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Abstract

Privacy in machine learning holds great promise for enabling organizations to analyze
data they and their partners hold while maintaining data subjects’ privacy. In this thesis
I show that private computation, such as private machine learning, can increase end-
users’ acceptance of data sharing practices, but not unconditionally. There are many
factors that influence end-users’ privacy perceptions in this space; including the number
of organizations involved and the reciprocity of any data sharing practices. End-users
emphasized the importance of detailing the purpose of a computation and clarifying that
inputs to private computation are not shared across organizations. End-users also struggled
with the notion of protections not being guaranteed 100%, such as in statistical based
schemes, thus demonstrating a need for a thorough understanding of the risk form attacks in
such applications. When training a machine learning model on private data, it is critical to
understand the conditions under which that data can be protected; and when it cannot. For
instance, membership inference attacks aim to violate privacy protections by determining
whether specific data was used to train a particular machine learning model. Further, the
successful transition of private machine learning theoretical research to practical use must
account for gaps in achieving these properties that arise due to the realities of concrete
implementations, threat models, and use cases; which is not currently the case.
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Chapter 1

Introduction

Collaborations and contracts between companies increasingly involve the disclosure of data.
For example, MasterCard sold a stockpile of transaction data to Google to track whether
Google ran ads that led to a sale at a physical store [21]. Private computation, is a notion of
data analysis where there is some shareable output that can only be computed using private
unshareable data. Examples include private set intersection [38, 108, 175] and federated
machine learning [145, 212] which employ techniques that allow companies to compute
over users’ data without explicitly disclosing the data to other parties. However, private
computation is not a silver bullet to problems associated with sharing user data. User
consent is still needed, but cannot be acquired if the users are unable to comprehend the
implications of such computations on their data. Although privacy policies should contain
information for users about the data a company collects and how that company uses the
data, such documents are hard to read and rarely read, making the implications inaccessible
to users [141, 161]. To this end, in this thesis, I develop communication mechanisms for
users alongside my technical work in private and secure machine learning. Without clear
criteria that show what the privacy risks of collaborative learning are, it is not possible for
people to make informed decisions about the inclusion of their data in training sets or other
datasets. Without knowing what granularity of privacy controls people want, researchers
cannot develop the tools that empower them to make informed choices. Thus, this thesis
advances systems that enable people to understand what it means for their data to be used
in private computation, and specifically private machine learning.

Problem Statement. In this thesis I advance the theory and practice of privacy in
machine learning through the following avenues. In addition to attacks on privacy, I

1



include user perceptions, concerns, and comprehension in designing for privacy in machine
learning. I show factors of machine learning and private computation that impact end-users
to access and understand the risks of their data being used in machine learning. These
factors determine whether people feel safe sharing their data for use in training and what
machine learning designs require to give the granularity of control and protection people
want over the use of their data. Therefore, in this thesis I investigate the following research
question.

How can private machine learning be designed with accurate assessments of the
privacy risks in a way that can be understood and consented to by the subjects
of the data being computed over?

Perceptions
Chapter 3

Practicalities
Chapter 4 & 5

Communication
Chapter 6

Figure 1.1: Thesis organization

Contributions Although existing technical designs provide some formal guarantees, it
is critical to define specific metrics to evaluate privacy guarantees for any specified threat
model. That is, metrics are required that show what designs can satisfy participants
that have different privacy requirements or trust in the system or organization performing
the data analysis. This thesis creates the necessary foundation for such metrics through
demonstrating the risks associated with amplifiable existing attacks in different settings
(Chapter 5). Further, it shows the level of detail that can lead to variance in end-users
privacy preferences (Chapter 3) and how to communicate those factors (Chapter 6). All
of these are necessary in order to deploy practical real-world privacy preserving machine
learning systems. Including both an understanding of technical risks and human-factors,
this thesis develops improved technical systems that address otherwise neglected areas; in
the form of a proactive verifiable secret sharing scheme (Chapter 4).
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Chapter 2

Background

Privacy is not limited to one definition or concept. In this section I highlight technical
notions of privacy, conceptual privacy, and legal privacy. Further, there is the notion of
usability and accessibility as it specifically applies to privacy tools and private computation.
Finally, we can consider a specific form of private computation, privacy in machine learning,
and see how it encompasses significant breadth in terms of privacy.

2.1 Technical Privacy

Technical definitions of privacy, generally speaking, include two key aspects; what is being
protected, and from who. Within technical privacy, privacy guarantees are protections
that are achieved given a series of assumptions are met. These assumptions may be about
the potential adversaries, system complexities, or statistics.

For example, consider the following two types of adversaries. An honest-but-curious
(HBC) adversary will not deviate from the agreed upon behaviour within a protocol or
system, but will try to learn as much information as they can within the defined bounds.
An HBC adversary will use any information exposed to them, as well as potentially collude
with others in an effort to learn additional private information. A malicious adversary is
not bound to any expectation of behaviour (though cannot break for instance ability as-
sumptions such as computational limitations), and they can participate both honestly and
dishonestly at will. A malicious adversary can impersonate others, elect to not participate,
or participate disruptively.

3



An adversary attacking a privacy tool can have different goals and assumed behaviours.
While preventing the availability or use can be the goal of an attacker, these goals will
generally not impact privacy.

Learning private information. The information targeted by an adversary will vary
depending on the setting. In threshold schemes (e.g., Chapter 4), the secret information
is the shares, which are used to recover the secret. In private machine learning (e.g.,
Chapter 2.5), the secret information may be the training data, which an adversary can
attempt to learn through membership inference attacks [104].

Modifying information. An adversary may wish to modify information without detec-
tion. Doing such a modification may allow an adversary to better perform an attack to
learn secret information. However, modifying the secret information, perhaps via poison-
ing a machine learning model, will not directly reveal private information such as training
data [79].

Differential Privacy. In the last fifteen years, differential privacy is one definition that
has risen to prominence in terms of use for achieving technical privacy [60]. Conceptually,
differential privacy is used to achieve a technical privacy guarantee. Essentially, the guar-
antee is that plaintext data can be contributed to a dataset without any individuals’ data
significantly changing the outputs of select queries or computations over the dataset. More
formally, there are different definitions of differential privacy that are applied depending
on what computations over the dataset are desired. One definition is ε-differential privacy.

Definition 1 (ε-Differential Privacy [60]). A randomized mechanism M : D 7→ F pro-
vides ε-differential privacy (ε-DP) iff for all neighbouring inputs D, D′ ∈ D, ie., differing
in one element, and all subsets F ⊆ F ,

Pr[M(D) ∈ F ] ≤ eεPr[M(D′) ∈ F ],

where the probability space is M’s coin tosses.

That is, when using ε-Differential Privacy [60], the probability of the perturbed output
of the mechanism M occurring is essentially the same whether the input was D or D′.

Homomorphic Encryption. While differential privacy provides a technical notion of
privacy for computations when plaintext data has been contributed, a different privacy
guarantee can be achieved through the use of homomorphic encryption [245]. Homomor-
phic encryption does not require plaintext values to be shared to achieve the computed
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results. In homomorphic encryption, plaintext data is encrypted such that when select
computations are performed over the encrypted texts, the decryption of the computed
result is the same as the computed result would be over the plaintext values.

Private Computation. Private computation defines an input, an output, and a func-
tion with limitations as to what can and cannot be inferred by an adversary, even if the
adversary possesses some subset of the input, output. The function enforces the inference
limitations through the use of mathematics such as cryptography or statistical guarantees.
Private computation may employ differential privacy, homomorphic encryption, as well as
other cryptographic techniques to achieve these guarantees. Further, such computations
may be between two or more parties, and may involve trusted third parties. Consider the
following example of a type of private computation.

Private Set Intersection (PSI). Two or more parties can compute the intersection of
their data without revealing data they possess outside of the intersection using private set
intersection (PSI). If the contents of the intersection also has some privacy requirements
due to the sensitive nature of the data, differential privacy can be used for additional
privacy guarantees [108].

2.2 Theories of Privacy

Theories of privacy attempt to define and describe privacy or privacy behaviours [7, 124,
158, 173, 231]. Some theories, such as the Westin categories of ‘the fundamentalist’,
‘the pragmatist’, and ‘the unconcerned’ are used to classify general privacy attitudes,
but do not necessarily reflect privacy actions when individuals are presented with specific
scenarios [234]. Others, such as contextual integrity focus on an individuals’ right to
privacy with respect to information about themselves, and to exercise that right differently
in different contexts [158]. Information about individuals may be collected by employers,
government entities, and friends. Which of these collectors original receives the information
is one component of the ’context’ or social domains in which information is shared. Once
the information is in a different context, whether via use or disclosure, it can no longer
be assumed to meet privacy expectations. While theories of privacy do not prescribe how
to develop effective tools and technologies, they aid in the interpretation of user actions,
behaviours, and needs.
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2.3 Legal Privacy

Legal notions of privacy are primarily framed in terms of individual protections from gov-
ernment and from corporations; with legal and financial penalties for non-compliance.
Canada has PIPEDA, the Personal Information Protection and Electronic Documents Act,
which protects individuals from the collection, use, and disclosure of their data by corpora-
tions without the individuals consent [164]. After being updated in 2018, non-compliance
with PIPEDA regulations can lead to corporations facing fines up to $100,000. The United
States has the Children’s Online Privacy Protection Rule (COPPA)1, the Health Insurance
Portability and Accountability Act (HIPAA) [3], and recently the state specific California
Consumer Privacy Act (CCPA2). Members of the European Union have the General Data
Protection Regulation (GDPR) [230], which has stricter requirements and more costly
penalties for non-compliance (up to $20 million Euros or 4% of total global revenue). Such
legal regulations may impact individuals’ perceptions of privacy, and can determine cur-
rent compliance requirements for privacy. However, changing laws takes time while new
technologies are in constant development, and thus these laws cannot encapsulate current
and future privacy requirements and expectations.

2.4 Usable Privacy

Privacy tools may require additional user effort over non-privacy preserving tools and there-
fore require clear motivation before users will choose to use them. This is particularly true
when the non-privacy preserving tools only inform users of privacy implications through
privacy policies; which are rarely read nor understood by users [141, 161].

Unlike direct to consumer applications, (e.g. Signal3), private computation often uses
data about users without directly engaging with them. The data subjects, or data donors,
provide data to one entity, and then that entity uses the data towards some goal. In a recent
study from Agrawal et al. [6], technical expert participants acknowledged the significance
of end users. However, they did not consider end user understanding and consent a priority.
Despite the indirectness, consent and communication, in terms of how user data is used,
is still needed and potentially legally required, although ensuring it is somewhat more
complex. Past efforts at communicating implications of private computation or the use of

1https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/
childrens-online-privacy-protection-rule

2https://oag.ca.gov/privacy/ccpa
3https://signal.org/en/
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technical privacy find that end users struggle to understand technical privacy approaches
and desire better explanations [51, 237]. In addition to understanding, past descriptions
have struggled to inspire trust and confidence [26, 178]

To effectively design privacy tools that users will feel encouraged to use, it is necessary
to study users awareness, understanding, and motivations [11, 51, 160, 188, 220]. While
usability can include efficiency and practicality from a technical standpoint, private com-
putation must inspire trust and match the expectations of the data subjects to ensure their
continued consent to the use of their data in such computations.

2.5 Privacy in Machine Learning

Privacy-preserving machine learning has the potential to balance individuals’ privacy rights
and companies’ economic goals. However, such technologies must inspire trust and com-
municate how they can match the expectations of the subjects of the data. In this section,
I discuss the breadth of privacy vectors for machine learning and their relationship to user
perspectives of the space.

2.5.1 Data Sharing in Machine Learning

In a computation, such as machine learning, there are two main roles that can be held by
an individual or a corporation.

Definition 2 A data subject is an entity whose data is present in the data set being com-
puted over (e.g., the training set) and the data describes the subject or their attributes.

Definition 3 A data owner is an entity that holds a dataset that is being contributed to
the data analysis (e.g, towards training a shared model).

In some cases, the data subjects may be the same as the data owner. For instance,
this occurs in the case where keyboard users agree to share their typing data to improve
keyboard suggestions [239]. In other cases, however, the data subject could be a medical
patient and the data owner a medical research lab with a dataset containing information
on a number of data subjects. Data owners who are not data subjects may have different
privacy expectations or requirements than in the case where the data subjects are the data
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owners contributing their data. The situation can be more complicated when the data
subject did not provide their data directly to the current data owners. In a setting where
the data subject initially gives their data to an organization that becomes the new data
owner, the data subject may not have understood their data could be used in collaborative
learning, or any corresponding privacy risks [230].

Further adding to the complexity, machine learning exists in many forms, resulting in
varying structures that we must account for if we are to communicate the implications
to the data subjects. Across “forms”, each have their own sub-forms that have unique
configurations for training and tasks. In this thesis, we will not be focusing on the types
of tasks that can be performed (classification, inference, clustering, etc.). Instead, we will
be focusing on the ways sensitive data can be defined in machine learning, how it can be
trained over, and what unique “sharing structures” can occur in machine learning.

When we are concerned with data sharing structures, we are referring to cases where
either (i) the data subjects are not the data owners training a model, (ii) there are many
data owners each contributing data from many data subjects, (iii) there are many data
subjects each providing their own data, or there could be some combination of these three
cases. Each of these four cases can occur differently depending on the form of machine
learning being performed.

Within the field of machine learning, consider the following high-level forms of machine
learning. These forms are based on how the “training” data is accessed; with the most
conventional of these forms being stand alone machine learning.

Definition 4 Stand-alone machine learning, or centralized machine learning, is any ma-
chine learning algorithm (neural network, decision tree, etc.) where all of the data being
trained on is located in one place.

Within stand-alone machine learning, it is possible for each of the three cases (i-iii) to
occur. Case (i) is rather typical, and includes things like an email provider training over
multiple users’ email inboxes. Such an email provider can centralize all the data they want
to train over as the sole data owner; but the data subjects are many, each able to have
their own expectations for privacy and how their data can be used by the organization
providing them a service. Case (ii) can occur as a stand-alone training instance when all
of the data owners trust one another. While they may possess data they have collected
from each of their own client sets, they are in a scenario where they can deposit all of their
collective data in one location for training over. Similarly, Case (iii) can occur in instances
where a number of data subjects, each holding their own data, elect to send their data
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to a trusted third party controlled centralized location. This can only be done if each of
these individuals trust the third-party entity, otherwise, for both Case (ii) and (iii), it is
necessary to move to the next form of machine learning; collaborative machine learning.

Definition 5 Collaborative Machine learning is any machine learning algorithm where the
training data is not all held in a centralized location. This includes horizontal federated
learning [1], vertical federated learning [105, 236], and any other similarly distributed ma-
chine learning.

Collaborative learning is typically performed when the data to be trained over cannot
be placed in a centralized repository. This could be because the collective amount of data
is too large too store, there are too many contributors to coordinate all of the data be
available at once, or because the contributors do not have a trusted entity they are all
willing to provide their data to. Examples for our three cases are as follows. First, for
case (i) two health research companies may want to train a model over their respective
datasets; but not wanting to send that data directly to one another or to a third party.
Note that this solution is not necessarily going to achieve their privacy goals if they also
need to guarantee that neither one is able to learn about their training sets (see attacks
section below). In the collaborative setting; there is no salient difference between case
(i) and case (ii), however, for case (iii) there is another example. Case (iii) includes a
technology company that wants to train their typing prediction software for their custom
keyboard. In this case, if the users of the keyboard are able to self-enrol contributing their
data to the model, they are then fulfilling both the role of data subject and data owner.
When performed in a collaborative setting, there is no trusted party who receives the data
directly; rather the protocol will execute such that each party provides contributions to
the model in the form of a “model update”. The nature of such updates depends on the
specific implementation used; such as model parameter updates, gradient updates, or some
other attribute.

2.5.2 Privacy Protection in Machine Learning

In private machine learning, what needs to be protected can include the training data, the
model (e.g., the parameters), and the model outputs or inferences. Attacks on machine
learning models aim to learn these sensitive attributes, thwarting their protections. Such
attacks include inference attacks, model inversion attacks, and others [22, 91, 94, 168].
Each of these attacks pose risks depending on the context of the data being used and
what needs to be protected. Generally, the goal of a membership inference attack is to
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determine whether a target data element belongs to the training set that was used to train
the machine learning model [207]. If, for example, whether an element was in a dataset
is itself sensitive, membership inference attacks can be the most damaging attacks on the
privacy of machine learning.

Thus, most technical protection mechanisms focus on one of these aspects, such as
protecting the training data, and typically do not secure all of these potentially sensitive
attributes. There are a number of protocol designs that perform differentially private ma-
chine learning in the non-distributed (or stand-alone) setting [1, 37, 104]. There are also a
few designs for applying differential privacy in the collaborative, or federated, setting [85,
205]. Designs for privacy-preserving training can apply combined techniques, including
some selection of differential privacy [85], third parties [167], and cryptographic computa-
tion [23]. Some constructions employ multiparty computation or homomorphic encryption
to achieve stronger privacy guarantees at a high cost to efficiency [225]. One such con-
struction improves upon efficiency using a combined differential privacy and multiparty
computation approach [238].
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Chapter 3

Perceptions

This chapter is adapted from work that previously appeared as “Caring About Sharing:
User Perceptions of Multi-party Data Sharing” at the 2022 USENIX Security Sympo-
sium [110]. This chapter shows how there are many factors influencing privacy perceptions;
even when considered quite broadly. Within this chapter the data sharing practices covered
encompass some of the breadth of structures we highlighted in the previous chapter with
respect to the forms of machine learning. That is, given this work we show that the many
forms of machine learning, each with their own structures, cannot assume to fit existing
understandings of privact perceptions and preferences.

3.1 Introduction

Collaborations and contracts between companies increasingly involve the disclosure of data.
Mastercard sold a stockpile of transaction data to Google to track whether Google ran
ads that led to a sale at a physical store [21]. Data moving between companies is not
limited to direct sales or targeted advertising. Data sharing can also occur through the
purchase or merging of companies such as Google purchasing Fitbit [82]. Although Google’s
purchase of Fitbit includes a statement that the health and wellness data will not be used
for Google advertising, it does not clarify how other data could be used and whether
the health and wellness data can be used in ways not related to advertising. Through
a legal request one user determined Tim Hortons’ loyalty program app shared its users’
precise location regularly with a third-party (Radar Labs Inc.) that identified users’ home,
work, travel destinations, as well as visits to a competitor. The third-party ultimately
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shared the users’ precise locations with Tim Hortons’ parent company, Restaurants Brand
International [144].

There are even collaborations between technology and health companies that can and
do occur. There are collaborations between Google and Ascension [195], Microsoft and
Providence StJ̇oseph Health [35], and COVID-19 contact tracing tools [90]. Some of these
collaborations only include the use of services, but others require sharing data in some
form to perform computations, including machine learning. In addition to these forms of
collaborations, the line dividing health and technology companies is blurring with the de-
velopment of new services such as Amazon Care1 and Telus Health2. Amazon’s health care
service specifies that patient information is exclusively used for supporting Care Medical,
however, it is unclear how this could affect users’ understanding and perceptions of health
care data being used by technology companies.

We refer to companies that acquire or share data in these ways as collaborating for
multiparty data sharing. Mechanisms to perform privacy-enhanced multiparty data sharing
exist in the literature as secure computation, such as private set intersection [38, 175] and
federated machine learning [145, 212]. While companies, such as Microsoft and Google,
may choose to use privacy-enhanced computation in their collaborations, how to convey
these practices fairly to users and indeed how users feel about enhanced computations is a
question we address within this paper. Multiparty data sharing can be one-way, where only
one of the companies in the exchange acquires data, two-way where the parties involved
pool their collective data, or an exchange involving more than two-parties.

Although privacy policies should contain information for users about the data a com-
pany collects and how that company uses the data, such documents are hard to read and
rarely read, making them inaccessible to users [141, 161]. Users who trust one company
with their data may not understand that their data could be shared or purchased nor
the corresponding privacy risks. However, it can be confusing for people reading privacy
policies about sharing their data to understand what their data will be used for and make
informed decisions based on their perceptions of it.

Research Questions. We study users’ perceptions of multiparty data sharing via an
online survey. We analyze users’ perceptions of various data sharing events (termed as sce-
narios), what potential controls users want, and identify avenues for improving regulations
and engineering better systems to meet those needs. To this end we address the following
research questions (with salient results emphasized):

1Available across the United States, https://amazon.care/
2Manages Canadian health care records, https://www.telus.com/en/health
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RQ1: How does the overall acceptability vary across different types of multiparty collab-
orations? How do the types of companies involved further impact it?

The overall acceptability of multiparty data sharing is lower for collaborations
that are not reciprocal. The inclusion of a health company in non-reciprocal
collaborations is even less acceptable. (Section 3.4.2).

RQ2: How does acceptability vary in multiparty data sharing for different user controls
(consent, purpose, retention)?

Across user controls, preferences for consent vary the most between collabora-
tion types, however, opt-in consent is, generally speaking, the most acceptable.
(Section 3.4.1 and 3.4.2)

3.2 Related Work

Privacy Perceptions. Users’ perceptions of privacy have shown many changes over the
years and so have their preferences [9, 48, 120]. Past work has often focused on data sharing
for advertising purposes [46, 140, 228, 242], with the additions of privacy perceptions for
IoT, mobile, and smart homes in more recent years [10, 69, 128, 153, 221, 233]. Regardless
of whether the data is shared intentionally or unintentionally leaked via a data breach,
user perceptions tend to perceive such treatments of their data negatively [71, 111, 139,
140, 180, 204].

Even when a users’ data is only disclosed to a single company, different contexts in-
fluence what trade-offs users are willing to make at the expense of their privacy in terms
of benefits, or how their data is being used [14, 18, 20, 57, 158, 227]. Further complicat-
ing matters are ‘third parties’ or ‘partners’ that data can be shared with. Users do not
understand what these third parties are and how their data can be shared with these par-
ties [180]. In cases where such terms are used in a privacy policy, it can remain ambiguous
to users as to who their data can be shared with and thus prevent them from making an
informed decision [66, 130].

In general, survey methodology research cautions that respondents may have difficulty
predicting their behaviour or be inclined to report the perceived desirable response [177].
In the case of security research, recent work from Redmiles et al. [185, 186] shows that
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surveys can provide meaningful results for general constructs. We use a similar survey
design to previous work on acceptability for IoT and data breaches [10, 113].

Thus far, research has primarily treated third-parties or partners in much the same
manner as privacy policies do. Third parties are treated as monolithic black-box entities
that can take many forms and treat data in different ways. Ebert et al. [62] include
‘data sharing’ among the legal principles of their study, but again it is left as a general
concept. In this work, we build on past investigations into user perceptions of data sharing
by specifically providing respondents with scenarios based on real-world examples of how
their data could be shared with one or more other parties. We revisit whether policy and
design decisions relating to these continually evolving multiparty data sharing scenarios
can rely on past results, or whether different structures of data sharing result in different
perceptions that need to be addressed.

User Controls and Accessibility. Though not strictly targeting the multiparty data
sharing setting, methods to provide users with controls include toggles [89], permission
settings [117, 129], and privacy nudges [5]. Despite this, such controls can still be hard
for users to understand and use [4, 5, 17, 65, 69, 88, 187]. Difficulties associated with
providing users with controls to set their own privacy preferences are not limited to the
design of such controls. That is, users can be manipulated or tricked such that opting
out of behavioural based advertising is limited [88, 127]. With this in mind, we specify
explicitly details users may want to have user controls for in the survey. These aspects
for potential controls include what purposes users find acceptable for their data, how they
want to be informed (to get consent), and how long they will permit their data to be used
in this way.

Park and Sandhu proposed usage control to generalize these controls and the idea that
beyond privacy policies for all users there can be individual controls required for each
user [169, 170]. Ebert et al. [62] referred to usage control variables such as storage and
retention as legal preferences in their analysis. They do not focus on types of data sharing,
but instead on the effect of the contexts of a fitness tracker versus a rewards card. Similar
to Park and Sandhu’s application to social media controls, in the case of multiparty data
sharing, there are many potential parties that users may or may not want to share their data
with and the type of data they are willing to share may vary for different companies [169].

Law and Policy. There are a number of regulations, both old and more recent, that
apply to the privacy of users’ data [47, 159, 164, 190]. However, they do not necessarily
provide protections for all of the possible treatments of users’ data [135, 162]. Even with
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Figure 3.1: Overview of scenarios (A-L) presented in our survey and collaboration types (V, 1-5)
that we investigate. For reference, Scenario C, “TechForYou is a large internet company that
offers a search engine, email accounts and smartphone platforms to users. GoodHealth runs a
chain of hospitals across the country and stores health data for millions of patients during its
day-to-day operations. TechForYou and GoodHealth will share the customer data they hold with
one another. You are a customer of TechForYou”.

the recent California Consumer Privacy Act (CCPA3), the right to opt-out of data sales
does not stop companies from manipulating users such that it is difficult or unappealing to
opt-out[162]. Furthermore, it can only prevent companies from selling users’ data, it does
not prevent companies from sharing or exchanging data with other companies or affiliates.
Multiparty data sharing needs to be better understood with respect to user preferences
and perceptions to produce more specific regulations addressing all types of collaborations.

3.3 Methodology

We collected 1025 responses to our online survey through SurveyMonkey in March 2021.
Each participant was compensated $3.04 for their response and spent, on average, four
minutes to complete the survey. Our final participant set is N = 916 after excluding
the 109 respondents that failed an attention checking question. Respondents could exit
the survey at any time and could skip any question in the survey. Our study received

3https://oag.ca.gov/privacy/ccpa
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ethics approval from our institution’s office of research ethics (ORE). See survey at https:
//bkacsmar.github.io/files/SurveyUsenix2022.pdf.

3.3.1 Survey Design

Prior to the final survey, we ran a pilot study with N = 26 participants. We asked par-
ticipants in the pilot study what they would agree to in a multiparty data sharing setting.
The pilot had one scenario, between a technology company and a financial institution,
to introduce the concept of multiparty data sharing. We used a free-form text response
question to gather participants initial thoughts on this scenario and what could influence
their perceptions. Our pilot study free-form responses report a desire for user controls that
we incorporate into our final survey.

3.3.2 Survey Structure

Each survey provides one of twelve scenarios to respondents followed by a series of ques-
tions on user controls and privacy mechanisms. The twelve scenarios are categorized by
the number of companies and which companies send and receive data (see Figure 3.1 for
an overview of the scenarios). Each collaboration scenario is based upon real-world ex-
amples from Canada and the United States. For each question, excluding the free-form
responses and correctness checks, respondents select a value from a five-point semantic
differential [165] acceptability scale: “Completely Unacceptable”, ”Somewhat Unaccept-
able”, “Neutral”, “Somewhat Acceptable”, and “Completely Acceptable” as in Apthorpe
et al. [10]. Respondents rate acceptability given specified variables (shown as (a) through
(k) in Table 3.5). For analysis, the values we assign to our scale are 1-5 where 1 is “Com-
pletely Unacceptable” and 5 is “Completely Acceptable”.

3.3.3 Nature of Collaboration

The nature, or type, of the collaboration encodes the number of participating companies
and how the data flows between those companies. Notably, we test the inclusion of a health
company versus a technology company within the collaboration types. To check whether
the ordering of the companies influences respondents, we include two identical scenarios,
Scenarios A and B, where the only difference between them is the order in which the health
and technology company are introduced. The following defines our five collaboration types
with examples.
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Between collaboration types. We perform a Kruskal-Wallis test on the distribution of
acceptability of each collaboration type (1-5) for each variable ((a) through (k)) and report
those with significant differences in Table 3.1. We perform a post-hoc analysis for variables
that have significant differences from the Kruskal-Wallis test to identify which collaboration
types have pairwise differences. We use Dunn’s multiple comparison procedure and show
the results in Table 3.2. Only the collaboration type pairs that have significantly different
distributions of acceptability are reported. The difference in mean rank (e.g., the mean
rank of Type X subtract the mean rank of Type Y) shows the direction of the difference
in acceptability collaboration types.

Between collaboration
types, the acceptability
distribution of. . .

Test Statistic p

. . . (a) is the same 26.724 <0.001

. . . (c) is the same 15.113 0.004

. . . (d) is the same 10.340 0.035

. . . (e) is the same 12.058 0.017

. . . (h) is the same 13.261 0.010

. . . (k) is the same 10.337 0.035

Table 3.1: Kruskal-Wallis test results for the distribution of acceptability of variables
between sharing types {1 (N = 140), 2 (N = 150), 3 (N = 134), 4 (N = 162), 5 (N = 170)}
for which the acceptability of the variable differs significantly between data sharing types.

Within sharing types. Each sharing type (1-5) is comprised of two scenarios, so within
each type we perform a Mann-Whitney U test for each variable ((a) through (k)). For
‘two-way two-party exchange’ (type 1), we fail to identify any significant differences in the
distribution of acceptability for its constituent scenarios C (N = 73) and D (N = 67). In
‘one-way two-party exchange’ (type 2), we identify significant differences between scenarios
E and F in seven variables which can be seen in Table 3.3. For ‘many-to-one exchange’ (type
3), we identify one significant difference between scenario G (N = 64) and H (N = 70)
for ‘assumed consent’ (variable (c), p = 0.035, std. test statistic= −2.107, mean rank
difference= 13.84). For ‘acquisition’ (type 4), we identify a significant difference for ‘opt-in
consent’ (variable (e)) between scenarios I (N = 79) and J (N = 83) (p = 0.004, std. test
statistic= −2.915, mean rank difference= 20.24). For ‘merger then acquisition’ (type 5),
we fail to identity any significant differences in acceptability of variables for scenario K
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Collaboration
Type X, Type Y

Difference in
Mean Rank

Std. Test
Statistic

p

(a) All scenarios (general)
2, 4 -75.46 -3.124 0.018
2, 5 -69.42 -2.907 0.037
3, 4 -104.31 4.190 <0.001
3, 5 -98.27 3.990 0.001

(c) Assumed consent
2, 4 -68.28 -2.825 0.047
2, 5 -68.23 -2.855 0.043

(d) Opt-out consent
No pairwise differences due to Bonferroni correction.

(e) Opt-in consent
No pairwise differences due to Bonferroni correction.

(h) Retained for set time
2, 4 -71.96 -2.973 0.030

(k) Improving services
2, 5 -70.38 -2.948 0.032

Table 3.2: Dunn’s multiple comparison test results for the distribution of acceptability
compared pairwise between collaboration types. All p values are adjusted for multiple
comparisons (10 comparisons per variable).

(N = 74) compared with L (N = 96).

Two-way, Two-party Exchange (Type 1). In a ‘two-way two-party exchange’ there
are two participating companies. During the exchange, the two companies send data to and
receive data from one another. Four of our scenarios are a ‘two-way two-party exchange’
(Scenarios A-D). We use two of these four scenarios (C and D) in our collaboration type
analysis, and we use the remaining two (A and B) for validation only. Examples of such
a collaboration would be two companies that perform a computation, such as private set
intersection dual execution, that uses extended methods to ensure both companies receive
the result [148].
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Within One-Way Two-Party Exchange (E, F),
the acceptability distribution of. . .

Difference in
Mean Rank

Std. Test
Statistic

p

. . . (a) is the same 16.04 -2.322 0.020

. . . (e) is the same 17.47 -2.550 0.011

. . . (g) is the same 16.11 -2.315 0.021

. . . (h) is the same 15.19 -2.188 0.029

. . . (i) is the same 17.22 -2.603 0.009

. . . (j) is the same 22.22 -3.202 0.001

. . . (k) is the same 15.24 -2.196 0.028

Table 3.3: Mann-Whitney U test results for the One-Way Two-Party Exchange (collabo-
ration type 2) scenarios {E (N = 81), F (N = 69)}.

One-way, Two-party Exchange (Type 2). Perhaps the most conventional and well
understood collaboration type is the ‘one-way two-party exchange’ (Scenarios E and F).
In this case there are two companies where one acquires data from the other, perhaps in
exchange for a monetary amount. Such collaborations could be two parties computing the
intersection of data they hold where one party receive the resulting intersection [21]. Other
examples of this collaboration type include insurance telematics (use-based insurance) [126]
and computing joint cyber threats [28].

Many-to-One Exchange (Type 3). A company may acquire data related to their
users from multiple other companies or data brokers. We include two scenarios of this
form (Scenarios G and H) with a total of four participating companies. In these ‘many-
to-one’ scenarios, three of the companies are providing data to one other company. This
structure in practice, could of course take many forms depending on the number of partic-
ipating companies and which companies provide or receive data. We chose this structure
based on the real-world examples of companies acquiring data from a series of other ‘part-
ner’ companies. For example, advertising networks may acquire data from any number of
sources, including other apps, websites, and their competitors, depending on users’ per-
mission settings [67, 119].

Acquisition (Type 4). In our ‘acquisition’ scenarios, a single party purchases, or ac-
quires, another (Scenarios I and J). Examples of acquisitions relating to data sharing
include Google acquiring Fitbit [82], Microsoft acquiring LinkedIn [36], and WealthSimple
acquiring SimpleTax [93]. The company SimpleTax promised to never sell its users’ data,
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however, this did not account for when the company itself was sold. In such acquisitions
the data held by a company may be included in its assets and upon purchase becomes
available to the acquiring company depending on the applicability of regulations such as
the FTC Act 4. In the case of the purchase of SimpleTax, the explicit promise to never
share its users’ data was removed from its privacy policy going forward (only affecting data
since the purchase) [93].

Merger then Acquisition (Type 5). Generally speaking, the difference between a
merger and an acquisition can be thought of as two companies equally choosing to come
together as one company in a merger versus one company taking ownership of another
during an acquisition. In both cases, assets, which may include data, are consolidated in
some manner. We include a scenario where two startups merge, forming a new company,
which is then acquired by a third company (Scenarios K and L). In this case it is possible
for an individual to have shared their data with one of the original start-ups, with no
expectation that these two additional companies they have no connection with would
come to possess it. Sometimes a merger with other acquired companies can be a part
of an acquisition, and sometimes they are separate events; but they are both possible
outcomes for smaller companies [224].

3.3.4 User Controls

Usage control enforcement mechanisms are components that can be written into designs
or regulations which give users the ability to specifically set what they agree to. We use
eleven usage control variables (listed in Table 3.5 as (b) through (k)) within our survey.
The variables are selected from responses to our pilot study and real-world examples. We
investigate how purpose of use, data retention, and the method of acquiring consent or
notifying users can impact the acceptability of multiparty data sharing scenarios.

Purpose. There are three purposes of data sharing in our survey. These purposes are
‘generating advertising revenue’, ‘providing users with a monetary reward’ (e.g., free ser-
vice, reduced rate [126], or gift-card), and ‘improving services’ [65, 201]. Note that while
we included a variety of examples within the monetary return question, these examples
may not have been viewed the same by all respondents. That is, respondents may have
interpreted free service as an advertising funded service rather than an additional bonus

4https://www.ftc.gov/about-ftc/what-we-do/enforcement-authority
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service. Respondents that interpreted a free service in such a way may have been less
inclined to consider the service as a monetary benefit in the same sense as a gift card or
discount.

Data Retention. Users are known to have misconceptions about what happens when
their data is deleted[152]. To prevent misconceptions, our data retention questions provide
an explicit duration for each of the three retention questions. The duration values include
keeping the data ‘indefinitely’, keeping the data for a ‘specified duration’ of time (e.g.,
three months, one year, etc.), or more ambiguously, keeping the data until the company
(or companies) is ‘finished using it’. We note here that the deliberate inclusion of the
more ambiguous ‘after they finished using it’ does leave the potential for respondents to
interpret it differently. Data may be used by companies in computations such as aggregate
statistics, private set intersection, or to train machine learning models. Respondents may
differ in whether they believe that continuing to use computations on data means that a
company continues to use the data. We left interpretation of when the use ends open to
the respondents.

Notification and Consent. We avoid directly asking participants whether they would
consent, which would likely be influenced by perceived socially desirable behaviour [121].
Instead, we focus on notification strategies that inform users. Depending on local laws
and regulations companies use a variety of methods to inform (or not inform) users how
personal data can be used. We select a subset of those methods to evaluate any potential
influence on the acceptability of multiparty data sharing.

In our survey we include four questions relating to informing users. First, ‘concealed
consent’, where no formal notification is provided, and the respondents learns of the collab-
oration via the media. Second, there is ‘assumed consent’ where an email or app notification
is sent which indicates to the user that by continuing to use the service, they are agreeing
to the data sharing. Third, there is ‘opt-out consent’ that provides an option to specifically
disallow the data to be shared. Fourth, ‘opt-in consent’, where the data is not shared by
default and requires explicit permission.

3.3.5 Privacy Mechanisms

Our survey includes questions on how acceptability is influenced by privacy mechanisms.
The five privacy mechanisms we included are local differential privacy (LDP), central dif-
ferential privacy (CDP), data anonymization, data aggregation, and encryption [155, 237,
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(a) All scenarios (general) (µ = 2.70)

(b) Concealed consent (µ = 1.88)

(c) Assumed consent (µ = 3.11)

(d) Opt-out consent (µ = 3.31)

(e) Opt-in consent (µ = 3.78)

(f) Retained indefinitely (µ = 2.31)

(g) Retained while in use (µ = 2.94)

(h) Retained for set time (µ = 2.99)

(i) Generating revenue (µ = 2.21)

(j) Provide user remuneration (µ = 3.05)

(k) Improving services (µ = 2.88)
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Figure 3.2: The acceptability distribution of multiparty data sharing across all scenarios for each
variable. Acceptability is measured on a five-point semantic difference scale and each segment
corresponds to the proportion of respondents who select that level of acceptability (N = 916).

245]. Respondents each received one of the five privacy mechanisms and rated the ac-
ceptability of the data sharing scenario, if it were to include that privacy mechanism. To
validate that respondents understood the mechanisms, our research team manually gener-
ated informal descriptions of the mechanisms, and the survey asks respondents to match
their privacy mechanism to the most accurate description. This unfortunately suggested
respondents had low comprehension of the privacy mechanisms provided to them. Thus,
we exclude privacy mechanism related results.

3.3.6 Demographics

We report an overview of demographics rounded to the nearest percent. All survey respon-
dents are located in the United States. Of the total N = 916 participants, when asked to
specify their gender, 47% specified man, 50% specified woman, 1% specified non-binary,
2% preferred not to say, and less than one percent chose to self-describe. Respondents
specified an age range with 17% of respondents selecting 18-24, 22% 25-34, 15% 35-44,
21% 45-54, 22% 55-64, and 3% prefer not to say. In terms of employment, 70% reported
the industry of their current form of employment, 18% reported being unemployed, 5% as
student, and 6% responded with prefer not to say. The industries reported by those that
were employed were diverse with the most frequent industry being education at 10%. A
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slight majority of participants reported completing a degree at 59% (bachelor, graduate,
or associate). The remainder of participants education can be broken down as 23% with
some college but no degree, 14% completed high school, 3% less than high school, and 1%
prefer not to say.

3.3.7 Limitations

We recognize that our scenarios are not all encompassing of multiparty data sharing. We
have included varying companies, data types, and structures such that it may guide the
focus of future work. The companies we selected for this study include a focus on health
companies and health data. This focus may have influenced respondents in hard to predict
ways based on respondents presumptions about how health data is regulated as well as their
willingness to share such data. Further, we use a semantic differential acceptability scale,
but acknowledge that such scales could still result in bias over the duration of the questions
presented. Responses were gathered while the COVID-19 pandemic was ongoing [43]. We
cannot know how this may have affected respondents’ answers, but it may have contributed
to the higher unemployment percentage.

We further note that our participants, from across the United States, are WEIRD
(Western, educated, industrialized, rich and democratic) [198]. We do not presume to
make global assertions from our study but instead show that even within this group there
is a diverse set of expectations and preferences not currently supported by technology nor
required by regulations. Our scenarios are based on examples located in North America,
where our respondents live. This is critical as different regions, even within WEIRD partici-
pant pools, have different existing laws and expectations. For example, EU citizens already
have different protections than non-EU citizens. Finally, we acknowledge the potential for
bias towards perceived socially desirable behaviour [186]. We attempt to mitigate this bias
by using the more neutral term ‘acceptable’. We ensure there are no mentions of privacy
until the end of the survey, and we give participants the opportunity to provide their own
views in free-form text.

3.4 Results

We first present respondents’ overall perceptions of multiparty data sharing and related
user controls. Second, we examine the differences in acceptability between and within
each sharing type. This is followed by our analysis of demographic based variations in
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perceptions. Finally, we present an exploration of respondents’ free-form responses. Recall,
the labels for the variables and collaboration types are found in Table 3.5.

The results we present highlight our statistically significant findings. For interpretabil-
ity, we report mean values for acceptability in this section. When we refer to statistically
significant differences, we are not referring to these means, but include them as the statis-
tical mean ranks are less interpretable.

Note that although we asked respondents questions with respect to how privacy mecha-
nisms could impact acceptability, unfortunately respondents’ comprehension of the privacy
mechanisms definitions was low (based on our validation definitions), however it is included
for reference at the end of this section.

All statistical results presented use a significance level of 0.05. We use non-parametric
statistical tests as our data is not normally distributed. This leaves the potential for
incorrectly finding a difference insignificant. However, it decreases the risk of incorrectly
saying a difference is significant. Additionally, when presenting the results of multiple
comparison procedures, we report the p-value adjusted using the Bonferroni correction to
account for the increased chance of false positive results due to multiple comparisons.

3.4.1 Overall Perceptions

We begin by determining a base understanding of how acceptable respondents find multi-
party data sharing and our defined variables, regardless of the type of collaboration they
received. The acceptability of the data sharing scenario in ‘general’ (a), is completely un-
acceptable or somewhat unacceptable to 45% of respondents. Without additional details
about the collaboration, participants respond slightly more towards the unacceptable end
of the scale, but almost 30% of respondents do find it to be at least somewhat accept-
able. The distributions of how acceptable respondents found each variable are shown in
Figure 3.2.

We perform a Friedman’s two-way analysis of variance by ranks for each of the dis-
tributions of acceptability: within informed consent groups, within data retention groups,
and within purpose groups. For all variables within groups N = 916. Results show that
the distributions of acceptability is not the same for: consent groups (b), (c), (d), (e) with
test stat = 899.29 p <0.001, retention groups (f), (g), (h) with test stat = 255.08 p <0.001,
and purpose groups (i), (j), (k) with test stat = 435.79 p <0.001.

We perform Dunn’s multiple comparison procedure to identify which variables within a
group differ and in what direction, for example within data retention, how do variables (f),
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(g), and (h) differ (see Table 3.4). The difference in mean rank (e.g., the mean rank of Var
1 subtract the mean rank of Var 2) shows the direction of the difference in acceptability
of the pair. All pairs of variables have significantly different distributions of acceptability
except for the (g), (h) variable pair from within data retention.

Within Informed Consent. All user control variables for consent, (b) through (e),
have statistically significant differences in terms of acceptability. Overall, in terms of
notification and consent, participants find data sharing more acceptable when they are
explicitly informed or have more control over whether their data was used. ‘Concealed
consent’, when they receive no formal notification, is overwhelmingly unacceptable to 73%
of respondents ((b), µ = 1.88). Unacceptability is substantially reduced when users are
notified in any manner, regardless of control (e.g., even if opt-in or opt-out options are not
available). ‘Opt-out consent’ ((d), µ = 3.31), where users can toggle a setting to indicate
they do not want their data shared, skews slightly more towards the acceptable end of the
scale than the ‘assumed consent’ case ((c), µ = 3.11). ‘Opt-in consent’ achieves the highest
acceptability ((e), µ = 3.78) within the consent/notification grouping with approximately
58% of respondents finding it at least somewhat acceptable.

Within Data Retention. We investigate respondents’ perceptions with respect to data
retention, (f) through (h), and find significant differences in their acceptability. Respon-
dents find ‘retaining data indefinitely’ ((f), µ = 2.31) to be less acceptable than retaining
the data until the company is ‘finished using it’ ((g), µ = 2.94) and less acceptable than
retaining the data for a ‘specified time’ limit ((h), µ = 2.99). There is no significant dif-
ference in the distributions of how acceptable respondents find data between retention for
a ‘set period of time’ and ‘as long as the company uses it’. However, in practice there
could be no real difference in how long the data is retained between indefinite retention
and retaining the data as long as the company is using it. This result highlights the risk
of influencing users consent based on phrasing; something not currently strictly defined
across regulations on data sharing.

Within Purpose. In terms of purpose of use, (i) through (k), there are statistically
significant differences in how acceptable respondents find each purpose. Respondents’
overall perceptions are summarized as follows. It is least acceptable when the company
(or companies) uses the data to generate revenue ((i), µ = 2.21). Respondents find it
somewhat more acceptable when there is an explicit tangible or perceived benefit to the
user, such as a monetary reward ((j), µ = 3.05) or improved service ((k), µ = 2.88).
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Var 1, Var 2
Difference in
Mean Rank

Std. Test
Statistic

p

Informed Consent
(a), (b) -0.85 -14.098 <0.001
(a), (c) -1.07 -17.663 <0.001
(a), (d) -1.44 -23.798 <0.001
(b), (c) -0.22 -3.565 0.002
(b), (d) -0.59 -9.700 <0.001
(c), (d) -0.37 -6.135 <0.001

Data Retention
(f), (g) -0.46 -9.778 <0.001
(f), (h) -0.51 -10.864 <0.001
(g), (h) -0.05 -1.086 0.832

Purpose
(i), (j) -0.71 -15.186 <0.001
(i), (k) -0.55 11.764 <0.001
(k), (j) -0.16 -3.423 0.002

Table 3.4: Dunn’s multiple comparison test results for the distribution of acceptability
compared pairwise between variables within informed consent, data retention, and purpose
groups. All p-values are adjusted for multiple comparisons (6 comparisons for the consent
group, 3 for each of the data retention and purpose groups).

3.4.2 Nature of Collaboration

Recall the five types of collaboration defined in Section 3.3.1 and shown in Figure 3.1. First,
we examine between group differences, that is, the differences in acceptability between
different collaboration types. Second, we present within group differences, more specifically,
the difference in acceptability between the scenarios that comprise a collaboration type.

Between Collaboration Types.

We compare our five types of multiparty data sharing to investigate whether some sharing
types are more acceptable to respondents. The different average acceptability scores across
types of collaborations for variables (a) to (k) are shown in Figure 3.3. To determine
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Variable Label

All scenarios (general) (a)
Concealed consent (b)
Assumed consent (c)
Opt-out consent (d)
Opt-in consent (e)
Retained indefinitely (f)
Retained while in use (g)
Retained for set time (h)
Generating revenue (i)
Provide user remuneration (j)
Improving services (k)

Collaboration Type Label

Validation (V)
Two-way Two-Party Exchange (1)
One-way Two-Party Exchange (2)
Many-to-One Exchange (3)
Acquisition (4)
Merger then Acquisition (5)

Table 3.5: Reference table for labels corresponding to usage controls and collaboration
types.

which types of collaboration are more or less acceptable we perform a subsequent pairwise
analysis.

With respect to acceptability in ‘general’ (a), the different collaboration types, (1)
through (5), are statistically significantly different. Both ‘acquisition’ ((4), µ = 2.96)
and ‘merger then acquisition’ ((5), µ = 2.93) are more acceptable than a ‘one-way two-
party exchange’ ((2), µ = 2.51) and ‘many-to-one exchange’ ((3), µ = 2.34). A possible
attribution to the greater acceptability for mergers and mergers then acquisition rather
than exchanges could be the indirectness by which data is acquired. Unlike in the specific
exchange scenarios (‘one-way two-party’ and ‘many-to-one’) where data can be seen as a
commodity, within the merger-acquisition scenarios nobody is explicitly seen as ‘selling’
users’ data. Additionally, in the case of mergers and acquisitions, the company acquiring
the data may be seen as the new shepherd of the data, continuing to provide the user with
the services that led them to originally use the acquired companies’ services.
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Collaboration Type

1 2 3 4 5

(a) 2.63 2.51 2.34 2.96 2.93

(b) 1.96 1.71 1.77 1.84 2.00

(c) 3.00 2.91 2.99 3.34 3.34

(d) 3.20 3.15 3.19 3.53 3.49

(e) 3.71 3.63 3.69 4.00 3.96

(f) 2.34 2.27 2.10 2.42 2.51

(g) 3.04 2.79 2.87 2.95 2.87

(h) 3.12 2.72 2.81 3.17 3.07

(i) 2.14 2.04 2.27 2.23 2.36

(j) 3.02 2.85 3.11 3.21 3.13

(k) 2.81 2.70 2.78 2.91 3.11
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Figure 3.3: Average acceptability of variables for each collaboration type. The labels for collab-
oration types and variables correspond to those shown in Table 3.5.

User Controls Between Collaboration Types. We further compare between collab-
oration types for each of the user control mechanisms. We continue to observe statistically
significant differences between mergers and acquisitions compared to the other exchange
types. Specifically, ‘improving services’ (k) is more acceptable for a ‘merger then acqui-
sition’ ((5), µ = 3.11) than a ‘one-way two-party exchange’ ((2), µ = 2.70). ‘Assumed
consent’ (c) is more acceptable for both merger collaboration types (‘acquisition’ ((4),
µ = 3.34) and ‘merger then acquisition’ ((5), µ = 3.34)) than for a‘one-way two-party
exchange’ ((2), µ = 2.91). Finally, ‘retained for a set time’ (h) is more acceptable for
an ‘acquisition’ ((4), µ = 3.17) than a ‘one-way two-party exchange’ ((2), µ = 2.72) The
difference in acceptability between types for data retention and purpose could again be
potentially attributed to the indirectness by which data is acquired in mergers and acqui-
sitions.

There are no notable differences between collaboration types for ‘concealed consent’,
‘generating revenue’, ‘retained indefinitely’, and ‘retained while in use’. This unchang-
ing negative perception is likely because these attributes are considered more uniformly
unacceptable. These results demonstrate another avenue where users would benefit from
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transparency in terms of the purpose and other contextual information, to make an in-
formed decision of whether to consent, when companies are merged or acquired.

Within Collaboration Types.

Each collaboration type consists of two possible scenarios. We compare the scenarios
within each collaboration type to one another to identify differences that exist depending
on the sending and receiving companies as well as who the respondent is a user of. In
our analysis we do not consider the order that the companies are introduced as a factor.
This exclusion is based on our validation test for collaboration Type V; which found no
statistically significant differences between the response distributions whether a health or
technology company is introduced first, across variables (a) through (k).

We summarize the remainder of our results within collaboration types by their common
themes. Overall, the within collaboration types analysis suggests that the inclusion of a
health company negatively influences users’ perceptions of the multiparty data sharing.

Collaboration over Commodification for Health Data. We find an interesting re-
sult within the ‘one-way two-party exchange’, an exchange type where the key distinction
between scenarios is a tech company giving away user data (Scenario E) versus a health
company giving away user data (Scenario F). We identified statistically significant differ-
ences across seven of the eleven measured variables. The four non-significantly different
variables are ‘concealed consent’, ‘assumed consent’, ‘opt-out consent’, and ‘retained in-
definitely’. For the seven variables that do have significant differences, they are all more
acceptable for Scenario E when compared to Scenario F. In Scenario E, respondents are
framed as a user of a technology company which is providing its data to a health company.
Whereas, in Scenario F respondents are framed as a user of a health company which is
providing its data to a technology company. In both Scenario E and F, respondents are a
user of the company giving away data.

This suggests the difference in acceptability could be attributed to the commoditization
of health data being more objectionable than in the case of tech data. While respondents
may be used to, or even have come to expect to have their data treated as a commodity
by technology companies (Scenario E), the same may not be true for health companies.
To further this idea, we look within ‘two-way two-party exchanges’ (Scenarios C and D),
wherein the health company shares its data but also receives data in return. Respondents
seem to interpret this reciprocity as providing some benefit to them, as opposed to being
a ‘sale’. When this reciprocity is absent in Scenario F, we see lower acceptability overall,
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possibly due to this commodification of health data which has an expectation to be the
most protected data.

Health Companies Complicate Data Sharing. Health companies being involved
negatively impact user perceptions of multiparty data sharing even when the health com-
pany is only receiving data. This is shown, first within ‘many-to-one exchange’, wherein a
number of companies are sharing data with either a tech company (Scenario G) or a health
company (Scenario H). We found a significant difference in acceptability of ‘assumed con-
sent’. Respondents who received the scenario where a technology company acquired the
data (Scenario G, µ = 3.25), found ‘assumed consent’ to be more acceptable than when a
health company received the data (Scenario H, µ = 2.76). This result implies that users
were not as satisfied with simply being informed of data sharing, when it is shared with a
health company, in contrast with a technology company. As both scenarios involve shar-
ing financial data, we can hypothesise that users do not want their financial records to
influence any future medical diagnoses. Users may be concerned for discrimination while
receiving medical treatment or processing insurance, if a health company obtained their
financial records.

The negative impacts of health company in data sharing is also shown within the
‘acquisition’ collaboration type. Scenarios within ‘acquisition’ involve a start-up that tracks
user data on diet, fitness, and social habits being acquired by either a technology company
(Scenario I) or a health company (Scenario J). Respondents found ‘opt-in consent’, the
“strictest” consent option of the ones we tested, to be more acceptable when a technology
company (Scenario I, µ = 4.24), rather than a health company (Scenario J, µ = 3.77)
acquired a startup. We expect that respondents are more comfortable with their fitness
habits influencing technology products, like in Scenario I, rather than having the potential
to influence their medical treatment or insurance as in Scenario J.

As a final note on the inclusion of health companies and how they may influence re-
spondents, we note that health data has certain laws surrounding it that respondents may
believe will protect them. Further, respondents concerns with data transferring to or from
a health company may also be attributed to respondents being unsure as to the purpose.
From our free-form responses we know that the purpose of use for the data was a frequent
condition for acceptability.
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3.5 Privacy Mechanism Comprehension

Respondents predominantly fail the comprehension check as to whether they understand
their privacy mechanism. Only 37% of total respondents correctly identified the corre-
sponding “layperson” description of the privacy mechanism they received. Data aggrega-
tion was the most correctly identified with 64% correctness. Respondents had the most
difficulty comprehending LDP and CDP. As LDP and CDP are essentially modifications
to aggregation when described less formally, it is not surprising that they were frequently
thought to correspond to the aggregation description. Privacy mechanism comprehension
results are shown in Figure 3.4.
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Figure 3.4: The counts of privacy mechanism received versus incorrectly guessed. Respondents re-
ceive the definition of a privacy mechanism and attempt to identify the layperson description that
corresponds to that same privacy mechanism. For example, of the 191 respondents that received
LDP (privacy mechanism 1), 41 incorrectly guessed they received CDP (privacy mechanism 2).

3.5.1 Demographic Variations

We evaluate responses across all scenarios for differences based upon demographic group-
ings.

Gender acceptability variations. For gender, we performed a Mann-Whitney U Test
with two groups comprised of 432 men and 455 women compared for each of the variables
(a through k). We found a significant result for ‘concealed consent’ (variable (b)). We
can conclude that men found their consent not being explicitly granted, to be significantly

31



more acceptable than women did (p = 0.008, std. test statistic= −2.647). The difference
in mean rank between men and women for ‘concealed consent’ was 40.45.

Age acceptability variations. To examine how age group influences acceptability for
each of the variables, (a) through (k), we performed a Kruskal-Wallis test comparing the
five age groups {18-24 (N = 154), 25-34 (N = 201), 35-44 (N = 140), 45-54 (N = 197),
55-64 (N = 201)}. We find that between age groups, the acceptability distribution of (a)
p = 0.006, (b) p < 0.001, (f) p < 0.001, (g) p = 0.019, (h) p = 0.012, (i) p < 0.001, (j)
p = 0.018, and (k) p < 0.001 is not the same.

Demographic variations overview. For demographic differences due to gender, we
compare men versus women as we did not have enough respondents representing other
genders, leaving us with N = 887. We compare the two groups comprised of 432 men and
455 women across the variables (a through k). From our data we identify a significant
difference in (b) ‘concealed consent’. We can conclude that men (µ = 1.98) found their
consent not being explicitly granted, to be significantly more acceptable than women (µ =
1.76) did.

To examine demographic variations due to age, we compare five age groups. From our
data we identify a significant difference due to age group across all variables except for
‘assumed consent’, ‘opt-out consent’, and ‘opt-in consent’. Across the variables ‘concealed
consent’, ‘retained indefinitely’, ‘generating revenue’, and ‘improving services’, respondents
aged 55-64 find each variable to be significantly less acceptable than their otherwise aged
counterparts (18-24, 25-34, 45-54). Respondents aged 35-44 find the ‘general scenario’, ‘re-
tained for set time’, and ‘generating revenue’ less acceptable than respondents aged 45-54.
Additionally, those aged 35-44 find ‘improving services’ less acceptable than respondents
aged 18-24. While older people, such as our respondents aged 55-64, could be generally
expected to have more conservative views, we do not know why the middle age group,
respondents aged 35-44, have a similar lower level of acceptability across variables. These
results demonstrate that different demographics have different desires. User controls need
to have sufficient individualization to support these differences.

3.5.2 Free-from General Perceptions

We analyze 789 non-empty free-form responses to the question ‘In general, what are your
thoughts on companies sharing data with other companies’. We exclude 62 responses that
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are either not interpretable or indicated a desire not to respond. For example, exclusions
include: single or random character responses (e.g., ‘a’, ‘alskj’), ‘N/A’, and ‘no’.

Responses were coded in terms of their positive or negative perceptions of the prac-
tice of sharing data. Positive or negative responses can have a conditional component
that indicates what improves or worsens their perceptions. The codes for the free-form
responses perceptions were developed through discussion and definition by two members
of the research team based on a sampling of the response set and the predefined ‘positive’
and ‘negative’ codes. A ‘resigned’ and a ‘neutral’ code were added after initial sampling
to more accurately describe all responses. This methodology follows the process of Oates
et al.’s [160] analysis and Miles et al.’s Qualitative Data Analysis: A Methods Source-
book [151].

The final codebook used to code the free-form responses is neg for unconditionally
negative, neg. Cond. for overall negative response but permitted cases, neutral for neither
positive nor negative, resigned for negative but accepted, pos. Cond. for overall positive
but forbidden cases, and pos. for unconditionally positive.

Two members of the research team each independently applied the perceptions code-
book to the response set. The coded responses were reviewed for agreement by the two
team members. The process for handling a disagreement in coding was for both coders
to check their responses. If the difference could be attributed to having mislabelled the
code, a correction would be made. The coders would come back together and check the
new agreement. If disagreement persisted, it went to a tie-breaker coder. We include an
overview of common themes that were indicated as influencing perceptions or requirements
in ‘conditional’ responses. The final code counts are summarized in Table 3.6.

Polarity of Base Perceptions

Of the total (789) responses coded for positive and negative perceptions, 32 required a
third coder to break the disagreement. The original two independent coders agreed on
the codes for 757 responses, or 96% of responses after checking for errors. One of the 32
responses shared with the third coder was coded differently by all three coders and the
consensus was to remove it due to the ambiguity.

Unconditionally negative responses formed the largest group of responses and included
a breadth of subjects relating to purpose, laws and regulations, distrust, and risks. Objec-
tions include users’ data being used for generating revenue for the company or for marketing
purposes.
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Frequency by Collaboration Type
Code All 1 2 3 4 5
Neg. 305 46 45 54 49 48
Neg. Cond. 107 19 15 12 17 22
Neutral 66 12 7 10 15 16
Resigned 32 6 4 5 7 10
Pos. Cond. 165 26 25 26 33 37
Pos. 51 5 10 4 13 8

Table 3.6: Frequency given Nature of Collaboration. Columns correspond to: 1. One-
way two-party exchange, 2. Two-way two-party exchange, 3. Many-to-one exchange, 4.
Acquisition, and 5. Merger then acquisition.

P58310: I think companies after having acquired data as an asset has one
intention and it’s making money through exploitation”

P78909: “These companies are reprehensible! I will not consent to my data
being shared for marketing purposes”

Other negative responses report distaste for being coerced into agreeing to data sharing
in order to access services. Respondents consider such requirements an uneven trade given
the risks associated with a breach that exist whenever data is collected, saved, and shared.

P20322: “I’m not happy about it because if you do agree you can’t choose who
it will be shared with. If you don’t agree, you can’t use the service”

P53560: “I hate it. Cookies and data thieves. Opting out often renders the
website unaccessible- so it’s coercion/entrapment. Data breaches wouldn’t re-
ally happen if data wasn’t retained”

Other possible risks of such sharing, according to respondents, include malicious out-
siders and malicious companies. Respondents express concern with targeted manipulation
by a company, such as advertising, using the shared data. Concern with breaches or leaks
also includes concern for data leaking out in ways users do not expect.

P69036: “While there are clear and logical reasons for utilizing and selling this
data it does have potential for targeted manipulation”
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P36717: “no. It makes me feel like my personal information is keep leaking
out. i feel more vulnerable”

The responses coded as ‘resigned’ essentially express that respondents know such shar-
ing occurs, do not necessarily like it, but accept it as reality. Respondents also express a
need for law or regulations, a belief that such events are likely more or less frequent than
they know, a feeling of futility, and the implied agreement to such things when using apps.
One participant’s response encompasses each of the above themes.

P07944: “It’s a gray area: users make and agreement with companies for in-
formation use based upon the scope and identity/reputation of a company.
What happens with an individual’s information in the event of a the busi-
ness/organization being sold. Legally speaking, the matter is an open and
shut case. However, a user may not want to have the same information use
agreement with the new company...and their rights to having a say in how
their information is being used are clearly being violated by the new company
which technically owns the rights to the information they have purchased since
the company never negotiated terms with users and can use that information
according to the company’s desire and purposes. It’s legal; but it sucks”

The neutral responses include two main types. First, some respondents directly say
they are neutral or do not care about such sharing. Second, some respondents express
some potential limitations on such sharing, but that they still did not have strong feelings
about it either way.

P79659: “I don’t have definite objections to companies sharing data with other
companies”

P60109: “It depends on what it’s used for and must have complete consent
from an individual that isn’t forced”

Few of the unconditionally positive responses say more than a one to three word an-
swer. For example, ‘good’, ‘epic’, and ‘sounds great’ are common. The positive responses
beyond sharing a generic response include some benefit to the individual or to the com-
pany. Benefits include personalizing advertising, ad opportunities, and new developments.
While distaste for data being used for advertising was found in many negative responses,
such as the earlier examples, this distaste was not universal.
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P14505: “I think that it is acceptable because they need to use this data for
advertising opportunities”

P98147: “Data sharing encourages more connection and collaboration between
researchers, which can result in important new findings within the field. In a
time of reduced monetary investment for science and research, data sharing is
more efficient because it allows researchers to share resources”

Conditionals and User Control

In this section we focus on the responses coded as conditional. We highlight requirements
users report as necessary for the scenarios to be acceptable. Specifically, we review ‘positive
conditional’, ‘negative conditional’, and ‘neutral’ coded responses with respect to their
conditionals. We include ‘neutral’ as our code definition of ‘neither positive nor negative’,
does not prevent conditions from being specified in the response. Whether respondents
viewed the scenario positively or negatively, they expressed similar themes.

Consent. The importance of consent and transparency is prominent in both positive and
negative conditionals, with an emphasis on informed consent. Respondents express a need
for easily accessible opt-out options and that consent (to data sharing) should not be a
requirement for using a service.

P66884: “It’s inappropriate unless the user consents explicitly and should never
be a requirement for use”

P10652: “I do not think it is acceptable unless they have the users permission.
Or an option to cancel information sharing. If the user has a choice and is OK
with it then I believe it’s fine”

P19193: “If they make people aware (in BIG print, not small, easy-to-miss
print) then it’s fine”

When expressing the importance of users’ consent, some respondents highlight that
data sharing should not be taken lightly. There are risks that can be associated with data
being provided to other entities that cannot be properly evaluated without details as to
where the data is going, what the data is, and why it is being shared. Receiving user
consent requires full transparency with respect to each of those attributes.
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P91741: “It should not be shared unless the individual gives authority to do
so. It is private information that should not be shared on a whim”

P09262: “I don’t think companies should share customer’s personal informa-
tion unless specific consent is received from the customer to where/what the
information is shared to, as well as why”

Furthermore, consent can be withdrawn and cannot be assumed to be transferable between
entities, even in the case of a company being purchased.

P41281: “Information collected, with the users permission, should never be
shared with another company or assumed to be the property of said company
if they merge with another company. This would be true regardless of whether
the original company remains in the same business, or moves into a different
service.”

However, some respondents highlight that sufficient transparency can be advantageous to
companies building goodwill after mergers or acquisitions.

P48036: “...The company can email its acquired users and them that they
bought out the nicestartup and they want to use the data in order to improve
their services and then list their services so people can decide for themselves.
You’ll be surprised how many people will agree to continue, there’s no need
to hide, lie, or manipulate anything. Just be honest! You’ll earn respect and
loyalty as well”

Data Type and Processing. Respondents indicate preferences for the kind of data and
how the data is processed.

P31222: “I do not like the idea of any personal, individual information being
shared with other companies, either for free or for a price, but if a study is
performed on that data and then the study results are shared I completely
think that is okay”

The type of data that is acceptable or unacceptable is not universal. Respondents mention
opposition to medical or health data generally, although there is some acknowledgment of

37



possible exceptions. While personally identifiable information (PII) is generally expressed
as inappropriate to share, what counts as PII is less universal. Some respondents con-
sider buying habits to be fine while others highlight the private nature of such financial
transactions [53].

P45732: “I don’t mind sharing information as long as it’s not financial”

P71169: “I have a problem with this when it’s sensitive personal information
such as health information. I don’t have as much of a problem with this when
it’s something less sensitive, such as my buying habits”

Purpose. The acceptability of different data sharing purposes, at least as far as the free-
form responses are concerned, is highly individualized to what each respondent considers
beneficial or detrimental. Some respondents find advertising acceptable while others do
not. Sharing data to improve services or scientific investigations are spoken of positively
while selling users’ data for monetary gain is aggressively opposed.

P24797: “It depends upon the purpose (my benefit or detriment), the data
security to ensure the original personally identifiable data is secure or destroyed
and the trust based on the history of how the company previously handled data”

Health. Health data is the most controversial type of data sharing, and a number of
respondents express concern for whether legitimate sharing purposes exist. Many respon-
dents that mention health data do so with intense negativity and concerns over the relevant
ethics and legality of the exchange or purchase of health-related data.

P94865: “Repugnant, especially in light of for-profit health systems attempting
to maximize profitability from patient interactions”

P72271: “There are stringent rules about sharing data under HIPAA in the US
and this clearly violates it, along with potentially exposing PII”

P77878: “worried that data will be mined for insurance companies so they can
eliminate or remove costly illnesses”
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Even within the topic of health data, some respondents reflect upon the potential for
acceptable data sharing settings. Privacy protections are key to improving the acceptability
of health data sharing. Protections could include regulations, privacy mechanisms, and
greater transparency.

P20986: “It depends. I think it can be beneficial under certain circumstances,
but I would be hesitant having any healthcare data shared outside my practi-
tioners. However, I recognize how it can improve goods/services, but there has
to be a lot of protection in place anytime data is shared”

P44838: “I believe for health records it should be acceptable for continuance
of care but not for advertising or making money”

3.6 Discussion

Disambiguate Third Parties. Privacy policies that give companies unrestricted abil-
ity to share data with ‘third-parties’ and ‘partners’ do not encapsulate the details that
influence users’ preferences. Our results show users care about who data is being shared
with, what is being shared, and the structure of the collaboration. In terms of ‘who’,
health companies sharing data is less acceptable than technology companies. In terms of
‘what’, it is more acceptable to share fitness data with a technology than a health com-
pany. Structurally, reciprocity improves acceptability over one-way ‘sale’ type transactions.
Transparency with respect to the nature of any collaboration is required to support the
preferences our respondents expressed. Thus, regulations, such as CCPA, need to have
detailed requirements for companies to clearly outline the properties we identify for data
sharing.

Explicit over Implicit Consent. Implied consent is inferred based on a person’s
actions or circumstances. When companies make consent conditional for the use of their
service, the use of the service is taken as consent. In contrast to implied consent, explicit
consent is unmistakably provided by the user, possibly in writing. It is specific, can be
rescinded, and is non-transferable. Informed consent requires users to have an understand-
ing of the implications and extent of what their agreement applies to when using an app
or tool. Respondents in our study expressed a clear preference for explicit consent that
requires them to opt-in over implied consent (e.g., ‘concealed consent’ or ‘assumed con-
sent’). Respondents’ preference for, and emphasis on consent and transparency, held for
both statistical analysis and free-form responses.

39



Reduce Ambiguities to Communicate Privacy. Although user controls affect the
acceptability of collaborations, the effect does not always correspond to the impact on
privacy in practice. For example, retaining data ‘while in use’ and ‘indefinitely’ may have
no practical difference. Despite this, respondents found it more acceptable for companies
to retain data ‘while they are using it’. Companies could abuse such misunderstandings
by making something seem more private in practice than it actually is.

Similarly, each of the five privacy mechanisms we included have a different effect on pri-
vacy in practice. Respondents to our study had difficulties understanding our descriptions
of the privacy mechanisms. Unless users can distinguish between accessible descriptions,
they will not be making informed decisions. Therefore, when companies use privacy mech-
anisms, they should be compelled by law to ensure it is either easy to understand or that
users are not required to understand the privacy mechanism used to successfully make an
informed choice. Going forward, researchers and policy makers must focus on conveying
the significance of different privacy implications and changing the information provided to
users such that it is clear and concise and not perceived as minor details.

Consent, Notice, and Choice. While the participants in our study expressed a strong
valuation in being able to give informed consent, it is important to contextualize this result
with respect to what this actually means for individuals. As has been shown in the past
with mobile app permissions and more recently with cookie banners, the use of persuasive
design (also sometimes referred to as dark patterns) by companies to manipulate users
to agree to certain terms is a risk [88, 127]. Thus, there are two key aspects related to
this issue that remains to be explored. First, what does it mean to be able to consent to
data-sharing practices. What levels of control do users want and need? Can the security
community implement different baselines that better reflect what users want and need? For
example, it may be the case that we could develop a new series of data-safety standards
that are implemented across a region. These could be similar to other safety practices such
as the food and drug regulations and automobile safety. However, such standards require
the research community to know what risks exist for certain practices if we are to similarly
create warning labels such as those that exist for lead, alcohol, tobacco, and others. While
efforts to make “nutrition labels” for privacy have previously been attempted [116], we
still have not found a solution for this space. The second aspect that needs to be explored
further is what ways of communicating to users about data-sharing are both informative
and non-manipulative. Without knowing how to do this, it will not just be difficult to
inform users but it will also be difficult to protect users from companies that employ
manipulation tactics. Going forward, researchers, developers, and policy makers will all
have to work together to address and advance these two key aspects.
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3.7 Conclusion

We presented the results of our survey on user perceptions of multiparty data sharing. Our
results indicate that the type of data sharing collaboration affects acceptability as do the
available user controls. Based on these results, we recommend that regulations for data
sharing do not solely rely on past work that focused on only one company receiving data
from another (whether for advertising or other purposes). We hope the recommendations
we have made help other privacy researchers and regulators mitigate the inequity imposed
on users by data commodification.
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Chapter 4

Practicalities: Theory to Practice

This chapter is adapted from work that previously appeared as “Mind the Gap: Ceremonies
for Applied Secret Sharing” at the 2020 Privacy Enhancing Technologies Symposium [109].
In this chapter we highlight how even well established privacy technologies, such as secret
sharing have practical privacy failures when not analyzed with respect to human-factors.
Through this chapter we will show that incorporating human-factor based analysis, such
as ceremony analysis, allows us to better develop technical protocols that meet the privacy
needs of the application setting; where otherwise there would be remaining vulnerabilities.
With respect to privacy in machine learning this is a critical result for designs going forward,
many of which employ conventional cryptography techniques such as secret sharing. In
order to develop strong privacy-preserving machine learning; a better understanding of
the deployment settings in terms of human-aspects can increase the success, in terms of
privacy protections, for such applications.

4.1 Introduction

The security properties that theoretical secret sharing purports to provide are particularly
meaningful for high-risk users such as journalists, as demonstrated by the security-critical
effort required for the investigation and reporting of the Panama Papers [143]. However,
while the security of theoretical secret sharing is well documented in academic research, in
practice, the security guarantees are more complicated.

The descriptions in the literature of secret sharing schemes, which we additionally refer
to as threshold schemes, often lack sufficient evidence of the security of real-world deploy-
ments of the schemes. This shortcoming is due to the descriptions leaving a large number
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of assumptions and decisions to the participants, as these are considered to be outside
of the protocol. Just as the design of the highly successful TLS protocol accounts for
more real-world practicalities than the underlying Diffie-Hellman key exchange protocol,
the practical use of threshold schemes, as we demonstrate, is no different. For example,
although Shamir secret sharing (see Section 4.2) is information theoretically secure, ulti-
mately the shares must be communicated to participants through a channel, which in most
cases will rely on symmetric or asymmetric encryption, and therefore rely on computational
assumptions. Furthermore, unlike cryptographic protocols such as Diffie-Hellman, thresh-
old schemes require significant user involvement and decisions at nearly every stage of the
protocol. Consequently, analyzing the security of threshold schemes requires assessing both
the protocol and the actions and decisions required of users.

Ellison [64] introduced the concept of a ceremony in security analysis, which requires the
inclusion of both the cryptographic protocol as well as any possible user actions or decisions
in the security analysis. Surprisingly, the state of research literature for threshold schemes
does not include a complete, end-to-end, formal definition and assessment of the security
of the ceremony of threshold schemes. Without such definitions, deployments of threshold
schemes lack the necessary structure required for formal analysis as their flexibility in terms
of applications is broad.

Without strict boundaries for a specific threat model and use case, it is impossible to
provide both a generalized framework and a formal analysis for secret sharing ceremonies.
This work provides a structure, in the form of a framework, that can be used for a given
threshold scheme to define and analyze its particular ceremony, by structuring the ceremony
as a series of stages and steps as is necessary to assess the ceremony’s end-to-end security.
Although an unbounded number of possible user interactions exist, our framework can be
used to guide the definition and formalization of the ceremony. We identify ceremony-
related issues, such as requiring the dealer to delete sensitive material and the requirement
for users to authenticate one another. The ceremony for an application, defined in terms
of our framework, accounts for the specific goals and adversaries of the ceremony and
therefore provides the needed structure that must precede efforts to formally analyze a
specific ceremony.

Contributions. We provide a framework to facilitate the process of defining an accurate
ceremony for a given threshold scheme; we then use this framework to assess the security of
several threshold schemes, and define a lightweight set of improvements that are useful to
threshold schemes based on Shamir secret sharing. Our framework is useful for comparing
different existing secret sharing schemes; however, what it primarily provides is a structure
for defining threshold scheme ceremonies with the necessary details to perform a more
accurate security analysis that accounts for the setting in which the threshold scheme is
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used. Overall, our contributions include:

• a demonstration of the variability in the ceremony of threshold schemes and how
this variability can lead to gaps in the security properties achieved by the threshold
scheme;

• formalizations of the adversaries and of several use cases of threshold schemes used
in practice;

• a framework to facilitate security analyses of threshold schemes used in real-world
settings;

• exemplar applications of our ceremony framework via security analyses of three
threshold scheme case studies; and

• techniques to close security gaps uncovered in our above analysis and an implemen-
tation of these improvements in Rust.

Organization. This chapter is organized as follows. Background, motivation, and re-
lated work are Sections 4.2, 4.3, and 4.4 respectively. Section 4.5 is our framework for
our analysis. Formalized ceremonies for two modes of operation for threshold schemes
are in Sections 4.6 and 4.7. Section 4.8 summarizes our analysis for several threshold
schemes, Section 4.9 is our improved ceremony and implementation and our conclusion is
Section 4.10.

4.2 Threshold Schemes

We summarize the notation used throughout our analysis in Table 4.1, including both
notation standard to the literature as well as new notation we introduce in later sections
for the purpose of our analysis. Notably, we denote the secret information that is protected
by the threshold scheme as F , while the secret input into the threshold scheme is s. This
differentiation will become important when we define modes of operation where F can
either be equal to s, or distinct, as defined in Section 4.5.2.

In general, cryptographic secret sharing schemes enable a group of n participants, pos-
sessing a secret s, to divide s into n shares. Before creating the n shares, a threshold
value t is chosen such that a collection of t shares must be used to learn the value of s. A
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n number of participants

t threshold

s secret recovered by a (t, n)-threshold scheme

S secret space of a (t, n)-threshold scheme

D dealer

DP dealer that later becomes a participant

F sensitive information requiring protection

Base s = F
Ext s 6= F
Pr participant performing a recovery of s

U participant performing an update

~C commitment used to validate any share

Table 4.1: Parameters and additional notation used within our analysis

(t, n)-threshold scheme is a secret sharing scheme where n and t are positive integers such
that t ≤ n, n representing the number of participants, and t the desired threshold.

In a (t, n)-threshold scheme we designate a dealer D as the entity that selects the secret
s and generates the n shares such that each of the n participants in the scheme receives a
share that preserves the following properties:

Reconstruction: any size-t subset of the n participants can compute the secret given
their t shares, and

Secrecy: no subset of the n participants consisting of t − 1 or fewer participants is able
to gain any knowledge of the secret given their combined shares.

In a conventional (t, n)-threshold scheme, the set of n participants does not contain the
dealer D. However, in our analysis we work in the setting where the dealer, now labeled
a participant dealer DP , may continue to be involved in the scheme as a participant, as
typically occurs in real-world practical settings.

While some variants of threshold schemes, such as threshold signature schemes [84],
allow participants to use their shares of s individually and to perform reconstruction only
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on the results, we focus our attention on threshold schemes in which s is reconstructed
directly. A well-known such construction, due to Shamir [200], distributes points lying on
a polynomial (of degree t − 1) as shares. We refer to this construction (summarized in
Appendix A.1) as classic Shamir secret sharing. Combining t of these shares using poly-
nomial interpolation would recover the secret; combining any smaller number of shares
does not leak any information about the secret. The construction is information theoreti-
cally secure; that is, a Shamir threshold scheme can withstand adversaries with unlimited
computational power.

4.3 Variability of Threshold Schemes

Threshold schemes allow for a high degree of variability in user goals and potential ad-
versaries, where even slight variations significantly influence the security of the scheme
overall. We describe two practical examples, where both cases utilize an identical un-
derlying threshold scheme protocol, however, the threat model, context, goals, and thus
ceremony vary dramatically between the two examples. For both examples, Alice, Bob,
and Carol are journalists at the same organization.

Case One. Alice received highly sensitive files from a source. She fears external parties
will act against her to prevent the distribution of the files, and wants to ensure that even
if an adversary succeeds at targeting her, the information can still be accessed by either
herself or trusted colleagues. She enlists the help of Bob and Carol in her efforts to preserve
the availability of the files.

Alice acquires a laptop to encrypt and store the secret information. She inputs a key k
into a tool that implements classic Shamir secret sharing using k as the secret (s = k) and
inputs her desired parameters t = 2 and n = 3. The tool outputs the corresponding shares
and Alice messages Bob and Carol over an established communication channel. Alice sends
one share to Bob and one share to Carol. Bob and Carol confirm they received the share
and each store their respective shares on a USB, which is then stored in a chosen safe place.
Alice stores the laptop containing the encrypted secret information in a safety deposit box
at a bank.

Alice leaves the news organization and Bob, who has lost his share, is assigned the
story. Fortunately, Alice left the organization on good terms, so Bob contacts Alice and
Carol, requesting their shares. Bob retrieves the laptop and decrypts the ciphertext using
the key recovered from Alice and Carol’s shares.

Case Two. Alice has received a decryption key that corresponds to a publicly released
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ciphertext [15, 16]. She fears external parties will attempt to distribute the key in a way
that could endanger individuals. Alice wants to ensure the information remains confiden-
tial to those she has not authorized (herself or her trusted colleagues Bob and Carol) to
distribute it.

Alice meets Bob and Carol at a previously agreed upon location. Using an airgapped1

laptop, Alice inputs the key from her source into a tool that implements classic Shamir
secret sharing, choosing t = 2, and n = 3. After the tool has output the corresponding
shares, Alice, Bob, and Carol each save one share to their respective USB. Finally, Alice
deletes all information off of the airgapped laptop. Everyone keeps their respective USB
devices on their person at all times.

Alice’s USB is taken from her while crossing a border. Fortunately the USB is insuffi-
cient to learn the secret data, however, Alice can meet Bob and Carol in person to request
their shares in order to recover the key.

Observations. In both cases, Alice made a number of choices, including selection
of participants, selection of communication methods, and selection of storage mechanisms.
The choices Alice made affect the security and privacy properties of each case. For instance,
only Case Two requires the physical presence of each participant. Such a requirement
may limit the availability of the information if an adversary had the power to prevent
participants from meeting up; for example, if the participants are initially separated by
a geographical border. Furthermore, storing the encrypted data on the laptop creates a
single point of failure for an adversary targeting the availability of the ciphertext.

The above examples demonstrate how the range of choices and prioritization impact the
threshold scheme ceremony. For instance, Case One preserves availability and prevents the
information from being released preemptively, but still requires confidentiality, otherwise
multiple copies of the information could simply be stored. More significantly, these exam-
ples highlight the need to consider the ceremony of the threshold scheme when performing
a security analysis, factoring in both the threat model that users operate within, along
with how users perform the actions required of the threshold scheme in context of their
use case, such as whether users operate online or entirely offline. This crucial observation
motivates our next sections, where we formalize several ceremonies of threshold schemes
as both protocol and explicit user actions and decisions in the effort to more accurately
assess the security of the threshold scheme under consideration.

1As a security mechanism, an airgapped laptop is protected against connecting to the Internet.
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4.4 Related Work

Ceremony Analyses of Security Tools. Our analysis follows in the style of prior work
analyzing cryptographic tools used in practice [59, 78], verifying security properties, and
documenting decision paths taken by users when participating in cryptographic protocols.
Our security analysis specifically includes the ceremony performed by end users [64], en-
compassing everything out-of-band to a cryptographic protocol but required of users and
thus subject to security consequences [56, 102].

While prior ceremony analyses have been performed for a number of cryptographic
protocols, the research literature currently lacks a similar analysis assessing the security of
ceremonies for threshold schemes specifically. Previous work on ceremony analysis includes
specifying how to model users’ devices [137] and formal analysis of Public-Key Infrastruc-
tures (PKIs) [138]. While frameworks have been proposed to assess the security of existing
ceremonies such as that of Carlos et al. [33], our framework specifically defines possible
threshold scheme ceremonies and facilitates their analysis.

In 2013, Carlos et al. [34] focused on threat modeling within ceremonies, highlighting
that threat models for ceremonies must be adaptive. Threat models must evolve to match
varying user goals and contexts even when these ceremonies utilize the same underlying
protocol. Radke et al. [181] highlight adaptive threat models as a weaknesses of ceremony
analysis, as the context of the ceremony must be as well defined in order to accurately model
potential adversaries and threats against the goals of end users to claim the ceremony as
secure. As ceremony analysis of threshold schemes is highly dependent on users’ threat
models, and as the threat models can differ depending on the user, context, or use case,
instead of providing a narrow ceremony analysis for a specific threat model, we present a
generalized framework for performing a ceremony analyses of threshold schemes in both
theory and practice, across several common real-world threat models.

Applications of Threshold Schemes. Sunder is an existing applied secret sharing
tool created by Freedom of the Press Foundation [77] to support journalists protecting
long-term secrets such as the Snowden archives. Another tool building on secret shar-
ing is Callisto, which provides a safety-in-numbers approach to exposing names of sexual
abusers [182]. While these use cases give insight into the setting and application of thresh-
old schemes used in practice, many other use cases of threshold schemes exist [12, 13,
218].

Shatter [13] is a framework for desktop and mobile platforms that performs key sharing
across a user’s devices. Shatter uses secret sharing to leverage users’ increasing numbers
of devices by requiring a threshold number of devices to provide consensus for actions such
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as performing a login. Although Shatter uses secret sharing it is actually an example of a
threshold signature scheme. Nonetheless, it still shares a number of properties with secret
sharing schemes that make our analysis applicable.

Shatter Secrets [12] is an advance on Shatter that provides protection to users’ data
when crossing borders. With Shatter Secrets, a user could encrypt their primary device
and then distribute shares to their friends at their destination with the encryption key
serving as the secret s. Once over the border, the user with the encrypted device visits t
of their friends, physically NFC-taps their devices to retrieve the shares, reconstructs the
secret, and decrypts their device.

Pico [218] stores shares on hardware tokens instead of utilizing users’ existing devices.
One explicit use case of Pico is as a replacement for password managers as it uses public
key cryptography challenge-response instead of typical passwords. Pico exists as a mobile
application and is intended to block a thief who has stolen fewer than t tokens from violating
confidentiality, while preserving availability as long as t tokens remain.

Secret Sharing Variants. Verifiable Secret Sharing (VSS) is a variant on threshold
schemes in which any participant can verify the integrity of their share using a public com-
mitment. Well-known VSS schemes include Feldman’s [68] and Pedersen’s [171] schemes.

Proactive secret sharing, introduced by Ostrovsky and Young [166] and used in a secret-
sharing scheme by Herzberg et al. [92], protects against a mobile adversary. A mobile
adversary can control a subset of players over time, but the members belonging to this
subset can change between epochs. To defend against such an adversary, proactive secret
sharing relies on proactively updating shares to enable a form of forward security.

4.5 A Framework for Ceremony Analysis

In this section we present the components we need for performing a ceremony analysis.
We define threshold scheme adversaries, distinguish two modes of operation, identify se-
curity goals, and provide additional terminology that we use throughout our analysis. We
conclude this section with an outline of how to use our framework to produce a complete
ceremony for a specific secret sharing protocol used in a specific setting and purpose.

4.5.1 Formalizing Threshold Scheme Adversaries

First, we formalize a range of possible adversaries against threshold schemes used in prac-
tice, and describe the possible capabilities and powers these adversaries can hold. We
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outline several conventional adversarial models and identify variations within each model.

Adversary Power. We define three levels of power an adversary may possess. Al-
though we utilize the terms ‘high’, ’middle’, and ‘low’, these terms are simply points of
reference for comprehension and are not intended as prescriptive classifications.

A high-powered adversary has the power and resources of a government actor. High-
powered adversaries can access state-of-the-art computing resources and have significant
quantities of time and money at their disposal. Such an adversary has the power to
take legal action, bounded only by the political environment of that jurisdiction. For
example, the NSA is known to masquerade as well-known sites, installing malware capable
of exfiltrating data from a victim’s device [80], governments are known to use informants
to infiltrate activist groups (Martin Luther King Jr.’s friend and photographer was an FBI
informant [142]), and some countries have proposed laws allowing legal orders requiring
technology companies to work on behalf of the government to provide access to encrypted
devices [55].

A low-powered adversary has similar computational, temporal, and monetary resources
as the participants of the threshold scheme. A middle-powered adversary exists somewhere
between the powers of a government actor and the powers of the participants. Such an
adversary has the same legal powers as a low-powered adversary, but may have the same
money and time available to them as a government actor.

Adversary Capabilities. We limit our analysis to the capabilities of the below-
mentioned adversarial models. The adversaries may be participants in the ceremony or
outsiders. A previously trusted participant may become an adversary at a later time in
the protocol. That is, we do not assume participant roles are static.

An honest-but-curious (HBC) adversary will not deviate from the ceremony, but will
try to learn as much information as they can within the bounds of the ceremony. An HBC
adversary will view any information that is exposed to them, and may collude with other
participants in an effort to learn additional information.

A malicious adversary is not bound to any expectation of behaviour, and she can
participate both honestly and dishonestly in the ceremony at will. A malicious adversary
can impersonate other actors, elect to not participate in the ceremony, or participate
disruptively by, for example, providing false shares and attempting to deceive other parties
into providing the adversary with their shares.

Adversaries who compromise operating systems or hardware infrastructure are also a
real threat to users defending against a high-powered adversary. However, this class of
threats are out of scope for our analysis as details of physical infrastructure vary widely
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between implementations. In practice, secret-sharing implementations should employ well-
known device protection techniques such as single-use strategies2 and using secure operating
systems such as Qubes [197].

Adversary Goals. Here we identify goals for an active adversary of threshold schemes.

Learning secret information. An adversary motivated to learn the sensitive information
F can work to gain knowledge of the secret or the shares, subsequently allowing the
adversary to recover F .

Modifying secret information. An adversary may wish to modify F without detection,
resulting in participants recovering information that is different than the original input
into the threshold scheme.

Preventing secret recovery. Adversaries may also seek to prevent others from accessing
or disseminating F . For example, an adversary seeking to hide information—such as a
government seeking to prevent public distribution of evidence of war crimes—can work to
disrupt communication, destroy shares, or even to destroy the sensitive data F .

Causing harm to participants. In some countries, working with material that is pro-
hibited can be a crime, putting all parties at risk [19]. An adversary may be motivated
to harm the participants of the threshold scheme, and can seek to perform actions such as
attributing ownership of F to those participants.

4.5.2 Modes of Operation

We define two manners of use, termed ‘modes of operation’, to manage the sensitive infor-
mation F . The Base Mode is defined as a ceremony for classic Shamir secret sharing [200].
The Extended Mode is an extension to Base Mode, and is documented to be used in
practice in high-risk settings [12, 77].

Base. In the first mode of operation, the confidential information, F , is small in size,
such that each of the shares distributed to the participants can reasonably be about the
size of F . The secret s can then be the information itself, s = F .

Extended. The second mode of operation, addresses when the sensitive information is
too large to be used directly as the secret s. The Ext mode of operation is modeled after
a common real-world use case described in the documentation of the secret sharing tool
Sunder [77]. In this case, the confidential data F is first encrypted and the encryption key

2One example of a single-use strategy is using “burner” phones. A burner phone is one that is newly
purchased and used for a short period, after which it is discarded. [196]
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is then used as input as s into Base. After the secret s is reconstructed, additional steps
must be taken to retrieve the data F using s as a key.

4.5.3 Identifying Security Goals

We next define several security goals that are commonly cited for implementations of
threshold schemes used in practice [13, 77]. Later, we assess these security goals to deter-
mine the extent to which these goals are achieved in several common real-world settings
and across a range of implementations and commonly used schemes, as well as in our iden-
tified improvements detailed in Section 4.9. The below identified goals are specific to the
context and use case of threshold schemes in general. However, the context of the threshold
scheme under consideration can impact the security goals for the scheme. We use this set
of security goals for our analysis, but other analysts using our framework should identify
the security goals appropriate for their specific scheme. Such goals are not limited to the
ones listed here and may include some of these goals, and others as well.

1. t-Separation of Privilege: We define t-Separation of Privilege as a specific case of
the well-known Separation of Privilege security principle first introduced by Saltzer
and Schroeder [193]. Threshold schemes require t participants’ shares to perform a
recovery of F , where t is the chosen threshold.

2. Availability: The secret information F is accessible to honest participants so long
as at least t valid shares remain accessible. For Extended Mode the availability of
the encrypted version of F will be enforced by the choice of safe storage mechanism
(see Section 4.5.5).

3. Information Theoretic Security: Even given unlimited computational power,
adversaries inside or outside the ceremony cannot access F while possessing fewer
than t shares.

4. Confidentiality: Adversaries outside of the protocol cannot gain knowledge of F .
Note that in a real-world setting this goal requires revocation of participants to
achieve confidentiality across epochs where participants move from a trusted to an
untrusted state.

5. Integrity/Corruption Detection: Corruption of an individual share or the sen-
sitive information is detected by honest participants before completing the Recon-
struction stage.
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4.5.4 Threshold Ceremony Analysis Outline

We next describe our framework to structure our assessment of the security of threshold
schemes in practice, including both the protocol and ceremony of the threshold scheme
under consideration.

Identify stages of the ceremony of the threshold scheme. Security ceremonies can
be broken down into components called stages. Fully specifying the complete ceremony
and its component stages is the first step towards evaluating the security of the threshold
scheme under consideration. We provide two formalizations (Sections 4.6 and 4.7) as a
skeletal frame of reference for future analyses of threshold schemes derived from Shamir
secret sharing.

Define the threat model. First, define possible adversaries of the threshold scheme or of
the users participating in the scheme, including the adversaries’ goals. In Section 4.5.1, we
demonstrate a range of possible adversaries against threshold schemes. Second, determine
the desired security goals. We present several possible security goals of threshold schemes
in Section 4.5.3. At times, certain security goals may prove to be in conflict. For exam-
ple, a system operating in Extended Mode that prioritizes availability over confidentiality
might distribute an encrypted ciphertext publicly in order to decrease the possibility of
destruction.

Define the mode of operation. Threshold schemes can potentially allow for many
modes of operation. For example, classic Shamir secret sharing can support both the Base
Mode and Extended Mode of operation. To evaluate the security of a threshold scheme,
a single mode of operation must first be specified. If a scheme supports more than one
mode of operation, the security evaluation should be performed once for each. Note that
transitioning between modes of operation for the same, or updated, secret is not supported
by such evaluations as it introduces new potential attack vectors (including issues related
to using shares at most once; see Section 4.5.5).

Evaluate security goals against adversaries. Using knowledge of adversary goals and
capabilities along with the ceremony formalization, the security goals for the system can
be evaluated in the context of the given mode of operation and threat model. For each
stage in the threshold scheme, and for each step within a stage, evaluate if the adversary’s
capabilities can defeat the system goal. If the adversary can defeat the system goal, this
goal is considered unmet. See Figure 4.1 for an overview of our framework.
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1. Ceremony identification and formalization (stages)
2. Threat Model (selection of adversaries and security goals)
3. Mode of operation (identification of use cases)
4. Evaluation of Security (assessment of security goals relative to threat model)

Figure 4.1: Framework for security analysis for threshold schemes derived from Shamir secret
sharing

4.5.5 Assumptions and Limitations

We maintain several assumptions for the purpose of providing a structured analysis and
designing our framework. However, we acknowledge these assumptions may not always hold
in real-world settings.

Secure Communication and Storage. We emphasize the existence and availability
of a secure communication channel as well as a mechanism for safe storage. Communicating
and storing data securely are both critical to the security of a practical threshold scheme.

Safe storage is a storage mechanism such that data is guaranteed to be recoverable
in the future. Such mechanisms must avoid single points of failure such as due to server
crashes; preventing such failures requires storing copies of the data on multiple servers, for
example. We assume a safe storage mechanism provides the properties of availability to
participants. We also assume that if participants require authentication before accessing
the stored data, the safe storage mechanism can provide this authentication mechanism.

Using Shares At Most Once. We maintain that secrets, and consequently shares,
should be single-use as otherwise new security risks are introduced. For example, a multi-
use setting requires the assumption that the participant performing the recovery securely
deletes both the secret and the collected shares from their local device after completing
the recovery. If the recovering participant breaks this trust and stores shares or the secret
information locally after the first recovery, the participant can bypass the step of gathering
t− 1 shares from other participants in future recoveries. Furthermore, a device containing
t shares is a single point of failure—an appealing target for an adversary trying to learn
the secret.

Honesty of the Dealer. We assume that the dealer is honest both in the case of D
and DP , as classic Shamir secret sharing is trivially broken when the dealer is dishonest.

54



In the Extended Mode the dealer is also responsible for determining sufficient protection
for the encrypted F in terms of the secure storage selected.

Erasure Assumption. For the purposes of our analysis, we work within the erasure
assumption [31], which assumes that participants are able to securely erase data when
required. We recognize that if the erasure assumption does not hold, then many of the
security properties we define are broken, as an adversary could perform analysis post-hoc
on stolen machines and recover sensitive material.

Non-Collusion. Honest participants will not collude with external parties. For exam-
ple, honest participants will not attempt a recovery initiated by an unauthorized person.

4.6 Base Mode Stages

We now more formally identify the possible choices and actions for users participating
in a threshold scheme, and introduce a formalization for a general ceremony of threshold
schemes based on Shamir secret sharing. Starting with the Base Mode of operation, we
present three stages consisting of share generation, share distribution, and reconstruction.
The ceremony framework for the Base Mode of operation is outlined in Figure 4.2.

Classification of Steps. We annotate each step in a stage to classify how participants
are involved. We annotate steps as Device for expected implementation actions, as Choice
for user decisions, and as Action for expected user actions.

4.6.1 Share Generation

The generation stage allows minimal variation and choice from the user. In this stage, we
assume a secret s has previously been selected. A dealer D possesses s and selects the
values for t and n. The dealer may or may not be a participant in the scheme. Regardless,
the dealer provides t, n, and s to a tool that follows the steps for Share Generation defined
in Appendix A.1, resulting in the generation of n shares. After these shares have been
generated, the device should securely delete all ri’s (which it created) while the dealer
deletes all copies of s.

The choices and actions required of the dealer at this stage consist of selecting appro-
priate values for t and n.

Choice: Determine Parameters. When generating shares, the dealer chooses the
appropriate threshold and number of participants. As these choices are highly context
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Share Generation

1. Choice: The dealer chooses values for n and t.
2. Device: Let the secret space be S = GF (q)`, where q is a prime or a prime power,
q ≥ n+ 1, and ` ≥ 1. Let s ∈ S be the secret.

3. Device: Selects t − 1 values independently and uniformly at random from S as
r1, . . . , rt−1 and sets f : GF (q)→ S as f(x) = rt−1 x

t−1 +rt−2 x
t−2 + · · ·+r1 x+s.

4. Device: Generates shares si = (ai, f(ai)) for 1 ≤ i ≤ n, where the ai are arbitrary
distinct non-zero elements of GF (q).

5. Device: Delete ri’s.
6. Action: Delete all copies of s.

Share Distribution

1. Choice: Select n participants (possibly including the dealer).
2. Choice: Select a secure communication channel (in person, Signal, etc.).
3. Action: The dealer distributes si = (ai, f(ai)) to participant Pi for 1 ≤ i ≤ n.
4. Action: Delete each si from the dealer’s device. Exception is if the dealer is a

participant and keeps one share.
5. Choice: Each participant selects an appropriate storage mechanism for their

share.
6. Action: Each participant stores their share in the selected storage mechanism.

Reconstruction

1. Choice: Select a communication channel to bring t or more shares together.
2. Action: Pr and the contacted participants authenticate one another.
3. Choice: Contacted participants elect whether to proceed and participate in a

reconstruction.
4. Action: If proceeding, a contacted participant sends their share to Pr.
5. Device: Combine the t or more shares using polynomial interpolation to recover

the secret s = f(0).

Figure 4.2: Ceremony Framework for Base Mode of Operation
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dependent, the dealer is trusted to make these choices taking into account their respective
threat model.

An adversary in this setting can leverage poor or uninformed choices of n and t to gain
unauthorized access to or prevent participants from accessing s. For example, an adversary
hoping to prevent a group of journalists from accessing the sensitive information need only
destroy x > n− t shares to prevent journalists from accessing the sensitive information in
the future.

Choosing t and n requires identifying the trade-off in prioritization for availability and
t-separation of privilege or risk of collusion. A larger value for t (for fixed n) increases
the number of participants that can collude without learning the secret, while lower t
increases the number of participants that can be unavailable while still keeping the secret
in a recoverable state. The value of n, on the other hand, is likely to be determined by
context—specifically by how many trusted participants are available, as opposed to n being
easily chosen.

Action: Perform Secure Deletion. Secure deletion is always required when per-
forming share generation. Verification that secret material has been securely deleted3 is
difficult, thus for our analysis we work under the assumption of the erasure mode defined in
Section 4.5.5. Achieving the desired security properties of the threshold ceremony requires
the dealer to delete s and all ri’s after generating shares. This fact demonstrates the higher
level of trust required in the dealer beyond that of the other participants.

If the dealer fails to delete s and the ri’s off their machine it becomes an easy and highly
profitable target for an adversary. This single point of failure allows the adversary to bypass
reconstructing t shares and instead target the dealer’s machine. Thus, the presence of s
on the machine of the dealer presents a formidable risk and underscores the necessity of
secure deletion.

4.6.2 Share Distribution

Share distribution determines who receives shares and how the shares are transmitted to
participants. The responsibility of the dealer includes selection of participants, selection
of a secure communication channel, and transmission of shares over this channel.

After receiving their share, a participant is responsible for selecting a safe storage mech-
anism for the share until required for the Recovery stage. After all shares are distributed,

3For further details on existing secure deletion solutions see the analysis from Reardon [183].
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Confidentiality Integrity Info. Theor. Sec.

In-person  #  

Signal   #

TLS 1.3   #

PGP G#  #

SMS # # #

Table 4.2: Network Model: Properties of Communication Channels
 =achieved; G#=potential loss; #=not achieved

the dealer securely deletes all shares from their device, with the exception of their own
share, if applicable.

Choice: Select Secure Channel. Shamir secret sharing assumes the existence of
a secure communication channel. However, the dealer holds responsibility to assess and
choose an appropriate channel where all aforementioned security properties hold. Unsur-
prisingly, users often struggle to make safe choices when using security-critical tools in
similar contexts [232]. Communication channels that could be used in practice which are
not information-theoretically secure include TLS [189], Signal [172],and PGP [29], while
in-person communication achieves information theoretic security. Notably, each of these
transmission methods achieve divergent security properties when used in a secret sharing
ceremony. TLS and Signal support confidentiality and integrity assuming that partic-
ipants authenticate one another before sending any messages. In-person communication
achieves confidentiality but does not support integrity, due to the lack of a defined integrity
mechanism. While PGP encrypts data in transit, thereby achieving confidentiality at the
moment data is transmitted, PGP is not forward-secure. Consequently, PGP does not
strictly preserve confidentiality of future transmitted data in the case that a user’s private
key is compromised. Cellular networks’ Short Message Service (SMS), while commonly
used for security protocols such as two-factor authentication [103], does not achieve any
of our desired properties. We provide a summarized analysis of the security properties of
various channels in Table 4.2.

Choice: Select Participants. In a (t, n)-threshold scheme, the dealer is responsible
for selecting which participants are entrusted with shares. The dealer in some cases is also
free to decide if they will become a participant dealer Dp and retain a share for themselves.
Choosing appropriate participants is heavily context dependent and influenced by the users’
threat model.
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Action: Perform Secure Deletion. As with Share Generation, there is a need for
secure deletion. After distributing the shares the dealer must delete all shares that are not
their own from their device. Failure to do so provides an adversary with a single target to
gain the secret s just as leaving the secret itself would.

4.6.3 Reconstruction

This stage occurs when a valid participant chooses to initiate a recovery. The participant
Pr performing the recovery contacts and authenticates other participants, who authen-
ticate Pr as a valid participant. These participants then decide for themselves whether
reconstruction is appropriate and whether to participate at that time. If so, they transmit
their share over a secure channel. Once Pr possesses t or more shares, Pr can perform
reconstruction using a tool for polynomial interpolation to extract the secret s.

Choice: Select Secure Channel. Performing a recovery of s assumes a secure
communication channel to transmit shares from other participants to Pr.

Action: Perform Authentication. During recovery it is left to the participants to
authenticate each other even assuming a secure channel. For instance, the participants
in the scheme need to know whether or not it is permissible for the initiating participant
to perform a recovery. In one example, from Section 4.3, Alice left the organization and
Bob determined it was okay to include Alice in the recovery and contacted her. However,
in another setting we can imagine Alice left the organization and initiated a recovery
by requesting a share from Carol. Without a revocation mechanism, there is nothing
preventing Alice from recovering the secret if Carol provides her with a share. Therefore,
even after losing authorization, Alice can learn the secret and break confidentiality. Thus,
in this latter setting, the ceremony as stated is insecure. Such an insecurity is an example
of how a ceremony secure in one case may be insecure in another, and so it is important
to specify the ceremony as part of the security analysis, as opposed to just analyzing the
underlying protocol. Additionally, we will address this particular insecurity in Section 4.9.

4.7 Extended Mode Stages

The Extended Mode is one possible extension of Shamir secret sharing, and is a practical
use case for users seeking to protect sensitive information that is large in size. For example,
Sunder requires operating in the Extended Mode when the secret is larger than 1 MB [77].
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Secret Preparation

1. Device: Generate a secret key to be used as s.
2. Device: Encrypt F using s and an appropriate authenticated encryption algo-

rithm.
3. Choice: Select a safe storage mechanism for the ciphertext.
4. Action: Safely store the ciphertext.

Extended Reconstruction

1. Action: Acquire ciphertext from selected safe storage.
2. Device: Use recovered s to decrypt the ciphertext.

Figure 4.3: Ceremony Framework Additions for Extended Mode of Operation

We now formalize the choices and actions users must make in the Extended Mode. We
introduce the stages Secret Preparation which is performed before the Base Mode Share
Generation stage, and Extended Reconstruction which is performed after the Base Mode
Reconstruction stage; see Figure 4.3 for an outline.

4.7.1 Secret Preparation

Secret Preparation begins with an existing plaintext and a secret key. Using this key,
the plaintext is encrypted via a symmetric encryption algorithm, and the output of the
ciphertext is stored using safe storage (see Section 4.5.5) for later use in the Reconstruction
stage. This secret key is subsequently used as the input s into the Share Generation phase.

Action: Generate Secret Key. The sensitive information F should be encrypted
using the chosen authenticated encryption algorithm and a secret key generated by the
dealer. Note that authenticated encryption does not provide end-to-end integrity against
an attacker that is able to acquire s. In that event, an adversary could modify the stored
ciphertext without detection. We present a way to block this attack in Section 4.9.

Choice: Select Safe Storage. Even if s has been successfully reconstructed, the user
must have chosen a reliable storage mechanism (see Section 4.5.5 for requirements of safe
storage) to recover the ciphertext of F after performing the Reconstruction stage.
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4.7.2 Secret Recovery

After s is recovered in the Reconstruction stage, the participant initiating the recovery can
retrieve the ciphertext of F from the chosen storage location, use the secret s as a key
for the symmetric encryption algorithm for decryption, and produce the original sensitive
information F .

For this stage, the probability of successfully recovering F is dependent on choices
made by the user in the Secret Preparation stage; for example, if the user did not choose
an adequate storage mechanism, the user may fail to recover F in the Secret Recovery
stage.

4.8 Application of Ceremony Framework Analysis

We now apply our ceremony framework to aid the security analysis of threshold schemes,
as specified in Section 4.5. We present three case studies to highlight how seemingly
straightforward implementations can achieve or miss assumed security goals.

4.8.1 Defined Threat Model

We maintain a specific threat model for our security analysis of each case study.

Adversaries. We assume a high-powered adversary (defined in Section 4.5.1) which
has access to exceptional computational power, time, and money, along with significant
legal resources. We do not assume fixed roles for participants; a once-trusted participant
can become an adversary at a later time.

Security Goals. We evaluate each case study against the sample security goals defined
in Section 4.5.3. Specifically, we evaluate the security goals of t-separation of privilege,
availability, information theoretic security, confidentiality, and integrity against the above-
defined adversary.

4.8.2 Case Study One: Classic Shamir Threshold Scheme

A summary of the analysis detailed below for classic Shamir secret sharing (and indeed all
of the ceremonies we analyze) can be found in Table 4.3. Classic Shamir secret sharing is
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Classic Sunder Ceremony Shatter [12] Ours
Base Ext Base Ext Ext Base Ext

HBC MAL HBC MAL HBC MAL HBC MAL HBC MAL HBC MAL HBC MAL
t-Sep. Priv.               
Availability   # #   G# G# # #     

IT Sec. G# G# # # # # # # # # # # # #
Conf. G# G# G# G# G# G# G# G#       

Integrity # # # #   G# G# G# G#     

Table 4.3: Ceremony Analysis Summary, note IT-Sec=Information Theoretic Security
 =achieved; G#=ceremony dependent; #=not achieved
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not a complete protocol and by extension not a complete ceremony. Unsurprisingly, classic
Shamir secret sharing in isolation cannot achieve all desired security properties.

t-Separation of Privilege is always achieved by classic Shamir secret sharing. Even
within the Extended Mode, an adversary with access to the ciphertext still requires at
minimum t shares to decrypt the ciphertext. In contrast to the above, the loss of Availability
in Extended Mode demonstrates how security properties can be lost when moving from
Base Mode to a seemingly innocuous extension of Shamir secret sharing. In the Base Mode,
availability is preserved as long as t < n. In the Extended Mode, the loss of the ciphertext
renders the secret unavailable, regardless of the number of shares that remain available.
As the protocol does not define a safe storage mechanism to protect against loss of the
ciphertext, this becomes a single point of failure.

Information theoretic security is achieved in theory by the mathematics of classic
Shamir secret sharing. When evaluating the scheme in practice, we must consider the
channel used to transmit shares to participants. We grant a half-circle in the table for
information theoretic security in Base Mode as the protocol can remain entirely offline
if desired, requiring shares to be transmitted in person or via a trusted physical channel.
However, when operating in online mode, shares are transmitted over an online channel. As
online communication channels rely on encryption protocols that are not information theo-
retically secure, classic Shamir secret sharing loses information theoretic security when used
with an online channel. Furthermore, as Extended Mode requires a symmetric encryption
algorithm, working within the Extended Mode similarly is not information theoretically
secure.

Confidentiality is not achieved in either the Base or Extended Mode of operation due
to the lack of a revocation mechanism. Once shares have been distributed, classic Shamir
secret sharing does not consider the case where a once-trusted participant moves to an un-
trusted state, such as by voluntarily or involuntarily leaving an organization. For example,
nothing prevents a participant who was fired, but possesses a valid share, from participat-
ing in a future recovery protocol by colluding with other participants who similarly may or
may not be currently within a trusted state in the organization. We therefore only grant
half-circles in the table for all of these cases, as they only achieve confidentiality as long
as there is no need for revocation.

Integrity of shares is not a goal that classic Shamir secret sharing guarantees. In some
settings, for example, t = 2 but four shares are available during the reconstruction phase,
the correct secret can be determined if a limited number (in this case, one) of shares is
corrupted or maliciously changed. However, using these techniques for integrity requires
raising the required number of shares during reconstruction, as well as assumptions about
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the number of corrupted shares. Ideally, a separate integrity check for the shares would
enable the detection of corrupted shares directly. Once detected and identified, corrupted
shares would be excluded from the recovery and, if necessary, additional validated shares
could be included; we provide this functionality in our extensions in Section 4.9. Note that
in the Extended Mode the ciphertext carries its own integrity check, but that check is not
entirely sufficient, as discussed in Section 4.7.1.

4.8.3 Case Study Two: Sunder

Freedom of the Press Foundation’s tool Sunder [76, 77] is a desktop application for journal-
ists to generate a configurable number of key shares for encrypted documents. While this
tool supports both Base and Extended Modes of operation and can accommodate a wide
range of threat models and ceremonies, we bound our analysis to the online setting with
a high-risk threat model and high adversary capabilities. We define an explicit ceremony
for Sunder in Appendix A.2.

Sunder is a straightforward implementation of classic Shamir secret sharing, and many
of the security properties for classic Shamir secret sharing apply to Sunder. In the secret-
sharing implementation used by Sunder [217], every character in the `-character secret
provided to Sunder becomes an input into a Shamir protocol acting over the Galois Field
GF (256). (Equivalently, the secret as a whole is treated as an element of the vector space
GF (256)`.) Each of the n shares will then be ` bytes long. One deviation worth highlighting
is Sunder’s support for share integrity. The underlying cryptographic library [217] that
Sunder utilizes provides share integrity by generating a public-private ephemeral key pair
to sign shares during the Generation stage. Share signatures are validated during the
Recovery stage to ensure both the validity of shares and also that all shares are signed by the
same public key. However, Sunder does not include document encryption within the tool
and thus does not support integrity validation for the encrypted documents; consequently,
Sunder only partially attains integrity for Extended Mode.

Sunder can achieve confidentiality if no more than t participants holding valid shares
leave the organization, however, Sunder is limited to confidentiality without revocation
and thus only has a half-circle in the table.

Finally, while Sunder provides availability in Base Mode, it leaves to the user the
decision of how to store the encrypted file in Extended Mode. If the file is not safely
stored, availability could be compromised.
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4.8.4 Case Study Three: Shatter Secrets

Shatter Secrets [12] is an open-source protocol that uses Shamir secret sharing of a key that
encrypts a user’s device. Shatter secrets can be used to distribute shares (each encrypted
with a key held by the user) to other devices and friends of the device owner such that a
threshold number is required to decrypt the device. A device owner crossing an interna-
tional border can encrypt their device using Shatter Secrets such that they are unable to
decrypt their device without the physical presence of a threshold number of participants
holding shares. We define an explicit ceremony for Shatter Secrets in Appendix A.3.

The shares in Shatter Secrets are themselves encrypted by a key held by the primary
data owner (on a secondary device). Violating confidentiality thus requires compromising
the encrypted primary device, the secondary device storing the share decryption key, and a
sufficient number of the friends’ devices storing the encrypted shares. Specifically, unlike in
Sunder, shareholders alone cannot recover the secret. Thus confidentiality of the device’s
data is preserved. Availability of the device’s data, however, can be easily compromised
as authorities can seize the encrypted device (assuming the device owner does not have a
backup). Shatter Secrets’ design does not adequately provide the property of availability
as it prioritizes confidentiality such that the device can be a single point of attack. The
authenticated encryption of the shares themselves provide integrity for the shares, but
the integrity of the encrypted device depends on whether that encryption mechanism can
detect modifications to the ciphertext.

4.9 Lightweight Integratable Improvements

As can be seen from our example case studies, implementations based on classic Shamir se-
cret sharing have gaps limiting the security properties, such as confidentiality and integrity
in Base Mode and availability in Extended Mode. To address these gaps, we introduce
a lightweight set of improvements which are fully compatible with classic Shamir secret
sharing. These improvements are extensions to Shamir secret sharing and can be applied
to implementations of Shamir secret sharing. Using our framework for ceremony security
analysis, we assess the security properties provided by these improvements within the Base
and Extended Modes.
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4.9.1 Overview

We define a lightweight Proactive Verifiable Secret Sharing (Proactive VSS) scheme and
specify three new stages: Share Update, Share Validate, and Generate Commitment. These
stages provide participants with the capability to update shares and revoke access to indi-
viduals who are no longer trusted. Users can verify the integrity of shares and verify the
integrity of F .

We use the protocol and model of Herzberg et al. [92], in which adversarially controlled
players during an update stage count against both adjacent epochs. Alternatively, one
could use the protocol and somewhat stronger adversarial model of Nikov and Nikova [157],
at the cost of requiring the dealer to select t knowing that t − 1 corrupted players could
compromise the secret, but t are needed to reconstruct it.

Assumptions. Our commitment scheme assumes a sufficiently random s, such as a
key. If s is not sufficiently random, several of our improvements can still be used; see
Section 4.9.4.

4.9.2 Base Protocol Description

Our modifications can be used in conjunction with an existing secret sharing implementa-
tion as demonstrated by the modifications to the stages indicated in Figure 4.4.

Modified Share Generation. In addition to the original steps, the dealerD generates
a commitment ~C to the polynomial. The jth index of ~C is equal to grj , where rj is the

randomly selected coefficient, while the zeroth element in ~C is equal to gs. (Here, g is
the generator of a group in which the Decisional Diffie-Hellman problem is hard.) The

dealer publishes ~C to a trusted location that every participant can access. Examples of
such a location include a commitment verification party, a public blockchain, or some other
location all participants can reliably view in the same state. Note that the choice of trusted
location is influenced by the powers of an adversary—a trusted Twitter account could be
effective against a low-powered adversary, but not a high-powered adversary.

Share Validation. Once ~C has been published, any participant Pi can validate the
integrity of her share si = (ai, f(ai)), where f(ai) is the value generated for participant
i using the assigned value ai and the dealer-selected function f . Validation requires first
fetching the public commitment and computing ψ =

∏t−1
j=0 φ

ai
j

j where φ0 = gs, and φj = grj

for 1 ≤ j ≤ t− 1. Next, each participant validates that gf(ai) is equal to ψ, where f(ai) is
taken from their respective share.
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Share Updates. Share updates use commitments to zero to preserve the original secret
value upon secret reconstruction. To perform an update on m shares, where t ≤ m ≤ n,
the participant performing the update assumes the temporary role of the updater U , where
U can be any valid participant. If m < n, then there will be shares that do not receive an
update and therefore are effectively revoked.

The updater U first generates m share updates and one commitment update. The set
of share updates is generated by running the Share Generation stage with s = 0. (Let the
polynomial used in this stage be h(x).) This step ensures that shares from a prior epoch
cannot be used in conjunction with updated shares in the next epoch to reconstruct s.
Thus, shares can be proactively “rotated” forward while protecting the original secret.

After Generation, U distributes the m share updates to the selected participants. Addi-
tionally, U must apply the commitment update to the original commitment by performing
pointwise multiplication between the original commitment to f(x) and a new commitment
to the new polynomial h(x). Consequently, U must be able to safely access the commitment
such that the commitment update can be securely applied.

Upon receiving a share update, each participant updates their share by computing
(ai, f(ai) + h(ai)), where si = (ai, f(ai)) is their original share and ui = (ai, h(ai)) is the
received update. After computing the updated share each participant performs the Share
Validation stage with their updated share and the updated commitment to ensure the
integrity of their updated share. If share validation fails, the participant should delete the
updated share and continue with their old share. If the new share is valid, the participant
should delete the old share and store the updated share for future use.

Reconstruction. Reconstruction of s is as described in a classic Shamir threshold
scheme. However, before recovering the secret, the participant performing the recovery first
executes the Share Validate stage for each share. If a share is invalid, the Reconstruction
stage requires the acquisition of a replacement share such that a set of t valid shares is
produced.

4.9.3 Extended Protocol Description

Figure 4.5 summarizes the additional steps of our improved extended mode ceremony for
Secret Preparation, Share Distribution+, and Extended Reconstruction.

Secret Preparation. Secret Preparation now includes the generation of a separate
integrity value for the ciphertext to be distributed in Share Distribution+. This can be as
simple as a collision-resistant hash of the ciphertext.
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Share Distribution+. Additional steps are added to the share distribution stage
to enable ciphertext integrity in the Reconstruction stage. In addition to the shares,
the above integrity value is distributed to each participant. Using a separate integrity
primitive checked by the reconstructor during the Reconstruction stage protects integrity
even against adversaries who know s. Each participant stores the integrity value along
with their share in the selected safe storage mechanism.

Extended Reconstruction. Before decrypting the ciphertext as required, the par-
ticipant performing the reconstruction checks their copy of the integrity value against the
ciphertext.

4.9.4 Security and Limitations

We now apply our framework from Section 4.5 to assess the use of our defined improve-
ments. We maintain the identical threat model and security goals as in our case studies
from Section 4.8. We assume a high-powered adversary and desire the security goals of
t-Separation of Privilege, Availability, Information Theoretic Security, Confidentiality, and
Integrity.

Our improvements (summarized in Figures 4.4 and 4.5) guarantee Availability, Confi-
dentiality, and Integrity of shares and the secret information for both the Base and Ex-
tended Modes of operation. Integrity is achieved due to the use of a proactive VSS scheme
for share verification. We will now discuss each security goal in more depth and how it is
achieved.

In Extended Mode, availability of the ciphertext is achieved via redundancy (defined
in Step 2 of Share Distribution+ in Figure 4.5). By distributing the ciphertext to each
participant, n independent copies are made while only one is required to recover the secret
F . This approach falls within our assumed trust model, as giving a copy of the cipher-
text to participants who are trusted with a share does not result in additional powers or
capabilities for these participants. In this case, the safe storage mechanism becomes the
set of participant devices which store the copy of the ciphertext, achieving availability via
redundancy.

The ‘Share Updates’ stage allows for removing participants from participating in a
future recovery. Removing participants enables the preservation of confidentiality with
revocation.

For the Extended Mode, we require the dealer to distribute the ciphertext integrity value
to each participant, as defined in Figure 4.5 (Step 2 of Share Distribution+). Distributing
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the ciphertext integrity value to each participant allows for any participant performing the
Share Recovery stage to verify the integrity of the ciphertext while the integrity vector ~C
is used to verify individual shares.

Requiring a Sufficiently Random Secret. Note that the commitment scheme for
Base Mode requires a sufficiently random s. In the case that s is not sufficiently random,
the entropy of s can be increased by moving to the Extended Mode by encrypting the
low-entropy secret with a high-entropy key. Alternatively, the dealer can pad s with a
sufficiently large number of random bits (e.g., 256 bits). As a final requirement on secrets
and shares having sufficient entropy, we highlight the importance of generating secrets and
shares on a machine with sufficient entropy sources to prevent amplifying an adversary’s
guessing attack [70].

4.9.5 Implementation

The techniques we employ in our implementation, specifically for proactive verified secret
sharing, are derived from those of Herzberg et al. [92]. Our implementation differs slightly
from their Share Update function, which requires every server in the threshold scheme to
generate a new update value and distribute it to each other server in the system. In our
protocol, any participant may generate an update and send it (noninteractively) to the
other participants; the correctness of the update can be verified from the commitments.
These other participants may be online or offline. If they are offline they will perform the
update when they come back online. If a participant does not trust an update they can
initiate another update. Finally, we do not require all participants to perform the update
generation, or to be online. Therefore, our derived implementation (as initiated by any
one participant) is noninteractive.

Our implementation is in Rust and uses curve25519-dalek [133] for group operations,
which we make publicly available (https://crysp.uwaterloo.ca/software/vss/). Group op-
erations are performed in Edwards form for speed and safety properties. The benefit of
using Rust for our implementation is multi-language interoperability and memory safety.
Furthermore, our changes can be integrated with implementations of threshold schemes in
Rust such as RustySecrets [217] and Sunder [76].
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4.10 Conclusion

Although the theoretical study of secret sharing protocols began decades ago, the use of
secret sharing schemes in practice remains poorly defined. Interest in standardization of
practical implementations of threshold cryptography is growing, including by NIST [25].
However, to enable practical use, researchers and practitioners must account for gaps in
security that arise when moving from a theoretical setting to a real-world application.
As a step towards practical secret sharing, we present a framework to facilitate the secu-
rity analysis of threshold schemes based on Shamir secret sharing. We distinguish between
operating in a base or an extended mode of operation, and through case studies, we demon-
strate that variations in the ceremony of secret sharing schemes can lead to changes in the
fundamental security properties provided to end users. Our framework can aid the design
and analysis of future implementations of secret sharing by providing a more detailed cer-
emony definition and accounting for previously undefined assumptions about adversaries,
user roles, and user actions or decisions within the scheme. Finally, we introduce and
implement a secret-sharing protocol with improved security properties that can be directly
integrated with existing Shamir secret sharing implementations.
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Share Generation

1. Steps 1–4 as before in Figure 4.2
2. Device: Generates a commitment ~C = 〈φ0, . . . , φt−1〉, where φ0 = gs, and φj = grj

for 1 ≤ j ≤ t− 1.
3. Choice/Action: The dealer publishes ~C to a trusted public location.
4. Steps 5–6 from Figure 4.2

Share Distribution unchanged from Figure 4.2

Share Validation

1. Action: The participant fetches ~C from its trusted public location.
2. Device: Using φ0, . . . , φt−1 which constitute ~C, the participant will then calculate

ψ by evaluating
∏t−1

j=0 φ
ai

j

j .

3. Device: The participant validates her share if ψ is equal to gf(ai).

Share Updates

1. Action: U executes the Share Generation stage, with unchanged values for t
and n, to generate a new polynomial h(x) where s=0. For each authorized par-
ticipant holding a share ai, f(ai), use h(x) to generate a share as the update
ui = (ai, h(ai)).

2. Action: U publishes the updated commitments to the trusted public location.
3. Action: U distributes the update ui = (ai, h(ai)) to the (authorized) participant

with share (ai, f(ai) for 1 ≤ i ≤ m, where m ≤ n.
4. Action/Device: Each participant will apply the share update ui, to their share si

to produce si = (ai, f(ai) + h(ai)).

Reconstruction

1. Step 1 as before in Figure 4.2
2. Action/Device: Pr ensures the validity of each share using ~C.
3. Step 2 from Figure 4.2

Figure 4.4: An Improved Base Mode Ceremony via Verifiable Secret Sharing (VSS) and proactive
share updates

71



Secret Preparation

1. Steps 1–2 unchanged from Figure 4.3
2. Action: Generate integrity value for the ciphertext.
3. Choice: Select a safe storage mechanism for the ciphertext.
4. Action: Store the ciphertext.

Share Distribution+

1. Steps 1–3 unchanged from Figure 4.2
2. Action: The dealer distributes ciphertext integrity value, along with a copy of

the ciphertext, to Pi for 1 ≤ i ≤ n.
3. Steps 4–6 from Figure 4.2
4. Action: Each participant stores their copy of the ciphertext integrity value with

their share.

Extended Reconstruction

1. Action: Acquire ciphertext from selected location.
2. Action: Verify integrity value.
3. Device: Use recovered s to decrypt the ciphertext.

Figure 4.5: Improved Ceremony Framework for an Extended Mode of Operation
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Chapter 5

Practicalities: Privacy and Attack
Amplification

In this chapter we highlight how while there are many ways to develop technical privacy
protections; changes in context or configurations can have unintended, and significant,
impact on the privacy protections that are achieved.

5.1 Introduction

Collaborative machine learning techniques, such as federated learning [145], support train-
ing on datasets that have different owners, which can be advantageous for two or more
data owners that want to generate an improved shared model while keeping their data
separate [54, 145, 184, 248]. However, when training sets contain private or sensitive data,
the machine learning process must be done in a way that further limits the risks the risk
of privacy leakage [107, 156, 205]. This is particularly true with respect to data used for
health research. The tight regulations that protect health data prevent the explicit sharing
of data to train machine learning models [3, 164, 230]. Therefore, for health researchers
hoping to learn from a collection of distributed private data, machine learning models that
can be trained without risking data privacy have great appeal [63, 106, 107, 203, 209].
However, the risk of the machine learning process revealing sensitive data should not be
underestimated when considering deployment in the real-world.

An adversary possessing a trained machine learning model can perform an inference
attack to gain insights about the data in the training set [32, 207]. When the adversary’s
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inference goal is to determine whether a specified data point was in the training dataset,
then they are performing a membership inference (MI) attack [104, 149, 207]. To under-
stand some of the privacy implications of a membership inference attack involving health
data, consider the following. Assume different research groups, all working on the same
disease research (e.g., cancer, diabetes, etc.) used federated learning techniques on their
distributed data. An adversary that can accurately determine whether an individual’s
data was used in training that model now knows that the individual has the disease being
studied. Thus, we investigate further avenues to better understand the extent to which an
adversary could succeed at that task.

While a number of MI attacks exist in the literature, they do not explicitly attempt
to exploit aspects that can amplify MI attacks. Early investigation into why membership
inference attacks work in stand-alone learning found a relationship between MI attacks
and model over-fitting [226]. Additionally, in federated learning some authors observed
that the number of participants affect inference attack success [149, 156]. However, past
work has not recognized how existing MI attacks can be amplified when exploiting the
specific features inherent to federated learning. In this work, we investigate the increased
effectiveness of MI attacks given the ability of adversarial participants to observe model
changes over time, use their own data to improve their attack effectiveness, and gain
feedback on the success of their attack.

We highlight how features of federated learning amplify the effectiveness of MI attacks.
This amplification comes both in improvements of attack accuracy as well as in the reduc-
tion of assumptions needed (e.g., expected loss) for the adversary to perform the attack.
In short, federated learning has inherently more powerful adversaries than stand-alone
machine learning.

In this work we define techniques for adversarial participants to amplify MI attacks.
We empirically demonstrate how these techniques and different training conditions result
in more accurate MI attacks. Thus, we illustrate the underestimation of MI attacks by
showing the following:

• A MI attack from the stand-alone setting can be deployed per observed round of
federated learning and achieve an amplified attack accuracy (increases of 15%).

• The total training data used, the local batch sizes, and the number of participants
all impact MI attack accuracy in significant ways (including variations in attack
accuracy of 23%).

• The additional data and training procedures inherently known by participating ad-
versaries facilitates attacks that do not require any knowledge outside of what they
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hold as participants (attack accuracy is maintained).

• Participating adversaries can learn the actual attack accuracy they achieve on their
target model by executing the attack against their data.

Finally, we emphasize the implications for these results more broadly. Federated learn-
ing has previously been framed as a “privacy-preserving” solution in machine learning
since it is not necessary to send datasets to other parties. However, as illustrated here, not
sending datasets does not mean there are rigorous formal privacy claims that can be made
by these systems.

5.2 Background

Federated learning. Federated learning aims to eliminate the need for data owners
to share their datasets. In federated learning the set of participating data owners, each
with their own datasets, each perform local training and each sending model updates to
be aggregated. Generally, the updates are aggregated by a separate central aggregator
that does not possess any data, who facilitates the training through performing compu-
tations [145, 205, 246]. Federated learning can be executed using model averaging [145],
federated stochastic gradient descent [149], as well as model averaging with differential
privacy [147].

To train a federated model, the central aggregator (or server) first initializes the ap-
propriate parameters. Training then consists of global training rounds facilitated by the
server and local training epochs performed by the clients (participants contributing data).
After initialization, for each global training round, the server solicits updates from the
clients who have trained locally on their own data. The server aggregates the collected
client model updates by computing the average and returns the new global state to the
clients. This process continues until either a preset number of rounds has completed or the
model converges. Federated averaging (Algorithm 2 in the appendix) is one of the earliest
federated learning algorithms, is widely used, and existing MI attacks focus on it [39, 97,
98, 125, 156, 247].

Membership inference. MI attacks encompass a category of attacks where an adver-
sary aims to answer the decision problem as to whether a target x was a member of the
training set used to produce a target machine learning model [97]. The term membership
experiments encapsulates how researchers evaluate the risks associated with MI attacks
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through a theoretical game. As part of the game, the adversary aims to discern whether a
target data sample was a member of the training data. The game evaluates an adversary’s
success within the confines of what information is designated as being available to an at-
tacker (the threat model). The threat model includes whether the adversaries may execute
passive or active attacks, possess different adversarial knowledge (black-box, white-box),
and any additional assumptions about attacker access and abilities.

Threat models. The two main threat models typically used in MI experiments are black-
box and white-box access. While black-box access is more restrictive than white-box access
in stand-alone machine learning, a participating adversary (or insider [225]) in federated
learning inherently has a more complete view of the training process than either stand-alone
access model. In federated learning, a participant trying to perform a MI attack against the
other participants’ training sets will have access to: their own datasets (which represent a
subset of the global training data), their test data, architecture details, parameter details,
and model access. That is, participants in federated learning have intrinsically more access
than either white-box or black-box access attackers in the stand-alone setting, without
requiring any additional assumptions as to how they get that access.

5.3 Related Work

Private machine learning is a technical solution that, in part, attempts to protect training
data through the use of some selection of differential privacy [85], third parties [145, 167],
and cryptographic computation [23, 225, 238]. Attacks that target machine learning models
aim to thwart the privacy preserving designs; typically by either making modifications or
inferences. While we focus on MI attacks [97], attacks on machine learning include property
inference attacks, model inversion attacks, and others [22, 73, 83, 91, 94, 168, 240].

Membership inference attacks. In the case of MI attacks, an attackers’ goal is to
determine whether a target data element belongs to the training set that was used to train
the machine learning model [207]. If, for example, belonging to a dataset is itself sensi-
tive, MI attacks can be the most damaging attacks on the privacy of machine learning.
Classifier-based MI attacks train additional classifier(s) to aid in the attack. These sec-
ondary classifiers may be trained in an imitation of the target model (a shadow model)
over secondary dataset(s) [132, 149, 191, 192, 202, 206, 207, 213, 226]. Alternatively, MI
attacks may rely on a threshold or heuristic to make their inferences, rather than training
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any additional models. Threshold-based MI attacks may use the expected loss [243], pre-
diction entropy [214], prediction confidence [192], and other threshold values [42, 101, 132,
215, 216].

Hui et al. [99] claim that threshold-based attacks, such as Yeom et al.’s [243] and the
one in Salem et al.’s [192] lack the ability to effectively evaluate MI attacks. They suggest
that there is insufficient access to have enough labeled input to identify a strong boundary
between members and non-members. However, this is not the case for any adversarial
participant in federated learning. Such participants always have a set of ground truth data
that they can use in various ways to amplify their attack; including the ways we present in
this work. Similarly, Irolla and Châtel [101] report that even if a MI attack has (relatively)
high accuracy, attackers do not receive any indication as to the success of their attack on
an individual target. That is, for a target x, they may know the attacks expected accuracy
is X%, but they do not have a way to discern whether the target x is classified correctly.
While federated attackers still cannot compute the correctness of their classification for an
individual target x, they are able to evaluate how well the attack is performing in the actual
setting they are using it; through computing over their own members and non-members.

Attributing membership inference attack effectiveness. Since the first MI attacks
in the literature, researchers have attempted to discern the features of machine learning that
correspond to the success or failure of a MI attack [101, 115]. Past hypotheses attributed
the success of MI attacks to the difference in confidence a model has for members versus
non-members. One way this difference appears is in model over-fitting. Model over-fitting
describes the case where a model has good accuracy on its training set (members), but poor
accuracy on the test set (non-members, or new data) [223]. While MI attacks do perform
well when targeting over-fitted models [101], over-fitting is not a necessary condition for a
model to be vulnerable to MI attacks [42].

While Nasr et al. [156] attributed the attack success of Melis et al. [149] to the use of
”unrealistic” training procedures, Liu et al. [131] found that MI attack success is heavily
influenced by the complexity of the data being trained over. In part, they attributed this
influence to the difficulty adversaries can have at acquiring a similarly complex dataset
when the model is trained over complex data. Of course, this is not an issue in the fed-
erated setting where adversarial participants will hold an appropriate dataset since they
contributed part of it. To summarize, understanding the privacy implications of MIs at-
tacks requires accounting for all aspects of a training procedure. Further, as we will discuss
later, the variance these factors create on attack accuracy could lead to adversaries that
perform MI attacks in a new setting with higher or lower attack accuracy. A particularly
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dangerous effect is if the adversaries can assess the accuracy of their attack within some
reasonable bounds, as our adversarial participants do.

5.4 Attack Amplification

When evaluating privacy it is necessary to consider strong attackers. In federated learning,
we assume the participating clients are adversarial, as they are powerful attackers in terms
of the information they hold. Such adversarial participants, in addition to having access
to the target model, are able to observe model states throughout the training process.
Further, these participants hold their own data that they know is used in training because
they contributed it.

In the following we define a series of techniques for amplifying MI attacks from a
baseline. The attackers we present do not require additional information over what they
would already possess as participants in the federated protocol. Our attacks are exclusively
passive attacks (e.g., can be performed by an honest-but-curious adversary). That is, the
adversary only observes information available to them and follows the federated learning
protocol. They can perform additional computations outside of the protocol, but they
do not deviate from the federated learning protocol and they do not provide incorrect or
maliciously modified inputs.

Baseline. We classify all MI attacks that do not adapt their membership classifications
by using information across training rounds as baseline attacks. This means both MI
attacks targeted at stand-alone machine learning and MI attacks targeted at federated
learning that do not adapt based on observations are considered baseline attacks. We use
the original Yeom’s attack [243] as our baseline (designated vanilla). This is a relatively
straightforward MI attack. How it works, and why, is generally well understood. That
being said, applying Yeom’s attack’s directly does not achieve a notably high attack ac-
curacy when compared to more recent MI attacks from the literature. In Yeom’s original
threshold-based attack, the adversary is able to query the target model and learn the loss
for the target element. Further, the adversary knows the average training loss of the model.
The adversary makes the classification by evaluating L(x), where x is the target. If the loss
for the target element is less than the expected training loss, then the target is evaluated
to be a member, and a non-member otherwise. Thus, the expected training loss is used as
the threshold at which the MI attack problem is decided.
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Snapshots. When modifying a baseline attack for the federated setting, the first at-
tribute we exploit is an adversarial participant’s ability to observe changes over time (across
training epochs). We define a snapshot as an observed model state. Each snapshot cor-
responds to a global model update sent by the central aggregator in federated learning
to the adversarial participant who records it before using it to update their local model.
After recording each snapshot, an adversary executes their baseline attack on the model’s
current state. Essentially, the adversary computes the base attack function (e.g., if the
baseline is Yeom’s threshold attack they computes the loss for the target), but for each
training round they participate in. After performing the baseline attack for each snapshot,
there is a classification of the target element x for each global training round observed (for
each snapshot). To bring these inferences together and make a final classification, let ne be
the total number of training rounds (observed as snapshots). The function Yi(x) outputs
the membership classification of the baseline attack for a target element x at snapshot i.
Following a majority vote, the final formulation is if, (

∑ne

i=0 Yi(x))/ne) ≥ 0.5, than classify
as a member. We refer to an attack that uses this mechanism as the snapshot attack.

Attack success feedback. The second attribute we exploit to amplify an adversarial
participant’s attack is their own dataset. As we will show in our evaluation, there are many
features of federated learning that influence MI attack success. The implication of such
variances is that an adversary performing an attack from the literature has no indication
as to how successful their attack is. We show how adversarial participants are able to gain
feedback on their attack success and how they can use it to tune their attack to be more
effective.

Adversarial participants each hold their own dataset, which is a known subset of the
models’ training data. In other words, adversarial participants hold a set of known members
(training set) and non-members (their test set). The adversary can use the same attack
they are using for the target model, completely unchanged. The adversary then uses their
own members (and non-members) as targets of the attack. After attacking their own data,
since they know the ground truth as to which values are members and which are not, they
can compute their local attack accuracy. We refer to this as a self-attack.

In addition to having an indicator as to how well the attack performs against their
specific deployment, an adversary can also use the results of a self-attack to improve their
success. An adversary can attempt to improve their attack, given the results of their self-
attack, in one of two ways. They could either pick a new attack, or attempt to amplify their
attack by excluding snapshot classifications with low self-attack accuracy. For each round
the attack executes, if the self-attack accuracy is below p% (for any selected percent p),

79



then exclude the classifications from that round when computing the final classification via
majority vote. We drop round classifications from the majority vote when the self-attack
achieves 50% accuracy or less (thereby excluding classifications that perform worse than
random guessing).

Algorithm 1 Client View Snapshot Distance MI Attack

1: /* Client executes: */

2: function ClientUpdate(θ)
3: Save received model state ai at epoch i
4: for each target x do
5: Compute `i = L(x)

6: for each local epoch do
7: for each batch B in client’s data D do
8: θ ← θ − η∇L(b; θ)

9: return local updated θ

10: function AttackY eomSnapshot({`i}ne
i=1, E[L], x)

11: for each Snapshot loss `i do
12: if `i < E[L] then
13: set bi = 1 // Guess Member
14: else
15: set bi = 0 // Guess Non-Member

16: ne = total observed snapshots return (
∑ne

i=0 Yi(x))/ne)

17: function AttackImitationSnapshot({`i}ne
i=1, x)

18: Compute members and non-member `’s against snapshots based on client data
19: for each Snapshot loss `i do
20: Target x Difference ∆x = `i − `i+1

21: if ∆x = 0 then
22: set bi = 1 // Guess Member
23: else
24: set bi = 0 // Guess Non-Member

25: ne = total observed snapshots
26: return (

∑ne
i=0 Yi(x))/ne)

Reducing adversarial knowledge assumptions We demonstrate how an adversary
can replace global model statistics used in MI attacks with their own approximations of the
values. Additionally, we provide an alternative heuristic that incorporates the adversary’s
own datasets and epoch observations to execute their attacks.

An adversary can develop imitations of necessary values used in baseline attacks. For
instance, Yeom’s threshold attack assumes the adversary has access to the global expected
loss. This is not something that the adversary will inherently know from the training.
While it is possible this information is published as part of the model statistics, if the
attack is weakened without the information, it would make sense to attempt to conceal
it. Adversarial participants, however, would not be thwarted if they could not access the
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global expected loss. Using their own members and the model, they can compute the
expected loss across all their members and use that as their threshold value.

Our data driven heuristic attack is as follows. The adversary has a set M that they
use in training (members), and a test set M̄ they do not use in training (non-members).
Just as an adversary would compute L(x) for a target x, the adversary computes L(m)
and L(m̄) for each m ∈ M and each m̄ ∈ M̄. These values are computed during each
observed training epoch (snapshot) so they can be observed over time. To measure the
change, the adversary computes ∆y,i = |L(y)i − L(y)i+1|, where i is the training epoch,
and y is the element computed over (whether the target x, known member m, or known
non-member m̄. For the heuristic (MemDist, Disti(x)), if,

|avg(∆m,i,∀m ∈M)−∆x,i| < |avg(∆m̄,i,∀m ∈ M̄)−∆x,i|,

then classify x as a member in snapshot i, else, non-member. That is, if the targets’
observed difference is closer to the average observed differences for members than for non-
members at snapshot i, classify x as a member. Similar to executing Yeom’s over snapshots,
this produces a classification per round. In early rounds, if this attack is performing poorly
(as evaluated against the adversary’s own members), they exclude the inferences from that
round. Similarly, if the attack is performing well against their own data (known members),
they weight those rounds more heavily. We refer to this process as the distance attack.

Adversarial collusion. We identify two main features of federated learning that allow
collusion to amplify an attack. First, a coalition of participating adversaries has access
to more data. This allows them to have a better estimation of the behaviours of mem-
bers versus non-members, and the ability to evaluate and tune their attack using their
own members (e.g, computing avg(∆m,i,∀m ∈ M) and tuning the attack per round).
Additionally, consider the distance attack. If two or more participants want to collude
with one another to estimate attack accuracy, one attacker can compute the thresholds
for the distance attack (as usual), but then evaluate their attack using the members and
non-members of the second attacker.

Second, an adversarial coalition is harder to deceive through excluding participants
from some rounds. Including only a subset of participants can have at best a limited
effect on reducing the model updates viewed by adversaries that have formed a coalition.
Consider the following. Assume m of the n participants are included in each global training
round and k of the n participants are adversaries. For such a coalition, of k participants,
to miss seeing a global round (and thus miss a snapshot), there must be at least m honest
participants, that is m ≤ n− k. Then, even if m ≤ n− k, the probability that only honest
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participants are selected for a training round, and thus that a coalition will not receive the

update for that training round, is
(n−k

m )
(n
m)

.

Finally, while we exclude coalitions of active attackers from our work, note that such
participants could use carefully selected data to influence the results and improve upon
their inferences (amplifying attacks such as from Nasr et al. [156]) via poisoning attacks [79].
Further, in the case of larger federated learning systems, where participants can self-enroll
(such as users of predictive text keyboards), increasing the the coalition of poison attackers,
can be done via a Sybil attack where the attacker enrolls large numbers of users as members
of the adversarial coalition [58].

5.5 Empirical Evaluation

5.5.1 Experimental setup

Training target model. We use TensorFlow Federated [222] with federated-averaging to
implement the federated learning models that are targeted by our attacks. All experiments
were executed using a 2 TB RAM, 80 cores (Intel Xeon E7-8870 at 2.40 GHz) machine.
See Appendix B.1 for all hyper-parameters and model configurations.

Datasets. Each participant in our federated learning receives a non-overlapping subset
of the total dataset. We evaluate the attack amplification effects over two datasets. First,
we use the EMNIST dataset that is included as a pre-processed federated version of the
character and digit dataset in TensorFlow Federated. Within the pre-processed federated
dataset, each client is assigned the data points that correspond to a unique writer. As a
result, this limits the default size of each clients datasets to approximately 100 elements,
unless contributions from different writers are combined. Second, we use CIFAR-10 fol-
lowing the configurations of McMahan et al. [145], which supports larger client datasets.

Attack setup. We designate Yeom’s threshold-based MI attack (vanilla) as the baseline
attack. We execute vanilla on the final model achieved after the federated training com-
pletes [243]. We evaluate each of: vanilla attack, snapshot attack, and distance attack while
varying a series of federated learning features and demonstrating methods to tune attacks.
For each attack configuration, we train ten target models, which are then each evaluated
against the relevant configuration of features for the attack variants. We report standard
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deviation and confidence intervals for each configuration (details in Appendix B.2). Our
attack test set consists of 50% members and 50% non-members for all accuracy evaluations.
Unless otherwise stated, target models are trained with the following configurations. For
CIFAR-10, the default batch size is b = 64 and total training data is 24000. For EMNIST
the default batch size is b = 10 and total training data is n · 100, where n is the total
participating clients. Our models are trained for 2-32 participants, focusing on the most
vulnerable deployment scenarios relating to applications such as training models for health
research over private medical data [106, 107, 149].
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Figure 5.1: Comparison of algorithm amplification effect of snapshot over vanilla (baseline) for
(a) EMNIST and (b) CIFAR-10, and (c) Estimate threshold attacks over EMNIST. The mean
attack accuracy is shown and the bars indicate the 95% confidence interval of the mean.
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Figure 5.2: Attack accuracy degradation as data increases with fixed participants size.

5.5.2 Results

Algorithm amplification. We evaluate the vanilla attack and the snapshot attack for
participating client sets of size two to 32. When the target models are trained using the
EMNIST dataset, with a fixed amount of data per client, we found that snapshot attack
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outperformed vanilla attack consistently, and with statistical significance. Snapshot attack
outperformed vanilla by an average of 8% (when averaged across results for each participant
set size), and achieves 10% amplification for the two, three, and four client setting (see
Figure 5.1a).

The snapshot attack and vanilla attack against targets trained on CIFAR-10 are less
successful overall then for the EMNIST trained models. However, the amplification from
vanilla to snapshot persists (see Figure 5.1b). When the target models are trained using
the CIFAR-10 dataset, with a fixed amount of data per client, snapshot attack outperforms
vanilla attack with statistical significance until both attacks fall to 50% accuracy (at around
n = 16 for this dataset). Against the models trained by CIFAR-10, snapshot outperformed
vanilla by 15% for the two client setting. This means that even in a setting where an attack
is otherwise believed to do no better than random guessing (50% accuracy) the attack is
amplified to a better inference. The adversarial participants even maintain amplification
when the global expected loss is not published. The adversaries can either use the average
member loss instead (for Snapshot-Est and Vanilla-Est) or use our heuristic method and
achieve similar attack amplification as snapshot (see Figure 5.1c).

Training procedures and amplification The snapshot attack still appears to degrade
as the number of participating clients increases, inline with past work. However, the
degradation does not push the attack to ineffectiveness until a higher number of participants
as an artifact of the amplification. For instance, snapshot does not fall below 60% accuracy
until there are 16 participants, while vanilla falls below 60% after the total number of clients
surpasses four (for EMNIST models, vanilla never goes above 50% accuracy for CIFAR-10,
recall Figures 5.1a and 5.1b).

We observe that the degradation previously correlated with increased participants has a
confounding variable, namely the increased quantity of training data overall. We find that
there is a similar degradation in attack accuracy when n is fixed and the total training
data increases as shown in Figure 5.2a for EMNIST. Let |D| be the size of the total
training data. Consider, for n = 2, the attack accuracy when |D| = 200 is 78 ± 3% and
when |D| = 6400 the attack accuracy is 55± 0%. Interestingly, when we repeat the same
experiment of fixing n and increasing training data for CIFAR-10, we observe the opposite
effect as shown in Figure 5.2b. Consider n = 16 for CIFAR. When |D| = 16000, the attack
accuracy is 54± 2%, but when |D| = 32000, the attack accuracy is 61± 2%. Furthermore,
these differences in attack accuracy occur without any corresponding variation in testing
accuracy nor training accuracy. Thus, there is an attack accuracy difference of 23% in
EMNIST and 7% in CIFAR-10 corresponding to changing the total amount of training
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Figure 5.3: Comparisons of actual attack accuracy to the estimate by the adversarial participants.

data. Thus, the total amount of training data contributed to the federated model can
significantly alter attack accuracy, and in ways that are not predictable in advance of
deployment. When comparing the attack accuracy for different batch sizes (b = 40 and
b = 80 for EMNIST), we found that larger batch sizes are correlated with lower attack
accuracy (see Figure 5.2c).

Attack success feedback. We evaluated the self-attack with participant sizes 2-16 and
found that it provides a close approximation of the overall attack accuracy. In Figure 5.3
we show the actual attack accuracy and the self-attack for each of snapshot, distance
and vanilla against EMNIST and CIFAR-10 trained models. The self-attack provides
a good approximation of the actual attack accuracy for both EMNIST and CIFAR-10.
The accuracy of self-attack remains close to the actual attack regardless of whether the
performance is good (e.g., CIFAR snapshot) or poor (e.g., CIFAR distance). Recall our
results from earlier where changes in training can drastically affect accuracy (e.g., EMNIST
for n = 2 total data resulting in 27% accuracy variance). If an adversary is unable to gain
this feedback they have no indication as to whether they achieve, for instance, 50% accuracy
or 77%. The adversarial participants can use their self-attack accuracy, to distinguish when
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their attack is performing no better than random guessing (e.g., 50%) and when their attack
is performing significantly better (e.g., 70%)
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Figure 5.4: EMNIST Snapshot attack tuning.

Thus, we have shown that adversarial
participants in federated learning can know
how successful their attack is and can there-
fore use this feedback to improve their in-
ferences; including by dropping classifica-
tions from poor rounds (in Figure 5.4).
We also note that the adversarial partic-
ipants, having recorded snapshots of the
model states, can independently perform
each attack (vanilla, distance, snapshot) af-
ter the model training is complete. That is,
if the feedback (e.g., for CIFAR) shows the
distance attack is performing poorly, the
adversary could then simply compute the
snapshot attack instead.

5.6 Discussion

Our work illustrates how MI attacks are actually more successful than presumed when
performed by adversarial participants in federated learning. We are, in effect, illustrating
that proposals to apply federated learning to private data cannot make privacy guarantees
given the range of avenues available to adversaries to perform an attack. We acknowledge
that we only performed attacks on image datasets and we did not consider very large client
sets of federated learning. However, we argue that participating clients contributing private
data are likely to be low in number (e.g. recall the health care setting earlier with clients in
the tens and not the 100s or 1000s). Therefore, we have chosen to focus on understanding
the privacy risks for groups sized in the lower range.

We aim to prevent negative societal impacts by cautioning on how easily different con-
figurations and computationally trivial calculations can enable an attacker in federated
learning to make better inferences about private training data. We show that without re-
quiring additional computational power or additional knowledge, participants in federated
learning are able to make inferences about the training data, because they have a subset of
it (their own training set) to compare to. Further, the power gained by adversarial partici-
pants because they hold their own dataset is so critical to any privacy claims for federated
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learning because of how unavoidable it is. The adversarial participants need their data
to contribute, so it cannot be restricted to prevent it from being an attack vector. They
see model states over time because they help construct them, so these changes are not
viably hidden. Researchers and practitioners should be aware of the weaknesses we have
identified before developing or applying federated learning for real-world privacy sensitive
applications.

5.7 Conclusion

Before machine learning models can reasonably be trained over private data, it must be
ensured that the data can be protected. In this work we have shown that even otherwise
small changes to how a model is trained (e.g., batch size) can have a notable impact on a
MI attacks’ accuracy. Within federated learning, adversaries can both evaluate an attack
across training rounds and perform a self-attack to learn how well the attack is performing
in the actual setting. This allows them to tune their attacks to increase the accuracy and
make more confident MI attacks. While we only evaluated variations of threshold attacks,
the intuition behind the attack amplification will still stand for other attacks (e.g., sample-
to-user-level MIAs against NLP[42]); specifically evaluating attacks per round and checking
attack accuracy on their own data (per round and globally). Further, the adversaries do
not require additional assumptions with respect to their knowledge beyond that of what
they already know as participants. Thus, since no additional assumptions are required
to achieve the amplifications, it is much harder to detect or counteract. Therefore, we
conclude that current MI attacks provide only a lower bound on attack accuracy given
that the adversaries in federated learning are far more powerful than those in stand-alone
learning.
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Chapter 6

Communication of Privacy

The concept of data privacy, and correspondingly the regulation and protection of it, is
relatively new within our society. Even when limited to modern times, the initialization
of data protection laws is hundreds of years behind other regulations that are part of
our day-to-day life. For example, consider the regulations on food products. The orig-
inal Massachusetts “Act Against Selling Unwholesome Provisions” came about in 1784
[134]. Meanwhile, one of the first data protection laws is not enacted until 1970 in Ger-
many when the Bundesdatenschutzgesetz (federal data protection act) is introduced [150].
Thus, insofar as laws are meant to reflect the norms of society, we need to determine
how to communicate the nature of private computation to better understand what rules
and regulations can be put in place to protect members of the populace while employing
advancements such as private machine learning.

6.1 Introduction

As data access and collection have grown, so have companies’ attempts to leverage that
data, with regulations trailing far behind. Collaborations between companies increasingly
involve data sharing and disclosure. For example, Mastercard sold transaction data to
Google to track whether Google ran digital ads that led to a sale at a physical store (i.e.,
evaluating ad conversion) [21], raising privacy concerns for data subjects.

Within such modern data sharing practices, a data subject is an entity whose data is
present in the data set, while a data controller is an entity holding a dataset they are
contributing to some analysis. Data controllers who are not themselves the data subject
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may have different privacy expectations or requirements compared to when the data subject
themselves directly contributes their data. The data subject may not have understood their
data could be shared or sold [66, 130, 180, 230].

Private computation, encompassing complex cryptographic techniques like private set
intersection (PSI) [38, 175] and multi-party computation (MPC) [86, 241], allows com-
panies to analyze data while maintaining data subjects’ privacy in many cases. The cryp-
tography literature emphasizes the value of private computation for cases where the data
is especially sensitive (e.g., health or financial data) [225], among mutually suspicious en-
tities [30, 50], or when there are less open trust boundaries [225].

For example, at its essence, PSI refers to a computation where two or more parties
each hold a private data set, but wish to collectively compute the intersections of their
sets. The intersection can then be shared with one or more of the participating parties.
For example, two companies could determine which users they have in common without
disclosing the identities of the users not in common. PSI, as with many other private
computations, can be implemented using homomorphic encryption, differential privacy,
or combinations of techniques that produce different guarantees and efficiencies. Specific
privacy guarantees follow from specific mechanisms used in the implementation, such as
statistical assumptions or computational hardness.

While private computation is often substantially more computationally expensive and
more complex than its non-private analogue, there is an assumption that it is in some
way better. For instance, it is presumed to be better for privacy that when PSI is used,
data is only shared about clients the organizations have in common. To date, the degree
to which users perceive private computation as better, or even feasible and plausible, has
remained an open question. An unfortunate state given that users’ are the entities whose
data is used in such computations. Similarly, despite a flurry of recent work investigating
users’ expectations of differential privacy [27, 122, 123, 237] and attempting to improve
communication about differential privacy [45, 51, 72, 112, 154], users’ attitudes about, and
expectations for, the broader range of techniques subsumed under private computation
has remained open. The only user-centered work on private computation [6, 211] has
investigated usability from an expert’s, rather than an end user’s, perspective.

To recap, when an organization considers deploying private computation, two key at-
tributes must be addressed: (1) what privacy guarantees can actually be made to data
subjects and (2) are those guarantees meaningful to the data subjects whose privacy they
aim to protect? In this work, we investigate the second question through 22 semi-structured
interviews.

Without knowing what data subjects understand and expect from private computation,
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one cannot develop tools that empower them to make informed choices. Thus, in this work
we ask and answer the following research questions (RQs):

• RQ 1: What do data subjects understand about private computation, and how can
specific examples facilitate their understanding of the concept? See Sections 6.5.1.

• RQ 2: How is a data subjects’ willingness to share their data impacted when in-
formed of private computation’s properties (protections and guarantees)? See Sec-
tions 6.5.2–6.5.3.

• RQ 3: How do data subjects perceive private computation’s risks (e.g., inference
attacks and beyond)? See Section 6.5.4–6.5.5.

• RQ 4: How are perceptions of companies influenced by the use of private computa-
tion? See Section 6.5.6.

In brief, we found the following implications for private computation in practice. First,
data subjects are able to evaluate and understand the implications of private computation
over their own data. Thus, neglecting to inform them of such practices is denying them
autonomy over their own data. Second, while participants have an appreciation for the
protections private computation can produce, they do not find these protections sufficient
to overcome the need for i) consent and ii) transparency. That is, there are general details
participants’ that are factors in their evaluation of acceptability (Section 6.5.3) that compa-
nies should communicate. Third, participants are aware of unique high-risk threat models
for themselves and others that private computation cannot guarantee protection against
(Section 6.5.4). Therefore, failing to communicate the implications of private computation
practices can open up unintended risks for users and clients.

6.2 Background on Private Computation

Private computation is the suite of techniques whose understanding by a broad range of
users is this work’s focus. To provide context for user-centered communications, including
highlighting the types of guarantees private computation provides, this section provides
technical background information. Notions of private computation revolve around two key
aspects: what is being protected, and from whom. Technical privacy guarantees a set of
protections given a series of assumptions are met. The assumptions can be about potential
adversaries, system complexities, or statistics. When these guarantees are not in place,
private information may leak.
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A private computation executes a function over an input to produce an output such
that there are limitations as to what can and cannot be inferred by an adversary, even
if the adversary possesses some form of additional data. The function enforces the limi-
tations through the use of mathematical protection mechanisms from cryptography (e.g.,
homomorphic encryption) or statistical guarantees (e.g., differential privacy), or some com-
bination of techniques. Such computations may be between two or more parties, and they
may involve trusted third parties. What is being protected within private computation
typically falls under one of the following two classes:

Class 1: Private Data Set, Public Results. Consider a scenario where one or more
parties have a (joint) data set and want to release an analysis of the data set. For exam-
ple, the Census Bureau may wish to release statistics about the population of a certain
region. Abstractly, their analysis y is a function f of the data set D, i.e., y = f(D). The
party performing the analysis can employ a protection measure like differential privacy
(DP) [61], which ensures that a single record in the data set D has bounded impact on the
analysis y. That is, the output distribution of y shifts by at most a factor determined by a
privacy parameter specified by the analyst. By bounding the impact of a single record, the
individual records in the dataset have a measure of protection against being revealed to
those who access the results of the analysis. Thus, the analysis becomes a private version
of the computation with protections that bound privacy risk.

The data set D may be distributed among several parties (e.g., D1, D2). For example,
a government may be interested in the wages of its student population and thus wish to
intersect tax filings with various universities’ registration records. Here, the analysis y
may be computed as a secure (multi-party) computation (MPC) [86, 241], which is
a cryptographic protocol enabling the parties to compute the function y = f(D1, D2, . . .)
while ensuring that no party i learns anything except y and Di. While differential privacy
was the protection mechanism in the aforementioned computation, computations may use
both mechanisms. That is, differential privacy and secure computation are composable.

Class 2: Private Data Set, Public Subset. While the previous computations pro-
tected all individual data records while revealing the output of a computation, we now
discuss a class of protection style that instead aims to publicly (or selectively) reveal a
subset of the data. Consider a case where parties want to learn additional information
about their data or information about a relationship between datasets they each hold
individually. For example, assume Google holds a set of ad views on the Internet and
Mastercard holds a set of credit card transactions [21]. Google may want to learn which
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ad views led to credit card transactions, while Mastercard may want to learn which trans-
actions were preceded by an online ad. Abstractly, given a common identifier in the data,
the two parties could learn the intersection of their sets. The process of learning this inter-
section while protecting their respective datasets is known as private set intersection
(PSI) [75]. Two or more parties can compute the intersection of their data without re-
vealing data they possess outside of the intersection using private set intersection (PSI).
In particular, PSI reveals no information about identifiers not in the other party’s set,
but fully reveals each identifier in common (which may be assumed to already be known).
Differential privacy can be used on the datasets for additional privacy [87], and extended
forms of PSI can compute a function over the intersection [175].

Attacks on Private Computation. So far, we have defined what private computation
protects. However, given that some information is revealed intentionally as part of a private
computation, there are some risks. Recall that we reveal an analysis y as a function of
a data set D: y = f(D). Given y, it is possible for an adversary to compute the inverse
of function f and obtain a set of possible data set(s) D. This inverse can be computed
when given only y, but the adversary may also have background knowledge in the form of
a probability distribution over the possible data sets D, further restricting possible inputs
and thus improving the attack.

Inference attacks, a subject of ongoing research, may pose significant privacy risks for
subjects in the data set D. For statistical datasets, the risk of de-annonymization at-
tacks or other information leakage can come via the execution of summation queries [136].
In the case of machine learning, attacks may use queries to the model and other attributes.

We give a few examples from machine learning where the output y (given to the adver-
sary) is a publicly released machine learning model (e.g., a neural network), the outputs
during a distributed learning process (e.g., federated learning [146]), or both. A model
inversion attack [74, 95] computes the most likely input for one class of the model. For
example, for a face recognition model this can be a picture of the recognized person. A
property inference attack [81] computes a property of the records in the data set given
a description of the property. For example, for a face recognition model this can be the
ethnicity of the recognized person. A membership inference attack [208, 244] com-
putes whether or not a given candidate was part of the data set D. For example, for a
medical classification model, this can be whether or not a patient’s record was included in
the study.

Inference attacks are still feasible if the adversary cannot enumerate all possible data
sets D, since they only need to estimate the most likely inference. Differentially private
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protection mechanisms complicate inference attacks [244], but their theoretical analysis is
complicated and error-prone [100].

6.3 Related Work

Communicating Differential Privacy and MPC. While some past work has inves-
tigated expectations and understanding of multi-party computation, it has been limited to
stakeholders other than the data subjects. For example, Qin et al. focus on the usability of
multi-party computation from more traditional functionality perspectives [179]. Similarly,
Agrawal et al. investigated the perspectives of specialists such as industry professionals,
researchers, designers, and policy makers [6]. They found that these specialist participants
described private computation as a tool for enabling organizations to work with data.
While these specialists acknowledged the importance of end users (data subjects), few pri-
oritized end users’ understanding of private computation, increasing the risk that private
computation could be used for privacy theater [211].

The technical privacy mechanism that is differential privacy, and its implications for end
users, has received a lot of attention from the HCI research community. Efforts have been
made to explain differential privacy using a variety of techniques [45, 51, 72, 112, 154] and
to evaluate whether differential privacy improves users’ willingness to share their data [27,
122, 123, 237]. Within those efforts there are attempts to convey risk using visuals, risk
notifications, and metaphors. In part, the complexity of some of these illustrations can be
attributed to the “oddness” of differential privacy. Differential privacy provides guarantees
in the form of “two neighboring datasets are indistinguishable within some probability”,
and understanding that guarantee requires first understanding the notion of neighboring
datasets. However, while past work has done an excellent job at investigating differen-
tial privacy, it is too narrow to encompass the implications that correspond to the use
of private computation. Private computation, as described in Section 6.2, encompasses
all such computational efforts by organizations where there are protected inputs and re-
vealed outputs, using some protection mechanism, such as, but not necessarily, differential
privacy. Therefore, over the course of an interview, we employ what is essentially the
process of self-explanation for learning [8, 40, 41]. Self-explanation helps learners adjust
their understanding of a topic through examples and explaining concepts back to others.
Essentially, it is an inductive, generative process of learning private computation rather
than a prescriptive learning process.
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Perceptions and Preferences. Previous work has frequently found users to be averse
to their data being used by organizations [71, 111, 139, 140, 180, 204]. As we mentioned
earlier, a motivator for the use of private computation is the assumption that it will coun-
teract this aversion. Therefore, it is necessary to study users’ awareness, understanding,
and motivations of both technical tools and their implications for individual and soci-
etal privacy [11, 51, 160, 188, 220]. Information about individuals may be collected by
employers, government entities, and friends. Which of these collectors originally receives
the information is one component of the ‘context’ or social domain in which information
is shared. Recent work, included as Chapter 3, found that when considering different
contexts, represented by the number and type of participating companies, there is an ob-
servable influence on users’ perceptions of the data sharing practices. Once the information
is in a different context, whether via use or disclosure, it can no longer be assumed to meet
privacy expectations [158]. In private computation, there is necessarily two or more or-
ganizations contributing their data. That is, private computation inherently results in a
change of context that can influence participants perceptions and preferences.

Law and Policy. Legal notions of privacy are primarily framed in terms of protections
for individuals from government and from corporations; with legal and financial penalties
for non-compliance. The legal guarantees a company makes are typically encompassed
within complex privacy policies [47, 159, 190]. These guarantees are enforced, as much
as they are, by local data privacy laws. For example, Canada has PIPEDA, the Personal
Information Protection and Electronic Documents Act [164], the United States has the
Children’s Online Privacy Protection Rule (COPPA) [229], the Health Insurance Porta-
bility and Accountability Act (HIPAA) [3] and the recent California Consumer Privacy
Act (CCPA) [219], and members of the European Union have the General Data Protection
Regulation (GDPR) [230].

Designers of private computation protocols have suggested that it can help “simplify the
legal issues of information sharing” [176] and resolve privacy issues in various domains [49,
118, 174]. However, changing laws takes time while new technologies are in constant de-
velopment, and thus these laws do not encompass current and future privacy requirements
and expectations of private computation [135, 163]. Such legal regulations may impact
individuals’ perceptions of privacy and thus necessitate recruiting participants from the
same local as one another.
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6.4 Methods

We employ semi-structured interviews to allow us to follow up on participants’ responses
and allow participants to ask for clarification, as there has not been much prior work
on users’ understanding of, and expectations for, the broad range of private computa-
tion methods we consider. All participants received the same set of questions with the
order shuffled as appropriate. Appendix C.2 contains the interview guide. We refined
our procedure through pilot studies with five participants. Questions that participants
found confusing were either removed or clarified. We do not include responses from the
pilot study in our results. Ethics Board approval covered the design of the study, consent
process, data analysis, and protection of the data collected.

6.4.1 Procedure

Selection of Interview Questions. To address our research questions we developed
a selection of questions that when answered, collectively addressed the questions of our
study. Our questions generate insight into both participants understanding of the systems
as well as their perceptions of them. Further, we present a range of data leakage scenarios
to understand how participants perceive such risks.

Formalities. Before starting an interview, we reminded participants that participation
was voluntary, that audio was being recorded, and that they were encouraged to ask
questions throughout. The interview proceeded through the seven parts detailed in the rest
of this section: expectations, term awareness, private computation definition and example,
computation scenario perceptions, inference attack perceptions, general perceptions, and
a co-design activity.

Expectations and Term Awareness. The interview began with baseline questions
to establish participants’ existing perceptions. Participants were asked to “list some of
the ways that you expect companies use data about you and others” and whether they
had ever “come across” eight terms related to private computation that we presented in
randomized order: “private computation,” “encryption,” “hashing,” “multi-party com-
putation,” “differential privacy,” “federated learning,” “private machine learning,” and
“secure computation.” Terms with which participants were familiar resulted in follow-up
questions about where they had come across the term, what they thought its purpose was
for companies and individuals, and a request to define the term in their own words.
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Private Computation Definition. We then clarified “private computation” for partic-
ipants by defining and comparing a non-private computation with a private computation.
After participants had the opportunity to ask questions, they were asked to consider what
they thought could be an example of “a computation where the result could be made
public, but the inputs used to determine that result were sensitive and needed to stay
private.”

Computation Scenarios. As one of the key parts of our investigation, we gathered
participants’ perceptions of, and expectations for, private computation through discussing
four scenarios in randomized order. We presented participants with a selection of scenarios
in which private computation could be suitably applied to establish a baseline with which
to understand their responses to the non-private computation version versus the private
computation version we subsequently described to them. Each scenario consisted of an
overall description of the goal of the computation, as well as two ways this goal could be
achieved. One way used a straightforward approach involving non-private computation,
while the other way employed private computation.

For each scenario, we asked participants how acceptable they found each way of achiev-
ing the goal, as well as why. Their explanations and reasoning helped us identify what
factors most influence perceptions of (non-)private computation. We also asked partici-
pants what differences they perceived between the straightforward computation and private
computation in that scenario, how feasible they considered the private computation to be,
and how the company performing data analysis might explain the private computation to
users.

We select four scenarios to correspond to real-world applications that are permissible
under some conditions. Specifically, the four scenarios involved wage equity [44], ad conver-
sion [21], contact discovery [52], and census data [2]. The wage equity scenario described an
organization collecting salary data with the goal of generating a report on inequities. The
ad conversion scenario described a credit card company and an online company comparing
their data with the goal of determining if digital ads lead to sales in physical stores. The
contact discovery scenario described a social media company with the goal of determining
whether a new user had contacts that already use the app. Finally, the census scenario
described a government body collecting a range of data with the goal of informing policies
and resource management, as well as making results public. The interview guide in Ap-
pendix C.2 contains the full description of each scenario. These scenarios represent three
different private computation settings. Ad conversion and contact discovery are settings
where PSI can be deployed, wage equity efforts can use MPC, and census data can use
privacy preserving query procedures.
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Inference Attack Perceptions. We then presented participants with four descriptions
corresponding to a type of inference attack. For each, we gave participants a series of
examples of what specifically the company could learn, asking the participant to explain
how acceptable they found that situation. For instance, in the case of a membership
inference attack, we said, “One of the participating companies will additionally be able to
learn which specific records in the computed result correspond to you.” The membership
inference case examples included the dataset being a set of dating app members, a set of
frequent drug users, a set of low-income households, and a set of people with a specific
health condition. For each example, participants were asked how acceptable it is if the
organizations involved could determine they were a member of the example dataset, as
well as to explain their reasoning. The other attacks corresponded to model inversion
attacks, statistical inference attacks, and property inference attacks.

General Perceptions. At this point, participants had engaged with four private com-
putation scenarios, as well as four types of inference attacks. To unite these ideas, we
asked how the participants thought companies should be communicating how they used
data (with and without private computation) and what the companies’ responsibilities to
their customers were.

Co-Design Activity. We concluded the interview with a co-design activity that built
upon all topics participants engaged with throughout the study [210]. We asked partici-
pants to pretend they were working at an organization that hoped to use private compu-
tation and then consider how they would choose to explain private computation to their
customers or clients. Participants were able to write, draw, verbally respond, or use what-
ever other means of communication they preferred. After providing their own explanation,
participants were shown all previous participants’ responses to the question and asked
what they would add from their own to that explanation and what (if anything) they
would remove from it until they arrived at their final version of the explanation.

6.4.2 Participant Recruitment

We recruited participants based in the USA via the Prolific crowdsourcing service1 using
a survey that included demographic information and when they could be available for a
synchronous hour-long interview over a video call. We kept interviewing new participants

1https://www.prolific.co/
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until reaching saturation (no longer finding new themes). We seemed to have reached satu-
ration with just under 20 interviews, but we performed a few extra to be sure. Participants
received $1.45 USD via Prolific for the initial scheduling survey (average time 4 minutes)
and an additional $30 USD for participating in the interview. While most interviews lasted
between 50 and 60 minutes, the shortest was 40 minutes and the longest 90 minutes. These
times include debugging technical issues (e.g., fixing a microphone).

6.4.3 Participant Distribution

As detailed in Table 6.1, we interviewed 22 participants falling in the following age ranges:
18-24 (4 participants), 25-34 (8), 35-44 (6), 45-54 (2), and 55-64 (2). Among participants,
10 identified as a woman and 12 as a man, with no other gender identities being used. The
participants fields of work span a broad range including politics, librarians, environmen-
talists, educators, insurance, health, music engineering, technology, personal assistants,
chiropractics, and marketing. In terms of the highest level of education completed by the
participants, the distribution is as follows: five participants had completed a graduate
degree (Masters or PhD), eight completed a bachelors or associates degree, six completed
some college but no degree, and three participants completed high school. Further, six par-
ticipants reported that they “had an education in, or work in, the field of computer science,
computer engineering, or IT” and of those one reported that they “had an education in,
or work in, the field of cryptography.” We note that the only restrictions on participation
was age (18-65) and country of residence. The upper bound was due to requirements our
Office of Research Ethics sets for including older participants. We chose not to exclude
the participant who reported cryptography experience as during the interview it became
clear their familiarity was overstated. Their responses did not differ from the participants
without that reported background.

6.4.4 Incoming Knowledge and Expectations

Participants initial expectations for data usage could influence their perceptions of private
computation. Thus, we started the study by asking participants what their expectations
were and what terms they were familiar with. We present an overview of participants
incoming knowledge and expectations in the following.

Expectations. Participants had expectations in terms of what data companies use (pur-
chase history, demographics, search history, salary data, and user preferences), what com-
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ID Age Gender Education Tech Crypto
1 18-24 Woman High School
2 18-24 Woman Bachelors
3 35-44 Woman High School
4 45-54 Man Bachelors
5 25-34 Man Grad School 3
6 55-64 Woman Grad School
7 18-24 Man Some college 3
8 25-34 Woman Bachelors
9 25-34 Man Bachelors
10 25-34 Man Grad School 3 3
11 45-54 Man High School
12 18-24 Man Some college
13 35-44 Woman Bachelors
14 25-34 Man Some college 3
15 35-44 Man Some college
16 35-44 Man Bachelors
17 25-34 Man Bachelors 3
18 35-44 Man Grad School
19 35-44 Woman Some college
20 55-64 Woman Grad School
21 25-34 Woman Some college 3
22 25-34 Woman Bachelors

Table 6.1: Participants’ demographics, including age range, gender, and highest education
completed. Participants indicated whether they have an education or work experience in
a tech-related field, as well as in cryptography in particular.

panies use the data for (financial gain, improving services, forging social connections, and
personalization), and companies’ responsibilities with respect to the data (anonymization,
preventing re-identification). P8 emphasizes that despite being aware of companies’ prac-
tices, they do not necessarily approve or agree with how companies use their data:

“Even though I don’t love that, I expect them to use it like for their marketing
purposes [...] grow the bottom line of their business, to make money off of my
data, and who I am as a person.” (P8)

Participants have an expectation that companies are protecting the data entrusted to them,
but P18 expressed concern that data usage practices may go beyond what they expect and
be for reasons which they are not even aware of.
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“Of course, they may use it for other reasons, which I’m not even aware of.”
(P18)

Relevant Preexisting Knowledge As a proxy for identifying any preconceived notions
participants may have about private computation, we showed participants a set of terms
from the space (see Section 6.4.1). All participants expressed familiarity with the term
encryption, with a few also being familiar with the term hashing. Familiarity with hashing
was limited to those with a technical background who came across it as a data mapping
strategy. All other terms either had no participants reporting familiarity or participants
could not place the origins of the familiarity. In these cases, the participants guessed they
either came across the phrase in terms and conditions or in news articles.

Source of Awareness. We surmise that the term encryption is thoroughly embedded
in various facets of day-to-day life. Participants responded that they learned of encryption
via leisure, education, employment, and when managing finances. However, encryption is
not viewed as being particularly relevant to participants lives:

“[It’s] something that’s used by techie people or politicians or people who are
doing nefarious things, I don’t think of encryption as guaranteeing things for
individuals, like the lay public like myself.” (P6)

Guarantees. On one side, participants expressed skepticism as to what tangible protec-
tions encryption can provide. Emphasis was made that there are “no guarantees” (P16)
and that while it may provide some protections encryption does not make it impossible for
malicious actors to access things. For those that are more optimistic of the protections, it
was viewed as a means of making it more difficult for unauthorized persons to access the
data.

Companies’ Purpose. Some participants responded that encryption is used to provide
the “illusion of security” (P8) while others thought encryption is used to provide “customers
safety with their data” (P21). Ultimately, whether they had confidence in the protections
or not, participants reported that company’s use encryption to their own benefit; whether
it is for protecting customer data, protecting proprietary information, gaining customers
trust, or avoiding legal penalties.
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Defining Encryption. In general, participants’ definitions of encryption were not fully
comprehensive, but they did show an understanding of encryption at a conceptual level.
Essentially, participants highlighted that encryption changes the information it is applied
to. These changes were referred to as “scrambling” (P20) and “masking or disguising”
(P15) the information. Further, the changes are done with the goal of providing some
security to the information such that it cannot be read by unintended recipients. These
responses, regarding transformations, are most inline with what past work termed an
iterative mental model of encryption [235].

6.4.5 Data Analysis

We recorded audio from each interview. We automatically transcribed the audio via speech-
to-text software; afterwards, a member of the research team listened to each recording and
corrected the automated transcriptions, as well as grouping responses by question and
section of the interview. We analyzed this qualitative data using an inductive approach,
allowing themes to emerge. Myself and my collaborator (Vasisht Duddu) extracted partici-
pant responses and then collaboratively clustered them according to similar sentiments and
themes using the affinity mapping procedure [96, 114, 199]. Affinity mapping allows us to
employ a team-based, collaborative approach to iteratively identify all aspects participants
articulated when discussing their understanding of private computation, as well as private
computation’s implications. As part of the iterative affinity mapping process, after the two
researchers formed initial clusters of participant quotes, they reviewed each quote within
a theme to see what they had in common and discuss whether the quotes contained any
points not encapsulated by others within that theme. Through iteration, we ensured that
unique insights were not overshadowed by more prevalent ones. This process enabled us to
capture the full range of attributes participants considered, as well as those that most com-
monly influenced their opinions. For example, consider the following. In terms of themes
for responses to the acceptability of the ad conversion case, we identified: consent, privacy,
benefits to the company, and low (perceived) sensitivity. Responses to contact discovery
brought out themes of consent as well as benefits, limitations, perceived risk, and data
minimization preferences. We reviewed emergent themes with respect to commonalities
and differences across scenarios and questions to better understand participants priorities
and concerns. These then became the structure of our findings.
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6.4.6 Limitations

While we strived to ensure a diverse sample in many aspects, our participants represent
a convenience sample and skew young (less than 20% were age 45+) and educated (69%
had completed a bachelor’s or graduate degree). Our participants are WEIRD (western,
educated, industrialized, rich, and democratic), and we make no claims as to our results
being representative of other population groups [198]. All of our scenarios are based upon
typical cases in North America, where our participants live, and some examples may not be
permitted by laws in other countries. Similarly, our scenarios may not cover data analysis
tasks that might be both legal and common outside North America. Finally, as with other
response-based studies, we acknowledge the potential for bias towards what participants
perceive as socially desirable behaviour [186].

6.5 Results

The following results presentation centers around answering each of our research ques-
tions. That is, in terms of comprehension, we present the development of participants
understanding of private computation from their first descriptions through to the final ex-
planation they construct at the end of the interview. In terms of perceptions and influence
on acceptability (RQ2 to RQ4) we evaluate any changes in perception between scenarios
and participants’ reported reasons for these changes. This enables us to better understand
the influences with respect to phrasing versus actual impact as the interview format al-
lowed participants to frame their reasoning in their own words. Thus, we identify themes
participants use in their decision-making process when considering our data sharing sce-
narios, describe how private computation descriptions influence participants perceptions
of the scenarios, and describe any impact private computation has on their expectations
for companies’ responsibilities.

6.5.1 Comprehension of Private Computation

We asked participants to produce a definition at three points throughout the interview; as
an instance of a low-level assessment technique for evaluating learning and understanding
of concepts [8, 40, 41]. We later repeat this technique after the participants have expe-
rienced the examples throughout the remainder of the study. We observe an increase in
understanding via participants own explanations of private computation from their original
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Figure 6.1: Participants used a range of mediums to convey private computation. Responses
included written text, drawn images (digital and paper), and both verbal and typed responses.
The above illustrations are from P6, P8, and P10, respectively.

response at the start of the interview through to their final definition at the end of the
interview.

First Attempts. They were first asked to provide their own description of private com-
putation after they were shown a definition and asked to think of an example that could fit
the definition. This definition occurred before participants were shown any of the scenar-
ios included in the study. Participants struggled to provide an initial definition of private
computation. Some participants were unable to come up with a definition. Of those that
did provide a definition, they were generally brief, and typically overlapped with the initial
definition they had been shown.

Participants did come up with several examples in response to the prompt for “an ex-
ample of a computation where the result can be made public, but the numbers used to
determine the result are sensitive and need to stay private”. Not all participants came
up with an example, some came up with more than one, and some participants changed
their mind about their example (see Table C.1 in Appendix C.1 for the list of examples).
The subject domains of the examples included salaries, research studies, and organiza-
tions profit data. The public outputs included aggregates, averages, company trends, and
post-processed data. While not all of the examples were appropriate settings for private
computation, the participants identified a number of cases that already exist. In particular,
participants identified examples that corresponded to two of the scenarios we used later in
the study; census data and wage equity.

Second Attempts. At the end of the study, the participants were asked a second time
to explain private computation. At this point, they had seen all four private computation
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Secure computation is a way that a company analyzes your data. The final analysis will
be made public [at access location]. However, your specific data is protected and cannot be

traced back to you nor can your specific data points be traced back to you. The analysis
will be specifically [example], and this is being done because [purpose].

This is the information we’re getting from you, but, rest assured, only Part Three will be
shown. You can trust us to keep your information private. <If true> This information

will only be used for this project and nothing else in the future.

Figure 6.2: Final explanation of private computation derived via input from the series of all
interview participants.

scenarios and the cases corresponding to inferences attacks. For the second explanation
they were informed that they could use any medium, including drawing a picture, verbal
explanations, and writing. Participants’ second attempt was overwhelmingly more suc-
cessful than their first. Every participant provided a definition with their chosen medium
varying (see Figure 6.1 for a selection of responses). Each definition was reasonably accu-
rate, even if it was not all encompassing. Participants included in their descriptions what
is being learned and what is being protected as important. Other aspects they suggested to
include were how it will benefit the client and what the computation actually is. Further,
in addition to their explanation, participants also identified attributes that they consid-
ered critical to quality explanations. Attributes participants emphasized are transparency
and honesty. Participants also recommended including examples (especially as figures),
summaries, and visually placing emphasis on critical points.

Final Explanation. Participants final definition is the one they derived after seeing the
previous participants’ final answer. Each participant was shown the explanation derived
(by consensus) by the previous participants. They were then asked what they would add
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or remove to the current explanation with consideration to their own initial response to
the prompt. Earlier in the study participants made more dramatic changes, and they
often incorporated large portions of their own explanations with smaller components of
the current collective explanation. As the interview study progressed, participants made
fewer and smaller changes, adding finesse as they identified attributes they considered
valuable for an explanation being directed at the public.

When they made changes to the derived explanation, participants expressed the im-
portance of clarity, accuracy, and conciseness. Participants emphasized that the value of
being concise, but that it needs to be balanced with accuracy. For example, P17 noted
that the original example would actually not protect the inputs:

“The only thing I noticed is like, in this example, it’s obvious the data is too
small; that you can tell like the ages of specific men and women just because
there’s only two men and two women.” (P17)

While it is the case that if “You add too much and you start losing it” (P16), without
sufficient details, customers and clients could be confused or misled. Ultimately, partic-
ipants made changes to improve clarity across steps in the illustration (consent, input,
storage, output) and to add clarity on purpose.

For example, P6 found privacy failed to encapsulate what is being done and instead
suggested using the term secure computation. They expressed concern that there is a
dichotomy between privacy and using customer data such that private computation could
never really represent what is being done: “If you’re using my data, then there’s no privacy
[...] if there’s privacy, then you’re not using my data” (P6). This phrasing choice, which
took private computation to secure computation was never changed by later participants.
Further, other participants who noticed the explanation started with a different term,
expressed support for the change and that “secure sounds better” (P8).

Also, in an effort to improve clarity, P8, introduced a visual example to the expla-
nation. This illustration remained a core component of the final explanation, with other
participants making small adjustments, but ultimately, they expressed an appreciation for
the visual (P9, P10, P16-P18, P20).

The final derived explanation encompassed attributes participants emphasized through-
out the interview process. Within the final answer, there is an explanation providing an
overview of the concept, an example that walks you through the process (including per-
mission to use the data being requested), the purpose, and a description of the guarantees
being claimed. The final answer (after 22 participants) is shown in Figure 6.2.
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As they constructed their explanations, participants did not focus on wanting to know
the details of the mechanism used to achieve the guarantees. Participants trusted that the
functionality was feasible without the details; leaving no need for complicated metaphors
to prove it (Section 6.5.2). This eases the difficulty of communicating private computation
practices in a way that is relevant, actionable, and understandable to the populace [194].

Based on the derived explanation, they did want to know the inputs, the outputs, the
guarantees, and most of all the purpose of these computations. The components of the
final derived explanation were: a description of the concept, what was being done and why,
an illustrated example, and a brief explanation of the implications the computation could
have for them. Further, these components are aligned with the themes that emerged when
participants explained the acceptability of the four private computation scenarios. This
consistency suggests these attributes are critical to members of the population being able to
give informed consent to private computation. The remainder of this section revisits each
of the components included in the final definition derived by participants; and provides
insight into why these components were considered relevant by the participants.

6.5.2 General Impact of Private Computation

In evaluating our second research question, we found the following key points. Private
computation may influence data subjects’ willingness to share their data. However, this
influence is not without its limitations. Participants expressed confidence in the ability
to provide the guarantees described in the questions and that in many of the presented
scenarios it made participants look more favorably upon the practice. However, as will be
discussed in Section 6.5.3, private computation is not able to completely overcome factors
previous work has found to matter to participants (e.g., purpose and consent).

Feasibility of Private Computation. In terms of feasibility, participants overwhelm-
ingly considered the private computations in each scenario to be possible. Not only did
participants think the scenarios were possible, but they thought such computations may
already be happening (P12, P13 about census data). Participants did express concern,
however, that companies may not be truthful about what they do with the information
they collect (P22, contact discovery) and therefore thought it required some sort of en-
forcement. As participant emphasised, feasibility was not the critical factor, but instead
that:

“...it’s you know, whether there are guards in place, it’s do we have cops to to
make sure that they’re going to do what they’re supposed to do.” (P16)
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Participants acknowledged that performing private computations could be more expen-
sive (which was stated in scenarios where appropriate). When they considered the costs,
participants included both the company’s perspective and their personal views. Ultimately,
while participants noted that companies may lose revenue by using such computations (P4
and P11), this was not considered to be an excuse to not protect their user’s privacy.
Participants even advocated that companies should spend more money on such projects
to ensure that they are secure and safe (P2, P20, and P22).

Initial Perceptions of Scenarios Within our sample, participants generally perceived
some scenario goals more positively than others. Specifically, the scenarios for wage equity
and census data were generally positive, with responses clustering on the acceptable end
of the scale (with few respondents considering these goals unacceptable). The scenarios
for ad conversion and contact discovery, however, were viewed less positively. For both
of these, the responses clustered on the unacceptable end of the scale. For instance, after
they considered the contact discovery description, P14 responded that:

“I want some privacy. I don’t need a hundred percent. But, I’d like a little bit
at least if that’s not asking for too much” (P14).

Potential to Impact Acceptability For each scenario, participants view two descrip-
tions, one corresponding to a private computation technique and one not, that could be
used to achieve the organizations goals. The private computation descriptions used for
both the ad conversion and the contact discovery scenarios see a positive change in accept-
ability. Wage equity has the most significant improvement with no participants reporting
the private computation scenario to be unacceptable.

With respect to the private computation scenarios, the stipulations restricting the
amount of data revealed and ensuring that companies cannot use the data for any other
purposes are cited as improvements:

“Even less of the data...data that is not relevant at all, they modify it to not
make it available and I think that’s, that’s very thoughtful” (P9).

When considering the above attributes participants responded that “it feels a little bit
more protected that way” (P12), “aligns a smidge more with my values” (P8), and “sounds
like another layer of security” (P19). Overall, the descriptions corresponding to a private
computation trend towards improving participants perceptions in terms of acceptability:
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“they’re not, you know, over exploiting what they’re getting” (P22). The exception to the
observed improvements with respect to acceptability is the scenario for census data; which
actually has the opposite effect:

“It feels like the second one’s kind of saying the same thing. It just they’re
trying to make it sound a little bit better” (P19).

However, even for the more acceptable scenarios the improvement is not unconditional.
Participants still express concerns for aspects that the private computations do not or
cannot address. Ultimately learning something is the goal of any private computation, and
that is not something that can be changed. As said by P7, “At the end of the day they’re
still like learning specific things about me.” (P7)

Impact on Acceptability Due to Misconceptions. While some participants ex-
pressed exceptional insight into the risks and implications of private computation, others
felt reassurance from its attributes. Unfortunately, not all of the attributes that gave reas-
surances actually provide the protections that participants expect. We identified two main
concepts that participants find reassuring but are known to not provide the guarantees
attributed to them. The first concept that provides false assurances is aggregation. For
example, P6 described the protection from aggregation as:

“When it’s aggregated. It’s lost. It cannot be disassembled. And private does
not communicate that in any way shape, or form to me.” (P6)

This confidence in averages and aggregation is unfortunately misplaced, as we know that
there are a number of ways a malicious party could carefully select queries such that
they can learn about an individual [136]. The idea that one can “blend into the crowd” via
averages and aggregates and not experience additional risks is also observed in participants
responses to the assorted inference attacks they were shown. That is, participants tended
to find property inference attacks more acceptable than attacks that targeted an individual.

The second concept that provides false assurances is law, policy, and standardization.
The assumption that the practices are “legal” or “industry standard” influenced acceptabil-
ity. For example, P4 specifically stated that if the practice is not an industry standard then
the acceptability would decrease. In the cases of P16, they concluded that if companies
disclose such practices in their terms and conditions, it must be legal:

“I don’t know if in the real world, if this is legal to do, I would assume it’s legal
if they, if it’s in their terms, right?” (P16)
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However, while participants expressed confidence that the law protects against improper
data sharing practices, this belief is not universal. Some, such as P11, stated that such
practices do “not sound ethical [-] even if it’s legal.”

6.5.3 Bounded Impact of Private Computation

For each scenario, participants are asked how acceptable the scenario is and how companies
should explain the private computation if they use it. Across scenarios, participants ex-
press a range of conditions that influence the acceptability. These conditions demonstrate
limitations for private computation in terms of influencing data subjects’ willingness to
share their data.

Motives Matter. When responding to how acceptable they found a scenario to be, one
of the conditions participants placed upon their answer was the goals and intentions of the
company (P22) and whether the participants considered the reasons to be just and fair
(P11). Goals that benefited society tended to shift their responses towards the acceptable
end and goals that corresponded to corporate gain tended towards the unacceptable end.
The scenarios for census data and wage equity were viewed as benefiting society. In the case
of census data, participants went as far as to say: “it’s like, crucial information gathering”
(P8). Factors for participants when they viewed the census description included trust in
the government, importance for society, and how such data is used:

“And if the government is going to spend money, it may as well be based on
some data rather than shooting from the hip.” (P6)

Similarly, the wage equity description was considered to provide an important societal
benefit that prioritized fairness and countered discrimination:

“Wage equity should be a goal of a civilized society and companies aren’t
going to do that on their own. So third party organizations come in to try to
ameliorate some of the inequity that the companies have within them” (P13)

Unlike when the organizations’ goal is viewed to benefit society in some way, scenarios
where the computation benefited the company were less positively received:

“This is based on making more money, they’re not considering the actual person
involved” (P11).
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In particular, the ad conversion scenario was seen as exploitative and unnecessary:

Want to determine whether [...] their ads are effective? Well, you’re still in
business right? See, that for me, that’s enough.” (P16)

Some participants expressed that they understood why the company would want to
perform such computations to determine if the money they spend on advertising was effec-
tive. Participants that expressed such understanding were still divided in that while some
also thought it was fair, others thought companies should determine effectiveness without
using additional personal data: “companies should have their own analytics [...] to figure
out their own conversions” (P21).

Regulate the Restrictions. In the census case, there was actually an increase in the
number of participants that consider the scenario to be unacceptable or completely un-
acceptable. Participants expressed concern both about the aspect of “any query” being
permitted as well as about how query restrictions would be determined. Participants ex-
pressed concern that companies would exploit such restrictions such that “it’s more like
withholding information” (P18) and therefore they wanted to know “who is making the
decisions regarding the information that’s permitted” (P8).

Essentially, participants views were dependent on who makes the restrictions as well
as what is restricted. P16 spoke about the importance of allowing the public to repli-
cate results themselves whenever possible. They supported protecting individuals, but
emphasized the importance of balancing protections with transparency:

“If we’re talking strictly numbers I lean towards all information available. There
shouldn’t be any math problem that that is is hidden.” (P16)

This view was shared by other participants who also emphasized that the acceptability
of such restrictions is highly dependent on the information in question:

“...depending on what information is permitted, it might be good for somebody
to know something that they’re not permitting through the system, or it might
be bad to let people know something.” (P13)

Finally, some participants considered both descriptions to provide insufficient protec-
tions and desired additional restrictions (P5 and P10). These participants suggested a
hybrid version of the descriptions to produce what they considered to be a more privacy
preserving version. Specifically, to address their concerns, they suggested a query vari-
ant that only allows aggregate (or average) based queries while also preventing inferences
beyond what is permitted.
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Divulge the Details. Identifying what information individuals prioritized in their deci-
sion making is key to ensuring that information is communicated in the future. Participants
mentioned a number of details for inclusion in explanations, and indicated such details are
an influence on acceptability. In particular, participants who responded that a scenario was
less than acceptable (e.g., neutral or unacceptable), emphasized that further information is
required before the scenario could be acceptable. First and foremost, participants wanted
to know that their data is being used:

“That it’s [the data is] being used. What’s being done with it. The other
company that is involved, that is Having access to it, and if it’s going to be like
ongoing or not.” (P17)

Beyond knowing their data is being used, participants wanted to know how the data is
being used. They wanted to know who is doing the computations and why they are being
done. They wanted to know how long the data is being used for, how the data is protected
(including the limits of those protections), and the implications for them if their data is
used in these ways. For some participants, a failure to provide details or implement any
of the protections the organization claims, are reasons to decline to participate in private
computation. In other words, even when private computation is employed, participants
care about appropriate flows of information [158]. Participants want to be allowed to judge
if a flow is appropriate for themselves, and to do that, they require details with respect to
the information flows.

Consent Above All. The details participants expect to be provided with are not just
about the information. Rather, participants’ desire to be informed is a means to an end,
autonomy over their own data:

“Every time your data is used in some kind of computation, you should be
specifically alerted by the company; they shouldn’t be able to do private com-
putations [...] without you being aware of it.” (P13)

A theme that emerged across all scenarios from the interview is consent and the importance
of choice and communication to have meaningful consent. P17 summarized this notion as:

“If they don’t prompt you, then completely unacceptable. If they do prompt
you then completely acceptable.” (P17)
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Participants, such as P1 and P16, both emphasized that consent is not a one-time
thing. Companies need to be informing individuals periodically, or “every step of the way”
(P16), about how their data is being used and ensure that they continue to consent:

“When they sign up for the credit card and periodically, they should be re-
minded that all of their data is, you know, being sold to other companies.”
(P1)

In cases where participants may want to withdraw consent, the means to do so should be
clear and accessible. Companies need to be “giving simple directions of, you know, where
to go to opt out on the application” (P4). Such directions support individuals who change
their mind about data use as well as those who did not understand or intend to agree:

“Some kind of system where if a person finds out that they sign something that
they really didn’t understand, they can have a way to retract their permissions
or whatever.” (P13)

The final attribute participants emphasised as critical for consent is the use of clear and
transparent communication. That companies need to be “proactive” and “not just rely
on legal contracts to protect them”. For instance, when informing individuals about how
their data can be used, it should not be buried in terms and conditions nor obfuscated by
legalese:

“Be more upfront about how they’re using our data instead of varying it in
like really wordy terms and conditions in language that the average person like
myself...like we can’t understand it very well.” (P1)

6.5.4 Risks for Unique Threat Models

We now discuss participants responses associated with the perceived risks and implications
of private computation. In addition to the specific risks discussed at the end of the study
(the inference attacks), participants highlighted what risks they perceived as possibilities
in this space.

Participants question the potential implications of private computation and identify a
number of risks associated with the contexts in which private computation could be applied.
Both P13 and P19 identify risks associated with the goals of the scenarios, regardless of
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the use of private computation. Individuals can be in situations where computing such
connections could put someone’s safety at risk. For instance, after considering the contact
discovery scenario, P19 expressed concern that such connections could reveal someone’s
internet presence to an abusive ex or someone they have a restraining order on:

“Through [...] common contacts that now he all of a sudden has a friend who
has her information and now he has her information if through the tangled web,
you could be able to find people [...] that’s a growing problem.” (P19)

Such risks are not things that can be resolved with a technical solution, such as private
set intersection, but instead highlight the importance of informing users and gaining their
consent, respecting their own risk assessments.

6.5.5 Inference Attacks and Acceptability

In terms of privacy leakage, the concern that organizations might make inferences from
the limited information was brought up by P22 before any of the inference attacks were
discussed.

“If you’re only giving like limited information, you might wonder if they’re
gonna acquire other personal information about you from that limited infor-
mation.” (P22)

Our participants also expressed concern that they “can’t really figure out [...] the implica-
tion” (P6) of the computations or ”how it could be exploited” (P15). As expressed by P22,
the concern is that companies may request limited information, but try to gain additional
information via some other means:

When presented with specific examples of information leakage, the perceived sensitiv-
ity or risk associated with inference attacks centered around two types being the most
concerning. The first case being any instance where an individual is identified (e.g., mem-
bership inference attacks). The second instance was any instance where a group of people
could be discriminated against (e.g, certain property inference attacks). Across all infer-
ence attack examples, the perceived sensitivity of the data is a factor for the acceptability.
Location data, health data, sexual orientation, and religion are cases where the type of
data is deemed to be more sensitive. Of particular concern were the cases that included
health data. Participants, who were all located in the United States, expressed concern
that their insurance company would get this information:
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“If that information then got shared with like my insurance company [they]
would then decide to raise my rates because maybe I am at an increased risk
for heart disease.” (P1)

Among participants there was concern that the inferences made through the attacks could
be used in malicious ways and to propagate bias and discrimination:

“What this data is going to be used for, the state of it, should be used to to
propel humanity forward. Not hold, not keep people back.” (P16)

With respect to the inference attacks, some participants viewed all such attacks as
unacceptable; since the companies were ”not supposed to have that information period”
(P6).

However, we did observe that inferences that target groups rather than individuals
were less negatively viewed. Inferences about properties of groups are generally perceived
to be somewhat more acceptable, however, this trend is conditional upon the specific
property and the potential implication that property has for individuals and society. For
instance, if the property could be used to “manipulate the populace” (P13), is “rude”, or
“discriminating” (P22), then participants state it would be less acceptable.

For conditional attacks, information leaks only occur probabilistically. However, this
was not necessarily viewed as an improvement by participants:

“It’s based on what is what that record is, is in relation to even if it needs to
be protected and it should be protected 100%.” (P16)

Many found it unacceptable regardless of the percentages and stated that percentage was
irrelevant. Of those that found a tipping point to neutral or acceptable they either tipped
at 50%, 25%, or 1-2% chance the exact record would be learned.

6.5.6 Expectations for Responsibilities

An individual’s ability to protect themselves is almost inconsequential without support.
For example, after expounding on how a company’s priority is their organization and
financial gain, P6 expressed concern for how they are supposed to learn what they need to
have data autonomy:
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“...how do I protect myself and who teaches me how to protect myself? Who’s
responsible for teaching me how to protect myself?” (P6)

Participants identified responsibilities for companies, government, and even themselves
as individuals. Companies have the most responsibilities with respect to the law, protecting
user data, and treating data with respect. The government’s responsibility is to protect
individuals via the creation and enforcement of policy.

Re-humanize Data. Participants expect companies to protect the data entrusted to
them using the “best” security measures available to them as that data is not just some
abstract input to compute over. Rather all of the data they hold corresponds to an “actual
individual person with a name, a face” (P9). The data companies collect has been entrusted
to them. Companies are expected to treat the data with respect and to be aware that the
data is something important that they are responsible for. Treating data recklessly can
have consequences for actual people:

“I think the ultimate responsibility is to use it with caution. To protect people’s
privacy. It’s up to the company to make sure they only share to the extent, the
person allowed them to.” (P9)

Furthermore, respecting the people who are represented by the data requires companies
to exercise clear communication. Without transparency into data sharing practices people
will continue to struggle to have autonomy over their data.

Proactive and Transparent Communication. When using customer data companies
need to be upfront about their actions, but also provide greater granularity of control. For
example, rather than a vague description for individuals to agree or disagree to, companies
can be more specific:

“You either agree or disagree and it doesn’t really give much more information
on what type of data is being used.” (P12)

In addition to being specific, companies need to acquire explicit and ongoing permission
for the collection and use of data. One participant even hypothesized that data sharing
practices would be more positively received overall if there was not so much obfuscation
and manipulation in the space:
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“A big social outcry [...] that could really be prevented if they were open from
the very beginning. If people just knew, they wouldn’t be so spooked by it.”
(P9)

Regulation and Enforcement. While some participants called for clearer regulations,
some directly called for the practice of companies selling data to be made illegal:

“They need to stop selling our information in general [...] passing that infor-
mation to a company, I just I think it should be illegal.” (P19)

However, in terms of law and regulation, participants tended to agree that companies have
the responsibility to follow the law and the government has the responsibility to enforce
the law, regardless of the use of private computation:

“Health is a sensitive topic and and they’re already legal protections for health
information and so on. So...I don’t see how why this edition of technology
should should change those protections.” (P16)

Participants made suggestions as to how the law can be enforced; specifically they suggested
employing independent third parties. For instance, P21 suggested a third party could
perform compliance checks and P1 suggested an independent entity to review points critical
to consent. The independent party would perform a review to determine the best way to
communicate to users about how their data is being used. They would also determine
what information users need to make an informed choice about their data; such as a set of
points everyone using the service should know about.

6.6 Discussion

Across our participant set, each individual demonstrated increased understanding (via ex-
planatory evaluation) as well as communicated to the researchers factors related to private
computation that influence their perceptions of the practices. Since the reasoning ex-
pressed by our participants included both traditional aspects for data sharing (purpose and
transparency) as well as the technical guarantees (statistical-inference protection, property-
inference protection, and membership inference protections) we detail in the following how
researchers, developers, and policy makers can better communicate these aspects to the
data subjects.
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For Researchers. The improvements to acceptability generated by private computa-
tion were not universal. Even within the private computation examples participants were
shown, the techniques used did not resolve all of their concerns. Participants identified
implications of such computations, even proposing some alternative solutions, however, it
remains the case that the implications of computations are not always clear. Thus, we rec-
ommend future work to develop more efficient communication techniques for private com-
putation that includes details from our participants’ final description (recall Figure 6.2).
Further, future technical developments of private computation should consider the limita-
tions of the protections they define and whether the trade-offs being made are improving
data sharing practices. For example, when developing techniques that provide probabilistic
privacy guarantees, researchers should include consideration for whether there exists cases
such that there is justification for these guarantees.

For Policy Makers. Regulations related to private computation should account for how
the descriptions of such practices influence data subjects’ willingness to share their data,
potentially more so than the actual guarantees. For example, our participants express
confidence in the protections of aggregated computations and averages. In practice, this
confidence is misplaced [136]. To ensure organizations with less than benevolent intentions
do not use this confidence to propagate dark patterns [24], it is necessary to regulate
how companies communicate practices such that they include implications and do not
obfuscate them. We acknowledge that it is not necessarily possible, nor practical, to require
companies to express all possible implications that could result from a computation they
perform. However, whenever possible companies should be required to make explicit what
protections are not possible as well as the limitations of the protections being employed.

For Companies. Participants expect the companies that use their data to treat it with
respect. To treat the data as something important that has been entrusted to them and not
something they have ownership over. While meaningful consent is a challenge to achieve,
it goes a long way to fostering trust in an organization and willingness to provide data.
Several attributes previously found to be relevant to individuals data privacy decisions are
still very relevant within private computation. In particular, participants emphasized the
importance of knowing the purpose or goal as well as a requirement that companies gain
consent from their users before sharing their data. Even when using private computation,
companies must communicate with the same level of transparency, including details related
to how the computation is being used and what the company could potentially learn as
a result of the computation. Communication should be transparent, accessible and clear
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and the onus is on the companies to ensure they get informed consent. In short, a lot can
be forgiven if permission is given.

For Consent. Similar to the study in Chapter 3, this work found participants placing
a strong valuation on consent. To continue the discussion from that chapter, we empha-
size that the valuation of consent does not inherently mean the desire to fill a collection
of check-boxes and signatory acknowledgments. One aspect that may help address this
desire is a better understanding of population privacy norms such that the standard prac-
tices of companies does not violate these norms. Continuing on this idea, if the norms
are established and implemented it may inspire greater trust in companies treatment of
data and the communication aspect will not be so repetitive. For instance, consider the
following. We currently need to discover how best to communicate data sharing practices
with the population for two reasons. First, to determine whether they approve of these
practices and second to change practices. Going forward we could imagine a setting where
default practices were informed by population preferences, determined via a “privacy cen-
sus”. Thus, people would only need to make these decisions every few years for their
day-to-day practices and researchers can then focus on developing these population level
communication practices. There may still be some extreme or unique cases that require
at-usage consent and communication, but a “privacy census” approach could decrease the
number of those and correspondingly decrease data-privacy fatigue and resignation to a
loss of control often experienced by users (a sentiment expressed by participants in both
studies included in this thesis).

6.7 Conclusion

While technical solutions are a powerful tool for protecting data, such protections do not
directly correspond to personal privacy protections. The data being protected in these
scenarios is not just an abstract concept, but instead is a placeholder for individuals with
real lives and all the complexities that entails for their threat models. As a community,
security and privacy researchers, data collectors, and policy makers need to remember that
the protections provided by protocols and constructions do not and cannot encompass the
full range of risks experienced by individuals in society. Technical privacy solutions must
be conscious of the space which they may be deployed in and not guarantee that which
cannot be delivered. This does not mean that such solutions do not add value, but that
value must not be overstated. We must not forget that the data we speak of so abstractly
is very concrete for the people whose lives generated it.
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Chapter 7

Conclusion

There are personal and societal implications of private computation. These implications
are controlled, in part, by the many stakeholders and decision makers involved in any
practical deployment of private computation. For instance, there are developers, policy
makers, researchers, data subjects, and data controllers (companies). Broadly speaking,
this thesis has shown tools and techniques that make it easier to design meaningful privacy
in machine learning such that it is clear and usable by all relevant parties. The parties
considered go beyond those who own the data or organize the training of the model to
include end-users who are the subjects of the data being calculated over.

I have shown that end-users may be more willing to share their data when informed
of private computation, but not unconditionally (Chapter 6). That is, participants still
found the context, such as the type of data and what was being learned, as critical to their
willingness to share their data. More significantly, this study showed that members of the
general population are successful at reasoning about private computation as it applies to
them when presented with the salient information. Participants expressed what aspects
met their needs as well as expressed concerns for unique risks that could apply to them
regardless of the guarantees.

I have shown that attacks can be made more effective depending on the training settings
in otherwise unexpected ways (Chapter 5). Not evaluating these attributes in a rigorous
way creates a misunderstanding of the potential for privacy leakage or unnecessarily weaker
deployment designs, as I have shown for comparatively simpler computations (Chapter 4).
That is, based on the work of Chapter 4, I found that excluding the human steps from the
protocol lead to dangerous gaps; and very different privacy guarantees. Therefore, when
developing private computation protocols, including private machine learning, that are
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intended for real world applications, I designed a series of studies that focused on defining
end-users, who are data subjects’, privacy preferences and needs.

I was also able to show that “types” of data sharing (number of parties, reciprocity,
etc.) have different levels of perceived acceptability (Chapter 3). Further, variations in
acceptability also exist between these types for controls such as data retention time and
the purpose of the data sharing; all of which are controls that exist in designs of private
machine learning. The implications of my results include showing that privacy policies
that describe sharing with “trusted partners” or “trusted third-parties” do not provide the
details relevant to individuals’ privacy decisions. While long term it is likely to be beneficial
for laws and regulations to account for these data practices and require informational
granularity, such changes take time. More immediately, the implications of this research
can be presented directly to organizations interested in using private computation and to
fellow researchers designing novel protocols for these applications.

Future Work. While there is no shortage of future work needed within the topic con-
sidered by this thesis, I have chosen to highlight one for each of “perceptions” and “prac-
ticalities”. The selected examples of future work, are perhaps the next most important
steps for investigation within this space.

First, in terms of perceptions and communications, the next step is to design studies
to evaluate the generalizability of approaches to communicating privacy-preserving ma-
chine learning and private computation more generally. Specifically, whether providing a
description of the implications and impacts of the system rather than the procedures used
can be generalised for a range of computational designs with descriptions for each “type”.
This will include the development of usable interfaces for accessible systems that make it
clear where to get more info, the implications, how to opt-in or out; to essentially choose
and have that choice happen first and not as a requisite for unrelated functionalities or
services.

Second, in terms of practicalities, it is important to do an in-depth evaluation of the
space to allow the design of a framework for what attributes of a private computation will
impact its privacy outcomes as well as impact the populaces’ perceptions of them. This
will facilitate the design of novel protocols informed by the privacy needs and expectations
identified. These protocols can be designed to meet both organizations’ efficiency and
functionality needs as well as the needs of the data subjects. Such a system will require a
study with inputs from companies and organizations interested in using machine learning as
well as a technical systematization of current abilities and limitations within the literature.
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Appendix A

Construction Details for Secret
Sharing Instances

A.1 Shamir Secret Sharing Construction

Share Generation and Distribution

1. Let the secret space be S = GF (q)`, where q is a prime or a prime power, q ≥ n+ 1,
and ` ≥ 1. Let s ∈ S be the secret.

2. The dealer D selects t− 1 values independently and uniformly at random from S as
r1, . . . , rt−1.

3. The dealer computes f : GF (q)→ S as f(x) = rt−1 x
t−1 + rt−2 x

t−2 + · · ·+ r1 x+ s.

4. The dealer generates shares si = (ai, f(ai)) for 1 ≤ i ≤ n, where the ai are arbitrary
distinct non-zero elements of GF (q).

5. The dealer distributes si = (ai, f(ai)) to participant Pi for 1 ≤ i ≤ n.

6. Delete ri’s from the device.

Reconstruction

1. A coalition of t participants combines their shares 〈si = (xi, yi)〉ti=1 and performs
polynomial interpolation to recover the secret s = f(0) =

∑t
j=1 yj

∏
1≤h≤t,h6=j

xh
xh−xj

.
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A.2 A Ceremony for Sunder

In the following we define a ceremony based on the information contained within the
documentation for Sunder [77]. We use our framework to define the ceremony included in
our analysis of Sunder. Note that we have re-categorized steps from our framework, for
example device to action, depending on Sunder’s implementation of each step.

A.2.1 Base Mode Stages

Share Generation

1. Choice: The dealer chooses values for n and t.

2. Device: Generates a signature keypair.

3. Device: Generates n shares (of the secret s ∈ GF (256)`) si = (ai, f(ai)) for 1 ≤ i ≤ n,
where the ai are arbitrary distinct non-zero elements of GF (256). The shares are
signed with the signature key.

4. Action: Delete all copies of s and the signature key. (The device retains the public
verification key.)

Share Distribution

1. Choice: Select n participants (possibly including the dealer).

2. Choice: Select a secure communication channel (in person, Signal, etc.).

3. Action: The dealer distributes si = (ai, f(ai)) along with the public verification key
to participant Pi for 1 ≤ i ≤ n.

4. Action: Delete each si from the dealer’s device. Exception is if the dealer is a
participant and keeps one share.

5. Choice: Each participant selects an appropriate storage mechanism for their share.

6. Action: Each participant stores their share in the selected storage mechanism.

Reconstruction
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1. Choice: Select a communication channel to bring t or more shares together.

2. Not Defined: Pr and the contacted participants authenticate one another.

3. Choice: Contacted participants elect whether to proceed and participate in a recon-
struction.

4. Action: If proceeding, a contacted participant sends their share to Pr.

5. Device: Checks the signature on the received shares.

6. Device: Combines the t or more valid shares using polynomial interpolation to recover
the secret s = f(0).

A.2.2 Extended Mode Stages

Secret Preparation

1. Action: Generate a secret key to be used as s.

2. Action: Encrypt F using s and an appropriate authenticated1 encryption algorithm.

3. Action: Store the ciphertext.

Extended Reconstruction

1. Action: Acquire ciphertext from storage.

2. Action: Use recovered s to decrypt the ciphertext.

A.3 A Ceremony for Shatter Secrets

Shatter Secrets only has an Extended mode of operation, which we define below. Shatter
Secrets uses devices with Near Field Communication (NFC) capability in order to secret
share a key s that is used to encrypt a sensitive drive such as a laptop.

Secret Preparation

1Although we specify an authenticated encryption algorithm, this is not specified by Sunder.

148



1. Action: Generate a secret key to be used as s.

2. Action: Encrypt the sensitive drive using s.

Share Generation

1. Choice: The user chooses values for n and t.

2. Device: Generates a symmetric key.

3. Device: Generates n shares (of the secret s ∈ GF (256)`) si = (ai, f(ai)) for 1 ≤ i ≤ n,
where the ai are arbitrary distinct non-zero elements of GF (256). The shares are
encrypted using authenticated encryption using the symmetric key.

4. Action: Delete all copies of s. (The device retains the symmetric key.)

Share Distribution

1. Choice: Select n participants.

2. Choice: Select a secure communication channel (in person, Signal, etc.).

3. Action: The user distributes the encrypted share E(si) to participant Pi for 1 ≤ i ≤
n.

4. Action: Delete each si from the user’s device.

5. Device: Each participant’s device stores their share.

Reconstruction

1. Action: Meet participant with shares. NFC tap user’s device to participant’s device
to transfer encrypted share. Repeat until t or more shares are retrieved.

2. Device: Decrypt each share with stored symmetric key, discarding unsuccessful de-
cryptions.

3. Device: Combine the t or more valid shares using polynomial interpolation to recover
the secret s = f(0).

4. Device: Use recovered s to decrypt the sensitive drive.
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Appendix B

Additional Details for Federated
Machine Learning Experiments

B.1 Training federated learning

Global parameters. The total data used to train a target model is divided equally
among clients without overlapping. Unless otherwise specified there is always one attack
and n − 1 honest participants, where n is the total number of participants. Models are
trained using 50 global rounds and 5 local epochs. The server learning rate is set to 1.0,
but for federated averaging this parameter does not really apply. The test batch sizes are
1028.

EMNIST specific parameters. The client learning rate is 0.1 with a default batch
size of b = 10 unless otherwise specified. The model architecture follows McMahan et
al. [145]. The model is a convolutional neural network (CNN) with two 5x5 convolution
layers (the first with 32 channels, the second with 64, each followed with 2x2 max pooling),
a fully connected layer with 512 units and ReLu activation, and a final softmax output
layer (1,663,370 total parameters).

CIFAR specific parameters. The client learning rate is 0.05 and learning rate decay of
0.01 with a default batch size of b = 64 as per McMahan et al. [145]. The model architecture
follows TensorFlow CNN https://www.tensorflow.org/tutorials/images/cnn which is the
same as McMahan et al. [145]. The model is a convolutional neural network (CNN) with
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Algorithm 2 Federated learning with model averaging [145]

1: /* Server executes: */

2: Initialize parameters θ0
3: m← size of subset of participating clients
4: for each iteration t do
5: St ← random set of m clients
6: for each client k ∈ St do
7: θkt ← ClientUpdate(θt−1)

8: θt ←
∑

k
nk
n
θkt

9: function ClientUpdate(θ)
10: for each local epoch do
11: for each batch B in client’s data D do
12: θ ← θ − η∇L(b; θ)

13: return local updated θ

three 3x3 convolution layers (the first with 32 channels, the second and third with 64, each
followed with 2x2 max pooling), a fully connected layer with 64 units and ReLu activation,
and a final softmax output layer (122,570 total parameters).

Algorithms. Algorithms for performing federated learning with model averaging and
selective batch stochastic gradient descent are included as Algorithm 2 and Algorithm 3.

Algorithm 3 Server synchronized selective batch SGD [149]

1: /* Server executes: */

2: Initialize parameters θ0
3: for each Iteration t do
4: for each client k do
5: gkt ← ClientUpdate(θt−1)

6: θt ← θt−1 − η
∑

k g
k
t

7: function ClientUpdate(θ)
8: Select batch b from client’s data D
9: return local gradients ∇L(b; θ)

B.2 Expanded Results Data

In Table B.1, Table B.3 and Table B.3 we include an overview of our results; including
configurations. We execute each configuration ten times, with the results consisting of the
mean training and test accuracy results, the mean attack accuracy results, the standard
deviations, and the confidence intervals.
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EMNIST Results

Training Testing Snapshot Distance Vanilla S-No Drop
|D| n b µ±CI µ±CI µ±CI µ±CI µ±CI µ±CI
200 2 10 100±0 97±1 79±3 74±2 69±3 77±3
400 4 10 100±0 96±2 71±2 67±2 61±2 70±2
800 8 10 100±0 97±1 66±1 62±1 57±1 59±3
1600 16 10 100±0 97±1 59±2 53±4 53±1 65±1
2000 20 10 100±0 97±1 60±1 57±3 53±1 60±1
2400 24 10 99±0 97±1 58±1 56±3 52±1 59±1
2800 28 10 99±0 97±0 58±1 57±3 52±0 58±1
3200 32 10 99±0 97±0 58±1 55±3 52±0 58±1
400 2 10 100±0 96±1 74±2 67±2 63±2 74±3
800 2 10 100±0 98±1 68±2 63±1 59±1 68±1
1600 2 10 100±0 98±1 63±1 59±1 56±1 63±1
3200 2 10 100±0 98±0 58±1 55±0 53±0 58±1
6400 2 10 100±0 99±0 56±0 54±0 53±0 56±0
1600 8 10 100±0 97±1 62±1 59±2 54±1 62±1
3200 8 10 100±0 98±0 60±1 58±1 54±1 60±1
6400 8 10 100±0 98±0 57±0 55±0 52±0 57±0
3200 16 10 100±0 98±1 59±1 56±3 53±1 59±1
6400 16 10 100±0 98±0 57±1 56±1 52±0 57±1
200 2 40 100±0 95±4 70±3 76±3 66±2 49±3
300 3 40 100±0 95±3 66±3 67±4 61±2 53±3
400 4 40 100±0 96±2 64±3 64±2 59±2 53±2
800 8 40 99±0 96±1 62±1 54±3 55±1 56±2
1600 16 40 98±0 96±1 61±1 50±4 53±1 57±2
2400 24 40 97±0 96±1 59±1 49±2 51±0 57±1
200 2 80 100±0 95±3 62±5 63±3 63±3 39±2
300 3 80 99±0 96±2 62±4 61±3 61±3 39±2
400 4 80 99±1 94±2 62±3 59±1 59±1 42±5
800 8 80 97±1 94±1 61±2 54±1 54±1 41±5
1600 16 80 96±1 95±1 60±2 52±1 52±1 42±4
2400 24 80 95±1 94±1 57±2 51±1 51±1 41±2

Table B.1: The label S-No Drop designates a snapshot attack where no rounds are excluded
from the majority vote. We present the mean accuracy and the 95% confidence intervals
for the mean (CI).
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Snapshot Distance Vanilla
n Reg. Self Reg. Self Reg. Self

2 79±3 80±4 74±2 75±3 69±3 69±5
4 71±2 72±3 67±2 67±2 61±2 61±2
8 66±1 68±3 62±1 64±2 57±1 58±2
16 60±3 59±6 59±2 57±7 53±1 55±3
20 60±1 59±2 57±3 56±5 53±1 54±1
24 58±2 58±3 56±3 57±6 52±1 53±2
28 58±1 58±2 57±3 57±6 52±0 53±2
32 58±1 58±2 55±3 53±5 52±0 52±1

Table B.2: Target models were trained on EMNIST for varying participating clients (n)
and each client contributing 100 data points. Comparison of actual attack accuracy to the
estimated accuracy that adversaries can compute. Self-attack accuracy is computed by
executing the attack on their own training data.
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CIFAR-10 Results

Training Testing Snapshot Distance Vanilla
|D| n b µ±CI µ±CI µ±CI µ±CI µ±CI
24000 2 64 64±2 62±2 66±0 48±2 51±0
24000 2 128 61±2 59±2 64±1 49±2 51±0
24000 4 64 62±2 60±2 65±1 50±1 51±0
24000 4 128 58±1 57±1 62±1 50±1 51±0
24000 8 64 59±1 58±1 62±1 50±0 51±0
24000 8 128 55±1 55±1 59±2 50±0 50±0
24000 16 64 55±1 54±1 59±1 50±0 50±0
24000 16 128 50±1 49±1 55±2 50±0 50±0
24000 20 64 53±1 53±1 55±2 50±0 50±0
24000 20 128 49±1 49±1 51±3 50±0 50±0
24000 24 64 52±1 51±1 52±3 50±0 50±0
24000 28 64 51±1 50±1 54±3 50±0 50±0
24000 28 128 45±1 46±1 51±3 50±0 50±0
10000 2 64 60±2 59±2 63±1 50±2 51±0
10000 2 128 57±1 57±1 61±1 50±1 51±0
10000 4 64 57±1 56±1 60±1 49±1 51±0
10000 4 128 53±1 53±1 58±2 50±0 50±0
10000 8 64 53±0 53±0 57±1 50±0 50±0
10000 8 128 49±1 48±1 53±2 50±0 50±0
10000 16 64 47±1 47±1 51±3 50±0 50±0
10000 16 128 42±1 43±1 50±2 50±0 50±0
10000 20 64 45±1 45±1 49±2 50±0 50±0
10000 20 128 40±1 41±1 48±2 50±0 50±0
10000 24 64 43±1 43±1 50±0 50±0 50±0
10000 24 128 38±2 39±1 50±0 50±0 50±0
10000 28 64 42±1 43±1 50±0 50±0 50±0
10000 28 128 36±1 37±1 50±0 50±0 50±0
10000 32 64 41±1 41±1 50±0 50±0 50±0
10000 32 128 35±1 36±1 51±0 50±0 50±0

Table B.3: Parameters used for training the federated model (number of participating
clients n, batch size b, dataset used, and total data |D|). We present the mean accuracy
and the 95% confidence intervals for the mean (CI).

154



CIFAR-10 Results

Training Testing Snapshot Distance Vanilla
|D| n b µ±CI µ±CI µ±CI µ±CI µ±CI
16000 2 64 62±1 60±1 64±1 49±1 51±0
16000 2 128 59±3 57±3 63±1 52±2 51±0
16000 8 64 57±1 56±1 60±1 50±0 50±0
16000 8 128 53±1 52±1 56±2 50±0 50±0
16000 16 64 51±1 50±1 54±2 50±0 50±0
16000 16 128 47±1 47±1 51±2 50±0 50±0
32000 2 64 66±2 63±1 66±0 48±3 52±0
32000 2 128 64±1 61±1 65±1 51±1 51±0
32000 8 64 60±2 58±2 63±1 50±1 51±0
32000 8 128 56±1 55±1 61±1 50±0 51±0
32000 16 64 56±1 56±1 61±2 50±0 50±0
32000 16 128 52±1 52±1 56±2 50±0 50±0

Table B.4: Parameters used for training the federated model (number of participating
clients n, batch size b, dataset used, and total data |D|). We present the mean accuracy
and the 95% confidence intervals for the mean (CI).

Snapshot Distance Vanilla
n Reg. Self Reg. Self Reg. Self
2 66±0 68±0 48±2 55±0 51±0 52±0
4 65±1 63±1 50±1 51±1 51±0 51±0
8 62±1 63±1 50±0 50±1 51±0 51±0
16 59±1 61±1 50±0 50±0 50±0 51±1
20 55±2 59±2 50±0 50±0 50±0 50±1
24 52±3 59±2 50±0 50±0 50±0 51±1
28 54±3 60±1 50±0 50±0 50±0 51±1

Table B.5: Target models were trained on CIFAR-10 for varying participating clients (n)
and total training data 24000. Comparison of actual attack accuracy to the estimated
accuracy that adversaries can compute. Self-attack accuracy is computed by executing the
attack on their own training data.
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Appendix C

Interview Study Additional Materials

C.1 Additional Table

We include Table C.1 for reference. The table consists of examples from participants at
the start of the study that they thought could be settings for private computation.

C.2 Interview Guide

Note that the order of the terms (a-h), the four scenarios (wage equity, census data, ad
conversion, contact discovery), the four cases (one to four), and the examples within each
case (a to do) were randomized.

C.2.1 Welcome

Welcome. Today we are going to be talking about a topic that may be new to you. We’re
currently studying public sentiments and understanding of novel data science techniques.
We’re interested in learning about what people expect and what questions they want ad-
dressed if their data is being used for data science by a company. The interview process
helps us to understand these expectations and based on them, to make design recommen-
dations for other researchers and policy makers. Please let us know at any point if you
have questions. Before we start, I just want to make sure you have a something to write
with/on, pen and paper. Throughout the interview, we’re going to go through four types
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Example data Private Data Public Output
(P1) Individual income, education completed Individuals’ incomes Mean income by educa-

tion
(P2) Voting Individuals’ votes Result counts
(P3) Research study Participants Study data
(P5) Voting Individuals’ votes Eligible voters
(P6) Income, location Households’ income Mean income in a region
(P7) Salaries Individuals’ salary Average salary
(P9) Financial organizations’ data Customer data Financial trends
(P10) Telescope data Raw data Post-processed data
(P12) Personal data i.e. age, demographics Averages
(P13) Netflix views Viewer distributions Report on top service
(P17) Salaries Individuals’ salary Average salary
(P18) Political surveys Individual responses Aggregated conclusions
(P19) Profits Beneficiaries Donations
(P21) Elections Individuals’ responses Poll numbers
(P21) Infection disease studies Collected data Results

Table C.1: This table includes examples provided by participants in response to the prompt
for “an example of a computation where the result can be made public, but the numbers
used to determine the result are sensitive and need to stay private”. Only responses that
participants did not change their minds about are included.
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of questions, some general, some about terminology, some about types of data sharing, and
some about explaining how data is used.

On average I expect this interview to take 60 minutes. Do you have any questions or
concerns before we start?

C.2.2 Warm-up/Baseline questions

To get us started, I’m going to ask you a general question on the topic. For the question,
just state as many answers as come to mind and let me know when you’re done.

1. Please list some of the ways that you expect companies use data about you and
others.

C.2.3 Terms

For the next section of this interview, we are going to talk about approaches to data sharing
that focus on ’how’ the data is shared. We are going to go through a series of terms and
I’ll ask you if you are familiar with them, and some follow up questions.

1. Terms:

(a) Private Computation

(b) Encryption

(c) Hashing

(d) Multi-party Computation

(e) Differential Privacy

(f) Federated Learning

(g) Private Machine Learning

(h) Secure Computation

2. Have you come across the term [(a) through (h)] before?

(a) (if yes) Where have you come across the term before?
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(b) (if yes) What kind of guarantees do you think it provides to individuals? Some
examples?

(c) (if yes) What do you think the purpose or goal is for a company using this?

(d) Please try to define the term in your own words

C.2.4 Describing Private Computation

We’re now going to introduce the term private computation.

• A computation is just a calculation (generally in math). For instance, determining
the largest number from a list, determining the average, determining a sum.

• A private computation, is a computation that tries to limit the information re-
vealed by the result. It attempts to perform a computation (such as an average, sum,
max), and share the result without anyone learning the values used to find the result.

1. What do you think is an example of a computation where the result can be made
public, but the numbers used to determine the result are sensitive and need to stay
private? Follow up: what is sensitive and what is not in the example.

2. How would you describe private computation in your own words?

C.2.5 Private Computation Scenarios

We are now going to talk about some different ways companies can work with client data.

I. Wage equity: An organization aims to identify salary inequities across demographics.
They reach out to individuals and employment organizations about their salary data.
The organization conducts an analysis over the salary data and produces a report
on salary inequities. The organization acquires the data for the analysis such that...
How acceptable is the organization’s’ goal? Scale: (completely unacc, unacceptable,
neutral, acceptable, completely acceptable)

(a) ...salary data is shared directly. They receive the salary information of individ-
uals from the individuals or employers via a web-based tool.

159



(b) ...salary data is submitted in a modified form privately (with technical and
legal protections) via a web-based multi-party computation (MPC) tool. The
technical protections prevent the identification of individuals’ salary input from
the final report. It also protects those who contributed their salary information
from being connected to the salary information they provided (though does not
prevent it from being known that they were a contributor). Using this technique
can be more expensive for the analysis and they cannot use the data for any
other purpose.

II. Census data is acquired from citizens of the country by the governing body. It
includes information with respect to their age, gender, occupation, income, place
of residence. The governing body analyses the data it acquires to inform policies
and resource management. It can also make the results of the census available to
researchers or the public by... How acceptable is the organization’s’ goal? Scale:
(completely unacc, unacceptable, neutral, acceptable, completely acceptable)

(a) allowing aggregate/statistical queries (e.g. averages, sums, etc.) over the origi-
nal data.

(b) allowing any query, but restricting individuals making queries from performing
queries that allow them to make inferences/learn more information than is per-
mitted. This means that some questions cannot be answered by querying the
data.

III. Ad conversion: An online ad company wants to determine whether ads shown to its
users lead to sales in physical stores. They reach out to a credit card company, which
has transaction data for physical stores to compute whether there are purchases
connected to their ads. The two companies perform the computation such that...
How acceptable is the organization’s’ goal? Scale: (completely unacc, unacceptable,
neutral, acceptable, completely acceptable)

(a) ...they each share their datasets. The credit card company shares the purchase
data in physical stores and the online company computes the correlation to
online identities locations and online ad views.

(b) ...the credit card company shares a modified version of their records. The credit
card company shares the modified data such that the online company can only
identify the financial records that correspond to its users. That is, the informa-
tion on the other credit card clients (that do not use the online service) is not
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available to the online company. Using this technique can be more expensive
for the company and they cannot use the data for any other purpose.

IV. Contact discovery: A social media app wants to connect users that are already con-
tacts with one another. The social media app has a list of contact information (its
users) and the new user has a list of contact information (their friends etc). The app
wants to determine the common contacts between the new user and the existing app
users (the intersection). Note that not all of the new users contacts may use the social
media app and not all users of the app are contacts with the new user. The social
media app can connect the new user to existing users by performing a computation
such that... How acceptable is the organization’s’ goal? Scale: (completely unacc,
unacceptable, neutral, acceptable, completely acceptable)

(a) ...the new user shares all their personal contact information with the social
media app.

(b) ...the new user shares a modified version of their personal contact information.
The new user shares the modified data such that the social media company can
only identify the new users’ contacts that already use the social media app. That
is, the other contacts (who do not use the social media app) are not available
to the social media app. Using this technique can be more expensive for the
company and they cannot use the data for any other purpose.

For each of [A], [B], [C], and [D], the following were asked:

1. How acceptable is it if the company uses (a)? Explain (completely unacc, unaccept-
able, neutral, acceptable, completely acceptable)

2. How acceptable is it if the company uses (b)? Explain (completely unacc, unaccept-
able, neutral, acceptable, completely acceptable)

3. What differences do you expect there should be (if any) if a company chooses to use
(b) instead of (a)...

(a) in general?

(b) in terms of how companies inform their clients that their data is being used?

(c) in terms of what companies inform their clients about when their data is being
used?
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4. How feasible/possible do you think it is for a company to use (b) instead of (a)

5. How should a company be explaining the technique (b) to their clients if they use
it?

C.2.6 Potential Information Revealed

Case 1: One of the participating companies will additionally be able to learn which
specific records in the computed result correspond to you. How acceptable is it if the records
that correspond to you are. . .

a) ... your salary information? Explain.

b) ...your credit history (e.g., credit score, mortgage status)? Explain.

c) ...your location history (e.g., coordinates corresponding to your home, place of em-
ployment, etc.) Explain.

d) ...your genetic markers (e.g., for heart disease, cancer, etc.)? Explain.

Case 2: One of the participating companies will additionally be able to learn if records
of you were used to perform the computation. How acceptable is it if the records they learn
correspond to you are in a dataset of. . .

a) ...low-income households (and thus learn that you are in a low income household)?
Explain.

b) ...dating app members (and thus learn that you use that dating app)? Explain.

c) ...people with a specific health condition e.g., diabetic, high-blood pressure, autoim-
mune diseases (and thus learn that you have that specific health condition)? Explain.

d) ...frequent drug users e.g., alcohol, marijuana, others (and thus learn that you are a
frequent user of that drug)? Explain.
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Case 3: One of the participating companies will learn properties for groups. A group
could be people with glasses or any other attribute corresponding to a group of people such
as demographics. How acceptable is it if a company can learn, for example...

a) ...glasses owners prefer shopping online? Explain.

b) ...women prefer shopping online? Explain.

c) ...glasses owners have poorer spending habits than non-glasses owners? Explain.

d) ...women have poorer spending habits than non-women? Explain.

Case 4: When two companies perform the private computation, if one of the participating
companies possesses other additional information (e.g. statistics) they can infer the exact
value of a record used in the computation. How acceptable is it if a company can always
learn whether an exact record was contributed by the other organization? Explain.

a) How acceptable is it if a company can always learn whether an exact record was
contributed by the other organization? Explain.

b) Is it more or less acceptable if a company can accurately learn the record contributed
by a different company only 75% of the time? Explain.

c) ...50% of the time? Explain.

d) ...25% of the time? Explain.

e) To you, at what point (percentage) does this become unacceptable/acceptable? Ex-
plain.

Additional Information:

• How does it impact the acceptability if additional information has to be known to
learn the values?

• How does the information that needs to be known influence the acceptability?

• How does the likelihood the additional information is known influence the accept-
ability?
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C.2.7 General Responses

1. In general, how do you think companies should be communicating to their cus-
tomers/clients about how they use customer/client data in general?

2. In general, how do you think companies should be communicating to their cus-
tomers/clients about how they use customer/client data if they use private com-
putation for the process?

3. In general, what do you think are companies responsibilities when using your data in
these computations? Follow up depending on response: in terms of data protection
responsibilities?

C.2.8 Participant Explanations

Prompt. The last thing we are going to do is an exercise called co-design. Even though
you may have just learned about these techniques, we want you to think about how you
would communicate these techniques to someone. There are no right or wrong answers.
Imagine you work for a company that wants to use private computation. How would you
communicate these practices to your clients? You can draw, write, verbally explain, etc.

Compare Show participant the previous suggestion.

• What would they add/remove to theirs based on it.

• What would they add/remove to the previous one.

• What is their final version they put forth after having considered the previous one.

C.2.9 Closing

Includes feedback and appreciation.
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