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Abstract

The conventional optimization assumes that the problem and its parameters are known,

and it utilizes this information to determine the optimal solution. Inverse optimization

works in reverse by determining different parameters of an optimization model such that

a given dataset of observed decisions from the past becomes optimal for the model. The

parameters imputed through inverse optimization can be in the objective function and/or

the constraints of the model. When inferring the constraint parameters, the choice of

objective for the inverse optimization problem can result in different inverse optimal so-

lutions. However, it is unclear which solution provides the best fit to the data. In this

study, a goodness-of-fit measure is first introduced to evaluate the fit between the model

and data and determine the quality of the inferred feasible region based on the distances

of data points from its boundary. Next, employing this measure as the objective function,

a multi-point inverse optimization problem under the Euclidean norm is proposed to infer

the feasible region of a linear optimization model. Given the nonlinear nature of the Eu-

clidean norm, a relaxation technique using the non-smooth L1 penalty function is proposed

for the inverse optimization problem. This reformulates the non-convex mixed-integer

quadratically-constrained programming problem into a mixed-integer quadratic program-

ming problem which is more tractable. Then, an exact heuristic method and a greedy

heuristic method are introduced to alleviate the computational challenges of the problem.

Finally, two application examples to illustrate the practicality and effectiveness of our

proposed model and solution approach are presented. In the first application, our model

determines the implicit criteria based on which a patient is identified as an outpatient

without requiring hospital supervision. The second application focuses on improving the

recommended diets by uncovering hidden preferences and suggesting meal plans based on

individuals’ past food choices.
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Chapter 1

Introduction

In recent years, due to the availability of data, Inverse optimization (IO) has become a

popular topic. Researchers have been able to explore and apply IO techniques in various

domains, such as healthcare, transportation, power systems, and finances and economics

(Chan et al., 2021b). This growing trend is due to the fact that IO can uncover valuable

insights and improve decision-making processes by inferring the unknown parameters of

an optimization problem. By analyzing data available from past decisions, IO allows

researchers to build models that can be used to generate meaningful solutions for future

decisions.

Unlike conventional optimization which determines the optimal decision of a perfectly-

known optimization model, IO works reversely. It observes the decision(s) and imputes

the objective or constraint parameters of the underlying optimization model such that

each observed decision becomes optimal or near-optimal for the model. The conventional

optimization problem is often called Forward optimization (FO) problem, and hence, IO de-

termines the unknown parameters of the forward problem given a set of observed solutions
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(Ahuja and Orlin, 2001). In the literature, certain parameters of the forward problem such

as the objective coefficients, Left-hand side (LHS), and/or Right-hand side (RHS) vectors,

are often inferred by solving an IO problem. In this sense, IO aims to fit an optimization

model to some observed data that represent past solutions to the problem.

In the literature, for IO problems that impute the objective function, a goodness-of-fit

measure is introduced to assess the fit between the inferred model and observed decisions.

This metric measures the error in fit in terms of the projected distance of the decision points

to the constraints of the model. However, such a measure cannot be used to evaluate the

fit between the model and data when inferring the constraints of a FO problem. The

literature offers certain linear measures of quality for problems that infer constraints, but

these measures cannot be generally used to evaluate the fit between feasible regions.

This thesis makes the following specific contributions:

• First, we introduce a goodness-of-fit metric based on the Euclidean distance that

holds three key properties: (1) it provides the feasible region with minimum Eu-

clidean distance of observations from its boundary, (2) the metric improves when

constraints are added to the feasible region, and (3) it yields a feasible region with a

better Euclidean fit compared to other existing linear measures. The metric is also

insensitive to redundant constraints and it changes monotonically as the number of

constraints changes.

• Second, we present a multi-point IO model that employs the proposed goodness-of-fit

measure as its objective function. Our aim is to determine the feasible region of a

linear FO problem with maximum Euclidean fit.

• Third, we propose a tractable formulation for the inverse model to alleviate the

complexity of the resulting non-linear model by implementing an equivalent simpler
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reformulation by L1 penalty function method, a heuristic algorithm to find the exact

solution, and a greedy heuristic algorithm to find a high-quality approximate solution

efficiently.

Finally, we apply the proposed methodology to two applications in the healthcare sector,

patient classification and diet planning problems. First, we infer the underlying criteria

used for determining the severity of a patient’s illness which affects the decision of whether

the patient should be admitted (inpatient) or sent home shortly (outpatient). The proposed

model finds linear criteria based on which outpatients are identified using laboratory report

data from hospitalized patients. Second, by utilizing a dieter’s past food choices, we use

IO to find an individualized meal plan that not only meets their dietary needs but also

takes into account their food preferences.

The structure of the remainder of this thesis is as follows. In Chapter 2, we present

different variations of IO and review the relevant literature in each section. In Chapter 3, we

propose the goodness-of-fit measure, develop the IO formulation, and present the solution

methods to solve the problem. In Chapter 4, we perform different tests on the model and

data to evaluate the performance of the inverse model and solution methods. This thesis

concludes with highlights of findings and future research directions in Chapter 5.

3



Chapter 2

Literature Review

IO has recently gained significant attention and popularity in both theoretical research

and practical applications (Chan et al., 2021b). There are many different variations of IO

problems in the literature. These variations arise from the type of inferred parameters,

the structure of the FO problem, data characteristics, and the objective function of the IO

problem. In this chapter, each of these variations is further explained and a review of the

relevant literature is provided.

2.1 Parameters inferred in inverse optimization

The parameters that are imputed by IO can be in the objective function and/or constraints.

The first paper on IO goes back to the 1990s when Zhang et al. (1995) proposed an

inverse shortest path problem to find the weight of arcs in the objective function such

that the deviations from the estimated values are as small as possible. Zhang and Liu

(1996) applied the optimality conditions on inverse minimum cost flow and assignment
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problems to perturb the cost associated with decision variables so as to make the observed

solution optimal. Ahuja and Orlin (2001) developed a general IO framework to estimate

the objective coefficients of a linear optimization model. In the literature, there have

been studies that focused on imputing the objective function of a single-objective FO

problem (Keshavarz et al., 2011; Tavaslıoğlu et al., 2018; Aswani et al., 2018; Ghate, 2020b;

Shahmoradi and Lee, 2022b), as well as other studies that concentrated on determining the

objective weights for a multi-objective FO problem (Sayre and Ruan, 2014; Chan et al.,

2014; Boutilier et al., 2015; Goli et al., 2018; Chan and Lee, 2018; Gebken and Peitz, 2021;

Babier et al., 2021).

While the literature on IO has mostly focused on objective inference, a few papers have

focused on finding the RHS of the constraints alongside the objective. Dempe and Lohse

(2006) estimated the objective function and RHS by developing a model that minimizes the

distance between the observed point and the optimal solution. Chow and Recker (2012)

estimated the objective coefficients and RHS of the household activity pattern problem

such that the perturbation of the parameter from the initial belief is minimized under the

L1 norm. Černỳ and Hlad́ık (2016) studied inverse linear programming with intervals in

the RHS and/or the objective function. Saez-Gallego and Morales (2017) found the RHS

and objective parameters of a linear forward problem given a time series of decisions.

Extending from inferring the RHS only, Chan and Kaw (2020) proposed two IO models

in which the LHS parameters are imputed in addition to the objective coefficients based

on a single observed optimal solution. Most closely related to our work, Ghobadi and

Mahmoudzadeh (2021) and Mahmoudzadeh and Ghobadi (2022) proposed IO methods for

inferring complete constraint parameters, including both RHS and LHS, in a linear FO

problem with a known objective and multiple observations.

IO models for constraints inference are structurally and mathematically different from
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those that only infer the objective. When imputing the objective parameters, the inferred

objective needs to maintain the optimality of the observed optimal point. To achieve this,

the relevant inverse problem often enforces dual feasibility and strong duality constraints,

ensuring that the forward problem has an optimal solution. Ahuja and Orlin (2001) em-

ployed dual feasibility and complementary slackness optimality conditions to develop the

IO problem. Chan et al. (2019) addressed this problem using strong duality conditions

instead of complementary slackness. On the other hand, when inferring constraint param-

eters, it is essential to consider primal feasibility in addition to dual feasibility and strong

duality constraints. This is necessary to ensure that the inferred constraints maintain fea-

sibility for all observations (Ghobadi and Mahmoudzadeh, 2021). As a result, the IO for

constraints inference becomes nonlinear and therefore more complex, making it relatively

less studied in the literature.

2.2 Structure of the forward problem

The structure of the forward problem is a key factor in the tractability of the IO problem.

It impacts the complexity of the IO and the choice of mathematical techniques that can be

used to solve the inverse problem (Chan et al., 2021b). The literature has considered the

structure of the forward model to be linear, conic, convex, or discrete (Chan et al., 2021b).

In a linear forward problem, both the objective and the constraints are considered to be

linear. This type of problem has been addressed in many papers. Ahuja and Orlin (2001),

Chan et al. (2019), Ghate (2020b), Babier et al. (2021), and Shahmoradi and Lee (2022b)

solved the problem of finding the objective of a linear optimization problem. There are

also studies in which some of the constraint parameters of the linear forward problem are

imputed (Güler and Hamacher, 2010; Černỳ and Hlad́ık, 2016; Saez-Gallego and Morales,
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2017; Chan and Kaw, 2020; Ghobadi and Mahmoudzadeh, 2021).

When the forward problem is not linear, ensuring the optimality of the observations

becomes more complex. When the model belongs to specific classes such as convex or

conic optimization, the Karush–Kuhn–Tucker (KKT) conditions serve as sufficient opti-

mality condition (Mahmoudzadeh and Ghobadi, 2022). In conic and convex models, any

combination of linear, second-order, and quadratic objective being optimized over a lin-

ear, second-order, or semidefinite cone is possible. In this class, Iyengar and Kang (2005)

presented the IO of a conic program. They used KKT conditions as sufficient conditions

for the optimality of the given observation. Zhang and Zhang (2010) proposed an inverse

conic programming problem with a quadratic objective and linear constraints. Their model

minimizes the perturbation of the objective function such that the solution becomes op-

timal. Keshavarz et al. (2011) and Aswani et al. (2018) applied KKT conditions to find

the objective coefficient of a convex optimization problem. Zhang et al. (2010) and Zhang

et al. (2015) addressed the inverse quadratic and second-order cone quadratic programming

problems, respectively.

The discrete models refer to (mixed) integer linear programs. The optimality of discrete

FO problems cannot be easily represented by a small number of equations, such as the KKT

conditions (Chan et al., 2021b). Using the strong duality and dual feasibility conditions,

similar to the linear forward problem, will lead to an IO problem with a large number of

variables and constraints (Schaefer, 2009). An alternative approach for this type of forward

model involves iterative algorithms that employ cutting planes to enhance the accuracy of

the approximate solution for the inverse model (Wang, 2009). Bulut and Ralphs (2021),

Lamperski and Schaefer (2015), Moghaddass and Terekhov (2021), and Bodur et al. (2022)

studied the discrete forward problem where the cost vector is unknown.
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2.3 Data characteristics

The input of the IO problem can be one or multiple observations that are optimal, near-

optimal feasible or infeasible. In single-point IO, one observed decision is available, while

in multi-point IO, there is a finite number of observations Ghobadi and Mahmoudzadeh

(2021). In objective inference, the single-point IO problems often include one feasible

observed decision that can be optimal (Zhang and Liu, 1996, 1999; Iyengar and Kang,

2005; Zhang et al., 2010; Ghate, 2020b) or near-optimal (Aswani et al., 2018; Chan et al.,

2019). Chan et al. (2014) and Naghavi et al. (2019) also considered a single-point problem,

but with the recognition that the observation may be infeasible. The case of multiple near-

optimal observed decisions has also gained attention in objective inference (Keshavarz et al.,

2011; Bertsimas et al., 2015; Ajayi et al., 2022). In recent years, some studies considered

the possibility of infeasible observations that are made near-optimal (Mohajerin Esfahani

et al., 2018; Ahmadi et al., 2020a). Shahmoradi and Lee (2022b) considered sub-optimal

or infeasible observations to find the cost function of a linear optimization model. Babier

et al. (2021) proposed an IO model that infers the objective function with an ensemble of

decisions that may be feasible or infeasible.

Dempe and Lohse (2006) and Chow and Recker (2012) addressed IO problems that

impute cost vector and RHS based on a single feasible observation where the sub-optimality

gap was taken into account. Chan and Kaw (2020) and Güler and Hamacher (2010) also

considered the sub-optimality gap in inverse problems to infer cost vector and LHS, and

RHS, respectively, given a single observed decision. In case of inferring the full constraints

parameters, Ghobadi and Mahmoudzadeh (2021) considered multiple feasible observations.

Mahmoudzadeh and Ghobadi (2022) proposed an IO method, which incorporates both

feasible and infeasible observations.
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2.4 Objective of the inverse optimization problem

In classical IO, a measure of the error in the fit between the model and data is minimized

(Chan et al., 2019). When inferring the objective, the optimality condition is considered

as a measure of the error. If the optimally conditions are satisfied, the error in the fit will

become zero. In the linear FO problem, the model is a good fit to the decision points if

all points are on the boundaries of the feasible region. On the other hand, if some of the

observed decisions are interior points, then the error in the fit will get a positive value.

Based on the choice of the objective function and the norm, the types of the error and

subsequently, the structure of the IO problem can be different (Chan et al., 2019). In the

literature on objective inference, there exist three distinct variations of the inverse models

based on the objective function of the inverse model: (1) the p-norm error, that is measured

in terms of the distance between the observed decision and the inferred optimal decision,

(2) absolute duality gap, in which error is measured in terms of the objective function value

of the observed decision and the inferred optimal decision, and (3) relative duality gap, in

which the error is measured in terms of the competitive ratio of the objective function value

of the observed decision and the inferred optimal decision. Güler and Hamacher (2010)

investigated the minimum cost flow problem with the unknown arc capacities. Given a

feasible flow, the capacities are estimated so that the solution becomes near-optimal under

L1 norm and L∞ norm. Chan et al. (2014) suggested two inverse models that sought to

minimize the sub-optimality measures, absolute and relative duality gaps. Moghaddass

and Terekhov (2021) considered the L1 norm and L∞ norm as measures for evaluating the

error in the fit.

While the optimality conditions can be utilized as an error metric for inverse models

that infer the objective, the sub-optimality measures cannot be employed as the objective
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function when inferring the constraints. The rationale behind this is that, since the objec-

tive is known, the optimal point can be identified among the observations, and it is always

possible to ensure that the optimality condition is satisfied by adjusting the constraints.

This is because at least one of the inferred constraints, which is orthogonal to the cost

vector, can pass through the optimal point, resulting in an optimality gap of zero for the

best observed solution. Ghobadi and Mahmoudzadeh (2021) studied several loss functions

for the IO problem that infers constraints. They presented two scenarios: one involving

a prior belief regarding the constraint parameter, and another in which no prior belief is

present. In the first scenario, the objective is to minimize the distance between the imputed

parameters and a prior belief on what the constraints should look like. In the second case,

the focus is on inferring the constraint parameters in a manner that minimizes different

linear measures of distance between the observations and the constraints.

2.5 Applications of inverse optimization

IO has been employed in a wide range of domains, demonstrating its versatility and diverse

applications. In every domain, a dataset of past decisions is observed, and the decision-

making model that most accurately reflects those decisions is determined. Some examples

of well-studied applications are listed below:

• Healthcare: IO has attracted interest within healthcare systems and treatment

planning. Chan et al. (2021a) imputed the arc costs in a clinical pathway prob-

lem such that the reference pathways represent optimal solutions to an optimization

problem formulated on this network. Considerable research has been undertaken to

explore the application of IO in the field of radiation therapy treatment planning
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(Chan et al., 2014; Boutilier et al., 2015; Babier et al., 2018; Chan and Lee, 2018;

Ajayi et al., 2022; Ghate, 2020a; Mahmoudzadeh and Ghobadi, 2022). Diet recom-

mendation represents another domain where IO finds application (Ghobadi et al.,

2018; Ahmadi et al., 2020a; Shahmoradi and Lee, 2022b,a). In (Ghobadi and Mah-

moudzadeh, 2021), the dietary choices are treated as observations, and through the

utilization of IO, the implicit set of constraints that led to these choices is inferred.

• Transportation: Transportation systems utilize the observed decisions to deduce

unknown parameters and improve the overall efficiency of the system. In this par-

ticular domain, the applications of IO include inferring parameters in transportation

problem (Xu et al., 2018), vehicle routing problem (Chen et al., 2021), household

activity pattern problem (Chow and Recker, 2012), air transportation and schedul-

ing problem (Wei and Vaze, 2018), and freight transshipment assignment problem

(Chow et al., 2014).

• Power systems: IO has been studied in the areas of the electricity market and power

systems. Birge et al. (2017) applied IO on the electricity market to impute the energy

price, as a constraint parameter. There are also several studies that presented an

inverse model to estimate the price-response of electricity (Saez-Gallego and Morales,

2017; Lu et al., 2018; Fernández-Blanco et al., 2019, 2021).

• Finance and economics: In the field of finance, IO has been applied to improve

decision-making processes. Wang et al. (2014) considered the portfolio rebalancing

model and presented an inverse model to minimally perturb the current estimate

of the expected return rate. Yu et al. (2023) has recently employed IO to derive

investment risk preferences based on observed portfolios. Moreover, Iyengar and

Kang (2005), Zhang and Zhang (2010), and Bertsimas et al. (2012) used IO to identify
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the parameters in portfolio optimization.

2.6 Contributions

The fundamental formulation for the IO problem proposed in this study is based on the

work of Ghobadi and Mahmoudzadeh (2021), as we also employ IO techniques to infer the

full constraint matrix of a linear problem using multiple input observations. However, our

work has many additional novelties. Our key contributions are listed below:

• Introducing a goodness-of-fit measure utilizing Euclidean distance to identify the

feasible region with the better fit.

• Incorporating the goodness-of-fit measure based on the Euclidean distance into the

IO problem.

• Reformulating the model using L1 penalty function and proposing exact and greedy

heuristic algorithms to solve the problem.

• Demonstrating two example applications in patient classification and diet planning.
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Chapter 3

Methodology

In this chapter, we present an IO method to infer the feasible region of a linear problem.

It is assumed that the full constraint matrix is to be inferred, meaning both LHS and RHS

of the FO problem can be unknown. Therefore, we consider having a set of known and

unknown constraints. The objective coefficients are all known in our model. The model

takes multiple observations as input and the goal is to find a set of linear constraints that

renders all observations feasible and the resulting feasible region has the highest possible

fit to data.

We first provide an overview of IO formulation in section 3.1. Then, we introduce

the goodness-of-fit measure and incorporate it into the IO model in section 3.2. Finally,

in section 3.3, we simplify the model formulation and propose both exact and heuristic

solution methods to alleviate the complexity of the proposed model.
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3.1 Inverse optimization background

In this section, we first define the FO problem. Then, we formulate the IO problem and

present potential loss functions for the inverse problem that are proposed in the literature.

Note that we focus on inverse optimization for inferring constraints throughout this thesis.

3.1.1 Forward optimization problem

Let A and b be the unknown constraint parameters in the FO problem that needs to

be found by IO. Let G and h be the known constraints. Also, let c ∈ Rn, A ∈ Rm1×n,

b ∈ Rm1 ,G ∈ Rm2×n, and h ∈ Rm2 . Therefore, the FO problem can be written as follows:

min
x

c′x (3.1a)

s.t. Ax ≥ b (3.1b)

Gx ≥ h (3.1c)

x ∈ Rn (3.1d)

The unknown and known constraints are indexed by the sets I1 = {1, . . . ,m1} and

I2 = {1, . . . ,m2}, respectively. Therefore, ai represents the ith row of the matrix A. The

data observations are indexed by the set K = {1, . . . , p}. The set J = {1, . . . , n} describes

the indices of the variable x in the forward problem.

3.1.2 Inverse optimization problem

Assume that there are some feasible or optimal observations available. The observed

decision k is denoted by x̂k. Since the objective function is known, we call the observation

14



with the best value as the preferred point and denote it by x̂0. If the problem had multiple

optimal solutions, we choose one of the points arbitrarily as the preferred point.

x̂0 ∈ arg min
x̂k,k∈K

{c′x̂k} (3.2)

Consider y and w as dual variables associated with constraints Ax ≥ b and Gx ≥ h,

respectively. Following the convention of Ghobadi and Mahmoudzadeh (2021), the IO

which infers the whole constraint parameters of the forward problem is as follows:

min
A,b,y,w

0 (3.3a)

s.t. Ax̂k ≥ b ∀k ∈ K (3.3b)

c′x̂0 = b′y + h′w (3.3c)

A′y +G′w = c (3.3d)

||ai|| = 1 ∀i ∈ I1 (3.3e)

y ∈ Rm1 , w ∈ Rm2 (3.3f)

A ∈ Rm1×n, b ∈ Rm1 (3.3g)

Equation (3.3b) enforces primal feasibility. Equations (3.3c) and (3.3d) are strong

duality and dual feasibility constraints, respectively. Finally, equation (3.3e) is the nor-

malization constraint on the ith row of matrix A that prevents finding trivial solutions.

Here, we assume that the IO model has no objective. However, in section 3.1.3, we will

discuss possible loss functions.

The IO problem (3.3) is a nonlinear program due to the multiplication of variables in

the strong duality and dual feasibility constraints. Ghobadi and Mahmoudzadeh (2021)

presented a tractable reformulation of the IO which infers the feasible region of the FO

problem. They proved that by adding the linear half-space C = {x̂ ∈ Rn| c′x̂ ≥ c′x̂0}
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to the set of known constraints, the strong duality and dual feasibility conditions will be

guaranteed. Hence, the complexity of the IO problem will be reduced. The equivalent

reformulation of the inverse problem (3.3) is shown below:

min
A,b

0 (3.4a)

s.t. a′
ix̂

k ≥ bi ∀i ∈ I1, k ∈ K (3.4b)

||ai|| = 1 ∀i ∈ I1 (3.4c)

A ∈ Rm1×n, b ∈ Rm1 (3.4d)

3.1.3 Loss functions

The inclusion of a loss function F as the objective function in the model leads to multiple

optimal solutions for the IO problem (3.4). Ghobadi and Mahmoudzadeh (2021) proposed

four linear measures that can be employed as potential loss functions within this context.

• Indifference measure: When the loss function of the IO is set to zero, the problem

simplifies to a feasibility problem. Model (3.4) illustrates the IO formulation utilizing

the indifference measure as the loss function.

F = 0 (3.5)

• Adjacency measure: This measure minimizes the sum of the distances of each

observation from all constraints. Let dik be the distance of each observation k from

constraint i. The adjacency measure is:

F =
∑
k∈K

∑
i∈I1

dik (3.6)
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• Fairness measure: This measure tries to find constraints such that they are equally

close to all observations. Let dk =
∑
i∈I1

dik be the total distance for all observations.

The fairness measure is:

F =
∑
k∈K

(dk −
∑
k∈K

dk
|K|

) (3.7)

• Compactness measure: This measure tries to find constraints such that the mini-

mum distance of each observation from all constraints is minimized. The compactness

measure is:

F =
∑
k∈K

min
i∈I1

dik (3.8)

The utilization of different loss functions yields different optimal solutions. Although

some loss functions are proposed in the literature, there is currently no method suggested

to determine which solution is a better fit to data. Furthermore, so far, the literature

has focused on linear measures. In the following section, we introduce a p-norm based

goodness-of-fit measure to assess the fit between the model and data. Subsequently, we

use it as the objective function for the IO problem.

3.2 Goodness of fit

The IO problem (3.4) focuses on finding the feasible region that contains all observations.

However, it is important to acknowledge that multiple sets of constraints can lead to the

feasibility of observations. Therefore, there is a need to assess and determine which set

of constraints is more desirable. In other words, in addition to finding constraints for the

FO model, it is important to consider additional criteria to evaluate and compare different
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(a) Preferred inferred region (b) Possible inferred region

Figure 3.1: Motivational example

possible sets of constraints. For example, consider Figure (3.1), where the observed data

points are depicted as green circles, the optimal point is denoted by the red circle, and

the feasible region of the problem is represented by the shaded yellow area. Both figures

(3.1a) and (3.1b) can potentially represent solutions to the IO problem (3.4) that infers 2

constraints. This is because the feasible region in both figures includes all data points in

a manner that makes the point x0 optimal. However, we want to obtain Figure (3.1a) as

the inferred feasible region, as it is a better fit to the data.

In this section, we define the concept of fit and propose a goodness-of-fit measure based

on the Euclidean distance for constraint inference. Then, we incorporate the measure into

the IO problem and provide a numerical example. We also compare the results of our

proposed model with those in the literature using a numerical example.
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3.2.1 Definition of fit

Before introducing the goodness-of-fit measure, we need to establish our definition of a good

fit. We consider a feasible region to be a better fit to the data if the distances of observations

from the nearest constraints are smaller. A smaller distance to the nearest constraint

indicates that the observations are closer to the boundary of the feasible region. Hence, in

an ideal situation, a perfect fit would involve a feasible region where all observations lie on

the constraints. However, due to the presence of interior points, achieving this situation

is not always attainable. Our goal is to introduce a goodness-of-fit measure that exhibits

three main properties:

1. If a feasible region provides smaller Euclidean distances between observations and its

boundary, the goodness-of-fit measure identifies it as a better fit.

2. By adding constraints, the goodness-of-fit measure can only improve and thereby the

fit cannot get worsen.

3. With the same number of constraints, the goodness-of-fit measure provides a better

Euclidean fit compared to other existing measures in the literature.

We next propose a measure that holds these properties and identifies the feasible re-

gion with the minimum distances between the boundary of the feasible region and all

observations.

3.2.2 Goodness-of-fit measure

Having defined the concept of fit, we now introduce a goodness-of-fit measure to evaluate

how well the feasible region of the FO problem fits the observations. Having multiple
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data points as observed decisions and different sets of constraints, the goal is to find

the set of constraints that is a better fit to the data points. The proposed metric is

inspired by the Mean squared error (MSE) in regression theory. Therefore, it determines

the average minimum distance of each observation from all the constraints. Let ϵki be the

p-norm distance of decision point k from constraint i. Recall that the p-norm is defined as

||x||p = (
∑
j∈J

|xj|p)
1
p for p ∈ [1,∞) and ||x||∞ = max

j
{|xj|} for p = ∞. With this definition,

the metric, denoted by ρ, is defined as follows:

ρ =

∑
k∈K

min
i∈I1

ϵki

|K|
(3.9)

Note that the lower the value of ρ, the better the fit will be. Intuitively, the distances

between observations and the boundary of the feasible region indicate how well the model

fits the data. To capture this notion, we have incorporated the minimum distance in the

numerator of the metric function, allowing us to quantify the distance between observations

and the nearest constraint. Additionally, to ensure the metric remains independent of the

number of data points, we calculate the average of these minimum distances across all

observations.

Proposition 1. If we add a redundant constraint to the inferred feasible region, the pro-

posed metric ρ does not change.

Proof. Let’s assume constraint a′
lx̂

k ≥ bl is redundant. Let’s define Sl = {x̂k ∈ Rn|a′
ix̂

k ≥

bi ∀i ∈ I1 − {l}} and S = {x̂k ∈ Rn|a′
ix̂

k ≥ bi ∀i ∈ I1} as two feasible regions. Let

ρl and ρ be the metrics associated with feasible regions Sl and S, respectively. Now,

suppose that ρl ̸= ρ. Therefore, there exists at least a point x̂k for which the minimum

distance corresponds to its distance from constraint a′
lx̂

k ≥ bl. This means Sl ̸= S, which

contradicts the redundancy of constraint a′
lx̂

k ≥ bl.
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Proposition 2. As the number of unknown constraints increases, the metric decreases

monotonically.

Proof. We add constraint m1 + 1 to the set of unknown constraints. Let’s define Ek
m1

=

{ϵk1, ϵk2, ..., ϵkm1
} and Ek

m1+1 = {ϵk1, ϵk2, ..., ϵkm1
, ϵkm1+1} for all k ∈ K. Observe that the number

of decision points is fixed and only the number of unknown constraints changes. Hence,

we need to prove that the following equation holds for all points k ∈ K.

min
ek∈Ek

m1

ek ≥ min
ek∈Ek

m1+1

ek ∀k ∈ K (3.10)

We prove inequality (3.10) by contradiction. Suppose that min
ek∈Ek

m1

ek < min
ek∈Ek

m1+1

ek, ∀k ∈

K. Then ∃wk ∈ Ek
m1+1,∀k ∈ K such that min

ek∈Ek
m1

ek < wk, ∀k ∈ K. Consider the following

two cases:

Case 1: If wk = ϵkm1+1, ∀k ∈ K, then ϵkm1+1 ≤ min
ek∈Ek

m1+1

ek, ∀k ∈ K. This means

that ϵkm1+1 ≤ ϵki , ∀k ∈ K, i ∈ I1. But ϵki , ∀k ∈ K, i ∈ I1 are all in Ek
m1

,

∀k ∈ K, i ∈ I1. This contradicts the assumption on min
ek∈Ek

m1

ek < min
ek∈Ek

m1+1

ek,

∀k ∈ K

Case 2: If wk = ϵki , ∀k ∈ K, i ∈ I1, then wk, ∀k ∈ K is also in Ek
m1

, ∀k ∈ K. Again,

this is a contradiction.

Hence, inequality (3.10) must hold.
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3.2.3 The goodness-of-fit measure in inverse optimization

We use the proposed goodness-of-fit measure as a new loss function in the objective of the

IO problem (3.4). In this research, we focus on the Euclidean distance of decision points

from constraints and chose the L2 norm for the normalization constraint. With that, the

IO problem will be as follows:

min
A,b,ϵϵϵ

∑
k∈K

min
i

ϵki

|K|
(3.11a)

s.t. ϵki =

|
∑
j∈J

aijx̂
k
j − bi|

||ai||2
∀i ∈ I1, k ∈ K (3.11b)

a′
ix̂

k ≥ bi ∀i ∈ I1, k ∈ K (3.11c)

||ai||2 = 1 ∀i ∈ I1 (3.11d)

A ∈ Rm1×n, b ∈ Rm1 (3.11e)

ϵϵϵ ∈ Rp×m1 (3.11f)

Note that any other p-norm distance in equation (3.11b) and any other p-norm in

equation (3.11d) can be used instead of Euclidean (L2) norm. We deliberately chose the

L2 norm for the normalization constraint to simplify the Euclidean distance constraint.

The IO problem (3.11) is nonlinear due to the loss function and the normalization

constraint (3.11d). To simplify the model, we reformulate it in two steps. We first linearize

the min-min by introducing a non-negative continuous variable mk and a binary variable

γk
i . The result is as follows:

min
A,b,ϵϵϵ,m,γγγ

∑
k∈K

mk

|K|
(3.12a)

s.t. ϵki =

|
∑
j∈J

aijx̂
k
j − bi|

||ai||2
∀i ∈ I1, k ∈ K (3.12b)
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mk ≥ ϵki −Mγk
i ∀i ∈ I1, k ∈ K (3.12c)∑

i∈I1

γk
i = |I1| − 1 ∀k ∈ K (3.12d)

a′
ix̂

k ≥ bi ∀i ∈ I1, k ∈ K (3.12e)

||ai||2 = 1 ∀i ∈ I1 (3.12f)

A ∈ Rm1×n, b ∈ Rm1 (3.12g)

ϵϵϵ ∈ Rp×m1 , m ∈ Rp, γk
i ∈ {0, 1} ∀i ∈ I1, k ∈ K (3.12h)

Next, we linearize the absolute value that exists in the distance equation (3.12b). Recall

that ||ai||2 =
√∑

j∈J
a2ij. Therefore, the normalization constraint (3.12f), ||ai||2 = 1, is equal

to
∑
j∈J

a2ij = 1. Hence, when using the Euclidean distance, the denominator of the equation

can be set to one. With that, an equivalent simplified version of the IO problem can be

written as follows:

min
A,b,ϵϵϵ,m,γγγ

∑
k∈K

mk

|K|
(3.13a)

s.t. ϵki ≥
∑
j∈J

aijx̂
k
j − bi ∀i ∈ I1, k ∈ K (3.13b)

ϵki ≥ −
∑
j∈J

aijx̂
k
j + bi ∀i ∈ I1, k ∈ K (3.13c)

∑
j∈J

a2ij = 1 ∀i ∈ I1 (3.13d)

(3.12c)− (3.12e), (3.12g), (3.12h) (3.13e)

Note that in the IO problem (3.13), all components are linear except for constraint

(3.13d).
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3.2.4 Numerical example

In this part, we illustrate the second property of the metric through a numerical example

taken from Ghobadi and Mahmoudzadeh (2021). Suppose that there are 10 observations

and 2 known constraints (including the half-space C) as listed in Table 3.1. By solving the

IO problem (3.13) 3 times, we infer 1, 2, and 3 constraints. The results are summarized in

Figure 3.2. The observations are represented by green dots, with the preferred observation

highlighted in red. The inferred constraints are depicted as dashed gray lines, while the

known constraints are represented by dotted red lines. The feasible region of the problem

is shaded in yellow.

Starting with only one inferred constraint, we observe the poorest value for the goodness-

of-fit measure (ρ = 1.2281). As we increase the number of inferred constraints up to 3,

the goodness-of-fit measure consistently improves to ρ = 0.6504 and then to ρ = 0.4709.

This occurs because the distances between the observations and the inferred constraints

keep getting smaller as the feasible region becomes tighter. This example confirms the

second property listed in section (3.2.1), meaning that when constraints are added, the

goodness-of-fit measure improves and therefore the fit gets better.

3.2.5 Comparison between the goodness-of-fit measure and other

loss functions

To evaluate the performance of our inverse model and the third property of the metric, we

conduct a comparative analysis with the IO problems in the literature. The most recent

study on inferring the feasible region is the work of Ghobadi and Mahmoudzadeh (2021).

Their approach employs four distinct loss functions to address the inverse problem. They
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Table 3.1: Numerical example

Description Value(s)

Cost vector c (1,1)

Observations x̂0;x̂k (1,1); (2,1), (4,2), (4,5), (3,6), (2,4), (3,4),

(3,2), (4,3), (1,3), (2,2.5), (1,5), (5,2.5), (5,4),

(2.7,3.2), (2.3,4.7), (1.4,4.8), (3.8,4.3), (4.8,3.3)

Known constraints 0.5x̂k
1 + 0.5x̂k

2 ≥ 1 (half-space C)

-x̂k
1 ≥ −5

(a) One inferred constraint

ρ = 1.2281

(b) Two inferred constraints

ρ = 0.6504

(c) Three inferred constraints

ρ = 0.4709

Figure 3.2: Illustration of the numerical example
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used the linear slack distance (i.e., ϵki = a′
ix̂

k − bi) to calculate the distance of decision

point x̂k from constraint a′
ix̂

k ≥ bi. They also used an approximation of L1 norm ( i.e.,

|
∑
j∈J

aij| = 1) for the normalization constraint. Together, these settings allow for their IO

model to be linear. In contrast, our approach involves using the Euclidean distance and

L2 norm for these computations. By comparing our results with theirs across these four

loss functions, we can gain insights into the performance of the models.

Consider the data in Table 3.1. In this case, we infer 6 unknown constraints first

using indifference (3.5), adjacency (3.6), fairness (3.7), and compactness (3.8) measures

and then using our proposed goodness-of-fit measure (3.9). The results are illustrated in

Figure 3.3. The green dots depict the observations, and the red dot signifies the preferred

observation. The dashed gray lines represent the constraints that are inferred, while the

dotted red lines represent the known constraints. The feasible region of the problem is also

shaded in yellow. The redundant constraints are included only once, and the number of

repetitions is indicated next to the corresponding hyperplane. For example, (4×) next to

a hyperplane indicates that out of the 6 inferred constraints, 4 of them are repeated. Two

key observations can be inferred from the results in Figure 3.3:

1. Prior loss functions from the literature find redundant constraints. This means that

these measures introduce additional constraints that do not contribute significantly to

improving the fit of the model. On the other hand, our proposed measure successfully

avoids such redundancy by selecting only the essential constraints for achieving a

desirable fit.

2. Our model outperforms other models in terms of the value of ρ, indicating a superior

fit between the model and the observed data. This improvement can be attributed

to the utilization of our proposed goodness-of-fit measure, which leads to a tighter
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feasible region.

Solving the IO problem (3.13) is challenging, particularly due to the presence of the

nonlinear constraint (3.13d). In the following section, we propose solution methods to

mitigate the complexity of the problem.

3.3 Solution approach

The final IO model is a non-convex Mixed-integer quadratically constrained programming

(MIQCP). The complexity of the problem (3.13) can be reduced if we make the feasible

region convex and linear. Looking at the constraints, the only nonlinear constraint is

equation (3.13d), which causes a non-convex set. Therefore, we relax the equality constraint

(3.13d) and move it to the objective function in order to deal with the difficulty of the

problem. This way, the problem is minimized over a linear and convex set of constraints.

In this section, we first employ the non-smooth L1 penalty function to provide a more

tractable model for the IO problem. Then, we propose an exact heuristic method and a

greedy heuristic method to solve the problem efficiently. Appendix A explains why we

have chosen the L1 penalty function instead of the lagrangian relaxation for this problem.

3.3.1 Relaxation using L1 penalty function

The L1 penalty function method adds a penalty term to the objective function that penal-

izes the violation of the L1 norm of the quadratic constraint (3.13d). The absolute value

will ensure that the constraint is satisfied in the original problem. Assuming that µ is a

positive penalty, we are summing up some non-negative terms and the minimum occurs
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(a) Indifference measure

ρ = 0.8688

(b) Adjacancy measure

ρ = 1.0510

(c) Fairness measure

ρ = 0.8688

(d) Compactness measure

ρ = 0.4709

(e) Proposed goodness-of-fit

metric

ρ = 0.4450

Figure 3.3: Comparing the loss functions in the literature with our goodness-of-fit metric
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when each term is zero.

min
A,b,ϵϵϵ,m,γγγ

∑
k∈K

mk

|K|
+ µ

∑
i∈I1

|
∑
j∈J

a2ij − 1| (3.14a)

s.t. (3.13b), (3.13c), (3.13e) (3.14b)

Let h be the measure of infeasibility. The algorithmic framework based on the L1

penalty function to solve the model (3.14) is presented in Algorithm 1 (Wright et al.,

1999).

Algorithm 1: Classical L1 penalty method

Given penalty µ0 > 0, tolerance ζ > 0

for r = 0, 1, 2, ... do

find an approximate solution for problem (3.14);

if h ≤ ζ then

stop;

end

Choose new penalty parameter µr+1 > µr;

end

If the current value of µr results in a minimizer that is not feasible within the tolerance

ζ, the simplest scheme for updating the penalty parameter µr is to increase it by a constant

multiple in the next iteration (Wright et al., 1999).
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3.3.2 Exact heuristic

Model (3.14) is Mixed-integer quadratic programming (MIQP) and it is computationally

expensive to be solved by mathematical optimization; specially when the size of the problem

increases. To overcome this, we develop a heuristic algorithm which gives the exact solution

of the inverse model. The proposed approach consists of four steps. Firstly, the set of

hyperplanes that form the convex hull of the observations is identified. This can be done

via the ConvexHull class in SciPy, a library in Python (Virtanen et al., 2020). In the

second step, all possible combinations of m1 hyperplanes out of all hyperplanes forming

the convex hull (h) are generated using Equation (3.15). The metric associated with each

combination is computed in the next step. Finally, the combination of hyperplanes that

yields the minimum value of the metric is selected as the solution. The description of the

heuristic is presented in Algorithm 2.

Cm1(h) =

(
h

m1

)
=

h!

m1!(h−m1)!
(3.15)

Algorithm 2: Exact heuristic approach

Step 1: Identify the convex hull of the data points

Step 2: Generate all combinations of m1 hyperplanes

Step 3: Calculate the value of the metric for all combinations

Step 4: Select the combination of m1 hyperplanes with the minimum value of the

metric

For example, suppose that given a number of observations, we want to infer m1 = 2

constraints. In the first step, we find the convex hull of observations. Let’s assume that

the convex hull of observations consists of 10 hyperplanes. In the second step, we find all
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combinations of m1 = 2 hyperplanes out of 10 hyperplanes that form the convex hull. In

this case, there will be 45 possible combinations, derived from Equation (3.15). Note that

each combination represents a potential solution for the problem. Next, in the third step,

we calculate the value of the metric for all 45 combinations using Equation (3.9). Finally,

in the fourth step, we compare the combinations (potential solutions) and select the one

with the minimum value of the metric, as it represents the optimal solution to our problem.

Proposition 3. The solution from the IO problem (i.e. Ax ≥ b ) consists of all/some

hyperplanes forming the convex hull of the observations. This means if the hyperplanes

forming the conv(x̂1, ..., x̂p) are indexed by the set H, then min
i∈I1

ϵki = ϵki∈H,∀k ∈ K.

Proof. Suppose that ∃x̂k, k ∈ K for which min
i∈I1

ϵki = ϵki/∈H. By definition, conv(x̂1, ..., x̂p)

is the smallest convex set containing all x̂k, k ∈ K. Therefore, ∃a′
ix̂

k − bi = 0, i ∈ H such

that min
i∈I1

ϵki = ϵki∈H,∀k ∈ K. This is a contradiction.

3.3.3 Greedy heuristic

While the heuristic method discussed in the previous section offers improved computational

efficiency compared to solving the mathematical optimization model, it still encounters

challenges when dealing with larger-scale problems. The method finds the optimal solution

by enumerating potential solutions and this enumeration process can become burdensome,

particularly for larger-sized problems. Given the complexity of the proposed heuristic, we

introduce a faster alternative in the form of a greedy heuristic. However, it is important

to acknowledge that the trade-off for the reduced runtime in this greedy approach is a

compromise in solution quality compared to exact methods. The initial step is identical

to the first step of the heuristic algorithm. In the second step, we approach the problem
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by considering each hyperplane obtained in the first step individually and evaluating the

Euclidean distances associated with a single hyperplane. The description of the greedy

heuristic is presented in Algorithm 3.

Algorithm 3: Greedy heuristic approach

Step 1: Identify the convex hull of the data points

Step 2: Calculate the total Euclidean distance of each hyperplane forming the

convex hull from all data points, independent of other hyperplanes

Step 3: Select m1 hyperplanes with the minimum total Euclidean distance

For example, suppose that given a number of observations, we want to infer m1 = 2

constraints. In the first step, we find the convex hull of observations. Let’s assume that the

convex hull of observations consists of 10 hyperplanes. In the second step, we calculate the

total Euclidean distance of each hyperplane forming the convex hull from all observed data

points, independent from other hyperplanes. In the third step, we rank the hyperplanes

based on their total Euclidean distance, arranging them in ascending order from the lowest

to the largest distance, then we select the m1 = 2 hyperplanes with the minimum distance

as the solution to the problem.

We will compare the computational performance of L1 penalty function, exact heuristic,

and greedy heuristic methods in section 4.1.6.
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Chapter 4

Results and Discussions

In this chapter, we investigate the application of the proposed methodology to two distinct

problems. Through these numerical applications, we gain insights into the model’s per-

formance and conduct a comparative analysis of the proposed solution methods. First, in

section 4.1, we consider the patient classification problem in hospital admission and eval-

uate the effectiveness of the IO model by examining multiple instances. Next, in section

4.2, we consider the diet recommendation problem and demonstrate how the IO method

can be utilized to design more appealing diet plans based on the dieter’s past food choices.

4.1 Patients classification problem

The patient classification problem at hospitals occurs when a triage process results in

deciding whether a patient requires hospitalization (inpatient) or can be treated outside

the hospital setting (outpatient). Although there are some guidelines in place to make

such decisions, not all cases adhere strictly to these guidelines. For instance, we may see
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a patient who has characteristics contrary to guidelines but is released from the hospital.

Hence, we aim to identify the implicit constraints that influenced the decision of whether

a patient is considered inpatient or outpatient. Let’s consider a scenario where we want to

find out the factors influencing hospital discharge decisions. By utilizing past health data

of outpatients (feasible observations), we can employ IO to identify a set of constraints

(feasible region) that captures the process of identifying outpatients.

In this section, we first provide an overview of the dataset and the existing medical

guidelines. Next, we perform feature selection to identify the important features. Following

that, we present a two-dimensional illustration of our proposed methodology. Then, we

evaluate the prediction accuracy of the model. Finally, we examine the computational

performance of the solution methods using multiple instances.

4.1.1 Dataset

We employ an openly accessible dataset obtained from Alam et al. (2022) which is com-

prised of electronic health records of patients from a private hospital in Indonesia. It

contains the patients’ laboratory test results used to determine the next course of action

for patients, including their health assessment and treatment plan. For each patient, a

record of multiple blood component measures in the laboratory test result is reported.

The description of features in the dataset is summarized in Table 4.1.

To provide further details, patients are categorized into two groups based on their test

results. One group consists of inpatients who require hospitalization, meaning that they

need ongoing medical attention and monitoring within the hospital environment. The

second group includes outpatients who do not need to stay at the hospital overnight as

their test results do not necessitate hospitalization. Note that we will narrow down the
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population under study by focusing only on the data of women.

4.1.2 Existing medical guidelines

Medical guidelines provide reference ranges for each blood component, which define the

normal (healthy) values. A reference range consists of upper and lower limits that indicate

the acceptable values for a laboratory test. Table 4.2 lists the reference ranges for the

blood components of female patients in our dataset (Sadikin et al., 2021). In practice,

the decision-making process regarding whether patients should be discharged from the

hospital or stay requires consideration of various implicit criteria, which may be based on

a combined effect of guidelines, so these decisions may not always adhere to a specific set of

established guidelines. We hypothesize that there are certain trade-offs between different

hidden factors that influence the decision-making process.

Our goal is to elucidate the decision-making process for hospital discharge by under-

standing the underlying criteria that determine the severity of a patient’s illness. Using

the laboratory report data of a set of past patients, we employ the IO method and derive

a set of implicit criteria that result in the discharge of outpatients.

4.1.3 Feature selection

To reduce the complexity of the model, we employ feature selection techniques to identify

the subset of features that exhibit the strongest relationship with the target variable. In our

dataset, the target variable is represented in the last column, consisting of nominal values.

If the patient is identified to be an outpatient, the value assigned is “out”, otherwise, it is

“in”.
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Table 4.1: Description of features

Feature name Value sample Brief description

HAEMATOCRIT 35.1 The ratio of the volume of red blood cells

to the total volume of blood.

HAEMOGLOBINS 11.8 A protein in the red blood cells.

ERYTHROCYTE 4.65 Red blood cells that deliver oxygen to

the tissues in the body.

LEUCOCYTE 6.3 White blood cells that are responsible for

protecting the body from infection.

THROMBOCYTE 310 Platelets that control blood clotting.

MCH 25.4 The average amount of hemoglobin

found in the red blood cells.

MCHC 33.6 The mean corpuscular hemoglobin

concentration in the red blood cells.

MCV 75.5 The mean corpuscular volume of

the red blood cells.

AGE 12 The age of the patient.

SEX F The gender of the patient.

SOURCE out The severity level of the patient’s illness.

36



Table 4.2: Reference ranges for blood components

Blood component Reference range

HAEMATOCRIT 34.9%-44.5%

HAEMOGLOBINS 12-15 g/dL

ERYTHROCYTE 4.2-5.4 million/mm3

LEUCOCYTE 5-10 x thousand/mm3

THROMBOCYTE 150-400 thousand/mm3

MCH 27-33 pg/cell

MCHC 32%-37% Hb/cell

MCV 80-96 µm3

Since the input data (i.e., all features except the target variable) is numerical and the

output (i.e., the target variable) is a categorical variable, we employ Analysis of variance

(ANOVA) that uses the F-test to select the useful features (Brownlee, 2020). In the F-test,

the ratio of between and within group variances is calculated and this is called F-statistic

(Kim, 2017). The feature selection is done by the SelectKBest class in scikit-learn, a

library in Python, in which a score is given to each feature based on the strength of its

relationship with the target variable (Pedregosa et al., 2011). The SelectKBest class scores

the features using a function and since we are implementing ANOVA, we use f classif

function which computes F-statistic. The higher the score is, the more relevant the feature

will be. Figure 4.1 illustrates the results after performing the feature selection process.

The y-axis displays the F-statistic, indicated as scores. It is observed that the features

HAEMATOCRIT, HAEMOGLOBINS, ERYTHROCYTE, and THROMBOCYTE exhibit

higher scores compared to other features. Hence, we only consider these four features as
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the input data in the rest of our analysis.

Figure 4.1: The ANOVA F-test feature importance

4.1.4 Illustrative results for a pair of features

To provide a clearer understanding of the proposed methodology, we first showcase a two-

dimensional instance from the dataset before proceeding to test the model and solution

methods. The example comprises 30 data points and includes 2 features only: HAEMA-

TOCRIT and THROMBOCYTE. We perform a sensitivity analysis on the number of

constraints by incrementally adding one constraint at a time, starting from 1 constraint

and gradually increasing it to 6 constraints. The data points are displayed in Figure 4.2.

The outpatient and inpatient data points are shown in green and red circles, respectively.
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(a) Before cleaning the data (b) After cleaning the data

Figure 4.2: Data points

To clean the data for the purpose of this numerical case, we exclude the inpatient data

points that are situated within the convex hull of outpatients, because they are inconsistent

with other decisions.

Figure 4.3 presents the outcomes of solving the IO problem (3.14) that aims to infer the

feasible region of outpatient data points for different configurations, with a fixed number of

data points and features while varying the number of constraints inferred. The outpatient

and inpatient data points are shown in green and red circles, respectively. The inferred

constraints are shown by dashed gray lines, while the guideline is displayed within a yellow-

shaded box. The value of ρ for each instance is also provided. Initially, the first constraint

is inferred to minimize the distance of all outpatient data points from it. Because of the

min-min in the goodness-of-fit measure which tries to minimize the minimum distances for

all data points, in the second setting, the second hyperplane is determined to pass through

the points that are farthest from the first hyperplane. As we move on to inferring three

constraints, the hyperplanes derived in the previous settings are included, along with a
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new hyperplane. This pattern continues until the feasible region is completed with the

addition of the sixth hyperplane. It is important to note that further constraints will not

result in an improvement of the metric.

The presented two-dimensional instance serves to illustrate the second property of the

goodness-of-fit measure. As depicted in Figure 4.4, it is observed that the metric consis-

tently decreases in a monotonic manner as the number of constraints increases. However,

it is worth noting that the decrease in the metric becomes less significant as we increase the

number of constraints. After 5 constraints, the graph levels off, indicating that additional

constraints do not contribute to further improvement in the fit. This is because once the

convex hull is formed, further improvements in the fit are not achievable, and thus the

metric remains unchanged. This example also confirms Proposition 2, which states that

the metric decreases monotonically as the number of inferred constraints increases.

4.1.5 Prediction accuracy

In this numerical case, the forward problem is a feasibility problem since we are not op-

timizing the problem over a certain objective function. Instead, our goal is to determine

the feasible region of the problem. In particular, we aim to identify the implicit criteria

that led to recognizing specific patients as outpatients. This understanding allows us to

gain insights into the decision-making process for patient release and utilize this knowledge

for future observations. Hence, evaluating the model’s effectiveness in correctly identifying

outpatients becomes an important aspect.

Given that the IO model is trained only on the data of outpatients, our evaluation

focuses on the number of correctly predicted outpatients and the number of inpatients

mistakenly classified as outpatients. Therefore, we assess the model’s performance using
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(a) ρ = 4.05999627 (b) ρ = 1.76544666

(c) ρ = 1.21692409 (d) ρ = 1.11317486

(e) ρ = 1.06648537 (f) ρ = 1.06648532

Figure 4.3: Sensitivity analysis on the number of the constraints
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Figure 4.4: Monotonic trend in the metric value

the precision metric, which provides us with an understanding of how accurate the model

is in identifying the outpatients.

We generate 5 random datasets, each consisting of 50 observations with the features

HAEMATOCRIT and THROMBOCYTE. To evaluate the model’s performance, we em-

ploy an 80/20 random split for training and testing. In the training set, we identify the

outpatients and use this subset as input for the IO model to infer 5 constraints. Next,

we apply the inferred constraints to the testing set and calculate the precision metric. We

repeat this process 10 times for each dataset and compute the average precision within

each dataset. Finally, we determine the overall average precision across the 5 datasets. In

Figure 4.5, the ranges of precisions within each dataset are represented by error bars, and

the average value is marked with red circles on them. The results demonstrate an average

precision of 81.42% across all trials.
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Figure 4.5: Precision of the inverse model

4.1.6 Computational performance of the solution methods

In this section, the computational performance of different solution methods presented in

section 3.3 is assessed. This analysis allows us to identify the strengths and limitations of

each method. For this purpose, we create 15 instances from the dataset, each varying in

the number of observations and unknown constraints. The first set of instances includes

20 observations, the second set includes 50 observations, and the third set includes 100

observations. Within each set, we infer a varying number of constraints, ranging from 1 to

5. The results are summarized in Table 4.3. The IO problem (3.14) is labeled as “MIP”.

The exact and greedy heuristic methods are labeled as “Heu-E” and “Heu-G”, respectively.

For each solution method, two numbers are reported: the metric value (ρ) and the runtime.

The optimization problems are solved by Gurobi Optimizer 10.0 in AMPL with an 8-core

3.00 GHz processor and 16 GB memory. The heuristic algorithms are coded in Python
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programming language using the Graham cluster located at the University of Waterloo

with a 32-core and 125 GB memory. Also, all instances are run 5 times and the reported

runtime is the average.

The results indicate the computational complexity associated with solving the “MIP”

using the Gurobi solver. The solver takes a long time to search the solution space and it fails

to converge to the optimal solution within 24 hours for several instances (the dash mark in

Table 4.3 denotes this). To gain a better understanding of the level of difficulty involved

in solving the problem by the exact mathematical method, Figure 4.6 is provided as an

illustration of the growth rate observed in the number of binary variables and constraints

as we progressively increase the number of observations and unknown constraints. The

x-axis is divided into three sets of observations: 20, 50, and 100. The numbers on the

x-axis indicate the number of inferred constraints within each set, ranging from 1 to 5.

On the left y-axis, the blue graph represents the number of constraints, while on the right

y-axis, the red graph represents the number of binary variables. As the size of the problem

increases, we observe a linear increase in the number of constraints and binary variables.

Notably, this growth speeds up when the number of observations is larger. According to

the IO problem (3.14), the number of binary variables is |I1| × |K|, whereas the number of

constraints is 4(|I1| × |K|) + |K|. For example, instance 7 which involves 50 observations

and 2 unknown constraints, includes 100 binary variables and 450 constraints.

The exact heuristic method, on the other hand, performs well by not only delivering

the optimal solution but also significantly improving the runtime compared to the previous

mathematical approach. It is evident that as the size of the instances grows, the complexity

and time required to solve instances using the exact heuristic method also increases. The

bottleneck in the exact heuristic algorithm lies in the calculation of the metric for all com-

binations of |I1| constraints out of the total constraints that form the convex hull. Figure
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Figure 4.6: Complexity growth rate in the optimization problem

4.7 illustrates the exponential growth in the number of combinations of |I1| constraints and

runtime in each instance as the problem size increases. Note that the y-axis represents the

values on a logarithmic scale. The x-axis is divided into three sets of observations and the

numbers on it indicate the number of inferred constraints within each set, ranging from

1 to 5. On the left y-axis, the red graph represents the number of combinations, while

on the right y-axis, the blue graph represents the runtime. To provide an example, let’s

consider instance 7 with 50 observations, where 2 constraints are inferred. In this case,

the convex hull formed by these 50 observations consists of 73 hyperplanes. This value is

computed using the ConvexHull class in SciPy, a library in Python (Virtanen et al., 2020).

Then, using Equation (3.15), there are 2,628 possible combinations of 2 constraints out of

the total 73 constraints. If we maintain the same number of observations and increase the

problem size to infer 4 constraints, the number of possible combinations calculated using
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Figure 4.7: Complexity growth rate in the exact heuristic method (y-axis is in log scale)

Equation (3.15) increases exponentially to 1,088,430 cases. This exponential increase in

combinations highlights the computational complexity of the problem as it scales up.

The runtimes for the greedy heuristic method are much shorter than the other two

methods, with all instances being solved in less than 3 seconds. However, as expected,

the trade-off is observed in the quality of the solution. To provide further details, when

comparing the Metric column between the greedy heuristic and exact heuristic methods in

each set, we can observe a more noticeable decrease in the exact heuristic method as the

number of inferred constraints increases, indicating an improvement in the fit. Conversely,

the decrease in the metric value is less substantial in the greedy heuristic method. Given

that the metric represents the fit between the model and the data, it can be concluded that

the solution quality is comparatively lower in the greedy heuristic method. For instance,

let’s consider instance 5 with 20 observations and 5 inferred constraints. The solution
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obtained through the exact heuristic method yields a fit of 0.0185, while the greedy heuristic

method yields a fit of 0.2710. Recall that a lower metric value corresponds to a better fit.

4.2 Diet planning problem

The diet planning problem involves designing diet plans that effectively meet both the

nutritional needs and food preferences of individuals. This (forward) optimization problem

typically involves maximizing or minimizing specific nutrients or food components, while

adhering to various constraints such as vitamin intake or calorie limits.

When developing a diet plan, the initial focus is the nutritional requirements. But

it is also important to ensure that the plan aligns with the dieter’s preferences as there

may be some implicit criteria that influence the palatability of a diet plan for the dieter.

Consider a dieter who prefers a vegetable-heavy diet with limited meat consumption, or

another dieter who prefers to consume fewer dairy products. By understanding their food

preferences, we can suggest diet plans that are more likely to be followed and enjoyed. To

achieve this, we observe the dieter’s past food choices (feasible observations) and use IO

to impute a set of constraints (feasible region) that captures their dietary behavior. This

allows us to provide food plans that are palatable.

As the second application to evaluate the effectiveness of the proposed methodology, we

explore the problem of diet recommendation. We aim to uncover the underlying criteria

that influence an individual’s food choices through IO techniques. By analyzing the dieter’s

historical food preferences, our model identifies hidden linear constraints that shape their

decision-making process.

In the rest of this section, we provide an explanation of the dataset. Following that,
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we analyze the results obtained from applying IO to the diet recommendation problem.

4.2.1 Dataset

The dataset utilized in this study captures 30 observations of the daily food intake recorded

as the number of servings consumed per food per day. The data is obtained from Ahmadi

et al. (2020b). The original dataset consists of numerous food items, and to simplify the

analysis, we categorize them into 5 main food groups: fruits, vegetables, grains, protein,

and dairy.

For the purpose of this study, we assume that the objective function of the FO problem is

to minimize the total fat. In addition, we impose a set of 3 known constraints related to key

nutrition values: a lower bound on protein, an upper bound on calories, and an upper bound

on carbohydrates. Notably, all 30 observations in the dataset satisfy these constraints,

ensuring that the selected food choices meet the specified nutritional requirements. These

constraints are based on the guidelines provided by the U.S. Department of Health and

Human Services and U.S. Department of Agriculture (2020). Furthermore, to determine

the nutrition values for one serving of each food group, we relied on available data from

Government of Canada (2008). The serving size for each food group and a concise summary

of the model specifications can be found in Tables 4.4 and 4.5, respectively. Recall that

x̂k
j , ∀k ∈ K, j ∈ J , represent the observed data points, where observations are indexed

by set K = {1, ..., 30} and the indices of variable x is denoted by set J = {1, ..., 5}, as

we have 30 observations and 5 food groups. With that, the detailed description of known

constraints can be found in Table 4.6. Observe that, along with 3 known constraints on

nutritional requirements, there is an additional constraint represented by the half-space C

(c′x̂k ≥ c′x̂0,∀k ∈ K). The nutrient coefficients in the objective and known constraints, as
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Table 4.4: Food groups and their respective serving sizes

Food Category Serving Size (Example)

Fruits 1 medium apple (about 150 grams)

Vegetables 1 cup (about 30 grams) of raw, leafy green vegetables

Grains 1 slice of whole-grain bread (about 36 grams)

Protein 1 ounce of cooked meat

Dairy 1 cup (240 ml) of milk

Table 4.5: Summary of the diet recommendation problem

Description Value(s)

Cost vector c Minimize total fat intake

Observations 30 daily food intakes of 5 food groups

Known constraints 3 known constraints & half-space C

Lower bound: Protein

Upper bounds: Calories and Carbohydrates

Unknown constraints 3 constraints

presented in Table 4.6, are determined by considering the serving size information provided

in Table 4.4.

4.2.2 Results

In the FO problem, the objective function was set to minimize the total fat. We evaluate

all the observations and identify the preferred observation x̂0 with the best objective value

of 39.409. Then, we proceed to infer 3 unknown constraints based on the 30 observations.
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Table 4.6: The known constraints for diet recommendation problem

Description Value(s)

Protein 1.250x̂k
1 + 0.653x̂k

2 + 2.571x̂k
3 + 8.651x̂k

4 + 22.562x̂k
5 ≥ 50,∀k ∈ K

Calories −103.851x̂k
1 − 15.456x̂k

2 − 115.467x̂k
3 − 94.395x̂k

4 − 437.166x̂k
5 ≥ −2400, ∀k ∈ K

Carbohydrate −26.132x̂k
1 − 2.726x̂k

2 − 19.455x̂k
3 − 1.537x̂k

4 − 28.257x̂k
5 ≥ −325,∀k ∈ K

Half-space C 0.350x̂k
1 + 0.294x̂k

2 + 3.307x̂k
3 + 5.898x̂k

4 + 26.701x̂k
5 ≥ 39.409,∀k ∈ K

Note: numbers are rounded to 3 decimal places.

We were unable to test the inference of more than 3 unknown constraints due to resource

limitations. The detailed description of the inferred constraints can be found in Table

4.7. To further explore the impact of these constraints, we once solve the forward problem

with only the known constraints, and then by considering both the known and the inferred

constraints. The results are visualized in Figure 4.8. The red bars correspond to the

recommended diet derived only based on the known constraint (“w/o IO”), while the blue

bars represent the recommended diet that incorporates the additional constraints (“IO”) as

well. The ranges of observations for each food group are represented by error bars, and the

preferred observation x̂0 is marked with yellow circles on them. The results indicate that the

diet without the inferred constraints contains higher amounts of fewer food groups. More

than 5 and 65 servings of fruits and vegetables are recommended. However, the diet with

both known and inferred constraints contains a reasonable amount of food groups, more

in line with past observations. Moreover, the average L1 norm distances of observations

from “w/o IO” and “IO” recommended diets are 74.66 and 24.38, respectively. This further

supports the notion that the “IO” recommended diet is more preferred and aligned with the

dieter’s taste. It is worth mentioning that, as expected, the objective value associated with

the preferred observation remained unchanged after incorporating the inferred constraints
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Table 4.7: The inferred constraints for diet recommendation problem

Description Value(s)

First constraint 0.033x̂k
1 + 0.033x̂k

2 + 0.147x̂k
3 + 0.342x̂k

4 + 0.928x̂k
5 ≥ 2.147,∀k ∈ K

Second constraint 0.454x̂k
1 − 0.568x̂k

2 − 0.250x̂k
3 − 0.590x̂k

4 + 0.250x̂k
5 ≥ −3.947,∀k ∈ K

Third constraint −0.065x̂k
1 + 0.595x̂k

2 + 0.440x̂k
3 − 0.181x̂k

4 − 0.646x̂k
5 ≥ −0.904,∀k ∈ K

Note: numbers are rounded to 3 decimal places.

into the FO problem and solving it. It means unknown constraints are inferred such that

this solution becomes optimal.

Figure 4.8: Comparing the diet recommendations with and without the inferred constraints
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Chapter 5

Conclusions

In this study, we defined the fit between the model and data as the minimum Euclidean

distances of the observations from the boundary of the feasible region. We introduced

a goodness-of-fit measure based on the Euclidean distance, which aimed to capture the

desirable properties of a good fit. Utilizing this goodness-of-fit measure as the objective

function, we proposed a multi-point IO problem with maximum Euclidean fit to determine

the feasible region of a linear FO problem. We also compared our model with existing

inverse models that infer constraint parameters. Our findings indicated that our model

outperformed the models in the literature in terms of fitting the data. We observed that

the models in the literature were more likely to infer redundant constraints, whereas our

model avoids incorporating redundant constraints unless there is no way to improve the fit

further.

The nonlinearity introduced by the Euclidean distance made the resulting model a

non-convex MIQCP problem. To enhance tractability, we applied relaxation techniques

using the L1 penalty function, which transformed the problem into a MIQP problem.
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We proposed an exact heuristic method based on the identification of the convex hull to

further mitigate the computational complexity. Additionally, a greedy heuristic method

was proposed to improve runtime efficiency.

We applied our methodology to two example applications. The first example applica-

tion consisted of laboratory report data from a hospital, which was utilized in the triage

process to determine whether patients should be admitted as inpatients or discharged as

outpatients. Through IO, we were able to uncover the hidden principles that influenced

the decision to discharge patients from the hospital. Our model demonstrated a precision

of 81.42% in accurately identifying the outpatients. Discovering such underlying princi-

ples provides a baseline for initial prediction and enhances the decision-making process

for identifying outpatients in future observations. In our second application, we focused

on addressing the diet recommendation problem. By analyzing the data on past food

consumption, our model inferred the implicit criteria that influenced dieters’ food choices.

This allowed us to identify the factors contributing to their food preferences and develop

diet recommendations that aimed to be not only nutritionally balanced but also more likely

to be adhered to by dieters.

We also evaluated the computational performance of the solution methods using mul-

tiple instances from the laboratory report dataset. Our findings revealed that solving the

IO problem resulted from the relaxation using the L1 penalty function was highly com-

plex. Conversely, the exact heuristic method delivered an exact optimal solution within

a reasonable time frame. However, as the size of the instances increased, the complexity

of the exact heuristic algorithm also grew. The greedy heuristic method, on the other

hand, provided faster solutions compared to other methods, but it did not guarantee an

optimal solution. Thus, there exists a trade-off between runtime and solution quality when

selecting the appropriate solution method.
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One important future direction is to implement this methodology on a real-world

dataset in order to demonstrate the computational advantages of the proposed model and

solution methods. Additionally, another potential direction for future research involves

exploring the incorporation of infeasible observations into the forward problem.
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent

Dubourg, et al. Scikit-learn: Machine learning in python. Journal of machine learning

research, 12(Oct):2825–2830, 2011.

Mujiono Sadikin, Ida Nurhaida, and Ria Puspita Sari. Exploratory study of some machine

learning techniques to classify the patient treatment. International Journal of Advanced

Computer Science and Applications, 12(2), 2021.

Javier Saez-Gallego and Juan M Morales. Short-term forecasting of price-responsive loads

using inverse optimization. IEEE Transactions on Smart Grid, 9(5):4805–4814, 2017.

GA Sayre and D Ruan. Automatic treatment planning with convex imputing. In Journal

of Physics: Conference Series, volume 489, page 012058. IOP Publishing, 2014.

Andrew J Schaefer. Inverse integer programming. Optimization Letters, 3:483–489, 2009.

Zahed Shahmoradi and Taewoo Lee. Optimality-based clustering: An inverse optimization

approach. Operations Research Letters, 50(2):205–212, 2022a.

Zahed Shahmoradi and Taewoo Lee. Quantile inverse optimization: Improving stability in

inverse linear programming. Operations research, 70(4):2538–2562, 2022b.
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Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0

Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.

Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Lizhi Wang. Cutting plane algorithms for the inverse mixed integer linear programming

problem. Operations research letters, 37(2):114–116, 2009.

Meihua Wang, Fengmin Xu, and Guan Wang. Sparse portfolio rebalancing model based

on inverse optimization. Optimization Methods and Software, 29(2):297–309, 2014.

Keji Wei and Vikrant Vaze. Modeling crew itineraries and delays in the national air

transportation system. Transportation Science, 52(5):1276–1296, 2018.

Stephen Wright, Jorge Nocedal, et al. Numerical optimization. Springer Science, 35(67-68):

7, 1999.

Susan Jia Xu, Mehdi Nourinejad, Xuebo Lai, and Joseph YJ Chow. Network learning via

63

https://www.dietaryguidelines.gov/sites/default/files/2021-03/Dietary_Guidelines_for_Americans-2020-2025.pdf
https://www.dietaryguidelines.gov/sites/default/files/2021-03/Dietary_Guidelines_for_Americans-2020-2025.pdf


multiagent inverse transportation problems. Transportation Science, 52(6):1347–1364,

2018.

Shi Yu, Haoran Wang, and Chaosheng Dong. Learning risk preferences from investment

portfolios using inverse optimization. Research in International Business and Finance,

page 101879, 2023.

Jianzhong Zhang and Zhenhong Liu. Calculating some inverse linear programming prob-

lems. Journal of Computational and Applied Mathematics, 72(2):261–273, 1996.

Jianzhong Zhang and Zhenhong Liu. A further study on inverse linear programming prob-

lems. Journal of Computational and Applied Mathematics, 106(2):345–359, 1999.

Jianzhong Zhang and Chengxian Xu. Inverse optimization for linearly constrained convex

separable programming problems. European Journal of Operational Research, 200(3):

671–679, 2010.

Jianzhong Zhang and Liwei Zhang. An augmented lagrangian method for a class of inverse

quadratic programming problems. Applied Mathematics and Optimization, 61(1):57–83,

2010.

Jianzhong Zhang, Zhongfan Ma, and Chao Yang. A column generation method for inverse

shortest path problems. Zeitschrift für Operations Research, 41(3):347–358, 1995.

Jianzhong Zhang, Liwei Zhang, and Xiantao Xiao. A perturbation approach for an inverse

quadratic programming problem. Mathematical Methods of Operations Research, 72(3):

379–404, 2010.

Yi Zhang, Liwei Zhang, Jia Wu, and Jianzhong Zhang. A perturbation approach for

64



an inverse quadratic programming problem over second-order cones. Mathematics of

Computation, 84(291):209–236, 2015.

65



APPENDICES

66



Appendix A

Lagrangian function

A.1 Lagrangian function

In this section, we show that the lagrangian relaxation method does not work for our

problem as it leads to zero solutions. Suppose that we apply lagrangian relaxation to

the inverse optimization problem (3.13) to find a lower bound to the model. By relaxing

constraint (3.13d), we get:

min
A,b,m

L =

∑
k∈K

mk

|K|
+
∑
i∈I1

µi(
∑
j∈J

a2ij − 1) (A.1a)

s.t. (3.13b), (3.13c), (3.13e) (A.1b)

The lagrangian lower bound is derived by solving the following lagrangian dual problem:

ZL = max
µµµ

min
A,b,m

L (A.2)

Proposition 4. Problem (A.1) is unbounded if µµµ < 0.
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Proof. Observe that A,b ∈ R∪{−∞,+∞}. If µµµ < 0, ∃A,b such that
∑
i∈I1

µi(
∑
j∈J

a2ij−1) →

−∞ and ϵki < +∞, ∀k ∈ K, i ∈ I1. Also, ϵ
k
i < +∞, ∀k ∈ K, i ∈ I1 implies

∑
k∈K

mk

|K| < +∞ ,

∀k ∈ K. This means function L → −∞.

Proposition 5. The solution of problem (A.1) is zero if µµµ ≥ 0.

Proof. The optimization model (A.1) tries to minimize function L over some constraints.

Observe that the first term of L,

∑
k∈K

mk

|K| , is always non-negative as mk ≥ 0. If µµµ ≥ 0,

∃A,b = 0 such that ϵki = 0, ∀k ∈ K, i ∈ I1. Therefore,

∑
k∈K

mk

|K| = 0 and
∑
i∈I1

µi(
∑
j∈J

a2ij − 1) =

−
∑
i∈I1

µi.
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