4.5 I present some of the current constraints from
measurements of RSD within galaxy clustering.

1.4.1 Theoretical overview

RSD are produced when the radial positions of galaxies are inferred from their redshifts
assuming the recession velocity is due entirely to the expansion of the Universe. Galax-
ies possess an additional velocity component, the peculiar velocity, that is caused by the
growth of structure and is sourced from gravity. The peculiar velocity shifts the position
of the galaxies in redshift-space compared to real-space, distorting the clustering measured
from the galaxy positions. While a nuisance in some analyses, RSD provide a unique probe
of the growth of structure in the Universe and can be used to constrain key cosmological
parameters. Additional constraints are vital to advancing our knowledge of the cosmo-
logical model and unravelling tensions between different probes. RSD measurements are
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particularly interesting because they probe the velocity field of the galaxies, rather than
directly measuring the density field like many other cosmological probes. This makes RSD
measurements uniquely valuable for constraining theories of modified gravity, which pro-
duce significant changes in the expected growth of structure but are tuned to match other
cosmological probes, as well as various dark energy models.

RSD have two main effects on galaxy clustering. The first is on small scales (≲
10h−1Mpc), where galaxies are located in virialized structures, and have highly non-linear
velocities that are uncorrelated with their positions. These randomly directed velocities
cause the collapsed structure to spread out along on the radial direction in redshift-space, in
the so-called Finger-of-God (FoG) effect. The second occurs on large scales (∼ 40h−1Mpc)
as galaxies coherently infall to form larger structure [152]. The result is that galaxies lo-
cated behind an overdensity are moved closer in redshift-space and objects located in front
of the overdensity move farther away, compressing the structure along the line-of-sight,
and known as the Kaiser effect. An equivalent process occurs in reverse for underdensities.
The effect of RSD on the 2D redshift-space galaxy correlation function is demonstrated in
Fig. 1.3. In real-space the clustering of galaxies is expected to be isotropic, but in redshift-
space there is a clear stretching along the line-of-sight on small scales and compression on
large scales, as expected.

The result is that in the linear regime the clustering of a biased tracer is enhanced by
a factor of (1 + βµ2), where β = f/b is the ratio of the logarithmic growth rate (Eq. 1.18)
and the linear bias, b [152]. While clustering is enhanced by a factor depending on β, the
strength of the RSD measurements depend on the parameter fσ8, which is commonly used
to quantify the amplitude of the velocity power spectrum and provides a strong test of
modifications to gravity [119, 251].

1.4.2 Convolutional Lagrangian Perturbation Theory

Many models have been developed for modelling the effects of RSD on clustering measure-
ments. Here I will focus on the Convolutional Lagrangian Perturbation Theory (CLPT)
model (jointly developed in [227, 52, 267]), which is one of the most popular models in re-
cent analyses (e.g. [143, 241]). In particular it was used in several of the eBOSS clustering
analyses [23, 258] described in Sec. 2.7.2, so I will focus on the implementation used there.

CLPT is a non-perturbative resummation of Lagrangian perturbation to the two-point
statistic of biased tracers in configuration space. For a given tracer the Lagrangian coor-
dinates, q, can be related to the Eulerian coordinates, x by:

x(q, t) = q +Ψ(q, t) (1.33)
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Figure 1.3: The 2D correlation function, ξ(rσ, rπ), of the SDSS-III CMASS galaxies from
[226]. rσ ≡ r⊥ is the separation perpendicular to the line-of-sight, and rπ ≡ r∥ is the
separation parallel to the line-of-sight. For details of the correlation function see Sec. 1.3.2,
but for the purpose of this demonstration a larger correlation function (the red end of the
colourbar) indicates stronger clustering. The dashed circle shows the separation scale (∼
8h−1Mpc) at which the RSD transition from the large-scale behaviour (Kaiser effect) to the
small-scale behaviour (Finger-of-God effect). The solid black curves show the contours at
constant values of ξ=[2, 1, 0.5, 0.25] to demonstrate the deviation from circular symmetry.
[226]
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where Ψ(q, t) is the displacement field evaluated at q and time t. The tracer used in the
clustering analysis, denoted by subscript X, is assumed to be locally biased with respect
to the matter overdensity, δ(q). The two-point correlation function is then expanded over
different orders of the Lagrangian bias function, F [δ(q)], which is defined as:

1 + δX(q, t) = F [δ(q)] (1.34)

The Eulerian density contrast field is computed by convolving with the displacement:

1 + δX(x) =

∫
d3qF [δ(q)]

∫
d3k

(2π)3
eik(x−q−ψ(q)) (1.35)

The local Lagrangian bias function is approximated by a non-local expansion using its first
and second derivative, where the nth derivative is given by:

⟨F n⟩ =
∫

dδ√
2πσ

e−δ2/2σ2 dnF

dδn
. (1.36)

The two-point correlation function can then be obtained by evaluating the expression
ξX(r) ⟨δX(x)δX(x+ r)⟩, which can then be simplified (see Eq. 46 of [52]):

1 + ξX(r) =

∫
d3qM(r, q), (1.37)

where M(r, q) is the kernel of convolution taking into account the displacement and bias
expansion up to its second derivative term.

To this point the model has only included the effects of bias. The pairwise mean velocity
v12(r) and the pairwise velocity dispersion σ12(r), where r is the real-space pair separation,
can be computed using the method developed in [267]. This method is similar to the one
described above, but with a modified kernel that takes into account the velocity rather
than the density:

v12(r) = (1 + ξ(r))−1

∫
M1(r, q)d

3q, (1.38)

and
σ12(r) = (1 + ξ(r))−1

∫
M2(r, q)d

3q. (1.39)

The kernels M1,2(r, q) also depend on the first two non-local derivatives of the Lagrangian
bias ⟨F ′⟩ and ⟨F ′′⟩, which are free parameters in the model.

The small-scale modelling is further improved by mapping the real-space CLPT model
of the two-point statistics into redshift space using the Gaussian Streaming (GS) model
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[227]. In this model the pairwise velocity distribution of tracers is assumed to have a
Gaussian distribution that depends on both the separation, r, and the cosine of the angle
between the separation vector and the line-of-sight, µ.

What follows is the [267] implementation that uses CLPT results as input for the GS
model. The redshift-space correlation function can finally be computed as:

1 + ξX(r⊥, r∥) =

∫
1√

2π [σ2
12(r) + σ2

FoG]
[1 + ξX(r)] exp

(
− [r∥ − y − µv12(r)]

2

2 [σ2
12(r) + σ2

FoG]

)
dy, (1.40)

where ξ(r), v12(r), and σ12(r) are obtained from CLPT. The exponential factor in the
integral takes into account the scale-dependent halo-halo pairwise velocity, and introduces
an additional parameter, σFoG, that corrects for the FoG effect. In summary, given a
fiducial cosmology, this RSD model can predict the redshift-space correlation function for
a biased tracer of the density field using four free parameters, [f, F ′, F ′′, σFoG].

1.4.3 Taruya-Nishimichi-Saito model

The other RSD model used in the eBOSS clustering analyses [23, 111, 76, 141, 196] is
the Taruya-Nishimichi-Saito (TNS) model developed in [259]. This model is based on the
conservation of number density in real- and redshift-space [152], and produces a model for
the power spectrum of biased tracers in redshift space. As such it is most often used for
Fourier-space analyses, unlike the configuration-space CLPT model, although it can also
be used to model the redshift-space two-point correlation function by taking the Hankel
transform of the final model power spectrum multipoles.

To begin with, we can use the general form of the anisotropic power spectrum for
unbiased tracers [244]:

P s(k, µ) =

∫
d3r

(2π)3
e−ik·r

〈
e−ikfµ∆u∥ [δ(x) + f∂∥u∥(x)][δ(x

′) + f∂∥u∥(x
′)]
〉

(1.41)

where µ = k∥/k is the cosine of the wavevector with the line-of-sight and δ is the matter
density field. Furthermore, it is convenient to define u∥(r) = −v∥(r)/(faH(a)) from
v∥(r), the line-of-sight component of the peculiar velocity, and ∆u∥ = u∥(x)− u∥(x

′) and
r = x− x′. In the TNS model, Eq. 1.41 can be rewritten as

P s(k, µ) = D(k, µ, σv)
[
Pδδ(k) + 2µ2fPδθ(k) + µ4f 2Pθθ(k) + CA(k, µ, f) + CB(k, µ, f)

]
,

(1.42)
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where θ is the divergence of the velocity field, defined as θ = −∇·v/(aHf). Pδδ, Pθθ and
Pδθ are the non-linear matter density, velocity divergence, and density-velocity divergence
power spectra respectively. CA(k, µ, f) and CB(k, µ, f) are two correction terms that re-
duce to integrals of the matter power spectrum, and are given in [259]. D(k, µ, σv) is a
phenomenological function that parameterizes damping of the power spectrum from mul-
tiple sources, including the FoG effect. This function usually takes the form of a Gaussian
or Lorentzian, such as the Lorentzian damping function used in the configuration space
analysis of the eBOSS LRG sample [23],

D(k, µ, σv) = (1 + k2µ2σ2
v)

−1, (1.43)

where σv represents an effective pairwise velocity dispersion.

So far we have included the effects of RSD for the analysis of an unbiased tracer. The
model can be generalized to the case of biased tracers and rewritten as

P s
g (k, µ) = D(kµσv)

[
Pgg(k)+2µ2fPgθ+µ4f 2Pθθ(k)+CA(k, µ, f, b1)+CB(k, µ, f, b1)

]
(1.44)

where b1 is the galaxy linear bias. Explicit expressions for CA(k, µ, f, b1) and CB(k, µ, f, b1)
can be found in [74].

Pgg is calculated by assuming a particular bias model (such as that presented in [19])
and applying it to analytically calculated non-linear power spectrum Pδδ. Pgθ is calculated
by applying the bias model to the Pδθ power spectrum, which along with the Pθθ power
spectrum can be calculated using the universal fitting functions of [27]:

Pθθ(k) = Plin(k)e
−k(a1+a2k+a3k2),

Pδθ(k) = [Pδδ(k)Plin(k)]
1
2 e

− k
kδ

−bk6
.

(1.45)

where Plin(k) is an analytically calculated linear power spectrum.

The overall degree of nonlinear evolution is encoded by the amplitude of the matter
fluctuations, σ8, at the effective redshift of the sample under consideration. The explicit
dependence of the fitting function coefficients on σ8 is given by

a1 = −0.817 + 3.198σ8

a2 = 0.877− 4.191σ8

a3 = −1.199 + 4.629σ8

1/kδ = −0.017 + 1.496σ2
8

b = 0.091 + 0.702σ2
8.

(1.46)
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In total, the TNS model has a minimum of three free parameters, [f, b1, σv], with more
free parameters if the chosen bias model has additional degrees of freedom. Like the
CLPT model it is able to accurately predict the redshift space clustering of a biased tracer
within the linear regime. Because the TNS model is most naturally applied in Fourier-
space analyses, while the CLPT model is well-suited for configuration space analyses, both
models have been frequently applied in recent analyses, as was the case for eBOSS (see
Sec. 2.7.2).

1.4.4 Extending RSD modelling towards non-linear scales

While the perturbation theory-based models discussed in Sec. 1.4.2 and 1.4.3 are accurate
for linear and quasi-linear scales (≳ 20h−1Mpc), they break down at the shell-crossing
scale. This failure requires analyses based on these models to implement hard scale-cuts to
prevent contamination from non-linear effects that are not well-represented in the models.
While most RSD analyses to date have abided by this limitation, other analyses that
have included smaller scale clustering measurements using methods described below have
found significant improvements in precision [166, 57, 277, 275, 58], such as the factor of
2.5 improvement found by [226] in their analysis of the SDSS-III BOSS CMASS sample
compared to the large-scale analysis of the same sample [238].

The first method I will discuss is the class of Effective Field Theory (EFT) models
[22, 54, 217]. These models make use of the relatively weak link between the small-scale
non-linear structure of galaxy formation and the typical separation of galaxies in large-scale
structure surveys [22, 54]. By integrating out short-wavelength perturbations (on scales
< 5h−1Mpc) it becomes possible to solve the resulting smoothed field with a high degree
of accuracy into the quasi-linear regime by extending the perturbation theory calculations
to arbitrarily high-order [69, 149, 60]. While these methods are successful at modelling
the distribution of matter in the linear and quasi-linear regimes (typically limited to >
30h−1Mpc, e.g. [60, 69]), they can not provide an analytic basis for the formation of
galaxies or the non-linear motion of virialized structures. These effects are instead included
as additional correction terms whose functional form can be predicted from perturbation,
but with unknown amplitudes that must either be calibrated from simulations or fit from
the data [51].

An alternative method is to attempt to fully model the formation of non-linear structure
using N-body simulations. Ref. [226] used an N-body simulation at a single fixed cosmology
to model the clustering of galaxies in the analysis cited above. This method has been
expanded through the use of machine learning emulators to allow for varying cosmology
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without needing to run additional N-body simulations for each new point in parameter
space, finding similar improvements in precision over perturbation theory approaches [57,
277, 275, 161, 58]. Sec. 1.5 contains a more detailed overview of N-body simulations,
emulators, and the other tools required to apply this method.

1.4.5 Growth constraints from RSD measurements

The models detailed above and their predecessors have been applied to spectroscopic galaxy
surveys in order to produce constraints on fσ8. A selection of these constraints for several
of the largest galaxy surveys are shown in Fig. 1.4. Only results published prior to the year
2018 have been included in order to present a picture of the leading constraints prior to the
publication of eBOSS and small-scale analyses that access the non-linear regime, presented
in the remainder of this thesis. Results have been included from the 6dFGS [151], SDSS
MGS [1], GAMA survey [84], WiggleZ Dark Energy Survey[83], BOSS [73], and VIPERS
[208], which were the largest spectroscopic galaxy surveys prior to the release of the eBOSS
data.

Comparing the results presented in Fig. 1.4 to the black line, which shows the expec-
tation for a ΛCDM universe with Planck 2018 cosmological parameters [213], the mea-
surements are very consistent. However, it is interesting to note that the majority of
measurements, particularly the most precise ones, lie below the line. When considered in
tandem with the S8 tension introduced in Sec. 1.2.5, which finds that late time measure-
ments generally prefer a lower value of σ8 compared to CMB measurements, it raises an
interesting question for what the result would be if we were able to improve the uncertainty
of these constraints. This is precisely the objective of small-scale RSD measurements, which
achieve higher precision and find some mild tension with the Planck+ΛCDM expectation
(see Ch. 3 and Ch. 4). It is also worth noting that the measurements from these surveys
are mostly concentrated in the redshift range z ≤ 0.6. One of the primary advances of
eBOSS was extending spectroscopic galaxy clustering measurements to a higher redshift
range, with three populations of galaxies observed for clustering measurements between
0.6 ≤ z ≤ 2.2 (see Ch. 2).

The models and measurements presented in this section are effective tools for deepening
our understanding of the Universe. RSD measurements provide a unique and powerful
constraint on the growth of structure, which is key to confirming or rejecting extensions to
the ΛCDM model (Sec. 1.1.3) and unravelling the mystery of tensions between data sets
(Sec. 1.2.5). Data from the eBOSS (Ch. 2) and small-scale clustering analyses (Ch. 3 and
4) have enabled significant advances in this field, and provided us with some of the most
advanced tests of structure growth through RSD to date.
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Figure 1.4: fσ8 constraints from RSD measurements published prior to 2018, showing
many of the leading constraints prior to the publication of eBOSS data and small-scale
analyses. Results are shown for the 6dFGS (blue, [32]), SDSS MGS (green, [143]), GAMA
survey (red, [37]), WiggleZ Dark Energy Survey (cyan, [38]), BOSS (magenta, [9]), and
VIPERS (yellow, [208]). The black line shows the expected value of fσ8 for a flat ΛCDM
universe with best fit Planck 2018 cosmology [213], with the shaded regions showing the 1
and 2σ confidence regions.
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1.5 Modelling small-scale galaxy clustering with simu-
lations

In the strongly non-linear regime perturbation based approaches break down, and it be-
comes difficult to construct an analytic model for galaxy clustering. An alternative method
that allows modelling clustering statistics to very small scales is to model the non-linear
structure growth using simulations that include full gravitational interactions. I begin
in Sec. 1.5.1 by describing the dark matter simulations used in this modelling. Then in
Sec. 1.5.2 I provide an overview of dark matter halos, which are overdense regions of dark
matter within which galaxies form. In order to compare simulations of dark matter to
observations of galaxies we require a model for how galaxies occupy the underlying dark
matter halos, which I describe in Sec. 1.5.3. Finally, in Sec. 1.5.4 I discuss how the large
computational cost of simulations can be mitigated through the use of machine learning
emulators of galaxy clustering, which is the approach used in Ch. 3 and 4 to obtain higher
precision measurements of fσ8 from small-scale clustering.

1.5.1 N-body simulations

Perturbation theory is able to provide accurate predictions down to the shell-crossing scale
(r ≳ 20h−1Mpc, k ≲ 0.3hMpc−1), but beyond this scale purely analytic models become
inaccurate [204, 56, 260]. However, because the matter density field of the Universe is
dominated by dark matter, whose only detected interaction is through gravity, simulating
the evolution of the density field can be relatively straight-forward computationally. The
simplest of these simulations represent the evolution of the density field through the grav-
itational evolution of a set of N dark matter particles, and so are referred to as N-body
simulations.

The key characteristics of an N-body simulation are the box size and the number of
particles. Simulations are usually run using a box with periodic boundary conditions, so
the side length of the box determines the total volume simulated. Simulations must be
of sufficient volume to match the volume of the data set they are constructed to model,
because only perturbations on scales smaller than the box size will be accurately simulated,
although there exist methods to account for the variance of perturbations on scales larger
than the box size [177]. The number of particles is important because simulations are run
for a fixed set of cosmological parameters, so that total matter density in the box is set by
Ωm. As such, the number of particles determines the mass of each particle, which in turn
determines the smallest mass scale that can be resolved in the simulation.
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Typically these simulations are begun from initial conditions set early enough in the
Universe that the density field evolution is entirely linear, and so can be modelled analyti-
cally. The most common method is to begin with a uniform distribution of particles, then
displace them to match an analytically determined initial power spectrum using 1-loop
Lagrangian perturbation theory, known as the Zel’dovich approximation (see e.g. [109]).
Once the linear initial conditions are set the simulation can be evolved in time steps to
the present day, z = 0. Rather than storing the state of the simulation at each time step,
most simulations save only a subset of time steps that span the redshift range of interest,
referred to as redshift slices.

These simulations have been shown to produce an accurate representation of the overall
matter density field through dark matter [133, 243], however dark matter-only simulations
are unable to reproduce baryonic structure such as galaxies, or reproduce their more com-
plicated effects on the density field on small scales (see e.g. [140] and references therein).
There exist a variety of methods to address this shortcoming. The least computationally
expensive, which is discussed below in Sec. 1.5.3 in more detail, is to run the N-body sim-
ulation, then use an empirical model for how galaxies occupy the dark matter density field
to populate the simulation with galaxies [30, 281, 25, 269]. The next is to approximate
the evolution of the density field by including both dark matter and baryonic elements
on a grid, and using empirically motivated functions to describe how the grid will evolve
[29]. These are referred to as semi-analytic models, and are computationally cheap to
produce, but depend strongly on the choices for the sub-grid physics. The last is to run
a simulation that includes physically motivated evolution of both dark matter and baryon
particles through hydrodynamical simulations [140]. While these simulations include the
most fundamental description for the evolution of the baryon field they are also the most
expensive to run, requiring reduced volume and mass resolution. And while they are the
most physically motivated in the evolution of the baryon field they do still require apply-
ing empirically motivated sub-grid physics, because resolving individual star formation and
evolution remains far beyond the capabilities of our cosmological simulations.

1.5.2 Dark matter halos

While dark matter-only N-body simulations provide an accurate representation of the dark
matter density field for a given cosmology, we require statistical tools that can be used to
relate the observed tracers of the density field, galaxies, to the simulations. To that end it
is useful to introduce the halo model, which is a framework for describing the underlying
density field and its tracers [66, 262]. The core of the model is that galaxies form within
dark matter halos, which are collapsed regions where the density of dark matter is on the
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order of hundreds of times denser than the background field. On average these halos are
believed to be spherically symmetric, and their properties are determined entirely by the
mass of the halo.

The key ingredients to the halo model are the halo bias, that describes how halos trace
the underlying density field; a halo mass function, that describes the number of halos per
unit mass; and the halo profile, that describes how the density of the halo changes as a
function of radius. In analytic applications of the halo model a specific functional form
must be assumed for each of these ingredients, and the parameters of those functions tuned
from simulations.

For clustering models based off of simulations two of these three ingredients, the halo
bias and halo mass function, can be determined directly from the simulation by using a
halo finder to identify the halos within the simulation volume. These halo finders work
by identifying sets of particles within the simulation that are tightly associated with one
another, and identifying each set above a mass resolution threshold as being a dark matter
halo. There are a variety of halo finder algorithms available. The simplest are referred
to as Friends-of-Friends (FoF) algorithms. The key parameter in this method is a linking
length, which is a spatial scale within which it is assumed two particles are members of
the same halo. Halos are defined by finding all particles that are continuously connected
to at least one other member by the linking length.

A more advanced method relies on matching particles that are closely associated both
in position and velocity-space, and is applied using the rockstar1[26] code. rockstar
functions in a similar way to more basic FoF algorithms, but linking in the six-dimensional
phase space defined by the particle positions and velocities, as well as in time. While this
method has been shown to be more accurate in recovering halo properties than basic FoF
algorithms [159], it is also more computationally expensive. rockstar is the halo finder
applied throughout this thesis, unless otherwise specified.

The last halo property, the halo density profile, has been extensively studied using
detailed simulations. [194] found that all halos could be fit using a universal density
profile,

ρ(r) =
ρ0

r
Rs

(
1 + r

Rs

)2 , (1.47)

where ρ0 and Rs are parameters that vary from halo to halo. This profile is referred to as
the Navarro-Frenk-White (NFW) profile, after the authors of the original study.

1https://github.com/yt-project/rockstar
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A common threshold to define a dark matter halo is the region where the average
density is 200 times the mean density of the Universe, with radius given by R200. A final
characteristic quantity of the profile is the concentration, c = R200/Rs, which relates the
scale radius, Rs, to the radius of the nominal edge of the halo.

1.5.3 Galaxy-halo connection

Once the halo catalogue has been assembled from the simulation, we require a model
to populate those halos with galaxies. Unlike large-scale bias models, which provide an
analytic formalism under a set of assumptions such as that galaxies are linearly biased
relative to the overall mass distribution [186], on small scales the non-linear formation of
halos and galaxies requires a more nuanced model. Because these conditions can not be
predicted analytically the models used to connect galaxies to halos are phenomenological,
in that they are motivated by some combination of theoretical and empirical expectation
from simulations and data.

A relatively simple galaxy-halo connection model is abundance matching, also known
as Subhalo Abundance Matching (SHAM) when extended to smaller halos that have been
accreted within larger host halos. The primary motivation for these models is that observa-
tions have shown that halo mass and galaxy mass are tightly correlated [25]. In abundance
matching galaxies are placed within halos monotonically based off of the halo mass, with
the most massive halos receiving galaxies until the desired number density is achieved,
matching what is observed in actual data [192]. In reflection of the fact that there is vari-
ance within the actual relationship between galaxy occupation and halo properties [261]
it is also typical to include a parameter controlling variance in the primary halo property
used in abundance matching. This parameter can be thought of as accounting for scatter
in the observed relationship between galaxy mass and halo mass, and is determined em-
pirically. While halo mass is the most natural property to use in abundance matching, it
has been found that the peak circular velocity of the halo, Vpeak, has lower variance in the
occupation of galaxies, so it is often used as the primary halo property in place of mass
[269].

An alternative to abundance matching is the class of Halo Occupation Distribution
models [30, 281]. Rather than the monotonic relationship of abundance matching, HOD
models are based on the principle that each halo has a probability of hosting a galaxy
determined by the mass of the halo. The occupation distribution as a function of mass is
controlled by a set of parameters that provide an empirically motivated functional form,
such as the observation that more massive halos are more likely to host galaxies, while
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giving the model sufficient freedom to span the range of possible halo and galaxy formation
processes. This occupation distribution is typically separated into the occupancy of central
and satellite galaxies [281],

⟨N(M)⟩ = Ncen(M) +Nsat(M), (1.48)

where each halo can be occupied by up to one central galaxy with additional satellite
galaxies.

There are several possible parameterizations for Ncen and Nsat based on the perceived
behaviour of the galaxy population. For populations of high mass galaxies commonly
found in groups and clusters of galaxies, such as the Luminous Red Galaxy (LRG) sample
analyzed in Ch. 3 and Ch. 4, a typical parameterization is for the central occupancy
to transition from 0 to some maximum occupation, and for satellite galaxies to follow a
Poisson distribution with first moment given by a power law for high mass halos. These
choices ensure that most galaxies will be found in large halos hosting groups and clusters,
with larger halos hosting more galaxies. The particular parameterization adopted by the
analyses presented in this thesis, originally based on the model presented in [282], is [278,
57, 58]:

Ncen(M) =
fmax

2

[
1 + erf

(
log10M − log10Mmin

σlogM

)]
, (1.49)

Nsat(M) =

(
M

Msat

)α

exp

(
−Mcut

M

)
Ncen(M)

fmax

. (1.50)

The free parameters of this model are fmax, logMmin, σlogM , logMsat, α, and logMcut.fmax

defines the maximum fraction of high mass halos that will contain a central galaxy. For a
complete galaxy sample fmax = 1, with fmax < 1 indicating that some central galaxies are
missing even from the most massive halos. logMmin is the halo mass where the occupancy
of centrals transitions from 0 to fmax, effectively setting the minimum halo mass to host a
central, and σlogM sets the width of that transition. For samples dominated by centrals,
such as LRGs, these three parameters have a strong impact on the number density of
the sample. For the satellite occupancy, Msat is the typical mass for halos to host one
satellite, α is the power-law index for the mass dependence of the satellite occupation, and
Mcut gives an exponential cutoff to the satellite occupation at low mass. Together these
parameters determine the shape of the occupancy distributions, as shown by Fig. 1.5, and
must be tuned to match the formation and bias of a particular galaxy population.

The six parameters listed above determine the number of galaxies that occupy each
halo, however HOD models must also adopt a method of assigning positions and velocities
to the galaxies. Here I will again follow the methods applied in Ch. 3 and Ch. 4, as they
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Figure 1.5: Example of a halo occupation distribution with labelled parameters. The blue
line shows the expected occupation of central galaxies as a function of halo mass, while
the dashed orange line shows the same for satellite galaxies. Labelled dotted lines show
the values of the model parameters.
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are the most relevant to this work and representative of typical methods used in the field.
Central galaxies are assigned a position at the centre of their host halo, which in turn is
determined by the halo finding algorithm from the particle positions. Satellite galaxies
are assumed to follow the same distribution as the dark matter particles, so are randomly
distributed with spherical symmetry about the halo centre with a probability distribution
that follows a NFW profile. The concentration of the NFW profile is calculated from the
mass of the halo using [46]

c(M) =
c0

1 + z

M

M∗

β

, (1.51)

where c0 = 11, β = −0.13, and M∗ is the nonlinear mass at z = 0, which depends on the
fiducial cosmology used in the analysis. An additional parameter is added to the model,
cvir = csat/chalo, to allow the satellite concentration, csat, to differ from the concentration
of the host halo NFW, chalo.

Both centrals and satellites are assigned the velocity of their host halo, plus a random
velocity dispersion controlled by separate velocity bias parameters: vbc for centrals and vbs
for satellites. The velocity bias is calculated as a scaling of the halo velocity dispersion,
given by σgal = vgalσhalo. In Ch. 3 and Ch. 4 the halo velocity dispersion, σhalo, is calculated
from the circular velocity of the halo at the virial radius, σhalo =

√
GM(< Rvir)/Rvir. This

method allows the velocity dispersion of all halos to be quickly and simply calculated,
instead of alternative methods such as estimating the halo velocity dispersion from the
dispersion of the constituent particles, which is more computationally expensive and noisy
for low mass halos that contain fewer particles. The default velocity bias parameter for
centrals is vbc = 0, meaning no velocity bias, and the default velocity bias parameter for
satellites is vbs = 1, meaning they approximately follow the internal velocity dispersion of
the host halo.

The general purpose of galaxy-halo connection models is to provide an empirically
motivated method of placing galaxies within halos because the formation mechanisms of
halos and galaxies can not be determined analytically. The benefit of the HOD model
in particular is that the model parameters, as well as the choice of parameterization in
general, gives the model the freedom to match a variety of galaxy populations exhibiting
different bias relations, and can be marginalized over to account for deviations between the
simulations or HOD parameterization and the true halo and galaxy formation mechanisms
of the Universe.
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1.5.4 Emulators

While N-body simulations provide an effective model for the non-linear clustering of halos
and galaxies, it is computationally expensive to simulate large enough volumes (on the order
of ∼ (Gpc)3) to match modern galaxy surveys while maintaining the necessary particle
mass to resolve the individual halos hosting galaxies (on the order of 1012M⊙). This is an
issue for analyses that must explore a multi-dimensional parameter-space, because it is not
feasible to run a new simulation for each point in parameter-space. This was the challenge
faced in the early small-scale RSD analysis performed by [226] (see discussion in Sec. 1.4.4),
so that they were ultimately forced to use a single-fixed cosmology simulation to generate
their clustering model. This reliance on a fixed cosmology leaves unanswered questions as
to the reliability of the final measurements, and the size of the inferred uncertainty.

While it is generally not possible to generate a new simulation for each point in
parameter-space, given a set of simulations it is possible to use machine learning to produce
an emulator that is able to make predictions for any point in parameter-space within the
span of the initial set of simulations [133, 135, 170, 134]. Once trained an emulator can typ-
ically produce a prediction on the order of O(1s) or faster, allowing them to be effectively
used to explore the posterior in a Bayesian analysis. There are several possible machine
learning methods that can be used to construct an emulator, with the most common being
a Gaussian process (see e.g. [278]) or a neural network (see e.g. [235]). The strength of
neural networks is that they are able to reproduce any arbitrary functional form, allowing
them to effectively reproduce the desired behaviour from the training data regardless of
complexity. The major drawback is that they can be susceptible to overfitting, making
it difficult to ensure that the information being obtained is truly cosmological in origin.
On the other hand Gaussian processes are a non-parametric method, meaning no specific
functional form needs to be assumed, and are very effective at interpolating within a sparse
parameter space, which is why Gaussian processes are used as the basis for the emulators
applied in this work.

A Gaussian process is a collection of random variables such that each point in parameter
space follows a multivariate normal distribution. For a simulation-based inference of galaxy
clustering, the parameter-space consists of the combined cosmological and galaxy-halo con-
nection model parameters. Initially the multivariate normal distribution has an arbitrary
mean and variance, but the mean and variance at a particular point in parameter-space
can be constrained by measuring the desired clustering statistics from N-body simulations
at that point. The key to the Gaussian process method is the way that this constraint
influences the area of parameter space around it, through the choice of a particular ker-
nel function. For example, using an exponential kernel the influence of the measurement
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on surrounding points in parameter space decays exponentially with the distance in that
parameter. The decay rate is specified by a scale length in each parameter, which become
hyperparameters to be trained. As more data is added the mean and variance become
well constrained throughout the parameter-space. The choice of kernel functions is the
key decision in constructing the emulator, and the machine learning process is tuning the
hyperparameters of the kernel functions to achieve the best predictions when compared to
test data.

The major limitation of an emulator-based model is that the emulator is only able to
make accurate predictions for the region of parameter-space that is well sampled by its
training data. For a Gaussian process emulator, outside of this region the predictions will
regress back to the mean value, rendering them unreliable for cosmological inference. This
limitation can be considered in terms of the parameter ranges of the simulations used to
construct the emulator. The range must be large enough to encompass the entire region of
parameter-space being investigated, while densely sampled enough to produce predictions
with an uncertainty that is subdominant to the measurement uncertainty of the data.

Several emulators have been constructed to predict the small-scale clustering of galaxies
to use in RSD analyses [278, 275, 161, 68]. The emulator of [278] is particularly important
for this work, because it was constructed to match the clustering of a Luminous Red Galaxy
(LRG) sample, and is the origin of the emulators used in the analyses presented in Ch. 3
and Ch. 4. It is a Gaussian process-based emulator that makes predictions for ξ0, ξ2, and
wp, each in 9 logarithmically spaced separation bins between 0.1−60h−1Mpc. Each of the
27 measurement bins is emulated independently using a sum of four kernels: a constant
kernel, an exponential squared kernel multiplied by a constant kernel, a Matern-3/2 kernel,
and a kernel that controls the logarithm of the white noise added to the diagonal of the
covariance matrix during training. For more information see [278] and the george2 Python
package that it is constructed from.

1.6 Structure of this thesis

This chapter has provided an introduction to the key concepts applied in later chapters.
I have introduced the ΛCDM cosmological model, as well as the key observables that we
use to constrain its parameters and test for extensions to the model. In particular, I have
presented the details of the measurement statistics and models used to constrain RSD from

2https://george.readthedocs.io/en/latest/
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galaxy clustering surveys, which provide a unique and powerful test of the cosmological
model from the growth of structure.

In Ch. 2 I present the final data release of the Extended Baryon Oscillation Spectro-
scopic Survey (eBOSS), which at the time of writing is the highest redshift large galaxy
spectroscopic survey and the most recent to release data. I describe eBOSS from the se-
lection of the different clustering samples through to the final cosmological measurements.
I also present the corrections of two observational systematics: using Pairwise-Inverse-
Probability (PIP) weights with Angular Upweighting (ANG) to correct fibre collisions and
a weight-based method to correct density fluctuations in the Emission Line Galaxy (ELG)
sample caused by variable depth in the targeting survey. Careful correction of these sys-
tematics is essential to optimally extract information from the data, and ensure the final
results are robust.

I continue the analysis of eBOSS data in Ch. 3 by presenting my small-scale RSD
analysis of the eBOSS Luminous Red Galaxy (LRG) sample. This analysis leveraged the
unbiased small-scale clustering provided by the PIP+ANG weights and a simulation-based
emulator for the clustering of LRGs to measure RSD from clustering in the separation
range 0.1 − 60h−1Mpc, finding a factor of 1.7 improvement in precision over the large-
scale analysis of the sample. This analysis also investigated several potential sources of
systematic bias, and highlights the question of what information from non-linear scales
can be correctly interpreted as constraining the linear growth rate. Separating the con-
tributions of linear and non-linear information had not been addressed in contemporary
small-scale analyses, and presents a major source of potential systematic bias. Mitigating
this potential systematic required limiting the scales included in the measurement of fσ8

to 7− 60h−1Mpc, excluding a significant portion of the emulator range.

I address the issue of isolating the linear signal within small-scale analyses in Ch. 4,
which presents a re-analysis of the small-scale eBOSS LRG clustering with an improved
emulator that distinguishes between linear and non-linear information. The new emulator
permits all scales to be included in the constraint on fσ8 while reducing tension between
different measurement scales. This chapter provides a detailed description of the new
emulator and validation tests, as well as the results of the analysis of the eBOSS LRG
clustering.

Finally, in Ch. 5 I present the conclusions drawn from the small- and large-scale analyses
of the eBOSS data. I discuss the implications for the cosmological model, areas for future
work, and the outlook for upcoming surveys.
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Chapter 2

The Extended Baryon Oscillation
Spectroscopic Survey

This chapter covers the content of the main Extended Baryon Oscillation Spectroscopic
Survey (eBOSS) Data Release (DR)16 papers. I was a member of the eBOSS collabo-
ration during this data release, and wam an author on many of the papers due to my
contributions to generating Pairwise-Inverse-Probability (PIP) weights and resolving an
observational systematic related to variable photometric depth in the Emission Line Galaxy
(ELG) sample. Here I outline the structure of this chapter, the source of the content, and
my contributions. Sec. 2.1 provides an introduction to eBOSS, and Sec. 2.2 provides a
brief summary of the eBOSS survey design and target selection that gives context for later
sections. Sec. 2.3 presents key details of the final large-scale structure catalogue papers
[231, 223, 179]. My most significant contribution to those papers is to the ELG catalogue
paper [223], and is covered later in the chapter. The mock papers [280, 178] and mock
challenges [11, 234, 248] are introduced in Sec. 2.4. Sec. 2.5 presents the contents of the
PIP correction paper [190], for which I am included in the first grouping of authors with
major contributions due to my work using rotation as a means of removing zero-probability
pairs, presented in Appendix A. I lead that work, writing and validating the necessary
scripts, and consulted on the remaining work generating PIP weights as well as the writ-
ing of the paper. Sec. 2.6 covers a particular observational systematic of the ELG sample
that I investigated using a weight-based correction. I led the work for this weight-based
correction and presented my results to the eBOSS Collaboration, where they were used to
inform the final correction applied in the analysis of the ELG sample. The majority of this
section is my original work, with final treatment of the issue in the data analysis adapted
from [223, 76, 258]. Sec. 2.7 contains the main cosmological results of DR16, summarized

46



in [10], and based on the analyses of the Luminous Red Galaxy (LRG) [23, 111], ELG
[223, 258, 76], Quasi-Stellar Object (QSO) [141, 196], and Lyα forest [85] samples. In
all cases the content has been reformatted and rewritten by me for this thesis. Throughout
this chapter I use ‘we’ to refer to the work of the eBOSS collaboration that I was involved
with but did not lead, and ‘I’ to highlight my primary contributions. All non-original plots
contain a citation at the end of their captions detailing the source.

2.1 Introduction

In the era of precision cosmology, novel cosmological measurements are motivated by two
factors: providing more precise measurements of key cosmological parameters, and pre-
senting complimentary constraints that build a consensus model from independent cosmo-
logical probes. Spectroscopic galaxy surveys fulfill both of these roles. Modern surveys use
multi-object spectrographs [247, 80, 168] to observe large samples of galaxies, improving
the precision of measurements from previous generations. Those improved measurements
are used to extract the Baryon Acoustic Oscillation (BAO) and Redshift Space Distortion
(RSD) signals from clustering to constrain the expansion and growth history of the uni-
verse, and contain complementary information to local universe and Cosmic Microwave
Background (CMB) observations. Successive generations of surveys have also pushed to
higher redshifts [73, 208], constraining the evolution of cosmological parameters and pro-
viding insight into potential deviations from our standard cosmological model.

The Sloan Digital Sky Survey (SDSS) [41], which has operated the dedicated Sloan
Foundation 2.5-meter telescope [117] at the Apache Point Observatory in south-eastern
New Mexico since the year 2000, currently provides the largest publicly available catalogue
of spectroscopically observed galaxies. The SDSS has been a major driver in our under-
standing of the Universe from its inception. The most stringent constraints come from
the Baryon Oscillation Spectroscopic Survey (BOSS) [73], which observed over 1.5 million
galaxies in the redshift range 0.15 < z < 0.7 between 2009-2014. The final measurements
of the BAO scale in BOSS clustering data provided 1% precision standard ruler measure-
ments of cosmological distances up to redshift z = 0.75 [9], and a ∼ 6% constraint on the
parameter combination fσ8 [33, 114, 257, 241] by measuring RSD.

The Extended Baryon Oscillation Spectroscopic Survey (eBOSS) [72] is part of stage
IV of the SDSS, and was conceived as a successor to BOSS. eBOSS made use of the BOSS
spectrographs [247], capable of simultaneously observing 1000 objects, to observe higher
redshift Luminous Red Galaxy (LRG), Emission Line Galaxy (ELG), and Quasi-Stellar
Object (QSO) samples for clustering, and greatly increased the sample of z > 2.1 quasars
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observed for Lyα forest measurements in BOSS. This additional data not only provides
tighter constraints on the cosmological model and extends our observations into a new
redshift regime, but also investigates new tracers and techniques that will be essential for
upcoming surveys [79, 168] to push our understanding even further.

The final eBOSS Data Release (DR), DR16, was accompanied by a coordinated release
of papers measuring BAO and RSD in the clustering of the LRG [23, 111], ELG [223, 258,
76], quasar [141, 196], and Lyα forest [85] samples, making use of both configuration space
and Fourier space measurements. Accompanying these analyses were papers detailing the
construction of the large-scale structure catalogues [231, 179, 223], mock catalogues for
testing systematics and estimating the covariance of the measurements [280, 178], and
mock challenges to validate the analysis pipelines and assess systematic uncertainties [11,
234, 248]. After release, the final cosmological constraints were summarized and combined
with previous SDSS measurements to determine the cosmological implications from two
decades of observations [10].

This chapter covers the entirety of the eBOSS DR16 results, from the original survey
design to the final cosmological results. In Sec. 2.2 I describe the survey plan of eBOSS
and the samples targeted for observation. Sec. 2.3 presents the data reduction and final
statistics of the large-scale structure catalogues used for cosmological analysis. In Sec. 2.4
I present the mock catalogues used to determine the covariance of the eBOSS clustering
measurements, as well as the mock challenges performed to validate the analysis pipelines
and assess the systematic uncertainty. I delve more deeply into two particular observational
systematics in Sec. 2.5 and Sec. 2.6. Sec. 2.5 describes the generation, testing, and appli-
cation of Pairwise-Inverse-Probability (PIP) weights and Angular Upweighting (ANG) to
correct the issue of fibre collisions in the spectroscopic sample, providing the first unbiased
correction to this important observational systematic for fibre-fed spectroscopic surveys.
In Sec. 2.6 I discuss an observational systematic in the eBOSS ELG sample caused by in-
consistent photometric calibration, and the weight-based correction I implement to remove
the bias from the clustering. After addressing these systematic errors, I present the com-
bined cosmological results from all three eBOSS samples in Sec. 2.7. The eBOSS analyses
provide precise measurements of the parameters of the ΛCDM cosmological model, while
placing stringent constraints on extensions to that model.

2.2 Survey design

Effective survey design is integral to making efficient observations and obtaining reliable
results. In this section I provide a brief overview of the key design choices of eBOSS. I
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begin by introducing the galaxy samples targeted for observation in Sec. 2.2.1, including
two samples not previously observed in the SDSS. Then in Sec. 2.2.2 I describe the target
selection algorithms used to construct the parent catalogues for each sample to be observed.
Finally, in Sec. 2.2.3 I present the overall goals of eBOSS, and the observing strategy
developed to meet them.

2.2.1 The eBOSS galaxy samples

eBOSS observations consist of three main galaxy samples: Luminous Red Galaxy (LRG),
Emission Line Galaxy (ELG), and Quasi-Stellar Object (QSO), the last also commonly
known as quasars. LRGs are a class of galaxies that are among the most massive, most
luminous, and reddest galaxies, and are commonly found in clusters and groups. Because
of their bright intrinsic luminosity and strong clustering they make an effective tracer of
the large-scale structure, and have been used in spectroscopic galaxy surveys since the
first detection of BAO [94] in the first SDSS spectroscopic sample [90]. LRGs have been
used throughout the SDSS, and formed the main galaxy sample for BOSS, so they are well
understood both as a tracer of the large-scale structure and as a target for observation.

BOSS also investigated a new probe of the large-scale structure of the Universe by
spectroscopically observing quasars at redshifts z > 2.1 to measure the Lyα absorption of
intervening neutral hydrogen. The frequency of these absorption lines is shifted according
to the redshift of the gas, so this forest of absorption lines creates a map of the intervening
neutral hydrogen clouds. As with other tracers of the matter density field, these clouds are
imprinted with the BAO signal, so these Lyα forest quasars provide an independent BAO
measurement compared to typical clustering samples [184, 50, 246, 102]. In fact, in BOSS
the marginal value of each Lyα quasar in providing a BAO constraint exceeded that of the
LRG sample, so Lyα quasars are designated as a high-priority target in eBOSS [72].

Following the example of BOSS, eBOSS also investigates two new galaxy samples. The
first is a sample of quasars at redshifts lower than the Lyα forest sample, 0.9 < z < 2.2,
that are used as direct tracers of the underlying matter density. Quasars are ideal high-
redshift tracers in that they are highly biased and intrinsically very bright, permitting
them to be observed beyond the redshift range of other tracers [67].

The final galaxy sample observed in eBOSS is ELGs, which are galaxies containing
active star-formation that provide strong emission lines. These strong emission lines allow
for effective redshift determinations, and ELGs are much more common than LRGs at the
redshifts targeted by eBOSS [65]. The large numbers of ELGs permits the creation of a
high-density ELG catalogue that is observed separately from the LRG and QSO samples.
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The ELG sample is also complementary to the LRG sample because they cover very sim-
ilar redshift ranges, but are targeted using different selection algorithms and photometric
surveys (see Sec. 2.2.2), observed independently, and use different redshift determination
algorithms. Thus cross-correlation between the samples is a powerful tool for mitigating
systematic effects in one sample. The eBOSS ELG sample is also an important test for the
next generation of surveys, including the Dark Energy Spectroscopic Instrument (DESI)
[79, 80] and Euclid [168], that plan to use ELGs as part of their core clustering samples.
eBOSS provides a road map for these surveys, as well as an opportunity to address any
difficulties in the observation or analysis of a large ELG sample.

2.2.2 Target selection algorithms

While the BAO signal is relatively insensitive to the homogeneity of the sample and large-
scale observational systematics, because it depends on the observation of a relatively sharp
feature that does not depend on tracer bias, this is not true for all of the cosmological mea-
surements that use eBOSS data [72], such as the RSD measurements. For this reason it
is important when constructing the eBOSS targeting catalogues to build samples that are
homogeneous on large scales, including selecting the same population of galaxies through-
out the survey window. It is also important to construct the target selection algorithm to
ensure that targets will lie in the correct redshift range to prevent wasted observations.

The eBOSS LRG target sample is selected [219] from SDSS DR13 photometry [12].
SDSS photometry was used to target the LRG sample for BOSS, and provides sufficient
depth and sky coverage in the ugriz bands for the eBOSS LRG sample. Compared to
previous data releases, the SDSS DR13 photometry used for eBOSS uses the "ubercalibra-
tion" method [199] applied to imaging from the Pan-STARRS survey [154], providing an
improved photometric calibration [242]. Typically, LRGs are targeted using the 4000 Å
break caused by metals in the atmospheres of old late-type stars’ atmospheres, however
at the higher redshifts targeted by eBOSS this break shifts into the near infrared, and
the colours of LRGs overlap more with M-type stars. These difficulties motivate including
infrared observations from the Wide-field Infrared Survey Explorer (WISE) satellite [165],
which observed the full sky in four infrared bands. The key advantage of including infrared
observations is the 1.6 micron ‘bump’ in the spectral energy distribution of objects with
old stellar populations, such as LRGs, caused by a minimum in the opacity of the H− ion.
At z ∼ 1 this bump is shifted to around 3.4 microns, the centre of the first band of WISE
observations, denoted W1. This band was therefore used in the LRG target selection to
distinguish between LRGs and stars.
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The target selection criteria applied for the eBOSS LRG sample is as follows. First, a
series of flux limits (detailed in [219]) are applied to the sample to ensure good detections
in all the necessary bands. Then three colour selections ware applied to the remaining
objects to isolate LRGs in the desired redshift range:

r − i > 0.98 ,

r −W1 > 2.0× (r − i) ,

i− z > 0.625 .

(2.1)

The first and third conditions serve to separate high redshift LRGs from low redshift
LRGs. The second condition separates galaxies from stars, as shown in Fig. 2.11.

Like the LRG sample, the ELG sample is also selected using colour cuts from photo-
metric catalogues [221]. However, because ELGs tend to be lower mass and less luminous
than LRGs, rather than using the SDSS photometry, the ELG target selection uses data
from the deeper Dark Energy Camera Legacy Survey (DECaLS) [81] DR3 photometry.
DECaLS was a grz imaging survey using the DECam camera [101] mounted on the Victor
M. Blanco 4m telescope on Cerro Tololo, near La Serena, Chile. The primary purpose
of DECaLS is to provide photometry to be used in targeting for DESI. As well as dedi-
cated DECaLS observations, the program also incorporates all publicly available DECam
observations taken over the DESI footprint, which primarily includes data from the Dark
Energy Survey (DES) [2]. However, these DES observations only cover one of the two
main observation areas of eBOSS, the South Galactic Cap (SGC). The North Galactic
Cap (NGC) instead uses the slightly shallower DECaLS imaging.

The first step in the ELG target selection is to apply a series of cuts to ensure clean
photometry, specified in [221]. For the SGC the following three selection cuts are then
applied:

21.825 < g < 22.825 ,

−0.068× (r − z) + 0.457 < g − r < 0.112× (r − z) + 0.773 ,

−0.218× (g − r) + 0.571 < r − z < 0.555× (g − r) + 1.901 ,

(2.2)

while a slightly modified set of selection cuts are applied in the NGC:

21.825 < g < 22.9 ,

−0.068× (r − z) + 0.457 < g − r < 0.112× (r − z) + 0.773 ,

−0.637× (g − r) + 0.399 < r − z < 0.555× (g − r) + 1.901 .

(2.3)

1http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/megapipe/docs/filt.html
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Figure 2.1: Colour-colour plot of galaxies observed by WISE and Canada-France-Hawaii
Telescope Legacy Survey (CFHT LS). Photometric redshifts are taken from the COSMOS
photo-z catalogue [147]. Blue stars show galaxies with photometric redshifts of z < 0.6,
red diamonds show galaxies between 0.6 < z < 1.0, and cyan triangles show galaxies at
z > 1.0. Stars are shown as green diamonds. The triangular area shows the relevant
eBOSS LRG selection cuts for these colours. Optical photometry is taken from the catalog
of [120], transformed to SDSS passbands using the conversion relation found at the CFHT
LS webpage (footnote in text). [219]
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The g-band magnitude cut is used to select [OII] emitters. The reason it is extended for the
NGC is because a coding error in the target selection script (see [221]) effectively introduced
an additional angular mask in the NGC that caused ∼ 15% objects to be improperly
rejected. The additional depth in the g-band raises the overall density of targets to match
the survey goals. The latter two conditions for each cap define a quadrilateral in colour-
space used to exclude stars and lower-redshift galaxies (see Fig. 2.2). The SGC selection
window is extended in the r − z colour direction because of the deeper DES imaging in
the SGC. The deeper imaging reduces scatter, which permits an extended selection while
keeping contamination from lower-redshift galaxies low.

The quasar selection is more complicated, and relies on two complementary methods.
The first is the XDQSOz [44] method of classifying quasars in flux-space for a specfied
range of redshift. The photometric data used for this classification is the same ugriz SDSS
DR13 imaging used for the LRG sample. A test spectroscopic survey was performed using
CFHT LS W3 data to verify this method, detailed in [7]. A secondary method based on
variability in multi-epoch imaging from the Palomar Transient Factory (PTF) [224, 169]
is used to increase the density of the sample. PTF is a wide-field photometric survey that
repeated imaging of 20,000 deg2 in the Northern Hemisphere to track optical transients.
The details of both of these methods of quasar selection are given in [193].

These three target selection methods for the LRG, ELG, and quasar samples provide
pure and homogeneous parent catalogues for the main spectroscopic observations of eBOSS.
These requirements are essential for obtaining reliable results from the data analysis, and
fulfilling the goals laid out in the survey plan.

2.2.3 Observing strategy

Following from the success of BOSS in achieving a 0.9% precision measurement of the BAO
scale at an effective redshift z = 0.57 from LRG clustering and a 2% precision measurement
at an effective redshift z = 2.34 from quasar Lyα forest, the goals set out for eBOSS for
the LRG, quasar, and ELG clustering samples are to achieve 1%, 2%, and 2% precision
measurements of the BAO scale, respectively, and to observe as many z > 2.1 quasars for
Lyα forest measurements as possible because of their larger marginal value [72]. These
goals, together with the roughly 5400 hours allocated for the eBOSS observing program,
set the survey plan for eBOSS.

The typical BOSS spectroscopic plate was observed in five 15 minute exposures, with
an additional 20 minutes of overhead per plate [42]. A pilot study using dedicated plates in
2013 and 2014 showed that the same observation strategy is sufficient to obtain redshifts
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Figure 2.2: eBOSS ELG target selection in the grz-colour space with objects from the
CFHT LS W4 field [120]. The SGC target selection is shown as the blue quadrilateral,
and the NGC target selection is shown as the pink quadrilateral. All objects are observed
using photometry from DECaLS DR3 over the CFHT LS W4 footprint, degraded down to
DECaLS DR3 depths. The left column shows these objects over the SGC footprint, while
the right column shows these objects over the NGC footprint. Photometric redshifts are
determined from the CFHT LS survey. Stars are shown as beige crosses, 0 < zphot < 0.7
objects as blue circles, 0.7 < zphot < 1.1 objects as black circles, and 1.1 < zphot objects
as red circles. Bottom Panels: objects in common with the VIPERS survey with 0.6 <
zspec < 1.1. The colour bar shows the [OII] fluxes measured from the VIPERS survey
spectra. [221]
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Figure 2.3: The footprint of all eBOSS targets before veto masks. Yellow points show
quasars that are observed by eBOSS. Red points show observed LRGs, which overlap
almost perfectly with the yellow points. Blue points are a random 20% subsample of
observed ELGs. Black points show quasar and LRG targets that were tiled but did not
ultimately receive observations, while grey points are BOSS CMASS galaxies. [231]

for the eBOSS samples as well [72]. As a result, it was planned to observe 1800 plates
in the 5400 hours allocated to eBOSS, assuming the same 50% weather efficiency found
during the SDSS-III observations. eBOSS is operated using a similar survey plan as BOSS,
with overlapping pointings providing a mixture of single- and multi-pass observation areas,
with up to a maximum of three observations of a given patch. This survey strategy gives
varying completeness and allows for the observation of close pairs in overlap regions that
could not be observed in a single pass due to fibre collisions, while also covering a large area
of the sky. Each plate covers an area of 7 deg2, so the field centres were aligned uniformly
over the survey area with an average of 5 deg2 per field centre to ensure overlap between
neighbouring plates. The field centres were then perturbed to maximize the number of
observed redshifts by correlating overlap regions with high target density areas. The final
area planned for the survey is 9000 deg2, shown in Fig. 2.3. Due to the large foregrounds,
observations are restricted to be away from the galactic plane, forming two distinct regions
labelled the North Galactic Cap (NGC) and South Galactic Cap (SGC).
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The total eBOSS footprint is divided into smaller regions on the sky, called ‘chunks’, and
tiled separately for observation. 300 plates are allocated almost entirely to the ELG sample
because of the high density of targets, while the remaining 1500 plates, covering 7500 deg2,
are used to simultaneously observe the LRG and quasar samples, as well as ancillary targets
for the Time-Domain Spectroscopic Survey (TDSS) [191] and SPectroscopic IDentification
of ERosita Sources (SPIDERS) [64] sub-programs. Once target catalogues were selected
from the photometric surveys and telescope pointings were determined, a target selection
algorithm is run to maximize the number of spectra obtained. An important observational
limit of eBOSS is that two objects within 62′′ on the sky can not be simultaneously observed
because of the finite size of the fibre casings (see Sec. 2.5.1 for more details). Objects within
this radius are referred to as "collided". For the quasar and LRG chunks the priority in
resolving collisions between targets, from highest to lowest, is: SPIDERS, TDSS, quasars,
white dwarfs that can be used as calibration standards, and finally LRGs. The tiling
algorithm is designed to ensure 100% completeness in the decollided set of non-LRG objects.
The LRG target selection is tuned to ensure a sufficient density of possible LRG targets
that there is an object available for all fibres, meaning the observed LRG sample is not
fully complete by construction. For ELG chunks there is only a single sample, so all targets
are assigned with an equal probability.

Once targeting was established a circular metal plate is drilled for each pointing, with
fibres positioned in the holes to observe the targets of that plate. Fibres are hand plugged
into each plate, and connected to the BOSS spectrographs for observation. The output
of those observations and the resulting large-scale structure catalogues are described in
Sec. 2.3.

2.3 Large-scale structure catalogues

Following from the survey design and observations described in Sec. 2.2, in this section I
present the data reduction applied to the raw observations and the resultant large-scale
structure catalogues. I begin by describing the process used to extract redshifts from
spectra for the various galaxy samples (Sec. 2.3.1). Then, in Sec. 2.3.2 I explain how the
data is corrected for observational effects and systematics, and present the final statistics
of the large-scale structure catalogues used in the cosmological analyses.
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2.3.1 Redshift estimation

Measuring redshifts is the key observation that allows galaxy surveys to transform a 2D
distribution of objects on the sky to a 3D map of the large-scale structure of the Uni-
verse. Initially, the same redshift algorithms used for BOSS were planned to be applied in
eBOSS (see [72] for discussion). However, once observations had begun it became apparent
that these algorithms are insufficient for the fainter, higher redshift eBOSS LRG sample.
Instead, redshifts for the eBOSS LRG sample are extracted from the spectra using the re-
drock algorithm2. redrock fits the data with a linear combination of redshift-varying
spectral templates characterizing the spectral diversity of stars, galaxies, and quasars. The
redshift and spectral class that results in the lowest χ2 value is determined to be the best
description of the spectra. Fits are only deemed to be reliable if the redshift and spectral
class that produced the second best fit is separated by a sufficiently large difference in χ2,
specified by the parameter δχ2. The value of this difference was tuned using a sample
of multi-epoch spectra, consisting of objects that were purposefully targeted by multiple
plates. The final value of δχ2 was chosen to maximize the number of good redshifts without
exceeding purity limits [231]. After making an initial match, the redrock algorithm ap-
plies a second step where a subset of the original spectral templates are used as archetype
models, and a secondary match is performed, superseding the earlier match. The reason
for performing this second match is to exclude non-physical combinations of the spectral
templates that can lead to incorrect redshift detections. The galaxy spectral templates
used for eBOSS are derived from a Principal Component Analysis (PCA) of 20 000 the-
oretical galaxy spectra spanning stellar age, metallicity, and star formation. The stellar
templates are derived from a separate PCA analysis of 30 000 theoretical stellar spectral
spanning a range of stellar types [231].

After applying redrock to the LRG spectra a total of 88% of observations result in
a good LRG redshift, with 9% of original spectra ultimately attributed to stellar contam-
inants, and 1% to quasar contaminants. The final rate of catastrophic failures, where a
redshift that deviates from the true value by more than 1000 km/s is confidently assigned
to the spectra, was estimated to be less than 1% from multi-epoch observations. redrock
is also applied to the ELG sample, with additional reliability criteria applied to ensure the
redshift estimates match the purity conditions. These additional criteria, designed to en-
sure a sufficient signal-to-noise ratio of the [OII] line and enough continuum and emission
line information from the spectra, are detailed in [223]. Reliable redshifts are obtained for
91% of ELG observations, with a catastrophic failure rate less than 1%.

The quasar redshift estimation follows a multi-step process. First an automated decision-
2Available at github.com/desihub/redrock
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Figure 2.4: Histograms of the redshift distributions of the eBOSS DR16 large-scale struc-
ture catalogues. BOSS CMASS LRGs and quasars from previous generations of SDSS are
also shown because they were jointly analysed with the relevant eBOSS samples. [231]

tree is applied to the data to ensure proper classification as a quasar. Then, the redvs-
blue3 algorithm, described in [179], is used to estimate the redshift. In total, 86% of
quasars are classified as receiving a good redshift.

The redshift estimation of all three clustering samples results in a sufficiently high
success rate to match the survey design. The final redshift distributions of all the eBOSS
samples are shown in Fig. 2.4. This figure shows the large number of objects and wide
redshift range observed by eBOSS, which are key to providing the wealth of cosmological
results presented in Sec. 2.7

3https://github.com/londumas/redvsblue
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2.3.2 Correcting for observational systematics

The eBOSS observations resulted in large spectroscopic samples over a wide range in
redshift, ideal for providing complementary constraints to earlier galaxy surveys. However,
in order to produce robust results the data must be carefully analyzed and corrected for
any signals imprinted by the observational methods, particularly systematic variations in
density that are non-cosmological in origin.

One such issue is caused by redshift failures, which are not completely random across
the survey. The origin of this issue is that the signal-to-noise ratio of spectra is not uniform
across the spectrograph Charge-Coupled Device (CCD), and the signal-to-noise is natu-
rally correlated with the rate of redshift failure. Because individual fibres are consistently
connected to the same portion of the CCD, and are also consistently connected to the same
regions of the spectroscopic plate, the correlation of redshift failure with CCD position is
imprinted in the angular distribution of the clustering sample. These additional density
perturbations effectively introduce angular clustering modes that are not cosmological in
origin, potentially biasing the cosmological inference. The variations are corrected by cal-
culating the probability of obtaining a good redshift for each fibre, and weighting each
observation by the inverse of this probability for the fibre used to observe that object,
statistically accounting for the missing objects. These weights are stored in the large-scale
structure catalogues as wnoz.

Redshift failures are not the only observational effect that can impact the angular
clustering of the sample. A variety of factors cause variations in the photometric data
used for targeting, which carry forward to cause systematic variations in the density of the
final spectroscopic observations. These variations are corrected using a multi-variate linear
regression to fit the trend in density with each factor, and then inversely weighting by the
fitted trends to remove them from the final analysis. These weights, wsys, are also stored
in the final catalogues.

To determine how each factor impacts the density in angular patches the sample is di-
vided into equal area pixels on the sky using Hierarchical Equal Area isoLatitude Pixelation
(HEALPix)4, with Nside = 512. The density of target samples is then estimated by taking
the ratio of the number of targets to the number of randoms in each pixel, normalized by
the average ratio of targets to randoms across the survey.

For the eBOSS LRGs the factors included in the multi-linear regression are the stellar
density (Nstar/deg

2), the Galactic extinction (E[B-V]), the sky background in the i-band,
and the i-band seeing maps of the SDSS photometry. The reason for only including the

4https://healpix.sourceforge.io/
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i-band maps in the regression is because the SDSS photometry was observed using a drift
scanning technique where all five bands were observed almost simultaneously, meaning
the backgrounds and seeing are highly correlated between the bands. The regressions are
performed separately for the NGC and SGC. The raw and corrected trends in target density
with each of these factors, as well as the airmass and g-band depth, are shown in Fig. 2.5.
The regression is able to remove strong trends in the galactic extinction and stellar density,
and lead to an improvement in all of the parameters considered [231].

The same process is applied to the quasar sample, but the stellar density is exchanged
for the g-band depth in the regression because the raw quasar sample display a strong
trend with g-band depth, but is only weakly correlated with stellar density. The quasar
correction achieves a similar result to the LRG correction, removing significant density
trends in the corrected sample, and is described in [231].

A similar method is used for the ELG sample, but includes more potential sources
of systematics in the regression. The ELG correction regresses against DECaLS imaging
depth and seeing in the grz-bands, the stellar density, Galactic extinction, dust temper-
ature, and HI column density. The full results of this regression and equivalent plots to
Fig. 2.5 are shown in [223].

As well as the weights to remove systematic variations in angular density, a set of weights
are also applied that optimize the signal for the BAO analysis by reducing variations in
the redshift distribution of the data, n(z). These weights, denoted as wFKP, are calculated
using the method of [97]:

wFKP = 1/[1 + n(z)P0] , (2.4)

where P0 is an estimate for the magnitude of the power spectrum. The values used for
each sample are:

P0 =





6000 (Mpc/h)3 quasars
10000 (Mpc/h)3 LRGs
4000 (Mpc/h)3 ELGs

(2.5)

In each case P0 matches the amplitude of the power spectrum for that tracer at k ∼
0.15hMpc−1, which is the optimal choice for the BAO analysis [103].

A final set of weights is applied to the data to correct for systematic variations in the
data due to fibre collisions. The fibre-collision issue and the weights used to correct it are
discussed in detail in Sec. 2.5.

The statistics of the large-scale structure catalogues for the LRG, quasar, and ELG
clustering samples are shown in Table 2.1. The number of objects in each sample are

60



Figure 2.5: Trends in angular LRG target density with various observational systematics.
The dashed black lines show the raw trends before any correction, and the red points
show the results after the data has been weighted to remove the trends using a multi-
linear regression. The regression is applied separately for the NGC and SGC, and then the
two regions are combined here. Top row from left to right: density of targets relative to
the random catalogue plotted against sky background in the i-band, galactic extinction,
and airmass. Bottom row from left to right: density plotted against i-band seeing, stellar
density, and depth in the g-band of the targeting photometry. [231]
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LRG Quasars ELG
Npar 377,633 703,521 269,178
Ntarg 311,848 655,521 229,694
Ncp 8,386 11,710 10,602
Ngal 209,894 28,041 195,085
NQSO 2,889 454,452 -
Nstar 20,766 7,085 1,704
Nzfail 5,224 18,778 20,202
NLSS 174,816 343,708 173,736
Tiled Area (deg2) 6,309 6,309 1170.2
Unvetoed Area (deg2) 5,223 5,858 733.8
Effective area (deg2) 4,103 4,699 727.0

Table 2.1: Statistics of the eBOSS LRG, quasar, and ELG clustering samples. Npar is
the total number of objects selected for the parent catalogue of each sample. Ntarg is the
number of eligible targets after applying veto masks. Ncp is the number of objects in
close pairs, that are not observed because of fibre collisions. Ngal, NQSO, and Nstar are
the numbers of observed spectra with a successful redshift estimation that are classified as
galaxies, quasars, and stars respectively. Nzfail is the number of observed spectra for which
redshift estimation failed. NLSS is the final number of objects with successful redshifts
of the correct type for that sample, after applying completeness and redshift cuts. The
redshift ranges selected for the LRG, quasar, and ELG clustering samples are 0.6 < z < 1.0,
0.8 < z < 2.2, and 0.6 < z < 1.1 respectively. ‘Tiled Area’ is the total area tiled for each
sample. ‘Unvetoed Area’ is the remaining area after veto masks are applied. ‘Effective
Area’ is the area after applying completeness cuts, and multiplying remaining sectors by
their completeness. [231, 223]

shown from the initial parent catalogues selected according to the targeting algorithms (see
Sec. 2.2.2), through to the final large-scale structure catalogues used in the cosmological
analyses (see Sec. 2.7). There is a significant reduction in the LRG and quasar samples,
apparent in the large change between Ntarg and the number of successful redshifts of the
correct type for each sample, and in the difference between the unvetoed and effective
area of each sample. This difference is due to the removal of sectors with completeness
below 50% (see [231] for details) that includes the regions of the LRG and quasar parent
catalogues that were tiled but never observed, shown in black in Fig. 2.3. The full details
of the LRG and quasar samples are given in [231], and the details of the ELG sample are
presented in [223].
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2.4 Mocks

Before performing the analysis of the large-scale structure catalogues there remain two
very important steps. The first is determining the covariance of the data vector, which is
essential to calculating the agreement between model and data. The other is validating
the analysis pipeline to ensure robust results. We use synthetic mock galaxy catalogues
to perform both these tasks. In Sec. 2.4.1 I describe the main mock catalogues used to
determine the covariance matrices for the final analyses. Then in Sec. 2.4.2 I describe
the mock challenges performed on each data sample to validate the analysis pipelines and
determine the systematic error budget.

2.4.1 Mock catalogue ensembles used for cosmological analysis

When analyzing clustering information it is important to note that clustering measure-
ments in different separation bins are correlated, necessitating the covariance of the data
to be taken into account in the analysis. For the eBOSS analyses presented in Sec. 2.7,
this covariance is estimated using mock galaxy catalogues that accurately reproduce the
expected clustering of the various galaxy samples. It is necessary to invert the covariance
matrix during the analysis, so in order to produce a numerically stable result it is desirable
to estimate the covariance matrix from a significantly larger number of samples than there
are data points in the analysis. This presents a challenge for a large volume survey such as
eBOSS, since it is not computationally tractable to produce enough equal volume N-body
simulations.

Instead, the covariance of the eBOSS clustering measurements are estimated using a
set of 1000 approximate mock catalogues for each sample generated using the Effective
Zel’dovich Approximation mock (EZmock) method. The EZmocks are based on a Gaus-
sian random field in a 5h−3Gpc3 box with an initial power spectrum and cosmology of a flat
ΛCDM universe with parameters Ωm = 0.307115, Ωb = 0.048206, h = 0.6777, σ8 = 0.8225,
and ns = 0.9611. Matter particles were then displaced from their initial to final positions
using the Zel’dovich approximation. The tracer bias relation is calibrated to match the
observed clustering of the target sample in the eBOSS DR16 data. The linear component
of the RSD is imprinted by the Zel’dovich approximation, while the non-linear term is mod-
elled through an isotropic Gaussian motion. The mocks are then trimmed to match the
geometry and radial selection function of the relevant eBOSS sample catalogues. Obser-
vational effects are also introduced to the final EZmock catalogues based on their impact
on the actual data, including fibre collisions, redshift failures, and angular photometric
systematics. Full details of the EZmock generation and tests are reported in [280].
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An additional suite of 2000 approximate simulations are generated to test for systematic
errors in the ELG sample using the GaLAxy Mocks (GLAM)-Quick Particle-Mesh (QPM)
method. These mocks are generated in four steps. First, 2000 GLAM [157] simulations
are run with box size 3000h−1Mpc. Second, the QPM code is used to assign dark matter
halos to the GLAM density fields. Third, the halos are populated with an HOD model
to replicate the small-scale clustering of the ELG sample on scales around ∼ 10h−1Mpc.
Finally, the mocks are cut to match the ELG geometry. These mocks, as well as validation
of their large-scale clustering compared to the ELG sample, are presented in [178].

2.4.2 Mock challenges

In addition to the mock catalogues used to assess the covariance of the sample, mock
challenges are also performed for the LRG [234], ELG [11], and QSO [248] samples to
validate and assess the experimental uncertainty of the models used for the cosmologi-
cal analyses. These mock challenges are based around the Outer Rim N-body simulation
[132], a large and high resolution gravity-only N-body simulation run using the Hard-
ware/Hybrid/Accelerated Cosmology Code (HACC) [121]. The simulation consists of a
periodic box with side length 3h−1Gpc and 102403 particles with mass mp = 1.85 ×
109 h−1M⊙, making it one of the largest and highest resolution N-body simulations at the
time that DR16 was being produced. The LRG challenge also used the NSERIES mocks
that were previously used in the SDSS DR12 analysis [9], and the ELG challenge includes
additional tests using the MultiDark Planck simulation [158].

Each mock challenge began by investigating a variety of HOD models in order to create
an accurate representation of their respective samples from the Outer Rim mocks. For
each sample, multiple catalogues are produced using separate HOD models to reduce the
dependence of the results on any particular parameterization. The analysis pipelines are
then applied to the HOD catalogues to determine if the BAO and RSD models are able
to faithfully recover the known cosmological parameters of the simulation, to identify and
assess the magnitude of any systematic errors, and to make adjustments where necessary.
In the case of the ELG and QSO mock challenges additional tests are made using blinded
mocks, where the cosmological parameters of interest have been shifted from the base
values of the simulation and are unknown to the experimenters, in order to ensure that
the analysis methods are not tuned to produce an expected result. For all three samples,
the mock challenges showed that the analysis pipelines are able to recover the true values
to within statistical uncertainty. For full details of the results, as well as systematic error
estimations, see the mock challenge paper for each sample (LRG [234], ELG [11], and QSO
[248]).
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2.5 Correcting fibre collisions using PIP+ANG weight-
ing

An important observational systematic in targeted spectroscopic surveys is the fibre-
collision issue, which biases the clustering measured from the observed sample. Fibre
collisions have typically been corrected using approximate methods that give accurate
large-scale results, but are unable to completely remove the bias on small scales. Pairwise-
Inverse-Probability (PIP) [36, 202] weights provide the first theoretically unbiased correc-
tion to the fibre-collision issue, and in [190] we apply this method to a fibre-fed spectroscopic
survey for the first time.

In this section I begin by describing the fibre-collision issue, and discuss the correction
used for large-scale analyses in eBOSS (Sec. 2.5.1). I then provide a theoretical background
for the PIP method in Sec. 2.5.2, as well as the Angular Upweighting (ANG) method that
we apply in tandem. Then in Sec. 2.5.3 I describe the method we use to generate and
apply PIP+ANG weights for all three eBOSS samples. Next, I present the results of
tests performed by applying PIP+ANG weights to mock catalogues to validate the tech-
nique (Sec. 2.5.4). Lastly, I show the final PIP+ANG corrected clustering measurements
for eBOSS and compare them to measurements corrected using an approximate method
(Sec. 2.5.5).

2.5.1 Fibre collisions in spectroscopic surveys

Fibre collisions are an observational limitation of fibre-fed spectroscopic surveys, where
the physical size of the fibre casing prevents simultaneously targeting two targets within
a certain radius on the sky, called the fibre-collision radius. For BOSS and eBOSS, which
both use the BOSS spectrographs, the fibre-collision radius is θ(fc) = 62′′. In regions of
the survey where multiple passes of the instrument overlap it may be possible to observe
multiple collided objects, but fibre collisions in single pass regions will always remain un-
resolved. These missing objects present an issue because they are correlated with higher
density regions, introducing a systematic bias in the 3D clustering of the sample. If uncor-
rected this bias affects all clustering scales, but is most impactful on small scales, where it
is the leading source of systematic error [226].

BOSS and eBOSS adopt the same selection method for resolving fibre collisions. First,
an algorithm is applied to maximize the number of observed spectra, then any remaining
conflicts are resolved randomly. This selection can be illustrated using a simple example
of three objects, where object A collides with both B and C, but B and C are not collided.
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In a single pass region if A is observed then neither B nor C can be observed, so the
selection algorithm will always target both B and C, and leave A unselected, to maximize
the number of observed spectra. In a double pass region any pair (A and B, A and C, or
B and C) can be observed, but it is not possible to observe all three objects due to the
double collision of A, so the observed pair is determined randomly. In a triple pass region
each object can be observed on a different plate, so it is possible to observe all objects. An
example of fibre collisions in the BOSS CMASS sample is shown in Fig. 2.6. Fibre-collided
close pairs are mostly resolved in multi-pass regions, with few exceptions, however all close
pairs in single-pass regions are unresolved. eBOSS uses the same instrument and similar
tiling, fibre-assignment, and observational strategies as BOSS, so the effect is very similar.

A common correction for fibre collisions is the application of Nearest-Neighbour (NN)
weighting, where the weight of missing observations is transferred to its nearest neighbour.
This method is able to recover accurate clustering on large scales, but performs worse
at scales approaching the fibre-collision radius, and loses all information below the fibre-
collision radius. In eBOSS a variation of NN weights is produced where the weight of
the missing object is equally distributed to all good observations in the collision group.
This method, denoted as Close Pair (CP) weights and given the symbol wcp, improves
the accuracy of the NN correction, but faces the same issues on small scales (see [231]).
CP weights are used in most large-scale eBOSS analyses, detailed in Sec. 2.7, but for the
small-scale analyses presented in Ch. 3 and Ch. 4, we require a correction that is unbiased
on all scales, so we use the more accurate PIP+ANG correction.

2.5.2 Pairwise-inverse-probability weights and angular upweight-
ing

Unlike NN weights, the PIP weighting proposed in [36] provides a theoretically unbiased
correction to the issue of fibre collisions on all scales. The PIP weights are assigned to pairs
of objects in the targeted sample and quantify the probability, for any pair, of being selected
in a random realisation of the survey targeting. Each pair is then inversely weighted by
that observation probability. An intuitive example is if there was a particular configuration
of potential targets that is only observed 10% of the time, then each such pair would be
weighted by a factor of wPIP = 1/0.1 = 10, perfectly correcting for the missing 90%.

In order to correctly apply PIP weights two conditions must be met. The first is that
the targeting probability for each pair is known, which is non-trivial. The selection proba-
bilities are characteristic of the particular fibre-assignment algorithm used to select targets
from a parent photometric sample for the spectroscopic follow-up. These probabilities are
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Figure 2.6: Distribution and outcome of targets for a region of the CMASS sample within
BOSS. Large circles show the placement of observing tiles, with darker shading indicating
overlap areas. Small black dots show the positions of targets for which a good redshift
was obtained. Blue squares show targets that were not allocated a fibre because they were
part of a close pair, and thus could not be observed due to the fibre-collision issue. Green
circles show targets that were not allocated a fibre but were not part of a close pair. Red
triangles show targets that were allocated a fibre but a good redshift was not obtained
[232].
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extremely difficult to model analytically, except in the case of some simple targeting strate-
gies. Our method for measuring these probabilities in eBOSS is presented in Sec. 2.5.3.
The second condition is that no pair has zero probability of being observed. Trivially, in
this case the PIP weights would be undefined, and because the pair is never observed it
is impossible to account for its effect on the clustering. In the absence of zero probability
pairs PIP weights provide statistically unbiased corrections to the 2PCF. The theory of
PIP weights and proof that they provide an unbiased correction are presented in [36]. Prior
to eBOSS, PIP weights had also been successfully applied to the slit-based VIMOS Public
Extragalactic Redshift Survey [188].

We combine PIP weights with the Angular Upweighting (ANG) method presented in
[202]. Angular upweighting is predicated on the assumption that the subsample of the
parent catalogue that is observed spectroscopically is statistically identical to the full par-
ent catalogue. In that case the angular clustering of the parent catalogue can be used to
reduce the variance of the observed subsample. The angular weights are defined simply as
the ratio of the measured angular correlation function of the parent catalogue to the ob-
served subsample. The combination of PIP+ANG weights therefore gives an unbiased and
minimum variance estimate of the clustering. Particularly for eBOSS, including angular
upweighting is an important tool for addressing the issue of collided pairs in single-pass
regions, as described in Sec. 2.5.3.

2.5.3 Generating PIP+ANG weights for eBOSS

In order to generate PIP weights we must determine the selection probability for each
possible pair in the survey. We accomplish this by generating multiple replicas of the
survey target selection. The eBOSS tiling placement and fibre assignment strategy are
detailed in Sec. 2.2.3. In particular, as discussed in Sec. 2.5.1, cases of fibre collision are
resolved randomly using a predetermined "random seed", except where one of the possible
targeting configurations results in more observable objects. This deviation from purely
randomly selected targets and its effect on the PIP weights is explored in Sec. 2.5.4.

To generate replicas of the target selection we rerun the eBOSS target selection, chang-
ing the random seed to vary which members of collided pairs receive fibres. We perform a
total of Nruns = 1860 fibre assignment runs for the eBOSS samples, which provide a large
enough sample to ensure the inferred selection probabilities would not be noise dominated.
The first run used the actual random seed of the eBOSS target selection, so that the true
run is included in our ensemble. This step is necessary to ensure that each actually targeted
pair will have a non-zero selection probability in our finite number of survey realizations.
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For the mock catalogues analyzed in Sec. 2.5.4 we perform Nruns = 310 fibre assignments
for each mock, balancing the number of fibre assignments against the number of mock cat-
alogues for computational efficiency. In order to run the fibre assignment algorithm such a
large number of times we modify it to remove unnecessary output steps and to permit par-
allel computation of the algorithm on a supercomputing cluster, while leaving the actual
selection method unchanged. Details of these target selection replicas and modifications
to the fibre assignment code are described in [190].

Given a set of survey realisations, the inverse probability, or equivalently the PIP
weight wmn, is simply the number of realisations in which a given pair could have been
targeted divided by the number of times it was targeted. For efficiency, rather than storing
pairwise weights for all O(N2) pairs, we store bitwise weights w(b)

i for each target, following
the method established in [36]. These bitwise weights are simply binary arrays of length
Nruns, where each bit (either one or zero) represents the outcome of the corresponding fibre
assignment run for target i (either this target is, or is not, included in run b). Bitwise
weights can then be combined efficiently on the fly to compute the pairwise weights for
targets m and n using:

wmn =
Nruns

popcnt
[
w

(b)
m &w

(b)
n

] , (2.6)

where popcnt and & are standard bitwise operators. popcnt is the ‘population count’
operator that, given an array, returns the number of elements different than 0. & is the
bitwise ‘and’ that, given two arrays of equal length, performs the logical ‘AND’ operation
on each pair of the corresponding bits and returns the result as an array with length equal
to that of the input arrays. The Individual-Inverse-Probability (IIP) weights, wm, are
the single-object counterparts of the PIP weights, i.e. the inverse-probability for a given
object m of being targeted in a random survey realisation. wm can be calculated simply
by replacing m = n in Eq. 2.6.

The weights applied to the pair counts when using the PIP and IIP weights are then:

DD(s⃗) =
∑

x⃗m−x⃗n≈s⃗

wmnw
′

tot,mw
′

tot,n ,

DR(s⃗) =
∑

x⃗m−y⃗n≈s⃗

wmw
′

tot,mwtot,n ,
(2.7)

In Eq. 2.7, w′
tot = wsys×wnoz×wFKP are the total weights described in Sec. 2.3.2, while

wtot = wsys × wnoz × wFKP × wCP are applied to the random catalogue, which is valid for
all fibre assignment runs.
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Because the eBOSS tile positions are fixed, collided pairs in single pass regions can never
be resolved, meaning there are zero probability pairs in the sample. These pairs produce a
systematic underestimation in the measured 2PCF. Initially, we investigated resolving this
issue by rotating the parent catalogue on the sky in random directions and magnitudes,
giving a non-zero probability for any pair to lie in a multi-pass region. Unfortunately, due
to the observing choices made for eBOSS, this method is not able to faithfully reproduce
the baseline of the parent catalogue. The method, as well as the reasons for rejecting it,
are described in Appendix A.

Alternatively, the Angular Upweighting outlined in [202] can be used to de-bias the
measurements at smaller scales. The parent catalogue contains all collided pairs, and gives
the correct angular correlation function below the fibre-collision scale. The spectroscopic
catalogue with PIP weighting misses all collided pairs in single-pass regions, but in multi-
pass regions collided pairs can be resolved and, after applying the PIP weights, give an
unbiased measurement of the clustering within their region. Since collided pairs in multi-
pass regions are the only angular pairs with separations less than the fibre-collision scale
observed in the survey, angular upweighting increases their weight to match the clustering
of the parent catalogue, accounting for all the missing pairs in single-pass regions. This
correction relies on the assumption that pairs missed due to fibre collisions in the single-
pass regions are statistically equivalent to those targeted in the multiple-pass areas. It is
worth noting that this is not necessarily true for eBOSS given the perturbation of the tile
placement to correlate multi-pass regions with higher density regions (Sec. 2.2.3). However
this effect is likely small enough to be subdominant to the statistical uncertainty, as shown
by the recovery tests with mock catalogues presented in Sec. 2.5.4.

The angular weights used to upweight DD and DR are defined as,

wDD
ang(θ) =

DDpar (θ)

DDfib
PIP (θ)

,

wDR
ang(θ) =

DRpar (θ)

DRfib
IIP (θ)

,

(2.8)

where θ is the angular separation of the pair. The superscripts -par and -fib in Eq. 2.8
denote pairs of targets from the reference parent sample and pairs of targets that receive
fibres, respectively. The subscript PIP and IIP denote the fact that the pair counts are
upweighted using the PIP weights for DD pairs, and IIP weights for the DR pairs. We
measure the angular correlation function in 34 bins, with upper limits logarithmically
spaced between 0.01 − 3◦. It is worth noting that weights only significantly deviate from
1 below the fibre-collision scale, θ(fc) = 62′′.
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Combining both of the corrections, the complete PIP+ANG weightings are:

DD(s⃗) =
∑

x⃗m−x⃗n≈s⃗
u⃗m·u⃗n≈cos θ

wPIP
mn w

tot
m wtot

n × DDpar (θ)

DDPIP
fib (θ)

,

DR(s⃗) =
∑

x⃗m−y⃗n≈s⃗
u⃗m·v⃗n≈cos θ

wIIP
m wtot

m wtot
n × DRpar (θ)

DRIIP
fib (θ)

,

(2.9)

2.5.4 Validation using mock catalogues

We test the effectiveness of the PIP+ANG weights using a sample of 100 EZmocks for
the LRG, ELG, and QSO samples (see Sec. 2.4.1). By default the EZmocks contain an
approximation of fibre collisions, where objects that did not receive a fibre are removed
and corrected using CP weights. In order to be able to accurately test the PIP+ANG
correction we instead use the parent EZmock catalogues, which are already cut to match
the eBOSS footprint, and apply the full eBOSS fibre assignment algorithm to realistically
introduce fibre collisions, as they appear in the actual eBOSS samples. The full steps we
take to prepare the 100 EZmock catalogues and ensure they are an accurate representation
of the eBOSS samples are described in [190].

For each eBOSS sample (LRG, ELG, and QSO), we measure the clustering of the parent
catalogue, the catalogues affected by fibre collisions and corrected using PIP weighting,
and the catalogues affected by fibre collisions with the full PIP+ANG correction for all
100 EZmocks. In each case we measure the projected correlation function, wp, as well as
the first three even multipoles of the redshift-space 2PCF, ξ0, ξ2, and ξ4, over a separation
range of 0.1− 100h−1Mpc. We then compare the mean of the corrected measurements to
the mean of the true clustering of the parent mocks.

Fig. 2.7 shows the result of this comparison for the LRG EZmock projected correlation
function. I choose to display the LRG measurement here because it is the most clustered
sample, and therefore displays the largest differences caused by fibre collisions, and because
it is the sample that is analyzed in Ch. 3 and Ch. 4. Equivalent plots for the ELG and
QSO samples are shown in [190], although the same trends, features, and performance of
the PIP and PIP+ANG corrections are observed for all three samples.

On scales above those corresponding to the fibre-collision radius the PIP and PIP+ANG
corrections give nearly identical results, both of which are in agreement with the true
clustering of the parent catalogue. For comparison, the lower panel shows the difference
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Figure 2.7: Mean projected correlation function measurements of 100 LRG EZmocks in the
NGC (left column) and SGC (right column). Top: measurements of the parent mocks (solid
lines with shaded bands), from catalogues affected by fibre collisions and corrected using
PIP weights (empty markers with dashed error-bars), and corrected using PIP+ANG (filled
points with continuous error-bars). The blue shaded bands and error-bars show the error
on the mean. The vertical red shaded bands show the transverse scales corresponding to the
fibre-collision angle between the minimum and maximum redshifts of the sample. Bottom:
mean of the differences between the corrected measurements from mocks affected by fibre
collisions and the corresponding parent mock. To reduce the range of variation, each
quantity in the bottom panel is multiplied by rp. For comparison, the red continuous lines
and hatch regions (RAW) show the mean measurements where no fibre-collision correction
is applied. Note: empty markers at scales smaller than the fibre-collision scale are not
visible in the plot because they are well below the minimum limit set on the y axis.
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with the uncorrected measurements of the catalogues affected by fibre collisions, which
deviate significantly from the true clustering for measurements with separations between
10 − 100h−1Mpc. Below the fibre-collision scale the PIP+ANG weights continue to ac-
curately recover the true clustering, but the PIP corrected measurements are much lower
than the true clustering due to the large number of missing pairs in single-pass regions.

The only scales at which the PIP+ANG measurements deviate from the clustering of
the parent catalogue is at the fibre-collision scale, shown as the vertical red band in the
plot. The reason for this deviation is likely the zero-probability pairs introduced by the
choice of maximizing the number of observable objects in the target selection algorithm
for collided groups, discussed in Sec. 2.5.1. This deviation shows why it is preferable to
choose an observing strategy that treats all objects equally (in this case, applying a fully
random selection where necessary), rather than tuning the strategy to produce slightly
more observations. In the case of all objects being statistically equivalent, PIP weights can
recover the true clustering without bias. But in this case, where the observing strategy
is tuned, there is an unrecoverable loss of information. However, it is important to note
that this deviation is only visible because we have displayed the uncertainty on the mean
of the 100 EZmock measurements in Fig. 2.7. This deviation is significantly smaller than
the statistical uncertainty on a single mock measurement, and so is not a concern for the
corrected eBOSS measurements.

Fig. 2.8 shows an equivalent plot for the multipoles of the LRG EZmocks. For the
multipoles, the PIP+ANG correction is still able to recover the correct clustering on all
scales, but the PIP correction is only able to recover the true clustering above a scale of
∼ 20h−1Mpc, below which it significantly underestimates the true clustering. This failure
is also caused by missing fibre-collided pairs in single-pass regions, but unlike for wp where
these pairs are restricted to a particular transverse scale, in the 3D clustering they are
spread over a range of separation. This can also be seen in the uncorrected measurements,
which deviate significantly from the true clustering on all scales.

2.5.5 Applying PIP+ANG weights to eBOSS data

We generate PIP+ANG weights for the eBOSS DR16 LRG, ELG, and QSO samples, as
described in Sec. 2.5.3. These measurements were made publicly available as part of SDSS
DR165.

Fig. 2.9 shows the projected correlation function of the eBOSS DR16 LRG sample
corrected by CP, PIP, and PIP+ANG weights for comparison. As was seen in Fig. 2.7,

5https://www.sdss4.org/dr16/
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Figure 2.8: Same as Fig. 2.7, but for the monopole (blue), quadrupole (red), and hex-
adecapole (green) of the redshift-space 2PCF. In the lower panels, showing the differences
between the corrected measurements and the measurements of the parent mocks for each
multipole, the uncorrected measurements are now shown as grey continuous lines and hatch
regions (RAW). All measurements are multiplied by the square of the separation to better
simultaneously display the small- and large-scale behaviour.
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above the fibre-collision scale the PIP and PIP+ANG corrections are in good agreement,
however below the fibre-collision scale the PIP corrected measurements drop significantly,
showing the importance of including angular upweighting. The CP and PIP corrections
are generally in agreement above the fibre-collision scale. This agreement shows that the
selection probabilities are highly uncorrelated on these scales, and so can be well approxi-
mated using an empirical prescription such as the CP method. This is to be expected given
that the eBOSS fibre assignment algorithm used a random seed to resolve most instances
of fibre collision.

Fig. 2.10 shows a similar plot for the multipoles. As was found in Fig. 2.8, changing to
the three dimensional clustering spreads out the scales affected by the missing observations
in single-pass regions. The result is that the PIP and CP corrections are only in agreement
with the PIP+ANG corrected measurements above ∼ 20h−1Mpc. These measurements
highlight the importance of properly correcting fibre collisions for small-scale analyses, like
those presented in Ch. 3 and Ch. 4.

2.6 ELG targeting depth systematic

After completing observations of the eBOSS Emission Line Galaxy (ELG) sample we dis-
covered that there was an observational systematic affecting the clustering that could bias
the cosmological analysis of the sample. After some investigation, we linked this system-
atic to the photometric calibration of the DECaLS data used to target the ELGs. In this
section I describe this systematic, and the work done by myself and others to correct it. I
begin by giving an overview of the discovery and evidence for this observational system-
atic, and the failure of simple techniques, such as additional masking, to resolve the issue,
despite removing significant amounts of observed data (Sec. 2.6.1). I investigate correcting
the issue without discarding any data by applying a weight-based correction, which I in-
troduce in Sec. 2.6.2. The key requirement of this method is a measurement that is highly
correlated with the variations in density caused by the uneven calibration. In Sec. 2.6.3
I describe my work using the magnitude differences of stars between the DECaLS DR7
and DES DR1 observations as a proxy for variations in the photometric calibration. I then
discuss the results of this weight-based correction on the most strongly affected observation
chunk, and how it informs our understanding of the systematic issue (Sec. 2.6.4). Finally,
in Sec. 2.6.5 I describe the corrections applied to the ELG sample when using the data for
cosmological inference.
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Figure 2.9: Top: projected correlation function measurements of the eBOSS DR16 LRG
sample using different fibre-collision correction schemes: CP weights (dashed red), PIP
weights (black dashed-dotted), and PIP+ANG weights (blue). The shaded region around
the PIP+ANG correction shows the 1σ uncertainty estimated from 100 EZmocks. The
vertical red shaded bands show the transverse scales corresponding to the fibre-collision
angle between the minimum and maximum redshifts of the sample. Bottom: differences
between the CP and PIP corrected measurements and the PIP+ANG correction. To
reduce the range of variation, each quantity in the bottom panel is multiplied by rp. The
left column shows the result for the NGC, and the right column shows the SGC.
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Figure 2.10: Redshift-space 2PCF multipole measurements of the eBOSS DR16 LRG
sample in the NGC (left column) and SGC (right column). Top: the monopole (blue),
quadrupole (red), and hexadecapole (green) of the redshift-space 2PCF corrected by
PIP+ANG weighting. The shaded bands show 1σ uncertainties estimated from 100 EZ-
mocks. Bottom: differences between the CP and PIP corrected measurements and the
PIP+ANG correction. All measurements are multiplied by the square of the separation to
better simultaneously display the small and large-scale behaviour.
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2.6.1 Identifying the observational systematic

The eBOSS ELG targets are selected using photometric data from DECaLS DR3 and
DR5 (see Sec. 2.2.2 for more details). These DECaLS data releases are a collection of all
public grz-band DECam imaging taken over the DECaLS footprint, and were analyzed
using the Tractor6 image processing software. While primarily composed of DES and ded-
icated DECaLS observations, observations from other programs with different calibration
prescriptions are also included.

The danger of using inconsistent calibration techniques is variable depth across the
survey, effectively shifting the magnitude cuts used for target selection (see Sec. 2.2.2)
between different regions. Because galaxies are not uniformly distributed in colour-space
(see e.g. Fig. 2.2), shifting the target window can lead to a greater flux of galaxies entering
the target window than leaving, or vice-versa. Changing the number of selected targets in
patches introduces density variations across the survey, causing additional angular corre-
lations in the data that are not cosmological in origin. While not initially a concern for
the eBOSS ELGs, after observations were complete it was discovered that the ELG sample
displayed excess angular clustering and a larger quadrupole compared to mock galaxy cat-
alogues. This issue is also inconsistent between the observation chunks, with the eboss22
ELGs showing both the largest angular correlation function and quadrupole. eboss22 is
the largest ELG chunk, covering 445 deg2 and containing 69 071 reliably observed ELG
spectra, making up 35% of the entire eBOSS ELG sample [223].

In order to assess whether this issue is related to the photometric calibration we com-
pared the angular clustering of DECaLS DR7, which contains the original data used to
target the eBOSS ELGs, including the additional observation programs, and the angular
clustering of the DES DR1 [2] sample within the eboss22 footprint. DES is an additional
photometric survey performed using DECam that overlaps with DECaLS, but using differ-
ent observing parameters and SExtractor7[31] for imaging processing. The results of this
comparison are shown in Fig. 2.11. The DECaLS data shows significant excess angular
clustering compared to DES on the scale of a few degrees, matching what was observed
for the eboss22 ELG sample. The DES data is in agreement with the prediction from the
GLAM-QPM mocks, which are constructed to match the clustering of the ELG sample (see
Sec. 2.4.1). The disagreement between the DECaLS and DES observations over the same
footprint and with the same instrument implies that the source of the issue is the DECaLS
photometric calibration and image processing, a conclusion supported by the agreement
between the DES and GLAM-QPM mocks.

6https://github.com/dstndstn/tractor
7https://www.astromatic.net/software/sextractor/
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Figure 2.11: Comparison of angular correlation functions over the eboss22 footprint.
Blue and orange lines show the clustering of DECaLS DR7 while green and red show the
clustering of DES DR1, in both cases with and without a linear correction to the clustering.
The purple line shows the clustering of the GLAM-QPM mocks, with the shaded region
showing the 1σ uncertainty. This plot was produced by Arnaud de Mattia for the eBOSS
Collaboration.
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Figure 2.12: The footprint of the eBOSS ELG program. The upper panel shows the NGC
chunks, where eboss25 is at higher declination and eboss23 is at lower declination. The
lower panel shows the SGC chunks, with eboss22 at positive right ascension (the left of
this plot) and eboss21 at negative right ascension. The blue-red colourbar shows the
tiling completeness in each sector. The open black circles show the positions of the eBOSS
plates. Filled circles show additional angular veto masks that are added after observation:
the star Mira (light gray), DECam pointings with inconsistent photometric calibration in
DECaLS DR3 and DR5 (dark gray), and eBOSS spectroscopic plates with abnormally high
failure rates that are removed from the analysis (black) [223]

Unlike DECaLS DR3 and DR5 that are used for the ELG targeting, or DR7 that
is analyzed in Fig. 2.11, DECaLS DR8 restricted the data included in the catalogue to
mostly DES and DECaLS observations. DR8 also uses a significantly improved photometric
calibration procedure to address the issues discovered in DR7. By comparing DECaLS
DR8 to the data releases used for targeting we are able to identify the exposures used in
targeting with the most extreme variations in calibration. These exposures are shown in
Fig. 2.12, and are primarily found in eboss22, matching the excess angular clustering and
quadrupole.

We attempted to correct this systematic by adding the most strongly affected DECaLS
exposures, shown in Fig. 2.12, to the final angular veto mask. However, this additional
masking only slightly improved the agreement of the angular correlation function and
monopole with the mock measurements, and has little effect on the quadrupole and hex-
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adecapole. The additional masks also remove tens of thousands of observed objects from
the ELG sample, with even more aggressive masking resulting in even more lost data.

2.6.2 Weight-based correction

Rather than masking the miscalibrated exposures and reducing the size of the sample, I
investigate correcting this systematic using a weight-based approach. This method has
been successfully applied to correct other artificial density trends in the observed data, as
described in Sec. 2.3.2.

The basis of this method is to divide the data into equal area angular pixels on the sky,
using HEALPix, and compare the density in each pixel to a measurement that is correlated
with the spurious density pattern. To be effective this method requires knowledge of
the cause of the variations in density, in order to produce a strong trend between the
measurement and the density variations. Weights can then be defined from the inverse
of this trend, which when applied to the data will remove the density variations and the
additional angular clustering. As long as the cause of the density variation is not correlated
with the cosmological clustering, as is typically the case for observational systematics and
foreground effects, the true signal will be unaffected and no data needs to be discarded.

The key to this method is identifying a statistic that is highly correlated with the false
density variations. In this case the variation in density is correlated with the DECaLS
photometric calibration, as shown in Fig. 2.12, but is not present in the DES observations
over the same footprint, as shown in Fig. 2.11. As a proxy for variations in the DECaLS
calibration, I investigate differences in the apparent magnitudes of stars between DECaLS
DR7 and DES DR1 in the g, r, z-bands used to target the eBOSS ELGs. DES provides
a consistent calibration over the same footprint and observed with the same instrument,
so the magnitude differences are expected to be highly correlated with the variations in
calibration of the DECaLS exposures. Stars are an ideal probe of this difference because
they are point sources, which allows for a simple cross-match between the two surveys and a
consistent estimate of the total flux. Stars are also numerous, giving a large signal-to-noise
ratio in each pixel.

2.6.3 DES-DECaLS cross correlation

Using the National Optical-Infrared Astronomy Research Laboratory (NOIRLab) Astro
Data Lab8 (previously the National Optical Astronomy Observatory (NOAO) Datalab) I

8https://datalab.noirlab.edu/

81



cut the DECaLS DR7 main Tractor catalog in Right Ascension (RA) and Declination (Dec)
to match the eboss22 footprint (0 < RA < 45, -5 < Dec < 5). I select objects classified as
stars by the Tractor image processor with positive, non-zero flux in the g, r, z-bands used
for ELG targeting. I then perform a nearest-neighbour cross-match with the DES DR1
catalog to find the closest object within 1′′, removing any object with negative or zero flux
in the three bands of interest.

I set an initial maximum cross-match distance of 5′′. In Fig. 2.13 I examine the number
of objects matched as a function of cross-match distance. The number of objects decreases
rapidly between 0′′ and 1′′, before increasing again. This behaviour is consistent with the
majority of good matches occurring within 1′′, beyond which a false match is more likely
to occur. To confirm this hypothesis I examined the relationship between the observed
magnitude in each survey for the matched objects. I found that for objects matched within
1′′ the magnitudes in both surveys were highly correlated, as expected for correct matches
given the differences in calibration between the two surveys. Objects matched between 1′′
and 5′′ tended to have uncorrelated magnitudes, with the DECaLS magnitude often greater
than 25. These objects are most likely artifacts identified by the image processing software,
rather than true stars. The likelihood of matching these artifacts increases with larger
cross-match distance, but is greatly reduced when the maximum cross-match distance is
limited to 1′′. I therefore adopt 1′′ as an upper limit to the cross-match distance, and find
a total of Nmatch = 2 152 681 matched objects within the eboss22 footprint.

To generate the weights I divide the sky into equal area HEALPix pixels with Nside =
128. Within the HEALPix method the total number of equal-area pixels is NTot = 12 ×
N2

side, so the value of Nside determines the size of each pixel. I choose Nside = 128 so that the
size of each pixel approximately matches the field-of-view of the DECam exposures used
for targeting, although Nside = 256 and Nside = 512 were also tested with similar results.
After dividing the footprint I find the pixel-by-pixel average magnitude difference between
the two surveys for the cross-matched stars, in each of the three bands. Fig. 2.14 shows the
average magnitude difference in each pixel of eboss22 for each of the three bands. The
r-band map shows the largest and most consistent differences, with most pixels showing a
positive mr,DES −mr,DECaLS difference. The largest shifts, around 0.05 dex in magnitude,
are concentrated towards the larger RA end of the chunk, matching the area most heavily
affected by poor exposures in Fig. 2.12. This miscalibration shifts the boundaries of the
colour cuts based on the r-band magnitude used to target the ELG sample (see Eq. 2.3,
Eq. 2.2, and Fig. 2.2 in Sec. 2.2.2) since the same shifts are not present in the g and z band
maps, which show smaller shifts more evenly distributed around 0.

After determining the mean magnitude difference in each pixel I count the number of
galaxies in the full eboss22 ELG catalog and the number of objects from the random
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Figure 2.13: Histogram of the angular separation of stars matched in DES DR1 and DE-
CaLS DR7.
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Figure 2.14: Mean DES-DECaLS stellar magnitude differences in HEALPix pixels for the
g-, r-, and z-bands within eboss22.
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catalog in each pixel. To find the target density of each pixel I calculate the ratio of
target galaxies to randoms, normalized by the average across the chunk. I then correlate
the density with the magnitude difference, divided into 10 equal width magnitude bins.
Fig. 2.15 shows the density of eboss22 ELG targets in HEALPix pixels, plotted against
the average stellar magnitude difference between DES and DECaLS in that pixel. A clear
trend in density is observed in the r-band for the unweighted sample, with a slighter trend
in the g-band, and no clear trend in the z-band. Inversely weighting by the density in
each bin removes all trends, and gives a sample unbiased in terms of the DES-DECaLS
magnitude difference.

2.6.4 Performance of the weight-based correction

I inversely weight each galaxy by the density in its pixel’s bin to remove any trends, and
store the weights for all three bands. To test the success of the method I calculate the
angular correlation function, as well as the 3D monopole, quadrupole, and hexadecapole,
using the Landy-Szalay estimator for both the corrected and uncorrected samples (see
Sec. 1.3.2).

These measurements are shown in Fig. 2.16. The weighted correction removes some
excess angular clustering, shifting away from the measurement of the DECaLS DR7,
which contains the miscalibrated observations, and towards the correctly calibrated DES
DR1, but does not fully eliminate the issue. The correction also has a slight effect on
the monopole, but no significant effect on the quadrupole or hexadecapole. Thus the
quadrupole remains positive on large scales, in disagreement with measurements from the
mock catalogues. These changes are similar to what is observed when the miscalibrated
exposures are masked, but without any data being removed. The similarity of the results
implies that the weight-based method can successfully remove the angular component of
the photometric systematic without the need to remove data, but neither method fully
corrects the issue.

This failure is likely caused by a redshift dependence in the density variations, which
cannot be corrected with weights determined on a purely angular basis. Some redshift
dependence is expected in this case because of the colour cuts used to select targets.
These cuts are the same for all galaxies, but because they are applied using apparent
magnitudes they will occupy a different region of colour-space in the rest frame of low
redshift galaxies compared to high redshift galaxies. As the window shifts in colour-space
the flux of possible targets across the boundaries will change, impacting the way in which
the variance in calibration affects the density of targets.
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Figure 2.15: The density of eboss22 ELG galaxies in HEALPix pixels on the sky, plotted
against the average magnitude difference between stars in DES DR1 and DECaLS DR7
in that pixel. Density is calculated from the ratio of targeting catalog galaxies to random
catalog points in that pixel, and normalized by the average galaxy-random ratio of the
chunk. Blue circles show the original, unweighted distribution, orange triangles show the
distribution weighted so that the density as a function of g-band magnitude difference is
uniform, green squares show the distribution with both g- and r-band weights, and red
crosses show the distribution with weights applied for all three bands. Left: g-magnitude
difference. Centre: r-magnitude difference. Right: z-magnitude difference. The lower
panels show the number of stars used to calculate the average magnitude difference in each
bin.

86



Figure 2.16: Effect of weight-based correction on eboss22 ELG correlation functions.
Uncorrected (orange) and corrected (blue) measurements are shown for the angular cor-
relation function (top left), and the monopole (top right), quadrupole (bottom left), and
hexadecapole (bottom right) of the 3D correlation function. Angular correlation functions
from the DECaLS DR7 (green) and DES DR1 (red) are also shown for reference. Multi-
pole measurements are multiplied by the pair separation to better display the large-scale
behaviour.
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Figure 2.17: Redshift distribution of eboss23 ELGs divided into three bins of target
imaging depth in the r-band. Faint, thick lines show the distribution of the data in each
bin, while thin lines show the distributions of the random catalogues. [223]

In Fig. 2.17 we demonstrate this relationship between imaging depth and redshift dis-
tribution for the eboss23 chunk. The chunk is divided into three bins by imaging depth of
the targeting photometry in the r-band. eboss23 was chosen to display because it exhibits
the clearest separation between the three bins. r-band imaging depth is used because it
shows the strongest effect, in agreement with my results from the weight-based correction
(Fig. 2.15). Fig. 2.17 shows that regions with shallower imaging also skew to lower red-
shifts, because lower apparent magnitude galaxies at high redshift are excluded from the
colour selection. In order to fully correct this issue the redshift dependence would need
to be included in the weights, requiring a more complicated statistic than the magnitude
differences between DECaLS and DES.
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2.6.5 Treatment for cosmological inference

My results show that it is not possible to correct the variations in density caused by
inconsistent photometric calibration without a loss of information. We therefore adopt
two corrections for the cosmological analysis of the eBOSS ELGs: calibrating the radial
distributions of the randoms separately in bins of equal targeting depth, and nulling angular
modes in the data.

In eBOSS the redshifts of the random catalogue are assigned using the shuffled method,
where the redshifts of the randoms are randomly drawn from the redshifts of the data
catalogue, ensuring that the randoms exactly capture the radial window function of the
survey. Due to the variations in redshift distribution with imaging depth shown in Fig. 2.17,
for the ELG data we split each chunk into subregions with approximately equal imaging
depth and draw the redshifts of the randoms separately for each subregion. The imaging
depth at each point in the survey is defined as a linear combination of the 5σ flux detection
limits of the imaging survey in the g-, r-, and z-bands. For complete details, see Sec. 3.7
of [223]. The resulting n(z) for the randoms is shown as the faint, thick lines in Fig. 2.17,
closely matching the distribution of the data in each depth bin.

This method ensured the randoms capture the correct radial window function across
the survey, although determining the window function from the data in this way introduces
an integral constraint that we must address in the analysis. The purpose of the window
function is to give an expected density of observed galaxies in any redshift-space position
within the survey in the absence of clustering. If the window function has been accurately
determined, then taking the difference of the window function from the data gives a fair
estimate of the density fluctuations, which contains the cosmological information of in-
terest. However, the window function of spectroscopic surveys is complex in nature due
to the many observational challenges and their various angular and redshift dependencies.
For this reason it is typically estimated from the data, as described above for the shuffled
method of determining the radial window function. These methods fix the window func-
tion used in the analysis to match the data, which is not necessarily the case for the true
window function due to the presence of large-scale clustering modes beyond the size of the
survey. While not directly analogous, this issue could be compared to the more common
problem of estimating the standard deviation of a sample. If the population mean is not
known and the mean must be estimated from the sample itself, the normalization used in
the calculation must be adjusted to account for the loss of freedom. Integral constraints
provide the correction to the window function in our clustering analysis. For the ELG
sample the radial integral constraint is particularly important to include because we tune
the n(z) in subregions of the survey, so we follow the method laid out in [75] to account

89



for it.

The second correction is to completely null all angular modes in the survey. This
ensures that the angular variations in density will not bias the cosmological inference, at
the expense of discarding all angular information. This is done separately in the Fourier
space analysis [76] and the configuration space analysis [258]. In Fourier space the randoms
are weighted within HEALPix pixels on the sky to exactly match the density of the data
within that pixel. This is equivalent to introducing an angular integral constraint to correct
the observational systematic, which is described in [75] and applied in [76].

The configuration space analysis uses a modified 2PCF that nulls the angular modes
of the clustering, based on the shuffled 2PCF method presented in [49]. In this method
the angular positions of randoms are also selected from the data, analogous to the shuffled
method for determining the radial positions, to form a shuffled catalogue. The shuffled
2PCF is then estimated using a modification of the Landy-Szalay estimator:

ξ̂shuff(r⊥, r∥) =
DD(r⊥, r∥)− 2DS(r⊥, r∥) + SS(r⊥, r∥)

RR(r⊥, r∥)
, (2.10)

where S denotes the shuffled random catalogue. Since the angular positions of the shuffled
random catalogue are drawn from the angular positions of the data catalogue, DD, DS,
and SS will all possess the same angular clustering, which will cancel out in the final
estimator, nulling all angular modes.

[49] presented a model for the shuffled 2PCF, calculated by subtracting terms integrated
over the line of sight. However, the shuffled 2PCF method was constructed with a focus on
BAO modelling, whereas the ELG analysis includes both BAO and RSD. For this reason
the modelling of the shuffled 2PCF is poorly suited to the ELG analysis, because the small
radial scales included in the line-of-sight integrals are not trusted for the CLPT-GS model
used for the RSD. Instead, [258] introduces a novel modified 2PCF based on the shuffled
2PCF model, but excluding small radial scales by controlling the bounds of the integration.
Full details of the model as well as its validation and performance are included in [258].
The results of both the configuration-space and Fourier-space analyses, with the targeting
depth systematic removed, are presented in Sec. 2.7.
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2.7 Cosmological constraints from clustering measure-
ments

The final eBOSS data release was accompanied by a coordinated release of papers mea-
suring BAO and RSD in the clustering of the LRG [23, 111], ELG [223, 258, 76], and
quasar [141, 196] samples, making use of both configuration space and Fourier space mea-
surements. In general, two measurements are performed for each clustering sample: a
BAO-only measurement made by fitting a template to the relevant clustering measure-
ments, and a full-shape analysis that simultaneously measures BAO and RSD. The Lyα
forest sample is analyzed separately, and is presented in [85]. In this section I present the
methods and models used to make the BAO-only template measurements (Sec. 2.7.1) and
full-shape BAO+RSD measurements (Sec. 2.7.2) for each clustering sample, as well as the
final results of those analyses. In Sec. 2.7.3 I describe the impact of these measurements,
together with the Lyα forest results and the results of previous SDSS measurements, on
our understanding of the cosmological model.

2.7.1 BAO-only measurements

The eBOSS BAO analyses uses two approaches to measuring the BAO scale. The first is
to use a template-fitting approach, which is effective at isolating the measurement of the
BAO scale without contamination from redshift space distortions, but at the expense of
excluding some broadband shape information. The second is to allow the shape of the
model to vary in order to extract information from all data points, termed a full-shape fit,
which simultaneously measures the BAO scale and RSD signal. In this section I will focus
only on the template fitting approach, and discuss the RSD constraints from the full shape
analysis in Sec. 2.7.2.

In order to extract 3D clustering information from the large-scale structure catalogues
a fiducial cosmological model must be assumed to convert from angular positions and
redshifts to 3D positions. The fiducial cosmology used in the eBOSS analyses is the same
as that used in the final BOSS analysis [9]. It consists of the following values for the
major cosmological parameters at redshift z = 0: Ωm = 0.310, h = 0.676, Ωbh

2 = 0.022,
Ωc = 0.260, σ8 = 0.800, ns = 0.970, and rdrag = 147.78Mpc. Any deviations from this
fiducial cosmology or additional parameters are noted in the relevant analysis paper. Once
the fiducial cosmology is set and redshifts have been converted to distances, clustering
measurements can then be extracted from the data.
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These clustering measurements display a peak from BAO, however the scale at which
the peak occurs depends on the fiducial cosmology. In order to measure the BAO scale
independent of the fiducial cosmology, a template for the clustering is generated at the
desired point in cosmological parameter space, and then the distances used in the tem-
plate are scaled by a set of dilation parameters that account for the difference between
the cosmology being investigated and the fiducial cosmology. These dilation parameters
provide a measurement of the BAO scale that is independent of the fiducial cosmology
assumed in the analysis. The two dilation parameters, α⊥ and α∥, scale separations in
the transverse and radial directions respectively. They are closely related to the comoving
angular diameter distance, DM = (1 + z)DA(z), and the Hubble distance, DH = c/H(z),
and defined as:

α⊥ =
DM(zeff)/rd
Dfid

M (zeff)/rfidd
,

α∥ =
DH(zeff)/rd
Dfid

H (zeff)/rfidd
.

(2.11)

Here rd is the sound horizon, the maximum distance that sound waves could travel prior
to the decoupling of baryons and photons after recombination, which sets the scale of the
BAO. Given the value of rd, measurements of the BAO scale from galaxy clustering can
be used to provide tight constraints on Ωm, ΩΛ, and H0 through the dependence on DM

and DH .

rd can be calculated from Ωm, Ωb, Ωr, and H0, but it can not be measured directly
from spectroscopic galaxy surveys because galaxy clustering does not constrain Ωb. This
is why we measure α⊥ and α∥ rather than DM and DH directly. However, since Ωr is well
known from the CMB temperature and the effective number of neutrino species (together
the dominant radiation-like components of the Universe), rd can be calibrated given an
independent measurement of Ωb. The two sources typically used are CMB observations
or Big Bang Nucleosynthesis (BBN) measurements. BBN refers to the period in the very
early Universe, prior to recombination, when the nuclei of elements heavier than hydrogen
were first formed. Each element can only be formed once the Universe has cooled to below
their respective binding energy, which in turn depends on the baryon-to-photon ratio, η, of
the Universe. The present day temperature of the CMB is well known through observation,
so η can be easily converted to a constraint on Ωb. The final abundance of each element is
limited by the proton-to-neutron ratio, which can be accurately calculated for any point in
the early Universe using particle physics knowledge, so that the element abundances can
be predicted by integrating forwards through the reaction network ([266]; or see [187] for
a detailed description). The observed primordial abundance of light elements such as 4He,
3He, and, in particular, deuterium [266], can then be used to place strong constraints on
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η, and by extension Ωb [207].

Measuring the BAO scale in galaxy clustering is further complicated by the non-linear
evolution of the density field, which shifts the positions of galaxies relative to the initially
sharply defined BAO scale of the early Universe, thus smearing out the BAO scale in
the clustering data. The velocities produced by the non-linear evolution also impact the
positions of the galaxies in redshift space, further smearing the BAO scale and making
detection and precise measurement more difficult. The impact on the BAO measurement
can be reduced by shifting the position of galaxies to undo the non-linear evolution, a
method known as reconstruction [92]. The fiducial BAO measurements from the LRG
and ELG samples use clustering from catalogues with reconstruction applied, using the
method developed in [48, 47, 24]. Reconstruction is not used in the fiducial analysis of the
quasars, because the low density of the sample means the matter field is not sampled with
the accuracy required to successfully apply reconstruction.

The basic BAO template is estimated from the linear matter power spectrum, adjusted
to match the expectations for the redshift-space clustering of the biased tracers. It is given
by:

P (k, µ) =
B[1 + β(1− S(k))µ2]2

(1 + k2µ2Σ2
s/2)

[
Pno peak(k) + Ppeak(k)e

−k2Σ2
nl/2

]
, (2.12)

where k is the modulus of the Fourier wave-vector and µ is the cosine of the angle between
the wave-vector and the line-of-sight. In the numerator of the expression, B is a free pa-
rameter controlling the amplitude of the clustering that is closely linked to the linear bias,
b, and β = f/b is a factor introduced by the redshift-space distortions. S(k) = e−k2Σ2

r/2 ac-
counts for the smoothing used in the reconstruction technique, where Σr is the smoothing
radius used. For analyses that do not apply reconstruction, such as the fiducial mea-
surements of the quasar sample, S(k) = 0. The denominator includes the contribution
from non-linear random motions on small scales, the Finger-of-God effect, modelled by a
Lorentzian distribution and parameterized by Σs. The final factor is divided into a Ppeak

term and a Pno peak term, which are the BAO peak component and the remaining compo-
nents of the power spectrum respectively. The reason for splitting those terms is to allow
for the non-linear broadening of the BAO peak by a Gaussian distribution, parameterized
by Σ2

nl(µ) = Σ2
∥µ

2 +Σ2
⊥(1− µ2). The three parameters controlling the damping terms, Σ∥,

Σ⊥, and Σs, are held fixed in the analysis, and are set from measurements of the relevant
mock catalogues (see Sec. 2.4.1).

To compute Ppeak and Pno peak, we begin by calculating the linear power spectrum, Plin,
using the Code for Anisotropies in the Microwave Background (CAMB)9[176] package. For

9camb.info
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both ELG analyses and the configuration space analysis of the quasars we calculate Pno peak

by applying the fitting formula described in [91] to remove the BAO wiggles from Plin. For
the LRG analyses and the Fourier space analysis of the quasars we instead calculate Pno peak

using the method established in [156]. In this method, Plin is Fourier transformed to give
the correlation function, and then the peak is removed from the correlation function by
replacing the peak region with a polynomial function fitted using the regions around the
peak (50 < r < 80h−1Mpc and 160 < r < 190h−1Mpc). The no-peak correlation function
is then Fourier transformed back to give Pno peak. The peak component is then obtained
from Ppeak = Plin − Pno peak. The details of the method used in each analysis, as well as
comparisons of the two methods and checks for systematic biases, can be found in the
relevant analysis papers.

Rather than fitting a model to the two-dimensional power spectrum, P (k, µ), we com-
press the information by calculating the multipoles of the power spectrum:

Pl(k) =
2l + 1

2

∫ 1

−1

P (k, µ)Ll(µ)dµ , (2.13)

where Ll are the Legendre polynomials. Each analysis also includes a smooth polynomial
function of separation that adds several degrees of freedom to the fit. The reason for
adding these additional degrees of freedom is to prevent any unknown large-scale system-
atics, which would introduce additional correlations in the measurements, from biasing
the cosmological inference. For example, the factor in the model used to account for the
reconstruction is known to be insufficient, and there does not exist an accurate analytic
model that is able to capture the full effects of reconstruction on the multipoles, so these
additional large-scale degrees of freedom provide the freedom to capture these effects. The
final power spectrum multipole templates are therefore:

Pl(k) =
2l + 1

2

∫ 1

−1

P (k, µ)Ll(µ)dµ+
imax∑

i=imin

al,ik
i , (2.14)

where al,i is the i-th order free parameter in the fit to the l-th multipole. The number of
additional free parameters, set by imin and imax, varies between the analyses of the different
samples, and is described in the relevant papers.

For the configuration space analysis, the power spectrum multipoles without additional
terms (Eq. 2.13) are converted to correlation function multipoles using the Hankel trans-
form, and then the additional terms are added:

ξl(r) =
il

2π2

∫ ∞

0

k2jl(kr)Pl(k)dk +
imax∑

i=imin

al,ir
i , (2.15)
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Paper Tracer Type Measurements Fit Method
[23] LRG Config. ξ0, ξ2 Quasi-Newton
[111] LRG Fourier P0, P2 MCMC
[223] ELG Config. ξ0 Grid search
[76] ELG Fourier P0 Quasi-Newton
[141] Quasar Config. ξ0, ξ2 MCMC
[196] Quasar Fourier P0, P2, P4 Quasi-Newton

Table 2.2: Characteristics of the eBOSS DR16 BAO-only analyses.

where jl is the l-th spherical Bessel functions.

The only fiducial analysis that does not use a close variation of Eq. 2.12 is the Fourier
space measurement of the ELG sample. Instead of using an anisotropic BAO template,
which measures the two-point clustering both in terms of the separation of the points and
µ, we use an isotropic BAO template developed in [112]. The isotropic model simplifies the
template, particularly in that it removes the dependence on µ. The advantages are that it
is faster to evaluate and does not need to be integrated along the line-of-sight, and is more
suitable for using an analytical solver to find the maximum likelihood. The disadvantage
is that the damping of the BAO from non-linear effects is not as accurately described.
The isotropic BAO measurement is controlled by a single combined dilation parameter,
α = α

1/3
∥ α

2/3
⊥ . While the configuration space analysis of the ELG sample is based on the

anisotropic BAO template in Eq. 2.12, only the monopole (which is insensitive to µ) is
included in the fit, so it also produces an isotropic BAO fit.

The key characteristics of the BAO analyses from the different eBOSS samples are
displayed in Table 2.2. In each analysis the covariance matrix is estimated from the 1000
EZmocks for the relevant sample (see Sec. 2.4.1). Additional details, such as the parameter
values of [Σr, Σ∥, Σ⊥, Σs, imin, imax], can be found in the individual analysis papers. The
results of each measurement are given in Table 2.3.

2.7.2 Full-shape BAO+RSD measurements

The eBOSS full-shape analyses use a RSD model to predict the relevant clustering statistics
from the quasi-linear regime to beyond the BAO scale. Each analysis makes use of one of
two RSD models: Convolutional Lagrangian Perturbation Theory (CLPT) with Gaussian
Streaming (GS), or the Taruya-Nishimichi-Saito (TNS) model. These models are described
in Sec. 1.4.2 and Sec. 1.4.3 respectively. The LRG configuration space analysis makes
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Paper Tracer (DM/rd) (DH/rd) (DV /rd) χ2/dof
[23] LRG C. 17.86± 0.33 19.34± 0.54 - 39/(40− 9)
[111] LRG F. 17.86± 0.37 19.30± 0.56 - 108/(112− 17)
[223] ELG C. - - 18.23± 0.58 44.4/31
[76] ELG F. - - 18.33± 0.60 42.8/(54− 13)
[141] Quasar C. 30.82± 0.82 13.22± 0.56 - 34.1/30
[196] Quasar F. 30.60± 0.90 13.34± 0.60 - 87.63/(126− 22)

Table 2.3: Final constraints of the eBOSS DR16 BAO-only analyses.

Paper Tracer Type Model Measurements Fit Method
[23] LRG Config CLPT-GS, TNS ξ0, ξ2, ξ4 MCMC
[111] LRG Fourier TNS P0, P2, P4 MCMC
[258] ELG Config. CLPT-GS ξ0, ξ2, ξ4 Nested Sampler
[76] ELG Fourier TNS P0, P2, P4 MCMC
[141] Quasar Config. TNS ξ0, ξ2, ξ4 MCMC
[196] Quasar Fourier TNS P0, P2, P4 MCMC

Table 2.4: Characteristics of the eBOSS DR16 full-shape BAO+RSD analyses.

measurements using each of these models, and presents a final combined constraint as the
best full-shape measurement [23]. It is important to note that the full-shape analyses are
performed without reconstruction, and the dilation parameters (Eq. 2.11) are still applied
to the model clustering measurements.

The key characteristics of the full-shape BAO+RSD analyses, using the same 1000
EZmock covariance matrices as the BAO-only fits, are given in Table 2.4, while the results
are listed in Table 2.5.

2.7.3 Cosmological implications

The BAO and RSD measurements presented in Sec. 2.7.1 and Sec. 2.7.2 provide a wealth
of cosmological information. Fig. 2.18 shows the final measurement of each sample, where
the configuration-space and Fourier-space measurements have been combined to give a
best measurement for each tracer. Also shown are the constraints from previous SDSS
measurements, demonstrating the constraining power of 20 years of observations using the
SDSS telescope, from redshift z = 0.07 galaxies through to z > 2.1 Lyα forest quasars.
Over this entire range the SDSS samples, including eBOSS, are in agreement with the
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Paper (DM/rd) (DH/rd) fσ8 χ2/dof
[23] 17.42± 0.40 20.46± 0.70 0.460± 0.050 83.7/(63− 6), 85.2/(65− 7)
[111] 17.49± 0.52 20.18± 0.78 0.454± 0.046 77/(78− 11)
[258] 19.9± 1.0 19.1± 2.0 0.35± 0.10 -
[76] 19.17± 0.99 20.0± 2.3 0.289± 0.091 141/(146− 21)
[141] 30.66± 0.88 13.11± 0.52 0.439± 0.048 -
[196] 30.68± 0.90 13.52± 0.51 0.476± 0.047 -

Table 2.5: Final constraints of the eBOSS DR16 full-shape BAO+RSD analyses. The two
χ2 values for the LRG configuration space measurement are for the fits to the CLPT-GS
and TNS models respectively, while the parameter constraints are from the combination
of the two measurements. Some analysis papers did not quote a final χ2 value, so those
cells are left blank.

expectation for a ΛCDM universe with the Planck 2018 cosmological parameters [213],
providing a strong test of the cosmological model.

The measurements from eBOSS and other SDSS samples also place valuable constraints
on extensions to the ΛCDM model. Fig. 2.19 shows the constraints on an oΛCDM uni-
verse (non-zero curvature) from the combined SDSS BAO measurements [10], the Pantheon
type-Ia supernovae, and the Planck 2018 temperature and polarization data [213]. The
SDSS BAO provides the tightest constraints on Ωm of the three probes and a competitive
constraint on ΩΛ. The greatest benefit is that the BAO measurements provide a comple-
mentary degeneracy direction in these parameters, leading to the very tight constraint on
Ωk from the combined measurements.

As well as curvature, the SDSS BAO measurements provide an important constraint
on models with a dark energy equation-of-state w ̸= −1 (wCDM). Fig. 2.20 shows the
constraints from the Planck CMB, Pantheon supernovae, and SDSS BAO measurements
on w and Ωm. The BAO measurements again provide a complementary constraint due
to the difference in degeneracy between the parameters, leaving only a small portion of
parameter-space that is consistent with all three probes.

Finally, the SDSS BAO constraints give new information on tensions between different
probes within a ΛCDM framework, particularly the measurements of H0 between the
CMB and the local distance ladder. Fig. 2.21 shows the constraints on H0 and rd from the
BAO, BAO with sound horizon set by constraints from BBN, the SH0ES distance ladder
measurements, and the Planck CMB constraints. While the BAO constraints on their
own have a strong degeneracy between H0 and rd, making them consistent with both the
distance ladder and CMB measurements, when combined with BBN constraints on rd they
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Figure 2.18: BAO and RSD measurements from all SDSS samples. The top panel shows the
BAO measurements, with red corresponding to the transverse BAO and green to the radial
BAO. The orange point shows the isotropic BAO measurement from the MGS sample,
translated to a DM constraint assuming a ΛCDM universe. The bottom panel shows fσ8

constraints. In both cases the solid lines show the expectation for a ΛCDM universe with
Planck 2018 best fit cosmological parameters [213]. The SDSS constraints come from the
SDSS MGS [233, 143], BOSS galaxies [9], eBOSS LRGs [23, 111], eBOSS ELGs [223, 258,
76], eBOSS quasars [141, 196], BOSS+eBOSS Lyα auto-correlation, and BOSS+eBOSS
Lyα-quasar cross-correlation [85]. [10]
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Figure 2.19: Curvature constraints from the combined SDSS BAO measurements (blue),
the Pantheon type-Ia supernovae sample (red), and Planck temperature and polarization
measurements (grey) for a ΛCDM universe with variable curvature (oΛCDM). The left
panel shows the constraints on Ωm and ΩΛ, with the dark shaded regions showing the
68% credible intervals and the lighter shaded regions show the 95% credible intervals for
each measurement. The dashed line shows the values for a flat universe (zero curva-
ture). The right panel shows the combined constraints on Ωm and Ωk from Planck (grey),
Planck+Pantheon supernovae (red), and Planck+SDSS BAO (blue). [10]

Figure 2.20: Constraints on the dark energy equation-of-state from SDSS BAO (blue),
Pantheon supernovae (red), and Planck CMB measurements (grey). [10]
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Figure 2.21: Constraints on H0 and rd in a ΛCDM model from SDSS BAO (blue), combi-
nation BAO and BBN (dark blue), combination BAO and SH0ES distance ladder (purple),
and from Planck CMB (grey). The shaded bands show the constraint on H0 from the dis-
tance ladder. [10]

are in almost perfect agreement with the CMB measurements, and in significant tension
with the distance ladder. This independent constraint provides additional evidence that
new physics is required to reconcile these early and late time distance measurements. The
BAO also provide a consistency test across a wide range of redshifts, as shown by Fig. 2.18,
severely limiting the space of possible models to resolve the tension.

2.8 Conclusions

eBOSS was conceived as a continuation of the successful BOSS program, intended to extend
the LRG sample to a higher redshift range, greatly expand the catalogue of high-efficiency
Lyα forest quasars, and add new samples of ELGs and clustering quasars. These goals
have been met through careful target selection, observation, and data reduction.

A key aspect of undertaking such a large survey is the careful treatment of systematic
biases. As part of eBOSS we provide the first unbiased correction to the fibre-collision issue
in a fibre-fed spectroscopic survey, through the application of PIP weights with Angular
Upweighting. We also investigate a troubling observational systematic in the ELG sample
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caused by variable depth in the imaging surveys used to target the ELGs. The impact
of this systematic ultimately requires removing significant information from the sample
in the cosmological analysis, highlighting the importance of correcting such issues before
observation in future surveys.

After carefully validating our large-scale structure catalogues we extract important
cosmological constraints through a BAO-only template fitting model and a full-shape
BAO+RSD model. These measurements push our constraints on key parameters of the
ΛCDM model to a new redshift range, and provide unique and powerful restrictions on ex-
tensions to the ΛCDM model, as well as insight into tensions between different cosmological
probes.

In addition to these core cosmological analyses, the eBOSS data facilitates many more
analyses that extract additional information from the eBOSS large-scale structure cata-
logues (Ch. 3 and Ch. 4). Together, these analyses show the value of eBOSS both for our
current understanding of cosmology, and for our future discoveries.
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Chapter 3

Measuring small-scale RSD with eBOSS
LRGs

This chapter is adapted from [57]. I was the principal investigator of this work and per-
formed all steps of the data analysis, with the exceptions of building, training, and esti-
mating the uncertainty of the emulator, performed by Prof. Zhongxu Zhai; constructing
the SHAM mock, performed by Prof. Jeremy Tinker; and measuring the CMASS+eBOSS
correlation functions, performed by Dr. Faizan Mohammad. A central aspect of this work
is the PIP+ANG weights produced for eBOSS by Dr. Mohammad in [190], which I applied
in the correlation function measurements of this work. I lead the writing of the paper for
publication, with input from my co-authors. Specifically, Prof. Will Percival wrote the
original Sec. 1: Introduction, and Dr. Mohammad wrote the original Sec. 2: eBOSS
LRG Sample and Sec. 3.1 Measurements, all of which were edited by myself and other
co-authors. Throughout this chapter I used ‘we’ to describe all contributions, including my
own. The content of this work has been adapted and reformatted by me for this thesis.

3.1 Introduction

The first measurement of the amplitude of the RSD signal from small-scale clustering was
made by [226] using an early galaxy sample from the Baryon Oscillation Spectroscopic
Survey (BOSS). [226] fit to the monopole and quadrupole moments of the correlation func-
tion over scales 0.8 to 32h−1Mpc, obtaining a 2.5% measurement of fσ8(z = 0.57) =
0.450± 0.011, compared to the leading ∼ 6% measurement from the large-scale analysis of
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the same sample [33, 114, 257, 241]. This demonstrated the increased precision available if
RSD in the data can be accurately measured and modeled to small scales. The most accu-
rate method to model small-scale clustering is to use N-body simulations, and this was the
route taken by [226]. However, without a simulation for each model to be tested ([226] used
three simulation sets at three very similar cosmologies), one has to extrapolate solutions to
different cosmologies, which needs care. In addition to fixed cosmological parameters, the
[226] analysis also faced the pernicious problem of correcting fibre collisions in the small-
scale clustering in the data, which they identified as the leading observational systematic
for small-scale clustering. Since the [226] analysis, similar methods have been applied to
the BOSS LOWZ galaxies [166], CMASS sample [275], and combined LOWZ+CMASS
[277].

RSD depend on the velocity field in the universe along the line of sight. In practice, in
order to measure this we need to specify the cosmological frame within which the velocities
are defined. Thus the goal of most analyses is to test whether the amplitudes of the
velocities match those expected by the cosmological model used to define the frame within
which the velocities are measured. For most RSD analyses this is accomplished by setting a
constraint on the parameter combination fσ8, which can then be compared to the ΛCDM
expectation for a given set of cosmological parameters. [226] faced the restriction that
their small-scale clustering model was constructed from a single N-body simulation at a
fixed cosmology, so they accomplished this goal using a novel technique: a velocity scaling
parameter, γHV, that multiplied all halo velocities in the simulation. They also assumed
that the cosmological model used for the framework did not change the RSD measurement.
If the amplitude of the velocity field is directly proportional to fσ8, as predicted in linear
theory, then γHV is simply a scaling parameter measuring the multiplicative offset between
the measured fσ8 and that in the framework cosmology. This parameterization has the
added benefit that, because a change in γHV is directly proportional to a change in f
(in linear theory), the [226] results can be directly compared to other RSD analyses by
measuring the derived parameter fσ8 = γHVfΛCDMσ8, where fΛCDMσ8 are calculated from
the simulation cosmology.

The Gaussian process-based emulator constructed by [278] to match the BOSS LRG
samples used the same velocity scaling technique, shifting velocities within the simulations
using an extra parameter. Without this scaling, the emulator would force the velocities
(and fσ8) to match that predicted within the modeled framework cosmology (with fσ8

depending on Ωm and σ8). Including a velocity scaling parameter allows for finer sampling
of the amplitude of the velocity field in the training data of the emulator, which is otherwise
restricted by the number of N-body simulations that can be produced with variable values
of Ωm and σ8. Most importantly, fitting the velocity scaling parameter specifically assesses
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deviations in the expected growth rate within a ΛCDM framework, which allows for testing
of models that do not follow the same relation between the amplitude of the velocity field
and the cosmological parameters as ΛCDM, such as modified gravity models.

In this chapter we perform a measurement of fσ8 from the small-scale clustering of
the eBOSS LRG sample. Pushing the modelling to include small scales in our analysis is
made possible by two key advances in methodology since the [226] analysis. First, we use
the aemulus emulator [278] to create accurate models of the redshift-space correlation
function moments to small scales (see Sec. 3.3.2). To correct for fibre collisions in eBOSS,
we use the Pairwise-Inverse-Probability (PIP) method with Angular Upweighting (ANG)
[36, 202], as described in Sec. 2.5. Together, these advances mean that we can now both
make and model accurate clustering measurements from the eBOSS LRG sample, fitting
the correlation function to small scales.

This chapter is structured as follows: the eBOSS LRG sample is described briefly in
Section 3.2, and the method for measuring the data and fitting to the model is described in
Section 3.3. In Section 3.4 we perform various tests of the method using mock catalogues.
We present our results in Section 3.5, and discuss their significance in Section 3.6. Finally,
we summarize our results in Section 3.7.

3.2 eBOSS LRG sample

For our analysis we use the eBOSS LRG sample, described in Ch. 2. We apply the
PIP+ANG weights described in Sec. 2.5 to correct fibre collisions, allowing us to make
unbiased clustering measurements down to very small scales.

It is worth noting that the eBOSS sample of LRGs overlaps in area and redshift range
with the high-redshift tail of the BOSS CMASS sample (see Fig. 2.4). Unlike many other
eBOSS analyses, including the large-scale measurements of BAO and RSD described in
Sec. 2.7 [23, 111], we do not combine the eBOSS LRG sample with all the z > 0.6 BOSS
CMASS galaxies. We focus on the eBOSS sample to simplify the correction of the small-
scale fibre assignment: fibre assignment was performed separately for BOSS and eBOSS
using different configurations of the SDSS tiling code.

We define the effective redshift of our sample as the weighted mean redshift of galaxy
pairs,

zeff =
Σm>nw

PIP
mn w

tot
m wtot

n (zm + zn)/2

Σm>nwPIP
mn w

tot
m wtot

n

, (3.1)
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where the indices m, n are over the objects in the data catalogue, and the description of
the weights is given in Sec. 2.5. Additionally, we only include galaxy pairs which have a
separation between 0.1 − 60h−1Mpc, the scales used in our measurement. The effective
redshift we obtain for our sample is z = 0.737, and an effective comoving volume of
1.28Gpc3 [231].

3.3 Methods

3.3.1 Measurements

We measure the monopole, ξ0(s), and quadrupole, ξ2(s), of the two-point correlation func-
tion, as well as the projected correlation function, wp(r⊥), of the eBOSS LRG sample
using the Landy-Szalay estimator, as detailed in Sec. 1.3.2. We include wp(r⊥) because
the halo-occupation properties of a given sample affect its intrinsic clustering, which can
be accurately modelled in wp(r⊥) free of the apparent RSD effects. We bin r⊥ and s in
9 logarithmically spaced bins between 0.1 − 60h−1Mpc, matching the output of aemu-
lus predictions for wp(r⊥) and ξℓ, while the line-of-sight separation r∥ and µ are binned
using linear bins of width ∆r∥ = 1h−1Mpc and ∆µ = 0.1. To reduce the impact of shot
noise on the measured ξ from the random catalogue we use a number of random points
N = 50 times the number of galaxies in the eBOSS DR 16 LRG sample. Given the dis-
crete binning of different variables, we estimate the integrals in Eq. 1.26 and Eq. 1.25 as
Riemann sums. We limit the integral in Eq. 1.26 to a maximum line-of-sight separation of
r∥,max = 80h−1Mpc, matching the definition in the model to be fitted to these data [278].

3.3.2 aemulus cosmological emulator

In order to access RSD information on small scales we need to model the clustering of
galaxies into the non-linear regime. The solution we choose is to use an emulator for
the small-scale clustering, trained and validated using N-body simulations. Constructing
the emulator applies machine learning with a Gaussian process to emulate the correlation
function measurements in each separation bin, as a function of the set of parameters
specifying the cosmology and HOD model. First, a set of training data is used to specify
the value of the emulator at a series of points in parameter space. These are the means of
the Gaussian distributions. Next, a different set of test data is used to optimise the width
and shape of an "interpolation kernel", such that the final model, given a set of model
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parameters, is the linear sum of the means coming from the training data, weighted by this
kernel. The training data is generated from N-body simulations, where a Halo Occupation
Distribution (HOD) is used to connect galaxies to halos. While the training data consists
of only a limited number of possible values in our parameter space, the trained emulator is
very effective at interpolating within this parameter space to produce accurate clustering
measurements.

We compare our measurements to the aemulus cosmological emulator [278] predic-
tions for ξ0, ξ2, and wp for a galaxy sample in a universe with variable cosmological and
galaxy-halo connection parameters. The training data of the aemulus emulator is a set of
40 N-body simulations that use a latin hypercube to optimally sample a flat wCDM param-
eter space (i.e. a cosmological model equivalent to a ΛCDM model, but where the dark
energy equation-of-state parameter is constant but not restricted to w = −1) spanning
the approximate 4σ range of the Planck [213] or WMAP [138] results [77]. Details of the
kernel and optimisation are available in [278]. Unlike some galaxy clustering analyses, our
emulator does not model ξ4, since it is considerably noisier than ξ0 and ξ2. The emulator
prediction would likely be noise dominated for ξ4, and would require adding more training
complexity without a commensurate increase in cosmological information. In their mea-
surement of fσ8 from small-scale clustering within the BOSS LOWZ sample, [166] found
that excluding ξ4 from their analysis of ξ0 and ξ2 did not produce a significant change in
best fit value or uncertainty.

aemulus allows for a flat wCDM universe described by 7 parameters: ΩM , Ωb, σ8, h,
ns, w, and Neff . For our analysis we limit the cosmological parameter space by fixing Neff =
3.046 and w = −1, since these parameters are not well constrained by our measurements
but have been well measured by other probes, resulting in a 5 parameter flat ΛCDM
cosmology.

The HOD model used by aemulus allocates a Poisson sampling of N(M) galaxies to
halos of mass M , split into central galaxies and satellites following the model detailed in
Sec. 1.5.3. The free parameters of this HOD model are fmax, σlogM , logMsat, α, logMcut.
logMmin is an additional parameter in the model that sets the transition point of the cen-
tral occupation, and is fixed in the emulator to match the number density of the sample.
By matching the number density we ensure the correct linear bias, thus reducing the de-
generacy between the HOD parameters and the growth rate in the correlation function
measurements. Because of this choice we do not use the number density as an observable
in our analysis. fmax is a new parameter that we add to Aemulus to address a possible
inconsistency between the model and data. eBOSS was targeted using colour and magni-
tude cuts (see Sec. 2.2.2) so it is not a complete sample, whereas the HOD model assumes
that all galaxies are included in the sample. This is especially concerning for eBOSS since
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targets were selected using a lower magnitude limit in the i-band to avoid overlap with
the CMASS LRG sample (see Fig.1 of [279]). fmax controls the fraction of centrals that
are included in the sample, i.e. a value of fmax < 1 means that the very massive halos
do not necessarily host an eBOSS LRG at the center. While these targeting cuts would
be expected to affect the completeness of both centrals and satellites, for satellites fmax

is completely degenerate with M−α
sat (see similar discussion in [166]). Since these HOD

parameters are primarily nuisance parameters in our constraint of the growth rate, we do
not apply fmax to the satellites. In Sec. 3.4.2 we perform a series of tests to determine the
effect of excluding fmax on the measured fσ8.

The emulator also allows three additional parameters that control how galaxies are
distributed in their host halos: cvir, vbc, and vbs (labelled ηcon, ηvc, and ηvs in [278]).
cvir = csat/chalo is the ratio of the concentration of the satellite distribution, csat, to the
concentration of the host halo, chalo, assuming the halo follows a NFW profile [194]. vbc and
vbs are the velocity biases of centrals and satellites respectively, where σgal = vgalσhalo and
σhalo is the velocity dispersion of the halo calculated from its mass. Finally, the aemulus
emulator uses a 15th parameter, γf , which rescales all halo bulk velocities in the simulation.
Throughout this chapter we define ‘bulk velocities’ to mean the velocity of the halo as a
single unit, rather than the velocity of the individual particles making up the halo or the
internal velocity dispersion of the halo. The galaxy velocity can therefore be thought of
as the sum of two components: a component equal to the bulk motion of the host halo
scaled by γf , and a randomly directed component that depends on the halo mass through
the velocity dispersion and that is scaled by either vbc or vbs for centrals and satellites
respectively. For a detailed description of the aemulus correlation function parameters
see [278]. See Sec. 3.3.6 for a description of how we treat these parameters in our fit.

The original aemulus emulator was trained to match a BOSS CMASS-like sample at
z = 0.57 and space density n = 4.2× 10−4[h−1Mpc]−3. However, our eBOSS sample is at
an effective redshift of z = 0.737 and peak number density of n = 9× 10−5. The difference
in number density is particularly worrying, since a less dense sample will preferentially
fill more massive halos. The result will be a sample with a larger linear bias, which is
degenerate with the growth rate in clustering measurements. The effect of these differences,
as well as methods to correct them, are investigated in Appendix B. In order to ensure
an unbiased result for our analysis we decided to rebuild the emulator from the original
aemulus simulations, but using the z = 0.7 simulation time-slice and adjusting HOD
parameters, especially Mmin, to match the eBOSS number density. The training ranges for
the new emulator are given in Table 3.1.
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3.3.3 Interpreting growth rate measurements

As shown in [226], which used a similar parameterization to measure RSD from their
simulations, in the linear regime a fractional change in γf is proportional to a fractional
change in f , such that f = γffΛCDM, where fΛCDM is the linear growth rate for a flat ΛCDM
cosmology specified by the model parameters. However, the link between the linear velocity
power spectrum amplitude and the non-linear regime is possibly scale dependent. I.e. a
linear response on large scales might not necessarily lead to a linear response on small
scales. γf is introduced in the simulations as a scaling of all velocities by the same amount,
so γf scales both the linear and non-linear velocities of halos. In this case γf still provides
a consistency test with the amplitude of the velocity field expected in a ΛCDM universe
with the model cosmology, where γf = 1 indicates agreement, but it no longer necessarily
gives a pure rescaling of the linear growth rate. For models that do have such a linear
response, then the measurement of γf over the full range of scales can be used to constrain
the linear growth rate. However, as this is model dependent, we conservatively separate
the contributions of the linear and non-linear regime in presenting our results (as described
in Sec. 3.4.1).

Although the aemulus code uses γf to adjust the RSD amplitude in the model, the
RSD are sensitive to the parameter combination fσ8. We therefore present our large-
scale results in terms of fσ8 = γffΛCDMσ8, which is used in the remainder of this chapter
and other sections where these results are referenced. It is also important to note that
we calculate fΛCDMσ8 from the model cosmology according to linear theory, rather than
the value that would be obtained from the power spectrum on scales corresponding to
0.1−60h−1Mpc. Thus the value of fσ8 we present is the value expected from linear theory
for our model, and is directly comparable to measurements made on larger scales. However,
care should be taken when using the resulting measurements of fσ8 to constrain models
where the other parameters deviate significantly from flat ΛCDM and General Relativity
(ΛCDM+GR, hereafter used interchangeably with ΛCDM). A problem inherent in many
cosmological measurements and all previous RSD measurements is that one assumes various
features of a particular model, here flat ΛCDM, in order to make the measurements. To
test a different model, one should strictly have to perform a new fit including all properties
of that model. This does not affect the validity of our measurement as a test of consistency
with ΛCDM within the parameter space of the emulator, or as an indication of how the
RSD measurements compare to those from other surveys.
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3.3.4 Covariance matrix

Clustering measurements in different separation bins are correlated, and we need an esti-
mate of the covariance matrix when fitting a model to the observations. Mock surveys,
either based on the output of N-body simulations or approximate methods, have been
widely used to estimate the data covariance matrix. However, in order to work on small
scales, we would need a large number of simulations that accurately reproduce the small-
scale clustering - a difficult task. In order to generate a covariance matrix that reflects
the small-scale clustering of our sample we instead use jackknife sampling. We split our
survey footprint into equal area squares on the sky using Right Ascension (RA) and Dec-
lination (Dec) cuts. This method relies on the clustering of the sample being uncorrelated
with position in the survey. Furthermore, because we expect the covariance to follow a
simple volume scaling, we remove the squares with the smallest occupation as determined
from the random catalogue over the survey footprint, so that each region included will
contribute approximately the same statistical weight to the sampling (Fig. 3.1). Since the
measurements from each sample are normalized it is not necessary that they contain identi-
cal numbers of objects, however selecting regions in this way reduces variance from regions
at the edge of the survey which are only partially filled or have peculiar geometries. The
missing area is included in the final calculation by means of a volume-weighted correction.

For the objects in our data and random catalogues that are located within one of
the 200 accepted regions we store a region identification number. We then recalculate the
monopole and quadrupole of the 3D correlation function and projected correlation function
for this reduced sample 200 times, excluding one region from the calculation each time.
We include the full PIP+ANG weighting scheme in these calculations, so that the variance
in the PIP+ANG weights is included in the jackknife estimation. The covariance matrix
is then estimated from this jackknife sampling using

Ci,j =
n− 1

n

n∑

k

(ξi,k − ξ̄i)(ξj,k − ξ̄j), (3.2)

where the i, j indices are over the elements of the data vector, n=200 is the number of
jackknife regions, and k is an index over the jackknife realisations.

In order to more easily visualize the correlations between bins we calculate the corre-
lation matrix by:

Ri,j =
Ci,j

(Ci,iCj,j)1/2
. (3.3)

The correlation matrix is highly diagonal, which is expected since we have a small number of
widely separated bins, which are only expected to be weakly correlated. In order to reduce
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Figure 3.1: The footprint of the eBOSS LRG clustering catalogue with our jackknife re-
gions. The blue points show the North Galactic Cap (NGC) observations, while the orange
points show the South Galactic Cap (SGC) observations. It should be noted that the square
jackknife regions all have approximately equal area on the sky, however due to the distor-
tion of projecting a sphere onto a plane the regions at larger declination appear wider in
this plot.
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the noise in the off-diagonal terms we smooth the correlation matrix using diagonally
adjacent bins. Each off-diagonal element is assigned the average of itself and the two
adjacent diagonal elements, excluding bins from other measurements. The result of this
diagonal smoothing is shown in Fig. 3.2.

We test the robustness of our jackknife covariance matrix by comparing to a covariance
matrix estimated from 1000 EZmocks constructed to match the eBOSS LRG sample (see
Sec. 2.4.1). The variance from the jackknife on the data and 1000 EZmocks are compared
in Fig. 3.3. Because the correlation function measured for the EZmocks is significantly
smaller than the correlation function of the data on small scales we compare the ratio of
the square root of the variance to the correlation function measurement in each separation
bin. The correlation function measurements from the data are used in the denominators
for the jackknife on the data, and the mean of the EZmocks measurement is used for the
denominator of the 1000 EZmocks. We find that both methods are in agreement at all
scales for the three measurements used in the analysis. In Fig. 3.3 there is an apparent
deviation for the small scales of the quadrupole, but this is actually caused by the mean
quadrupole measurement of the 1000 EZmocks. Individual quadrupole measurements have
a large variance on these scales but a mean that is close to 0, increasing the ratio plotted
here for the 1000 EZmocks. For comparison we have applied our jackknife method to 10
EZmocks, also shown in Fig. 3.3. These measurements are consistent with the jackknife
on the data, demonstrating that both covariance estimation methods are in agreement.

We also examine the correlation between bins in both methods by comparing their
correlation matrices (Fig. 3.4). In general, the two correlation matrices agree closely after
diagonal smoothing has been applied to the jackknife correlation matrix, although the
jackknife correlation matrix shows an additional feature compared to the mock correlation
matrix where the small-scale ξ0 and ξ2 are correlated in the same separation bin. This
additional feature, along with the difference in clustering, highlights the importance of
using jackknife to accurately measure the small-scale covariance.

In addition to the data error we include the emulator error in the covariance matrix. The
emulator error is calculated as a fractional error on each correlation function bin using a
sample of test HOD parameter sets that are selected from the same parameter ranges as the
training sample, but were not used in the training [278]. The fractional error is converted
to an absolute error, σE, by multiplying by the correlation function measurements from the
data. The total variance for each measurement bin is then calculated from σ2

T = σ2
D+σ2

E. In
order to preserve the structure of the jackknife covariance matrix we convert the smoothed
correlation matrix back to the covariance matrix using Ci,i = σ2

T,i. The contributions of
the data and emulator errors to the total error are shown in Fig. 3.5. The data error is
dominant in the region s < 5h−1Mpc for the monopole and projected correlation function,
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Figure 3.2: Comparison of the unsmoothed and smoothed correlation matrices. The upper
diagonal elements correspond to the unsmoothed jackknife correlation matrix, while the
lower diagonal elements show the result of our diagonal smoothing method.
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Figure 3.3: Comparison of the variances estimated from different covariance matrix meth-
ods. In each case the y-axis shows the square root of the variance divided by the correlation
function measurement for that separation bin. The orange line shows the result from the
jackknife covariance matrix, while the green line shows the result from estimating the co-
variance using 1000 EZmocks. The thin blue lines show the result of applying the jackknife
method to 10 randomly selected EZmocks. The thick blue line shows the mean of the 10
thin blue lines, with error bars showing their variance. Upper, middle, and lower panels
show the monopole, quadrupole, and projected correlation functions respectively.
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Figure 3.4: Comparison of correlation matrices estimated from jackknife on the data and
1000 EZmocks. The upper diagonal elements correspond to the correlation matrix es-
timated from applying jackknife to the data with diagonal smoothing, while the lower
diagonal elements show the correlation matrix estimated from the 1000 EZmocks.
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while the emulator error is comparable to the data error for s > 5h−1Mpc and across the
full separation range of the quadrupole.

We also correct the inverse covariance matrix to account for the finite number of samples
used to estimate the covariance using [130]

Ĉ
−1

=
n− p− 2

n− 1
C−1, (3.4)

where n = 200 is the number of jackknife regions, and p = 27 is the number of combined
bins in our three measurements. Although n should properly be the number of completely
independent measurements [162, 88], we follow [226] in using the number of regions, noting
that this correction may therefore underestimate the true size of the effect. However, this
factor has very little effect on our final fit, as well as not changing the best fit value.

3.3.5 AP scaling

Although we fit the aemulus correlation function predictions directly to our measurements
from the data, our results are still affected by the Alcock-Paczynski (AP) effect [13], because
we convert the data redshift to distance assuming a fixed fiducial cosmological model. The
AP effect is a geometrical distortion in the 3D clustering caused by converting redshifts to
distances using a cosmological model that differs from the true model. We therefore need
to scale the separations between model and data to account for the difference in comoving
distance between our fiducial cosmology and the cosmology of the model. We apply the
standard AP scaling from [23] to each model (similar to the scaling parameters used for the
BAO-only template fit in Sec. 2.7.1), first defining the perpendicular and parallel dilation
factors

α⊥ =
DM(zeff)

Dfid
M (zeff)

, α∥ =
DH(zeff)

Dfid
H (zeff)

, (3.5)

where DM is the comoving angular diameter distance, and DH is Hubble distance. We
then scale the multipole moments of the correlation function as follows

ξfid0 (rfid) = ξ0(αr) +
2

5
ϵ

[
3ξ2(αr) +

dξ2(αr)

d ln(r)

]
, (3.6)

ξfid2 (rfid) = (1 +
6

7
ϵ)ξ2(αr) + 2ϵ

dξ0(αr)

d ln(r)
+

4

7
ϵ
dξ2(αr)

d ln(r)
. (3.7)

where α = α
1/3
∥ α

2/3
⊥ and ϵ = (α∥/α⊥)

1/3 − 1. Once we have shifted the model, we used a
cubic spline interpolation to recover the model values at the fiducial separations used to
calculate the data values.
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Figure 3.5: The contributions of the data error calculated through jackknife sampling
(green), the emulator error (orange), and total error (blue), for the monopole, quadrupole,
and projected correlation function (top to bottom).
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The projected correlation function was calculated similarly using the scaling

wfid
p (rfid⊥ ) = wp(α⊥r⊥) . (3.8)

The accuracy of this method depends in part on the width of the bins used due to
the calculation of the derivative and the interpolation between points. In order to assess
the importance of these factors we perform an additional fit to the data without the AP
correction (see Sec. 3.5.6).

3.3.6 Exploring the likelihood

We assume our correlation function measurements are drawn from a multivariate Gaussian
distribution, and use uniform priors for all model parameters, given in Table 3.1. We
explore the posterior surface for the fit between data and the aemulus correlation function
predictions using a Markov chain Monte Carlo (MCMC) sampler within the Cobaya 1

framework [263]. We include the full Aemulus HOD parameter space in our fit, however
we limit the wCDM cosmological parameter space by fixing Neff = 3.046 and w = −1,
since these parameters are not well constrained by our measurements but have been well
measured by other probes.

A concern for our small-scale analysis is that the separation range we use lacks a
distinctive feature with a known scale to constrain the cosmological parameters, such as
the BAO bump in large-scale analyses. Consequently, in order to set an accurate cosmology
for our analyses we consider a number of cosmological priors beyond the simplest uniform
priors given in Table 3.1. To begin with, we apply a uniform prior on the cosmological
parameters based on the distance in 7D cosmological parameter space between the chain
point and the cosmologies of the aemulus simulations used to train the emulator. If the
distance is above a certain threshold the proposed step is forbidden, thus restricting the
parameter space to the region which is well sampled by the training data, rather than the
full uniform prior range given in Table 3.1. In practice, the main impact of the training
prior is to add the restriction σ8 > 0.65, since there is only one training cosmology with
σ8 below that range.

1Cobaya, a code for bayesian analysis in cosmology, is the Python successor to CosmoMC. Users are
able to use the same MCMC sampler as CosmoMC [174, 173] in a Python framework, while allowing
access to likelihoods from many major cosmological datasets. The sampler is tailored for parameter
spaces with a speed hierarchy and implements the "fast dragging" procedure described in [195]. See
https://cobaya.readthedocs.io for details.
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Parameter Training Range Prior Range
Ωm [0.255, 0.353] [0.225, 0.375]
Ωbh

2 [0.039, 0.062] [0.005, 0.1]
σ8 [0.575, 0.964] [0.5, 1]
h [0.612, 0.748] [0.58, 0.78]
ns [0.928, 0.997] [0.8, 1.2]
Neff [2.62, 4.28] 3.046
w [-1.40, -0.57] -1
logMsat [14.0, 16.0] [13.8, 16.2]
α [0.2, 2.0] [0.1, 2.2]
logMcut [10.0, 13.7] [11.5, 14]
σlogM [0.1, 1.6] [0.08, 1.7]
vbc [0, 0.7] [0, 0.85]
vbs [0.2, 2.0] [0.1, 2.2]
cvir [0.2, 2.0] [0.1, 2.2]
γf [0.5, 1.5] [0.25, 1.75]
fmax [0.1, 1] [0.1, 1]

Table 3.1: All model parameters divided into cosmological and HOD parameters, with the
training range used by the Aemulus emulator and the prior range used in the MCMC
fit. Prior ranges were chosen to be slightly larger than the original training ranges, except
where excluded by the physical meaning of the parameter, in order to be able to identify
if the fit converges outside of the training range. The purpose of this extended range is
only to more easily identify a prior dominated fit, since the emulator is not expected to
produce accurate clustering outside of the training range. Instead, it would regress to
the mean prediction. The exception is logMcut, where the prior excludes the lower part of
training range since logMcut ceases to have any impact on the halo occupation if it is below
logMmin. This is the case for the eBOSS LRG sample, so logMcut is poorly constrained.
However, we found the chains tended to pile up at the lower end of the training range,
which gave the misleading impression that the data strongly preferred the lowest possible
value, although it had no effect on the cosmological constraints. For that reason we set a
more reasonable lower limit on logMcut for our sample.
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We also consider jointly fitting our data with the Planck 2018 TT,TE,EE and lensing
likelihoods [212, 214] using the CAMB cosmological Boltzmann code [176, 142], which
constrain the cosmological parameters that control the shape of the power spectrum. It
is important to note that γf is treated as a free parameter in addition to the standard
cosmological parameters, and is only constrained by RSD as measured from the eBOSS
data. In effect, it represents a consistency check between the large-scale structure and
CMB data: if these are consistent, we expect that γf is close to one. We further consider
three cases of the joint eBOSS and Planck fit. The first is a simple joint fit, where all
of the cosmological parameters, including σ8, are jointly fit by both the eBOSS clustering
measurements through aemulus and the Planck likelihoods, while the HOD parameters
and γf are fit solely by the clustering measurements. The second is similar, except we
explicitly account for the slight redshift offset between the emulator (z = 0.7) and the data
(z = 0.737). The emulator takes all cosmological parameters at z = 0, so the shape of the
linear power spectrum will be identical between the cosmology described by the Planck
likelihoods and the emulator, however there will be a difference in amplitude due to the
slight redshift offset. Therefore, we adjust the value of σ8 given to aemulus as follows

σ8,Aem = σ8(z = 0)× D(z = 0.737)

D(z = 0)
× D(z = 0)

D(z = 0.7)
. (3.9)

This makes sure that the normalisation of the aemulus output matches that expected at
z = 0.737 in the cosmology being tested: the first ratio corrects from z = 0 to z = 0.737 in
the cosmology being tested, and the second ratio corrects from z = 0.7 to z = 0, where the
normalisation is defined by aemulus. Thirdly, we consider a joint fit where the Planck
likelihoods are used to constrain all of the cosmological parameters except for σ8, which
is fit solely by the clustering data. We test the robustness of our results to the inclusion
of the training prior and the Planck likelihoods through these three methods in Sec. 3.5.3.
Based on the results of these tests we use the training prior but not the Planck likelihoods
for all measurements, including our headline results, unless otherwise specified.

3.4 Robustness and systematic error checks

In this section we explore the robustness of our model in general, and to several possible
sources of systematic error in particular. We begin by assessing the impact of non-linear
velocities on our measurements, and what information is included from different scales.
We then check the impact of the two possible discrepancies between our model and the
data, the effects of galaxy selection on the completeness of the HOD model, and redshift
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uncertainty. Finally, we perform a general check of our method by fitting to measurements
made on a mock catalogue.

3.4.1 Contribution of non-linear velocities

In Sec. 3.3.3 we introduced the key parameter of our measurement, γf , and described its
significance on linear and non-linear scales. In order to identify the transition between these
regimes we examine how the emulator prediction changes for various values of γf , shown
in Fig. 3.6. For the three largest bins, varying γf produces an almost constant relative
change in the monopole, with a larger growth rate giving a larger clustering amplitude, as
expected from linear theory. In the middle three bins the effect on the monopole changes
signs as the quasi-linear regime transitions to the non-linear regime, where the random
virial motions of the halos begin to dominate and increasing γf , which rescales all halo
velocities, begins to damp the clustering. In the three smallest bins the effect of γf on
the monopole begins to decrease as the one-halo term begins to dominate. Because γf
affects only the halo velocities, and in our HOD formalism we do not assign galaxies
based on subhalos, varying γf has no effect on the one-halo term. Motivated by this
result we divide our 9 measurement bins into three groups of three bins, with individual
ranges of 0.1 − 0.8h−1Mpc, 0.8 − 7h−1Mpc, and 7 − 60h−1Mpc. These three ranges
correspond roughly to the strongly non-linear regime where the one-halo term is dominant,
the transition between the non-linear and quasi-linear regimes, and the quasi-linear regime.
We therefore restrict our measurement of fσ8 to the quasi-linear regime, where γf can be
interpreted as a rescaling of the linear growth rate. For measurements performed over the
full separation range we instead use γf as a test of ΛCDM, where a deviation from γf = 1
indicates that the velocity field of the data as parameterized by our emulator model is in
disagreement with the expectation from ΛCDM.

3.4.2 Galaxy selection and the HOD model

As described in Sec. 3.3.2, we add an additional parameter fmax to the emulator that
controls the maximum occupation fraction of central galaxies in the HOD framework, in
order to address the incompleteness of the eBOSS LRG sample due to target selection. We
test the necessity of this addition and the effect on the clustering using a series of HOD
mock galaxy catalogues. We constructed these mocks from the Uchuu2 simulation. Briefly,
Uchuu is a (2000h−1Mpc)3, 128003 particle simulation using the Planck 2015 cosmology

2http://skiesanduniverses.org/Simulations/Uchuu/
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Figure 3.6: The effect on the emulator prediction of varying γf for the monopole (left),
quadrupole (centre), and projected correlation function (right). All other parameters are
kept fixed at reasonable values for the baseline eBOSS fit. Upper panels: Direct comparison
of the predictions, ranging from low γf (purple) to high γf (green). Lower panels: Relative
difference to the γf = 1 prediction.
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and a mass resolution of mp = 3.27×108 h−1M⊙. We construct the mocks from the z = 0.7
slice, using the halotools3 [131] Python package and a HOD parameterization identical
to that outlined in Sec. 1.5.3 and Sec. 3.3.2. We constructed mocks using σlogM , logMsat,
α, and logMcut from five randomly selected test HOD parameter sets in Aemulus, with
logMmin tuned to give n = 1×10−4. The Aemulus test HOD sets are themselves randomly
selected from the uniform training range given in Table 3.1, but were not used in training
the emulator. In all mocks we kept the additional parameters vbc = 0, vbs = 1, cvir = 1,
and γf = 1 fixed to their simplest, no scaling values. For each of the five HOD parameter
sets we then constructed five mocks with fmax = [0.2, 0.4, 0.6, 0.8, 1.0], for a total of 25
mocks.

We fit these 25 HOD mocks using two emulators: one matching the original Aemulus
HOD model that is equivalent to fixing fmax = 1, and the full emulator with variable fmax.
Both emulators were built to match the eBOSS redshift and number density, as described
in Sec. 3.3.2. The γf constraints on the HOD mocks from both emulators are shown in
Fig. 3.7, where the expected value is γf = 1 by the construction of the mocks. It should
be noted that all of the mocks were constructed using the same halo catalog from a single
simulation box at a particular cosmology, so it is unsurprising that the constraints do not
scatter evenly above and below γf = 1, since they are not fully independent. The key
points to notice are that the variable fmax emulator is able to recover the expected value of
γf within the uncertainty over the full fmax range, and shows no trend in fmax. Conversely,
the fixed fmax emulator shows a clear bias in γf for fmax ≤ 0.6. This result matches what
we would theoretically expect for a model that overestimates the fmax value of the sample.
If the mismatch is small there is not a significant change in the galaxy bias of the sample,
however if fmax is significantly overestimated then the model prediction has a larger galaxy
bias, b, than the sample. In the fit this is compensated by a lower value of γf , since the
amplitudes of the correlation function multipoles on linear scales are proportional to both
the galaxy bias, b (controlled by fmax), and the logarithmic growth rate, f (controlled by
γf ).

3.4.3 Redshift uncertainty

Another area of concern where the emulation based model may not accurately reflect the
data is the effect of redshift uncertainties. As shown in Fig. 2 of [231], the eBOSS LRG
sample has a redshift uncertainty that is well approximated by a Gaussian with mean
µ = 1.3 km s−1 and standard deviation σ = 91.8 km s−1. On average, this means that each

3https://halotools.readthedocs.io/en/latest/
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Figure 3.7: Performance of emulators with fixed or variable fmax on HOD mocks con-
structed with varying fmax. The left panel shows the results from an emulator built with
the original Aemulus parameter set, which is equivalent to fmax = 1. The right panel
shows the results from the emulator used in our analysis with variable fmax. Both emu-
lators were built to match the eBOSS redshift and number density. The horizontal line
shows the expected value of γf used to construct the mocks. Points are shifted slightly
along the x-axis to avoid overlap.
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redshift is wrong by an absolute offset of 65.6 km s−1. To first order this gives a Gaussian
random velocity shift for all targets, which acts to damp the clustering of the multipoles on
small scales. The parameters vbc and vbs, which control the velocity dispersion of centrals
and satellites respectively, should be able to mimic much of this effect in the model without
affecting the constraints on other parameters. However, since γf scales all halo velocities
in the simulation, on non-linear scales where the halo velocities are virialized γf has a
similar effect on the clustering as the redshift uncertainty, vbc, and vbs. In addition, vbc
and vbs are both calculated by scaling the virial dispersion of the host halo, so the galaxy
velocities derived in the model have a mass dependence which is not reflected in the redshift
uncertainty. The result is that the redshift uncertainty may bias the recovered value of γf
on non-linear scales, with an unmodelled redshift uncertainty giving a larger than expected
value of γf .

We test the effect of the redshift uncertainty on the γf and fσ8 constraints using a
second set of HOD mocks, constructed in the same way as those described in Sec. 3.4.2.
We selected 25 new Aemulus test HOD parameter sets and generated HOD catalogues
using halotools. We then calculated the clustering with and without a random velocity
shift along the line of sight drawn from a Gaussian with mean µ = 1.3 km s−1 and standard
deviation σ = 91.8 km s−1. The change in the measured values of γf from the full separation
range and fσ8 from the quasi-linear scales only (matching the method used for our baseline
results) due to the inclusion of the random velocity shift are shown in Fig. 3.8. For all 25
mocks, including a random velocity shift increased the value of γf measured from the full
separation range, with an average shift slightly greater than half the statistical uncertainty.
The larger value of γf measured due to the random velocity shift matches our theoretical
expectation for the degeneracy between γf and the redshift uncertainty on non-linear scales,
and the magnitude of the shift indicates that the redshift uncertainty is a significant concern
when fitting to the non-linear scales. On the other hand, the shifts in the measured value
of fσ8 scatter around 0, with a mean shift over an order of magnitude smaller than the
statistical uncertainty. This result also agrees with what is expected for our model, since
on quasi-linear scales the redshift uncertainty is not degenerate with a change in γf , and
instead will change only vbc and vbs. Therefore, the redshift uncertainty is not a concern
for our value of fσ8 measured from the quasi-linear scales.

There are several barriers to including a correction for the redshift uncertainty in the
model. Most significantly, the redshift uncertainty grows with redshift (see Fig.6 of [42]
for BOSS redshift evolution), while the emulator is constructed from catalogues at a single
redshift slice. The evolution with redshift is also important because the eBOSS LRG
targeting cuts were made using the apparent magnitudes of the targets, so properties of the
sample such as the mean mass will also evolve weakly with redshift and correlate with the
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Figure 3.8: A histogram of the shifts in the measured cosmological parameters for 25
HOD mocks with and without a random velocity dispersion matching the eBOSS redshift
uncertainty. Blue bars show the shift in γf measured over the full separation range, and
orange bars show the shift in fσ8 measured from the quasi-linear scales only. The x-axis
shows the difference between the value measured for the mock with a random velocity
dispersion (zerr) and the value measured from the same mock without the additional
velocity dispersion, divided by the uncertainty of the measurement from the zerr mock.
Coloured dashed lines show the mean shift for each case. For the fit over 0.1− 60h−1Mpc,
including a random velocity dispersion not represented in the model increased the measured
value of γf for all 25 mocks, with a mean shift slightly larger than half of the statistical
uncertainty. Conversely, for the fit over 7− 60h−1Mpc, the shifts from including a random
velocity dispersion scatter around 0, with a mean shift that is negligible compared to the
statistical error.

125



growth of the redshift uncertainty. The result is that including the redshift uncertainty in
the model may not be as simple as drawing from a uniform velocity shift, and would require
more detailed testing and corrections. The effect of redshift uncertainty could instead be
included as an additional systematic error or shift in our measured values. However, it is
important to note that for every mock tested the inclusion of redshift uncertainty (without
it being present in the model) increased the measured value of γf , because on the non-
linear scales where the redshift uncertainty is the most significant it is degenerate with
the larger random motions of the halos provided by a larger value of γf . In Sec. 3.5 we
consistently measure values of γf that are below the value expected from ΛCDM+Planck
2018, so the presence of redshift uncertainty is actually expected to increase this tension
rather than lowering it. We therefore take the conservative approach of excluding a shift
in our measurements due to the redshift uncertainty, even though it would be expected to
increase the tension shown by our measurements, and leave a complete treatment of the
redshift uncertainty to future work.

3.4.4 SHAM mock

We test the robustness of our model and analysis pipeline using a SHAM mock generated
from the Uchuu simulation. By using a SHAM mock rather than a HOD mock we remove
the dependence on the specific galaxy-halo connection model used in our analysis, providing
the best approximation to a model independent test. If our analysis is able to correctly
recover the expected value of γf = 1 for the SHAM mock then we can be confident it will
be able to match the data, even if there are deviations from the specific functional form
of the galaxy-halo connection model used in the construction of the emulator. We use the
z = 0.7 slice of the simulation to construct a SHAM mock using the peak halo maximum
circular velocity, Vpeak, with a scatter of 0.2 dex, and a number density of n = 1× 10−4 in
order to match the eBOSS LRG number density and redshift.

The result of our fit to the SHAM mock over the full range of the emulator (0.1 −
60h−1Mpc) is shown in Fig. 3.9. The primary purpose of the Uchuu SHAM mock test
is to assess the robustness of the cosmological parameter recovery using our HOD based
emulator, so we have only included the parameters which have the greatest impact on the
γf constraint. The constraints on all of the cosmological parameters are in good agreement
with the known values from the simulation, and the 1D marginalized constraint on γf
is γf = 0.964 ± 0.049, which agrees to within 1σ with the known value of γf = 1 for the
mock. All well constrained HOD parameters converge within the training parameter space,
indicating that the emulator is able to accurately model the clustering of the mock despite
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the mock being constructed using a different galaxy-halo connection. This result shows
that our analysis pipeline and model provide robust constraints on the growth rate.

3.5 Results

In this section we present the results of our fit to the small-scale LRG clustering. We
also investigate the robustness of our results by testing the inclusion of additional con-
straints on the cosmological parameters, examining how the constraints change depending
on which scales and measurements are included in the analysis, the effect of covariance
matrix smoothing on the measured parameters, and consistency with the constraints from
a combined CMASS+eBOSS sample.

3.5.1 Headline results

We fit the eBOSS LRG monopole, quadrupole, and projected correlation function over
scales 0.1 < r < 60h−1Mpc using the Cobaya MCMC sampler. We restrict the cosmological
parameter space using the Aemulus training prior described in Sec. 3.3.6, but do not
include any external data. We obtain a value of γf = 0.767 ± 0.052, 4.5σ below the
expectation of γf = 1 in a ΛCDM+GR universe. The 1D and 2D likelihood contours of
the full parameter set are shown in Fig. 3.10. All well constrained parameters are within
the prior ranges described in Table 3.1, and the parameters that are most impactful for our
results, Ωm, σ8, vbc, and γf , all show roughly Gaussian constraints. The best-fit values of
the cosmological parameters other than γf are consistent with recent measurements from
the Planck Collaboration [213]. The best fit model prediction is plotted relative to the
data in Fig. 3.11, showing reasonable agreement within the measurement uncertainty on
all scales. The best fit prediction has χ2 = 14.1, with 14 degrees of freedom and 27 data
points, indicating a good fit.

In addition, we consider a fit over only the quasi-linear scales of our measurements,
7−60h−1Mpc as described in Sec. 3.4.1, from which we obtain a value of fσ8(z = 0.737) =
0.408 ± 0.038 (calculated from fσ8 = γffΛCDMσ8 as specified in Sec. 3.3.3). This value is
1.4σ below what is expected from the 2018 Planck data for a flat ΛCDM universe, and is
a factor of 1.7 improvement in statistical error over the more standard large-scale analysis
of the same data set. See Sec. 3.5.4 for more details.
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Figure 3.9: 2D and 1D marginalized constraints of the key parameters from the fit to an
Uchuu SHAM mock matching the eBOSS LRG number density and redshift. Dotted lines
show the values of the cosmological parameters from the simulation.
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Figure 3.10: 1D and 2D contours of the parameters used in our baseline fit, as well as the
derived constraints on γffσ8.
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Figure 3.11: Comparison of the best fit model predictions to the data for several fits to the
eBOSS LRG sample for the monopole (left), quadrupole (centre) and projected correlation
function (right). Upper panels: The baseline fit (blue), fixed γf = 1 fit (orange), and
vbc = 0 fit (green), with the data and measurement uncertainty (black). Lower panels:
The difference between the best fit models and the data divided by the measurement
uncertainty. The 1σ region is shown in grey.
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3.5.2 Testing the quasi-linear scales for overfitting

One concern for our fit to the quasi-linear scales is that by reducing the separation range
to 7−60h−1Mpc we are fitting nine data points with a 14 free parameter model. However,
it is important to note that many of the HOD parameters have a negligible effect on these
scales. In particular, the three parameters that control the satellite occupation (logMsat,
α, logMcut) and the three parameters that control the position and velocity bias of galaxies
within halos (vbc, vbs, cvir) have very little impact and are almost entirely constrained by
the 0.1− 7h−1Mpc bins. Therefore, while there are 14 free parameters in the model, only
eight are significant when fitting to the nine bins of the quasi-linear scales. While this
provides a theoretical explanation for why the quasi-linear scales will not be overfit, our fit
over the scales 7 − 60h−1Mpc has a minimum χ2 = 0.36 (Table 3.2), indicating that the
small-scale HOD parameters may still be causing some overfitting.

To test if this overfitting affects our results we perform additional fits over the 7 −
60h−1Mpc separation range with the predominantly small-scale HOD parameters fixed to
their best fit values from the fit over the full 0.1 − 60h−1Mpc separation range. In the
first additional fit we keep the six parameters listed above fixed, leaving eight parameters
(Ωm, Ωbh

2, σ8, h, ns, σlogM , γf , fmax) free. In the second fit we also keep σlogM and fmax

fixed to their best fit values from the full fit, allowing only the six cosmological parameters
to vary. The γf constraints from these fits are shown in Table 3.2 and Fig. 3.12. The
results of both fits show that reducing the parameter space increases the precision of the
γf constraint without significantly shifting the central value, while increasing the minimum
χ2. We conclude that allowing the small-scale HOD parameters to be free does lead to the
quasi-linear scales being overfit, however it does not bias our cosmological constraints and
instead only increases the uncertainty. Fixing these HOD parameters would increase the
precision of our measurement from the quasi-linear scales, but it would also introduce an
indirect dependence on the non-linear scales. We therefore take the conservative choice of
using the measurement with all 14 parameters free as our baseline result. However, this
test does show the value of including the non-linear scales in a measurement of the linear
growth rate.

3.5.3 Testing the impact of the cosmological priors

We consider a number of prior constraints on the cosmological parameters, as described in
Sec. 3.3.6. The three most significant cases are a uniform prior as described in Table 3.1,
a uniform prior that restricts the cosmological parameters to be within the volume that is
well sampled by the training simulations, and a joint fit with Planck 2018 likelihoods with
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Run γf NP ND χ2

0.1− 60h−1Mpc 0.767± 0.052 14 27 14.1
0.1− 7h−1Mpc 0.71± 0.14 14 18 7.8
0.8− 60h−1Mpc 0.783± 0.066 14 18 4.2
7− 60h−1Mpc 0.854± 0.083 14 9 0.36
7− 60h−1Mpc, 8 parameters 0.821± 0.064 8 9 0.74
7− 60h−1Mpc, 6 parameters 0.802± 0.050 6 9 1.8
ξ0 + ξ2 0.819± 0.073 14 18 5.0
ξ0 + wp 0.65± 0.11 14 18 5.4
γf = 1 1 13 27 28.0
vbc = 0 0.958± 0.088 13 27 22.5
fmax = 1 0.764± 0.051 13 27 16.6
Unsmoothed covariance matrix 0.767± 0.052 14 27 14.3
Scaled mock covariance matrix 0.766± 0.059 14 27 12.0
No training prior 0.85± 0.12 14 27 12.1
eBOSS+Planck18 0.784± 0.048 14* 27 18.5
eBOSS+Planck18 scaled σ8 0.798± 0.047 14* 27 19.1
eBOSS+Planck18 free σ8 0.766± 0.053 14* 27 18.0
No AP scaling 0.772± 0.053 14 27 14.5

Table 3.2: γf constraints with statistical errors calculated from the width of the 1D
marginalized posterior and χ2 values for the fits used in our analysis. NP gives the num-
ber of free model parameters in the fit and ND gives the number of data points. Unless
specified in the table or text, the analysis methods for each fit match the headline, i.e.
all data over the measurement range 0.1− 60h−1Mpc is included, the smoothed jackknife
covariance matrix is used, the training prior is applied, and AP scaling is included. *The
eBOSS+Planck18 runs jointly fit 5 of the 14 parameters with Planck, so they are not fully
independent.
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Figure 3.12: γf constraints from all the runs listed in Table 3.2. The blue point shows the
baseline fit to the full separation range, extended by the blue dashed line for comparison to
other points. The red point shows the fit to the quasi-linear scales only. The black dashed
line shows γf = 1 for comparison, the value expected if the amplitude of the halo velocity
field matches the ΛCDM expectation.
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a scaled value of σ8 to account for the redshift difference between the data and the model.
The constraints on the key parameters for these three prior choices from fits to the eBOSS
data over the full emulator range (0.1−60h−1Mpc) are shown in Fig. 3.13. The parameter
that is most significantly impacted by the prior choice is σ8, with all three methods giving
consistent values but with large differences in precision. However, the constraint on fσ8

is almost unchanged for all prior choices. This result clearly shows the robustness of the
fσ8 fit from the data, and demonstrates the freedom of the model where changes in σ8

can be balanced by γf . It is also important to note that because the uncertainty on fσ8

is dominated by the uncertainty of γf that the training prior and the joint fit with Planck
achieve almost the same precision on fσ8, despite having comparable constraints on γf but
a significant difference in precision on σ8.

The effect of the three treatments of σ8 for the joint Planck fit described in Sec. 3.3.6
can be found in Table 3.2. Using the same value of σ8 for the Planck chains and model,
scaling to account for the redshift offset, or excluding the Planck constraints on σ8 all give
consistent values for the growth rate, again demonstrating the robustness of the fit.

3.5.4 Testing the dependence on the data fitted

In order to test the consistency of the constraint on γf from the different regimes described
in Sec. 3.4.1 we fit to the full non-linear regime (0.1−7h−1Mpc), the weakly non-linear and
quasi-linear regimes (0.8− 60h−1Mpc), and the quasi-linear regime only (7− 60h−1Mpc).
1D and 2D contours in the vbc − γf parameter space for these three fits are shown in the
left panel of Fig. 3.14. There is little variation in the other parameters between these fits
to different scales, however some important insight is gained from examining the vbc − γf
degeneracy since both parameters have a similar effect on the clustering in the non-linear
regime. The fits to smaller scales yield larger and more precise values of vbc, while obtaining
smaller and less precise constraints on γf . The full fit to all scales is located at the
intersection in vbc − γf space of the small and larger scale fits. The result is that there is
mild tension between the constraints on small and large scales, although the significance
when considering the combined uncertainty is less than 1σ. It is worth recalling that since
γf rescales all halo velocities in the simulation, in the linear regime it can be used to derive
a constraint on the linear growth rate fσ8, in the non-linear it also enhances the effects
of non-linear growth. So the fit to the small scales is really a consistency check between
the data and model with ΛCDM, with these results showing that there is a strong tension
that is most significant in the non-linear regime.

The fit to only the quasi-linear scales does not show the same degeneracy between vbc
and γf since they no longer have the same effect on the clustering, and is broadly consistent
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Figure 3.13: 1D and 2D contours of the key fit parameters for the fit to the eBOSS LRG
sample with no additional cosmological constraints (orange), restricted by the Aemulus
training prior (blue), and jointly fit with the Planck 2018 likelihoods (green).
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Figure 3.14: 2D and 1D marginalized constraints on vbc and γf for fits to different scales
and measurements. Left: Constraints from the three largest separation bins (orange), six
largest separation bins (green), six smallest separation bins (red), and all nine separation
bins (blue) for all three measurements. The dotted line shows γf = 1, the value expected
if the amplitude of the halo velocity field matches the expectation from ΛCDM. Right:
Constraints from the joint fit to the monopole and projected correlation function (orange),
monopole and quadrupole (green), and all three measurements (blue).
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with any value of vbc since it ceases to be impactful on such large scales. However, the
large-scale fit is still able to recover a relatively tight constraint on γf that can be compared
directly to the linear growth rate, giving a measurement fσ8 = 0.408±0.038, which is 1.4σ
lower than the value expected from the 2018 Planck data for a flat ΛCDM model.

We also examine the effect of excluding certain measurements from the fit. In the right
panel of Fig. 3.14 we show the constraints in vbc − γf parameter space from the joint fit to
only the monopole and projected correlation function, and the joint fit to the multipoles
only. The multipole only fit is less sensitive to the degeneracy between vbc and γf , but
prefers a smaller value of vbc and larger γf compared to the full fit. On the other hand,
the joint fit of the monopole and projected correlation function, which contain similar
clustering information but are sensitive and insensitive to the effects of RSD respectively,
prefer a non-zero value of vbc with much greater confidence, compensated by a low but
less well constrained value of γf . As with the fits to different scales, the full fit lies in the
overlap region produced by the different sensitivities of these measurements.

3.5.5 Testing the dependence on the covariance matrix

In Sec. 3.3.4 we compared our jackknife covariance matrix to a covariance matrix estimated
from 1000 EZmocks. We found good agreement in both the variance and correlation
structure between the two methods, so we performed additional fits to the data using the
mock covariance matrix and the unsmoothed jackknife covariance matrix to assess the
robustness of our constraints with respect to these choices.

It should be noted that the clustering of the mocks on scales below ∼ 1h−1Mpc is
significantly lower than the data, so that the mock covariance matrix underestimates the
variance on those scales. To bring the mock covariance matrix into better agreement we
calculate the correlation matrix from the mocks, and then convert the correlation matrix
to the covariance matrix by scaling the original diagonal values of the mock covariance
matrix according to

σM,s
i,i = σM

i,i

ξDi
ξ̄Mi

, (3.10)

where ξD is the correlation function from the data and ξ̄M is the mean correlation function
from the 1000 EZmocks. This scaling preserves the original correlation structure and σ(ξ)/ξ
ratio of the mock covariance matrix, but adjusts for the higher clustering of the data.
However, this method results in a very large variance for the quadrupole bins because the
mean quadrupole of the mocks goes to 0 on small scales. In order to prevent this artificial
inflation of the quadrupole bins we instead use σM,s

i,i = σD
i,i for the quadrupole.
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The results of the fits using this scaled mock covariance matrix and the original un-
smoothed jackknife covariance are shown in Table 3.2. The constraints in both cases are
nearly identical to our baseline fit using the smoothed jackknife covariance matrix, indi-
cating that our analysis is robust to the choice of covariance matrix.

3.5.6 Testing the dependence on AP correction

We test the dependence of our result on the AP correction by running a full fit excluding
the AP correction. The constraint on γf from this fit can be seen in Table 3.2 and Fig. 3.12.
Excluding the AP correction has a negligible effect on the constraint on γf and slightly
increases the best fit χ2. We therefore conclude that any uncertainty in the AP correction
due to the large bin width and approximate calculation will not have a significant effect
on our cosmological constraints.

3.5.7 Including the BOSS CMASS data

We test the reliability of our fit using a combined CMASS+eBOSS sample in the redshift
range 0.6 ≤ z ≤ 0.8. In particular, in our analysis we use the CMASS sample from the
DR12 data release. The CMASS DR12 catalogue covers an area of 9376 deg2 over a redshift
range of 0.4 < z < 0.8 [225] with a target density of 99.5 deg−2. The target selection is
calibrated to provide a sample of galaxies with approximately constant stellar mass over the
spanned redshift range. We refer the reader to [225] for a detailed description of the target
selection and properties for CMASS sample. In order to perform a joint measurement of
the two-point correlation function using the eBOSS and CMASS catalogues we restrict the
two samples (and the corresponding random catalogues) only to the area of the sky where
they overlap and to the redshift range of 0.6 < z < 0.8. The redshift distributions of the
two samples as well as their joint distribution are shown in Fig. 3.15.

The advantage of this sample is that it is more complete due to the complementary
nature of the CMASS and eBOSS colour cuts. However, the inclusion of the additional
CMASS objects skews the redshift distribution of the sample, which is not ideal for an
HOD-based analysis where the galaxy-halo connection parameters are implicitly assumed
to be the same across the full redshift range of the sample, and several are dependent
on the density of galaxies. As such, we use our combined CMASS+eBOSS measurement
to provide a consistency check with our fit, particularly our assumption that the target
selection of eBOSS does not affect our measurement, but we continue to use the eBOSS
only constraint as our fiducial measurement.
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Figure 3.15: Redshift distribution of the eBOSS DR16 (red dash-dotted line), CMASS
DR12 (blue dashed line) and the joint eBOSS+CMASS sample (black thick line, see
Sec. 3.5.7 for details), optimized using wFKP weights.
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To correct fibre collisions in the CMASS sample we use the Close Pair (CP) weights de-
scribed in Sec. 2.5.1, and the standard angular upweighting method described in Sec. 2.5.3.
For the eBOSS LRG sample the CP correction was found to perform similarly to the PIP
only result on all scales of wp, ξ0, and ξ2 (see Fig. 2.9 and Fig. 2.10). Given the similarities
in sample type and targeting between CMASS and eBOSS it is reasonable to expect a
similar result for CMASS. When combined with angular upweighting any systematic bias
is expected to be below the statistical uncertainty of the measurement. Since our primary
goal in analyzing the combined CMASS+eBOSS sample is as a consistency check, this
correction is sufficient for our purposes.

Fig. 3.16 shows the result of our fit compared to the eBOSS only fit in the most impor-
tant parameters of our analysis for the full emulator range, while Fig. 3.17 shows the result
of fits to the quasi-linear scales only. The CMASS+eBOSS measurement is consistent with
the eBOSS only measurement in all parameters, although there is a greater preference for
larger fmax values, as expected. It is interesting to note that in the fit over the full emulator
range (Fig. 3.16) the inclusion of the CMASS data does not affect our γf constraint, in-
cluding not reducing the 1D marginalized uncertainty. However, there are several reasons
why including additional data may not reduce 1D marginalized constraints. Firstly, the
additional data may reduce the allowed parameter space in 14 dimensions without affecting
the 1D constraints on a specific parameter. Additionally, the uncertainty in our measure-
ment is limited by the emulator accuracy in several bins, notably the quadrupole and the
large-scale bins of the monopole and wp, so a reduction of measurement uncertainty in
these bins will not be reflected in the fit. Finally, the constraint on γf seems to rely on the
complementary constraining of different scales and probes on parameter combinations such
as vbc and γf (Fig. 3.14). The fit to CMASS+eBOSS has slightly less tension between the
small and large scales than the eBOSS only measurement, so the overlap region remains the
same size even though the uncertainty from separated scales has been reduced. This can be
seen in the fit to the quasi-linear scales (Fig. 3.17), where the combined CMASS+eBOSS
sample gives a constraint of fσ8 = 0.384 ± 0.036. This constraint is consistent with the
eBOSS only measurement from the quasi-linear scales, but because it is slightly lower it is
in less tension with the fit over the full separation range.
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Figure 3.16: 2D and 1D marginalized constraints of the key parameters of our fit for our
fiducial eBOSS measurement (blue) and combined CMASS+eBOSS sample (orange) over
the full emulator range, 0.1− 60h−1Mpc.
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Figure 3.17: Same as Fig. 3.16, but fit over the quasi-linear scales only, 7− 60h−1Mpc.
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3.6 Discussion

3.6.1 Comparison to other measurements

We compare our result to other measurements of fσ8 from galaxy clustering surveys in
Fig. 3.18. Taken as a whole sample, there is clearly good consistency with the ΛCDM
prediction. For the eBOSS LRGs, [23] analyzed pairs with separations between 25 −
130h−1Mpc, and obtained measurements of fσ8 = 0.446± 0.066 and fσ8 = 0.420± 0.065
depending on the RSD model used in the analysis (see Table B1 of [23]). Our measurement
is consistent with these results at around the ∼ 1σ level, but has a factor of 1.7 improvement
in the statistical error. Our measurement also continues the trend of galaxy clustering
measurements of fσ8 falling slightly below the prediction from observations of the CMB.

In Fig. 3.18 we also compare our results to other attempts to measure fσ8 on small
scales. [226] used a similar parameterization as our analysis to measure fσ8 from the
small-scale clustering of the BOSS CMASS sample, and achieved the highest precision
to date. However, due to the difficulty of modelling the non-linear regime [226] used a
fixed cosmology, which has been shown by [278] to significantly reduce the uncertainty.
Conversely, [166] use a novel modelling method in their analysis of the BOSS LOWZ
sample that does not require an emulator. It should also be noted that their model does
not include an equivalent of our γf parameter that allows the linear growth rate to change
independently of the ΛCDM cosmology. Both of these analyses have split in linear and
non-linear regimes differently than our analysis, which significantly affects the claimed
uncertainty. By restricting our measurement of fσ8 to only the quasi-linear scales our
uncertainty increases by a factor of ∼1.5 compared to our fit over the full 0.1− 60h−1Mpc
separation range, however we can be confident that what we are measuring is purely the
linear growth rate, and so can be directly compared to other more standard large-scale
measurements. As shown in Sec. 3.5.1 and Sec. 3.5.4, using the full separation range
significantly increases the tension with the result expect for ΛCDM, with the non-linear
scales in greater disagreement with the expected value than the quasi-linear scales, however
it is no longer clear if this tension arises from a discrepancy in the linear growth rate or a
difference in the non-linear velocity field measured in the data using the emulator model.

It is interesting to note that [166] found a similar dependence on the measurement scales,
with smaller scales preferring a smaller value of fσ8. [166] also found that adding the pro-
jected correlation function to their fiducial measurement of the monopole, quadrupole, and
hexadecapole reduced the best fit value of their lower redshift sample by ∼ 1σ, but did not
significantly affect the measurement from their higher redshift sample. Differences between
the two analysis methods mean it is expected that there would be some variation in the
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Figure 3.18: fσ8 measurements from various SDSS samples. The blue points show the
results of the more conventional large-scale analyses from the SDSS MGS [143], BOSS
galaxies [9], CMASS+eBOSS LRGs and eBOSS LRGs [23], eBOSS ELGs [76], and eBOSS
quasars [196]. Our small-scale analysis of the eBOSS LRGs using only the quasi-linear
regimes is shown in red. Empty coloured points show the results of small-scale analyses
from the BOSS LOWZ sample ([166], green) and BOSS CMASS sample ([226], yellow)
that included non-linear scales in the analysis. The black line shows the expected value
of fσ8 for a flat ΛCDM universe with best fit Planck 2018 cosmology, where the shaded
regions show the 1 and 2σ confidence regions. The large-scale eBOSS LRG result is shifted
in the x-axis to avoid overlap with the small-scale result from this chapter.
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impact of the different measurements and scales between our results. This is particularly
true since [166] do not include a parameter comparable to our γf , given the importance of
wp in breaking the vbc − γf degeneracy in our analysis.

3.6.2 Galaxy-halo connection parameters

The parameter found to be most degenerate with our γf constraint is vbc, the scaling of
the velocity dispersion of centrals in the HOD framework (Fig. 3.10). A lower value of
vbc corresponds to a larger γf , as expected in the non-linear regime since both parameters
increase the observed velocity dispersion of galaxies (see Sec. 3.4.3). Our fit over the full
0.1 − 60h−1Mpc separation range strongly prefers a non-zero vbc and low γf . However,
our fit to the quasi-linear regime finds no discernible degeneracy between vbc and γf and
recovers both a relatively large value of γf and non-zero value of vbc, although the constraint
on vbc is weak due to the small impact it has on those scales (Fig. 3.14). This result indicates
that the degeneracy between vbc and fσ8 may illustrate the degree to which the non-linear
scales affect the overall constraint. [166] also find a strong degeneracy between the velocity
scaling of central galaxies and their constraint on fσ8, with their higher redshift sample
yielding vbc > 0 and low fσ8 compared to the ΛCDM prediction. [226] elected to fix the
velocity of centrals to match that of the host halo, and find closer agreement with the
ΛCDM expectation, which we also find when using a fixed vbc = 0. vbc > 0 indicates
that a central galaxy is in motion relative to the centre of the host halo, either because
the central galaxy is oscillating in the potential or because the system is not fully relaxed.
Understanding the physical processes that would lead to this effect, especially if the process
is redshift dependent, will be important for future analyses.

We also investigate the dependence of our measurement on the fmax parameter. Due
to the strong degeneracy between σlogM and fmax, our fit to the data is broadly consistent
with a wide range of values for fmax between 0.2 and 1, however there is a large peak
at fmax = 0.25. A low value of fmax is not surprising for the eBOSS sample given the
magnitude and color cuts made when selecting the target sample, particularly since the
highest magnitude objects were removed. We do not find a degeneracy with fσ8, so the
lack of constraint on σlogM and fmax is not expected to bias our measurement.

Numerical simulations have shown that the clustering of dark matter halos can depend
on properties other than halo mass, a.k.a halo assembly bias ([245, 108, 128, 268, 197]).
This bias can propagate into the distribution of galaxies that live in these halos and thus
introduce additional bias in the clustering measurement. In the analysis of BOSS galaxies
over a wider redshift range using a similar emulator model [277], the basic HOD approach
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used here was enhanced with an assembly bias model depending on the environment of
dark matter halos. Although the results of that analysis imply the mild existence of
assembly bias, there is a negligible impact on the cosmological constraint and measurement
of structure growth rate. Therefore we exclude explicit modeling of assembly bias in this
analysis.

3.6.3 Comparison to tension from lensing surveys

It is interesting to note that we obtain a lower value of fσ8 than expected from Planck
measurements, given the current S8-tension between Planck and weak lensing surveys (see
Sec. 1.2.5) and the low amplitude of the galaxy-galaxy lensing amplitude measured using
the BOSS CMASS sample by [171], since both tensions could be resolved by a lower value
of σ8 than that measured by Planck. To see approximately how our result might relate
to this tension we compare the constraints on S8 = σ8(ΩM/0.3)0.5 for the DES Y1 results
[2], Planck 2018 [213], and our results (Fig. 3.19). The left panel shows our measurement
using the full separation range, while the right panel shows our measurement from the
quasi-linear scales only. Our constraint, shown as the blue contour, is consistent with both
the DES Y1 and Planck results in both cases. However, it is important to note that our low
value of fσ8 comes almost entirely from γf < 1, which reduces the magnitude of peculiar
velocities in the simulation without affecting the amplitude of fluctuations, σ8. If the low
value of fσ8 we measure was due to the value of σ8 instead then the constraint would shift
down the S8 axis, shown as a green contour. For our measurement from the quasi-linear
scales this shift maintains consistency with both DES Y1 and Planck 2018, however for
our fit to all scales this shift puts the green constraint in tension with the Planck results,
and in more mild disagreement with the DES results. This result may indicate that the
increased tension we find from the non-linear scales may be caused by an issue with the
HOD model or velocity field of the simulations, rather than a purely cosmological tension.

3.6.4 Emulator robustness and potential improvements

We have performed rigorous tests of the emulator performance (see Sec. 3.4), and found that
the model performs well when fit to an independent simulation and galaxy-halo connection
prescription. We also find that a model that assumes all central galaxies are observed
leads to a systematic bias in the recovered cosmological parameters if the actual fractional
occupation of centrals is lower than 0.6. We correct this bias by adding the parameter
fmax to the emulator, and verify that the full emulator gives an unbiased measurement for
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Figure 3.19: 2D and 1D marginalized constraints on Ωm and S8 from our analysis (blue),
the Dark Energy Survey (DES) year 1 results [2] (orange) and Planck 2018 results [212, 214]
(red). Since our low value of fσ8 mostly comes from γf , we also plot γfS8 (green) for our
fit, which shows the constraint we would have if the low value of fσ8 came entirely from
the σ8 value. Left: results of our fit over the full emulator range, 0.1− 60h−1Mpc. Right:
results from only the quasi-linear scales, 7−60h−1Mpc, used to constrain the linear growth
rate.
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0.2 < fmax < 1.0. We also identify the redshift uncertainty as a source of systematic bias
on non-linear scales, with a redshift uncertainty missing from the model leading to an offset
in γf to larger values by more than half of the statistical error for the eBOSS sample. This
is a significant concern for future small-scale analyses, and will require careful attention
due to the difficulties in implementing a redshift dependent effect in a model constructed
at a single redshift. The redshift uncertainty has also been found to scale with redshift, so
it will be an even greater concern for future large surveys at high redshift such as DESI
[79, 80] and Euclid [168].

Our measurement of the clustering within the eBOSS LRG sample also meets or exceeds
the emulator precision in several of the measurement bins (see Fig. 3.5), showing the
importance of improving the model precision for future surveys. This must be balanced
against ensuring there are sufficient bins to yield a well defined fit, given the number of
model parameters (see Sec. 3.5.2). Finally, careful attention must be given to the non-
linear scales, and identifying what information can be used to constrain the linear growth
rate. A key aspect includes ensuring the performance of the HOD model on these scales,
and investigating the effect of baryonic physics.

3.7 Summary

We have measured the growth rate of structure from the small-scale clustering of the eBOSS
LRG sample corrected by PIP weights and modelled using the aemulus cosmological
emulator. Using the quasi-linear scales of our measurement range we obtain a measurement
of fσ8(z = 0.737) = 0.408± 0.038, which is 1.4σ lower than the value expected from 2018
Planck data for a flat ΛCDM model. Our measurement is a significant improvement over
more standard measurements made using only the large-scale modes, achieving a level of
precision that is 1.7 times better than the large-scale analysis of the same sample. Using
the full separation range of our measurement we find a 4.5σ tension in the amplitude of
the halo velocity field with the expectation for a ΛCDM universe. This tension is driven
by the non-linear scales of our analysis and so may not be well modelled by a change in
the linear growth rate, but may instead reflect a breakdown in the HOD model used in the
emulator.

We perform a robust check of possible sources of systematic error not included in pre-
vious analyses. We find that using a model that assumes all central galaxies are observed
leads to a systematic bias if the actual occupation of centrals is lower; a fractional occu-
pation of fmax ≤ 0.6. We also investigate the effect of redshift uncertainty, and find that
the presence of a velocity shift from redshift uncertainty in the data that is not included
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in the model results in a higher measurement of γf with an offset of ∼ 0.5σ, where σ is
the typical statistical error. This effect is caused by the degeneracy between the increased
velocity dispersion due to the redshift uncertainty and the random motions of the halos in
the non-linear regime. Lastly, we investigate the consistency between the non-linear and
quasi-linear scales of our analysis. While we find them to be consistent within the statis-
tical error, there is a trend to lower γf on non-linear scales, which increases the tension
with the expectation from ΛCDM for the fit to all scales. This result highlights the impor-
tance of distinguishing between results obtained from the linear scales, and thus directly
constraining the linear growth rate fσ8, and those that include non-linear scales and may
have a non-linear dependence on the linear growth rate together with a dependence on
other factors.
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Chapter 4

Isolating the linear signal when making
RSD measurements

This chapter is adapted from [58]. I was the principal investigator of that work and per-
formed all steps of the data analysis, with the exception of training the emulator and esti-
mating the emulator uncertainty, both performed by Prof. Zhongxu Zhai. I lead the writing
of the paper for publication, with input from my co-authors. Throughout this chapter I use
‘we’ to describe all contributions, including my own. The content of that work has been
adapted and reformatted by me for this thesis.

4.1 Introduction

Our first measurement of RSD from small-scale clustering within the eBOSS LRG sample,
presented in Ch. 3, successfully found a significant improvement in precision over the
large-scale analysis of the same sample when the full separation range of the emulator was
used [57]. However, that improvement was reduced because we were forced to restrict our
analysis when quoting a constraint on fσ8 with a minimum scale cut to match the scale
where changing γf no longer directly matched the expectation for a change in fσ8. While
the small-scale, non-linear velocities are certainly affected by a change in the growth rate,
it is no longer necessary that that change be directly proportional, so there is a potential
for a systematic bias in applying a linear velocity scaling to non-linear velocities.

This highlights a larger issue in the area of small-scale RSD measurements; how to
measure a linear quantity in the non-linear regime without allowing the non-linear velocity
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evolution to bias the results. This is the primary motivation for this chapter. We build on
the previous model by splitting the velocity scaling parameter γf into two parameters: γl to
scale the linear component of the velocity, and γn to scale the non-linear component. This
new parameterization allows us to interpret a change in γl as a change in the amplitude of
the linear velocity field consistent with a change in fσ8 within a ΛCDM framework, while
γn allows enough freedom for the non-linear velocity to vary without directly matching the
scaling of the linear velocity.

This chapter is structured as follows. In Sec. 4.2 we expand on the model of Ch. 3 to
isolate the linear signal in the non-linear regime using our new velocity scaling parameters.
Then we refit the eBOSS LRG data using the new emulator, and present the results in
Sec. 4.3. Finally, in Sec. 4.4 we discuss the significance of our new results and compare to
the work of the previous emulator and other related measurements.

4.2 Modelling RSD including velocity scaling

4.2.1 Measuring the growth of structure with velocity scaling

Following the work of Ch. 3, in this chapter we use velocity scaling to allow our model
to test for RSD that differ from the model used to fit to other aspects of the clustering
measurements. The velocity scaling parameter, γf , is implemented as a rescaling of all
halo bulk velocities in a simulation, where we use the same definition of ‘bulk velocities’
as Ch. 3, meaning the velocity of the halo as a single unit, rather than the velocity of the
individual particles making up the halo or the internal velocity dispersion of the halo. In
the linear regime the amplitude of the velocity field is directly proportional to fσ8, so a
scaling of the velocity field has the same effect as scaling the logarithmic growth rate, f
[226]. In this way γf can be used to measure an effective value of (fσ8)

meas = γffΛCDMσ8.
It is important to note that in the ΛCDM cosmological model f is a derived parameter that
is determined entirely by the value of more fundamental cosmological parameters, most
notably Ωm, so here fΛCDM is used to represent the value of f calculated for a particular
set of cosmological parameters within the ΛCDM framework. Throughout the remainder
of this chapter we will drop the superscript "meas", and refer to results calculated as
fσ8 = γffΛCDMσ8 when a velocity scaling parameter is included in the model.

A value of γf ̸= 1 indicates disagreement between the data and the ΛCDM cosmological
model and provides a test of ΛCDM. While that is an accurate interpretation, we can also
present our main results in terms of a constraint on fσ8, as described above. It is useful
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to present our results in this way in order to make them more easily comparable to results
from other RSD measurements, including those from the eBOSS LRG configuration-space
clustering on larger scales using more conventional RSD modelling presented in Sec. 2.7.2
(see [23]). This comparison is key to assessing the information content of the non-linear
and quasi-linear regimes compared to linear scales.

It is also worth considering whether including a parameter such as γf is still necessary for
an emulator-based model, such as the one applied in Ch. 3 and the one that will be described
in Sec. 4.2.2. An emulator is capable of making predictions for galaxy clustering over a
wide region of cosmological parameter-space, meaning the model is able to accommodate
different values of fσ8 by changing Ωm and σ8. However, without γf such a model is only
able to produce a good fit to data where the velocities match the geometry and clustering
of a ΛCDM cosmological model, as determined by the combination of simulations and
other model elements such as the galaxy-halo connection. Fitting to data that is not
well-matched by this framework will result in a poor agreement between data and model,
characterized by the χ2 statistic, and could bias the inferred parameter constraints. It is
also difficult to separate the constraints from the RSD from those from fitting the overall
clustering pattern.

By including a velocity scaling parameter the model is given the freedom to fit differ-
ences in the amplitude of the velocity field directly, unlike constraints on Ωm and σ8 that
affect other elements of the clustering in addition to their influence on the velocity field (see
Sec. 4.2.5). Splitting the parameters that contribute to the fσ8 constraint in this way also
provides more information about where the constraint comes from, since the parameters
γf , Ωm, and σ8 are not completely degenerate. For example, in Ch. 3 we found a value of
fσ8 lower than the expectation for a ΛCDM universe with Planck 2018 [213] cosmology
when including a velocity scaling parameter, with a reasonable χ2 value. However, fixing
the scaling parameter to γf = 1 and allowing fσ8 to vary only through Ωm and σ8 resulted
in a much worse fit to the data, and a shifted constraint on fσ8. This result indicated
that the discrepancy between the data and model was specifically in the amplitude of the
velocity field, which is information that can only be gained by including additional degrees
of freedom.

Related to these results from Ch. 3, it is worth considering an issue highlighted in
that analysis: what velocities can be considered as linear for the purposes of the growth
rate? While a change in the growth rate will affect all components of the velocity, the
relation between the amplitude of the non-linear velocity field and f may not be directly
proportional. In Ch. 3 we investigated the effect of varying γf on the correlation function
and identified a scale of ∼ 7h−1Mpc as the transition between the quasi-linear and non-
linear regimes, so we restricted our measurement of fσ8 to between 7 − 60h−1Mpc to
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isolate the linear signal when using a single scaling parameter. The primary purpose of
this chapter is to improve on the model used in Ch. 3 to be able to include all scales in the
constraint on fσ8 without bias from misinterpreting non-linear information. That process
will be outlined in the following sections.

4.2.2 Building an emulator

In this work we build on the emulator used in Ch. 3, originally based on [278]. The emulator
used a 5-parameter cosmological model consisting of ΩM , Ωb, σ8, h, and ns, as well as an
8-parameter HOD model to connect galaxies to halos in the simulation, described by the
parameters fmax, σlogM , logMsat, α, logMcut, cvir, vbc, and vbs. The final parameter of the
Ch. 3 emulator was the velocity scaling parameter, γf , described in Sec. 4.2.1.

We improve on the Ch. 3 emulator using the method described in Sec.4.2.3 to model the
linear and nonlinear velocity components. In order to apply this new method we require
access to the initial conditions of the simulation, which are not publicly available for the
Aemulus suite of simulations [77] used by the Ch. 3 emulator. For our new emulator we
use the AbacusCosmos suite of simulations [110], with available first-order initial condi-
tions generated from the zeldovich-PLT1 code [109]. AbacusCosmos consists of 40 variable
cosmology, 1100 h−1Mpc simulation boxes with 14403 particles that we use to train the
emulator, as well as 20 simulation boxes at the Planck 2015 cosmology [210] that are used
for testing. Since the AbacusCosmos and Aemulus suites are similar in terms of number of
boxes, box size, and number of particles we use the same method to estimate the emulator
uncertainty as [278], adapted to the boxes available in AbacusCosmos. We use the 20 Aba-
cusCosmos boxes with Planck cosmology to estimate the sample variance, and assess the
performance of the emulator throughout the cosmological parameter space by retraining
the emulator with one variable cosmology box excluded at a time, and comparing emulator
predictions to measurements from the excluded box.

4.2.3 Isolating the linear signal

In order to ensure that our results are not biased by the assumption that all components of
the velocity will be scaled in the same way by a change in f , we split the velocity of halos
into two components: a linear and a non-linear component. We scale each component by an
independent parameter: γl for the linear component and γn for the non-linear component.

1https://github.com/abacusorg/zeldovich-PLT
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If these parameters are constrained such that γl = γn, then all velocities are scaled by the
same amount and the model reduces to the single scaling parameter, γf , used in Ch. 3. The
split is performed on halo velocities rather than galaxy velocities because the velocity bias
of galaxies is implemented by other independent parameters in the emulator. Galaxies
are assigned the velocity of their host halo, with an additional velocity term calculated
as σgal = vgalσhalo, where vgal is the velocity bias parameter for that galaxy type (vbc for
centrals and vbs for satellites), and σhalo is the velocity dispersion of the halo. Halo velocity
dispersion is calculated from its mass using the circular velocity at the virial radius, which
provides a physically motivated estimate that is fast and simple to calculate, and is not
affected by noise from small numbers of particles for low mass halos in the simulation. The
additional velocity term is calculated independently of the velocity scaling by γl and γn,
so that it is controlled entirely by vbc and vbs. This choice reduces the degeneracy between
the velocity scaling and velocity bias parameters while still allowing for sufficient freedom
in the model to address both a change in the growth rate and the presence of velocity bias
[118].

The challenge of this new model is determining what component of the velocity is linear
at late time. While this is difficult to do for the halo velocities, we can make use of the
fact that the initial conditions of the emulator provide a method for calculating particle
linear velocities, which can then be combined to provide an estimate of the linear velocity
of the halo. The AbacusCosmos initial conditions were generated by calculating Zel’dovich
approximation displacements for a grid of particles at z = 49 using the zeldovich-PLT
code. The Zel’dovich approximation provides a first order calculation of the displacements
and velocities of particles, so z = 49 is chosen as an arbitrarily large redshift where the
motion of particles will very closely follow linear theory. We can use these initial particle
linear velocities to predict the particle linear velocities at the z = 0.7 simulation slice by
evolving them using the linear theory prediction for the amplitude of the velocity field,

vk =
ik

k2
Haδkf(Ωm). (4.1)

The velocity scaling of the initial conditions is simply the ratio of Eq. 4.1 between the
redshift of the initial conditions and the desired final redshift,

v(z2) =
Hafσ8(z2)

Hafσ8(z1)
v(z1). (4.2)

We define the non-linear velocity as all components of the total velocity not included
in the linear velocity, and calculate it by subtracting the linear velocity vector from the
total velocity vector. By separately scaling the linear velocity by γl and the non-linear
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velocity by γn, we allow for the non-linear velocity of the data to deviate from the ΛCDM
expectation of the simulations without biasing the value of fσ8 we infer from γl. While
only γl affects our measurement of fσ8, there are several benefits to also allowing γn to
vary in our model. The amplitude of the non-linear velocity component is not necessarily
directly proportional to fσ8, however it is still reasonable to expect that a change in fσ8

would affect the amplitude of the non-linear component. γn provides our model with the
freedom to reproduce such changes, which are then marginalized over in the constraints of
γl and fσ8. γn also provides the model with freedom in the case that the prediction for the
non-linear velocity component from the simulation+HOD model is a poor fit to the data.
There is some evidence for such a disagreement, as the results of both Sec. 3.5.4 and [166]
found that measurements from smaller separation ranges produced lower constraints on
fσ8, which is in conflict with the ΛCDM expectation that fσ8 should be scale-independent.
There are several explanations for a discrepancy in the amplitude of the non-linear velocity
component between the model and the data. The simulations may fail to produce the
correct non-linear velocity distribution, particularly due to the effects of baryonic physics.
Another possibility is if the chosen galaxy-halo connection model is not able to reproduce
the correct non-linear velocity distribution. A final benefit is that the value of γn itself
provides a test of the agreement between the non-linear velocity component of the model
and the data, with γn ̸= 1 indicating a disagreement. This disagreement could either be
caused by one of the factors listed above, or by a breakdown in the ΛCDM cosmological
model.

It should also be noted that while γn is constructed to have a minimal impact on
the constraint of fσ8, in general γl and γn will have some correlation with each other.
For example, this will be true for quasi-linear velocity evolution that happens along the
direction of the linear velocity. Reducing this correlation would require a more detailed
estimation of the linear and non-linear velocity components, which we leave to future work.

4.2.4 Smoothing the linear velocity field

Pairs of galaxies with small separation in collapsed objects have lost all dependence on the
initial linear velocities. This approximately occurs at shell crossing and means that our
split into linear and non-linear components is ineffective on such scales - a portion of the
velocity ascribed to non-linear motion simply cancels out the linear one (see Appendix C).
In an extreme situation, if two objects are located sufficiently close to each other along the
line-of-sight and have a large enough infall velocity, the shift in position in redshift space
reverses the orientation of the pair along the line-of-sight. In this situation scaling the
velocity will increase the pair separation, leading to damping of the correlation function.
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We therefore elect to smooth the particle linear velocity field around the shell-crossing
scale, which from our analysis in Ch. 3 we know to occur at approximately 5h−1Mpc.
This smoothing reduces the pairwise linear velocity of nearby objects, transferring the
component of the velocity that provokes shell crossing to what we have termed the ‘non-
linear’ component, since total velocity is still conserved. Meanwhile, the linear pairwise
velocity of more distant objects is unaffected, preserving the signal we wish to extract with
our linear velocity scaling parameter.

To illustrate the smoothing effect we use a projected 5h−1Mpc thick slice of the Abacus-
Cosmos Planck 00-0 box to demonstrate the arrangement of the different particle velocity
components in a high density region, shown in Fig. 4.1. The panels of the plot show the to-
tal particle velocity; the linear velocity calculated from the initial conditions; the smoothed
linear velocity calculated using a tophat smoothing kernel with radius 5h−1Mpc; and the
non-linear velocity component, calculated as the difference between the total velocity and
the linear velocity. While the velocity of field particles is largely unchanged between
total, linear, and smoothed linear velocities, the behaviour of particles in the cluster dif-
fers greatly. The unsmoothed linear velocity displays a distinct preferred direction when
compared to the total velocity, however some scatter persists. The smoothed velocity is
significantly more collimated, so that close particles will maintain their separation in red-
shift space, as intended. The non-linear velocities show the difference between the total
velocity and smoothed linear velocities. As expected, the non-linear velocities are signif-
icantly larger in collapsed structures compared to the field, and do not show an obvious
preferred direction. While we use particle velocities to in Fig. 4.1 to illustrate the vari-
ous components, it is important to note that the velocities of galaxies in the final HOD
catalogue are determined from the halo velocities, which are detailed below.

Our process of smoothing and assigning halo velocities is as follows. First, we construct
a 3D grid with side length 1h−1Mpc over the simulation box, and assign to each grid cell
a linear velocity equal to the mean linear velocity of the particles contained within the
cell. Next, we smooth the grid using a 3D spherical tophat kernel of radius 5h−1Mpc,
equally weighting each grid cell. Finally, halos are assigned the smoothed linear velocity
of the cell they inhabit. The smoothing radius of 5h−1Mpc was chosen to match the
approximate scale found in Sec. 3.4.1 where increasing the velocity scaling parameter, γf ,
transitioned from amplifying the monopole to damping the monopole. A tophat kernel was
chosen because of the small width of this transition, and because it reduces the number
of calculations required compared to other possible kernel choices, such as a Gaussian
kernel. The grid spacing was chosen to balance the resolution of the grid and the memory
requirements of the computation. Testing these choices is discussed below.

In Fig. 4.2, we investigate the effect of scaling the smoothed halo linear velocity on
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Figure 4.1: A slice of one of the AbacusCosmos Planck boxes showing the particle posi-
tions and velocities. Blue points show the position of particles from a uniform 10% down
sampling, and black arrows show the velocities of the particles where the size of the arrow
is proportional to the amplitude of the velocity.
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the monopole of the halo correlation function and compare to the results of scaling the
unsmoothed halo velocities. For the unsmoothed linear velocity field we define the linear
halo velocity as the mean linear velocity of the constituent particles. Scaling both the
smoothed and unsmoothed velocities has a nearly identical effect on the large scales of
the monopole for both the linear velocity scaling parameter, γl, and the non-linear velocity
scaling parameter, γn. This result is expected since the velocity smoothing primarily affects
the pairwise velocity of small separation objects by construction, and desired because the
large-scale behaviour follows the expectation from linear theory in that the amplitude of
the monopole is proportional to f , and scaling up the velocities increases the amplitude
of the correlation function. However, around ∼ 2h−1Mpc scaling up the unsmoothed
linear velocities changes behaviour and damps the monopole due to the shell-crossing issue
discussed above. Scaling up the smoothed linear velocity increases the amplitude at all
scales, although the effect is reduced below the smoothing scale. This matches our desired
behaviour for the linear velocity field, which was visualized in Fig. 4.1, that close pairs
that have already collapsed maintain their separation as the linear growth rate is increased,
rather than being spread apart. When scaling γn the effect is similar for both methods of
calculating the velocity components, although the smoothed velocity field shows a greater
change in amplitude. The quadrupole is not included in this plot because the change in
sign makes these trends more difficult to see intuitively, but the same behaviour of the
scaling parameters is seen in the quadrupole as displayed in the monopole. The projected
correlation function is largely insensitive to the radial velocity by construction, and the
difference between smoothed and unsmoothed velocities is insignificant.

Fig. 4.2 also shows the results of varying the parameters used to smooth the linear
velocity field. Faint, coloured lines show the effects of smoothing using a tophat radius of
3.0h−1Mpc or 7.0h−1Mpc instead of the default 5.0h−1Mpc, using a grid of side length
2.0h−1Mpc or 0.8h−1Mpc instead of the default 1.0h−1Mpc, and of using a Gaussian
kernel with standard deviation 2.0h−1Mpc. In all cases the effect is quite similar to our
default choice of parameters at all scales and for both scaling parameters, indicating that
our smoothing method is robust to varying these choices.

4.2.5 Visualizing parameter degeneracies

The model we have constructed contains multiple parameters affecting the linear (γl, Ωm,
σ8) and non-linear (γn, vbc, vbs) components of the velocity. In applying the model it is
therefore important to understand the degeneracies between these parameters. We can
visualize the impact of the different parameters on the correlation functions by using the
emulator to make predictions while varying each parameter individually. As a base model,
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Figure 4.2: The mean change in the monopole of the halo correlation functions after veloc-
ity scaling from the 20 Planck cosmology boxes. The y-axis shows the relative difference
between the correlation function with scaling and the base (superscript b) correlation func-
tion without scaling. Solid lines show scaling by γ = 1.2, while dashed lines show scaling
by γ = 0.8. The black lines show the result using the unsmoothed linear velocity, and the
thick blue line shows the result of our fiducial smoothing method; a tophat kernel with
radius 5h−1Mpc on a grid of side length 1h−1Mpc. Faint coloured lines show the results
of variations on the smoothing method, described in the text.
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we use the Planck 2018 best fit cosmological parameters (Ωm, Ωb, H0, σ8, ns; [213]), with
the best fit HOD parameters (logMsat, α, logMcut, σlogM , fmax) from our new analysis of
the eBOSS LRG data (see Sec. 4.3.2), and default velocity parameters (γl = 1, γn = 1,
vbc = 0, vbs = 1, cvir = 1). We use the core HOD parameters from our fit to the eBOSS data
because aspects of the galaxy-halo connection, such as the satellite fraction, will change
how the velocity parameters affect the correlation functions. Using the HOD parameters
of our fit ensures that we are building the correct intuition for the analysis of the eBOSS
LRG sample.

Fig. 4.3 shows the emulator predictions from varying the parameters that directly con-
tribute to the constraint on fσ8 in our analysis: γl, Ωm, and σ8. The amount of variation
in each parameter is chosen to give a similar change in amplitude in the monopole on scales
∼ 10h−1Mpc, to make direct comparisons simpler. In general, increasing γl or σ8 increases
the amplitude of clustering, while increasing Ωm decreases the amplitude. The behaviour
of γl matches the expectations for increased linear growth (see Fig. 4.2 and discussion).
While increasing Ωm or σ8 will also increase the amplitude of the linear velocity compo-
nent, both parameters also affect the amplitude of density perturbations, and Ωm affects
the shape of the matter power spectrum. These additional effects can be seen in wp, which
is insensitive to the velocity field. This highlights the difference between γl, which affects
only the amplitude of the linear velocity, and Ωm and σ8, which also affect other aspects
of the clustering. In addition to the general behaviour, there are some specific ways the
parameters deviate in their effects on ξ0, ξ2, and wp, particularly across separation ranges.
While varying γl or σ8 both have a similar impact on the large scales of the monopole, the
small-scale behaviour is very different, as are the effects on the quadrupole on all scales.
These features highlight the importance of including all three parameters in the emulator.

We perform a similar analysis of the parameters that affect the non-linear velocity
component, γl, vbc, and vbs, in Fig. 4.4. For this comparison the amount of variation is
tuned to give a similar change in amplitude of the monopole on scales ∼ 1h−1Mpc, within
the regime where the non-linear velocity component is strong (see Appendix C). The effect
on wp is omitted because all three parameters purely affect the velocities of galaxies, so
any effect from changing the parameters is only an artifact of the finite r∥,max = 80h−1Mpc
used in calculating wp (see Eq. 1.26 in Sec. 1.3.2). γn and vbc show very similar effects on
the correlation functions, with the exception of the small scales of the quadrupole, implying
that they will be highly degenerate in a fit to data. However, it is worth noting that the
"default" value of vbc is vbc = 0, the case of no central galaxy velocity bias, and that vbc
can only be increased and will only ever produce a damping of the correlation function
measurements. This is in contrast with values of γn < 1, which reduce the damping of
the correlation function, so the degeneracy between γn and vbc is only expected to hold
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Figure 4.3: Emulator predictions for varying parameters that directly contribute to the
constraint on fσ8. The black line shows the prediction for the base parameter set con-
sisting of the Planck 2018 cosmological parameters [213], best fit HOD parameters for the
eBOSS LRG sample from Sec. 4.3.2, and default velocity parameters (see text for full list-
ing). Blue lines show the emulator prediction when γl is varied with all other parameters
kept fixed, with orange and green lines showing equivalent results for varying Ωm and σ8

respectively. The columns shows the predictions for the monopole (left), quadrupole (cen-
tre), and projected correlation function (right). Panels in the upper row directly compare
the clustering predictions, while the lower row shows the relative difference between the
predictions for the varied and base parameter sets.
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for γn > 1. We would therefore expect γn ̸= 1 to become important in a fit to data when
the amplitude of the non-linear component of the velocity in the data is less than the
expectation from the ΛCDM+HOD simulations, and vbc > 0 to become important if the
data is consistent with a velocity bias for central galaxies, leading to an increased Finger-of-
God effect in the small scales of the quadrupole. While vbs also affects the damping of the
correlation function multipoles through the amount of non-linear velocity, it affects only
the velocity of satellite galaxies in the HOD model, and so has a stronger effect than the
other parameters on scales s < 1h−1Mpc, and a weaker affect above that. It is therefore
expected to be only weakly degenerate with the other parameters.

4.2.6 Testing the improved emulator

We validate our emulator by performing a MCMC fit to a subsample of the measurements of
the Planck 2015 boxes used for determining the emulator uncertainty. We randomly select
10 test HOD parameter sets and measure the redshift-space galaxy correlation function for
all 20 simulation boxes with line-of-sight along each of the three axes, giving a total of 60
measurements. We average the results of these 60 measurements for each HOD parameter
set and fit the data using our improved emulator. To estimate the covariance we use the
same data covariance matrix calculated in Sec. 3.3.4, scaled along the diagonal to match the
volume of the mock measurements without modifying the correlation structure. While the
true effective volume of our measurement will be between 20-60 simulation boxes, because
we use 20 independent boxes each measured along three independent lines-of-sight, we
conservatively choose a volume of 20 simulation boxes as our fiducial amount.

For all 10 parameter sets we recover the known value of γl and the expected value of
fσ8 to within the 68% credible interval. This is expected given our conservative choices for
the emulator uncertainty, which lead to slightly inflated credible intervals while ensuring
that our parameter inference is not biased. Likewise, the known cosmological and HOD
parameters are recovered for the majority of the parameter sets. The HOD parameters that
are least often recovered are logMcut, σlogM , and fmax, however none are degenerate with
our key cosmological parameters and there is no significant impact on the fσ8 constraints,
so there is no concern for our measurement of the eBOSS data.

We also investigate the scale dependence of the constraints from the 10 test HOD
parameter sets. For each parameter set we perform a fit to the full separation range of
the model, 0.1 − 60h−1Mpc, as well as four additional fits restricted to the separation
ranges 0.1 − 7h−1Mpc, 0.8 − 7h−1Mpc, 0.8 − 60h−1Mpc, and 7 − 60h−1Mpc, matching
the methodology used to test the data in Sec. 4.3.4. For each set of parameters we find
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Figure 4.4: Emulator predictions for varying parameters that affect the non-linear velocity
component. The black line shows the prediction for the same base parameter set used in
Fig. 4.3. Blue, orange, and green lines show the emulator prediction when varying γn, vbc,
and vbs respectively, with all other parameters kept fixed. The monopole is shown on the
left and the quadrupole on the right, with the upper row showing a direct comparison, and
the lower row showing the relative difference with the prediction for the base parameter
set.

163



all separation ranges give a mutually consistent value of fσ8 at the 1σ level, with approx-
imately half of the parameter sets showing a slight offset between the 0.1− 7h−1Mpc and
0.8− 7h−1Mpc results (which are in agreement for all parameter sets) and the remaining
separation ranges. The offset is equally likely to occur to larger and smaller values and is
within the measurement uncertainty, so it is not a concern for our cosmological inference.

Finally, we validate our entire pipeline using the same Uchuu SHAM mock used to test
the previous emulator in Sec. 3.4.4. As was the case then, using a different galaxy halo
connection model and simulation is a necessary test of the robustness of our model in order
to be able to confidently apply it to the eBOSS data. Fitting the correlation function of
the SHAM mock using our new emulator we are able to recover the known cosmological
parameters within the 68% credible interval for all parameters, and find all well constrained
HOD parameters to be within their respective prior ranges. We recover γl = 1.00 ± 0.08
and γn = 0.90 ± 0.14, both consistent with their expected values of 1 since the mock was
constructed with a ΛCDM growth rate and no velocity scaling. This test and the test
using the HOD parameter sets give us confidence that our updated emulator is functioning
correctly, and is ready to be applied to real data.

4.3 Measuring the eBOSS LRG RSD

4.3.1 eBOSS LRG sample

We fit our new emulator model to the same eBOSS LRG data (see Ch. 2) analyzed in Ch. 3.
Specifically, we use the same measurements of ξ0, ξ2, and wp (see Sec. 1.3.2) binned in nine
logarithmically spaced separation bins (see Sec. 3.3.1), and the same jackknife covariance
matrix (see Sec. 3.3.4). The only change we make to the data is applying the vmatch

weighting scheme detailed in [189] to the estimation of the jackknife covariance matrix,
which corrects the ratio of auto-pairs and cross-pairs removed by the jackknife sampling
for a low density of galaxies. Applying these weights we find a minor reduction in the
covariance of large separation bins, matching what was seen in [189], although there is no
significant change to the correlation between different separation bins.

The reasoning behind using a consistent data set is to be able to give a direct comparison
to the results of the original emulator used Ch. 3. In particular, using the same data set but
an updated model is useful for identifying systematic biases originating from the modelling,
such as the choice of simulations (see Sec. 4.4).
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4.3.2 Headline results

We fit our new velocity-split emulator to the small-scale eBOSS correlation functions using
a MCMC sampler from the Cobaya package [263]. We apply the same two priors detailed
in Sec. 3.3.6, namely a uniform prior over the training range for the HOD parameters, and
another uniform prior over the cosmological parameters that limits the parameter-space to
be within a threshold distance of the cosmologies of the simulations used for training. The
reason for these priors is to limit the parameter values to the range used in training the
emulator, as outside of this range the emulator predictions are expected to regress to the
mean of the untrained Gaussian distribution. We update the cosmological prior to match
the AbacusCosmos cosmologies, rather than the original Aemulus cosmologies.

Our analysis of the eBOSS sample with the new velocity-split emulator yields a value of
fσ8(z = 0.737) = 0.368±0.041, representing the posterior mean and 68% credible interval,
with a minimum χ2 = 16.6 at fσ8 = 0.334 from 27 data points and 15 free parameters.
This value is 2.3-σ below the expectation for a ΛCDM universe with the Planck 2018
cosmology, and an increase in tension from the 1.4-σ offset found in Ch. 3. The headline
results from Ch. 3 were fσ8(z = 0.737) = 0.408±0.038 when using a single velocity scaling
parameter and limiting the measurement scales to 7−60h−1Mpc, so this increase in tension
is caused by a shift to a lower value of fσ8 rather than an increase in precision, although
the two results are mutually consistent.

In Fig. 4.5 we compare the best fit models for various choices of scaling parameters to
the eBOSS data. All models are able to accurately fit the data on all scales, although our
baseline model of allowing both γl and γn to vary results in the lowest χ2 value. The largest
improvement in performance over the single scaling parameter model is in the intermediate
scales of the monopole and quadrupole. This is likely caused by improved flexibility in si-
multaneously fitting the smallest and largest measurement scales by decoupling the scaling
of the velocity terms, with the non-linear velocity dominating on the smallest scales and
the linear velocity dominating on the largest scales. It should be noted that while the fixed
γl = 1 model is restricted to match the linear velocity amplitude expected for a ΛCDM
universe from the AbacusCosmos simulations, it does not indicate agreement with the value
of fσ8 expected from the Planck 2018 observations because Ωm and σ8 are still allowed to
vary. That model results in values of σ8 = 0.792 ± 0.026 and fσ8 = 0.450 ± 0.015, with
χ2 = 19.8.

Our fit to the data only weakly constrains the amplitude of the non-linear velocity field,
giving a value of γn = 0.692± 0.29, where a value of γn = 1 indicates agreement between
the data and the expectation for a ΛCDM universe from the model. This constraint
is slightly limited by the lower edge of the prior at γn = 0.2, but does show a clear
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Figure 4.5: Best fit models compared to the eBOSS LRG measurement data for several
choices of scaling parameters. Our baseline fit, allowing both γl and γn to vary, is shown in
blue. A single velocity scaling parameter model, constrained so that γl = γn and equivalent
to the model used in Ch. 3, is shown in orange. The green line shows the result of allowing
γl to vary while fixing γn = 1, and the red line shows the result of allowing γn to vary
while fixing γl = 1. The left, centre, and right columns show the monopole, quadrupole,
and projected correlation function respectively. The top row of panels directly compares
the model to the data, while the lower row shows the difference between model and data
in units of the data uncertainty, with the grey-shaded region indicating the 1σ region.

166



preference for γn < 1. The poor constraint is likely due to the lower magnitude of the non-
linear velocity field compared to the linear velocity field (see Appendix C), as well as the
degeneracy between γn and vbc (Fig. 4.6). It may also indicate that our parameterization
of γn needs further refinement in order to fully describe the behaviour of the actual non-
linear velocity field. We have implemented γn as a uniform scaling for all components of the
velocity that do not match the initial linear velocity. It is possible that there are multiple
contributions to the non-linear velocity, requiring a more nuanced parameterization to
capture the deviations between the data and the best fit ΛCDM+HOD model. Non-linear
velocity scaling is also not necessarily uniform for all galaxies, and may be dependent on
characteristics such as galaxy mass and environment. Investigating these alternatives is a
possible avenue for future research. While this result is independent of our cosmological
constraint by construction, it does indicate that non-linear velocities in the data are lower
than those generated by combining our HOD model with a CDM-only simulation.

Fig. 4.6 shows the 2D and 1D marginalized constraints on all the free parameters of the
model described in Sec. 4.2 for our fiducial fit to the eBOSS LRG sample. The parameters
are well constrained within their training range and prior, with few exceptions. There
is a strong degeneracy between σlogM and fmax due to their effects on the occupation of
central galaxies, with the posterior occupying a narrow region of the two-dimensional space,
but each individual parameter is poorly constrained in one-dimension when the other is
marginalized over. logMcut has a peak above 13, but a long tail towards the lower end
of the prior range. This is because logMcut controls the exponential cutoff of the satellite
occupation function, and has no impact when it is significantly smaller than the cutoff
of the central occupation, parameterized by logMmin, because the satellite occupation
is modulated by the central occupation (see Sec. 1.5.3). For the eBOSS LRG sample,
logMmin ≈ 13.4, so logMcut < 13 is unconstrained. cvir is poorly constrained because it is
less impactful than other parameters, but does not show any significant degeneracies so is
not a concern for our constraints on cosmological parameters. Related to the discussion of
degeneracies, it is worth commenting on the derived parameter fσ8 = γlfΛCDMσ8. Because
fσ8 is evaluated from γl, Ωm, and σ8 at each chain step the constraint on fσ8 is correlated
with all three parameters. However, because Ωm and σ8 affect multiple elements of the
clustering, and γl is constructed to affect only the portion of the RSD effect caused by the
amplitude of the linear velocity component, the strongest correlation is with γl, as shown
by the fσ8-γl panel of Fig. 4.6. That panel shows a narrow diagonal ellipse, with the width
of the ellipse in the marginalized parameter constraint coming from variance in σ8 and Ωm

at fixed γl.
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Figure 4.6: 1D and 2D contours of the parameters used in our baseline fit of the eBOSS
LRG. The constraint on fσ8 is calculated as fσ8 = γlfΛCDMσ8, where for each chain point
σ8 and fΛCDM are calculated using the model parameters for that point (see Sec. 4.2.1).
The dashed lines highlight γl = 1 and γn = 1, which would indicate that no velocity scaling
is needed to match the data to the ΛCDM expectation of the emulator.
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γl Ωm σ8 fσ8 χ2

Headline results
0.795 0.297 0.815 0.368 17.0

2σ variations
0.619 0.297 0.815 0.286 20.2
0.630 0.253 0.815 0.286 32.3
0.681 0.297 0.740 0.286 21.3
0.690 0.276 0.736 0.286 25.0
0.970 0.297 0.815 0.449 19.1
0.951 0.361 0.815 0.449 44.2
0.884 0.297 0.894 0.449 20.4
0.869 0.329 0.899 0.449 24.6

3σ variations
0.531 0.297 0.815 0.246 25.2
1.058 0.297 0.815 0.489 22.8

Table 4.1: Best fit χ2 values for models with various fσ8 values, obtained by fixing the
values of γl, Ωm, and σ8. The first section uses the marginalized values from the full fit
to the eBOSS LRG sample described in Sec. 4.3.2. Later sections show the results for fits
where the values of γl, Ωm, and σ8 have been fixed to give a particular value of fσ8 that
deviates from the headline results by varying numbers of standard deviations. Parameter
values that are changed from the headline results are displayed in boldface.

4.3.3 Testing the credible intervals

The uncertainty assigned to the value of fσ8 derived from our analysis is just as important
as the value itself. For that reason we test our uncertainties, which are determined as
credible intervals from the posterior of the fit to the data, by investigating the quality of
fit we obtain when we restrict the model to a value of fσ8 at multiples of our uncertainty
away from the posterior mean value. For each value of fσ8 we fix the values of γl, σ8, and
Ωm, which collectively specify the value of fσ8, and perform a new fit to the eBOSS LRG
data allowing the remaining parameters of the model to be free. We then select the best
fit model from that MCMC fit, and report the χ2 between the emulator prediction and the
data. The details of the additional fits we perform are given in Table 4.1.

As a baseline for comparison we fix γl, σ8, and Ωm individually to their posterior mean
values when all other parameters are marginalized over (i.e., for the value of γl, σ8 and
Ωm are also marginalized over). This gives the same value of fσ8 reported in the headline
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results. We then vary that value of fσ8 higher and lower in increments of 2σ and 3σ, as
determined by the uncertainty reported in our headline results.

We are limited in how we can vary the parameters by the range used in training the
emulator, as outside of this range the emulator predictions are expected to regress to the
mean of the untrained Gaussian distribution. This restriction is more severe for Ωm and
σ8, where the range is determined by the cosmologies of the AbacusCosmos simulations
that correspond to the 4σ constraints [110] of the Planck 2013 release [209]. To investigate
variations in Ωm and σ8 we therefore find the minimum and maximum values of fσ8 that can
be obtained within the prior while varying Ωm and keeping σ8 fixed to the headline results,
fixing Ωm and varying σ8, and varying both. It is worth noting that while these values
represent the extremes of our prior range, they are all excluded at high confidence by other
cosmological probes such as CMB [213], weak lensing [3, 18], and BAO measurements [10].
In all cases these variations are insufficient to reach a 2σ change in fσ8, due to the relatively
tight parameter constraints of Planck, and because the uncertainty in our measured value
of fσ is dominated by the uncertainty on γl. We therefore vary γl as well in each case to
give the correct value of fσ8. Due to the limits imposed by the training prior we investigate
varying γl +Ωm, γl + σ8, and γl +Ωm + σ8 for the 2σ variations only, while we investigate
varying γl alone for both 2σ and 3σ variations.

The results of the fits to these models are reported in Table 4.1. As expected, the
minimum χ2 is obtained for the headline results. It is worth noting that the χ2 value
reported here is higher than in Sec. 4.3.2. That is because the value of fσ8 used here
and reported in the results is the posterior mean, while the maximum likelihood value
is at a slightly lower value of fσ8, which is within the 68% credible interval. Table 4.1
shows that variations in fσ8 by increasing multiples of the uncertainty lead to progressively
larger values of χ2. These χ2 differences correspond roughly to the expectation for the 95%
and 99.7% confidence intervals for a one parameter Gaussian distribution, ∆χ2

95% = 2.71
and ∆χ2

99.7% = 9.00 [265]. Varying only γl gives lower values of χ2 than varying γl + σ8,
γl + Ωm + σ8, or γl + Ωm, which increase in that order. This is reflective of the relative
uncertainties of each parameter in our fit to the data, with Ωm being the most strongly
constrained and γl being the weakest. It is also worth noting that for a given set of
parameters the χ2 is generally smaller for variations to higher values of fσ8 than it is for
lower values of fσ8. This difference matches the slight skewness in our constraint on fσ8,
visible in Fig. 4.6. However, because the 68% credible interval is symmetric around the
posterior mean to within the number of significant figures included in our result, we report
a single symmetric uncertainty on our final result.

In order to visualize the ability of the different parameter sets to fit the data, we plot
the best fit models from the 2σ variations to lower values of fσ8 in Fig. 4.7, and the 2σ
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Measurement Scales Ch. 3 This Chapter
0.1− 7h−1Mpc 0.334± 0.061 0.335± 0.105
0.8− 60h−1Mpc 0.373± 0.031 0.368± 0.041
7− 60h−1Mpc 0.408± 0.038 0.412± 0.048
0.1− 60h−1Mpc 0.365± 0.025 0.368± 0.041

Table 4.2: Comparison of fσ8 constraints from different scales between the velocity-split
emulator and a single velocity scaling parameter emulator. In each analysis the constraint
is calculated as fσ8 = γ(f,l)fΛCDMσ8 and marginalized over all other parameters, including
marginalizing over γn.

variations to higher values of fσ8 in Fig. 4.8. There are some common trends in both
plots. The largest deviation between the headline results model and the varied fσ8 models
occurs at the large scales of the quadrupole, matching the results of Fig. 4.5 and reflecting
the importance of that measurement to the fσ8 constraint. The deviation is smaller for
the high values of fσ8 than the small values, which is a major source of the lower χ2 for
high values of fσ8 than low values. Another common feature is that models that vary σ8

and Ωm provide a poorer fit to the projected correlation function on large scales. This
result is consistent with the behaviour of Fig. 4.3, which showed that σ8 and Ωm have a
significant impact on wp, unlike γl. Overall, the results of these plots and the χ2 values
shown in Table 4.1 give us confidence that the mean posterior value and 68% credible
interval reported in Sec. 4.3.2 are a reasonable representation of the constraint of the data
on fσ8.

4.3.4 Testing the dependence on the data fitted

A key motivating factor for constructing our new velocity-split model was the scale depen-
dence observed when using a single velocity scaling parameter in Ch. 3. In that analysis
we found that fitting to various measurement scales found lower values of fσ8 at smaller
scales, although all measurements were consistent with each other and below the expecta-
tion for a ΛCDM universe with Planck 2018 cosmology. Using our updated emulator we
find the smallest measurement scales to be in better agreement with the larger scales of
our analysis. A small offset still exists between the quasi-linear scales and transition scales,
as shown in Fig. 4.9. A comparison of the constraints on fσ8 using various measurement
scales between the new emulator and the result of the single velocity scaling parameter
emulator used in Ch. 3 is shown in Table 4.2.

This result follows our expectation for splitting the velocity parameters into γn and γl.
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Figure 4.7: Best fit models compared to the eBOSS LRG measurement data for several
choices of fixed fσ8. In each case γl, Ωm, and σ are fixed to give a specific value of fσ8, as
described in Table 4.1. The blue line shows the best fit model when fσ8 is fixed to match
our headline results, while the other coloured lines show the results when fσ8 is shifted
2σ lower. The different colours indicate the parameters that have been changed to give
the new value of fσ8. The left, centre, and right columns show the monopole, quadrupole,
and projected correlation function respectively. The top row of panels directly compares
the model to the data, while the lower row shows the difference between model and data
in units of the data uncertainty, with the grey-shaded region indicating the 1σ region.
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Figure 4.8: Same as Fig. 4.7, but when fσ8 is shifted 2σ higher.
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Figure 4.9: 2D and 1D marginalized constraints on γn and fσ8 for fits to different scales
and measurements. Left: Constraints from the three largest separation bins (orange), six
largest separation bins (green), six smallest separation bins (red), and all nine separation
bins (blue) for all three measurements. The dotted line shows the value of fσ8 expected
from the Planck 2018 results assuming a ΛCDM cosmological model. Right: Constraints
from the joint fit to the monopole and projected correlation function (orange), monopole
and quadrupole (green), and all three measurements (blue).
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γn is more important on the smallest scales, which are fit to the lowest velocity amplitude.
Introducing an additional degree of freedom for the non-linear velocities through γn reduces
the tension in γl, but leaves the constraints from the scales around the transition from non-
linear to quasi-linear (∼ 0.8 − 7h−1Mpc) and quasi-linear scales largely unaffected. Our
lower overall value of fσ8 from the new analysis is caused by the inclusion of these transition
scales, which also preferred a low value of fσ8 in Ch. 3, but could not be definitively
attributed to the linear signal until the introduction of our new model.

While including γn and γl has not fully removed the scale dependence of our mea-
surement, it has significantly improved the agreement of different measurement probes,
as shown in the right panel of Fig. 4.9. The results of fitting to the multipoles alone,
the monopole with projected correlation function, and all three measurements are in close
agreement. This result is a significant improvement over the result of Ch. 3, which found
some tension between the different measurements due to the degeneracy between the com-
bined velocity scaling parameter and vbc.

4.3.5 Comparison to previous emulator

In Fig. 4.10 we compare the constraints of key parameters between our new velocity-split
model and the single velocity scaling parameter model used in Ch. 3. To ensure an accurate
comparison between the two methods we produce a new fit using our current emulator by
setting γl = γn, which is equivalent to scaling all velocities by a single value. We find that
all parameters are consistent between the two methods, with the most significant differences
occurring in the velocity parameters γn, γl and vbc, as expected. The new method slightly
increases the uncertainty on γl, which follows through to the fσ8 constraint, since splitting
the velocity scaling parameters causes γl to have a smaller impact on the fit. This is
particularly true on small scales. γn and vbc show significant degeneracy since they both
contribute dispersive components to the galaxy velocity, and there are lesser degeneracies
between γl and γn, and γl and vbc.

4.4 Discussion and conclusions

Using an emulator-based model with individual scaling parameters for the linear velocity,
γl, and non-linear velocity, γn, we measure fσ8(z = 0.737) = 0.368± 0.041 from clustering
between 0.1− 60h−1Mpc. In Ch. 3 we measured the same sample using an emulator with
a single parameter scaling for the total velocity, but restricted our range of measurement
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Figure 4.10: Marginalized constraints of several key parameters from the eBOSS LRG data
using the independent velocity-split scaling parameters introduced in this chapter (blue)
compared to the results from a single scaling parameter (orange). Both fits were made
using the updated emulator described in Sec. 4.2. For the single scaling parameter fit we
constrain γn = γl to mimic the effect of a single scaling parameter.
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to 0.7 − 60h−1Mpc in order to isolate the linear signal, and found fσ8(z = 0.737) =
0.408± 0.038. The shift to lower values in the updated emulator is caused by the inclusion
of smaller scale clustering, and is very similar to the measurement from the same scales
using the older emulator.

The consistency of the fσ8 constraints between the two models gives confidence that
our cosmological constraint is robust to the form of the velocity scaling. The advantage
of the new model is that by isolating the linear signal we can now confidently extend our
fitted data to small scales, which gives an increased tension with the expectation from
Planck+ΛCDM. By splitting the velocity scaling parameter to isolate the linear signal
we can identify where the information for our constraint comes from, and be sure that
we are optimally extracting linear information from the small-scale RSD signal without
contamination from non-linear structure growth. This theory is borne out by the consis-
tency between the results of the two emulators given the difference in modelling choices,
which indicates that the non-linear velocities are not significantly affecting the linear mea-
surements. Therefore, the most significant advancement of the new emulator is removing
non-linear contamination as a potential source of systematic. In addition to the change
in parameters, the older emulator was trained on the Aemulus simulation suite while the
updated emulator was trained on the AbacusCosmos suite. The consistency between two
different simulation suites, generated using different codes, indicates the reliability of the
training data. Combined, these factors place severe limits on potential systematic biases
in the analysis that could produce the low value of fσ8 found from the data.

The results of both emulators, as well as other measurements of fσ8 from SDSS galaxy
samples, are shown in Fig. 4.11. Our result is still consistent with the large-scale analysis
of the same sample at the 1σ level, but is now in 2.3σ tension with the expectation for a
ΛCDM universe with a Planck 2018 cosmology. There also remains a consistent trend in
small-scale RSD measurements to lower values of fσ8. This trend is now remarkable when
considering the differences in modelling, data, and simulations between these analyses.
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Figure 4.11: fσ8 constraints from RSD measurements of SDSS samples. The blue points
show the results of more conventional large-scale analyses from the SDSS MGS [143], BOSS
galaxies [9], CMASS+eBOSS LRGs and eBOSS LRGs only [23], eBOSS ELGs [76], and
eBOSS quasars [196]. The results of this chapter are shown as the red solid triangle,
while the red empty triangle shows the results from Ch. 3 using only the separation range
7−60h−1Mpc. Other coloured points show the results from various small-scale analyses of
the BOSS galaxy samples that do not distinguish between linear and non-linear information
([166] in green, [277] in magenta, [275] in cyan, and [226] in yellow). The black line shows
the expected value of fσ8 for a flat ΛCDM universe with best fit Planck 2018 cosmology,
with the shaded regions showing the 1 and 2σ confidence regions. Measurements from the
same galaxy sample are shifted slightly in the x-axis to avoid overlap.
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Chapter 5

Conclusions

This chapter summarizes the results of this thesis and provides the main conclusions. The
majority of this chapter was written by me for this thesis, with some passages adapted from
the Abstracts, Discussions, and Conclusions of my two lead-author papers [57, 58]. In all
cases the original content was written by me with input from my co-authors, and has been
reformatted and rewritten by me for this thesis.

This thesis has explored a number of ways the Extended Baryon Oscillation Spectro-
scopic Survey (eBOSS) data has improved our understanding of the standard cosmological
model, with particular focus on optimizing the information gained from Redshift Space
Distortion (RSD) measurements and correcting systematic biases to give robust results.
In this chapter I will summarize the work presented in this thesis, and discuss the future
outlook of this research.

In Ch. 1 I introduced the standard model of cosmology, the observations used to identify
and constrain that model, and the tensions between measurements that give evidence
for extensions to the model. I presented the growth of structure, its effect on galaxy
spectroscopic surveys through RSD, and the measurements and models that are used to
analyze the effect. These tools are instrumental to the analyses presented in later chapters,
which in turn produce significant insights into the nature of the cosmological model and
our Universe.

Ch. 2 presented the Extended Baryon Oscillation Spectroscopic Survey from the ini-
tial survey design to the final cosmological measurements. An important aspect of this
process is identifying and removing observational biases from the sample. I described our
process for generating Pairwise-Inverse-Probability (PIP) weights and applying them in
tandem with Angular Upweighting (ANG) to remove the bias caused by fibre collisions
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in the large-scale structure catalogues. We test these weights using a sample of 1000
EZmocks, and are able to recover unbiased clustering on all scales for all of the eBOSS
samples. I also described an observational systematic in the Emission Line Galaxy (ELG)
sample caused by variable depth in the photometric catalogues used for targeting, and
presented my method for correcting this systematic without removing any data by using
a weight-based correction. This weight-based correction gives important insight into the
effects of this systematic on the ELG sample, which informed the final approach of nulling
the angular modes applied in the cosmological analysis of the sample. After addressing
the observational systematics I presented the final cosmological analyses of the LRG, ELG,
quasar, and Lyα forest samples. These samples provide stringent constraints on the expan-
sion history of the Universe by measuring DM(z)/rd and DH(z)/rd using the BAO scale,
and the growth history of the Universe by measuring fσ8 from RSD. The three clustering
samples collectively span the redshift range 0.6 < z < 2.2, with the Lyα forest measure-
ments providing additional higher redshift information from z > 2.1 quasars, opening a
new redshift regime for galaxy spectroscopic surveys. When combined with other SDSS
samples these constraints become even stronger, and severely limit extensions to the ΛCDM
model. Combined with CMB and supernovae observations, the BAO measurements yield
Ωk = −0.0001±0.0018 (for oΛCDM) and w = −1.026±0.033 (for wCDM), both consistent
with a flat ΛCDM model at high precision [11].

In Ch. 3 I shifted from the large-scale analysis of eBOSS to the small scales, present-
ing our analysis measuring small-scale RSD within clustering of the eBOSS LRG sample
[57]. We use the PIP+ANG correction to remove the effects of fibre collisions and obtain
unbiased clustering measurements on all scales. We fit to the monopole and quadrupole
moments of the 3D correlation function and to the projected correlation function over the
separation range 7− 60h−1Mpc with a model based on the aemulus cosmological emula-
tor to measure fσ8. We measure fσ8(z = 0.737) = 0.408± 0.038, which is 1.4σ lower than
the value expected from 2018 Planck data for a flat ΛCDM model, with a factor of 1.7
improvement in precision of the large-scale analysis using more conventional techniques
of the same sample. We also fit to the data using the full range of scales modelled by
the aemulus emulator, 0.1− 60h−1Mpc, and find a 4.5σ tension in the amplitude of the
halo velocity field with the Planck+ΛCDM model, driven by a mismatch on the non-linear
scales.

In Ch. 4 I introduced our new model to isolate the linear signal when making small-
scale RSD measurements [58]. Isolating the linear signal enables us to avoid bias from
misinterpreting the effect of linear growth on non-linear scales while still accessing the full
range of the emulator. We construct a new emulator with scaling parameters for both the
linear and non-linear velocities of galaxies, allowing us to isolate the linear growth rate.
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We train the emulator using simulations from the AbacusCosmos suite, determining the
linear velocity of the dark matter halos from the evolved and smoothed velocity field of
the initial conditions. We apply the new emulator to the same eBOSS LRG data, and
obtain a value of fσ8(z = 0.737) = 0.368 ± 0.041, yielding an increased 2.3-σ tension
with the Planck 2018 ΛCDM expectation. We also find less dependence on the minimum
measurement scale than the analysis presented in Ch. 3, indicating that our model works
as intended and that misinterpreting non-linear velocities is not the cause of the low value
of fσ8 obtained from these measurements.

Our small- and large-scale eBOSS analyses also give valuable insight into current ten-
sions between observations within the ΛCDM framework. The combined SDSS BAO mea-
surements are consistent on their own with the values of H0 determined using both early-
Universe observations, such as the CMB, and late-Universe observations, such as the local
distance ladder, due to the freedom of rd within the constraints on DM(z)/rd and DH(z)/rd.
However, when rd is calibrated independently using Big Bang Nucleosynthesis (BBN) ob-
servations, the SDSS measurements are in close agreement with the CMB, and in significant
tension with the late Universe measurements. This result gives strong evidence against a
simple systematic bias being the root of the tension, and severely limits the available space
of models to resolve it. In a similar way, our small-scale measurements of fσ8 can be com-
pared to the early and late time measurements of S8, which are also in tension. Our results
are consistent with both sets of measurements when considering only the constraints on
Ωm and σ8 and excluding the effects of the velocity scaling parameter. However, if the
low value we obtain for the velocity scaling parameter is instead caused by a low value
of σ8, we find increased tension with the Planck CMB expectations. This result provides
motivation for extending this type of analysis to upcoming surveys with greater precision,
in order to provide the same kind of independent constraint on the S8 tension that the
BAO+BBN does for the H0 tension. In extending this analysis it is important to note
that our emulators’ ability to make predictions for low values of S8 is limited by the range
of values represented in the simulations, and implemented as the training prior. Future
emulators must have simulations that extend this range to be able to make predictions for
the full range of values represented by late time S8 measurements.

Our two small-scale analyses begin to give evidence for a third cosmological tension
in the value of fσ8 measured by RSD within galaxy clustering and the expectation for a
ΛCDM universe with Planck 2018 cosmological parameters. Our results, as well as all other
small-scale RSD measurements, find consistently low values of fσ8 when compared to the
Planck+ΛCDM expectation. This tension is particularly concerning given the differences
in modelling, data, and simulations used by each analysis, shown in Table 5.1. These
differences in methodology and the consistency in the results leave limited options to
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Analysis Data Simulations Model P18+ΛCDM
Chapter 3 [57] eBOSS LRG Aemulus γf -1.4σ
Chapter 4 [58] eBOSS LRG AbacusCosmos γl, γn -2.3σ
Lange 2022 [166] BOSS LOWZ Aemulus CEM +0.04σ, -1.8σ
Yuan 2022 [275] BOSS CMASS AbacusSummit C-HOD -1.8σ
Zhai 2023 [277] LOWZ+CMASS Aemulus γf -1.9σ, -0.3σ, -3.4σ

Table 5.1: Data, simulations, and models used by a variety of small-scale RSD analyses,
and the difference between their fσ8(zeff) constraints and the Planck 2018 expectation for a
flat ΛCDM universe. The models used in Ch. 3, Ch. 4, and Zhai et al. 2023 are all emulator
models based on [278], and listed by the velocity scaling parameters they use. Lange et al.
2022 is the only analysis that does not use an emulator for modelling, instead using the
Cosmological Evidence Modelling (CEM) method [167] to infer the likelihood directly from
the simulations. Yuan et al. 2022 introduced a new emulator-based model that used the
abacushod [276] code to more efficiently sample the HOD parameter space. Differences
from Planck 2018+ΛCDM expectations are given in units of the combined uncertainty
between the fσ8(zeff) constraint of the relevant analysis and the Planck prediction, added
in quadrature. Negative values indicate the small-scale RSD analysis measured a lower
value of fσ8(zeff) than the Planck expectation. Multiple values indicate the offset in each
redshift range for analyses that subdivide their sample.

explain the tension with the ΛCDM expectation without modifying the cosmological model.
However, there are several common tools shared by all these analyses. All have models
based on CDM-only simulations, with a HOD model to connect galaxies to halos, and all are
used to analyse data composed mainly of LRGs observed using the BOSS spectrographs.
A non-cosmological solution could take the form of an overlooked systematic related to one
of these three shared tools that is able to affect all analyses. However, it should be stated
that each analysis has attempted to test these factors, and none have given evidence of an
unknown systematic.

The primary systematic concern for the simulations used to construct the models is
that the amplitude of the velocity field is overestimated compared to the actual Universe,
requiring a lower value of fσ8 (γ < 1 for our scaling parameters) to match the observed
data. If this overestimation is scale dependent it would also explain why the small-scale
RSD measurements give slightly lower values than large-scale analyses of the same samples,
and why some measurements (such as Ch. 3, Ch. 4, and [166]) find lower values of fσ8 when
using a lower minimum scale cut. The most likely reason for this discrepancy is suppression
of growth by feedback mechanisms from baryon physics, which is expected to suppress the
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amount of non-linear growth and possibly reduce the amplitude of the velocity field in a
scale-dependent way, although the effects on the velocity field over the scales measured here
have not been well-studied in recent analyses of hydrodynamical simulations [86, 183, 253].
Suppression of the matter power spectrum on non-linear scales due to baryon feedback
has been suggested as a possible resolution to the S8 tension [15, 220], although this
would require suppression that is stronger than expected from hydrodynamical simulations.
Nevertheless, it is interesting to investigate if a similar suppression could explain the smaller
than expected amplitude of the velocity field, particularly on non-linear scales, found in
Ch. 3 and 4. An important avenue for future research is therefore to test small-scale
clustering emulators against simulations including baryonic physics.

Alternatively, systematically low measurements of fσ8 could be caused by a breakdown
in the HOD models used to connect galaxies to halos. If the distribution of galaxies within
halos in the model differs significantly from the true distribution of the data, or if the
velocities assigned to galaxies in the model differ significantly from what is found in the
data, it could cause a systematic shift in the measured values of fσ8. HOD models are
empirically motivated and based on a relationship between halos and galaxies that is un-
doubtedly simpler than what is found in the real Universe [123, 122], raising the possibility
of such a discrepancy. However, it should be noted that the analyses listed in Table 5.1
perform numerous tests and extensions to their HOD models, including introducing assem-
bly bias parameters, without significantly changing their results. One of the strengths of
the HOD method is that the number of free parameters theoretically allows a particular
model to match a wide range of possible galaxy-halo connections, reducing the possibility
of a deviation significant enough to bias the cosmological inference. While this freedom
gives confidence for continuing to use HOD models in small-scale RSD analyses, continuing
to test the HOD models and investigating additional parameters should remain a focus for
future analyses.

If the low measurements of fσ8 are found to be statistically significant and not caused by
deficiencies in the modelling or data analysis, either for the small-scale RSD measurements
or the Planck measurements that they are compared to, it indicates a deviation from the
ΛCDM model and new physics in our understanding of the Universe. The most natural
explanation would be a deviation from General Relativity (GR), of which there exist many
possible Modified Gravity (MG) models (see Sec. 1.1.3). These models are expected to
produce modifications to the growth history of the Universe that should be strongly tested
by RSD measurements. Some of these models also allow for scale-dependent growth, which
could explain the slight shift to lower values of fσ8 seen between conventional large-scale
RSD measurements and the small-scale measurements listed in Table 5.1, as well as the
dependence of fσ8 constraints on the minimum measurement scale seen in Ch. 3 and 4
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(and others, e.g. [166]).

A MG model or other extension to ΛCDM+GR could also be used to resolve the
S8 tension (see Sec. 1.2.5) through a modification to late-time structure growth [98]. This
tension is most clearly seen in the shear-shear measurements of weak lensing, which like the
small-scale RSD measurements make use of significant small-scale, non-linear information
(see e.g. [181, 150]). Similar to the RSD measurements of fσ8, these S8 measurements
from weak lensing are not in significant tension with the Planck+ΛCDM expectations, but
provide another avenue for exploring and constraining possible extensions. Such extensions
are also restricted by complementary observations, such as the expansion history. While
the value of H0 measured by BAO+CMB or BAO+BBN and the value measured be the
local distance ladder are in tension, each measurement is individually very consistent with
a ΛCDM universe. Because of the large redshift range covered by BAO measurements,
thanks in large part to eBOSS, this places strong constraints on deviations to the expansion
history in the late Universe.

Current observations are still far from a statistically significant detection of the sig-
nature of a MG model, or even favouring one over ΛCDM. An important consideration
is that all of the small-scale RSD measurements listed in Table 5.1 implicitly assume a
ΛCDM+GR universe because they are constructed from simulations run using that frame-
work. In order to obtain accurate measurements of fσ8 or an equivalent set of parameters
for a particular MG model, a new set of simulations would need to be run using that
gravity framework. Due to the large space of allowed models and lack of a significant de-
tection, it is still a reasonable approach to limit modelling complexity by measuring RSD
using models constructed within a ΛCDM+GR framework, and if a significant deviation
from the expected value of fσ8 is detected then the most promising set of models could
be investigated further. Alternatively, work has begun to construct an emulator from MG
simulations directly, which could be applied to future data sets [17, 129, 235].

While our velocity-split emulator model provides precise results and shows promise in
isolating the linear signal, there remain a number of possible areas of improvement. The
smoothing of the linear velocity field, while empirically motivated and tested, could be
directly connected to a physical phenomenon [139]. The optimal smoothing scale is likely
related to some physical characteristic of the density field, such as the radius for shell
crossing. The non-linear velocity parameter is poorly constrained in our analysis, and
several significant degeneracies are found between parameters in the fit. Refining these
parameters could lead to more informative and precise results. Finally, while the model
successfully separates linear growth and random motions, quasi-linear growth along the
direction of the linear velocity remains a point of degeneracy between γl and γn, and a
potential bias in the model, that should be addressed using a more sophisticated velocity
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split method.

Beyond the velocity scaling parameters, future emulators would do well to carefully
consider the choice of HOD parameterization or other galaxy-halo connection model. Our
first analysis of small-scale RSD from eBOSS in Ch. 3 highlights how incompleteness due to
target selection can be degenerate with measurements of fσ8 when not properly included
in the model, motivating us to rebuild our emulator to include fmax. Other small-scale
analyses have included parameters to account for the influence of halo parameters other
than the mass on galaxy occupation, referred to as halo assembly bias [166, 277]. While not
necessary for the current generation of surveys [277], halo assembly bias may be impactful
for future, more precise clustering measurements or samples other than LRGs, and should
be included in future models. Extending this analysis to a non-LRG sample would also
require careful consideration of the expected functional form of the HOD for that sample.
For example, ELGs occupy less massive halos than LRGs, requiring an alternative to the
simple transition from low to high occupation of centrals commonly used for LRG samples
(see Eq. 1.48). Finding the most accurate parameterization remains an active area of
research [20, 124, 230].

Another important finding of Ch. 3 is that the effects of redshift uncertainty can lead to
larger inferred values of fσ8 in small-scale analyses. Because this uncertainty scales with
increasing target redshift this is particularly concerning for upcoming surveys. Correctly
modelling redshift uncertainty would require a detailed model that takes into account any
correlation between the increasing redshift uncertainty and the effects of using an apparent
magnitude-based target selection over a wide redshift range. It should be noted that a
model like our velocity-split emulator is insensitive to redshift uncertainty by construction,
due to the distinction between the coherent linear velocities and the randomly directed
non-linear velocities.

As well as refining the modelling choices, an emulator constructed for the next gen-
eration of galaxy surveys will require improved simulations. In our eBOSS analyses the
intrinsic uncertainty of the emulators constructed using the Aemulus and AbacusCosmos
suites is comparable to the data uncertainty on many scales (see Fig. 3.5). To improve
the emulator uncertainty to match the expected improvements in future galaxy surveys
we require a simulation suite that simulates larger volumes and more densely samples the
cosmological parameter space. The suites used in this thesis each consist of 40 simulations,
with side length ∼ 1000h−1Mpc and (∼ 1400)3 particles. An ideal candidate is Abacus-
Summit [180], the successor to AbacusCosmos, which consists of simulations spanning 80
different sets of cosmological parameters, with side length 2000h−1Mpc and (6912)3 parti-
cles. AbacusSummit provides both a significant improvement in the number of cosmologies
sampled and the simulation volume, as well as improved mass resolution that would allow
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extending this method to galaxy samples occupying less massive halos, such as ELGs.

Extending small-scale RSD analyses to the next generation of spectroscopic galaxy
surveys will be an important area of future research. This next generation is being led by
the Dark Energy Spectroscopic Instrument (DESI) [79, 80] and Euclid space mission [168].
DESI is mounted on the 4m Mayall Telescope at Kitt Peak National Observatory in New
Mexico, USA, and began its main survey May 14th of 2021. The DESI focal plane contains
5020 robotic fibre positioners connected to a set of 10 identical spectrographs [78], which
allows DESI to significantly improve the rate of redshift acquisition compared to BOSS
and eBOSS, which each used a set of 1000 hand-plugged fibres. Over the course of its
planned five year survey DESI is expected to cover 14 000 deg2 and observe 40 million
galaxies and quasars. The main clustering samples of DESI are the Bright Galaxy Survey
(BGS), consisting of >10 million galaxies at z < 0.6 and divided into a r < 19.5 magnitude
limited sample, a fainter colour-selected sample, and low redshift quasars [125]; the DESI
LRG sample, consisting of ∼8 million LRGs in the redshift range 0.4 < z < 1.0 [283]; the
DESI ELG sample, consisting of ∼13 million ELGs in the redshift range 0.6 < z < 1.6
[222]; and the DESI quasar samples, consisting of ∼3 million quasars divided between a
clustering sample in the range 0.9 < z < 2.1 and a Lyα forest sample at z > 2.1 [59]. These
samples are projected to provide precise expansion and growth history constraints across
the redshift range by dividing these samples into 13 redshift bins of width δz = 0.1, with
the first seven bins each providing < 1%, < 2%, and ∼ 1% precision constraints on the
transverse BAO scale, radial BAO scale, and fσ8 respectively [79]. While the latter six bins
will have increasing uncertainty, they will still provide the most precise measurements in
that redshift range to date. Constraining MG models with DESI has also been investigated
using simulations, with the results indicating that DESI will provide considerably improved
constraints on many classes of models, particularly from small-scale RSD measurements
[8].

Euclid is a 1.2m space-based telescope located at the Earth-Sun Lagrange point 2
(on route at the time of writing), launched July 1st of 2023. Post-launch, Euclid will
undergo 3 months commissioning and performance verification before beginning a six year
survey. The Euclid wide survey will cover 15 000 deg2, consisting of both spectroscopic
observations for 3D galaxy clustering measurements and photometric observations for weak
lensing measurements [96]. The spectroscopic component of the wide survey will use two
"red" grisms (1250-1850 nm) to perform slitless spectroscopy in the Y , I, and H bands,
complete to an apparent magnitude limit of 24.0 in each band. The survey is expected to
measure the redshifts of up to 30 million galaxies [218] at a maximum redshift of z ≈ 2,
and is optimized for observing Hα emitters in the redshift range 0.9 < z < 1.8 [96].
Combining the spectroscopic galaxy clustering measurements with the weak lensing and
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photometric galaxy clustering from the Euclid wide survey is expected to yield sub-percent
level constraints on Ωm,0, σ8, H0, and ns for a flat ΛCDM universe [95]. Data releases are
planned approximately two years (covering 2 500 deg2), four years (covering 7 500 deg2),
and seven years (full 15 000 deg2) after the start of the survey. Between the forthcoming
data and measurements from both DESI and Euclid, this is a very exciting and crucial
time for spectroscopic galaxy surveys.

Our work with eBOSS provides a road-map for these surveys. We explored extending
observations to the highest redshift range for spectroscopic galaxy clustering to date, and
pioneered the use of ELGs and quasars for clustering measurements, paving the way for
their inclusion in DESI. In particular, the work performed in eBOSS to correct observa-
tional systematics should serve as an important lesson when working with upcoming data.
PIP+ANG weights remain the only fully unbiased method for removing the effects of fibre
collisions, and our work in eBOSS highlights the importance of using a random target se-
lection algorithm that can be easily rerun and instrument pointings that are uncorrelated
with the underlying mass density in order to avoid an unrecoverable loss of information.
This information is directly applicable, as PIP+ANG weights have been investigated for
correcting fibre collisions in DESI [34, 249]. The ELG targeting systematic also provides
a cautionary tale for using a consistent calibration scheme across the survey. Our results
have already had an impact, as the DESI collaboration updated the photometric catalogue
they used for target selection to a version of DECaLS that removes the poor exposures
that caused issues for the eBOSS ELG sample [222].

Extending small-scale RSD analyses to the next generation of surveys will provide a
key test of non-cosmological sources of discrepancy in the fσ8 measurements. Performing
a similar analysis as presented in Ch. 4 with DESI would eliminate many possible sources
of observational bias in the data because DESI uses a different target selection and sig-
nificantly improved instrument. Measuring the DESI ELG sample would be particularly
interesting since ELGs are expected to have a different HOD from LRGs, allowing an inde-
pendent test of the HOD model. Investigating these factors with next generation surveys
could also provide insight into the low value of γf we obtain using the full emulator range
in Ch. 3 and the low value of γn we obtain in Ch. 4, which indicate a discrepancy between
the model and the data in both the linear and non-linear velocity fields.

Performing small-scale RSD analyses with the next generation of spectroscopic galaxy
surveys will be essential for extracting optimal cosmological constraints. Small-scale analy-
ses have consistently found a factor of ∼ 2 improvement in precision over more conventional
large-scale measurements, so will be key to identifying or rejecting a tension in the growth
rate of cosmic structure. If current offsets from Planck+ΛCDM expectations are main-
tained, then the next generation of surveys will provide the first significant detection of a
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tension in fσ8 measurements, opening a new avenue for expanding our knowledge of the
Universe.
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Appendix A

Generating PIP weights using catalogue
rotation

Pairwise-Inverse-Probability (PIP) weights can be used to correct a set of pair counts to
match a baseline state, where the weight for a given pair is the inverse of the selection
probability of that pair relative to that baseline state. In the case of an observed sample
affected by fibre collisions where there is a non-zero probability of each possible pair in
the parent catalogue being selected for the observed sample, applying PIP weights to the
observed sample using the parent catalogue selection probabilities will cause it to match
the original parent catalogue, removing the effect of fibre collisions entirely.

This ideal scenario is difficult to achieve for eBOSS because the majority of the footprint
is only covered by a single spectroscopic plate. In these regions it is not possible to observe
both members of a collided pair, so those collided pairs have zero probability of being
selected. It is still possible to apply PIP weights, but they will only correct the pair counts
to a baseline where these single-pass collided pairs are missed. While it is possible to
account for these missing pairs using angular upweighting, which is the final solution used
in eBOSS and presented in Sec. 2.5.3, our first solution was to construct a baseline where
each pair in the parent catalogue has some probability of being in a multi-pass region, and
so has a non-zero selection probability.

Building such a picture is non-trivial, because the eBOSS instrument pointings are fixed
and irregular due to shifts made to maximize the number of observed spectra. Rather than
modifying the tile placement algorithm in a way that would make it deviate from the actual
observations, equivalent again to choosing a different baseline, I investigate generating PIP
weights by applying random rotations to the target catalogue, thus giving a non-zero
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probability that any given pair could be found in a multi-pass region and have a non-zero
probability of observation.

The field of view of each plate in the eBOSS survey is 3’ in diameter, and plates
are arranged so that all plates overlap with at least one neighbour (see Sec. 2.2.3 for
details), meaning that the angular distance between any target and the nearest multi-
pass region is θ < 3′. I therefore construct my rotation scheme to choose a random
rotation angle uniformly between −3′ ≤ θrot < 3′. To determine the angle of the rotation
I first determine a unit vector to the centre of the catalogue being rotated, vcen, using
θcen = (θmax + θmin)/2 for both the Right Ascension (RA) and Declination (Dec) limits of
the catalogue. I then define a vector on the unit sphere perpendicular to vcen. By rotating
that vector by a random angle between 0−2π, I obtain a random axis of rotation, vrot, that
is perpendicular to the centre of the catalogue. It is worth noting that it is not strictly
necessary to use a vector perpendicular to the catalogue footprint as the rotation axis,
since even small rotations can still be valid realizations of the selection ensemble. I choose
to use a perpendicular rotation axis to ensure that each rotation is impactful, reducing the
number of targeting runs required to generate signal-dominated weights.

After determining the rotation axis and angle I perform the rotation by converting the
RA and Dec positions of the target catalogues to Cartesian coordinates on the unit sphere:

x = cos(RA) cos(Dec) ,

y = sin(RA) cos(Dec) ,

z = sin(Dec) ,

(A.1)

and rotating them by applying Rodrigues’ rotation formula:

v′
i = vi cos(θrot) + (vrot × vi) sin(θrot) + vrot(vrot · vi)(1− cos(θrot)), (A.2)

where vi is the vector to the i-th object in the target catalogue, and v′
i is the rotated

vector to that object. I then convert the rotated vector back to equatorial coordinates
from Cartesian coordinates using:

R =
√

x2 + y2 + z2 ,

RA = arctan
(y
x

)
,

Dec = arcsin
( z

R

)
.

(A.3)

An example rotation is shown in Fig. A.1.

224



Figure A.1: Sample rotation for 1000 objects randomly selected from the eboss21 ELG
chunk. Blue points show the initial positions of the objects, and orange points show their
rotated positions.

It it is important to note that objects on the edge of the survey footprint will be
frequently rotated outside of the survey footprint, and thus be ineligible to receive a fibre.
So that these realizations do not unrealistically lower the observation probability for objects
close to masked regions, when using this method I modify Eq. 2.6 to be:

wmn =
popcnt

[
p
(b)
m &p

(b)
n

]

popcnt
[
w

(b)
m &w

(b)
n

] , (A.4)

where p
(b)
m and p

(b)
n are bitwise records of when targets m and n were within the survey

footprint and possible to observe. Like w
(b)
m and w

(b)
n they are binary arrays of length

Nruns, where each bit (either one or zero) represents the possibility of assigning a fibre to
that target (either this target is possible to observe, or not possible to observe in run b).
popcnt

[
p
(b)
m &p

(b)
n

]
then calculates the number of runs where it is possible to observe both

objects.

I generate a separate set of PIP weights for the 100 EZmock catalogues with realistic
fibre collisions described in Sec. 2.5.4 by following the method outlined in Sec. 2.5.3, but
applying a random rotation to the target catalogues before all but one of the target selection
runs. For the remaining run I do not apply any rotation and use the actual random
seed of the eBOSS targeting runs, ensuring that the realization used to select the actual
eBOSS targets is part of the ensemble. Using this method I am able to generate non-zero
observation probabilities for all pairs.

However, when comparing the PIP corrected clustering to the parent catalogue for
the EZmocks I found a deviation from the expected clustering. Upon investigation, I
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determined that targets around the edge of the survey have an excess probability of being
observed compared to the completeness of the actual survey. The reason for this difference
is that when a plate is only partially covered by targets the fibre assignment algorithm
will assign all fibres to the covered area, increasing the completeness compared to a plate
that has the same density of targets but is fully covered. While this situation occurs to a
small degree for many edge plates in the actual eBOSS survey, it is much more common
in my rotation scheme that frequently shifts targets beyond the edge of the footprint,
leading to plates that have very low coverage by targets, and thus very high completeness.
As discussed at the start of this section, this discrepancy does not mean that the PIP
weights are invalid, but the baseline they have corrected the pair counts to is not the
same baseline as the parent catalogue of the targeting sample, meaning the rotation PIP-
weighted catalogue is not appropriate for the cosmological analysis, despite having fibre
collisions removed.

This difference in baselines prevents us from using rotation to correct for the zero-
probability pairs in single-pass regions. However, as was discussed in Sec. 2.5.3 and shown
in Sec. 2.5.4, we are instead able to account for the missing collided pairs using angular
upweighting. We generate PIP weights using the probability from the eBOSS target selec-
tion algorithm without rotation, which corrects the sample so that single-pass region pairs
above the fibre-collision scale and multi-pass region pairs on all scales match the baseline
of the target catalogue. Angular upweighting increases the weight of the multi-pass pairs
below the fibre collision scale to account for the missing pairs in single pass regions, so un-
der the assumption that the collided pairs in the multi-pass regions and single-pass regions
are statistically similar, our method is able to match the baseline of the target catalogue.
As a result, applying our PIP+ANG weights produces a catalogue with the effect of fibre
collisions completely removed while matching the baseline of the parent catalogue.
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Appendix B

Correcting redshift differences between
an emulator and data

The original aemulus emulator adapted for the small-scale RSD analysis of the eBOSS
LRG sample in Ch. 3 was first designed to match a BOSS CMASS-like sample at z = 0.57
and space density n = 4.2 × 10−4[h−1Mpc]−3. These choices were built into the training
of the emulator, which used the z = 0.57 redshift slices of the aemulus simulations, and
fixed Mmin across the training HOD parameter sets to give a constant number density
of n = 4.2 × 10−4[h−1Mpc]−3. However, our eBOSS sample is at an effective redshift of
z = 0.737 and peak number density of n = 9 × 10−5. Ultimately, this difference required
us to retrain the emulator using the z = 0.7 redshift slices and updated values of Mmin

to give the correct value of n (see Sec. 3.3.2). However, before making that choice we
investigated if it was possible to analyze a galaxy sample using an emulator trained at a
different redshift by altering the cosmological parameters given to the emulator.

The differences between the original aemulus emulator and the eBOSS LRG sample
present two major concerns. The first is the difference in redshift, which means that
the data and model have experienced different amounts of linear growth, changing the
amplitude of perturbations at all scales by the ratio of the growth factor, D(z), between
the two redshifts, and different amounts of non-linear growth that will primarily affect the
small-scale clustering. However, we can allow for this difference in redshift by adjusting
the parameters provided to the emulator away from those in the model being tested and
shifting the resulting correlation functions to correct for the adjustment.

First, we note that a slice of the Universe when observed at zdata = 0.737 would appear
to be at a redshift of zemul = 0.57 for an observer located at zobs = 1.737/1.57 − 1 due to
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the ratio of the scale factors:

adata
aobs

=
aemul

a0
1 + zobs
1 + zdata

=
1

1 + zemul

zobs =
1.737

1.57
− 1 .

(B.1)

Therefore, we can input to the emulator the parameters of the Universe at zobs, denoted
by the subscript "emul", to match the evolution of the two cosmologies at different redshifts.
Specifically, this requires setting the input matter density to be Ωm,emul = Ωm(zobs) and
the physical matter density to be

Ωm,emulh
2
emul =

(
1.737

1.57

)3

Ωmh
2 , (B.2)

while keeping the baryon fraction constant,

Ωb,emul = Ωm,emul

(
Ωm

Ωb

)
, (B.3)

and CMB temperature constant,

TCMB,emul = (1 + zobs)TCMB,emul . (B.4)

The output from the emulator would now be appropriate for analyzing a data sample
at z = 0.737 - with exactly the same cosmological evolution expected for the emulator
training simulations run to z = 0.57 as in the model being tested to z = 0.737 (e.g. the
age of the Universe at z = 0.57 for the cosmological model given to the emulator matches
the age at z = 0.737 in the model being compared to the data).

Note that in making this adjustment the length scales need to be shifted to match the
definition of comoving units for the data cosmology,

r′emul = remul ×
H0

H(zobs)
× 1 + zdata

1 + zemul

, (B.5)

k′
emul = kemul ×

H(zobs)

H0

× 1 + zemul

1 + zdata
, (B.6)
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P ′(k′
emul) = P (k′

emul)×
(
kemul

k′
emul

)3

. (B.7)

Although the correlation function is dimensionless and hence we do not need to change
the normalisation due to the change in scale, we do need to be careful with the value of
σ8(z = 0) given to the emulator as an input parameter. There are two factors to consider:
the effect of the change in scale on the normalisation scale of 8h−1Mpc, and the different
evolution to z = 0 where σ8(z = 0) is normalised. The emulator cosmology therefore
requires the normalization value,

σ8,emul = σR(z = 0)× D(z = 0.737)

D(z = 0)
× Demul(z = 0)

Demul(z = 0.57)
. (B.8)

Note that many codes calculate the linear growth factor g = D/a, so extra scale factors
are required to use these calculations. The first ratio corrects from z = 0 to z = 0.737
in the Planck cosmology, and the second ratio corrects from z = 0.57 to z = 0, where
the normalisation is defined in the emulator cosmology. Because of the shift in scales, we
also have to shift the scale at which the linear power spectrum is normalised, assuming
R = 8 × H0/H(zobs) × 1.737/1.57. Using this conversion, the emulator results would be
correlation functions of the expected amplitude for the true cosmology being tested at
z = 0.737.

We can simplify this equation by noting that the Planck and aemulus cosmologies are
identical up to zobs, so we have that

DAem(z = 0)

DAem(z = 0.57)
=

D(z = zobs)

D(z = 0.737)
. (B.9)

Substituting this into Eq. B.8 gives that

σ8,Aem = σR(z = 0)× D(zobs)

D(z = 0)
. (B.10)

Using this conversion, aemulus results will be correlation functions of the expected am-
plitude for the true cosmology being tested at z = 0.737.

A comparison of the comoving linear power spectrum for the data and emulator cos-
mologies is shown in Fig. B.1, with corresponding cosmological parameters and ages given
in Table B.1. To make the differences between lines more apparent for this example we use
zdata = 1.0 and zemul = 0.5. The adjusted cosmology matches the data cosmology power
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Figure B.1: Demonstration of adjusting the cosmological parameters to match the emulator
comoving linear matter power spectrum and age to the data. The blue line shows the power
spectrum for the data cosmology at the redshift of the data. The dashed orange line shows
the power spectrum for the adjusted cosmology given to the emulator at the emulator
redshift. The green line shows the power spectrum for the emulator if TCMB

can not be changed from the default value. The red line shows the data cosmology at
the emulator redshift. The dotted purple line is the same data cosmology at the emulator
redshift, but with σ8 scaled to match the amplitude of the data power spectrum at the
data redshift. The detailed cosmological parameters and universe age at the given redshift
for each line is displayed in Table B.1.
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Line H0 [kms−1Mpc−1] Ωm Ωb TCMB z Age [Gyr]
Data Cosmology 67.0 0.310 0.496 2.7255 1.0 5.92
Adjusted Emulator Cos. 80.0 0.516 0.8256 3.634 0.5 5.92
Fixed TCMB Emulator 80.0 0.516 0.8256 2.7255 0.5 5.92
Data Cos. at z = 0.5 67.0 0.310 0.496 2.7255 0.5 8.69

Table B.1: Detailed cosmological parameters and universe age at the given redshift for
each line in Fig. B.1.

spectrum exactly despite the difference in redshift, and because both universes have the
same age they will have experienced the exact same amount of non-linear growth.

While the adjustment detailed above would provide an exact match between the data
and emulator at different redshifts, not all of the parameter changes are possible for the
aemulus cosmological emulator. Since TCMB has been measured to such high precision
by Planck and other CMB probes it is fixed in the emulator, meaning we are not able to
modify the model cosmology to exactly match between the data and model. The effect of
keeping TCMB fixed while changing the other parameters is also shown in Fig. B.1, with
significant deviations at intermediate and large k.

Instead, we can provide the emulator with the z = 0 cosmological parameters of the
cosmology being tested, but adjust the value of σ8 as described above to give the correct
normalisation. This correction is also shown in Fig. B.1, with the unscaled data cosmology
at the emulator cosmology shown for reference. Using only the σ8 scaling, the comoving
linear power spectrum at the emulator redshift also matches the power spectrum at the
data redshift exactly. However, unlike the full adjustment, the universe ages are no longer
the same at the different redshifts, as shown in Table B.1, meaning the amount of non-
linear growth will be different between the emulator cosmology and the cosmology being
tested for the data.

Although the age and evolution to the output redshift emulated by aemulus does not
match that of the cosmology being tested, the linear power spectrum does, which should
still allow for this change to give robust results for the following reasons: for an Einstein-de
Sitter model (i.e. a flat, matter only universe), where there is a symmetry between growth
and evolution, the match would be perfect - the amplitude of the growth completely defines
the cosmological evolution to that point. This is not the case for cosmological models where
Λ is present because this symmetry breaks down. However, the redshifts of interest in the
eBOSS analysis are close to the epoch of matter-Λ equality, and so the effect of Λ on the
evolution to the redshifts of interest small. The halo mass function in standard theory
depends only on the linear power spectrum, and the HOD model used in the analysis for
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small-scale clustering is based on this halo mass function. Thus we expect that the model
can accurately match the small-scale clustering, and so the only concern is small changes
in the interpolations between large and small scales. Finally, we note that the value of f
input to aemulus is the value in the true cosmological model at zeff = 0.737: this is a
dimensionless parameter calculated at the redshift of interest, and has the property that
it is the same for observers at different redshifts.

The second issue is the difference in number density. It is particularly worrying since a
less dense sample will preferentially fill more massive halos. The result will be a sample with
a larger linear bias, which is degenerate with the growth rate in clustering measurements
(see Sec. 3.4.2 for how an incorrect linear bias can influence the inferred cosmological
results). In order to assess the impact of the difference in number density, as well as test
our cosmological scaling method, we use a set SHAM mocks generated from the Uchuu
simulation. We generate a mock using the z = 0.7 redshift slice of the simulation and
number density n = 1× 10−4, matching the eBOSS redshift and number density. We then
generate two additional mocks, one from the z = 0.57 redshift slice with n = 1 × 10−4

and one from the z = 0.7 slice with n = 4 × 10−4, to investigate the dependence on each
characteristic separately. All mocks are constructed using the peak halo velocity, Vpeak,
with a scatter of 0.2 dex.

To test the ability of our emulator to model these different conditions we fit the emulator
predictions to the correlation function measurements from the various SHAM mocks using
a MCMC sampler (see Sec. 3.3.6), and compare the fσ8 constraints to the known values for
the simulations. The results of these fits are shown in Fig. B.2. The fit to the z = 0.7, n =
4× 10−4 mock is able to recover the expected fσ8 , showing that the emulator is robust to
changes in redshift without biasing constraints of fσ8 . However, the n = 1×10−4 mocks for
both z = 0.57 and z = 0.7 give significantly larger values of fσ8 compared to the known
value, as expected from the degeneracy between linear bias and fσ8. This discrepancy
means that while our method for analyzing a galaxy sample using an emulator trained at
a different redshift can be applied for samples with the same number density, it can not
be used for our analysis of the eBOSS LRG sample with the original aemulus emulator.
As a result we elect to retrain the emulator to match the eBOSS LRG sample, as detailed
in Sec. 3.3.2. After retraining the emulator we repeat the fit to the z = 0.7, n = 1× 10−4

SHAM mock using the new emulator (see Sec. 3.4.4), and find robust constraints on all
cosmological parameters.
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Figure B.2: fσ8 constraints from fitting the aemulus cosmological emulator to SHAM
mocks constructed from the Uchuu simulation at various redshifts and number densities.
The vertical line shows the expected value of fσ8 at the emulator redshift.

233



Appendix C

Linear and non-linear velocity
distributions

In order to test our calculation of the linear velocity in Ch. 4 and to observe the relative
impacts of the linear and non-linear components as a function of separation we examine
the mean pairwise velocity of halos as a function of pair separation. We use the halos of the
20 boxes of the AbacusCosmos simulation suite with Planck 2015 cosmologies described
in Sec. 4.2.2, at z = 0.700. For each simulation we divide the halos into mass bins of
width 0.5 dex from 1012 − 1015M⊙/h, and calculate the mean pairwise velocity for each
mass interval in 80 separation bins of equal logarithmic width from 10−2 − 102 h−1Mpc.
We perform this calculation for both the unsmoothed and smoothed halo velocities (see
Sec. 4.2.4). These pairwise velocities are shown in Fig. C.1. Also included in the plot is
the static solution, which is the pairwise velocity required to maintain a constant proper
separation in an expanding background, and the linear theory prediction for the pairwise
velocity [99, 227, 45]. It should be noted that the linear theory prediction contains a bias
factor that we have set to 1 in the calculation for all halo masses, leading to a difference
in amplitude for the high mass halo bins.

As expected, at large separation the linear velocity calculated from the initial conditions
is in good agreement with the total halo velocity, providing a good test of the linear
velocities calculated at high redshift as well as the scaling to low redshift. The shape
of the pairwise velocity is also a good match to the expectation from linear theory above
∼ 20h−1Mpc. Below that scale the linear velocity begins to deviate from the total velocity,
and goes towards zero at small scales. Because the non-linear velocity is defined as the
difference between the total velocity and the linear component this leads to a larger non-
linear component, which peaks around 1h−1Mpc after crossing the static solution, before

234



Figure C.1: Mean pairwise velocities as a function of separation for the halos of the 20
AbacusCosmos Planck simulation boxes, split into halo mass bins.
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trending towards zero. The unsmoothed linear velocity becomes positive, indicating a
pair increasing in separation, below ∼ 0.5h−1Mpc. This behaviour is counter intuitive for
structure growth and accounts for the unexpected effect of the scaling parameter on the
correlation function at small scales shown in Fig. 4.2. Smoothing the linear velocity field
causes it to turn towards zero below the smoothing scaling, without crossing to positive
velocities at small separations.

We also investigate the magnitudes of the total, linear, and non-linear halo velocities as
a function of halo mass for the unsmoothed and smoothed velocity fields in Fig. C.2. Total
velocity increases with halo mass, caused by an increase in non-linear velocity. The linear
velocity dominates for small halo masses, but decreases slightly with halo mass. These
trends are seen for both the unsmoothed and smoothed velocities, with the only significant
difference being a slight decrease in the magnitude of the linear component from smoothing.
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Figure C.2: Mean halo velocity magnitude in mass bins of width 0.5 dex. The black line
shows the mean total halo velocity, while solid coloured lines show the mean linear velocity
magnitude and dashed coloured lines show the mean non-linear velocity magnitude. Blue
lines represent the result using the unsmoothed linear velocity, while orange lines show the
result after our fiducial velocity smoothing. The position of points on the x-axis are offset
slightly to prevent overlap.
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