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Abstract
This paper was created with the goal of researching the different impacts that background

noise can have on listeners’ ability to interpret speech. The brain is responsible for separating
speech and noise, but this can be difficult if this organ is damaged or the noise is too
overwhelming to separate out. I partnered with Augmented Hearing.io to see whether their noise
reduction software can do some of this processing on behalf of the brain. This would reduce
cognitive effort and help make conversations more accessible in noisy environments. To research
this topic, I created a study that evaluated participants’ ability to understand words that have
often confused sounds in them. These words were presented with different types of voices, with
different kinds of background noise, and both with and without processing from Augmented
Hearing’s algorithms.

Preliminary results indicate that intelligibility scores were not higher for the denoised
speech compared to the noisy speech. This was not the expected result, however, there is still
much to consider within the data. These preliminary findings are grounds for further studies and
will hopefully lead to an improvement in future iterations of the speech processing software.
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Abbreviations

AH - Augmented Hearing.io

AI - Artificial intelligence

DB - Decibels

DSP - Digital signal processing

ESL - English as a second language

HA - Hearing aid

HL - Hearing loss

IPA - International phonetic alphabet

ITU - International Telecommunication Union

LIDL - Lab for Infant Language and Development (University of Waterloo)

LUFS - Loudness unit full scale

MOS - Mean opinion score

PESQ - Perceptual evaluation of speech quality

SIN - Speech-in-noise

SNR - Signal-to-noise ratio

STOI - Short time objective intelligibility
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Glossary
Audiogram: An acoustic measurement based on how a listener responds to a series of pure tones
in quiet. Each ear is tested at a variety of frequencies to determine which sections of inner hair
cells in the cochlea are not responding. This is then plotted on a chart (audiogram) and used to
inform the audiologist when programming the patient’s hearing aids.

Full band: The sampling rate of a sound file that will not be affected by compression that
shrinks the size of the file down, thereby giving a higher quality audio recording.

Hearable: A device that combines functions like listening to music with some adaptations to
account for hearing loss or general hearing difficulties. For example, the Apple airpod is a
hearable as it has transparency mode, which filters out background noise to focus on speech.
Some devices can also do a basic ear bud calibration based on an audiogram that the user
uploads.

Hearing aid (HA): Small programmable devices that sit on or in the ear to amplify sounds for
folks with hearing loss.

Listening effort: The amount of energy a brain needs to expend to be able to make sense of
speech in a conversation.

Listening fatigue: The tiredness that can come from sustaining increased concentration while
engaging in conversation.

Loudness: Typically measured in LUFS, the loudness of a sound file is correlated with the peak
amplitudes within the recording. The larger the peaks, the louder the signal.

Mean opinion score (MOS): A subjective measurement taken from participants’ ratings of the
quality of a sound transmission on a Likert quality scale. It can also have questions related to
word transcription with specific test words determined based on their phonological relevance to
communication in the test language.

Phoneme: The smallest form of distinct speech sounds. For example, in the word ‘tie’ there are
two phonemes: t and i, whereas the word ‘pander’ would be broken up as p-ah-n-d-er. These
sounds can vary across languages, but are often globally represented with the International
Phonetics Alphabet (IPA). *I did not use the IPA characters for the sake of clarity in these
examples.
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Signal-to-noise ratio (SNR): The “signal” refers to the desired sound in a listening situation (for
example, speech). The noise is anything that might be distorting the signal, for example, people
speaking in the background, wind, or clanking sounds. The ratio compares the two – the lower
the SNR, the harder it will be to interpret the signal from the noise.

Speech-in-noise test (SIN): An evaluation of how well a patient can separate speech from
background noise when the volume of the noise is varied. There are multiple variations of this
test which is explained in detail in section 2.3.4.

Speech intelligibility: The ability of a listener to discern meaning from what is being spoken.

Voicing: Some phonemes are produced with a vibration from the vocal cords, which is referred
to as a “voiced” phoneme. An “unvoiced” phoneme would be produced without this vibration.
For example, ‘d’ is a voiced consonant and ‘t’ is an unvoiced consonant.

Zoom fatigue: Tiredness experienced from having online meetings all day, often as a result of
working remotely.
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1. Introduction
Communication between people is a fundamental part of being human. The world in which

we communicate is noisy and the degree to which this background noise influences our
conversations depends on the volume and type of noise. It is natural to experience challenges
understanding each other when the noise is overpowering, like at a concert or when an alarm is
ringing. The real problem presents itself when the noise is not that loud, but the brain needs to
expend more energy separating the speech from everything going on in the background (Moore
et al., 2017). Because humans encounter this situation so frequently, the extra cognitive effort
can take a serious toll on the ability to concentrate and participate in conversation (Plack, Barker,
& Prendergast, 2014). There are numerous studies indicating that increased cognitive effort
results in longer reaction times and higher self-reported feelings of fatigue (Moore et al., 2017;
Murphy, 2021; Athey, 2016; Hicks & Tharpe, 2002). The consequences of this increased effort
can escalate with age and as one’s hearing naturally declines.

This is a phenomenon that occurs daily, but there are currently few solutions to improve
communication in noisy environments. However, there are companies like Augmented
Hearing.io (AH) that are working to improve the perception of speech in noise (SIN) using
artificial intelligence (AI). My thesis will be looking at one approach to improving
communication in noisy situations through a partnership with AH.

1.1. The Current Issue
There has been an increase in young people having trouble understanding SIN (WHO,

2023). This is in part due to the constant noise exposure and dangerously loud music that youth
are experiencing in their everyday lives. However, with the rise in wireless earbud technology, it
is becoming more fashionable to have devices in your ears (Mordor Intelligence, 2023). There is
an opportunity to then make use of the existing earbud technology that consumers are already
comfortable with to help people experiencing communication challenges. This is where AH
comes in. Their noise removal software is being developed with the goal of having it available
for live noise reduction and voice enhancement in earbuds. The goal is to reduce both the
cognitive demand and increased fatigue that people experience while trying to sort through
speech in noisy environments (Plack, Barker, & Prendergast, 2014).

1.2. Partnership with Augmented Hearing.io
Augmented Hearing.io is a sound processing company based in Lyngby, Denmark. They

are a small start up consisting of four full time staff and around 2-3 temporary contractors and
students. Their goal as a company is to create a software that ultimately achieves three things:
noise reduction, general voice enhancement to improve speech intelligibility, and voice
enhancement personalized based on the user’s hearing profile and the listening context that they
are in. My advisor from AH is Dr. Michael Kai Petersen, who is one of the co-founders and full
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time staff. I started working with this company as a summer internship, looking into non-human
measurements of speech intelligibility. This analysis can be used to validate algorithm changes
without having to pay for or take the time to survey participants. It is great for quick validations,
but it still does not demonstrate how humans will perceive the audio. As a result, I decided to
build upon this summer project as my final project for my bachelor’s degree by running a human
study.

1.3. Use Cases of AH’s Technology
Noise reduction technology can be used in a wide variety of situations. Any situation that

requires verbal communication is likely to be influenced by background noises. This is especially
relevant in the COVID-19 pandemic era, as remote work has been on the rise. Just the
reverberation of one’s own voice in a room can result in sound distortion that affects
comprehension (Adank, 2012). AH’s software could be applied to online meeting platforms to
improve the daily work listening experience. In addition to this, everyday life brings noise from
traffic, people chatting, wind, music, and a plethora of other situations which add multiple layers
of sources that the brain must try and sort through in order to understand the speech present. Just
trying to have a conversation in a restaurant or crowded street can be a challenge that AH’s
software could alleviate.

This technology could also be applied in emergency communication scenarios to help
mitigate the increased risk of hearing damage by reducing the noise (from sirens or fires for
example) and enhancing communication by isolating the voice. In the case of emergency
responders, since they are already typically afflicted by hearing damage due to the nature of their
work (Flamme et al., 2019), having the extra processing could improve collaboration between
service members while reducing the cognitive load on the individual user. This would reduce the
risk of further hearing damage and miscommunications occurring in a highly stressful and
time-sensitive environment.

Finally, beyond supplementing existing hearing aid (HA) technology, another application
of this software could be for individuals with auditory processing disorder, attention deficit
disorder, and other sensory sensitive learners. All of these disorders put extra demand on the
brain already, making focusing on auditory stimuli a bigger challenge. The current solution is
often to have FM or digital assistive technology systems where the affected listener has sound
from, for example, a teacher’s microphone, sent directly to their hearing devices (Rance et al.,
2014; Johnston et al., 2009). This can be costly for schools and workplaces and still does not
allow for quality peer to peer relationship development. Having AH’s solution do that processing
instead could allow for more successful information intake and easier socializing.
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2.Background and Theory

2.1. Hearing Science Overview
The basic pathway of communication starts with the creation of sound from one person’s

vocal cords and alterations of the mouth and tongue (Ackermann, 2008). That sound then travels
through the air, sometimes with other sounds getting mixed in from the outside environment.
That sound is later received in the ear of another person where the vibrations of the sound are
translated to nerve signals that travel to the speech processing centres in the brain (Mesgarani et
al., 2014).

Figure 1: Crochet model of the hearing pathway

There are a number of opportunities for this process to break down along this pathway. The
quality of the sound can be altered by lisps or quiet voices, the medium in which the sound
travels can be too reverberant or dampening, the translation from sound wave to nerve signal can
be impaired by a loss of certain frequency receptors, and the brain’s ability to do the actual
processing can fail between sorting the speech from the noise and the actual pulling of meaning
from what was said (Adank, 2012). AH’s software aims to act as one of the processing steps that
the brain takes in separating speech from background noises. My project will be looking at how
well AH’s software can accomplish this processing.

2.2. AH’s Neural Network
The solution being evaluated in this study is a software program that is based on a neural

network model. This model is called Perceptnet, which is a type of gated recurrent neural
network. This software works by learning from thousands of different sound files to understand
what constitutes noise and what constitutes voice. This way, when the model is presented with a
new speech and noise combination, it can use what it previously learned to separate the two and
preserve the speech while removing the noise. This model differs from existing Digital Signal
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Processing (DSP) chips currently on the market, as the neural network can provide information
on exactly which parameters to focus on in a given situation. Since DSP is static, it will
automatically break down in some noisy conditions rather than flexibly adjusting based on
previous data, as AH’s network can do (Kim, Kim, & Kim, 2019).

An important focus in this type of solution is the latency time. This is a challenge in digital
audio processing because if the delay in sound processing from real time speech is longer than 50
ms, the brain can notice and it causes other issues such as confusion and difficulty in following
conversation (Kim, Wang, & Maxa, 2020). One way to reduce the latency is by decreasing the
number of parameters that are examined by the model. Each parameter, or characteristic of the
sound file, such as the pitch at a given moment in time, contributes to the model’s overall
understanding of what is speech and what is noise. These parameters are responsible for the
maintenance of the person’s voice so the noise removal does not leave the speech sounding too
robotic. Instead of comparing eight million different parameters, however, scaling it down to the
most important one million will improve processing time drastically. This reduction becomes
more possible as the model is further trained and begins to understand the most important
characteristics to preserve. This network may evolve in the future as more noise removal
algorithms are developed, but the current PerceptNet satisfies AH’s preliminary targets.

2.3. Speech Intelligibility Versus Listening Fatigue
This project has gone back and forth between studying two different but related concepts:

listening fatigue and speech intelligibility. It is important to mention this as there may be
frequent references to listening fatigue in my literature review (Appendix A) and throughout this
paper, despite the ultimate focus of the experimental study being on speech intelligibility. The
concepts are closely tied together because the quality of the speech directly impacts the level of
fatigue that one may experience when listening (Moore et al., 2017). I will present the two
concepts in further detail below before ultimately explaining why speech intelligibility was
chosen to be the focus of this project.

2.3.1. Listening Fatigue
At the start of the COVID-19 pandemic, many offices switched to remote work, which led

to full days of Zoom or Teams meetings. At the same time, a new phenomenon was coined:
“Zoom fatigue.” This term refers to the added exhaustion that people began feeling after all those
online meetings (Williams, 2021). There was uncertainty as to what caused this added
exhaustion, since there was no longer a commute to and from work and people were able to work
from the comfort of their own homes. One source of this increased fatigue appeared to be extra
listening effort. For example, when users do not have their cameras on, they miss out on facial
cues, which can increase listening effort (Williams, 2021). Additionally, the fatigue was coming
from having to listen to unnatural sound (compressed and poorly transmitted voice, added
background noise, or poor acoustics), which leads to increased cognitive effort required to adjust
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for these factors (Moore et al., 2017). Similar to eye strain, if the ears are straining to hear and
put together the linguistic information coming across the computer, the brain will be exhausted.

Given the rise in remote work and its absolute necessity in many cases, having employees
dealing with intense fatigue throughout a day of meetings is a serious problem (Williams, 2021).
In online environments, the sound signal passes from a person’s mouth to their microphone,
through a computer to the recipient’s computer, and out a speaker to their ears, where it is
processed by the listener. Each of these steps may alter the sound in a way that makes it more
challenging to process. Since Zoom fatigue does not happen during in-person meetings, there
needs to be a way to replicate the in-person audio experience as closely as possible, so that the
brain does not need to put in all that extra processing power. As the goal is for the AH software
to return a signal that more closely approximates an in-person experience, this should lead to
reduced listening effort, thereby reducing fatigue and improving the online meeting space.

2.3.2. Speech Intelligibility
Speech intelligibility refers to the ability to extract meaning from speech in a listening

context. The present study is looking at whether speech intelligibility is enhanced as a result of
AH’s processing. The two most common automatic intelligibility measures are Perceptual
Evaluation of Speech Quality (PESQ) and Short Time Objectivity Measure (STOI). However,
these two methods have two issues that make them less optimal for project validation. For one,
PESQ and STOI calculate speech intelligibility through automated means, relying on comparing
an altered signal to the original “clean” signal and seeing how much the two differ (Taal et al.,
2010). This means that regardless of whether the clean speech was actually the most intelligible
of the two signals being compared, the new signal will always have a lower intelligibility score
due to the original signal being altered. The second issue is that PESQ and STOI do not involve
human listeners, so it is not possible to predict how the human speech perception system would
truly interpret these signals.

Since AH’s algorithm comes in three steps – noise reduction, user preferred voice
enhancement, and context specific voice enhancement – the latter two steps cannot effectively be
measured with PESQ and STOI. It is, however, an effective method of evaluation for the first
step, noise reduction, as the goal is for the new signal, created after the background sounds are
removed, to be as close to the original signal as possible. Even without the human perception
aspect, having a quick comparison model still makes STOI and PESQ important tools, as it gives
AH a way to quantify the quality of their noise reduction algorithm.

Given that these most common measures cannot effectively evaluate the enhancement
aspects of AH’s algorithm, there are some other measures that can be used. The clean signal can
be put into a speech to text converter to get a baseline of how many errors are made, which can
then be compared to the enhanced signal put through the same program. If the program interprets
more words correctly from the enhanced signal, this demonstrates an increase in intelligibility.
However, this solution has its own challenges. Depending on a speech to text algorithm to
determine intelligibility does not actually represent how a human might interpret the same signal.



14

While creating a speech to text software to run intelligibility tests on an algorithm that is deeply
known and understood by the AH team would address this issue, it is not a practical use of time
when there are free and cheap existing softwares out there. It must also be noted that the speech
to text algorithms are constantly evolving, so this may no longer be an issue in the next five
years.

A human measure can also be used to evaluate speech intelligibility through the
collection of a Mean Opinion Score (MOS) (ITU, 2016). This would address the second issue of
PESQ and STOI not being entirely representative of the human hearing system. MOS is
currently considered best practice, as it involves asking human participants to rate how
intelligible a particular sound sample is (Streijl, Winkler, & Hands, 2016). This ultimately
matters more than what a computer thinks, as it is the humans that AH is designing the product
for. Even though this evaluation is considered best practice, it is not often done, as it is much
more time consuming and expensive than getting a computer to evaluate the signal instead.
Having to recruit human participants, design a study, run the study, and pay everyone afterwards
before actually getting to analyze the data is not feasible on a smaller scale. This is why
measures like PESQ and STOI were created and further considered for this project before
ultimately choosing to run a human study. This guarantees that the audio is being interpreted
through a human brain rather than a machine, thus providing information from actual future
customers.

2.3.3. The Scope of This Project
For this project, I chose to focus on speech intelligibility in human listeners, as it was

easier to assess quantitatively than listening fatigue. To truly evaluate the effect that increased
listening effort can have on the brain, several physiological measurements need to be taken. A
host of studies have used eye tracking technology in addition to dual-task paradigms that assess
both the auditory and visual systems to see how the fatigue from one may influence the other
(Dingemanse & Goedegebure, 2022; Zhang, Lehmann, & Deroche, 2021; Moore et al., 2017).
This form of evaluation was not feasible given the time and resources of this study, however,
gathering responses based on the MOS is. As I have researched different study methods for the
literature review required to begin this project, I will be considering other possible future studies
in section 6.3. However, the information from this intelligibility study alone will be enough to
inform AH of their next steps in terms of improving their proprietary algorithm, which is the
most important goal of the project.

2.3.4. Speech-In-Noise Tests
In order to evaluate speech intelligibility in human listeners while addressing the quality

of the noise removal algorithm, I decided to explore speech in noise (SIN) tests. The basic
concept underlying each test is that a speech signal is played at a defined volume and a noisy
signal is played at a known signal-to-noise ratio (SNR) to the speech. The participant is then
asked to repeat the speech. An easy listening experience for an average listener would be about
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+10 SNR (Lee et al., 2022). A negative SNR means the noise is louder than the signal and that
would make the signal much harder to distinguish. The exact number is typically measured in
decibels (DB). There are a number of specific types of these SIN tests that will be detailed
below, each one having certain strengths and weaknesses depending on the context they are
being used in.

Different Versions of SIN Tests

- QuickSIN: This test, along with HINT (explained below), is the most commonly used
method in evaluating SIN comprehension abilities. The test is a higher pitched “female”
voice with a four speaker mix babble noise background. The SNR is tested between
+25dB to 0dB using a variety of standard sentences. This test is typically used for adult
evaluations. (Killion, Niquette, & Gudmundsen, 2004)

- Hearing in Noise Test (HINT): This test is conducted with a “male” (lower pitch) talker
overlaid with speech shaped noise. It is unique in that it is typically evaluated with the
presenting speakers in a variety of locations to also see what the impact of the distance
from the sound source is. The test itself consists of ten sentences that are phonemically
balanced. (Nilsson, Soli, & Sullivan, 1994)

- Azbio: This test is most often used to determine if a patient is a candidate for a cochlear
implant. The stimulus consists of male and female voices in conversation style. There are
fifteen sentence lists that the test can be drawn from which are more challenging than the
HINT ones. (Spahr et al., 2012)

- Words in Noise (WIN): This is a test run across seven SNR variants using monosyllabic
words. It is more sensitive compared to HINT because of the additional ratios it tests.
(Wilson & Watts, 2005)

2.4. This Study’s Test Method
The study I made is a type of SIN test. It most closely relates to the QuickSIN test, but is

unique in that I am testing users’ abilities to discriminate words based on a certain type of speech
processing (done by AH’s algorithm) rather than based on their own hearing abilities or sound
processing that is occurring in a device that they have (such as a HA). I also chose to have a
constant SNR of +10dB, which differs from testing along a scale of 0 - 25dB. More details on
exactly how my test will be run is provided in section 3.

2.5. Research Question
My thesis is focused on validating the noise reduction and voice enhancement features of

AH’s algorithm. I specifically focused on how AH’s algorithm impacts a user’s ability to
distinguish between similar English consonants. The results will inform how well the algorithm
preserves the original speech when it removes different kinds of noise. I want to use this
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information to create recommendations for adjustments that the algorithm may need to improve
speech intelligibility for future users. Knowing which words are more successfully understood is
important in suggesting future improvements in the algorithm. If there is a consistent issue with
the “k” sound, for example, this would warrant further consideration in the filters that are
currently being applied to the test set files. Ultimately, I will be asking: Is the speech
enhancement algorithm from Augmented Hearing.io capable of improving speech intelligibility
scores in adult listeners, especially for hard to distinguish sounds? To do this, I will be evaluating
the accuracy of responses that participants submit while listening to hard to distinguish words in
different noisy conditions.

3. Study Methods

3.1. Recruitment
Participants were collected on the SONA recruitment platform. This is a site that is

connected to students taking Psychology classes at the University of Waterloo. The study is
posted on the website using a pre-approved description (from the ethics board of the University
of Waterloo). Students interested in my study are then redirected from SONA to Gorilla, the
platform that hosts the study. Gorilla was chosen for this type of study due to its audio
integration and randomization capabilities. It is also a standard software used for studies at the
Lab for Infant Language and Development (LIDL) which one of my advisors directs. Once the
participants are on Gorilla, they must consent to beginning the study. This study is approved
under the University of Waterloo’s ethics board, REB #44785.

3.2. Study Tasks

3.2.1. Tone Test
Participants begin the study by undergoing the AntiPhase Tone test as detailed by Milne et

al. in An online headphone screening test based on dichotic pitch (2021). This is standard
practice in the LIDL. This test was included to help participants adjust the volume on their
computer before listening to the study audio and to give me a sense of whether the participant
used earbuds as requested or if they used computer speakers. The AntiPhase Tone test plays three
tones, each varying in loudness. The participant is prompted to pick the quietest tone of the set.
This is repeated six times. A score of 4/6 is required to pass. Two of the tones are the same, but
the third is shifted 180 degrees. When listening on a loudspeaker, the signal would be weakened
due to the destructive nature of the phase shift, causing the listener to be unable to determine
which tone is actually the quietest (Milne et al., 2021). Knowing whether a participant is using
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headphones is important as the earbuds help minimize background noise in the participant’s
environment as well as mitigate the effects of a room’s acoustics.

3.2.2. Word Listening Task
After the tone test, study participants begin the main task of identifying words in noise.

They are presented with a series of target words in isolation under different sound processing
conditions. The selection of words is further discussed in section 4.1.1. Each participant is
assigned to one of twelve conditions, based on the type of speaker, the type of noise, the
placement of the target phoneme, and the type of noise removed using AH’s software, see figures
2 and 3. On each trial, the participant is presented with a play button. After they click it, they
must listen to a single audio file. The participant can only listen to it once as it may be possible
to figure out a word with repetition over time, but that is not representative of a conversational
context where words are exchanged quickly. After listening to the file, the participant is provided
a text box to type in the word that they think they just heard. In the results, I will be accounting
for spelling inconsistencies (e.g., where a target word was “do”, but the participant typed “due”)
by correcting the final intelligibility scores as required. Each participant is presented with 108
audio files: 36 with no noise, 36 with noise, and 36 with noise removed. The 108 files are given
in a random order, so the participant cannot predict whether the target phoneme is in the initial,
medial, or final position, nor what kind of processing has occurred. However, each participant is
only presented with one voice for consistency.

3.2.3. Demographics Survey
Finally, the study participants are presented with a questionnaire that has twelve

questions related to their language background and listening habits. These questions are required
in order to give context to who is participating in the survey. If there are only 18 year olds
completing the study, their hearing profiles may be different than an 80 year old. Similarly, if
English is not their first language, more phoneme confusions will be expected, as it can be harder
to differentiate phonemes in a non-native language (Peng & Wang, 2019). Knowing this
information will inform what kinds of participants to include in further studies, detailed in
section 6.3, as well as provide some explanation for the results. The demographics questions are
listed in section 4.2. After completing the survey, participants are redirected to a thank you page
and are later awarded a 0.5 credit towards their SONA psychology course requirements for doing
the study.
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3.3. Conditions

Condition 1 2 3 4 5 6

Voice Salli Salli Salli Salli Salli Salli

Phoneme
Placement

No noise:
Beg
Noise:
Mid
Denoised:
End

No noise:
Mid
Noise:
End
Denoised:
Beg

No noise:
End
Noise:
Beg
Denoised:
Mid

No noise:
Beg
Noise:
Mid
Denoised:
End

No noise:
Mid
Noise:
End
Denoised:
Beg

No noise:
End
Noise:
Beg
Denoised:
Mid

Noise Babble Babble Babble Wind Wind Wind

Processing Babble
denoised

Babble
denoised

Babble
denoised

Wind
denoised

Wind
denoised

Wind
denoised

Figure 2: Conditions 1-6 in the study

Condition 7 8 9 10 11 12

Voice Joey Joey Joey Joey Joey Joey

Phoneme
Placement

No noise:
Beg
Noise:
Mid
Denoised:
End

No noise:
Mid
Noise:
End
Denoised:
Beg

No noise:
End
Noise:
Beg
Denoised:
Mid

No noise:
Beg
Noise:
Mid
Denoised:
End

No noise:
Mid
Noise:
End
Denoised:
Beg

No noise:
End
Noise:
Beg
Denoised:
Mid

Noise Babble Babble Babble Wind Wind Wind

Processing Babble
denoised

Babble
denoised

Babble
denoised

Wind
denoised

Wind
denoised

Wind
denoised

Figure 3: Conditions 7-12 in the study

Each participant receives a set of stimuli with no noise, a set of stimuli with one type of
noise, and a set of stimuli with its noise removed counterpart. To avoid having participants listen
to the same words under multiple processing types, participants received different sets of words
(differing in target phoneme placement) for each condition. This, combined with the word
randomization, mitigates the effects that stimuli presentation order may have on participant
results.
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4. Test Set Development

See appendix B for the test sets being used in the study.

4.1. Phoneme Selection
The test sets for my study were made with the information from Cutler et al. (2004)’s paper

on bilingual speech intelligibility. In their study, they examined the perception of similar
(confusable) speech sounds as a function of listener language background and noise condition
(SNR level, etc.). They created confusion matrices that demonstrated average confusion of
sounds across these conditions. I chose to focus on one specific matrix in the paper that
summarized the average responses to ensure that the often confused phonemes were reflective of
a larger population, rather than a small subset. My target words were determined from the top six
most confused phoneme pairs from the aforementioned matrix. Some specific words were also
taken from the International Telecommunication Union (ITU) standards on measuring speech
intelligibility (2016). The ITU standards doubly confirmed the phonemes to be focused on in the
context of sound quality, as these words were originally chosen to evaluate the efficacy of signal
transfer across a telephone wire.

The target phonemes in my stimuli are consonants because, in the English language, they
give the most semantic information to the listener (Varenina, 2018). This means that if a
consonant is misinterpreted, it has a greater potential impact on meaning than a vowel. I
identified pairs of words differing in a specific consonant phoneme, where the differing
consonants are related by the fact that they require the same mouth shape but one is voiced and
the other is voiceless. In other words, one of the consonants in each pair requires more vocal fold
vibration than the other. This can make these specific phonemes easy to confuse for one another
which is why I selected the specific target phoneme pairs in this study.

Across word pairs, the target phoneme occurs either at the beginning of the word, middle of
the word, or end of the word. The placement of the phoneme matters, as the preceding phonemes
can impact how the word is interpreted. The following pairs were used: T - D, S - Z, Ch - J, P -
B, K - G, F – V (please note that these phonemes are written in English spelling, rather than the
International Phonetic Alphabet (IPA) for ease of understanding by non-linguists). For example,
one pair is tie - die. This is where the potentially confusable phoneme is at the beginning of a
word. An example of a middle pair is etching - edging. An end placement example could be
relief - relieve.

I generated three sets of 12 word pairs with each phoneme placement (beginning, middle,
end) for counterbalancing purposes (assignment of word sets to processing conditions).
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4.1.1. Word Selection
The words themselves were selected using a variety of different resources. The primary

resource I used was the Complete List of Minimal Pairs chart from English Phonetics (n.d.),
which consists of a phoneme matrix linking different phonemic word pairs. Each word was then
put into the Corpus of Contemporary American English (COCA) database to ensure the words
were of relatively equal frequency in the English language. If the frequencies were too
unbalanced, then it is possible that a participant would hear one word over another due to
familiarity with the word instead of mishearing the phonemic differences. It is important to note
that frequency is based on spelling rather than phonetics, so the words being balanced are being
directly compared by spelling. Therefore, the frequencies may not reflect spoken frequency,
because of the presence of homophones (different words with the same spoken form). A full list
of the stimuli used in the study is available in appendix B. Similarly, a list with all the stimuli
and their corresponding COCA frequency score is listed in appendix C.

4.2. Demographic Questions
Each question was chosen to attempt to cover other reasons (outside of the software not

improving intelligibility scores) that participants may have challenges with the study tasks.

1. How old are you?
Drop down number list

2. Is English your first language?
Yes/No

a. If not, what was your first language?
Open text box

3. How many years have you been speaking English?
Drop down number list

4. How would you rate your English proficiency?
Needs improvement, conversational, native/fluent

5. Have you ever been diagnosed with a hearing loss?
Mild, Moderate, Severe, Profound

6. Do you use hearing aids?
Yes/No

a. If yes, how many hours (on average) do you wear them per week?
0-10, 10-20, 30-40, 50+

7. On average, how many hours per week do you spend with earbuds in?
0-2, 2-5, 5-10, 10+

a. What volume do you typically listen at?
Low, Medium, Loud, Extra loud



21

b. If applicable, do you use active noise canceling features on your earbuds?
Often, Sometimes, Never

8. What earbuds/headphones will you be using to complete the study?
Open text box

9. How would you describe your ability to hear in a crowded restaurant?
I can hear fine, I have some challenges but feels normal, I miss about half the
conversation, I would not go out because I can’t hear in those situations at all

10. Have you ever worked in construction or any other jobs that might have you dealing with
loud noises often (ex. A first responder)?
Yes/No

11. How long have you worked in that environment?
0-6 months, 6 months-2 years, 2 years+

12. Do you have any known auditory processing disorder or other cognitive impairments that
may impact your ability to process sound?
Yes/No/Unsure

4.3. Voice Generation
The voices used to produce each word in the test set were generated through the AWS Polly

neural text-to-speech program. Two voices were selected in order to compare how well the noise
removal software could handle different frequency voices. On the AWS system, the two voices
chosen for this study are called “Salli” and “Joey,” both of whom have standard American
accents. Salli is the more high pitched typical “female” range voice and Joey is the lower pitched
typical “male” range voice. AWS Polly offers two forms of text-to-speech processing, one called
“standard” and the other called “neural.” The neural processing was chosen as that is the most
lifelike version of artificially generated speech available, according to AH. The neural processing
uses additional AI networks to further process the voices to sound more human-like. For this
project, the more human-like the better because the voices are meant to be representative of
speech a participant might encounter in their daily lives.

The test sets were generated using artificial intelligence instead of live human recordings
because of the consistency in sound processing that is available from the text-to-speech options.
If a human were to record the word list for this study, there are additional variables that would be
more challenging to control. The distance from the microphone, the tone of voice and associated
volume, and the quality of the recording microphone itself would all impact the final recording.
Using a processor like AWS Polly means that all of this can be controlled through one
standardized processing service.

4.3.1. Effects of Listening to AI-Generated Speech
In section 2.3.1, listening fatigue, I mentioned that unnatural sound from computer

processing can lead to an increase in fatigue. My study is using computer generated voices
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instead of human voices and the listening tasks will be through a computer and ear buds rather
than a live conversation. This setup is intentional in order to see how well the computer
algorithms can replicate the quality of sound from these digital situations. While the voices are
theoretically more robotic than a live person through Zoom, for example, speech created through
the AWS Polly system is relatively natural sounding. Therefore, the effects of the artificial voice
should be negligible on listening fatigue and speech intelligibility (Simantiraki, Cooke, & King,
2018).

4.4. Noise Overlay
Each stimulus voice file is recorded and then overlaid with one of two noise files before

being further processed under a variety of conditions. The first noise file with multi-talker babble
was given to me by the company, AH. Multi-talker babble is the most challenging noise to
separate from speech because of the bits of speech that may be pulled out of the noise and
mistaken as voice to focus on. The babble file was originally a stereo 32-bit float at 44.1 kHz.
This file was then split from stereo to mono and one of the channels was deleted. The combined
speech and noise files were saved at 48kHz since this is the closest option to full band, which
AH’s algorithm is optimized for. The higher the sampling rate, the more challenging it can be to
look at different segments to separate out the speech from the noise since there are so many more
bits to examine. However, since AH already accounted for that in their algorithm so, to ensure
the highest quality possible, the study will be using fullband to benefit from that detail. All these
steps were done to ensure that each of the sound files was uniformly processed. If one file is in
stereo and the other is in mono, the stereo modality will change the way the brain perceives the
sound, thereby influencing the listening results, especially when it will be overlaid with a mono
track with speech.

The next type of noise overlaid is a type of noise called dynamic non-babble. This is a
sound file like wind, for example, that has a variety of volumes and frequencies but has no
speech so the noise itself is easier to distinguish from the voice. I chose to use wind for this type
of noise as it is a common cause of communication challenges (Grenner et al., 2000). Note that I
am not using noise files that are proven to increase stress levels, like ambient traffic sounds
(Jafari, Kolb, & Mohajerani, 2018). This is so that the results of the study are not affected by the
stress associations that may come from these sounds. The use of two different noise types
(babble and wind) will allow for an examination of how the AH algorithm works under different
conditions.

4.5. Controlling Signal-to-Noise Ratio
Each file is processed using the loudness normalization function on Audacity so that the

standard broadcast guidelines for Advanced Television Systems Committee (ATSC) is achieved.
The standard broadcast loudness level for Canada and the United States is -24 LUFS, or loudness
units in full scale (Norcross, Lavoie, & Thibault, 2011). LUFS is a measurement that takes into
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account peak volume levels as well as how the human ear perceives these levels. The signal can
then be normalized or reduced in overall volume relative to itself in order to satisfy the standards
of the governing media regulators. This process needs to occur because of the lack of a
consistent loudness scaling factor (Oetting et al., 2018). When the speech files are being overlaid
with noise, they are then being altered to be at a specific ratio, SNR. If the speech file is at a
higher LUFS than the noise file, the SNR will not be accurate, which is why normalization needs
to occur.

For this experiment, an SNR of 10 was chosen as a baseline due to prior trials at AH. It
also corresponds with a comfortable listening level, but with enough noise to lead to some
difficulties (Lee et al., 2022). Because the noise removal portion of the software is more effective
when the noise is much lower than the voice, making it easier to separate, knowing exactly
where there is a breakdown that makes it unusable is helpful to create more targeted data sets for
the neural network model to train on. The potential of varying the SNR will be discussed in
section 6.3, future studies.

4.6. Predictions
Given the preceding methods, I will be making some predictions based on the literature

review and prior tests that AH has run with their software. It is important to be able to compare
the following expectations to the final results to troubleshoot why the results may differ and later
inform the recommendations. Overall, I expect that the processing condition with the highest
error rate will be the one with noise and no removal software applied. I expect both the noise
removed and no noise conditions to be significantly more intelligible than the noise conditions.
However, I do not have a prediction about which of the two will be more intelligible.

Next, we must look at the type of noise that is being suppressed. Babble noise has speech
characteristics, which can sometimes trick AH’s software into thinking that it should not be
suppressed. Wind noise is more static and uniform, with no speech qualities to potentially
confuse the program. As a result, it is expected that the wind noise removed conditions will be
marginally more successful (i.e. have higher intelligibility scores) than the babble noise removed
conditions.

After the noise, we must look at the two types of voices being used. Joey’s voice is lower in
pitch, which can sometimes sound like common background noises such as traffic and fan
whirring. Salli’s voice is a more unique frequency compared to the noise that the software is
currently trained to recognize, so it is expected that Salli’s voice will be of a higher quality when
run through AH’s software, and thus have a higher intelligibility score. It is important to note,
however, that since AH’s model is constantly growing and being trained, the difference between
the voices may be less of a concern with the current study model (February 2023), rather than an
early prototype when this project first started in the summer of 2022.

Finally, the placement of the target phoneme can also impact the final intelligibility
results (Dufour & Grainger, 2019). Acoustic cues come from several different aspects of speech,
from the voicing (or lack thereof) of a consonant to the length of a vowel. This is why the target
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phonemes need to be placed at three key locations in the stimuli set. For example, with the target
phoneme in the final position, the listener gets the benefit of the preceding vowel, but loses some
of the acoustic cues of the consonant (Woods, 2010). As there are so many different factors that
can contribute to the effects of a placement in a given word, I will not be making general
predictions for this section. The effects of placement in regards to the algorithm’s processing
may be more pronounced in future studies with longer sections of speech.

5.Results

5.1. Summary of Results
My study was run on SONA over a two week period. 152 people registered for this study.

The average age was 18-20 years old. 62 participants were discarded for three main reasons:
They did not complete the entire study, they did not complete the study wearing headphones as
requested and failed the tone screening test, or they had a known hearing loss or auditory
processing disorder. That left 90 participants with usable data points. Note that AH’s noise
reduction software can be used for people with hearing loss or processing disorders. However,
these participants were discarded as there were too few to reach any meaningful conclusions.

In each condition, participants completed three sets of 36 differently processed sound
files. For visualization purposes, figures 4-9 demonstrate the averages for each processing
condition, as a function of voice and target phoneme position. These figures demonstrate that,
overall, intelligibility scores were highest in the clean (no noise) speech and there is no
advantage for the denoised conditions relative to the noisy conditions. Further examination of
these patterns is available in section 6.1.
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5.2. Intelligibility Scores

Figure 4: Number correct out of 36 for conditions 1-6 (Salli’s voice) with target phoneme at the
beginning

Figure 5: Number correct out of 36 for conditions 1-6 (Salli’s voice) with target phoneme in the
middle
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Figure 6: Number correct out of 36 for conditions 1-6 (Salli’s voice) with target phoneme at the
end

Figure 7: Number correct out of 36 for conditions 7-12 (Joey’s voice) with target phoneme at
beginning
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Figure 8: Number correct out of 36 for conditions 7-12 (Joey’s voice) with target phoneme in the
middle

Figure 9: Number correct out of 36 for conditions 7-12 (Joey’s voice) with target phoneme at the
end
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6.Discussion

6.1. Patterns of Results
Looking across all conditions and voice types in the above figures (4-9), the results

indicate that the noisy and denoised conditions are not significantly different (which was
confirmed informally by t-tests comparing each noise type and its corresponding denoised
version). This means that the AH algorithm did not improve the intelligibility scores. This was
not predicted, as theoretically, removing the noise should have improved intelligibility,
potentially to the same level as the clean speech. This is not too consequential to the current
software use, as a misprocessed sound resulting in a completely different interpretation of what
the speaker was attempting to communicate which is going to be no worse than listening in a
noisy situation anyways.

That being said, these unpredicted results could be explained by a few different factors.
For one, the sample size contributing to each processing condition was highly variable, with one
condition only having two participants after the others were deemed ineligible. It remains to be
seen whether these patterns will hold with a larger data set. In addition to this, the algorithm
itself is optimized for larger chunks of speech, as the solution is meant for use in conversation.
This may result in less accuracy in removing noise from single word stimuli, as each audio file
containing one word was individually processed through the software. Aside from these reasons,
it is also possible that the algorithm is not at the stage of its development where it can achieve
the same intelligibility scores as the clean speech. In order to advance AH’s noise removal
software, a series of recommendations for what training the model should focus on is included in
section 6.2.

Outside of the noise removal algorithm, there are other observations that can be drawn
from the study results. Looking across the two different voice types, Salli and Joey, it is also
evident that the intelligibility scores were higher for the Salli voice as predicted. Between the
babble and wind noise, the wind noise resulted in better intelligibility scores, again following
previously made predictions. Finally, looking at the placement of the target phoneme, words with
target phonemes at the end received the lowest scores (and this was confirmed statistically with
t-tests comparing scores as a function of position, collapsing across processing).

6.2. Recommendations
Since one third of participants were lost due to a variety of contraindicating factors,

further studies with more participants should be developed and run. Details about the kinds of
studies and what to look for are covered in section 6.3. In addition to conducting further
research, as mentioned in the previous section (6.1), this study does suggest that certain acoustic
cues are not being maintained by the noise removal algorithm, resulting in lower intelligibility
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scores when compared to both clean and noisy speech files. As a result, the model should be
developed to improve the preservation of these cues. This can happen through providing the
model with more training data, especially with speech content containing the target phonemes
covered in the study. Further training should also focus on eliminating the difference between the
higher pitch and lower pitch voice. The model should be trained on more lower pitch voices with
noise files in a similar frequency range. The more examples and variety of clean speech and
noise that the model receives, the better it will be able to distinguish between voices in a similar
pitch range to Joey. Ultimately, the greatest benefit for the software will be more training with
diverse data sets, after which it may be beneficial to run similar studies to evaluate improvement.

6.3. Future Studies
There is a lot of opportunity to build on this study design for future research. Originally, the

study was going to consist of three listening tasks rather than just one. Due to project time
constraints, two of the tasks were set aside. However, the stimuli were still developed and can
still be viewed in appendix D. The two other tasks were sentence-based. The sentences provide
more cues to the brain than isolated words, which may impact the end result. Sentences also
represent a more typical listening experience, which is why it is important to do further studies
using these stimuli.

In addition to different kinds of tasks, the survey population should be varied in future
iterations. As SONA was used as a recruitment service, the majority of participants are in the
early years of their undergraduate degree. It is important to get more data with older participants
who are less confident about their hearing ability but have yet to be diagnosed with a hearing
loss. Since there were also not enough participants with a known hearing loss or auditory
processing disorder to make any meaningful conclusions, these two populations should also be a
focus for future recruitment. Finally, there is a good representation of English as a second
language (ESL) participants in the data. However, performance was not considered as a function
of language experience given time constraints. Moreover, it would be interesting to look at even
more types of languages and different English abilities to see if the algorithm can make listening
to English an easier experience for learners.

In the future, the survey design could be varied to optimize spreading the different
condition types across participants. An alternate counterbalancing procedure in which the
listeners are presented with 12 words in each processing condition rather than 36 in one and none
in the other two would allow for more diverse participant data to further consider placement as a
potential influence to AH’s algorithm. Further consideration should take place about whether the
stimuli should be presented in blocked sets based on the processing type. I chose to arrange
stimuli in random order, but it may be more representative of real world situations by presenting
one noise type at a time.

Further data could also be pulled from this study design in future research. Due to time
constraints, there was not an opportunity to delve into whether there were certain minimal pairs
that the algorithm handled better than others. If one minimal pair has lower intelligibility scores
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than another, the particular verbal formation of that pair may have certain acoustic cues that the
algorithm is not preserving. This would also apply to the voiced versus unvoiced cues within
each pair. As there is an entire international phonetics alphabet, there could be specific testing
done to evaluate how the algorithm handles each phoneme. However, as I have created a stimuli
set with the most semantically meaningful and often confused pairs in the English language,
using the six minimal pairs from my study would likely yield beneficial results without needing
to test the over 45 sounds in the IPA (International Phonetic Association, n.d.).

Lastly, there is more research that can be done with varied processing conditions. In the
future, it will be important to vary the SNR level to see how well the algorithm can handle
different levels of noise. The noise files could also be varied to test for specific population needs.
For example, testing with construction noises in the background could be useful to see how well
the solution could work in a construction industry. Along with the noises, the voices should be
altered to reflect a wider population. Voices with other accents, higher or lower pitches, and
different characteristics should be tested to ensure the algorithm can handle a wider variety of
speech. This algorithm will also need to be tested in different languages as it begins to roll out.
The focus of this particular study was on the maintenance of the quality of English consonants.
English vowels, different phoneme confusion pairs, and whole other languages may react
differently. This is especially true of tonal languages like Mandarin, since entirely different voice
characteristics need to be preserved by AH’s noise removal software (Ortega-Llebaria, Nemoga,
& Presson, 2017).

6.4. Implications
As the noise removal software develops and more studies are run, this technology has

large potential for improving speech intelligibility in a variety of environments. In addition to its
usefulness in applications like Zoom, as discussed in section 1.3, there is a larger demographic
that could benefit from this type of solution. Hearing people may experience a reduction in
fatigue using this software, but people with untreated hearing loss (ie. not using hearing aids,
sign language, or a mix of communication styles) often experience even higher levels of fatigue
from noisy situations, even in high SNR levels and current solutions do not meet their needs
(Bess & Hornsby, 2014).

Even with HAs, as they tend to amplify all noises around the user, it results in the noise
being made louder along with the speech. This can make it more challenging to follow a
conversation. Some HAs use beamforming technology, which means the microphones only pick
up sounds from a certain direction, which can reduce some noise from behind the user (Green et
al., 2022). The problem with this is that the user completely loses all awareness in the directions
where the microphone is not pointing. This could mean, for example, that a HA user would not
be able to hear their name called out if it was behind them and their microphones were set to
only pick up forward sound. HAs also carry a lot of stigma due to their association with aging, as
age-related hearing loss is one of the most common types (Uchida et al., 2018). Not only that,
but HAs are prohibitively expensive, selling for upwards of $5000 a pair. These issues combined
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can lead to a reduced device uptake, resulting in future communication challenges, social
isolation, and increased risk of dementia (WHO, 2023).

In addition to traditional hearing loss, hidden hearing loss is a new term that has been
coined to address folks that have difficulty hearing not due to damage in the structure of the inner
ear, as is common with noise exposure and age decline, but due to the loss of speech processing
neurons in the brain (Monaghan et al, 2020). The result of this neuron loss is typically a normal
audiogram, but significantly increased challenges understanding speech in noise (SIN) (Plack,
Barker, & Prendergast, 2014). The hearing loss is then “hidden” to audiologists, as many only
perform pure tone hearing tests (Portnuff & Bell, 2019). As a result, people may feel that they
have a hearing problem, but do not get the support they need in an audiology clinic (Davidson et
al., 2021). Not only that, but even if this issue was discovered through testing, traditional HAs
are not typically useful, as it is a brain processing issue, not an ear sound reception issue. Given
the relatively new discovery of hidden hearing loss, it is important to begin developing solutions
to help the affected demographic.

Given all of these considerations – such as the difficulties that hearing aids bring,
especially for milder forms of loss that do not require so much amplification, the brain
processing difficulties young people are beginning to experience, and the increased noise in our
real-world and online environments – there is a huge potential for AH’s software to make a
difference.
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Appendix A: Annotated Bibliography

Measuring Intelligibility
- Factors Influencing Listening: Inside and Outside the Head (1984)

- Mentions that the speaker must be aware of the properties of the room in which
they are communicating to ensure appropriate loudness

- Mean Opinion Score (MOS) Revisited: Methods and Applications, Limitations and
Alternatives (2016)

- Compares subjective MOS with the measurement methods described in the ITU
standards

- Recommends MOS be used carefully within context, ie it will never be a perfect
evaluation as one needs to make sure the right questions are being asked in the
right environment

- States the focus of quality design should be on the quality of the experience rather
than the quality of the signal so the goal is to tie back to what the user is
experiencing (hence the benefit of subjective MOS)

- International Telecommunication Union standards for subjective test methodology for
assessing speech intelligibility (2016)

- These standards detail exact procedures for running a subjective MOS evaluation
- The test words from some of my test sets came from the pairs that are proposed in

these standards
- A Short-Time Objective Intelligibility Measure for Time-Frequency Weighted Noisy

Speech (2010)
- Details how STOI was created as a form of measurement
- STOI takes the original clean signal and compares it segment by segment to the

new signal to see how similar they are
- Patterns of English Phoneme Confusions from Native and Non-native Listeners (2004)

- Confusion matrix that displays which phonemes are often confused for one
another in both native and non-native speakers

- Used to inform the first iteration of my study to determine which phonemes to
focus on

- Also used to confirm focus on consonants rather than vowels as vowels in the
English language are a lot more flexible than the distinction between consonants

- An Analysis of Perceptual Confusion Among Some English Consonants (1955)
- Confusion matrix with oft confused phonemes
- Earlier version of the Cutler (2004) study essentially but not looking at how

non-native speakers compare

https://www.tandfonline.com/doi/pdf/10.1080/00405848409543112?casa_token=fR2Pgey6bDAAAAAA:3mwy5kpiMf7qM53xeOxy-zpXwImSP-SPa2RmZfBpN8JrinbkDevAyL0BHECMz72gcsnEI6BfvNrMvf4
https://stefan.winkler.site/Publications/mmsj2016.pdf
https://stefan.winkler.site/Publications/mmsj2016.pdf
https://www.itu.int/rec/T-REC-P.807-201602-I/en
https://www.itu.int/rec/T-REC-P.807-201602-I/en
https://ieeexplore.ieee.org/document/5495701
https://ieeexplore.ieee.org/document/5495701
https://pure.mpg.de/rest/items/item_60592/component/file_60593/content
https://asa.scitation.org/doi/10.1121/1.1907526
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Speech-in-Noise Testing
- Effective Use of Speech-In-Noise Testing in the Clinic (2019)

- Useful in determining the functional capacity of a patient’s hearing system
- States that SIN tests are used infrequently

- An Evaluation of the BKB-SIN, HINT, QuickSIN, and WIN Materials on Listeners With
Normal Hearing and Listeners With Hearing Loss (2007)

- Study compared the results of people with normal (pure tone) hearing and people
with a known hearing loss in a variety of SIN testing scenarios

- Concluded that QuickSIN and WIN are more sensitive than BKB-SIN and HINT
- Development of a Quick Speech-in-Noise Test for Measuring Signal-to-Noise Ratio Loss

in Normal-Hearing and Hearing-Impaired Listeners (2004)
- Details for the QuickSIN test and how it was developed
- The test takes about one minute to do and was based on a previous SIN test that

was longer
- Development of the Hearing in Noise Test for the Measurement of Speech Reception

Thresholds in Quiet and in Noise (1994)
- Sentences used in test are phonemically balanced
- Created to determine the speech reception thresholds for people with hearing loss

so it was known where the challenges arose in conversation
- Development and Validation of the AzBio Sentence List (2012)

- The goal of the study was to create new sentence lists that could be used in SIN
testing

- The testing is targeted at cochlear implant users as well as potential cochlear
implant candidates

- The study to validate the test put the sentences developed through a 5 channel
cochlear implant processor before giving the results to normal hearing listeners to
determine the success of the intelligibility

- The Words-in-Noise Test, List 3, a Practice List (2005)
- Type of SIN test that evaluates monosyllabic words with multitalker babble in the

background
- The SNR is varied to get a more fine tuned idea of how well the participant can

hear in different noisy situations

Psychoacoustics
- Phonetic Feature Encoding in Human Superior Temporal Gyrus (2014)

- Phoneme charts based on where in the brain these specific phonemes activate
- Looking specifically at how certain acoustic features from speech are encoded

into the brain such as how consonants are stored vs vowels

https://journals.lww.com/thehearingjournal/Fulltext/2019/05000/Effective_Use_of_Speech_in_Noise_Testing_in_the.11.aspx
https://pubmed.ncbi.nlm.nih.gov/17675590/
https://pubmed.ncbi.nlm.nih.gov/17675590/
https://asa.scitation.org/doi/abs/10.1121/1.1784440?casa_token=E_GUqBbr2isAAAAA:wZDJpEyVc_iht424-cltQ2lYmh4K2en7RHxpgl-6sqprBPk5fefhPrw38vOEKfyoOfDS99opieDX4-s
https://asa.scitation.org/doi/abs/10.1121/1.1784440?casa_token=E_GUqBbr2isAAAAA:wZDJpEyVc_iht424-cltQ2lYmh4K2en7RHxpgl-6sqprBPk5fefhPrw38vOEKfyoOfDS99opieDX4-s
https://asa.scitation.org/doi/abs/10.1121/1.408469?casa_token=vDSR9RqaukAAAAAA:RcSl_3KWwpNOG88C3BRk75ZbQUsBOpzaobdvXUwwDvhM4yZ4lui5ypp_-7hF9_2tyFBwYFGSPw9ttrs
https://asa.scitation.org/doi/abs/10.1121/1.408469?casa_token=vDSR9RqaukAAAAAA:RcSl_3KWwpNOG88C3BRk75ZbQUsBOpzaobdvXUwwDvhM4yZ4lui5ypp_-7hF9_2tyFBwYFGSPw9ttrs
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643855/
https://pubmed.ncbi.nlm.nih.gov/22353677/
https://pubmed.ncbi.nlm.nih.gov/24482117/
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- Functional Characterization of Human’s Heschl’s Gyrus in Response to Natural Speech
(2021)

- Looking at how the Heschl’s gyrus is responsible for phonetic encoding
specifically related to how this part of the brain is responsible for auditory
processing

- Used EEG to determine how the brain responds to certain stimuli
- Determine the Heschl’s gyrus is instrumental in converting key acoustic features

to gain meaning out of speech
- Hierarchical Encoding of Attended Auditory Objects in Multi-Talker Speech Perception

(2019)
- Study looked at how the brain could focus on one speaker in a multi speaker

situation
- An invasive study was performed and determined that the primary auditory cortex

was unaffected by attention but further processes occurred in the non-primary
auditory cortex that could be predicted through a linear model

- Chronic Traffic Noise Stress Accelerates Brain Impairment and Cognitive Decline in
Mice (2018)

- Traffic noise exposure led to increased cognitive impairment and anxiety like
symptoms in mice

- Study aimed to further supplement other research that confirmed the need for
public health measures to reduce the amount of traffic noise due to the detriment
on human health

- Hearing Loss is Associated with Delayed Neural Responses to Continuous Speech (2022)
- Study compared people with hearing loss to those without and discovered that

those with hearing loss took longer to process speech
- Seemed to be a gradual process over time as the hearing loss became more

impactful on communication

Current Hearing Aid Design
- Neural Plasticity in Hearing Aid Use (2022)

- Untreated hearing loss can result in cognitive decline
- There are encouraging signs that the brain can start to adjust after two weeks with

technological support
- Predicting Hearing Aid Satisfaction in Adults: A Systematic Review of Speech-in-noise

Tests and Other Behavioral Measures (2021)
- Initial surveys indicate that the severity of one’s hearing loss does not correspond

to their satisfaction with their hearing aids, as one may predict
- Conclusion is that patients tested with SIN tests rated higher satisfaction than

those who did pure tone only

https://www.sciencedirect.com/science/article/pii/S1053811921002809
https://www.sciencedirect.com/science/article/pii/S1053811921002809
https://pubmed.ncbi.nlm.nih.gov/31648900/
https://pubmed.ncbi.nlm.nih.gov/31648900/
https://www-sciencedirect-com.proxy.lib.uwaterloo.ca/science/article/pii/S0014488618302012
https://www-sciencedirect-com.proxy.lib.uwaterloo.ca/science/article/pii/S0014488618302012
https://onlinelibrary-wiley-com.proxy.lib.uwaterloo.ca/doi/full/10.1111/ejn.15644
https://www.frontiersin.org/articles/10.3389/fnagi.2022.884917/full
https://pubmed.ncbi.nlm.nih.gov/33883425/
https://pubmed.ncbi.nlm.nih.gov/33883425/
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- Restoring Perceived Loudness for Listeners With Hearing Loss (2018)
- Emphasizes the importance of normalizing perceived loudness
- This paper further looks into specific compression algorithms that can be used to

address the additional challenges that hearing aid processing faces when
mitigating loudness

- Subjective loudness ratings of vehicle noise with the hearing aid fitting methods
NAL-NL2 and trueLOUDNESS (2019)

- Study that occurred after the previous 2018 one (same head researcher Dirk
Oetting)

- Two hearing aid fitting methods were compared to see which one better
normalized the loud noises coming from a vehicle racing track

- trueLOUDNESS was determined to be more effective in restoring people with
hearing loss’s perception of loudness to those of folks without hearing loss

Hidden Hearing Loss
- Perceptual Consequences of Hidden Hearing Loss (2014)

- Confirms that hidden hearing loss is not able to be measured through traditional
audiometric testing

- Noise exposure over lifetime can lead to increased challenges not only in hearing
pure tones but in the additional sound processing like discriminating speech

- Primary Neural Degeneration in the Human Cochlea: Evidence for Hidden Hearing Loss
in the Aging Ear (2019)

- Evidence of auditory nerve connections degenerating over time, causing potential
hearing challenges without being evident with a pure tone audiometry test

- Hidden Hearing Loss Impacts the Neural Representation of Speech in Background Noise
(2020)

- This paper is the best for detailing the actual pathways of the brain that are
affected by hidden hearing loss

- Found that the cause of this type of loss was from noise exposure
- Hidden Hearing Loss: Mixed Effects of Compensatory Plasticity (2020)

- One study on hidden hearing loss found that while some neural pathways can be
damaged, others might actually be better than average, seemingly to compensate

- Confirms that this type of loss is not discernible on pure tone tests and instead can
impact the ability to distinguish between multiple noise sources

https://pubmed.ncbi.nlm.nih.gov/29210810/
https://proceedings.isaar.eu/index.php/isaarproc/article/view/2019-33
https://proceedings.isaar.eu/index.php/isaarproc/article/view/2019-33
https://journals.sagepub.com/doi/10.1177/2331216514550621
https://www-sciencedirect-com.proxy.lib.uwaterloo.ca/science/article/pii/S0306452218305372
https://www-sciencedirect-com.proxy.lib.uwaterloo.ca/science/article/pii/S0306452218305372
https://www.sciencedirect.com/science/article/pii/S0960982220314160#:~:text=These%20results%20show%20that%20noise,noise%20despite%20normal%20hearing%20thresholds.
https://www.sciencedirect.com/science/article/pii/S0960982220314160#:~:text=These%20results%20show%20that%20noise,noise%20despite%20normal%20hearing%20thresholds.
https://www.sciencedirect.com/science/article/pii/S0960982220314238
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Contextual Information From Sentences
- Development and Validation of Sentences Without Semantic Context to Complement the

Basic English Lexicon Sentences (2020)
- Includes a corpus of nonsense sentences to be used for the sentence tests which

can be found here
- Covers more variations of SIN tests
- The experiment is a variation on a SIN test with new nonsense sentences that the

researchers developed
- Context Effects in Sentence Comprehension (1974)

- Distinguishes the effect that context can have in speech comprehension
- Examples from this paper informed the direction of my study method through

clarifying the importance that the placement of a word in a sentence can have on
the comprehension of the phrase

- Why is that? Structural prediction and ambiguity resolution in a very large corpus of
English sentences (2006)

- Explains that the structural set up of a sentence does not imply context and there
are many ambiguities that arise from various expressions that intend to
communicate meaning

- Building a large annotated corpus of learner English: The NUS corpus of learner English
(2013)

- This paper justifies the use of the NUCLE English word corpus that was used in
the O’Neill et al. paper from 2020 that uses the corpus as a basis to creating
nonsensical phrases

- This justification further agrees with my basing the test sentences from my study
off of the NUCLE corpus

- Phoneme-Order Encoding During Spoken Word Recognition: A Priming Investigation
(2019)

- Study looks at how the preceding/surrounding phonemes can impact what
phoneme is perceived in the moment

- This relates to the nonsensical test sentences in my study and justifies why I
needed to add another version of sentences to the study (i.e. knowing where the
target word was placed)

Listening Fatigue
- Listening fatigue in neurotypical college students (2021)

- Perceived fatigue increased but cognitive task success unchanged after a full day
of classes

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582750/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582750/
https://asha.figshare.com/articles/journal_contribution/Development_of_nonsense_sentence_corpus_O_Neill_et_al_2020_/13022900?file=31023904
https://link.springer.com/content/pdf/10.3758/BF03197504.pdf
https://www.sciencedirect.com/science/article/pii/S0010027705000028?casa_token=8QCwbdGoOl0AAAAA:am-orsHbfAWz9QRHtjFDS-nts7IMNKlvJtjbznRgV1q3eZiJPx-kWXP43uYAs-r_hih2Z3mBNX38
https://www.sciencedirect.com/science/article/pii/S0010027705000028?casa_token=8QCwbdGoOl0AAAAA:am-orsHbfAWz9QRHtjFDS-nts7IMNKlvJtjbznRgV1q3eZiJPx-kWXP43uYAs-r_hih2Z3mBNX38
https://aclanthology.org/W13-1703.pdf
https://aclanthology.org/W13-1703.pdf
https://onlinelibrary-wiley-com.proxy.lib.uwaterloo.ca/doi/full/10.1111/cogs.12785
https://onlinelibrary-wiley-com.proxy.lib.uwaterloo.ca/doi/full/10.1111/cogs.12785
https://ttu-ir.tdl.org/handle/2346/86970
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- While listening fatigue is not being looked at in my study, the prime demographic
of who will be doing my study is within the same age range as the one in this
study which can be relevant in terms of cognitive demand that students face after
classes

- What is being measured when looking at listening fatigue? (2014)
- Some researchers are using similar methods to look at listening fatigue but

making different assumptions which leads to a variety of different definitions and
understandings of the effects of listening fatigue

- The effect of auditory fatigue on reaction time in normal hearing listeners at different
signal to noise ratios (2016)

- Higher SNR = lower listening effort but didn’t seem to correspond with fatigue
- Listening effort and fatigue: Are we talking about the same thing? (2013)

- Displays the differences between effort and fatigue in the form of an infographic
backed by research studies from the University of Manchester

- This summary also proposes new words that more intuitively fit with what we
would believe the definitions to be. For example: perceived listening effort as
distinguished from physiological cost of listening

- Listening effort and fatigue in school-aged children with and without hearing loss (2002)
- More effort but seems no change in subjective perceived fatigue

- Neural mechanisms of mental fatigue elicited by sustained auditory processing (2017)
- Using measures such as EEG, ERP, etc.
- Sustained auditory processing can illicit mental fatigue
- Decreased brain activity over time was measured

- Disentangling listening effort and memory load beyond behavioural evidence: Pupillary
response to listening effort during a concurrent memory task (2021)

- While the methodology is too advanced for my thesis (uses eye tracking), the
results and general information they pull to base the study on overlaps a lot

- Listening effort in cochlear implant users: The effect of speech intelligibility, noise
reduction processing, and working memory capacity on pupil dilation response (2022)

- Sound processing with cochlear implant users and pupillary response
- Similar to above study but focusing more on speech intelligibility and the effects

of a noise reduction algorithm
- Listening effort by native and non native speakers due to noise, reverberation, and talker

foreign accent during English speech perception (2019)
- Subjective measurement better captured impacts of alterations in speech signals

on listening effort
- Effects of listening effort based on noise, accent, and reverb

https://www.tandfonline.com/doi/full/10.3109/14992027.2014.890296?casa_token=VxAyPdZpyMoAAAAA%3AD5AjiWV5RYbTjX5jJ7XS0eg4IVVJfzU1I4k-avIwKuIlUUxGlXdgz5TlTjT8fYqFVcWZmQPBmaMQt50
https://core.ac.uk/download/pdf/153207345.pdf
https://core.ac.uk/download/pdf/153207345.pdf
https://my.vanderbilt.edu/listeninglearninglab/files/2014/09/Linkoping-poster-2013.pdf
https://pubs.asha.org/doi/abs/10.1044/1092-4388%282002/046%29
https://www.sciencedirect.com/science/article/pii/S0028393217304001?casa_token=vPEQ0TuwDCMAAAAA:0Ehs8CeYcJwzirGjcJxR6IJoEzI5A8V6llMXlMZGIi11A7qg_o66uSGFMarlGZsMS7QdkQkM3Z8B
https://go-gale-com.proxy.lib.uwaterloo.ca/ps/i.do?p=AONE&u=uniwater&id=GALE%7CA653700352&v=2.1&it=r
https://go-gale-com.proxy.lib.uwaterloo.ca/ps/i.do?p=AONE&u=uniwater&id=GALE%7CA653700352&v=2.1&it=r
https://go-gale-com.proxy.lib.uwaterloo.ca/ps/i.do?p=AONE&u=uniwater&v=2.1&it=r&id=GALE%7CA689995198&inPS=true&linkSource=interlink&sid=bookmark-AONE
https://go-gale-com.proxy.lib.uwaterloo.ca/ps/i.do?p=AONE&u=uniwater&v=2.1&it=r&id=GALE%7CA689995198&inPS=true&linkSource=interlink&sid=bookmark-AONE
https://go-gale-com.proxy.lib.uwaterloo.ca/ps/i.do?p=AONE&u=uniwater&v=2.1&it=r&id=GALE%7CA587973787&inPS=true&linkSource=interlink&sid=bookmark-AONE
https://go-gale-com.proxy.lib.uwaterloo.ca/ps/i.do?p=AONE&u=uniwater&v=2.1&it=r&id=GALE%7CA587973787&inPS=true&linkSource=interlink&sid=bookmark-AONE
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- Listening effort and perceived clarity in normal hearing children with the use of digital
noise reduction (2014)

- Compared two different noise reduction algorithms and gave tasks at various
SNRs

- Response time decreased with noise reduction algorithms (one more than the
other)

- The relationship between speech cognition, behavioural listening effort, and subjective
ratings (2018)

- Participants rated their: (1) mental work, (2) desire to improve the situation, (3)
tiredness, and (4) desire to give up

- Looked at adults with known hearing loss and beamforming technology, but first
half of study focuses on appropriate ways to evaluate listening effort

- Framework for understanding effortful listening (2016)
- A panel of experts came together to create a standard approach to how “effortful”

listening could be evaluated
- The framework ties together both cognitive and physiological models in assessing

listening effort
- Working through COVID-19” ‘Zoom’ gloom and ‘Zoom’ fatigue (2021)

- Notes the cause of the fatigue being in part due to the missing facial cues that we
don’t get online

- Fatigue is also caused from the unnatural soundscape and processing that all the
conversations experience

- Auditory Cognition and Human Performance (2012): Book Review
- Top researchers in the psychoacoustics field: Donald Broadbent, Colin Cherry,

Anne Treisman, Reiner Plomp, Albert Bregman, Neville Moray
- Mental workload theory: human have limited cognitive resources so the goal is to

most efficiently balance the mental workload required for a task; this is affected if
the brain needs to work harder for speech comprehension

- Speech comprehension can already require more effort through difficulty with
syntax, accents, unfamiliar words, etc.

- Main point: Degraded speech signal increases cognitive effort

Functional Load
- Bridging phonological system and lexicon: Insights from a corpus study on functional

load (2015)
- Looked at tonal and non-tonal languages → including English and French
- Determined that there’s a consonantal bias across non-tonal
- Has some references to types of qualities that go into what distinguishes a sound

such as stress, tone, and segmentals

https://oce-ovid-com.proxy.lib.uwaterloo.ca/article/00003446-201403000-00005/HTML
https://oce-ovid-com.proxy.lib.uwaterloo.ca/article/00003446-201403000-00005/HTML
https://journals-scholarsportal-info.proxy.lib.uwaterloo.ca/details/14992027/v57i0006/457_trbsrbleasr.xml
https://journals-scholarsportal-info.proxy.lib.uwaterloo.ca/details/14992027/v57i0006/457_trbsrbleasr.xml
https://journals.lww.com/ear-hearing/Fulltext/2016/07001/Hearing_Impairment_and_Cognitive_Energy__The.2.aspx
https://academic.oup.com/occmed/article/71/3/164/6218762?login=true
https://journals-scholarsportal-info.proxy.lib.uwaterloo.ca/details/00954470/v53icomplete/153_bpsaliacsofl.xml
https://journals-scholarsportal-info.proxy.lib.uwaterloo.ca/details/00954470/v53icomplete/153_bpsaliacsofl.xml
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- Functional loads of pronunciation features in nonnative speakers’ oral assessments (2014)
- Looks at intelligibility and functional load as it interacts with different ways to

form sound (ex. fricatives)
- High functional load inhibits phonological contrast loss: A corpus study (2013)

- Study looked at minimal pairs in relation to functional load
- Phoneme contrasts that have a high functional load are less likely to experience

phonemic merge and thereby remain more distinct
- Functional load of fundamental frequency in the native language predicts learning and

use of these cues in second-language speech segmentation (2016)
- Looking at English, French, and Dutch and used eye tracking methods
- Understanding how functional load of fundamental frequency intersects with

second language learners and their understanding of the sound
- Bridging phonological system and lexicon: Insights from a corpus study on functional

load (2015)
- Consonantal bias across languages
- Comparing nine different languages and their various phonemic representations

French Phonetics
- Phonetic restrictions condition the realization of vowel nasality and nasal coarticulation:

Duration and airflow measurements in Quebecois French and Brazilian Portuguese
(2018)

- Nasal vowels have more contrastive structure but less variability than if it has less
contrastive structure

- Note: It was determined that French is outside the scope of this project, but it was
important to gain some basic understanding as it will hopefully be used in further
iterations of the study

- Assessing distinctiveness of phonological features in word recognition: Prelexical and
lexical influences (2017)

- Manner contrasts matters more than place or voicing in French
- Place has higher functional load in nouns than voicing and manner

- Frenchville French: A case study in phonological attrition (2004)
- There are different reasons as to why a shift in phonemic expression may occur

that cannot solely be tied to functional load
- Other reasons: cultural identity, acoustic salience, and other articulatory demands

https://onlinelibrary-wiley-com.proxy.lib.uwaterloo.ca/doi/full/10.1002/tesq.152
https://journals-scholarsportal-info.proxy.lib.uwaterloo.ca/details/00100277/v128i0002/179_hflipclacs.xml
https://asa-scitation-org.proxy.lib.uwaterloo.ca/doi/10.1121/1.4970637
https://asa-scitation-org.proxy.lib.uwaterloo.ca/doi/10.1121/1.4970637
https://journals-scholarsportal-info.proxy.lib.uwaterloo.ca/details/00954470/v53icomplete/153_bpsaliacsofl.xml
https://journals-scholarsportal-info.proxy.lib.uwaterloo.ca/details/00954470/v53icomplete/153_bpsaliacsofl.xml
https://www.sciencedirect.com/science/article/pii/S009544701730222X
https://www.sciencedirect.com/science/article/pii/S009544701730222X
https://www.sciencedirect.com/science/article/pii/S009544701730222X
https://journals-scholarsportal-info.proxy.lib.uwaterloo.ca/details/00954470/v62icomplete/1_atdopfwrpali.xml
https://journals-scholarsportal-info.proxy.lib.uwaterloo.ca/details/00954470/v62icomplete/1_atdopfwrpali.xml
https://go-gale-com.proxy.lib.uwaterloo.ca/ps/i.do?p=AONE&u=uniwater&id=GALE%7CA131762071&v=2.1&it=r
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Machine Learning
- Acoustic landmarks contain more information about the phone string than other frames

for automatic speech recognition with deep neural network acoustic model (2018)
- Rather than looking at each speech frame as identical, using landmarks in speech

such as pauses and frequency jumps, one can develop a heuristic model to more
efficiently detect speech

- This is useful in distinguishing between speech and noise in terms of AH’s
algorithm

- It’s About Time: Minimizing Hardware and Software Latencies in Speech Research with
Real-Time Audio Feedback (2020)

- 50 ms latency is when speech production begins to be impacted by the delay in
speech processing

- The processing latency must be calculated to include both hardware and software
processing times as often only one of the two are considered and both can add up
to be more substantial

Miscellaneous
- Nyquist sampling theorem: understanding the illusion of a spinning wheel captured with

a video camera (2014)
- Explaining the Nyquist theorem: essentially that you want double the sample rate

of the highest expected frequency
- This paper was used to inform what sampling rate should be used for the text to

speech voice clips that will be used in my own study
- A status report on loudness control technologies and standardization for broadcasting

(2011)
- Canada guidelines for broadcast loudness mixing
- This is how -24 LUFS was chosen as a value to normalize the sound files in my

study
- FDA finalizes history rule enabling access to over-the-counter hearing aids for millions

of Americans (2022)
- Formal announcement when OTC hearing aids were allowed to be sold in the

United States
- Hearing Loss Among World Trade Centre Firefighters and Emergency Medical Service

Workers (2019)
- The most interesting thing is they found increased hearing sensitivity which might

be an indicator of hidden hearing loss
- In general found an increased risk in developing hearing loss due to the conditions

experienced on the job as an emergency worker

https://experts.illinois.edu/en/publications/acoustic-landmarks-contain-more-information-about-the-phone-strin
https://experts.illinois.edu/en/publications/acoustic-landmarks-contain-more-information-about-the-phone-strin
https://go-gale-com.proxy.lib.uwaterloo.ca/ps/i.do?p=AONE&u=uniwater&id=GALE%7CA633625327&v=2.1&it=r
https://go-gale-com.proxy.lib.uwaterloo.ca/ps/i.do?p=AONE&u=uniwater&id=GALE%7CA633625327&v=2.1&it=r
https://iopscience.iop.org/article/10.1088/0031-9120/49/6/697/meta
https://iopscience.iop.org/article/10.1088/0031-9120/49/6/697/meta
https://crtc.gc.ca/eng/publications/reports/rp110318.htm
https://crtc.gc.ca/eng/publications/reports/rp110318.htm
https://www.fda.gov/news-events/press-announcements/fda-finalizes-historic-rule-enabling-access-over-counter-hearing-aids-millions-americans
https://www.fda.gov/news-events/press-announcements/fda-finalizes-historic-rule-enabling-access-over-counter-hearing-aids-millions-americans
https://oce-ovid-com.proxy.lib.uwaterloo.ca/article/00043764-201912000-00006/HTML
https://oce-ovid-com.proxy.lib.uwaterloo.ca/article/00043764-201912000-00006/HTML
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- An Online Headphone Screening Test Based on Dichotic Pitch (2021)
- Test to determine whether participants are using speakers or headphones
- Using the Huggins Pitch test alone has a 20% false positive rate
- Useful in ensuring that participants are both using headphones (as requested) and

adjusting the volume to a comfortable level before starting the test
- Cerebellar contributions to speech production and speech perception: psycholinguistic

and neurobiological perspectives (2008)
- Gives a summary of how speech is formed and is then received into the brain
- Highlights the importance of the cerebellum in speech production

- The neural bases of difficult speech comprehension and speech production: Two
Activation Likelihood Estimation (ALE) meta-analyses (2012)

- Lists variant situations in which someone might be trying to communicate (ex.
background noise and difference in speech rate)

- Believes that portions of the brain responsible for speech production are also
responsible for speech comprehension

https://link.springer.com/article/10.3758/s13428-020-01514-0
https://www-sciencedirect-com.proxy.lib.uwaterloo.ca/science/article/pii/S0166223608001161
https://www-sciencedirect-com.proxy.lib.uwaterloo.ca/science/article/pii/S0166223608001161
https://www-sciencedirect-com.proxy.lib.uwaterloo.ca/science/article/pii/S0093934X12000867
https://www-sciencedirect-com.proxy.lib.uwaterloo.ca/science/article/pii/S0093934X12000867
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Appendix B: Test Sets for the Study

Beginning of Word Targets

Set1 Set2 Set3

Tie Die Teen Dean To Do

Zap Sap Zoo Sue Zip Sip

Choke Joke Chin Gin Char Jar

Peak Beak Pan Ban Pat Bat

Game Came Guard Card Gap Cap

Van Fan Vat Fat Veer Fear

Middle of Word Targets

Set1 Set2 Set3

Centre Sender Venting Vending Panter Pander

Raising Racing Phases Faces Lazy Lacy

Etching Edging Perching Purging Searching Surging

Simple Symbol Staple Stable Repelling Rebelling

Bugging Bucking Angle Ankle Plugging Plucking

Waver Wafer Proving Proofing Divine Define

End of Word Targets

Set1 Set2 Set3

Mat Mad Cot Cod Pot Pod

Eyes Ice Buzz Bus Laws Loss

Batch Badge Lunch Lunge Rich Ridge

Lap Lab Nip Nib Rope Robe

Sag Sack Tag Tack League Leak

Strive Strife Relieve Relief Calve Calf
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Appendix C: Stimuli Frequencies in COCA

Beginning of Word Target Phonemes*
Set1 Set2 Set3

Die 106573 Tie 30026 Teen 15965 Dean 33918 To 25554050 Do 4501699

Sap 2883 Zap 1231 Zoo 10252 Sue 18603 Zip 6635 Sip 6428

Joke 36066 Choke 4246 Chin 15161 Gin 4185 Char 1274 Jar 9346

Peak 24736 Beak 2005 Ban 22905 Pan 26904 Pat 28493 Bat 14942

Game 311173 Came 402970 Guard 56589 Card 70441 Cap 26168 Gap 29157

Fan 48508 Van 51178 Vat 1519 Fat 76374 Veer 1186 Fear 103493

*Bolded words show that each set has one pair where there is a large inconsistency in the pair’s
frequency. Because there is one per set, they are equally distributed and should not have a large
overall impact on the final intelligibility scores.

Middle of Word Target Phonemes
Set1 Set2 Set3

Centre 11492 Sender 1335 Venting 1296 Vending 2436 Panter 30 Pander 829

Racing 18748 Raising 35440 Phases 6453 Faces 47544 Lacy 2014 Lazy 12589

Etching 1043 Edging 1635 Perching 224 Purging 851 Searching 24688 Surging 2216

Simple 120703 Symbol 17886 Stable 25655 Staple 4155 Repelling 359 Rebelling 614

Bucking 1025 Bugging 1475 Angle 24282 Ankle 19394 Plucking 1040 Plugging 1562

Waver 718 Wafer 973 Proofing 221 Proving 8491 Define 24870 Divine 18997

End of Word Target Phonemes*
Set1 Set2 Set3

Mat 6279 Mad 39863 Cod 4334 Cot 2011 Pod 4314 Pot 26333

Ice 78320 Eyes 251742 Buzz 12322 Bus 49900 Loss 90774 Laws 78602

Batch 5926 Badge 6755 Lunch 51250 Lunge 1187 Ridge 15423 Rich 84507

Gap 29157 Gab 617 Nip 1200 Nib 177 Rope 14245 Robe 5807

Sag 1596 Sack 8432 Tack 3050 Tag 15788 League 72457 Leak 8753

Strive 6318 Strife 2661 Relief 38847 Relieve 5456 Calf 4267 Calve 89
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Appendix D: Test Sentences for Future Studies

With Knowledge of Target Word Placement

Problem Phoneme at the Beginning of the Word

Set1
The next word I am going to say is die.
The next word I am going to say is tie.
The next word I am going to say is sap.
The next word I am going to say is zap.
The next word I am going to say is choke.
The next word I am going to say is joke.
The next word I am going to say is peak.
The next word I am going to say is beak.
The next word I am going to say is game.
The next word I am going to say is came.
The next word I am going to say is fan.
The next word I am going to say is van.

Set2
The next word I am going to say is teen.
The next word I am going to say is dean.
The next word I am going to say is zoo.
The next word I am going to say is sue.
The next word I am going to say is chin.
The next word I am going to say is gin.
The next word I am going to say is ban.
The next word I am going to say is pan.
The next word I am going to say is guard.
The next word I am going to say is card.
The next word I am going to say is vat.
The next word I am going to say is fat.

Set3
The next word I am going to say is to.
The next word I am going to say is do.
The next word I am going to say is zip.
The next word I am going to say is sip.
The next word I am going to say is char.
The next word I am going to say is jar.
The next word I am going to say is pat.
The next word I am going to say is bat.
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The next word I am going to say is cap.
The next word I am going to say is gap.
The next word I am going to say is veer.
The next word I am going to say is fear.

Problem Phoneme in the Middle of the Word

Set1
The next word I am going to say is centre.
The next word I am going to say is sender.
The next word I am going to say is racing.
The next word I am going to say is raising.
The next word I am going to say is etching.
The next word I am going to say is edging.
The next word I am going to say is simple.
The next word I am going to say is symbol.
The next word I am going to say is bucking.
The next word I am going to say is bugging.
The next word I am going to say is waver.
The next word I am going to say is wafer.

Set2
The next word I am going to say is venting.
The next word I am going to say is vending.
The next word I am going to say is phases.
The next word I am going to say is faces.
The next word I am going to say is perching.
The next word I am going to say is purging.
The next word I am going to say is stable.
The next word I am going to say is staple.
The next word I am going to say is angle.
The next word I am going to say is ankle.
The next word I am going to say is proofing.
The next word I am going to say is proving.

Set3
The next word I am going to say is panter.
The next word I am going to say is pander.
The next word I am going to say is lacy.
The next word I am going to say is lazy.
The next word I am going to say is searching.
The next word I am going to say is surging.
The next word I am going to say is repelling.
The next word I am going to say is rebelling.
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The next word I am going to say is plucking.
The next word I am going to say is plugging.
The next word I am going to say is define.
The next word I am going to say is divine.

Problem Phoneme at the End of the Word

Set1
The next word I am going to say is mat.
The next word I am going to say is mad.
The next word I am going to say is ice.
The next word I am going to say is eyes.
The next word I am going to say is batch.
The next word I am going to say is badge.
The next word I am going to say is lap.
The next word I am going to say is lab.
The next word I am going to say is sag.
The next word I am going to say is sack.
The next word I am going to say is strive.
The next word I am going to say is strife.

Set2
The next word I am going to say is cod.
The next word I am going to say is cot.
The next word I am going to say is buzz.
The next word I am going to say is bus.
The next word I am going to say is lunch.
The next word I am going to say is lunge.
The next word I am going to say is nip.
The next word I am going to say is nib.
The next word I am going to say is tack.
The next word I am going to say is tag.
The next word I am going to say is relief.
The next word I am going to say is relieve.

Set3
The next word I am going to say is pot.
The next word I am going to say is pod.
The next word I am going to say is loss.
The next word I am going to say is laws.
The next word I am going to say is ridge.
The next word I am going to say is rich.
The next word I am going to say is rope.
The next word I am going to say is robe.
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The next word I am going to say is league.
The next word I am going to say is leak.
The next word I am going to say is calf.
The next word I am going to say is calve.

Without Context
These sentences were developed from the corpus created in the study Development and

Validation of Sentences Without Semantic Context to Complement the Basic English Lexicon
Sentences (O’Neill et al., 2020).

Problem Phoneme at the Beginning of the Word

Set1
His vegetables carried in a large tie.
My die drinks in the crowded school.
That doctor hates more sap.
Our places taste the zap.
The choke and fruit sing again.
A theatre planned foreign joke.
The course offers a thirsty beak.
The tired station cooks for her peak.
The driver earned from the game.
The foreign dancing came fresh.
The fan loves old cake.
The pretty van is angry.

Set2
The cold teen scored the questions.
The dean fell during their week.
They found the grape zoo brightly.
The birthday desserts sue the soup.
The chicken studies above the chin.
The artists gin the company.
The expensive ban gives the market.
A peaceful pan is exciting to visit.
The last guard broke everyone.
A large card was honest and upset.
The best vat is softly small.
The fat eats things through the shoes.

Set3
The hotel sells to the wood advice.
The people who write after do hurt.
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The strangers zip on the blueberry water.
The flags sip the last team.
The funny pets char noodles.
An excited jar loves breaks.
The troubled grade is pat easily.
They wrote cake on the green bat.
The cap sells proud salt.
A helpful gap expected the plants
The babies veer over the river.
The great lady saves fear.

Problem Phoneme in the Middle of the Word

Set1
The centre kid was colourful and weak.
A child chased down the sender.
These racing months baked into a game.
My white mouse needs my raising.
Her etching singer lives clean.
She felt the grandparents edging across the oven.
Their fun truths simple first.
The nice symbol goat dried great.
The talented animals were bucking the grandmother.
A metal pepper was usually bugging sports.
The leaves waver tools together.
The sweet wafer wants glasses.

Set2
The grocery person is venting a farm.
The horrible computer was vending recently.
The stressful phases are the french bar.
The young faces are completely green.
A football lunch had a perching shirt.
The restaurant is purging the three holidays.
The stable street upset the tourist.
The teenagers took staple snacks.
A late angle bothered the house.
That terrible maid watches ankle.
A wife is proofing sweet apples.
The team is proving kind in the meal.

Set3
The large food is panter inspired today.
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The three brushes pander newspaper.
The lacy sports sold monkeys.
Her support was lazy and weekly talking.
The searching mountain reads languages.
The smart bread is surging the pig.
Her adult is repelling early rain.
A snake is rebelling the unfair wedding.
Our day was plucking short questions.
A fresh sky is plugging high.
The blue juice needs to define my fight.
The divine dog patted soup.

Problem Phoneme at the End of the Word

Set1
The mat store was always relaxing.
The mad key was strange and in need.
The ice heard across the vegetables.
The fat eyes were difficult and funny.
The divorced pink batch was huge.
The ruined and sad badge is difficult.
They lap six games on the sun.
The family was assigned to the loud lab.
The daily confusing sag is not hungry.
The lesson saw the sack.
The classes strive dedicated garden.
The strife cut through the helpful news.

Set2
The simple cod is the youngest sister.
The television cot tasted tomorrow.
The buzz won our wooden workers.
Our bus buys more sky.
The lunch lives late on the fence.
The math lunge bakes suddenly.
The fruit nip five writers.
The nib played some dangerous drinks.
A far tack bought children.
The two gloves had their english tag.
The clear money was cooked with relief.
The last grandpas relieve the eggs.

Set3
The pod made the hot fly.
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The tired pot was very tiny.
The army created big loss.
A bird roasts the full laws.
A ridge ate strong stories.
The rich stranger intrigued his instructor.
A rope came down the gifts.
The robe trusts the lady.
The four songs are a sick league.
A calm leak needs for flowers.
The school bag had the dry calf.
The calve starts from the football forest.


