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Abstract

This thesis investigates the problem of enumerating the extensions of certain matroids.
A matroid M is an extension of a matroid N if M delete e is equal to N for some element
e of M . Similarly, a matroid M is a coextension of a matroid N if M contract e is equal
to N for some element e of M . In this thesis, we consider extensions and coextensions of
matroids in the classes of graphic matroids, representable matroids, and frame matroids.
We develop a general strategy for counting the extensions of matroids which translates
the problem into counting stable sets in an auxiliary graph. We apply this strategy to
obtain asymptotic results on the number of extensions and coextensions of certain graphic
matroids, projective geometries, and Dowling geometries.
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Chapter 1

Introduction

Matroids are combinatorial objects that were first introduced in 1935 by Whitney [51] and,
independently, by Nakasawa [32, 33, 34]. These objects generalize both graphs and matrices
and are increasingly prevalent in modern combinatorics research. However, many natural
matroid enumeration questions are unanswered or have gone unanswered until recently.
This thesis aims to solve several open problems related to enumerating certain classes of
matroids. One way to approach matroid enumeration is by considering the number of ways
to add an element to a matroid, or a set of matroids. We say a matroid M is an extension
of a matroid N if M delete e is equal to N for some element e of M . Similarly, we say a
matroid M is a coextension of a matroid N if M contract e is equal to N for some element
e of M .

The broad goal of this research is to contribute to the understanding of extensions
and coextensions of matroids in the following classes: graphic matroids, frame matroids,
and GF (q)-representable matroids. Understanding extensions in general is difficult, so our
focus is on dense, highly symmetric matroids, such as cycle matroids of complete graphs,
Dowling geometries, and projective geometries.

In 1965, Crapo [10] showed that the extensions of a matroidM correspond to the “linear
subclasses” of M , which are collections of hyperplanes that satisfy a certain property. The
dual of this equivalence implies that coextensions ofM correspond to “colinear subclasses”
ofM , which correspond to collections of circuits satisfying the dual version of the property.
Using this dual characterization, one can show that the coextensions of graphic matroids
correspond to “biased graphs,” which consist of a graph and a collection of its cycles that
satisfy a certain property. Biased graphs are independently well-studied and can be used
to define three classes of matroids, including frame matroids [52, 53, 54].
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The cycle matroid M(G) of a graph G is the matroid whose ground set is the edge set
of G and a subset X of edges is a circuit if and only if the subgraph of G induced on X
is a cycle. In [39], Nelson and Van der Pol proved that the number of biased graphs on a

complete graph Kn+1 is 2
1
2
n!(1+o(1)). Using Crapo’s characterization, this implies that the

number of coextensions of the cycle matroid of a complete graph M(Kn+1) is 2
1
2
n!(1+o(1)).

Using some similar techniques and some new techniques, we prove the following similar
results for the complete bipartite graphs Kn,n and Kn,n−1 in Chapter 6. Note that o(1)
denotes an unspecified function of n that goes to 0 as n goes to infinity and log denotes
the base-2 logarithm.

Theorem 1.0.1 (Theorem 6.0.1). log coext(M(Kn,n)) =
n!2

2n
(1 + o(1)).

Theorem 1.0.2 (Theorem 6.0.2). log coext(M(Kn,n−1)) =
n!(n−2)!

4
(1 + o(1)).

We also prove the following similar result for the extensions of the cycle matroid of a
complete graph in Chapter 9.

Theorem 1.0.3 (Theorem 9.2.1). log ext(M(Kn+1)) =
(

n
n/2

)
(1 + o(1)).

Dowling geometries are a subclass of frame matroids which are defined using certain
graphs whose edges are labelled by the elements of a finite group. They are objects that
resemble complete graphs, but have additional symmetry arising from groups. A Dowling
geometry with rank n over a finite group Γ is denoted DG(n,Γ). Dowling geometries
play a role among frame matroids similar to that of the cycle matroids of complete graphs
among simple graphic matroids. A natural starting point when studying extensions and
coextensions of frame matroids would be to consider those of Dowling geometries. We
would expect to obtain results similar to those for complete graphs and, thus, we might
expect this problem to be straightforward. However, determining the number of coexten-
sions of a Dowling geometry is a significantly different problem than that for cycle matroids
of complete graphs. In Chapter 7, we determine asymptotic upper and lower bounds on
the number of coextensions of a Dowling geometry. These bounds imply the following
asymptotic result.

Theorem 1.0.4 (Corollary 7.0.2). log(log(coext(DG(n,Γ)))) = n log n(1 + o(1)).

Partial progress towards determining the asymptotic number of extensions of Dowling
geometries appears in Chapter 10.

Similar to how complete graphs are related to simple graphs or Dowling geometries
are related to frame matroids, projective geometries are related to representable matroids.
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Specifically, projective geometries are the densest simple representable matroids. (See
Chapter 2 for the definitions of these matroids.) A projective geometry of rank n over a
finite field GF (q) is denoted PG(n−1, q). In this case, the problem of counting extensions
is straightforward, since each extension of a projective geometry corresponds to a flat. On
the other hand, the coextensions of projective geometries are not so easily determined. In
Chapter 8 we give asymptotic upper and lower bounds for the number of coextensions of
a projective geometry. These bounds imply the following asymptotic result.

Theorem 1.0.5 (Corollary 8.0.2). log(log(coext(PG(n− 1, q)) = n2(log(q) + o(1)).

1.1 Background

Beginning with matroid enumeration in general, the first natural problem is to determine
the number of matroids on an n-element ground set, for each positive integer n. This is still
an open problem; however, progress has been made for small n and for some classes of ma-
troids. In 1973, Blackburn, Crapo, and Higgs [7] explicitly determined all non-isomorphic
simple matroids on at most eight elements. This list of matroids was expanded in 1984
when Acketa [1] added all non-isomorphic matroids on at most eight elements, including
a complete sublist of the non-isomorphic binary matroids on at most eight elements. In
2008, Mayhew and Royle [29] created an online database of all non-isomorphic n-element
matroids where n ≤ 9. They estimate that the number on 10 elements exceeds 2.5× 1012,
so determining a precise list for n ≥ 10 might be intractable. Since exact enumeration
seems out of reach for larger n, our interest turns to finding good bounds, perhaps for
specific matroid classes.

Let m(n) denote the number of matroids on ground set [n] = {1, . . . , n}. Some general
lower and upper bounds on m(n) are known. In 1965, Crapo [10] used analysis of single
element extensions of matroids to show that m(n) ≥ 2n. Knuth [22] improved this lower
bound in 1974 by showing that log logm(n) ≥ n − 3

2
log n + O(log log n), where log is

the base-2 logarithm. This lower bound is obtained by constructing a large set of “sparse
paving” matroids. In 2013, Mayhew andWelsh [30] showed that the asymptotics in Knuth’s
bound can be improved slightly by adapting his argument with a coding theory result of
Graham and Sloane [17].

Since there are 2n subsets of an n-set and each collection of these subsets could be an
independent set of a matroid, there are at most 22

n
matroids on n elements. This trivial

upper bound was first improved by Piff and Welsh [46] in 1971. Piff [45] improved the
upper bound again in 1973 when he showed that log logm(n) ≤ n− log n+O(log log n). In
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a breakthrough result from 2015, Bansal, Pendavingh, and Van der Pol [6] made significant
progress towards finding matching upper and lower bounds for m(n). They proved that
log logm(n) ≤ n− 3

2
log n+ 1

2
log 2

π
+1+ o(1), which almost matches the best known lower

bound. These upper and lower bounds show that m(n) grows doubly exponentially with
n, and is much closer to 22

n
than to Crapo’s earlier lower bound of 2n; however, studying

extensions has the potential to contribute to lower bounds for the number of matroids in
a certain class or with a certain structure.

Similar to the proof of the lower bound for m(n), Bansal, Pendavingh, and Van der
Pol [6] use analysis of “sparse paving” matroids to obtain their upper bound on m(n).
A matroid M is paving if every circuit has size at least the rank of M . A matroid is
sparse paving if it and its dual are paving or, equivalently, if every non-spanning circuit
is a hyperplane. Pendavingh and Van der Pol [41, 42, 43, 44, 50], sometimes together
with Bansal [5, 6], have made several important contributions to the enumeration of sparse
paving matroids, matroids of a fixed rank, and matroids in general. Throughout their work,
they represent sparse paving matroids as stable sets in an auxiliary graph and determine
matroid enumeration bounds by first determining bounds on the number of stable sets in
this graph. This strategy of representing the combinatorial objects they are counting by
stable sets in an auxiliary graph is very similar to the underlying strategy used in this
thesis, as we will see in Chapter 3.

The work of Bansal, Pendavingh, and Van der Pol suggests that sparse paving matroids
dominate the set of all matroids, which gives support to the conjecture of Mayhew, New-
man, Welsh, and Whittle [27] that almost all matroids are paving. This conjecture appears
in Oxley’s book “Matroid theory” [40] alongside several other open problems in matroid
enumeration. In addition to the breakthrough towards proving almost all matroids are
paving, other important progress has been made towards solving a number of the open
enumeration problems listed in [40] since it was published in 2011. For example, Oxley
conjectured that almost all matroids are not representable over any field and an exciting
result from Nelson [36] in 2018 proved that this is true.

Representable matroids have been omnipresent in the study of matroid theory since its
inception. We also focus on representable matroids, for the most part, in this thesis. This
may seem surprising since Nelson proved in [36] that almost all matroids are not repre-
sentable; however, note that the extensions of a representable matroid are not necessarily
all representable. In fact, we show in this thesis that, for some n-element representable
matroids, the number of extensions is significantly larger than the number of (n + 1)-
element representable matroids. Enumerating the extensions of a matroid is very difficult
in general, so it is natural to focus on familiar classes of matroids, such as representable
matroids or graphic matroids.
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Since biased graphs parameterize coextensions of graphic matroids and define frame
matroids, they are of interest in this thesis. In 1991, Zaslavsky introduced three matroid
classes that arise from biased graphs: frame, lift, and complete lift [52, 53, 54]. Note
that complete lift matroids are extensions of lift matroids, and frame matroids are called
“bias matroids” in Zaslavsky’s papers. Frame matroids that arise from group-labelled
graphs are also discussed, under a different name, in Kahn and Kung’s seminal 1982 paper
on combinatorial geometries [18]. Another connection between biased graphs and group-
labelled graphs is given by Nelson and Park in [37]. They prove a Ramsey theorem for
biased graphs which shows that if (G,B) is a biased graph where G is a very large complete
graph, then G contains a large complete subgraph H with balanced circuits B′ such that
(H,B′) arises from a Γ-labelled graph for some finite cyclic group Γ. Thus, frame matroids,
and specifically those that arise from group-labelled graphs, are familiar classes of matroids
for us to focus on in this thesis.

Even within a familiar class, enumerating the extensions of a matroid is difficult. There-
fore, our goal is to enumerate the extensions of specific matroids within the classes of
graphic matroids, representable matroids, and frame matroids. Since all simple graphs are
subgraphs of a complete graph, it is natural to first consider the cycle matroids of complete
graphs. In [18], Kahn and Kung show that Dowling geometries are the universal models
for the collection of frame matroids from group-labelled graphs and projective geometries
are the universal models for the collection of all geometries coordinatizable over the finite
field GF (q). Importantly, each simple representable matroid is a restriction of a projective
geometry and each simple frame matroid that arises from a group-labelled graph is a re-
striction of a Dowling geometry. Therefore, within the classes of representable and frame
matroids, it is natural to first consider projective geometries and Dowling geometries.

Studying the extensions of matroids within a certain minor-closed class has the poten-
tial to reveal common structures in the excluded minors of the class. Minor-closed classes
of matroids are a popular topic of study, prompted by a desire to generalize Robert-
son and Seymour’s Graph-Minors Project. In the 2020 paper by Mayhew, Newman, and
Whittle [28], the concept of “fractal” classes of matroids is introduced. LetM be a minor-
closed class of matroids and let EX be the class of excluded minors for M, which are
the minor-minimal matroids not in the class. Let mn and xn denote the number of non-
isomorphic n-element matroids inM and EX , respectively. The classM is strongly fractal
if limn→∞

xn

mn+xn
= 1. Their example of a strongly fractal class is the collection of sparse

paving matroids with at most k circuit-hyperplanes. Essentially, the “boundary,” or set of
excluded minors, of such a class is eventually larger than the class itself. Following this
idea, it is natural to ask what the “boundaries” of other classes of matroids look like. Since
the excluded minors are the minor-minimal matroids not in the class, we can think of them
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as the extensions and coextensions of matroids in the class that fall out of the class. This
thesis could potentially be used to shed light on the relationship between minor orders and
enumeration.

When dealing with minor-closed classes of matroids, we can gain some intuition about
this boundary by focusing on the extensions and coextensions of the most dense matroids
of the class. For each minor-closed class M and positive integer n, define the extremal
function, denoted hM(n), to be the maximum number of elements in simple rank-r matroid
in M, where r ≤ n. Let hM(n) = ∞ if such a maximum does not exist. We say that
matroids are “dense” if they have close to hM(n) elements. Determining hM(n) is a
widely studied problem. The Growth Rate Theorem proved by Geelen, Kung, and Whittle
[13] shows that either M contains U2,n for all n ≥ 2, or the extremal function is linear,
quadratic, or exponential in n.

Upper bounds for the extremal function have been determined for many interesting
classes. Kung [25] proved in 1993 that for each integer ℓ ≥ 2, each simple rank-r matroid
M with no U2,ℓ+2-minor satisfies |E(M)| ≤ ℓr−1

ℓ−1
. In 2010, Geelen and Nelson [14] showed

that if r is large enough and q is the largest prime power at most ℓ, then |E(M)| ≤ qr−1
q−1

.
Additionally, they showed that equality holds if and only if M is a projective geometry
PG(r−1, q). That is, projective geometries are the most dense matroids in the minor-closed
class of simple matroids omitting a fixed rank-2 uniform minor.

Projective geometries are not representable over all fields, so it is natural to won-
der which matroids are most dense in the minor-closed class of K-representable matroids
omitting a fixed rank-2 uniform minor, where K is a field of characteristic zero. Nelson
conjectures that the most dense members of this class are no denser than Dowling geome-
tries [35]. Recently, Geelen, Nelson, and Walsh [15] showed that the conjecture is true if
K = C. Since projective and Dowling geometries are the dense examples in some interest-
ing minor-closed classes, understanding their extensions and coextensions will contribute
to our understanding of the boundaries of these classes.

1.2 Summary of results

In this thesis, we will determine the asymptotic behaviour on the log scale of the number
of extensions of certain matroids M in terms of the rank of M . Here, it is important to
note that the results in this thesis are all joint work with Peter Nelson and Jorn van der
Pol. In this section, we summarize these results in Tables 1.1 and 1.2. In order to more
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easily compare these results with each other and with the number of matroids on a fixed
ground set, we express the results both in terms of rank and ground set size.

First, we define some asymptotic notation. For functions f, g : Z>0 → R, we say f(n) =
O(g(n)) if g(n) > 0 and lim supn→∞

f(n)
g(n)

< ∞. We say f(x) = Θ(g(x)) if f(x) = O(g(x))

and g(x) = O(f(x)).

matroid rank # elements log log (# extensions)

1 PG(n− 1, q) n N =
qn − 1

q − 1
log log

n∑
k=0

[
n

k

]
q

= Θ(log logN)

2 M(Kn+1) n N =

(
n+ 1

2

)
log

(
n

n/2

)
= Θ(

√
N)

Table 1.1: Summary of extension results.

A summary of the results in this thesis is given in Tables 1.1 and 1.2, where for each
matroid M , the number of extensions or coextensions is expressed on the double log scale
both in terms of the rank of M and number N of elements in M . To simplify the table,
lower order terms (that is, factors of (1 + o(1))) are ignored. To compare these results to
the number of matroids on a fixed ground set, recall that m(N) denotes the number of
matroids on the ground set [N ] and log logm(N) = N(1+o(1)). Another interesting point
of reference is the number of representable matroids with ground set [N ], which is at most
3 logN on the double log scale [36].

The result in Row 1 of Table 1.1 is well known and we discuss it in Proposition 9.1.1.
Row 2 of Table 1.1 is implied by Theorem 9.2.1. Nelson and Van der Pol [39] proved the
result in Row 1 of Table 1.2, which is discussed in Theorem 6.1.4. Theorems 6.0.1 and
6.0.2 imply Rows 2 and 3 of Table 1.2. The result in Row 4 of Table 1.2 is obtained in
Corollary 7.0.2. Corollary 8.0.2 contains the result in Row 5 of Table 1.2.

Although the results in Tables 1.1 and 1.2 are expressed on the double log scale, the
main results in this thesis are on the log scale. The corresponding log scale results for Row
2 in Table 1.1 and Rows 1, 2, and 3 in Table 1.2 are all exact, up to lower order terms,
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which is why the left hand side of the rightmost column is sometimes more precise than it
needs to be for the double log scale. The corresponding log scale results for Rows 4 and
5 in Table 1.2 are in the form of upper and lower bounds that differ. Conjectures for the
exact values, up to lower order terms, can be found in Chapters 7 and 8, respectively.

matroid rank # elements log log (# coextensions)

1 M(Kn+1) n N =

(
n+ 1

2

)
log(1

2
n!) = Θ(

√
N logN)

2 M(Kn,n) 2n− 1 N = n2

log
n!(n− 1)!

2
= Θ(

√
N logN)

3 M(Kn,n−1) 2n− 2 N = n2 − n log
n!(n− 2)!

4
= Θ(

√
N logN)

4 DG(n,Γ) n N =

(
n

2

)
q + n n log n = Θ(

√
N logN)

5 PG(n−1, q) n N =
qn − 1

q − 1
n2 log q = Θ(log2N)

Table 1.2: Summary of coextension results.
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1.3 Outline

This thesis begins with preliminary definitions and results in Chapter 2. In Chapter 3, we
describe a method for bounding the number of extensions of any matroidM . This method
begins in Section 3.1 by using a result of Crapo [10] to parameterize the extensions as
“linear subclasses.” A linear subclass of a matroid M is a set H′ of hyperplanes where if
two intersect in a rank-(r(M) − 2) flat F , then all hyperplanes that contain F are in H′

as well. If, for each rank-(r(M) − 2) flat F of M , at most one hyperplane that contains
F is in H′, then we say H′ is a scarce linear subclass. In Section 3.2, we represent the
scarce linear subclasses of a matroid M as stable sets in an auxiliary graph whose vertices
are the hyperplanes of M where two vertices are adjacent if and only if they intersect
in a rank-(r(M) − 2) flat. Also in Section 3.2, we show that the number of extensions
of M can be bounded by the stable sets in this auxiliary graph and the size of a set of
“small” hyperplanes. The methods from Chapter 3 are then applied to specific matroids
in Chapters 6, 7, 8, 9, and 10.

Chapter 6 discusses coextensions of graphic matroids. In Section 6.1, the connection
between biased graphs and graphic matroids is reviewed. In Section 6.2, we determine the
asymptotic number of coextensions of the cycle matroid of a complete bipartite graph Kn,n

or Kn,n−1. Chapter 7 determines asymptotic upper and lower bounds on the number of
coextensions of a Dowling geometry. Continuing with coextensions, we determine upper
and lower bounds for the number of coextensions of a projective geometry in Chapter 8.

In Chapter 9, we discuss the extensions of some representable matroids, mainly pro-
jective geometries and cycle matroids of complete graphs. The asymptotic number of
extensions of the cycle matroid of a complete graph is given in Section 9.2. In Chapter 10,
we discuss the number of extensions of Dowling geometries.

Before these chapters that apply the theory developed in Chapter 3, however, are two
chapters with results that are applied later in the thesis, but that are also interesting
independent of their applications here. In Chapter 4, we prove bounds on the number
of stable sets in certain generalized Hamming graphs. The auxiliary graph in the case of
Dowling geometry coextensions is comparable to these Hamming graphs, so the results of
Chapter 4 are used in Chapter 7. In Chapter 5, we give a brief introduction to container
methods for bounding the number of stable sets in graphs. This chapter also contains the
details of two container methods that will be used in Chapters 6 and 8.
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Chapter 2

Preliminaries

2.1 Basic definitions and notation

This thesis deals with finite graphs and matroids, so sets are assumed to be finite unless
otherwise indicated. The cardinality of a set X is denoted |X| and its collection of subsets
is denoted 2X . The collection of k-subsets of a set X is denoted

(
X
k

)
. The sets of positive

integers, nonnegative integers, integers, and real numbers are denoted Z>0, Z≥0, Z, and
R. A finite field (sometimes called a Galois field) of order q, where q is a prime power, is
denoted GF (q). For m,n ∈ Z≥0 where m ≤ n, let

[m,n] = {m,m+ 1, . . . , n}.

If m = 1, then we write [n] = [1, n] = {1, 2, . . . , n}.
When naming sets, we usually use uppercase Latin letters for sets (e.g. X), uppercase

script Latin letters for sets of sets (e.g. X ), and uppercase blackboard-bold Latin letters
for sets of sets of sets (e.g. X). We also use set and collection interchangeably, often to
emphasize when a set has sets as elements.

If X and Y are sets, then X \ Y = {x ∈ X : x /∈ Y }. If X is a subset of a set Y ,
then the complement of X is the set Y \X. We say sets X and Y intersect in a set W if
X ∩ Y = W . If X and Y are sets, then their union is X ∪ Y = {w : w ∈ X or w ∈ Y }.
The Cartesian product of sets X and Y , denoted X×Y , is the set {(x, y) : x ∈ X, y ∈ Y }.
For a positive integer n, let Xn denote the Cartesian product of n copies of a set X. Let
S be a set and let X be a collection of subsets of S. We say a set L ⊆ S is linear with
respect to X if |L ∩X| ∈ {0, 1, |X|} for all X ∈ X .
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A tuple τ = (t1, t2, . . . , tn) is a finite collection of elements, called coordinates, in which
repetition is allowed and order matters. A tuple is called a n-tuple if it contains n coordi-
nates. Each coordinate of a tuple has an index which describes its position in the tuple.
We assume that the first coordinate in the sequence has index 1 unless otherwise specified.
In some cases, it will be convenient to let the first coordinate have index 0. However,
assuming that the first index is 1, if τ = (t1, t2, . . . , tn), then the index of ti is i, for each
i ∈ [n]. We may use τ(i) to denote the coordinate in the tuple τ with index i.

An infinite sequence is a function with domain Z>0 or Z≥0 and a finite sequence is
a function with domain [n] or [0, n − 1] for some positive integer n. In this thesis, we
assume sequences are finite unless otherwise specified. If a sequence σ has domain [n]
or [0, n − 1], then we say σ has n elements or has length n, and we often denote this
sequence σ(1)σ(2) . . . σ(n) or σ(0)σ(1) . . . σ(n− 1). We refer to the elements in the range
of a sequence σ as the elements in σ. Note that tuples are equivalent to finite sequences.

A permutation is a bijection from a set to itself. For a set X, define S(X) to be the set
of permutations of X. In this thesis, we restrict our attention to the permutations of [n].
A permutation of [n] is an n-element sequence whose elements are in [n] and each element
is in the sequence exactly once. If a permutation in cycle notation can be expressed as the
product of an even number of transpositions, then it is an even permutation; otherwise, it
is an odd permutation.

If f : X → Y is a function from X to Y and X ′ ⊆ X, then f(X ′) = {f(x) : x ∈ X ′}.
The support of a function f : X → Y , denoted supp(f), is the set of elements x in X where
f(x) ̸= 0. If f : X → Y is a function, then the restriction of f to X ′ ⊆ X is the function
f |X′ : X ′ → Y where f |X′(x) = f(x) for each x ∈ X ′. If f : X → Y and g : W → Z are
functions and for all x ∈ X ∩W we have f(x) = g(x), then f ∪ g is defined as a function
from X ∪W to Y ∪ Z where

(f ∪ g)(x) =

{
f(x) if x ∈ X,
g(x) otherwise.

In this thesis, we use log to denote the base-2 logarithm and ln to denote the natural
logarithm. For each real number x, we define

(
n
x

)
to be

(
n
⌊x⌋

)
.

Since the main results of this thesis are asymptotic, we define the following asymptotic
notation. Consider functions f, g : Z>0 → R. Recall that f(n) = O(g(n)) if g(n) > 0 and

lim supn→∞
f(n)
g(n)

< ∞. We say f(n) = o(g(n)) if limn→∞
f(n)
g(n)

= 0. Thus, if f(n) = o(1),

then limn→∞ f(n) = 0. We say f is on the order of g if f(n) = g(n) + o(g(n)) = (1 +
o(1))g(n). That is, f is on the order of g if it can be expressed as a finite sum of functions
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where one is equal to g and the rest are functions that, when divided by g, go to 0 as n
goes to infinity. We refer to these functions that go to 0 as n goes to infinity as lower order
terms.

In general, we use o(1) (“little-o of 1”) to denote a function of n that goes to 0 as n
goes to infinity. If we want to use little-o notation to describe a function over a different
variable, say q, that goes to 0 as q goes to infinity, we use oq(1).

2.2 Useful bounds and sums

Binomial coefficients appear often in this thesis, so we identify some useful bounds for
binomial coefficients and sums of binomial coefficients here. The following standard bounds
will be used throughout the thesis:(

n

k

)k

≤
(
n

k

)
≤

k∑
i=0

(
n

i

)
≤

(
en

k

)k

.

The first inequality follows from the observation that x
y
≤ x−1

y−1
for all 1 ≤ y ≤ x. The

middle inequality follows from the observation that
(
n
k

)
is a term in the sum. The last

inequality follows from the binomial theorem and the bound 1 + x < ex for x ̸= 0. More

precisely, notice that
∑k

i=0

(
n
i

)
≤

∑k
i=0

(
n
i

) (k/n)i

(k/n)k
= nk

kk

∑n
i=0

(
n
i

)
(k/n)i1n−i, which is at most

(1+k/n)nnk

kk
by the binomial theorem. Using the bound 1 + x < ex for x ̸= 0 with x = k/n,

we get the last inequality.

Now we focus on better bounds for the central binomial coefficient. First, we give the
following version of Stirling’s approximation for n! [47]:

√
2πn

(
n

e

)n

e
1

12n+1 < n! <
√
2πn

(
n

e

)n

e
1

12n . (2.1)

These bounds imply the following bounds for the central binomial coefficient almost di-
rectly. Using the inequality 1 + x < ex for x ̸= 0 for the lower bound, we find:(

1− 1
4n

)√
2/π

2n√
n
≤

(
n

n/2

)
≤

√
2/π

2n√
n
. (2.2)

When k is “close” to n/2, we can get a better bound for
∑k

i=0

(
n
k

)
using the Chernoff

Bound for binomial distributions, which is stated in the next theorem. We use P(A) to
denote the probability of an event A and we refer to the book by Alon and Spencer [3] for
the prerequisite definitions for the following result.
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Theorem 2.2.1 (Chernoff Bound for Binomial Distribution [3]). Let n be a positive integer

and let 0 ≤ p ≤ 1. Let X ∼ Bin(n, p). If 0 < ε < 1, then P(X ≤ (1− ε)np) ≤ e−
ε2np

2 .

Corollary 2.2.2. Let n be a positive integer. If 0 < ε < 1, then

n
2
(1−ε)∑
i=0

(
n

i

)
≤ 2ne−

ε2n
4 .

Proof. Let p = 1
2
and let X ∼ Bin(n, p). The expected value of X is n

2
. The probability

that X is at most n
2
(1− ε) is

P
(
X ≤ n

2
(1− ε)

)
=

n
2
(1−ε)∑
i=0

(
n

i

)
pi(1− p)n−i =

n
2
(1−ε)∑
i=0

(
n

i

)(
1

2

)n

.

Furthermore, Theorem 2.2.1 implies that P(X ≤ (1 − ε)np) ≤ e−
ε2np

2 . Therefore, we find∑n
2
(1−ε)

i=0

(
n
i

)
≤ 2ne−

ε2n
4 .

Bounds for sums of reciprocals of factorials will also be useful, so we make note of the
following identities:∑

k≥0

1

k!2
= I0(2) ≈ 2.28 and

∑
k≥1

1

k!(k − 1)!
= I1(2) ≈ 1.59,

where In(z) is the modified Bessel function of the first kind. The specific values of these
sums are not of concern except that they are clearly less than e.

The following lemma, which appears in [9], gives a useful bound for the size of a col-
lection of subsets of [n] that intersect with the subsets in another collection, with certain
properties, in a known amount. The proof makes use of the entropy function (from in-
formation theory), which can also be used to bound partial sums of binomial coefficients.
We do not give bounds that use the entropy function here, as they are not needed in this
thesis, but note that they have a similar flavour to the other bounds given.

Lemma 2.2.3 (Combinatorial Shearer’s Lemma [9]). Let F be a family of subsets of [n]
with each i ∈ [n] included in at least t members of F . Let A be another set of subsets of
[n]. Then

|A| ≤
∏
F∈F

|{A ∩ F : A ∈ A}|1/t.
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2.3 Graph theory

In this section, we give a brief introduction to the terminology and notation of graph
theory and then state or prove some preliminary results. The graphs in this thesis are
encountered in two fundamentally different contexts. There are graphs that give rise to
matroids, which may have parallel edges or loops, and there are auxiliary graphs used to
represent the extensions of a matroid, which are always simple graphs.

2.3.1 Basic definitions

A graph G consists of a set V (G) of vertices and a set E(G) of edges and an incidence
function fG : E(G)→

(
V (G)
2

)
∪V (G), where

(
V (G)
2

)
is the collection of 2-subsets of V (G). If

e ∈ E(G) and fG(e) = {u, v}, then we may say e = uv or e = vu. If e = uv, then we refer
to u and v as the endpoints or ends of the edge e and we say e is an edge between u and v.
If e ∈ E(G) and fG(e) = {u}, then e is called a loop or, specifically, a loop on u. If e = uv
and e′ = uv, then we say e and e′ are parallel edges. In some cases, we are interested in
graphs that do not have loops or parallel edges. A simple graph G is a graph that does not
contain loops or parallel edges. If G is a simple graph, it is convenient to think of E(G)
as a set of unordered pairs of distinct vertices. Notice that every simple graph is a graph,
so all following definitions made for graphs hold for simple graphs as well.

If e = uv is an edge of a graph G, then we say u and v are adjacent in G. If it is clear
from context which graph u and v are adjacent in, then we simply say that u and v are
adjacent. A vertex u is a neighbour of a vertex v if u and v are adjacent. If v is a vertex
in a graph G, we define the neighbourhood of v, denoted NG(v), to be the set of vertices
in G that are adjacent to v. If e = uv is an edge of a graph G, then we say e is incident
with u and v. If e′ = wu is another edge in G, then we say e and e′ are incident edges.

We call V (G) the vertex set and E(G) the edge set of the graph G. If V (G) is empty,
then E(G) is as well and G is called the empty graph. In this thesis, we assume that all
graphs are not the empty graph.

The degree of a vertex v in a graph G, denoted degG(v), is the number of edges incident
with v, where a loop on v is considered to be incident twice. That is, degG(v) = |{uv ∈
E(G) : u ∈ V (G) and u ̸= v}| + 2|{e ∈ E(G) : fG(e) = {v}}|. If the graph is clear from
context, then we write deg(v) instead of degG(v). A graph G is regular if every vertex in
G has the same degree. A graph G is d-regular if deg(v) = d for every v ∈ V (G).

A graph H is a subgraph of a graph G if V (H) ⊆ V (G), E(H) ⊆ E(G), and fH =
fG|E(H). A subgraph H of a graph G is called an induced subgraph if V (H) ⊆ V (G) and
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E(H) = {uv ∈ E(G) : u, v ∈ V (H)} ∪ {e ∈ E(G) : fG(e) = {v} and v ∈ V (H)}. That
is, an induced subgraph H of G has a vertex set V that is a subset of V (G) and contains
all edges in G whose endpoints are both in V . If H is an induced subgraph of G, then we
say H is the subgraph of G induced on V (H), which is denoted G[V (H)]. For a graph G
with vertex subset V , if e is an edge in G[V ], we say e is spanned by V . Usually, when we
refer to induced subgraphs, we mean subgraphs induced on a set of vertices; however, it is
sometimes convenient to talk about subgraphs induced on a set of edges. If E is a subset
of the edges in a graph G, then the subgraph of G induced on E, denoted G[E], has edge
set E and vertex set {v ∈ V (G) : v ∈ fG(e) for some e ∈ E}.

A graph G is isomorphic to a graph H if there exist bijections ϕ : V (G)→ V (H) and
ψ : E(G)→ E(H) such that v ∈ V (G) and e ∈ E(G) are incident in G if and only if ϕ(v)
and ψ(e) are incident in H. Equivalently, if G and H are simple graphs, then they are
isomorphic if there exists a bijection ϕ : V (G)→ V (H) such that u, v ∈ V (G) are adjacent
in G if and only if ϕ(u), ϕ(v) are adjacent in H.

A path P is a simple graph with vertex set {v0, v1, . . . , vk} and edge set {e1, e2, . . . , ek}
where ei = vi−1vi for each i ∈ [k]. This path P may be denoted by the sequence
v0e1v1e2 . . . vk−1ekvk or vkekvk−1 . . . e2v1e1v0. We say this path is a (v0, vk)-path or (vk, v0)-
path and that v0, vk are the ends of the path. The length of a path is the number of
edges it contains. We say P is a path in a graph G if P is a subgraph of G and P is a
path. Since the edge set and incidence function of a path determines the path, we may
denote the path P = v0e1v1e2 . . . vk−1ekvk by the sequence of edges e1e2 . . . ek. If a path
P = v0e1v1e2 . . . vk−1ekvk is in a simple graph, then we may say P = v0v1 . . . vk. In the
case where v0e1v1e2 . . . vk−1ekvk is a path in a graph G that has parallel edges and it does
not matter which edges are in the path, we may still refer to this path by the sequence of
vertices v0v1 . . . vk.

A cycle C is a graph with vertex set {v1, v2, . . . , vk} and edge set {e1, e2, . . . , ek} where
e1 = vkv1 and ei = vi−1vi for i ∈ [2, k]. We say C = vke1v1e2 . . . vk−1ekvk if V (C) =
{v1, v2, . . . , vk} and E(C) = {e1, e2, . . . , ek} where e1 = vkv1 and ei = vi−1vi for i ∈ [2, k].
We say C is a cycle in a graph G if C is a subgraph of G and C is a cycle. The length of a
cycle is the number of edges it contains or, equivalently, the number of vertices it contains.
If a cycle contains n vertices, then we call it an n-cycle. A graph that does not contain
a cycle is called a forest. Note that, since loops and parallel edges are cycles, forests are
simple graphs. A Hamiltonian path P of a graph G is a path where V (P ) = V (G). A
Hamiltonian cycle C of a graph G is a cycle where V (C) = V (G).

A graph G is connected if there exists a (u, v)-path in G for each u, v ∈ V (G). A graph
is disconnected if it is not connected. The maximally connected subgraphs of a graph are
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called components . A graph that is connected and does not contain a cycle is called a tree.
If T is a subgraph of a graph G where V (T ) = V (G) and T is a tree, then T is a spanning
tree of G. For any tree T , the number of edges in T is one less than the number of vertices.

If V is a subset of the vertex set of a graph G, then we define G \ V to be the graph
G[V (G) \V ]. If H is a subgraph of G, then we define G \H to be G \V (H). If E ⊆ E(G),
then we define G\E to be the subgraph of G with vertex set V (G) and edge set E(G)\E.
It is sometimes convenient to describe removing one vertex or one edge from a graph,
rather than a set of vertices or edges. If x is a vertex or an edge of G, then we say G− x
is the graph G \ {x}.

If the incidence functions of two graphs G and H agree for each edge in E(G)∩E(H),
then the union of G and H, denoted G ∪ H, is the graph with vertex set V (G) ∪ V (H),
edge set E(G)∪E(H), and incidence function fG ∪ fH . The graph obtained from a graph
G by subdividing the edge e ∈ E(G) is G \ {e} ∪ P where P is a (u, v)-path of length at
least 2 whose vertices other than u and v are not in G. A subdivision of a graph G is a
graph obtained from G by a sequence of edge-subdivisions.

A matching M of a graph G is a set of edges, none of which are loops, of G where no
two edges in M have an endpoint in common. A perfect matching M of a graph G is a
matching of G where every vertex in G is an endpoint of an edge in M .

An important concept in this thesis is that of stable sets. A stable set of a graph G is
a set S of vertices of G such that G[S] contains no edges. Stable sets are usually called
independent sets, but since independent set has a different meaning in matroid theory, we
use stable sets in this thesis. The size of a largest stable set in a graph G is often denoted
α(G) and is called the independence number of G.

In this thesis, we will investigate the cycle matroids of complete graphs and complete
bipartite graphs. A complete graph is a simple graph in which every pair of vertices is
adjacent. We say Kn is the complete graph with vertex set [n]. A graph G is bipartite if
its vertex set has a partition (A,B) such that every edge in G has one end in A and one
in B. A complete bipartite graph G is a bipartite simple graph with vertex set bipartition
(A,B) where ab is an edge in G for each a ∈ A and b ∈ B. We say Kn,m is the complete
bipartite graph with vertex set [n+m] and bipartition ([n], [n+m] \ [n]).

A structure within these graphs that will play a significant role in determining the
number of coextensions is a theta graph. A theta graph is a graph with precisely two
vertices u, v of degree 3 and three internally disjoint (u, v)-paths. Equivalently, a theta
graph is a subdivision of the graph on exactly two vertices with exactly three edges between
them. Importantly, observe that the intersection of cycles C and C ′ is a path of length at
least 1 if and only if C ∪ C ′ is a theta graph.
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Hamming graphs play an important role in determining the number of coextensions
of a Dowling geometry, so we give their definition here. Let t, n1, . . . , nt ∈ Z>0 and let
S1, . . . , St be sets where Si contains ni elements for each i ∈ {1, . . . , t}. The generalized
Hamming graph H(n1, . . . , nt) is the graph whose vertices are t-tuples in S1×· · ·×St where
two vertices are adjacent if and only if they differ in exactly one coordinate. Hamming
graphs can also be described as a Cartesian product of graphs. The Cartesian product of
two simple graphs G and H, denoted G□H, is the graph with vertex set V (G) × V (H)
where vertices (u, v), (x, y) are adjacent if and only if either u = x and v is adjacent to
y in H, or v = y and u is adjacent to x in G. One can show that the Hamming graph
H(n1, . . . , nt) is isomorphic to Kn1□Kn2□ . . .□Knt .

2.3.2 Preliminary results

The first preliminary result is one that could be found in most introductions to graph
theory. We mention it here, but it will be used without reference throughout this thesis.

Lemma 2.3.1 (Handshaking Lemma). If G is a graph, then 2|E(G)| =
∑

v∈V (G) deg(v).

An example of how this lemma could be used is given in the following lemma, which
will itself be used in Chapter 6.

Lemma 2.3.2. If G is a connected graph where |E(G)| = |V (G)|+ 1 and C,C ′ are cycles
of G that share an edge, then C,C ′ are in a theta subgraph of G.

Proof. Let H be obtained from G by repeatedly removing vertices with degree 1 until none
remain. Since G contains cycles, this process ends in a nonempty graph where every vertex
has degree at least 2. Since removing a vertex of degree 1 decreases the number of edges
and the number of vertices each by 1, we have |E(H)| = |V (H)| + 1. Furthermore, since
removing vertices of degree 1 does not remove cycles, the cycles C and C ′ are contained in
H.

By the Handshaking Lemma 2.3.1,∑
v∈V (H)

deg(v) = 2|E(H)| = 2|V (H)|+ 2.

Since each vertex in H has degree at least 2, the degree sequence of H is either 4, 2, 2, . . . , 2
or 3, 3, 2, 2, . . . , 2. If the former, then H is the union of two cycles that intersect precisely
in a vertex of degree 4. These cycles must be C and C ′, so C and C ′ do not share an edge,
which is a contradiction. Therefore, the degree sequence of H is 3, 3, 2, 2, . . . , 2 and, since
C and C ′ share an edge, it follows that H is a theta graph that contains C and C ′.
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Graphs that are 2-connected come up briefly in Chapter 6, so we mention the following
theorem about 2-connected graphs here. A connected graph G that is not a complete graph
is k-connected if k is the size of a smallest subset V ⊆ V (G) such that G\V is disconnected.
We say an ear decomposition of a graph G is a sequence of graphs (G0, G1, . . . , Gk) where
G0 is a cycle, Gk = G, and Gi = Gi−1 ∪ P where P is a path whose ends are distinct
vertices in Gi−1 and no other vertices of P are in Gi−1.

Theorem 2.3.3 ([11]). A graph G is 2-connected if and only if G has an ear decomposition.

Stable set preliminaries

The remaining preliminaries in this section have to do with counting stable sets. As we
will see in Chapter 3, the problem of counting extensions or coextensions can be reduced
to the problem of counting stable sets in an auxiliary graph. Let i(G) denote the number
of stable sets of a graph G. We now prove a variety of propositions that bound i(G) in
terms of the stable sets of various substructures in G.

Proposition 2.3.4. If H is an induced subgraph of a graph G, then i(H) ≤ i(G).

Proof. Consider a stable set S ⊆ V (H) of H. If S is not a stable set of G, then there exists
an edge in G between two vertices in S, which contradicts the assumption that H is an
induced subgraph of G; therefore, S is a stable set of G as well.

Proposition 2.3.5. If G is a graph and E is a subset of edges of G, then i(G) ≤ i(G\E).

Proof. Note that G \E is the subgraph of G with vertex set V (G) and edge set E(G) \E.
Consider a stable set S ⊆ V (G) of G. Since G \ E is obtained from G by removing a set
of edges, the set S is a stable set of G \ E as well.

Proposition 2.3.6. If G is a graph whose components are G1, G2, . . . , Gk, where k ≥ 1,
then i(G) =

∏k
j=1 i(Gj).

Proof. If S is a stable set of G, then S ∩ V (Gj) is a stable set of Gj for each j ∈ [k]. If Sj

is a stable set of Gj for each j ∈ [k], then S1 ∪ · · · ∪ Sk is a stable set of G. Thus, each
stable set of G is uniquely described by choosing a stable set of each Gj. There are i(Gj)

choices for a stable set of Gj, so there are
∏k

j=1 i(Gj) stable sets of G.

Proposition 2.3.7. If G is a graph with induced subgraphs G1, G2, . . . , Gk, where k ≥ 1,
such that V (G) =

⋃k
j=1 V (Gj), then i(G) ≤

∏k
j=1 i(Gj).
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Proof. For each i ∈ [k], let Vi = V (Gi) \
⋃i−1

j=1 V (Gj). Observe that
⋃k

j=1 Vk = V (G).
Thus, since Vi ∩ Vj = ∅ for all i ̸= j ∈ [k], the graphs G[V1], . . . , G[Vk] are disjoint induced
subgraphs of G that span V (G). Therefore, there exists a set E ⊆ E(G) such that the
graph G′ = (V (G), E(G) \E) is the disjoint union of G[V1], . . . , G[Vk]. That is, the graphs
G[V1], . . . , G[Vk] are the components of G′. Since V (G) = V (G′), Proposition 2.3.5 implies
that i(G) ≤ i(G′). By Proposition 2.3.6, we have i(G′) =

∏k
j=1 i(G[Vj]). For each j ∈ [k],

since the graph G[Vj] is an induced subgraph of Gj, we have i(G[Vj]) ≤ i(Gj), and the
claim follows.

Proposition 2.3.8. If H is an induced subgraph of a graph G, then

i(G) ≤ i(H) · 2|V (G)|−|V (H)|.

Proof. The number of pairs (I,X ) where I is a stable set of H and X ⊆ V (G) \ V (H)
is i(H) · 2|V (G)\V (H)|. Since each stable set of G can be partitioned into a stable set of H
and a set of vertices in V (G) \ V (H), there is at most one stable set of G for each such
pair (I,X ). Therefore, the number of stable sets of G is at most i(H) · 2|V (G)\V (H)| =
i(H) · 2|V (G)|−|V (H)|.

The next theorem gives a useful lower bound for the number of stable sets in a regular
graph. It is obtained by greedily constructing stable sets.

Theorem 2.3.9. If G is a (d− 1)-regular graph with N vertices, where d ≥ 1 and N ≥ 1,
then

i(G) ≥ d⌊
N
d
⌋.

Proof. Let k = ⌊N
d
⌋ and let S be the set of stable sets of G with size k. Let T be the set

of all tuples (v1, . . . , vk) for which {v1, . . . , vk} is in S. Since each tuple in T is a set in S
whose elements have been ordered, we have |T | = |S| · k!.

Consider constructing a tuple (v1, v2, . . . , vk) ∈ T by adding vi to the tuple (v1, . . . , vi−1)
at each step i = 1, 2 . . . , k. There are N choices for v1. At each step i ≥ 2, there are
i − 1 vertices in the tuple and since each vertex in G has d − 1 neighbours, there are at
least N − (i − 1) − (i − 1)(d − 1) = N − (i − 1)d choices for vi. So there are at least
N(N − d)(N − 2d) . . . (N − (k − 1)d) ways to construct an element of T , which implies
|T | ≥ N(N − d)(N − 2d) . . . (N − (k − 1)d).
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Since S is a subset of the collection of stable sets of G, the size of S is a lower bound
for i(G). Therefore

i(G) ≥ |S| = |T |/k!

≥ N(N − d)(N − 2d) . . . (N − (k − 1)d)
N
d
(N
d
− 1)(N

d
− 2) . . . (N

d
− (k − 1))

= d⌊
N
d
⌋.

Interestingly, Theorem 2.3.9 is best possible, as a complete graph on n vertices is an
(n− 1)-regular graph with exactly n stable sets.

2.4 Matroid theory

In this section, we give a brief introduction to matroid theory. The definitions and con-
ventions used in this thesis mostly follow those of Oxley [40]. Note, though, that we use
‘\’ for both set deletion and matroid deletion, unlike in [40].

2.4.1 Basic definitions

There are several equivalent definitions of a matroid; in this section, we focus on two. A
matroid M consists of a set E(M) and a nonempty collection B(M) of subsets of E(M)
with the following property:

For each B,B′ ∈ B(M) and e ∈ B \B′,

there exists e′ ∈ B′ \B such that (B \ {e}) ∪ {e′} ∈ B(M).

This property is called the basis exchange axiom. The set E(M) is called the ground set
of M and each subset in B(M) is called a basis of M . We say that the elements in E(M)
are the elements of the matroid M .

A subset of E(M) is called an independent set ofM if it is a subset of a basis, otherwise
it is called a dependent set. The descriptions of subsets as independent or dependent comes
from an equivalent definition of a matroid M as a ground set E(M) and a collection I(M)
of subsets of E(M) (independent sets) with certain properties. This definition clearly
shows the motivation of defining matroids to abstract the notion of linear independence,
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but since circuits play an important role in this thesis, we move on to the definition of
matroids by their circuits.

A minimal dependent set in a matroid M is called a circuit of M . That is, every
proper subset of a circuit is an independent set. The collection of circuits of a matroid M
is denoted C(M). If a circuit has n elements, then we call it an n-circuit. A matroid is
uniquely defined by its collection of bases, collection of independent sets, or collection of
circuits. One can show [40] that a collection C of subsets of E is the collection of circuits
of a matroid on E if and only if C has the following properties:

(C1) ∅ /∈ C;
(C2) if C,C ′ ∈ C and C ⊆ C ′, then C = C ′; and

(C3) if C and C ′ are distinct members of C and e ∈ C∩C ′, then there is a member C ′′ ∈ C
such that C ′′ ⊆ (C ∪ C ′) \ {e}.

Property (C3) is known as the circuit elimination axiom. A circuit of a matroid M that
contains exactly r(M) + 1 elements contains a basis of M , so we call it a spanning circuit.
A circuit containing exactly three elements is called a triangle. A circuit containing exactly
one element is called a loop. If a circuit contains exactly two elements, then we say those
elements are parallel. A maximal set of pairwise parallel elements is called a parallel class.
A matroid is simple if it contains no loops or parallel classes of size at least 2.

Much of the terminology of matroids is borrowed from graph theory and linear algebra,
which also provide the fundamental examples of matroids. Using the definition of matroids
by their circuits, it is straightforward to show that the collection of edge sets of cycles of
a graph G are the circuits of a matroid with ground set E(G). This matroid is called
the cycle matroid of G, which is denoted M(G). A matroid that is isomorphic to the
cycle matroid of some graph is called a graphic matroid . The independent sets of M(G)
correspond to the subgraphs of G that do not contain any cycles.

The other fundamental example of a matroid comes from linear algebra. The set of
bases of a matrix A corresponds to the set of bases of a matroid with ground set consisting
of the column indices of A. This matroid, denoted M [A], is called the column matroid
of A. A matroid that is isomorphic to the column matroid of some matrix is called a
representable matroid. A matroid M is F-representable if there exists a matrix A over the
field F such that M is isomorphic to M [A].

Motivated by the concept of rank in linear algebra, the rank of a matroid M is the
size of a basis of M . One can show that all bases of M have the same size, so this value
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is well-defined. The rank of M is denoted r(M). The rank of a set X of elements of a
matroid M , denoted rM(X), is the size of a largest independent set contained in X. When
the matroid M is clear from context, we use r(X) instead of rM(X). If a subset X of the
ground set of a matroid M where |X| = r(M) is not a basis, then it is called a non-basis
of M .

The closure of a set X ⊆ E(M) in a matroid M , denoted clM(X), is the set {x ∈
E(M) : r(X ∪ {x}) = r(X)}. If the matroid is clear from context, then we use cl(X)
instead of clM(X). A flat of a matroid M is a subset F of E(M) that is equal to its
closure; that is, F = cl(F ). A hyperplane ofM is a flat with rank r(M)−1. The collection
of hyperplanes of a matroid M is denoted H(M). A line of M is a flat with rank 2.

An elementary argument shows that ifM is a matroid, then {E(M)\B : B ∈ B(M)} is
the set of bases of a matroid with ground set E(M). This matroid is called the dual matroid
of M and is denoted M∗. The rank of M∗ is |E(M)| − r(M) and it is straightforward to
show that (M∗)∗ =M . The properties of sets in M∗ are called “co-properties” in M . For
example, a circuit in M∗ is called a cocircuit in M and the rank of a set X in M∗ is called
the corank of X in M . This naming convention applies to loops, independent sets, bases,
hyperplanes, and other properties as well.

Hyperplanes and circuits play a significant role in this thesis, as we will see that exten-
sions and coextensions can be described by certain sets of these objects. Importantly, one
can show that a set X ⊆ E(M) is a hyperplane of a matroid M if and only if E(M) \X
is a circuit of M∗. That is, X is a hyperplane if and only if E(M) \X is a cocircuit.

Corank is also an important concept here. When the matroid M is clear from context,
we use r∗(X) to denote the corank of X ⊆ E(M) in M , which is equivalently the rank of
X in M∗. The corank of M is the rank of M∗, which is denoted r∗(M) or r(M∗). For each
subset X of the ground set of a matroid M , one can show with an elementary argument
that r∗(X) = r(E(M) \X) + |X| − r(M).

The deletion of X ⊆ E(M) from a matroid M , denoted M \ X, is the matroid with
ground set E(M)\X whose bases are the maximal members of the set {B\X : B ∈ B(M)}.
Note that the independent sets ofM \X are the subsets of E(M)\X that are independent
inM . The simplification ofM , denoted si(M), is the matroid obtained fromM by deleting
from M all loops and all but one element from each parallel class.

The restriction of a matroid M to a subset X of its ground set, denoted M |X, is the
matroidM \(E(M)\X). The contraction of X ⊆ E(M) in a matroidM , denotedM/X, is
the matroid (M∗\X)∗. One can show that this matroid has ground set E(M)\X and basis
set {B′ ⊆ E(M) \X : M |X has a basis B such that B′ ∪ B ∈ B(M)}. A matroid N is a
minor of a matroid M if there exist disjoint sets C,D ⊆ E(M) such that N =M/C \D.
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Although defined earlier, a matroid M is an extension of a matroid N if there exists
X ⊆ E(M) such that M \ X = N . If M∗ is an extension of N∗, then M is called a
coextension of N . So, M is a coextension of N if there exists X ⊆ E(M) such that
M∗ \ X = N∗. Since (N∗)∗ = N , this implies M/X = N . Extensions and coextensions
are essentially the opposite of deletion and contraction, respectively. Recall, though, that
we use extension and coextension to mean single-element extension or coextensions in this
thesis. For a matroid M , we let ext(M) and coext(M) denote the number of extensions
and coextensions of M , respectively.

We will show in the next chapter that the connected corank-2 restrictions of a matroid
are important to enumerating coextensions. A matroid is connected if and only if, for every
pair of distinct elements of E(M), there is a circuit containing both. Although we have
defined corank and restriction, we emphasize that a corank-2 restriction of a matroid M
is a matroid M |X where X ⊆ E(M) and r∗(M |X) = r((M |X)∗) = 2. That is, 2 is the
corank of the restriction M |X, not the corank of the set X. In particular, this means that
rM(X) = |X| − 2. It is also important to note that if C is a circuit in a restriction M |X,
then C is a circuit in M as well.

2.4.2 Preliminary results

The main goal of this matroid preliminary section is to establish some properties of rank-
(r(M) − 2) flats and corank-2 restrictions of a matroid M . As we will see in Chapter 3,
these structures are important in the definitions of linear and colinear subclasses, which
parameterize extensions and coextensions.

Proposition 2.4.1. Let M be a matroid and let X be a set of elements of M . The
intersection of all of the flats in M that contain X is equal to the closure of X.

Proof. Since cl(X) is a flat that contains X, the intersection of all flats in M that contains
X is a subset of cl(X). Consider a flat F that contains X. Since F is a flat, cl(F ) = F .
By Lemma 1.4.3 (CL2) in [40], if X ⊆ Y , then cl(X) ⊆ cl(Y ), thus cl(X) ⊆ cl(F ) = F .
Therefore, every flat that contains X also contains cl(X).

Proposition 2.4.2. Two spanning circuits C1, C2 are contained in a corank-2 restriction
of a matroid M if and only if the intersection of C1 and C2 is a basis of M .

Proof. Let r be the rank of M . If C1 and C2 intersect in a basis B, then C1 ∪ C2 =
B ∪ {e1, e2} where, for each i ∈ [2], the edge ei is in Ci \ C3−i. Thus, the corank of
M |(C1 ∪ C2) is |C1 ∪ C2| − r(M |(C1 ∪ C2)) = r + 2− r = 2.
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Now, suppose C1 and C2 are contained in a corank-2 restriction N of M . Suppose
towards a contradiction that the largest independent set I in C1 ∩ C2 has rank n < r. If
there exists e ∈ (C1 ∩ C2) \ I, then I ∪ {e} is a circuit that is a subset of C1, which is a
contradiction, so C1 ∩C2 = I. Thus, |C1 ∪C2| = 2(r+1)− n and r(N) ≤ r. By definition
of corank, we know 2 = |E(N)| − r(N) ≥ 2(r+1)−n− r = r−n+2. This implies r ≤ n,
which is a contradiction.

Proposition 2.4.3. Let M be a matroid with rank r where there are at most k circuits in
each corank-2 restriction of M . If C is a smallest circuit in a corank-2 restriction of M ,
then |C| ≤ k−1

k
(r + 2).

Proof. Let X be a set of elements of M such that M |X has corank 2. Therefore, the size
of X is at most r+2. Let Y = E(M)\X and observe that (M |X)∗ =M∗/Y . Let C be the
set of circuits of M |X and let C be a smallest circuit in M |X. We are given that |C| ≤ k.
For each circuit C ′ ∈ C, the set H ′ = E(M) \ C ′ is a hyperplane of M∗ that contains Y ,
hence

rM∗/Y (H
′ \ Y ) = r(M |X)∗(H

′ \ Y ) = rM |X(X \ (H ′ \ Y )) + |H ′ \ Y | − r(M |X)

= rM |X(C
′) + |H ′ \ Y | − r(M |X) = |C ′| − 1 + |H ′| − |Y | − r(M |X)

= |X| − 1− |X|+ r∗(M |X) = 2− 1 = 1,

which implies that H ′\Y is a parallel class inM∗/Y . If Z is a parallel class inM∗/Y , then
since r(M∗/Y ) = 2, the set Z is a hyperplane of M∗/Y . Thus, since M∗/Y = (M |X)∗,
the set X \ Z is a circuit of M |X. Since there are at most k circuits in M |X, there are at
most k parallel classes in M∗/Y .

Since C is a smallest circuit in M |X, a largest hyperplane in M∗ that contains Y is
H = E(M) \ C. Thus, the set H \ Y is a largest parallel class in M∗/Y . Since there are

|X| elements in M∗/Y , there are at least |X|
k

elements in H \Y . Since |C| = |X|− |H \Y |,
the size of C is at most k−1

k
|X| ≤ k−1

k
(r + 2).

Proposition 2.4.4. A corank-2 matroid M on at most t elements has at most t circuits.

Proof. Let C be the set of circuits of M and let H = {E(M) \ C : C ∈ C}. Notice that H
is the set of hyperplanes of M∗. Since M∗ has rank 2, each hyperplane in M∗ has rank 1.
The number of rank-1 flats of M∗ is at most the number of elements of M∗. Since M and
M∗ contain at most t elements, we have |C| = |H| ≤ |E(M)| ≤ t.
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2.5 Frame matroids

Recall that a theta graph is a subdivision of the graph on exactly two vertices with exactly
three edges between them. A biased graph is a pair (G,B) where G is a graph and B is a
collection of cycles of G where no theta subgraph of G contains precisely two cycles in B.
The cycles in B are called balanced cycles and cycles not in B are called unbalanced .

We will see that biased graphs can be used to count the coextensions of graphic ma-
troids, but for now, we focus on another application. Biased graphs are used to define
two classes of matroids, frame and lift matroids, which were introduced by Zaslavsky
[52, 53, 54]. First, we define each of the following graphs to be a cuff :

(i) A hinged cuff is a theta graph.

(ii) A tight cuff is a subdivision of the graph on one vertex with two loops.

(iii) A loose cuff is a subdivision of the graph on two vertices with one edge between them
and one loop on each vertex.

See Figure 2.1 for the three graphs whose subdivisions result in a hinged, tight, or loose cuff.
Additionally, we define a broken-cuff to be a subdivision of the graph on two disconnected
vertices with one loop on each vertex. The name “cuff” is motivated by the common name
for graphs of type (ii) or (iii): handcuff. However, in this thesis, we refer to these graphs
as cuffs so that graphs of type (i) can be included.

Figure 2.1: Hinged, tight, and loose cuffs are subdivisions of these graphs.

Now were are ready to define frame and lift matroids. Given a biased graph G = (G,B),
the frame matroid of G has as elements the edges of G and as circuits the edge sets of
subgraphs of the following forms: balanced cycles; and hinged, tight, and loose cuffs that
contain no balanced cycles. The lift matroid of G has as elements the edges of G and as
circuits the edge sets of subgraphs of the following forms: balanced cycles; hinged and
tight cuffs that contain no balanced cycles; and broken-cuffs that contain no balanced
cycles. Zaslavsky [52, 53] proved that these are indeed matroids, although when they were
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introduced, frame matroids were called bias matroids. He also proved that the class of
frame matroids is minor-closed [53]. Notice that graphic matroids are the frame or lift
matroids of biased graphs where all cycles are balanced. Thus, frame and lift matroids
generalize graphic matroids.

Since corank-2 restrictions play such an important role in this thesis, we prove the
following preliminary lemma for frame matroids.

Lemma 2.5.1. Let (G,B) be a biased graph and let M be the frame matroid of (G,B).
There are at most 6 circuits in a corank-2 restriction N of M .

Proof. Let H be the subgraph of G induced on E(N). Since N is a corank-2 restriction,
H has at least one vertex of degree at least 3. Obtain the graph H ′ from H by iteratively
contracting the the edges incident with a vertex of degree 1 until no vertices of degree 1
remain and contract the edges in each component that is a cycle to a vertex. Obtain the
graph H ′′ from H ′ by contracting the edges in each path or cycle between (not necessarily
distinct) vertices u, v of degree at least 3 until only the edge uv remains. Notice that every
vertex in H ′′ has degree at least 3. Let X be the set of edges in H that are contracted to
obtain H ′′. Let N ′ be the matroid obtained from N by contracting X.

Since X does not contain any circuits of N , it is an independent set of N , which implies
that E(N) \ X is spanning in N∗. Thus, we have rN∗(E(N) \ X) = r(N∗) = 2. Since
N ′ = N/X and (N/X)∗ = N∗\X, it follows that r∗(N ′) = r(N∗\X) = rN∗(E(N)\X) = 2.

Claim 2.5.1.1. H ′′ has at most 6 edges.

Proof. Let v be the number of vertices in H ′′. Since frame matroids are minor-closed, the
matroid N ′ is also a frame matroid. Since N ′ is a frame matroid, the rank of N ′ is at most
v. Therefore, we have |E(H ′′)| = r(N ′) + r∗(N ′) ≤ v + 2.

By the Handshaking Lemma, the number of edges in H ′′ is equal to 1
2

∑
u∈V (H′′) deg(u).

Since each vertex in H ′′ has degree at least 3, it follows that |E(H ′′)| ≥ 3
2
v. Therefore,

since |E(H ′′)| ≤ v + 2, we have v ≤ 4, which implies |E(H ′′)| ≤ 6.

Observe that a set C is a circuit in N if and only if C \X is a circuit in N ′. Therefore,
the number of circuits in N is at most the number of circuits in N ′. By Claim 2.5.1.1, the
graph H ′′ has at most 6 edges; thus, by Proposition 2.4.4, the edge set of H ′′ contains at
most 6 circuits, which implies that N ′ contains at most 6 circuits.
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2.5.1 Dowling geometries

Although defined before frame matroids, Dowling geometries are a class of frame matroids.
Dowling geometries were defined by Dowling in 1973 [12] and later identified as frame
matroids by Zaslavsky [52, 53].

Let n be a positive integer. Let Γ be a finite (multiplicative) group with identity
element 1 and let q = |Γ|. We will define a Dowling geometry DG(n,Γ) similarly to Oxley
[40], although note that Dowling geometries are denoted Qn(Γ) in [40]. First, we construct
a graph KΓ

n on vertex set [n]. The edge set of KΓ
n is Γ ×

(
[n]
2

)
∪ {βu : u ∈ [n]} and

the incidence function f of KΓ
n is defined as follows. For each (γ, {u, v}) ∈ Γ ×

(
[n]
2

)
, let

f((γ, {u, v})) = {u, v} and for each u ∈ [n], let f(βu) = {u}. Informally, the graph KΓ
n

has vertex set [n], an edge labelled γ between each pair {u, v} ∈
(
[n]
2

)
for each γ ∈ Γ, and

a loop labelled βu on each vertex u ∈ [n]. The graph K
GF (3)∗

4 is shown as an example in
Figure 2.2. The ground set of DG(n,Γ) is E(KΓ

n ).

Figure 2.2: The graph K
GF (3)∗

4 .

Define a function ψ : Γ× Z2
>0 → Γ where, for each (γ, x, y) ∈ Γ× Z2

>0,

ψ((γ, x, y)) =

{
γ if x ≤ y

γ−1 if y < x
.

Let C be a cycle of KΓ
n with at least two edges and arbitrarily assign an orientation to it.

Let the vertices and edges of C, beginning with a vertex, be v1, e1, v2, e2, . . . , vk, ek, vk+1,
where vk+1 = v1 and ei = (γi, {vi, vi+1}) for each i ∈ [k]. We say C is balanced if∏k

i=1 ψ((γi, vi, vi+1)) = 1. Note that the definition of a balanced cycle does not depend on
the chosen cyclic ordering of the cycle [40]. A cycle is unbalanced if it either has a single
edge or is not balanced. Let B be the collection of balanced cycles of KΓ

n . The circuits of
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DG(n,Γ) consist of the edge sets of all of the balanced cycles together with the edge sets
of all of the hinged, tight, and loose cuffs in which none of the cycles are balanced.

By investigating the products of edge labels in the cycles of a theta graph, one can
conclude the following proposition.

Proposition 2.5.2 ([40]). If two of the cycles in a theta subgraph of KΓ
n are balanced, then

so is the third.

Thus, the Dowling geometry DG(n,Γ) is the frame matroid represented by (KΓ
n ,B).

The rank of DG(n,Γ) is n and the independent sets are the edge sets of KΓ
n that contain

no balanced cycles and at most one unbalanced cycle.

2.6 Projective geometries

For a positive integer n and a prime power q, let V (n, q) denote an n-dimensional vector
space over the finite field GF (q). LetM be the matroid whose elements are the equivalence
classes of V (n, q) \ {0} where vectors are equivalent if one is a nonzero scalar multiple of
the other, and a set of elements is independent if and only if the corresponding set of
non-equivalent vectors of V (n, q) is linearly independent. The rank-n projective geometry
over GF (q), denoted PG(n− 1, q), is a matroid isomorphic to M .

Equivalently, the projective geometry PG(n − 1, q) is isomorphic to si(M [A]) where
A is the matrix whose columns are the vectors in V (n, q). This means PG(n − 1, q) is a
GF (q)-representable matroid. In fact, all simple rank-n GF (q)-representable matroids are
isomorphic to a restriction of PG(n− 1, q).

The number of flats is important to the number of extensions of a projective geometry
and, in order to bound the number of coextensions, we will use the number of bases and
k-element circuits. Thus, we prove the following proposition. First, we define a product
that will be useful in representing the number of flats, independent sets, and circuits. The
p-shifted factorial , denoted (a; p)n, is the product

∏n−1
k=0(1 − apk), where (a; p)0 = 1 and

(a; p)∞ is the infinite product
∏∞

k=0(1 − apk). If |p| < 1, which is always the case in this
thesis, then the infinite product converges. We also define the q-binomial coefficient , which
is defined for all integers n and k where 0 ≤ k ≤ n by[

n

k

]
q

=
(qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)
=

(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)

= qk(n−k) · (q−1; q−1)n
(q−1; q−1)k(q−1; q−1)n−k

.
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Proposition 2.6.1 (Proposition 6.1.4 in [40]). Let k be a nonnegative integer.

(i) The number of k-element independent sets of PG(n− 1, q) is

qnk

k!(q − 1)k
· (q−1; q−1)n
(q−1; q−1)n−k

.

(ii) The number of rank-k flats in PG(n− 1, q) is[
n

k

]
q

.

(iii) The number of k-element circuits of PG(n− 1, q) is 0 for k < 2 and, for k ≥ 3, is

qn(k−1)

k!(q − 1)
· (q−1; q−1)n
(q−1; q−1)n+1−k

.

In order to prove this proposition, we use the following two lemmas.

Lemma 2.6.2 (Lemma 6.1.5 in [40]). The number of ordered k-tuples (v1, v2, . . . , vk) of
distinct vectors in V (n, q) such that {v1, v2, . . . , vk} is linearly independent is

qnk · (q−1; q−1)n
(q−1; q−1)n−k

.

Proof. There are qn vectors in V (n, q). Since the zero vector is not linearly independent,
there are qn− 1 choices for the vector v1. Consider j ≥ 1 and suppose that v1, . . . , vj have
been chosen and {v1, . . . , vj} is linearly independent. Thus, there are qj vectors in the span
of {v1, . . . , vj}. This implies that there are qn− qj choices for vj+1. Therefore, the number
of choices for v1, . . . , vk is

(qn − 1)(qn − q) . . . (qn − qk−1) = qnk ·
n∏

i=n−k

(
1− 1

qi+1

)
= qnk · (q−1; q−1)n

(q−1; q−1)n−k

.

Lemma 2.6.3 (Lemma 6.1.6 in [40]). Let n ≥ 2 be an integer. For each basis B of
PG(n− 1, q), there are precisely (q − 1)n−1 elements e of PG(n− 1, q) such that B ∪ {e}
is a circuit.
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Proof. Let B = {b1, . . . , bn} and consider the elements of B as vectors in the vector space
V (n, q). Let E be the set of vectors e of V (n, q) such that, for the corresponding element e
of PG(n−1, q), the set B∪{e} is a circuit of PG(n−1, q). Consider e ∈ E. Since B∪{e}
is a circuit, the set {b1, . . . , bn, e} of vectors is linearly dependent. Thus, for each i ∈ [n],
there exists αi ∈ GF (q) such that α1b1 + · · · + αnbn = e. If αi = 0 for some i ∈ [n], then
B∪e is not minimally dependent, which contradicts B∪{e} being a circuit. Therefore, for
each i ∈ [n], we have αi ̸= 0. Since there are (q − 1) choices for each αi, there are (q − 1)n

elements in E. Each multiple of e by a scalar γ ̸= 0 is in E. Therefore, the number of
elements e of PG(n− 1, q) such that B ∪ {e} is a circuit is (q − 1)n−1.

Now we are ready to prove Proposition 2.6.1.

Proof of Proposition 2.6.1. Since there are k! ways to order k elements, it follow from

Lemma 2.6.2 that the number of k-element linearly independent sets in V (n, q) is qnk

k!
·

(q−1;q−1)n
(q−1;q−1)n−k

. Since each element of PG(n − 1, q) corresponds to an equivalence class of

q − 1 vectors of V (n, q), each k-element independent set of PG(n − 1, q) corresponds to
(q−1)k k-element linearly independent sets of V (n, q). Therefore, the number of k-element

independent sets of PG(n− 1, q) is qnk

k!(q−1)k
· (q−1;q−1)n
(q−1;q−1)n−k

, which proves (i).

Since the closure of a vector v in V (n, q) contains all vectors in the equivalence class
of v (that is, an element of PG(n − 1, q)) the flats of V (n, q) correspond to the flats of
PG(n − 1, q). Consider a rank-k linearly independent set I of V (n, q). It is a basis of
exactly one rank-k flat of V (n, q). Since every rank-k flat of V (n, q) is isomorphic to
V (k, q), the number of rank-k linearly independent sets is equal to the number of rank-k
flats multiplied by the number of bases of V (k, q). Now it follows from Lemma 2.6.2 that
the number of rank-k flats of V (n, q) is

qnk

k!
(q−1;q−1)n

(q−1;q−1)n−k

qk2

k!
(q−1; q−1)k

= qk(n−k) (q−1; q−1)n
(q−1; q−1)k(q−1; q−1)n−k

,

which proves (ii).

Let Cn,k denote the set of k-element circuits of PG(n−1, q). Since projective geometries
have no loops or parallel elements, there are no k-element circuits of PG(n−1, q) for k < 3.
Suppose k ≥ 3. Since every k-element circuit is in a unique rank-(k − 1) flat, and each
rank-(k − 1) flat is isomorphic to PG(k − 2, q),

|Cn,k| =
[

n

k − 1

]
q

|Ck−1,k|,

30



where
[

n
k−1

]
q
is the number of flats isomorphic to PG(k−2, q) and |Ck−1,k| is the number of

k-element circuits in such a flat. Let X denote the collection of ordered pairs (B,C) where
B is a basis of PG(k − 2, q) and C is a k-element circuit in PG(k − 2, q) that contains B.
Let B denote the collection of bases of PG(k − 2, q). We now determine the size of X in
the following two ways. Since there are k bases in a k-element circuit,

|X | =
∑

C∈Ck−1,k

∑
B⊂C,
B∈B

1 =
∑

C∈Ck−1,k

k = k|Ck−1,k|.

Since there are (q−1)k−2 circuits of PG(k−2, q) that contain a specific basis of PG(k−2, q),

|X | =
∑
B∈B

∑
C⊃B,

C∈Ck−1,k

1 =
∑
B∈B

(q − 1)k−2 = (q − 1)k−2|B|.

By part (i) of this proposition, there are 1
(k−1)!(q−1)k−1 (q

k−1 − 1)(qk−1 − q) . . . (qk−1 − qk−2)

bases in PG(k − 2, q). Thus,

|Ck−1,k| =
1

k!(q − 1)
(qk−1 − 1)(qk−1 − q) . . . (qk−1 − qk−2).

Multiplying this by
[

n
k−1

]
q
gives

|Cn,k| =
1

k!(q − 1)
(qn − 1)(qn − q) . . . (qn − qk−2) =

qn(k−1)

k!(q − 1)
· (q−1; q−1)n
(q−1; q−1)n+1−k

,

which proves (iii).
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Chapter 3

Extensions of matroids

The goal of this chapter is to translate the problem of counting the extensions of a matroid
to a problem of counting the stable sets in a graph. To do this, we show that the number of
extensions can be bounded above and below by the number of “scarce” extensions and the
number of “small” hyperplanes. We then show that “scarce” extensions can be described
by stable sets in an auxiliary graph. This translation of extensions to stable sets will then
be applied in Chapters 6, 7, 8, 9, and 10.

One of the major conjectures in matroid enumeration is the conjecture by Mayhew,
Newman, Welsh, and Whittle [27] which suggests that asymptotically almost all matroids
are “paving.” Pendavingh and Van der Pol [42] showed that “sparse” paving matroids
dominate the problem of counting matroids. In order to do this, they represent sparse
paving matroids as stable sets in a Johnson graph: a graph J(n, r) whose vertices are
the r-sets of [n] and vertices are adjacent if and only if they intersect in r − 1 elements.
Vertices in the Johnson graph represent the non-bases of a matroid and, since each stable
set clearly satisfies the basis exchange axiom, each stable set corresponds to the non-bases
of a matroid, specifically a sparse paving matroid. Pendavingh and Van der Pol showed
that, while there are matroids that are not represented by stable sets in the Johnson
graph, their number is “small” compared to the number of sparse paving matroids. In a
similar vein, we show in this thesis that, for some matroids M , the extensions of M that
can be represented as stable sets in an auxiliary graph dominate the problem of counting
extensions.
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3.1 Linear subclasses

An extension of a matroid M by a new element e can be described by the effect of e on
the flats of M . When e is added to a flat F , the result F ∪ {e} is either a flat with the
same rank as F , a flat with rank one more than F , or not a flat.

The set of flats that remain flats of the same rank when e is added to them is called
a modular cut [40]. These sets of flats have two properties which identify them. First, if
a flat F is in a modular cutM, then each flat F ′ containing F is inM as well. Second,
if two flats F1, F2 are in a modular cutM where r(F1) + r(F2) = r(F1 ∩ F2) + r(F1 ∪ F2)
(that is, F1 and F2 are modular), then F1 ∩ F2 is inM as well.

Each modular cut gives rise to a unique extension, so we may count extensions by
counting modular cuts. However, instead of parameterizing extensions by modular cuts,
Crapo [10] showed that it is sufficient to consider the effect of the new element on the
hyperplanes. Specifically, extensions can be parameterized by the sets of hyperplanes
that remain hyperplanes when the new element e is added to them. These sets H′ of
hyperplanes have the property that if two hyperplanes H1, H2 in the set are modular, that
is, they intersect in a rank-(r(M) − 2) flat F , then all hyperplanes that contain F are in
H′ as well. We can see that each set of hyperplanes that has this property corresponds to
an extension by considering a rank-(r(M)− 2) flat F contained in hyperplanes H1, H2, H3

in a matroid M . If N is an extension of M by the element e and H1 ∪ {e}, H2 ∪ {e} are
hyperplanes of N while H3∪{e} is not, then contracting F in N results in a line where e is
in two different parallel classes, which is impossible. Crapo [10] proved the more difficult
direction of showing that each extension corresponds to a set of hyperplanes that remain
hyperplanes when the new element is added to them.

Recall that H(M) is the set of hyperplanes of a matroid M . A linear subclass of a
matroid M is a subset H′ ⊆ H(M) such that if two hyperplanes H,H ′ ∈ H′ intersect
in a flat F of rank r(M) − 2, then all hyperplanes H ′′ that contain F are in H′ as well.
Figure 3.1 shows three hyperplanes H1, H2, H3 of a rank-n matroid M that intersect in a
rank-(n− 2) flat. If H′ is a linear subclass of M , then H′ contains at most one or all three
of H1, H2, H3.

The following theorem states the correspondence between extensions and linear sub-
classes. Recall that ext(M) denotes the number of extensions of the matroid M .

Theorem 3.1.1 ([10]). If L is the collection of linear subclasses of a matroid M , then

ext(M) = |L|.
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Figure 3.1: Three hyperplanes of a rank-n matroid that intersect in a rank-(n− 2) flat.

Now that we have this correspondence between extensions and linear subclasses, we
focus on linear subclasses. We say a set H′ ⊆ H(M) of hyperplanes of a matroid M has
the hyperplane property if, for all pairs of hyperplanes H,H ′ ∈ H′ that intersect in a flat
F of rank r(M) − 2, all hyperplanes H ′′ that contain F are in H′ as well. Thus, a linear
subclass of M is a set of hyperplanes of M that has the hyperplane property.

The following definitions identify certain linear subclasses that will be represented as
stable sets in an auxiliary graph. We say a set H′ ⊆ H(M) of hyperplanes of a matroid M
has the scarce hyperplane property if, for each rank-(r(M)− 2) flat F of M , at most one
hyperplane that contains F is in H′. We define a scarce linear subclass of M to be a set
of hyperplanes of M that has the scarce hyperplane property. As we will see, scarce linear
subclasses play a role in counting matroid extensions similar to the role of sparse paving
matroids in counting matroids. Note that a (scarce) colinear subclass of a matroid M is a
set of hyperplanes H′ of M∗ that has the (scarce) hyperplane property.

The complement of a hyperplane is a cocircuit, so it is convenient to consider sets of
circuits instead of hyperplanes of the dual when dealing with colinear subclasses. With
this in mind, we define a “dual” property to the hyperplane property that applies to sets
of circuits. We say a set B of circuits of a matroid M has the circuit property if for each
pair of distinct circuits C,C ′ ∈ B that are contained in a corank-2 restriction N of M , all
circuits in N are in B as well. We say a set B of circuits of a matroid M has the scarce
circuit property if B contains at most one circuit from each corank-2 restriction of M .

In the following propositions, we establish the correspondence between colinear sub-
classes and sets of circuits with the circuit property.

Proposition 3.1.2. Let M be a matroid and let (X, Y ) be a partition of E(M). Then
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r((M |X)∗) = 2 if and only if rM∗(Y ) = r(M∗)− 2.

Proof. Since r((M |X)∗) = r(M∗/Y ) = r(M∗) − rM∗(Y ), the corank of M |X is 2 if and
only if the rank of Y in M∗ is r(M∗)− 2.

Proposition 3.1.3. A set of hyperplanes H′ of M∗ is a colinear subclass of M if and only
if B = {E(M) \H : H ∈ H′} has the circuit property.

Proof. Let X ⊆ E(M) and let Y = E(M) \X. By Proposition 3.1.2, the restriction M |X
has corank 2 if and only if cl(Y ) is a rank-(r(M∗) − 2) flat of M∗. A set H ⊆ E(M) is a
hyperplane ofM∗ that contains cl(Y ) if and only if E(M)\H is a circuit ofM |X. Therefore,
there exists a rank-(r(M∗) − 2) flat of M∗ contained by hyperplanes H1, H2, . . . , Hk such
that at least 2 but not all are in H′ if and only if there exists a corank-2 restriction of M
containing circuits E(M) \ H1, . . . , E(M) \ Hk such that at least 2 but not all are in B.
Thus, the set H′ has the hyperplane property if and only if B has the circuit property.

In the case of graphic matroids, it will be convenient to focus on circuits contained
in connected corank-2 restrictions. Therefore, we say a set C of circuits of a matroid M
has the theta property if for all pairs of distinct circuits C,C ′ ∈ C that are contained in a
connected corank-2 restriction N of M , all circuits in N are in C as well. The reason we
call this the theta property is because two circuits of a graphic matroid that are contained
in a connected corank-2 restriction correspond to two cycles in a theta subgraph. A set
C of circuits of a matroid M has the scarce theta property if, for each connected corank-2
restriction N of M , at most one circuit of N is in C.

Proposition 3.1.4. A set of hyperplanes H′ of M∗ is a colinear subclass of M if and only
if B = {E(M) \H : H ∈ H′} has the theta property.

Proof. If H′ is a colinear subclass, then it has the hyperplane property, so B has the circuit
property by Proposition 3.1.3. Since a set with the circuit property also has the theta
property, it follows that B has the theta property.

Now suppose towards a contradiction that B has the theta property, but H′ does not
have the hyperplane property. Therefore, there exists a rank-(r(M∗)− 2) flat Y contained
by k ≥ 3 hyperplanes H1, H2, . . . , Hk and 2 ≤ p < k are in H′. For each i ∈ [k], let
Ci = E(M) \ Hi. Let X = E(M) \ Y . By Proposition 3.1.2, the restriction M |X has
corank 2. A set H ⊆ E(M) is a hyperplane of M∗ that contains Y if and only if E(M)\H
is a circuit of M |X. Since all hyperplanes of M∗ that contain Y pairwise intersect in Y ,
there are no elements of X in two or more of H1, . . . , Hk. Consider elements e ∈ Hi and
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e′ ∈ Hj where i < j ∈ [k], which we now know are not in any other hyperplanes that
contain Y . Both e and e′ are in the circuit Cℓ where ℓ ∈ [k] \ {i, j}. Since the choice of e
and e′ was arbitrary, every pair of elements in X is in a circuit, hence M |X is a connected
corank-2 restriction of M . Therefore, there are 2 ≤ p < k circuits from a connected
corank-2 restriction in B, which contradicts B having the theta property.

Proposition 3.1.5. A set of hyperplanes H′ of M∗ is a scarce colinear subclass of M if
and only if B = {E(M) \H : H ∈ H′} has the scarce circuit property.

Proof. Let X ⊆ E(M) and let Y = E(M) \X. By Proposition 3.1.2, the restriction M |X
has corank 2 if and only if cl(Y ) is a rank-(r(M∗) − 2) flat of M∗. A set H ⊆ E(M) is a
hyperplane ofM∗ that contains cl(Y ) if and only if E(M)\H is a circuit ofM |X. Therefore,
there exists a rank-(r(M∗) − 2) flat of M∗ contained by hyperplanes H1, H2, . . . , Hk such
that at most one is in H′ if and only if there exists a corank-2 restriction of M containing
circuits E(M) \ H1, . . . , E(M) \ Hk such that at most one is in B. Thus, the set H′ has
the scarce hyperplane property if and only if B has the scarce circuit property.

Proposition 3.1.6. If a set B of circuits of M has the scarce theta property, then H′ =
{E(M) \ C : C ∈ B} is a colinear subclass of M .

Proof. If B has the scarce theta property, but H′ does not have the hyperplane prop-
erty, then there exists a rank-(r(M∗) − 2) flat Y of M∗ contained by k ≥ 3 hyperplanes
H1, H2, . . . , Hk such that at least two but not all are in H′. Let X = E(M) \ Y and let
Ci = E(M)\Hi for all i ∈ [k]. Since all hyperplanes ofM∗ that contain Y pairwise intersect
in Y , there are no elements of X in two or more of H1, . . . , Hk. Consider elements e ∈ Hi

and e′ ∈ Hj where i < j ∈ [k], which we now know are not in any other hyperplanes that
contain Y . Both e and e′ are in the circuit Cℓ where ℓ ∈ [k] \ {i, j}. Since the choice of e
and e′ was arbitrary, every pair of elements in X is in a circuit, hence M |X is a connected
corank-2 restriction of M . Therefore, there are at least two circuits of M |X, a connected
corank-2 restriction, in B, which contradicts B having the scarce theta property.

The last result in this section plays a very important role in translating the problem
of counting extensions to counting stable sets. Theorem 3.1.7 uses a totally ordered set
and a collection of its subsets to define a graph G. The size of the collection of “linear”
sets is then upper bounded using the number of stable sets in G. Let S be a set and let
X be a collection of subsets of S. Recall that a set L ⊆ S is linear with respect to X if
|L ∩X| ∈ {0, 1, |X|} for all X ∈ X . The extensions of a matroid M are parameterized by
its linear subclasses, and the choice to name linear sets as such was intentional. In Section
3.2, we will apply this theorem to bound the number of linear subclasses of a matroid.
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It is important to note that the proof strategy of Theorem 3.1.7 is not entirely new. It
is a generalization of part of the proof of Theorem 4.1 in [39]. Interestingly, Theorem 4.1
in [39] was used to upper bound the number of biased graphs on a complete graph. As
we will see in Chapter 6, these biased graphs correspond to the coextensions of the cycle
matroid of a complete graph, so it is actually not surprising that a generalization applies
to counting extensions in general.

Theorem 3.1.7. Let S be a set with total ordering <. Let K be a collection of subsets of
S. Let G be a graph with vertex set S such that G[K] is a complete graph for each K ∈ K
and each edge is induced by at least one K ∈ K. Let X0 ⊆ V (G) be a set of vertices of G
such that, for each K ∈ K, the smallest vertex in K is in X0. If L denotes the collection
of sets U ⊆ S that are linear with respect to K, then

|L| ≤ i(G) · 2|X0|.

Proof. Let T denote the collection of all tuples (v1, v2, . . . , vj) for which v1 < v2 < · · · < vj
and {v1, v2, . . . , vj} is an element of K. Since v1 is the smallest element in a set in K, it is
in X0.

For each L ∈ L, let ψ(L) be obtained from L by simultaneously removing all elements
except v2 for each tuple (v1, v2, . . . , vj) ∈ T for which {v1, v2, . . . , vj} ⊆ L. For each tuple
T in T , the set L contains either zero, one, or all of the elements in T , hence the number
of elements in T and ψ(L) is at most 1, which implies ψ(L) is a stable set of G. Now we
claim that L can be determined by ψ(L) and the elements in X0 ∩ L, as follows.

Claim 3.1.7.1. Let L′ be a stable set of G and let X ⊆ X0. There exists at most one
L ∈ L where ψ(L) = L′ and L ∩X0 = X.

Proof. Suppose towards a contradiction that there exist two sets L1, L2 ∈ L such that
ψ(L1) = ψ(L2) = L′ and L1∩X0 = L2∩X0 = X. Let v ∈ S be the minimum element with
respect to < that is in exactly one of L1, L2. Without loss of generality, say v ∈ L1 and
v /∈ L2. Since L

′ = ψ(L2) ⊆ L2, we know v is not in L′. The set L′ is also equal to ψ(L1),
so v is in L1, but not in ψ(L1). Therefore, there is a tuple (v1, v2, . . . , vj) ∈ T for which
{v1, v2, . . . , vj} ⊆ L1 and v ∈ {vi : i ∈ [j] \ {2}}. The element v1 is in X0, and L1 and L2

intersect X0 in the same set, so we know v ̸= v1; hence v ∈ {v3, . . . , vj}. Since v1 < v2 < v
and v is the minimum element with respect to < that is in exactly one of L1 and L2, it
follows that v2 is in L2. Therefore, since v1, v2 ∈ L2 and v /∈ L2, at least two but not all of
the elements in the tuple (v1, v2, . . . , vj) ∈ T are in L2, which contradicts the assumption
that L2 is linear with respect to K.
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The number of pairs (L′, X) where L′ is a stable set of G and X ⊆ X0 is i(G) · 2|X0|.
This is an upper bound on the number of sets in L by Claim 3.1.7.1.

3.2 Comparing extensions to stable sets

Now, we determine the auxiliary graph whose stable sets describe the scarce linear sub-
classes of a matroid. Counting the number of stable sets in certain graphs is an interesting
and well-studied problem itself, so the bounds we find throughout this thesis for the num-
ber of extensions of certain matroids may be of interest outside of the study of matroid
extensions as well.

Definition 3.2.1 (Hyperplane graph Π(M)). For a rank-n matroid M , we define the
hyperplane graph of M , denoted Π(M), to be the graph with vertex set H(M) where two
vertices (hyperplanes) H and H ′ are adjacent if and only if they intersect in a rank-(n−2)
flat of M .

Proposition 3.2.2. A set H′ ⊆ H(M) of hyperplanes is a scarce linear subclass of M if
and only if it is a stable set in Π(M).

Proof. The set H′ is a stable set of Π(M) if and only if, for each rank-(r(M)− 2) flat F in
M , at most one hyperplane that contains F is in H′. Thus, by definition, the set H′ is a
stable set of Π(M) if and only if it is a scarce linear subclass of M .

Consider a matroid M . In order to bound the number of extensions of M , we will
use Theorem 3.1.7 with Π(M). First, we define the sets that will play the roles of K and
X0 in the statement of Theorem 3.1.7. Let ≺ be a total ordering of H(M). For each
flat F of M , let HF be the set of hyperplanes of M that contain F . Let K(M) be the
collection of subsets H′ of H(M) such that there exists a rank-(r(M) − 2) flat F of M
where H′ = HF . Let Hmin(M,≺) be the collection of hyperplanes H ∈ H(M) such that,
for some H′ ∈ K(M), the hyperplane H is the minimum element of H′ with respect to
≺. If ≺ is a total ordering of H(M) that refines the preorder by size (that is, |H| ≺ |H ′|
whenever |H| < |H ′|), we will refer to the hyperplanes in this set as the small hyperplanes
of M . Except when the following lemma is applied to Corollary 3.2.6, it is always the case
in this thesis that ≺ refines the preorder by size.

Lemma 3.2.3. log i(Π(M)) ≤ log ext(M) ≤ log i(Π(M)) + |Hmin(M,≺)|.
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Proof. Since each scarce linear subclass is a linear subclass, the lower bound follows from
Proposition 3.2.2 and Theorem 3.1.1. We will prove the upper bound using Theorem 3.1.7.
First, we need to prove that Π(M) and Hmin(M,≺) satisfy the conditions of the theorem.

Claim 3.2.3.1. For each H′ ∈ K(M), the subgraph of Π(M) induced by H′ is a complete
graph.

Proof. Let F be the rank-(r(M) − 2) flat of M that is a subset of each hyperplane H in
H′. Consider H,H ′ ∈ H′. Since F ⊆ H and F ⊆ H ′, it follows that F ⊆ H ∩ H ′. Since
hyperplanes of M intersect in a flat of rank at most r(M) − 2, the intersection of H and
H ′ is F , which implies that H and H ′ are adjacent in Π(M).

Claim 3.2.3.2. Each edge in Π(M) is in Π(M)[H′] for at least one set H′ ∈ K.

Proof. Two hyperplanes H and H ′ are adjacent in Π(M) if and only if there exists H′ ∈
K(M) such that H,H ′ ∈ H′. Thus, each edge in Π(M) is in Π(M)[H′] for at least one set
H′ ∈ K.

Applying Theorem 3.1.7 with S = H(M), K = K(M), and X0 = Hmin(M,≺), we find
that the number of sets of hyperplanes that are linear with respect to K(M) is at most
i(Π(M)) · 2|Hmin(M,≺)|. By definition, the collection of subsets of H(M) that are linear with
respect to K(M) is precisely the collection of linear subclasses ofM . Now the upper bound
follows from Theorem 3.1.1.

In the following chapters, we will bound the number of stable sets in the hyperplane
graphs of certain matroids and the number of small hyperplanes, and then apply Lemma
3.2.3. Since we are also interested in coextensions, and it is sometimes easier to study the
circuits of a matroid rather than the hyperplanes of its dual, we prove a corollary that
restates Lemma 3.2.3 for coextensions. First we define the dual concept of the hyperplane
graph. Recall that C(M) is the set of circuits of a matroid M .

Definition 3.2.4 (Circuit graph Ω(M)). For a matroid M , we define the circuit graph of
M , denoted Ω(M), to be the graph with vertex set C(M) where two vertices (circuits) C
and C ′ are adjacent if and only if they are contained in a corank-2 restriction of M .

Proposition 3.2.5. A set C ′ ⊆ C(M) of circuits has the scarce circuit property if and only
if it is a stable set of Ω(M).
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Proof. The set C ′ is a stable set of Ω(M) if and only if, for each corank-2 restriction N of
M , at most one circuit in N is in C ′. Thus, by definition, the set C ′ is a stable set of Ω(M)
if and only if it has the scarce circuit property.

Let≺ be a total ordering of C(M). For each corank-2 restrictionN ofM , let CN ⊆ C(M)
be the set of circuits of N . Let KC(M) be the collection of subsets C ′ of C(M) such that
there exists a corank-2 restriction N ofM where C ′ = CN . Let Cmin(M,≺) be the collection
of circuits C ∈ C(M) such that, for some C ′ ∈ KC(M), the circuit C is the minimum element
of C ′ with respect to ≺. If ≺ is a total ordering of C(M) that refines the preorder by size,
which is always the case in this thesis, then we refer to the circuits in this set as the small
circuits of M .

Corollary 3.2.6. log i(Ω(M)) ≤ log coext(M) ≤ log i(Ω(M)) + |Cmin(M,≺)|.

Proof. Let ≺H be a total ordering of H(M) such that, for H,H ′ ∈ H(M), if |E(M)−H| <
|E(M) − H ′|, then H ≺H H ′. Note that, in this case, minimal with respect to ≺H

corresponds to largest with respect to size. Since coext(M) = ext(M∗), it follows from
Lemma 3.2.3 that

log i(Π(M∗) ≤ log coext(M) ≤ log i(Π(M∗)) + |Hmin(M
∗,≺H)|.

By Proposition 3.1.5, a set B of circuits of M has the scarce circuit property if and
only if H′ = {E(M) \C : C ∈ B} is a scarce colinear subclass of M . Thus, by Proposition
3.2.2, the stable sets of Π(M∗) correspond to sets of circuits of M that have the scarce
circuit property. By definition of the circuit graph, a set of circuits with the scarce circuit
property is a stable set of Ω(M). Therefore, the stable sets of Π(M∗) correspond to the
stable sets of Ω(M), which implies that i(Π(M∗)) = i(Ω(M)).

Now we claim that |Hmin(M
∗,≺H)| = |Cmin(M,≺)|, which will complete the proof. By

definition, a hyperplane H is in Hmin(M
∗,≺H) if and only if there exists a rank-(r(M∗)−2)

flat F of M∗ such that H is the minimum hyperplane with respect to ≺H that contains F .
By Proposition 3.1.2, the restriction M |(E(M) \F ) has corank 2 if and only if F has rank
r(M∗)− 2 in M∗. Therefore, there exists a rank-(r(M∗)− 2) flat F of M∗ such that H is
the minimum hyperplane with respect to ≺H that contains F if and only if C = E(M)\H
is the minimum circuit with respect to ≺ that is contained in M |(E(M) \ F ). Since a
circuit C is the minimum with respect to ≺ that is contained in a corank-2 restriction of
M if and only if C is in Cmin(M,≺), it follows that H is in Hmin(M,≺H) if and only if
E(M) \H is in Cmin(M,≺). Thus, |Hmin(M

∗,≺H)| = |Cmin(M,≺)|.
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In some cases, it will be useful to investigate only connected corank-2 restrictions instead
of all corank-2 restrictions. Therefore, we define a variation of the circuit graph, as follows.

Definition 3.2.7 (Overlap graph Θ(M)). For a matroid M , we define the overlap graph
of M , denoted Θ(M), to be the graph with vertex set C(M) where two vertices (circuits)
C and C ′ are adjacent if and only if they are contained in a connected corank-2 restriction
of M .

Observe that a set of circuits of M has the scarce theta property if and only if it is
a stable set of Θ(M). The name of the overlap graph is motivated by the overlap graph
of graphic matroids. In this setting, the circuits are cycles of a graph and two cycles are
adjacent if and only if they are contained in a theta subgraph; that is, they overlap in a
path.

Corollary 3.2.8. log i(Θ(M)) ≤ log coext(M) ≤ log i(Θ(M)) + |Cmin(M,≺)|.

Proof. If two circuits C,C ′ are in a connected corank-2 restriction, then they are in a
corank-2 restriction, so there exists a set E of edges in Ω(M) such that Ω(M)\E = Θ(M).
Thus, by Proposition 2.3.5, i(Ω(M)) ≤ i(Θ(M)). Now the upper bound follows from
Corollary 3.2.6.

By Proposition 3.1.6, if B is a stable set of Θ(M), then B has the scarce theta property.
If a set B of circuits of M has the scarce theta property, then H′ = {E(M) \C : C ∈ B} is
a colinear subclass of M . Therefore, by Theorem 3.1.1, the number of coextensions of M
is at least i(Θ(M)).

3.3 Extensions of uniform matroids

In this section, we give an example of using the hyperplane graph to count the extensions of
a specific matroid: the uniform matroid. For non-negative integers r and n where r ≤ n,
the uniform matroid of rank r on an n-element set, denoted Ur,n, is the matroid with
ground set [n] where every set of size at most r is independent. The hyperplanes of Ur,n

are precisely the subsets of [n] of size r − 1 and the rank-(r − 2) flats of Ur,n are precisely
the subsets of [n] of size r − 2. Therefore, the hyperplane graph of Ur,n has as vertices
the (r − 1)-subsets of [n] where two vertices are adjacent if and only if they intersect in a
(r − 2)-set.

For non-negative integers m and k where k ≤ m, the Johnson graph J(m, k) is the
graph whose vertices are the k-subsets of a fixed m-set where two vertices are adjacent

41



if and only if they intersect in k − 1 elements. Thus, the hyperplane graph Π(Ur,n) is
isomorphic to J(n, r− 1). In [17] by Graham and Sloane, Theorem 1 implies that J(m, k)
contains a stable set of size 1

m

(
m
k

)
. Since each subset of a stable set is itself a stable set

and J(n, r − 1) is isomorphic to Π(Ur,n), we immediately get the following proposition.

Proposition 3.3.1. log i(Π(Ur,n)) ≥ 1
n

(
n

r−1

)
.

The rank of an extension of a rank-r matroid is r, except for one extension which has
rank r + 1 (see page 269 in [40]). Therefore, the number of extensions of Ur,n is at most
one plus the number of rank-r matroids on n+ 1 elements.

Theorem 3.3.2 (Theorem 5.1.1 in [50] and Theorem 5 in [43]). Let m(n, r) denote the
number of rank-r matroids with ground set [n]. For all r ≥ 3 and n ≥ r + 12,

logm(n, r) ≤ 1

n− r + 1

(
n

r

)
log(e(n− r + 1)).

Now Proposition 3.3.1 and Lemma 3.2.3 imply the lower bound and Theorem 3.3.2
implies the upper bound of the following theorem.

Theorem 3.3.3. 1
n

(
n

r−1

)
≤ log ext(Ur,n) ≤ 1

n−r+2

(
n+1
r

)
log(e(n− r + 2)) + 1.
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Chapter 4

Stable sets in Hamming graphs

It turns out that Hamming graphs are very useful in enumerating the number of coexten-
sions of Dowling geometries. As we will see in Chapter 7, certain Hamming graphs are
“similar” to certain subgraphs of the circuit graph of a Dowling geometry. Since bounding
the number of stable sets in the circuit graph is a good strategy for bounding coexten-
sions, we are now interested in bounding the number of stable sets in certain Hamming
graphs. In fact, this is an interesting problem outside of the applications to matroid theory.
Hamming graphs are highly structured graphs with connections to areas of study such as
error-correcting codes and association schemes.

4.1 Introduction

Let t, n1, . . . , nt ∈ Z>0 and let S1, . . . , St be sets where Si contains ni elements for each
i ∈ {1, . . . , t}. Recall that the generalized Hamming graph H(n1, . . . , nt) is the graph whose
vertices are t-tuples in S1 × · · · × St where two vertices are adjacent if and only if they
differ in exactly one coordinate. Although generalized Hamming graphs seem like natural
graphs to study, much more commonly studied are Hamming graphs, which are general-
ized Hamming graphs where S1 = · · · = St. The problem of enumerating d-dimensional
order-n permutations is equivalent to counting maximum stable sets in H(n, n, . . . , n︸ ︷︷ ︸

d+1

).

Therefore, a result of Linial and Luria [26] implies that the number of maximum stable
sets in H(n, n, . . . , n︸ ︷︷ ︸

d+1

) is at most ((1 + o(1) n
ed
))n

d
.
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Hamming graphs where S1 = · · · = St = 2 are also known as Hamming cubes or
hypercubes and are denoted Qt. Enumerating stable sets in hypercubes is well studied.
Incredibly, the number of stable sets in Qt is known up to lower order terms, rather than
lower order terms on the log scale. This was first shown by Korshunov and Sapozhenko
[24] in 1983 who proved that i(Qt) = 2

√
e22

t−1
(1 + ot(1)). Since then, several refinements

of the asymptotics have been made.

On the other hand, enumerating all stable sets in Hamming graphs or generalized
Hamming graphs has not been as widely studied. Thus, even though the original goal of
the results in this chapter was to assist in counting coextensions of Dowling geometries,
we see these results as a nice contribution to the study of Hamming graphs as well.

In the rest of this thesis, we will usually use “Hamming graph” to refer to a generalized
Hamming graph. Furthermore, without loss of generality, we assume Si = [ni] for each i
and n1 ≤ · · · ≤ nt, unless otherwise specified. Note that, equivalently, the Hamming graph
H(n1, . . . , nt) is isomorphic to the Cartesian product Kn1□ . . .□Knt .

4.2 Preliminaries

The independence numbers of Hamming graphs are well known, but we give a proof in the
following proposition.

Proposition 4.2.1. Let t, n1, . . . , nt ∈ Z>0 such that n1 ≤ · · · ≤ nt. The independence
number of H = H(n1, . . . , nt) is α(H) =

∏t−1
i=1 ni.

Proof. Consider a set of vertices X = {(v1, . . . , vt) ∈ V (H) :
∑t

i=1 vi mod nt = 0}. We
claim thatX is a stable set. Suppose towards a contradiction that (v1, . . . , vt), (u1, . . . , ut) ∈
X are adjacent in H. Thus, there exists k ∈ [t] such that vk ̸= uk and vi = ui for all
i ∈ [t] \ {k}. Since

∑t
i=1 vi mod nt = 0 =

∑t
i=1 ui mod nt, we know vk ≡ vk −

∑t
i=1 vi ≡

uk −
∑t

i=1 ui ≡ uk (mod nt). Since vk, uk ∈ [nk] and nk ≤ nt, it follows that vk = uk,
which is a contradiction. Now we have that X is a stable set. For each i ∈ [t−1], there are
ni choices for coordinate vi, and there is one choice for coordinate vt; hence |X| =

∏t−1
i=1 ni

and this is a lower bound for α(H).

Since H is isomorphic to a Cartesian product of cliques, we have
∏t−1

i=1 ni copies of Knt

and a stable set can have at most one vertex from each of these copies; thus α(H) ≤
∏t−1

i=1 ni.
Now it follows that α(H) =

∏t−1
i=1 ni.
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Hamming graphs with two parameters (i.e. H(n1, n2)) are sometimes known as rook
graphs. The well-known problem of finding the number of ways to place non-attacking
rooks on an n1 × n2 chessboard can be modelled by the stable sets of this graph. In
particular, each stable set in H(n1, n2) of size k corresponds to a placement of k non-
attacking rooks on an n1 × n2 chessboard. The rook graph is also isomorphic to the line
graph of a complete bipartite graph L(Kn1,n2), which is a graph with vertex set E(Kn1,n2)
where vertices e1, e2 are adjacent if and only if e1 and e2 are incident in Kn1,n2 . The stable
sets of a line graph L(G) correspond to matchings in G, so the number of stable sets in
H(n1, n2) is also equal to the number of matchings in Kn1,n2 .

In the next lemma, we give the asymptotic number of stable sets in H(n, n), which is
also the number of ways to place a set of non-attacking rooks on an n× n chessboard and
the number of matchings in Kn,n. Recall that log denotes the base-2 logarithm.

Lemma 4.2.2. If n ≥ 1 and H = H(n, n), then log i(H) = n log n(1 + o(1)).

Proof. Let S be the collection of stable sets of H. For each k ∈ [0, n], let Sk = {S ∈ S :
|S| = k}. By Proposition 4.2.1, the largest stable sets in H have size n, so S =

⋃n
k=0 Sk.

Thus, we have i(H) =
∑n

k=0 |Sk|.
Note that |S0| = 1. Let k ∈ [n] and consider a stable set S in Sk. Recall that each

vertex of H is a pair (x, y) where x, y ∈ [n]. Let (x1, y1), (x2, y2), . . . , (xk, yk) be the vertices
in S where x1 ≤ x2 ≤ · · · ≤ xk. Since S does not contain pairs that have the same first
coordinate or that have the same second coordinate, it follows that X = {x1, x2, . . . , xk}
and Y = {y1, y2, . . . , yk} are k-subsets of [n]. Thus, there are

(
n
k

)
choices for each of the

sets X and Y . Since there are k! ways to order the elements of Y , there are k! ways to

pair the elements in Y with those in X. Therefore, there are
(
n
k

)2
k! stable sets in Sk.

Claim 4.2.2.1.
∑n

k=1

(
n
k

)2
k! ≤ nn+1.

Proof.
n∑

k=1

(
n

k

)2

k! =
n∑

k=1

n!2

k!(n− k)!2

=
n∑

k=1

(
(n)(n− 1) . . . (n− k + 1)

)(
(n)(n− 1) . . . (k + 1)

)
(n− k)!

≤
n∑

k=1

nknn−k

= nn+1.
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Since i(H) =
∑n

k=0 |Sk|, it follows from Claim 4.2.2.1 that i(H) ≤ 1 + nn+1 =
2n logn(1+o(1)). Since |Sn| = n!, we know log i(H) ≥ log n! ≥ n log n − n log e = n log n(1 +
o(1)). Combining the lower and upper bounds gives log i(H) = n log n(1 + o(1)).

4.3 The main results

In this section, we first prove bounds on the number of stable sets in a standard Hamming
graph (where each coordinate of each vertex is taken from the same set). Then, we prove
bounds on the number of stable sets of a particular generalized Hamming graph, which
will be useful in Chapter 7.

For a tuple v = (v1, . . . , vk) whose coordinates are integers, let ϕ(v) =
∑k

i=1 vi. For
ℓ,m ∈ [k], let ϕm

ℓ (v) =
∑m

i=ℓ vi.

Theorem 4.3.1. If n ≥ 2 and t ≥ 2, then

1
t
nt−1 log(t(n− 1)) ≤ log i(H(n, . . . , n︸ ︷︷ ︸

t

)) ≤ nt−1 log n(1 + 2
n
).

Proof. Let H = H(n, . . . , n︸ ︷︷ ︸
t

). If t = 2, then the result follows from Lemma 4.2.2. Thus, we

may assume that t ≥ 3.

Since H is a t(n − 1)-regular graph on nt vertices, it follows from Theorem 2.3.9 that
log i(H) ≥ ⌊ nt

t(n−1)
⌋ log(t(n− 1)) ≥ 1

t
nt−1 log n(1 + log t

logn
+ o(1)).

Let H ′ = H(n, n). For each (t− 2)-tuple T whose coordinates are in [n], let VT = {v =
(v1, v2, . . . , vt) ∈ V (H) : (v1, v2, . . . , vt−2) = T}. Since the first t − 2 coordinates of each
vertex in VT are fixed, the graph H[VT ] is isomorphic to H ′. Since each vertex of H is in
VT for exactly one tuple T , these vertex sets partition V (H). Since there are nt−2 tuples
in [n]t−2, there are nt−2 sets VT . By Proposition 2.3.7, we have i(H) ≤ i(H ′)n

t−2
. By the

proof of Lemma 4.2.2, we have i(H ′) ≤ 1 + nn+1 ≤ nn+2. Therefore,

log i(H) ≤ nt−2 log i(H ′)

≤ nt−1 log(n)(1 + 2
n
)

This establishes the upper bound for i(H).
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Theorem 4.3.2. If (an)n∈Z>0 , (bn)n∈Z>0 are increasing sequences of positive integers such
that limn→∞

log an
log bn

= 0 and (sn)n∈Z>0 , (tn)n∈Z>0 are non-decreasing sequences of positive
integers, then

1
t
asnn b

tn−1
n log(bn)(1 + o(1)) ≤ log i(H(an, . . . , an︸ ︷︷ ︸

sn

, bn, . . . , bn︸ ︷︷ ︸
tn

)) ≤ asnn b
tn−1
n log(bn)(1 + o(1)).

Proof. Assume n is sufficiently large enough to ensure that an ≤ bn. Let a = an, b = bn,
s = sn, and t = tn. For each i ∈ [s], let Xi = [0, a− 1]. For each i ∈ [t], let Yi = [0, b− 1].
Let H = H(a, . . . , a︸ ︷︷ ︸

s

, b, . . . , b︸ ︷︷ ︸
t

) where, without loss of generality, the vertices of H are the

(s+ t)-tuples of X1 × · · · ×Xs × Y1 × · · · × Yt. Let H ′ = H(b, . . . , b︸ ︷︷ ︸
t

).

For each s-tuple S whose coordinates are in [a], let VS = {v = (v1, v2, . . . , vs+t) ∈
V (H) : (v1, v2, . . . , vs) = S}. Since the first s coordinates of each vertex in Vi are fixed,
the graph H[Vi] is isomorphic to H ′. Since each vertex of H is in VS for exactly one
tuple S, these vertex sets partition V (H). Since there are as tuples in [a]s, there are
as sets VS. By Proposition 2.3.7, we have i(H) ≤ i(H ′)a

s
. By Theorem 4.3.1, we have

i(H ′) ≤ bt−1 log(b)(1 + 2
b
) Therefore,

log i(H) ≤ as log i(H ′)

= asbt−1 log(b)(1 + 2
b
).

This establishes the upper bound for i(H). We now focus on a lower bound.

For each i ∈ [0, b − 1], let Ui = {v ∈ V (H) : ϕ(v) ≡ i (mod b)}. We claim that
each Ui is a stable set in H. Let i ∈ [0, b − 1] and suppose towards a contradiction that
u = (u1, . . . , us+t) ∈ Ui and v = (v1, . . . , vs+t) ∈ Ui are adjacent in H. Thus, there exists
k ∈ [s+t] such that uk ̸= vk and uj = vj for all j ∈ [s+t]\{k}. Therefore, since ϕ(u) ≡ ϕ(v)
(mod b), it follows that uk ≡ vk (mod b). Since 0 ≤ uk, vk < b, we find uk = vk, which is a
contradiction.

To construct a vertex (u1, . . . , us+t) in some Ui, there are a choices for each of u1, . . . , us
and b choices for each of us+1, . . . , us+t−1. There is one choice for us+t since the sum must
be equivalent to i (mod b). Hence |Ui| = asbt−1.

Let d = ⌈ b
a
⌉. Let H0 be the graph induced on U0 ∪ Ua ∪ U2a ∪ · · · ∪ U(d−1)a. Notice

that |V (H0)| = asbt−1d, since it is made up of d disjoint sets, each of size asbt−1. For each
s-tuple σ ∈ [0, a − 1]s, let Hσ

0 be the subgraph of H0 induced on {v = (v1, . . . , vs+t) ∈
V (H0) : (v1, . . . , vs) = σ and ϕs+t

s+1(v) ≡ 0 (mod a)}. Let σ0 ∈ [0, a − 1]s be the s-tuple
whose coordinates are all 0.
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Claim 4.3.2.1. Let i ∈ {0, a, 2a, . . . , (d − 1)a}, and let σ ∈ [0, a − 1]s where ϕ(σ) ≡ i
(mod b). The graph Hσ

0 is isomorphic to Hσ0
0 .

Proof. Define a function f : V (Hσ
0 ) → V (Hσ0

0 ), as follows. For each (v1, . . . , vs+t) ∈
V (Hσ

0 ), let f((v1, . . . , vs+t)) = σ0 · (vs+1, . . . , vs+t) = (0, . . . , 0, vs+1, . . . , vs+t). Now define
a function g : V (Hσ0

0 ) → V (Hσ
0 ) where, for each (0, . . . , 0, vs+1, . . . , vs+t) ∈ V (Hσ0

0 ), we
let g((0, . . . , 0, vs+1, . . . , vs+t)) = σ · (vs+1, . . . , vs+t). Since (v1, . . . , vs) = σ for all tuples
(v1, . . . , vs+t) in H

σ
0 , the function g is the inverse of f , which implies f is a bijection between

the vertices in Hσ
0 and the vertices in Hσ0

0 .

Consider u, v ∈ V (Hσ
0 ). Let u = (u1, . . . , us+t) and v = (v1, . . . , vs+t). Since u and v are

different vertices, they differ in at least one coordinate. Let D ⊆ [s+ t] be the set of indices
such that, for k ∈ D, we have uk ̸= vk. Since u and v are in Hσ

0 , their first s coordinates are
the same. Therefore, we know D ⊆ [s+1, s+ t]. Since f(u) = (0, . . . , 0, us+1, . . . , us+t) and
f(v) = (0, . . . , 0, us+1, . . . , us+t), it follows that f(u) and f(v) differ by |D| coordinates. If
u and v are adjacent, then |D| = 1, so f(u) and f(v) are adjacent. Similarly, if u and v
are not adjacent, then |D| > 1, so f(u) and f(v) are not adjacent.

Since V (Hσ0
0 ) = {v = (v1, . . . , vs+t) ∈ V (H0) : (v1, . . . , vs) = (0, . . . , 0) and ϕs+t

s+1(v) ≡ 0
(mod a)}, for a tuple v = (v1, . . . , vs+t) in V (Hσ0

0 ), there is one choice for each of v1, . . . , vs
and there are b choices for each of vs+1, . . . , vs+t−1. Since ϕs+t

s+1(v) ≡ 0 (mod a), it follows
that ϕs+t

s+1(v) = aj for some j ∈ Z. Since vs+t ∈ [0, b− 1],

ϕs+t−1
s+1 (v) ≤ aj ≤ ϕs+t−1

s+1 (v) + (b− 1).

Therefore, there are at most ⌊ b−1
a
⌋+ 1 ≤ ⌈ b

a
⌉ = d choices for j and hence for vs+t. Now it

follows that
|V (Hσ0

0 )| ≤ bt−1d. (4.1)

Claim 4.3.2.2. Let i ∈ {0, a, 2a, . . . , (d − 1)a}, and let σ ∈ [0, a − 1]s where ϕ(σ) ≡ i
(mod b). The graph Hσ

0 is a union of components of H0.

Proof. Let u = (u1, . . . , us+t) ∈ V (Hσ
0 ) and let v = (v1, . . . , vs+t) ∈ V (H0) \ V (Hσ

0 ).
Suppose towards a contradiction that u and v are adjacent in H0. Therefore, there exists
k ∈ [s+ t] such that uk ̸= vk and uj = vj for all j ∈ [s+ t] \ {k}. Since v is not in Hσ

0 , the
tuple (v1, . . . , vs) is not equal to (u1, . . . , us). That is, the tuples u and v differ in at least
one coordinate, which implies that k ∈ [s]. For each i ∈ [0, b− 1], the set of vertices Ui is a
stable set, so u and v are not both in Ui. Therefore, there exist integers i ̸= j ∈ [0, d− 1]
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such that ϕ(u) ≡ ai (mod b) and ϕ(v) ≡ aj (mod b). Without loss of generality, assume
that i > j. This implies that

uk − vk = ϕ(u)− ϕ(v) ≡ a(i− j) (mod b),

where (i−j) ∈ [0, d−1]. Since uk ̸= vk, we have (i−j) ∈ [d−1]. Thus, since a ≤ a(i−j) < b,
it follows that uk − vk = a(i− j). That is, we have uk = vk + a(i− j) ≥ vk + a, which is a
contradiction, since uk, vk ∈ [0, a− 1].

Let d′ = ⌊ b
a
⌋ and define integers d1, d2, . . . , dt such that d1 = d2 = · · · = dt = d′.

Next, we will show that Hσ0
0 contains at−1 disjoint induced subgraphs isomorphic to H ′ =

H(d1, d2, . . . , dt). Let T be the collection of tuples τ = (τ1, . . . , τt) ∈ [0, a − 1]t where
ϕ(τ) ≡ 0 (mod a). For each tuple τ = (τ1, . . . , τt) ∈ T , let H ′

τ denote the subgraph of Hσ0
0

induced on the vertex set

{v = (v1, . . . , vs+t) ∈ V (Hσ0
0 ) : vs+i = τi + aj where j ∈ [0, d′ − 1], for each i ∈ [t]}.

Consider a vertex v = (v1, . . . , vs+t) in Hσ0
0 . Recall that ϕs+t

s+1(v) ≡ 0 (mod a). For each
i ∈ [t], we have vs+i ∈ [0, b−1]. If r ∈ [0, a−1] and j ∈ [0, d′−1], then r+aj ∈ [0, a⌊b/a⌋−1].
Thus, if each vs+i ≤ a⌊b/a⌋ − 1, then v is in H ′

τ for some τ ∈ T . Let G be the subgraph of
Hσ0

0 induced on
⋃

τ∈T V (H ′
τ ). Note that by Proposition 2.3.4, we have i(Hσ0

0 ) ≥ i(G).

Claim 4.3.2.3. For each τ = (τ1, . . . , τt) ∈ T , the graph H ′
τ is a union of components of

G.

Proof. Consider τ ∈ T . Let u = (u1, . . . , us+t) ∈ V (H ′
τ ) and v = (v1, . . . , vs+t) ∈ V (G) \

V (H ′
τ ). Suppose towards a contradiction that u and v are adjacent in G. Therefore, there

exists k ∈ [s+ t] such that uk ̸= vk and uj = vj for all j ∈ [s+ t] \ {k}. Since u and v are
both in G, it follows that (u1, . . . , us) = (v1, . . . , vs), so we know k ∈ [s + 1, s + t]. Also,
since u and v are both in G, we have ϕs+t

s+1(u) ≡ ϕs+t
s+1(v) ≡ 0 (mod a). Since u is in H ′

τ ,
there exists j ∈ [0, d′ − 1] such that uk = τk−s + aj. Therefore,

vk = ϕs+t
s+1(v)− ϕs+t

s+1(u) + uk

= ϕs+t
s+1(v)− ϕs+t

s+1(u) + τk−s + aj

≡ τks (mod a).

This implies that vk = τk−s + ai for some integer i. Since v is in G, we have vk ∈
[0, ad′ − 1], which implies that i ∈ [0, d′ − 1]. Therefore, the vertex v is in H ′

τ , which is a
contradiction.
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Claim 4.3.2.4. If τ ∈ T , then the graph H ′
τ is isomorphic to the Hamming graph H ′.

Proof. Let τ = (τ1, . . . , τt). Define a function f : V (H ′
τ ) → V (H ′), as follows. For

each v = (v1, . . . , vs+t) ∈ V (H ′
τ ), let f(v) = (x1, . . . , xt) where xi = (vs+i − τi)/a for

each i ∈ [t]. By definition of H ′
τ , each xi is an integer in [0, d′ − 1], which implies that

(x1, . . . , xt) ∈ V (H ′).

Now define a function g : V (H ′) → V (H ′
τ ), as follows. For each x = (x1, . . . , xt) ∈

V (H ′), let g(x) = σ0 · (vs+1, . . . , vs+t) where vs+i = τi + axi for each i ∈ [t]. By definition
of H ′

τ and since each xi ∈ [0, d′ − 1], we know σ0 · (vs+1, . . . , vs+t) ∈ V (H ′
τ ). Since g is the

inverse of f , the function f is a bijection.

Consider u, v ∈ V (H ′
τ ). Let u = (u1, . . . , us+t) and v = (v1, . . . , vs+t). Since u and v are

different vertices, they differ in at least one coordinate. Let D ⊆ [s+ t] be the set of indices
such that, for k ∈ D, we have uk ̸= vk. Since u and v are in V (H ′

τ ) ⊆ V (Hσ
0 ), their first s

coordinates are the same. Therefore, we know D ⊆ [s + 1, s + t]. Let f(u) = (x1, . . . , xt)
and let f(v) = (y1, . . . , yt). Let D

′ ⊆ [s+1, s+ t] be the set of indices such that, for k ∈ D′,
we have xk−s ̸= yk−s.

Consider k ∈ [s + 1, s + t]. Observe that uk = τk−s + axk−s and vk = τk−s + ayk−s.
If k ∈ D, then τk−s + axk−s ̸= τk−s + ayk−s. Thus, xk−s ̸= yk−s, which implies k ∈ D′.
If k /∈ D, then τk−s + axk−s = τk−s + ayk−s. Thus, xk−s = yk−s, which implies k /∈ D′.
Therefore, since k ∈ D if and only if k ∈ D′, it follows that D = D′. Thus, the number
of coordinates that u and v differ by is equal to the number of coordinates that f(u) and
f(v) differ by. Hence u and v are adjacent if and only if f(u) and f(v) are adjacent.

By Claim 4.3.2.3 and Proposition 2.3.6, we have log i(G) =
∑

τ∈T log i(H ′
τ ). By Claim

4.3.2.4 and Theorem 4.3.1, it follows that log i(H ′
τ ) ≥ 1

t
(d′)t−1 log(t(d′ − 1)). Since |T | =

at−1,

log i(G) ≥
∑
τ∈T

1
t
(d′)t−1 log(t(d′ − 1)) = 1

t
(ad′)t−1 log d′(1 + o(1)).

Since ad′ ≥ b− a and limn→∞
log a
log b

= 0,

log i(G) ≥ 1
t
(b− a)t−1 log b(1 + log a

log b
+ o(1)) ≥ 1

t
bt−1 log b(1 + o(1)).

By Claims 4.3.2.2 and 4.3.2.1, the graph H0 is made up of unions of components that
are isomorphic to Hσ0

0 . Using Equation 4.1, we find that the number of these unions of
components is:

|V (H0)|
|V (Hσ0

0 )|
≥ asbt−1d

bt−1d
= as.
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By Proposition 2.3.6, it follows that log i(H0) ≥ as log i(Hσ0
0 ). Now, since i(Hσ0

0 ) ≥ i(G),

log i(H0) ≥ as log i(Hσ0
0 ) ≥ 1

t
asbt−1 log b(1 + o(1)).

Finally, since H0 is an induced subgraph of H, it follows from Proposition 2.3.4 that

log i(H) ≥ 1
t
asbt−1 log b(1 + o(1)).
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Chapter 5

Container methods

In this chapter, we start by introducing container methods , which are novel methods that
bound the number of stable sets in a graph. We then describe a container method for
sufficiently dense graphs that we will use as a black box later in this thesis. Last, we prove
our own variation of an existing container method for regular graphs.

The work in this chapter is partially based on the course on container methods taught
by Jorn van der Pol in 2020.

5.1 Introduction

Many structures in mathematics can be expressed as stable sets in graphs, which means
strategies for counting stable sets have a wide range of applications. We have already
seen that scarce linear subclasses can be represented as stable sets in a graph. Other
applications include counting Sidon sets, sum-free sets, codes, antichains in posets, graph
colourings, triangle-free graphs, and H-free graphs. Container methods for graphs were
first used in the 1980’s by Kleitman and Winston [19, 21]. Since then, container methods
have been developed and used by various authors to solve a variety of problems that can be
reduced to counting stable sets in certain graphs (see the survey by Samotij [48]). There is
also a body of research on container methods for hypergraphs, which began in the 2010’s
with Balogh, Morris, and Samotij [4] and Saxton and Thomason [49].

The broad strategy of a container method is to construct a collection of vertex subsets,
called containers, such that each stable set is contained within one, bound the size of each
container, and then bound the number of containers. In order to construct the containers,
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we usually start by proving a lemma, called a supersaturation lemma, which establishes a
density property of the graph. An algorithm, usually called a scythe algorithm, uses the
supersaturation lemma to greedily construct containers for stable sets of a certain size. The
algorithm associates each container with another smaller vertex set, called a fingerprint.
Using the number of fingerprints, the number of subsets of each container, and a bound
on the number of stable sets smaller than those considered in the scythe algorithm, an
elementary argument then gives a bound on the total number of stable sets.

5.2 Sufficiently dense graphs

In 2015, Kohayakawa, Lee, Rödl, and Samotij [23] developed a container method for graphs
with a certain density condition, which they applied to the problem of enumerating Sidon
sets. Their application to Sidon sets is not relevant to us, but we will use their container
method. The following theorem is Lemma 3.1 in [23]. Let eG(X) denote |E(G[X])|, the
number of edges induced by a subset X of vertices of a graph G. Let i(G,m) denote the
number of m-element stable sets in a graph G.

Theorem 5.2.1 (Lemma 3.1 in [23]). Let q,N ∈ Z>0, R ∈ R>0, and 0 ≤ β ≤ 1 be such
that

R ≥ e−βqN.

Let G be an N-vertex graph with the property that

eG(U) ≥ β

(
|U |
2

)
for every U ⊆ V (G) containing at least R vertices. For every m ≥ q,

i(G,m) ≤
(
N

q

)(
R

m− q

)
.

In the following corollary, we use Theorem 5.2.1 to bound the total number of stable
sets in a graph G that satisfies the property in the theorem.

Corollary 5.2.2. Let q,N ∈ Z>0, R ∈ R>0, and 0 ≤ β ≤ 1 be such that

R ≥ e−βqN.
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Let G be an N-vertex graph with the property that

eG(U) ≥ β

(
|U |
2

)
for every U ⊆ V (G) containing at least R vertices. The number of stable sets in G is at
most (

eN

q

)q

· 2R.

Proof. Since the graph G contains at most
∑q

j=0

(
N
j

)
vertex subsets of size at most q, the

number of stable sets of G of size at most q is at most
∑q

j=0

(
N
j

)
≤

(
eN
q

)q
. By Theorem

5.2.1, and since
(
N
q

)
≤

(
eN
q

)q
,

i(G) =

q∑
j=0

i(G, j) +
N∑

m=q+1

i(G,m)

≤
(
eN

q

)q

+
N∑

m=q+1

(
N

q

)(
R

m− q

)

≤
(
eN

q

)q(
1 +

R∑
j=1

(
R

j

))
=

(
eN

q

)q

· 2R.

This corollary will be used in Subsection 6.2.5. In order to apply it to a graph G, we
will first need to prove that subsets of V (G) of a certain size induce a sufficient number of
edges; that is, G is sufficiently dense. This is done with a supersaturation lemma, which
we will need for each application of this corollary.

5.3 Spectral method for regular graphs

In this section, we develop a container method for regular graphs. Our method is a variation
of that used in Alon, Balogh, Morris, and Samotij’s 2014 paper [2]. However, we use the
same supersaturation lemma. In this section, and when applying spectral methods, we
assume all graphs are simple.
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Spectral graph theory refers to the study of graphs through parameters, such as eigen-
values, of their associated matrices, such as adjacency matrices. The adjacency matrix of
a graph G with n vertices is the n× n matrix A whose rows and columns are indexed by
V (G) such that the entries corresponding to vertices u and v is 1 if u and v are adjacent
and 0 otherwise. The eigenvalues of a graph G are the eigenvalues of its adjacency matrix.

The following result is the supersaturation lemma from [2].

Lemma 5.3.1 (One-sided Expander Mixing Lemma [2]). Let G be a d-regular N-vertex
graph with smallest eigenvalue −λ. For any vertex subset U ⊆ V (G), the number of edges
induced by U satisfies

e(U) ≥ d|U |2

2N
− 1

2
λ|U |

(
1− |U |

N

)
.

We now prove our own version of a container method using the following algorithm.
This algorithm is based on the one in [2].

For a graph G, let Ind(G) denote the collection of stable sets of G. The maximum-
degree ordering of a set A = {u1, u2, . . . , u|A|} of vertices in a graph G is the sequence
(v1, v2, . . . , v|A|) of the vertices in A such that vi = uj where uj has maximum degree in
G[A \ {v1, . . . , vi−1}] and ties are broken by indices; that is, j ≤ k for all vertices uk that
have maximum degree in G[A \ {v1, . . . , vi−1}].

Algorithm 1: Adaptation of the algorithm in [2]

Input: (G, I, ε)
S0 ← ∅
A0 ← V (G) where the vertices of G are labelled using the set [|V (G)|]
for i = 1, . . . , d− ε(d+ λ) do

Si ← Si−1

Ai ← Ai−1

while |Ai| > d+λ−i
d+λ

N do
v ← first vertex in the maximum degree ordering of Ai

if v /∈ I then
Ai ← Ai \ {v}

else
Si ← Si ∪ {v}
Ai ← Ai \ ({v} ∪NG(v))

end

end

end
Output: (Sd−ε(d+λ), Ad−ε(d+λ))
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Theorem 5.3.2. For each d-regular N-vertex graph G with smallest eigenvalue −λ and
ε > 0, there exist functions S : Ind(G)→ 2V (G) and A : 2V (G) → 2V (G) such that for every
I ∈ Ind(G):

(i) (S(I), A(I)) is the output of Algorithm 1 on input (G, I, ε);

(ii) S(I) ⊆ I and I ⊆ S(I) ∪ A(S(I));

(iii) |S(I)| ≤ N ln(ε−1)
d+λ

+ d; and

(iv) |A(S(I))| ≤
(

λ
d+λ

+ ε
)
N .

Before we prove Theorem 5.3.2, consider Algorithm 1. The input of Algorithm 1, is
a d-regular N -vertex graph G with smallest eigenvalue −λ, a stable set I of G, and a
positive real number ε. The algorithm defines two sequences of sets S0, S1, . . . , Sd−ε(d+λ)

and A0, A1, . . . , Ad−ε(d+λ). The algorithm starts by setting S0 to be the empty set and A0

to be the vertex set of G. Note that we arbitrarily label the vertices of G so that there is
exactly one maximum degree ordering of each subset of vertices.

Algorithm 1 constructs its output sets in a sequence of steps, which is its main difference
from the algorithm in [2]. At each step i ∈ {1, . . . , d − ε(d + λ)}, the set Si is initially
equal to Si−1 and Ai is initially equal to Ai−1. The final sets Si and Ai are obtained by
repeating the following process. If the first vertex v in a maximum degree ordering of Ai

is not in the given stable set I, then remove v from Ai; otherwise, add v to Si and remove
v and the neighbours of v from Ai. This process is repeated as long as the size of Ai is
greater than d+λ−i

d+λ
N . After the two sequences of sets are created, the algorithm outputs

(Sd−ε(d+λ), Ad−ε(d+λ)).

The idea is to create a subset S of I that has bounded size, while keeping track of the
number of remaining vertices A. This way I is a superset of S and a subset of S ∪ A. In
the setting of container methods, the set S is referred to as the fingerprint of I and the set
S ∪A is referred to as the container of I. We then claim that if (S,A) is the output of the
algorithm on input (G, I, ε), then (S,A) is also the output on input (G,S, ε). That is, the
set S is the fingerprint of both I and S, and the set S ∪ A is the container of both S and
I. Since every stable set of G receives a fingerprint and a container from the algorithm, we
can upper bound the number of stable sets using upper bounds on the size and number of
fingerprints and containers.

Proof of Theorem 5.3.2. Let I be a stable set of G and suppose (S(I), A(I)) is the output
of Algorithm 1 on input (G, I, ε). Thus, statement (i) is satisfied. Each vertex v ∈ I begins
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in A0 and at each step i ∈ {1, . . . , d − ε(d + λ)}, either remains in Ai or is moved to Si.
Thus, the set S(I) is a subset of I and I is a subset of S(I) ∪ A(I).

Claim 5.3.2.1. If (S,A) is the output of Algorithm 1 on input (G, I, ε), then (S,A) is the
output of the algorithm on input (G,S, ε).

Proof. Let (v1, . . . , vr) and (v′1, . . . , v
′
r′) be the vertices selected as v by the algorithm on

input (G, I, ε) and (G,S, ε), respectively. Let (S ′, A′) be the output of the algorithm on
input (G,S, ε). We will show that S = S ′ and A = A′. Let X0 = V (G) and for i ∈ [r],
let Xi = Xi−1 − {vi} if vi /∈ I and Xi = Xi−1 − ({vi} ∪ NG(vi)) otherwise. Similarly, let
X ′

0 = V (G) and for i ∈ [r′], let X ′
i = X ′

i−1−{v′i} if v′i /∈ S and X ′
i = X ′

i−1− ({v′i}∪NG(v
′
i)).

otherwise. The Xi’s and X ′
i’s in this proof are constructed in the same way that the Ai

sets are constructed in the algorithm, although here a new Xi or X
′
i is defined for each

selected vertex v, rather than for each of d− ε(d + λ) steps. Thus, the set Xr is equal to
A and similarly, the set X ′

r′ is equal to A
′.

Let v0 = v′0 = 0 be defined for convenience in the following induction argument. Sup-
pose vi−1 = v′i−1 and Xi−1 = X ′

i−1 for all 1 ≤ i ≤ k for some k ∈ [r]. Since Xk−1 = X ′
k−1,

the first vertex in the maximum degree ordering of Xk−1 is the same as the first vertex in
the maximum degree ordering of X ′

k−1, hence vk = v′k. Since S is a subset of I, if vk is not
in I, then vk is not in S. If vk is in I, then the algorithm adds vk to the first output set
S. Therefore, the vertex vk is in I if and only if it is in S. It now follows from the way Xk

and X ′
k are constructed that Xk = X ′

k. Thus, by induction, we have vi = v′i and Xi = X ′
i

for all i ∈ [r].

This implies that the same vertices are selected and the same sets are created at each
step in the algorithm on inputs (G, I, ε) and (G,S, ε). In particular, r = r′ and A = Xr =
X ′

r′ = A′ and S = {vi ∈ I : i ∈ [r]} = {v′i ∈ S : i ∈ [r]} = S ′.

By Claim 5.3.2.1, A(I) = A(S(I)). Therefore, the set S(I) is a subset of I and I is a
subset of S(I) ∪ A(S(I)), so (ii) is satisfied.

Let phase i be the ith iteration of the for loop. Consider phase i for some 1 ≤ i ≤
d− ε(d+λ). In phase i, we obtain Si from Si−1 and Ai from Ai−1. Throughout this phase,
the set Ai has size greater than

d+λ−i
d+λ

N . Therefore, by the Expander Mixing Lemma 5.3.1,
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the average degree in G[Ai] during phase i is

2e(Ai)

|Ai|
≥ d|Ai|

N
− λ

(
1− |Ai|

N

)
>
d · d+λ−i

d+λ
N

N
− λ

(
1−

d+λ−i
d+λ

N

N

)
= d · d+ λ− i

d+ λ
+ λ · d+ λ− i

d+ λ
− λ

= d+ λ− i− λ
= d− i.

(5.1)

That is, the first vertex in the maximum degree ordering of G[Ai] has degree at least
d− i+ 1.

At the beginning of phase i, we set Ai = Ai−1 and due to the previous (i − 1) phase,
we know |Ai−1| ≤ d+λ−i+1

d+λ
N . In the last iteration of the while loop during phase i, the set

Ai has size greater than
d+λ−i
d+λ

N and then either 1 or at least d− i+1 vertices are removed
from it. Since at least d− i+ 1 vertices are removed from Ai each time a vertex is added
to Si, the number of vertices added to Si during phase i is at most

|Si| − |Si−1| ≤
|Ai−1| − |Ai|
d− i+ 1

+ 1 <
d+λ−i+1

d+λ
N − d+λ−i

d+λ
N

d− i+ 1
+ 1

=
N

(d+ λ)(d− i+ 1)
+ 1.

Therefore,

|Sd−ε(d+λ)| =
d−ε(d+λ)∑

i=1

(|Si| − |Si−1|)

≤
d−ε(d+λ)∑

i=1

(
N

(d+ λ)(d− i+ 1)
+ 1

)

=
N

d+ λ

d∑
i=1+ε(d+λ)

1

i
+ d.

(5.2)

The sum
∑d

i=1+ε(d+λ)
1
i
is a left method Riemann sum approximation of

∫ d

ε(d+λ)
1
x
dx,

which evaluates to ln(d)− ln(ε(d+ λ)). Since d
ε(d+λ)

≤ 1
ε
, the sum

∑d
i=1+ε(d+λ)

1
i
is at most
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ln(ε−1). Applying this to Equation 5.2 gives

|Sd−ε(d+λ)| ≤
N

d+ λ
ln

(
1

ε

)
+ d.

Since S(I) = Sd−ε(d+λ), it follows from the equation above that S(I) has size at most
N

d+λ
ln
(
1
ε

)
+ d, which satisfies (iii).

Finally, we see from the bound in the while loop that the output A(I) of the algorithm

has size at most d+λ−(d−ε(d+λ))
d+λ

N = ( λ
d+λ

+ ε)N . Since A(S(I)) = A(I), statement (iv) is
satisfied.

Theorem 5.3.3. For each d-regular N-vertex graph G with smallest eigenvalue −λ and
ε > 0,

i(G) ≤

N
d+λ

ln(ε−1)+d∑
i=0

(
N

i

)
· 2(

λ
d+λ

+ε)N .

Proof. For each stable set I ∈ Ind(G), let (S(I), A(I)) be the output of Algorithm 1 on
input (G, I, ε) and define S = {S(I) : I ∈ Ind(G)}. By Theorem 5.3.2 (ii), each stable set
I of G is a superset of S(I) and I \ S(I) is a subset of A(S(I)). Therefore, for each set
S ∈ S, there are at most 2|A(S)| stable sets that contain S as a subset. Thus,

i(G) ≤
∑
S∈S

2|A(S)|. (5.3)

By Theorem 5.3.2 (iii), each set S ∈ S has size at most N ln(ε−1)
d+λ

+ d, so there are at

most
∑N ln(ε−1)

d+λ
+d

i=0

(
N
i

)
sets in S. By Theorem 5.3.2 (iv), the set A(S) has size at most(

λ
d+λ

+ ε
)
N for each S ∈ S. Combining these bounds with Equation 5.3 gives i(G) ≤∑N ln(ε−1)

d+λ
+d

i=0

(
N
i

)
· 2(

λ
d+λ

+ε)N .
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Chapter 6

Coextensions of graphic matroids

It is well-known that coextensions of graphic matroids correspond to biased graphs, which
are independently well-studied [52, 53, 54]. In 2019, Nelson and Van der Pol [39] determined
the asymptotic number of biased graphs on a complete graph. In Section 6.1, we explain
how this determines the number of coextensions of the cycle matroid of a complete graph.
We also prove some preliminary results about graphic matroids. In Section 6.2, we prove
the following two theorems about the number of coextensions of the cycle matroid of a
complete bipartite graph. Recall that o(1) denotes an unspecified function of n which goes
to 0 as n goes to infinity, log denotes the base-2 logarithm, and ext(M) denote the number
of extensions of a matroid M .

Theorem 6.0.1. log coext(M(Kn,n)) =
n!2

2n
(1 + o(1)).

Theorem 6.0.2. log coext(M(Kn,n−1)) =
n!(n−2)!

4
(1 + o(1)).

6.1 Background

Recall that the cycle matroid of a graph G, denoted M(G), has ground set E(G) where
the circuits of M(G) are the edge sets of cycles of G. Since the ground set of M(G) is the
edge set of G, we often refer to a subgraph of G as a subset of matroid elements when we
technically mean to refer to the edge set of this subgraph. For example, if C is a cycle
of G, then we say C is a circuit of M(G), even though technically E(C) is the circuit of
M(G) we are referencing.
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Recall that the overlap graph of a matroidM , denoted Θ(M) is the graph whose vertices
are the circuits of M and two vertices C,C ′ are adjacent if and only if they are contained
in a connected corank-2 restriction of M . By Corollary 3.2.8,

log i(Θ(M)) ≤ log coext(M) ≤ log i(Θ(M)) + |Cmin(M,≺)|.

Recall that Cmin(M,≺) is the collection of circuits C ∈ C(M) such that, for some corank-2
restriction N of M , the minimum circuit in N with respect to ≺ is C.

Now we consider applying this result to graphic matroids. First, we establish that, for
a graph G, the connected corank-2 restrictions of M(G) are precisely the theta subgraphs
of G.

Lemma 6.1.1. A subgraph T of a graph G is a theta graph if and only if r∗(M(G)|E(T )) =
2 and M(G)|E(T ) is a connected matroid.

Proof. First, note that M(G)|E(T ) =M(T ). If T is a theta graph, then M(T ) has corank
2 and, since each pair of edges is in a cycle, the matroid M(T ) is connected.

Now we claim that if r∗(M(T )) = 2 and M(T ) is a connected matroid, then T is a
theta graph. Since M(T ) is connected, the graph T is 2-connected. Since T is connected,
we have r(M(T )) = |V (T )| − 1. Additionally, since the corank of M(T ) is 2, we know
r(M(T )) = |E(T )| − 2. Therefore, |V (T )| = |E(T )| − 1.

By Theorem 2.3.3, since T is 2-connected, it has an ear decomposition (G1, G2, . . . , Gk)
where G1 is a cycle and Gk = T . Since G1 is a cycle, we know that |V (G1)| = |E(G1)|. For
each i ≥ 2, the graph Gi is the union of Gi−1 and a path P , which contributes |E(P )| edges
and |E(P )| − 1 vertices to Gi. Thus, by induction, we have |V (Gi)| = |E(Gi)| − (i − 1).
Therefore, since |V (T )| = |E(T )| − 1, it follows that k = 2 and G2 = T . This implies that
T contains a cycle and a path between two distinct vertices of the cycle. That is, the graph
T is a theta graph.

Although we define the overlap graph with respect to connected corank-2 restrictions,
we bound the number of small circuits in M(G) by considering all corank-2 restrictions.
We do this by first bounding the size of a small circuit using Proposition 2.4.3 and the
following lemma.

Lemma 6.1.2. For each graph G, there are at most 3 circuits in a corank-2 restriction N
of M(G).
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Proof. Since N is a corank-2 restriction of M(G), the rank of the matroid N∗ is 2. Since
M(G) is a GF (2)-representable matroid, the matroid N∗ is as well. Thus, the matroid
N∗ is a restriction of PG(1, 2). By Proposition 2.6.1(ii), the number of hyperplanes in
PG(1, 2) is

[
2
1

]
2
= 22−1

21−1
= 3. Therefore, the matroid N∗ has at most 3 hyperplanes. Since

the hyperplanes of N∗ are the circuits of N , there are at most 3 circuits in N .

Now we can find bounds for the number of coextensions of a graphic matroid M(G)
that depend on the number of stable sets in the overlap graph of G and the number of
small cycles in G.

Lemma 6.1.3. If G is a graph and s is the number of cycles of G that have length at most
2
3
(r(M(G)) + 2), then

log i(Θ(M(G))) ≤ log coext(M(G)) ≤ log i(Θ(M(G))) + s.

Proof. Let ≺ be a total ordering of C(M(G)) that refines the preorder by size. By Lemma
6.1.2, there are at most 3 circuits in a corank-2 restriction of M(G). Thus, by Proposition
2.4.3, the smallest circuit in a corank-2 restriction ofM(G) has size at most 2

3
(r(M(G))+2).

Therefore, the size of Cmin(M(G),≺) does not exceed the number of cycles of length at most
2
3
(r(M(G)) + 2). Now the lemma follows from Corollary 3.2.8.

6.1.1 Coextensions of the cycle matroid of a complete graph

Recall that a biased graph is a pair (G,B) where G is a graph and B is a set of cycles of G
such that if two cycles C,C ′ ∈ B are in a theta subgraph H of G, then the third cycle in H
is in B as well. By Lemma 6.1.1, the connected corank-2 restrictions ofM(G) are precisely
the theta subgraphs of G. This means that B has the theta property. Thus, by Proposition
3.1.4, the biased graphs (G,B) correspond to colinear subclasses of M(G). Since colinear
subclasses correspond to coextensions (Theorem 3.1.1), the number of coextensions of
M(G) is equal to the number of sets of cycles B such that (G,B) is a biased graph.

In [39], Nelson and Van der Pol proved that the number of biased graphs on the complete

graph Kn+1 is 2
1
2
n!(1+o(1)). Now, the analysis above implies the following theorem.

Theorem 6.1.4 ([39]). log coext(M(Kn+1)) =
1
2
n!(1 + o(1)).
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6.2 Coextensions of the cycle matroid of a complete

bipartite graph

Expanding on the ideas and preliminaries in Section 6.1, we find asymptotic results for
the number of coextensions of balanced and almost balanced complete bipartite graphs.
Recall that, for positive integers n,m, we let Kn,m denote the complete bipartite graph
with bipartition (A,B) where A = [n] and B = [n+m] \ [n].

The proofs of Theorems 6.0.1 and 6.0.2 broadly follow the same structure as the proof
of Theorem 6.1.4 in [39]. We prove Theorems 6.0.1 and 6.0.2 by establishing asymptotically
matching lower and upper bounds in the log scale. The lower bounds come from taking all
subsets of a largest stable set. The upper bounds are determined using applications of a
container method. In both cases, we apply an established container method for sufficiently
dense graphs. In order to apply this method, we prove supersaturation lemmas for the
overlap graphs ofM(Kn,n) andM(Kn,n−1). Supersaturation lemmas are standard elements
of container methods; they aim to show that a set of vertices that is significantly larger
than a maximum stable set induces a significant number of edges. For more information,
see Chapter 5.

6.2.1 Preliminaries

Recall that C(M(Kn,m)) is the collection of circuits of M(Kn,m), which are cycles of Kn,m.
Furthermore, recall that Θ(M(Kn,m)) is the overlap graph of M(Kn,m) whose vertex set is
C(M(Kn,m)) where two vertices C,C ′ are adjacent if and only if C and C ′ are contained in
a connected corank-2 restriction of M(Kn,m). By Lemma 6.1.1, two vertices C,C ′ in the
overlap graph are adjacent if and only if they are in a theta subgraph of Kn,m.

Lemma 6.2.1. The number of 2k-cycles in Kn,m is 1
2

(
n
k

)(
m
k

)
k!(k − 1)! if k ∈ [2,m] and

zero otherwise.

Proof. Each 2k-cycle contains k vertices from A and k from B. There are
(
n
k

)
ways to

choose the vertices from A and
(
m
k

)
ways to choose the vertices from B. There are k!2 ways

to order the vertices from A and B in a sequence a1b1a2b2 . . . akbk so that a vertex in A is
first. If a 2k-cycle is described by such a sequence, there are k choices for the first vertex
a1 and 2 choices for the following vertex b1, so each cycle corresponds to 2k sequences.
Thus, there are 1

2
k!(k − 1)! ways to order these vertices in a cycle. Therefore, the number

of 2k-cycles in Kn,m is 1
2

(
n
k

)(
m
k

)
k!(k − 1)!.
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Corollary 6.2.2. The number of cycles in Kn,m is

|C(M(Kn,m))| =
m−2∑
i=0

n!m!

2(m− i)i!(n−m+ i)!
.

Proof. By Lemma 6.2.1,

|C(M(Kn,m))| =
m∑
k=2

1

2

(
n

k

)(
m

k

)
k!(k − 1)!

=
m∑
k=2

n!m!k!(k − 1)!

2k!(n− k)!k!(m− k)!

=
m−2∑
i=0

n!m!

2(m− i)i!(n−m+ i)!
.

Bounds on the number of cycles in Kn,m will be used to bound the number of stable
sets in the overlap graph of Kn,m, so we define

Sn,m =
m−2∑
k=0

1

(m− k)k!(n−m+ k)!
.

The constants I0(2) and I1(2) appear in the following lemmas. Recall that I0(2) is approx-
imately 2.28 and I1(2) is approximately 1.59.

Lemma 6.2.3. I0(2)
n

+ I1(2)
n2 < Sn,n <

I0(2)
n

+ I1(2)
n2 + 4

n3 for all n ≥ 5.

Proof. We can check that the statement is true for n = 5. Suppose the statement holds
for some n− 1 ≥ 5 and consider n2Sn,n.

n2Sn,n =
n−2∑
k=0

(n− k)(n+ k)

(n− k)k!2
+

n−2∑
k=0

k2

(n− k)k!2

=
n−2∑
k=0

(n− k)(n+ k)

(n− k)k!2
+

n−2∑
k=1

1

(n− k)(k − 1)!2

=
n−2∑
k=0

(n+ k)

k!2
+

n−3∑
k=0

1

(n− 1− k)k!2

= n

n−2∑
k=0

1

k!2
+

n−2∑
k=0

1

k!(k − 1)!
+ Sn−1,n−1
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Recall
∑∞

k=0
1
k!2

= I0(2) and
∑∞

k=0
1

k!(k−1)!
= I1(2). Since

∑∞
k=n−1

1
k!2

< 1
(n−1)!2

∑∞
k=0

1
2k

=
2

(n−1)!2
and

∑∞
k=n−1

1
k!(k−1)!

< 1
(n−2)!2

∑∞
k=0

1
2k

= 2
(n−2)!2

, we get the following bounds:

n2Sn,n > nI0(2)−
2n

(n− 1)!2
+ I1(2)−

2

(n− 2)!2
+ Sn−1,n−1,

and
n2Sn,n < nI0(2) + I1(2) + Sn−1,n−1.

Since 2n
(n−1)!2

+ 2
(n−2)!2

< I0(2)
n−1

+ I1(2)
(n−1)2

and we have assumed the statement is true for n− 1,

we find n2Sn,n > nI0(2) + I1(2), so the lower bound holds.

Also by induction, we find n2Sn,n < nI0(2)+ I1(2)+
I0(2)
n−1

+ I1(2)
(n−1)2

+ 4
(n−1)3

. Since n ≥ 6,

we can check that I0(2)
n−1

+ I1(2)
(n−1)2

+ 4
(n−1)3

< 4
n
; thus, n2Sn,n < nI0(2)+ I1(2)+

4
n
, which gives

us the upper bound.

Lemma 6.2.4. I0(2)
n

+ I1(2)
n2 −

∑n−m−1
k=0

1
(n−k)k!2

< Sn,m < I0(2)
m

+ I1(2)
m2 + 4

m3 for all n ≥ 6.

Proof. Note that 1
i!
< 1

j!
for all nonnegative integers j < i. Thus, by Lemma 6.2.3,

Sn,m =
m−2∑
k=0

1

(m− k)k!(k + (n−m))!
<

m−2∑
k=0

1

(m− k)k!2
= Sm,m <

I0(2)

m
+
I1(2)

m2
+

4

m3
,

which gives the upper bound. Similarly,

Sn,m =
m−2∑
k=0

1

(m− k)k!(k + (n−m))!
>

m−2∑
k=0

1

(n− (k + (n−m)))(k + (n−m))!2

=
n−2∑

k=n−m

1

(n− k)k!2
= Sn,n −

n−m−1∑
k=0

1

(n− k)k!2
.

Corollary 6.2.5. If n ≥ 6, then I0(2)·n!2
2n

< |C(M(Kn,n))| < e·n!2
2n

.

Proof. Since I0(2)
n

+ I1(2)
n2 + 4

n3 < e
n
for n ≥ 6, and |C(M(Kn,n))| = n!2

2
Sn,n by Corollary

6.2.2, the bounds follow from Lemma 6.2.3.

Corollary 6.2.6. If m ≥ 6 and n ≤ m+ 2, then (I0(2)−2)·n!m!
2n

< |C(M(Kn,m))| < e·n!m!
2m

.
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Proof. Since m ≥ n−2, the sum
∑n−m−1

k=0
1

(n−k)k!2
is at most 2

n
. Since I0(2)

m
+ I1(2)

m2 + 4
m3 <

e
m

for m ≥ 6, and |C(M(Kn,m))| = n!m!
2
Sn,m by Corollary 6.2.2, the bounds follow from

Lemma 6.2.4.

In Chapter 3, we described a general method of bounding the number of coextensions
of a matroid M using the number of stable sets in the overlap graph of M and the number
of small circuits of M . Recall that a circuit of M is small with respect to some total
ordering of C(M) if it is the minimum circuit in a corank-2 restriction of M . The following
propositions will be used in Subsection 6.2.6 to establish upper bounds on the number of
small circuits in M(Kn,n) and in M(Kn,n−1).

Proposition 6.2.7. If n ≥ 16, then the number of cycles in Kn,n with length at most
2
3
(2n+ 3) is at most n!2

2n2 .

Proof. Let r be the number of cycles in Kn,n with length at most 2
3
(2n + 3). By Lemma

6.2.1,

r =

⌊ 2n+3
3

⌋∑
k=2

n!2

2k(n− k)!2

≤ n!2

2n

n∑
k=2

n

2(n− ⌊2n+3
3
⌋)!2

≤ n!2

2n
· n2

2(⌈n
3
⌉ − 1)!2

.

Since n2

2(⌈n
3
⌉−1)!2

≤ 1
n
for n ≥ 16, we have that r ≤ n!2

2n
· 1
n
.

Proposition 6.2.8. If n ≥ 18, then the number of cycles in Kn,n−1 with length at most
2
3
(2n+ 2) is at most n!(n−2)!

4n
.

Proof. Let r be the number of cycles in Kn,n−1 with length at most 2
3
(2n+2). By Lemma
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6.2.1,

r =

⌊ 2n+2
3

⌋∑
k=2

n!(n− 1)!

2k(n− k)!(n− 1− k)!

≤ n!(n− 2)!

4

⌊ 2n+2
3

⌋∑
k=2

2(n− 1)

2⌈n−2
3
⌉(⌈n−2

3
⌉ − 1)!2

≤ n!(n− 2)!

4
· 2n
3
· 3(n− 1)

(n− 2)(⌈n−2
3
⌉ − 1)!2

≤ n!(n− 2)!

4
· 2n(n− 1)

(n− 2)(⌈n−2
3
⌉ − 1)!2

.

Since 2n(n−1)

(n−2)(⌈n−2
3

⌉−1)!2
≤ 1

n
for n ≥ 18, we have that r ≤ n!(n−2)!

4
· 1
n
.

6.2.2 Largest stable sets

Recall that, for a matroid M , the overlap graph Θ(M) has vertex set C(M) where vertices
C,C ′ are adjacent if and only if they are contained in a connected corank-2 restriction of
M . By Lemma 6.1.1, a subset of the ground set ofM(G) is a connected corank-2 restriction
if and only if it induces a theta subgraph of G. Thus, a set C ′ of circuits of M(G) has the
scarce theta property if, for each theta subgraph H of G, at most one cycle in H has its
edge set in C ′.

In the following lemma, we upper bound the size of a set of cycles of Kn,n that has the
scarce theta property. Note that the proof is quite similar to the proof of Lemma 2.2 in
[39].

Lemma 6.2.9. Let n ≥ 3 be an integer. If B ⊆ C(M(Kn,n)) has the scarce theta property,

then |B| ≤ n!2

2n
. Moreover, if equality holds, then B is the set of Hamiltonian cycles of Kn,n.

Proof. Recall that Sn is the set of permutations of [n]. We will define two functions that
map cycles C in B to sets of permutations that encode C. Let Ψ1,Ψ2 : B → 2S

2
n be these

functions, where for each cycle C with length 2k < 2n in B, we define

Ψ1(C) = {(σA, σB) ∈ S2
n :

(σA(1), σB(1), . . . , σA(k), σB(k)) is a cyclic ordering of C}, and
Ψ2(C) = {(σA, σB) ∈ S2

n :

(σA(2), σB(2), . . . , σA(k + 1), σB(k + 1)) is a cyclic ordering of C}.
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Note that Ψ1(C) and Ψ2(C) are disjoint for all 2k-cycles C where k < n. For each 2n-cycle
C, define Ψ1(C) as above and Ψ2(C) = Ψ1(C). Now define another function Ψ : B → 2S

2
n

where Ψ(C) = Ψ1(C) ∪Ψ2(C).

We claim that the Ψ-images of distinct cycles in B are disjoint. If not, then there
are cycles C1, C2, integers 1 ≤ i ≤ j ≤ 2, and a pair of permutations (σA, σB) such that
(σA, σB) ∈ Ψi(C1) ∩Ψj(C2). Let |V (C1)| = 2k1 and |V (C2)| = 2k2.

First consider the case where i = j ∈ {1, 2}. If k1 = k2, then C1 = C2, so with-
out loss of generality k1 < k2. The cycles C1 and C2 intersect precisely in the path
σA(i)σB(i) . . . σA(k1 − 1 + i)σB(k1 − 1 + i). Thus, the cycles C1 and C2 are contained in
a theta subgraph of Kn,n, which contradicts the assumption that B has the scarce theta
property.

The remaining case is where (i, j) = (1, 2). Let ℓ = min{k1, k2 + 1} and note that
ℓ ≥ 2. The cycles C1 and C2 intersect precisely in the path σA(2)σB(2) . . . σA(ℓ)σB(ℓ).
Thus, the cycles C1 and C2 are contained in a theta subgraph of Kn,n, which contradicts
the assumption that B has the scarce theta property.

Since Ψ encodes each cycle as a collection of pairs of permutations, and these collections
are pairwise disjoint, it follows that

∑
C∈B |Ψ(C)| ≤ n!2. Let Bk denote the set of 2k-cycles

in B for each 2 ≤ k ≤ n. For a cycle C ∈ Bk where k < n, the number of pairs of
permutations in Ψ(C) is 4k(n − k)!2 since there is a choice of two functions Ψ1 and Ψ2

with disjoint ranges, two directions, k elements for σA(1), and (n− k)!2 ways to order the
remaining n− k elements in each part of Kn,n. For a cycle C ∈ Bn, the number of pairs of
permutations in Ψ(C) is 2n. Therefore,

n!2 ≥
∑
C∈B

|Ψ(C)| =
n−1∑
k=2

4k(n− k)!2|Bk|+ 2n|Bn|.

Since 4k(n − k)!2 ≥ 4k(n − k) ≥ 4(n − 1) > 2n for all 2 ≤ k < n and n ≥ 3, it follows
from the equation above that n!2 ≥ 2n

∑n
k=2 |Bk| = 2n|B|. Therefore, |B| ≤ n!2

2n
. If equality

holds, then we know B ⊆ Bn. Since there are exactly n!2

2n
cycles of length 2n in Kn,n by

Lemma 6.2.1, it follows that B = Bn.

The largest cycles in Kn,n−1 have length 2n − 2, so Kn,n−1 is not Hamiltonian, unlike
Kn and Kn,n. This raises a unique challenge with proving results about sets of cycles that
have the scarce theta property. In Kn and Kn,n, the set of Hamiltonian cycles has the
scarce theta property and is, thus, a stable set in the respective overlap graph. However,
the largest cycles in Kn,n−1 are not Hamiltonian and are not a stable set in the overlap
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graph. Observe that two (2n− 2)-cycles C,C ′ of Kn,n−1 are in a theta subgraph of Kn,n−1

if C ′ can be obtained from the C by swapping a vertex of A in C with the one vertex in A
that is not in C.

In the following lemma, we upper-bound the size of a set of cycles of Kn,n−1 that has
the scarce theta property. The proof is similar to that of Lemma 6.2.9, although there is an
extra step to address the difficulty of the set of (2n−2)-cycles not being a stable set in the
overlap graph. We will give an example of a specific set of cycles that is a maximum stable
set in the next section, while determining an upper bound for the number of coextensions.

Lemma 6.2.10. Let n ≥ 4 be an integer. If B ⊆ C(M(Kn,n−1)) has the scarce theta

property, then |B| ≤ n!(n−2)!
4

. Moreover, if equality holds, then B is a set of (2n− 2)-cycles.

Proof. Recall that Sn is the set of permutations of [n]. Let Ψ1,Ψ2 : B → 2Sn×Sn−1 be
functions where, for each cycle C of length 2k < 2(n− 1) in B, we define

Ψ1(C) = {(σA, σB) ∈ Sn × Sn−1 :

(σA(1), σB(1), . . . , σA(k), σB(k)) is a cyclic ordering of C}, and
Ψ2(C) = {(σA, σB) ∈ Sn × Sn−1 :

(σA(2), σB(2), . . . , σA(k + 1), σB(k + 1)) is a cyclic ordering of C}.
Note that Ψ1(C) and Ψ2(C) are disjoint for all 2k-cycles C where k < n − 1. For each
2(n−1)-cycle C, define Ψ1(C) as above and Ψ2(C) = Ψ1(C). Now define another function
Ψ : B → 2Sn×Sn−1 where Ψ(C) = Ψ1(C) ∪Ψ2(C).

We claim that the Ψ-images of distinct cycles in B are disjoint. If not, then there
are cycles C1, C2, integers 1 ≤ i ≤ j ≤ 2, and a pair of permutations (σA, σB) such that
(σA, σB) ∈ Ψi(C1) ∩Ψj(C2). Let |V (C1)| = 2k1 and |V (C2)| = 2k2.

First, consider the case where i = j ∈ {1, 2}. If k1 = k2, then C1 = C2, so with-
out loss of generality k1 < k2. The cycles C1 and C2 intersect precisely in the path
σA(i)σB(i) . . . σA(k1 − 1 + i)σB(k1 − 1 + i). Thus, the cycles C1 and C2 are contained in
a theta subgraph of Kn,n−1, which contradicts the assumption that B has the scarce theta
property.

The remaining case is where (i, j) = (1, 2). Let ℓ = min{k1, k2 + 1} and note that
ℓ ≥ 2. The cycles C1 and C2 intersect precisely in the path σA(2)σB(2) . . . σA(ℓ)σB(ℓ).
Thus, the cycles C1 and C2 are contained in a theta subgraph of Kn,n, which contradicts
the assumption that B has the scarce theta property.

Since Ψ encodes each cycle as a collection of pairs of permutations, and these collections
are pairwise disjoint, it follows that

∑
C∈B |Ψ(C)| = |Ψ(B)|. Let Bk denote the set of 2k-

cycles in B for each 2 ≤ k ≤ n− 1.
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Claim 6.2.10.1. |Ψ(B)| ≤ n!(n− 1)!− |Ψ(Bn−1)|.

Proof. Define a function f : Sn × Sn−1 → Sn × Sn−1 where f((σA, σB)) = (σ′
A, σB) and σ

′
A

is defined as follows. We define σ′
A(1) = σA(n) and σ

′
A(n) = σA(1) and σ

′
A(i) = σA(i) for

all i ∈ {2, 3, . . . , n− 1}. Note that f((σ′
A, σB)) = (σA, σB), so f is an involution.

Suppose a permutation pair (σA, σB) is in Ψ(Bn−1). Therefore, there is a cycle C in
Bn−1 such that (σA, σB) ∈ Ψ(C). Let f((σA, σB)) = (σ′

A, σB) and notice that, by definition,
(σ′

A, σB) is not in Ψ(C). First, we claim that (σ′
A, σB) is not in Ψ(Bn−1). Suppose towards

a contradiction that (σ′
A, σB) ∈ Ψ(C ′) for some C ′ ∈ Bn−1. Both C and C ′ contain the path

σB(1)σA(2)σB(2) . . . σA(n−1)σB(n−1) and while C contains the path σB(n−1)σA(1)σB(1),
the cycle C ′ contains the path σB(n−1)σA(n)σB(1). Thus, C∪C ′ is a theta subgraph where
σB(n− 1) and σB(1) are the degree-3 vertices. Hence C ′ /∈ B, which is a contradiction.

We also claim that (σ′
A, σB) is not in Ψ(Bk) for all k ∈ [0, n − 2]. Suppose towards a

contradiction that (σ′
A, σB) ∈ Ψ(C ′) for some C ′ ∈ Bk where k ∈ [0, n − 2]. If (σ′

A, σB) ∈
Ψ1(C

′), then both C and C ′ contain the path σB(1)σA(2)σB(2) . . . σA(k)σB(k) and while C
contains the path σB(k)σA(k + 1)σB(k + 1) . . . σB(n− 1)σA(1)σB(1), the cycle C

′ contains
the path σB(k)σA(n)σB(1). Thus, C ∪ C ′ is a theta subgraph where σB(k) and σB(1) are
the degree-3 vertices. However, if (σ′

A, σB) ∈ Ψ2(C
′), then both C and C ′ contain the path

σA(2)σB(2) . . . σA(k+1)σB(k+1) and while C contains the path σB(k+1)σA(k+2)σB(k+
2) . . . σB(n−1)σA(1)σB(1)σA(2), the cycle C

′ contains the path σB(k+1)σA(2). Therefore,
if (σ′

A, σB) ∈ Ψ(C ′), then C ∪ C ′ is a theta graph, which implies that C ′ /∈ B, which is a
contradiction.

Now it follows that for each permutation pair (σA, σB) in Ψ(Bn−1), the corresponding
pair f((σA, σB)) is not in Ψ(B). Thus, there are at least |Ψ(Bn−1)| permutation pairs that
are not in Ψ(B). Since there are n!(n − 1)! permutation pairs in Sn × Sn−1, the result
follows.

Observe that for a cycle C ∈ Bk where k < n− 1, the number of pairs of permutations
in Ψ(C) is 4k(n− k)!(n− 1− k)! since there is a choice of two functions Ψ1 and Ψ2 with
disjoint ranges, two directions, k elements for σA(1), and (n−k)!(n− 1−k)! ways to order
the remaining elements in each part of Kn,n−1. For a cycle C ∈ Bn−1, the number of pairs
of permutations in Ψ(C) is 2(n − 1) since there is a choice of two directions and n − 1
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elements for σA(1). Now it follows from these observations and Claim 6.2.10.1 that,

n!(n− 1)! ≥
n−2∑
k=2

|Ψ(Bk)|+ 2|Ψ(Bn−1)|

≥
n−2∑
k=2

4k(n− k)!(n− 1− k)!|Bk|+ 4(n− 1)|Bn−1|.

Notice that 4k(n− k)!(n− 1− k)! ≥ 4k(n− k) > 4(n− 1) for all 2 ≤ k < n− 2 and n ≥ 4.
Thus, it follows from the equation above that n!(n−1)! ≥ 4(n−1)

∑n−1
k=2 |Bk| = 4(n−1)|B|.

Therefore, |B| ≤ n!(n−1)!
4(n−1)

= n!(n−2)!
4

. If equality holds, then we know B ⊆ Bn−1.

6.2.3 Supersaturation for Kn,n

In the following lemma, we show that a set of vertices of the overlap graph that is signifi-
cantly larger than a maximum stable set induces a significant number of edges. The proof
of this lemma is quite similar to that of Lemma 2.3 in [39].

Lemma 6.2.11 (Supersaturation Lemma for Θ(M(Kn,n))). For all integers n ≥ 6 and

α ≥ 8
n
, if B ⊆ V (Θ(M(Kn,n))) with |B| ≥ (1 + α)n!

2

2n
, then B spans at least αn!2

4
edges in

Θ(M(Kn,n)).

Proof. Let Θ = Θ(M(Kn,n)) and let C = V (Θ). Suppose towards a contradiction that

there exists a set B ⊆ C where |B| ≥ (1 + α)n!
2

2n
and B spans less than αn!2

4
edges in Θ.

We define functions Φ,Φ1,Φ2 : C → 2S
2
n similarly to those in the proof of Lemma 6.2.9,

where for each C ∈ C with length 2k:

Φ1(C) = {(σA, σB) ∈ S2
n :

(σA(1), σB(1), . . . , σA(k), σB(k)) is a cyclic ordering of C}, and
Φ2(C) = {(σA, σB) ∈ S2

n :

(σA(n− k + 1), σB(n− k + 1), . . . , σA(n), σB(n)) is a cyclic ordering of C},

and Φ(C) = Φ1(C) ∪ Φ2(C). If k < n, then Φ1(C) and Φ2(C) are disjoint, so |Φ(C)| =
4k(n− k)!2. If k = n, then Φ1(C) and Φ2(C) are equal, so |Φ(C)| = 2n. Note that for all
permutation pairs (σA, σB) ∈ S2

n, there exist exactly two 2k-cycles whose Φ-images contain
(σA, σB) when k < n and exactly one 2n-cycle whose Φ-image contains (σA, σB). This
implies that |Φ(C ′)| = 2n|C ′| for all sets C ′ of 2n-cycles.

For each 2 ≤ k ≤ n, let Bk denote the set of 2k-cycles in B.
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Claim 6.2.11.1. If C,C ′ ∈ Bk are distinct cycles where 2k > n, then |Φ(C)∩Φ(C ′)| ≤ 2.

Proof. Since C and C ′ are different cycles with the same length, it follows that Φ1(C) ∩
Φ1(C

′) = ∅ and Φ2(C) ∩ Φ2(C
′) = ∅. Note that C and C ′ have at least two vertices

in common, so C ∪ C ′ contains at least three cycles. If V (C ∪ C ′) ̸= V (Kn,n), then
Φi(C) ∩ Φj(C

′) = ∅ for i ̸= j ∈ {1, 2}, so we now assume V (C ∪ C ′) = V (Kn,n). If
C ∪ C ′ contains at least four cycles, then C and C ′ intersect in at least two paths, hence
Φi(C) ∩ Φj(C

′) = ∅ for i ̸= j ∈ {1, 2}. However, if C ∪ C ′ contains exactly three cycles,
then it is a theta subgraph of Kn,n and C and C ′ intersect in one path P . Since C ∪ C ′

contains all 2n vertices of Kn,n, we know P contains 2p vertices for some integer p ≥ 1. If
(σA, σB) ∈ Φ1(C)∩Φ2(C

′), then σA(k−p)σB(k−p) . . . σA(k)σB(k) is the path P , beginning
with the end of P in A, which fixes the rest of the permutations σA and σB. Therefore,
|Φ1(C) ∩ Φ2(C

′)| = 1 and similarly |Φ2(C) ∩ Φ1(C
′)| = 1.

For each 2 ≤ k ≤ n and each i ∈ {0, 1, 2}, let Pk,i be the set of permutation pairs
(σA, σB) ∈ S2

n where |{C ∈ Bk : (σA, σB) ∈ Φ(C)}| = i. Since each (σA, σB) ∈ S2
n is in

Φ1(C) for at most one C ∈ Bk and in Φ2(C) for at most one C ∈ Bk, the sets Pk,0, Pk,1, Pk,2

partition S2
n.

Claim 6.2.11.2. |Pk,2| ≤ αn!2

2
for all k ≥ n+1

2
.

Proof. Consider (σA, σB) ∈ Pk,2. Thus, the permutation pair (σA, σB) is in Φ(C) ∩ Φ(C ′)
for distinct cycles C,C ′ ∈ Bk. Hence C and C ′ intersect precisely in a path of at least
4k − 2n ≥ 2 vertices, so C and C ′ are adjacent in Θ. Since |Φ(C) ∩ Φ(C ′)| ≤ 2 by Claim
6.2.11.1, there is at least one edge in Θ for every two permutation pairs in Pk,2. Thus, the
set Bk of 2k-cycles in B spans at least |Pk,2|/2 edges. Since the number of edges in Θ[B] is
at most αn!2

4
, the claim follows.

Claim 6.2.11.3. If C,C ′ ∈ C are distinct cycles where C has length 2k and C ′ has length
2n, then |Φ(C) ∩ Φ(C ′)| ≤ 2.

Proof. Since C ′ has length 2n, we have Φ(C ′) = Φ1(C
′) = Φ2(C

′). Since C ′ is a Hamil-
tonian cycle, C ′ and C intersect in at least one path. If C ′ and C intersect in at least
two paths, then Φi(C) ∩ Φ(C ′) = ∅ for i ∈ {1, 2}. Now consider the case where C ′ and
C intersect in exactly one path P . It follows that P contains exactly 2k vertices since
every vertex in C is in C ′ as well. Therefore, if (σA, σB) ∈ Φ(C) ∩ Φ(C ′), then P is either
σA(1)σB(1) . . . σA(k)σB(k) or σA(n−k+1)σB(n−k+1) . . . σA(n)σB(n) and the remaining
elements of σA and σB are fixed since (σA, σB) ∈ Φ(C). Therefore, there are at most two
permutation pairs (σA, σB) in Φ(C) and Φ(C ′).
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For a set A ⊆ C, let Φ(A) =
⋃

C∈A Φ(C).

Claim 6.2.11.4. |Φ(Bk) ∩ Φ(Bn)| ≤ αn!2

2
for all 2 ≤ k < n.

Proof. Let C ∈ Bk and C ′ ∈ Bn and consider a permutation pair (σA, σB) in Φ(C)∩Φ(C ′).
The sequence σA(1)σB(1) . . . σA(n)σB(n) is a cyclic ordering of the vertices of C ′ and either
σA(1)σB(1) . . . σA(k)σB(k) or σA(n−k+1)σB(n−k+1) . . . σA(n)σB(n) is a cyclic ordering of
C, hence C and C ′ are adjacent in Θ. By Claim 6.2.11.3, there are at most two permutation
pairs in Φ(C)∩Φ(C ′), so there is at least one edge in Θ for every two permutation pairs in
Φ(Bk) ∩ Φ(Bn). Since the number of edges in Θ[B] is at most αn!2

4
, the claim follows.

The number of 2k-cycles in Kn,n is n!2

2k(n−k)!2
by Lemma 6.2.1. For 2 ≤ k ≤ n, let

βk = |Bk|2k(n−k)!2

n!2
. That is, βk is the fraction of 2k-cycles of Kn,n in B; hence 0 ≤ βk ≤ 1.

Note that |Φ(Bn)| = 2n|Bn| = n!2βn.

Claim 6.2.11.5. βk ≤ 1
2
(1 + α− βn) for all n+1

2
≤ k < n.

Proof. By Claim 6.2.11.4, we know

|Φ(Bk)| = |Φ(Bk) ∪ Φ(Bn)|+ |Φ(Bk) ∩ Φ(Bn)| − |Φ(Bn)|

≤ n!2 +
αn!2

2
− n!2βn

=

(
1 +

α

2
− βn

)
n!2.

Now, note that

|Pk,1|+ 2|Pk,2| =
2∑

i=0

i|Pk,i| =
∑
C∈Bk

|Φ(C)| = 4k(n− k)!2|Bk|.

Furthermore, note that since each permutation pair in S2
n is in the Φ-image of at most two

2k-cycles, a permutation pair in one 2k-cycle Φ-image is in Pk,1 and a permutation pair in
more than one 2k-cycle Φ-image is in Pk,2. Since Φ(Bk) is the collection of all permutation
pairs in a 2k-cycle Φ-image, we have that |Pk,1|+ |Pk,2| = |Φ(Bk)|. Now by Claim 6.2.11.2,

73



it follows that

2βkn!
2 = 4k(n− k)!2|Bk|
= |Pk,1|+ 2|Pk,2|
= |Φ(Bk)|+ |Pk,2|

≤
(
1 +

α

2
− βn

)
n!2 +

αn!2

2

= (1 + α− βn)n!2,

and the result follows by dividing both sides of the above equation by 2n!2.

Since βk ≤ 1 for all k ∈ [2, n], it follows from the assumption on the size of B that

(1 + α)
n!2

2n
≤ |B| =

∑
0≤k≤n−2

|Bn−k|

=
n!2

2

∑
0≤k≤n−2

βn−k

k!2(n− k)

=
n!2

2

( n−2∑
k=⌊n

2
⌋

1

k!2(n− k)
+

⌊n
2
⌋−1∑

k=1

βn−k

k!2(n− k)
+
βn
n

)
.

If n
2
≤ k ≤ n − 2 and n ≥ 6, then (k + 1)2 ≥ 16, so n−k−1

n−k
≥ 1

2
≥ 8

(k+1)2
. This implies

that 1
(k+1)!2(n−(k+1))

≤ 1
8
· 1
k!2(n−k)

, so
∑n−2

k=⌊n
2
⌋

1
k!2(n−k)

≤ 1
⌊n
2
⌋!2 n

2

∑
k≥0

1
8k
≤ 8

7
· 1
⌊n
2
⌋!2 n

2
. Now, it

follows from Claim 6.2.11.5, Corollary 6.2.5, and the inequality block above that

(1 + α)
n!2

2n
≤ n!2

2

(
8

7

1

⌊n
2
⌋!2 n

2

+
1 + α− βn

2

(
Sn,n −

1

n

)
+
βn
n

)
≤ n!2

2

(
16

7

1

n · ⌊n
2
⌋!2

+
1 + α− βn

2
· e− 1

n
+
βn
n

)
.

Using 16
7

1
⌊n
2
⌋!2 <

1
n
for n ≥ 6 and the above inequality, we find

1 + α <
1

n
+

(1 + α− βn)(e− 1)

2
+ βn

≤ 1

n
+

(1 + α)(e− 1)

2
+

3− e

2
.

Rearranging to isolate α, we get α < 2
n(3−e)

, which contradicts the assumption that α ≥ 8
n

since 1
3−e

< 4.
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6.2.4 Supersaturation for Kn,n−1

In this subsection, we prove a supersaturation lemma for Θ(M(Kn,n−1)). Since Kn,n−1 is
not Hamiltonian and the set of largest cycles in Kn,n−1 is not a stable set, the proof does
not have the same structure as the proofs of Lemma 6.2.11 and Lemma 2.3 in [39]. The
proof of this lemma requires a completely different approach and is much more involved.

For the remainder of this subsection, let n ≥ 6 unless otherwise specified. Also, let
Θ = Θ(M(Kn,n−1)) and C = C(M(Kn,n−1)). For any V ⊆ C, let e(V ) denote the number
of edges induced by V in Θ. That is, let e(V ) = |E(Θ[V ])|. We partition V (Θ) into layers
based on cycle length. For each d ∈ [n− 2], let Ld ⊂ C denote the set of cycles of Kn,n−1

of length 2(n − d). We say a cycle in Ld is at depth d in Θ. Let α = n!(n−2)!
4

. By Lemma

6.2.1, the number of (2(n− 1))-cycles is |L1| = n!(n−1)!
2(n−1)

= 2α.

Now we define a sequence for each cycle C at depth at most n − 3 which gives a
canonical cyclic ordering of C. For each d ∈ [n − 3] and for each cycle C ∈ Ld, let
σC = σC(0)σC(1) . . . σC(2(n − d) − 1) be a sequence of vertices in Kn,n−1 such that C =
σC(0)σC(1) . . . σC(2(n − d) − 1)σC(0) where σC(0) ∈ A and σC(1) ≤ σC(2i − 1) for all
i ∈ [n− d] and σC(3) < σC(2(n− d)− 1). Now we show that, for each cycle, this sequence
is unique.

Proposition 6.2.12. Let d ∈ [n−3] and let C ∈ Ld. If ν = v0v1 . . . v2(n−d)−1 is a sequence
of vertices in Kn,n−1 such that C = v0v1 . . . v2(n−d)−1v0 where v0 ∈ A and v1 ≤ v2i−1 for all
i ∈ [n− d], while v3 < v2(n−d)−1, then ν = σC.

Proof. Since v0 ∈ A, the vertex v1 is in B. If v1 is not the smallest element in B ∩ V (C),
then there exists v2i−1 < v1 for some i ∈ [2, n − d], which is a contradiction, so we know
v1 = σC(1). The vertices v3 and v2(n−d)−1 are the only two vertices at distance 2 from
v1 in C and v3 < v2(n−d)−1, so v3 = σC(3) and v2(n−d)−1 = σC(2(n − d) − 1). The vertex
σC(0) is the only vertex adjacent to σC(1) and σC(2(n− d)− 1), so v0 = σC(0). Similarly,
the vertex σC(2) is the only vertex adjacent to σC(1) and σC(3), so v2 = σC(2). For each
i ∈ [4, 2(n − d) − 2], the vertex σC(i) is the only vertex where the path in C from σC(1)
to σC(i) that contains σC(2) has length i − 1, so vi = σC(i). Therefore vi = σC(i) for all
i ∈ [0, 2(n− d)− 1].

For each C ∈ L1, there is exactly one vertex v in V (Kn,n−1) \ V (C) and v ∈ A. Thus,
the sequence σC(0)σC(2) . . . σC(2n− 4)v is a permutation of A = [n]. Define sgn(σC) to be
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the sign of the permutation σC(0)σC(2) . . . σC(2n− 4)v. That is,

sgn(σC) =

{
1 if σC(0)σC(2) . . . σC(2n− 4)v is an even permutation, and

−1 if σC(0)σC(2) . . . σC(2n− 4)v is an odd permutation.

Proposition 6.2.13. Let C,C ′ ∈ L1. If σC(1)σC(3) . . . σC(2n−3) ̸= σC′(1)σC′(3) . . . σC′(2n−
3) or sgn(σC) = sgn(σC′), then C and C ′ are not adjacent.

Proof. Suppose that C and C ′ are adjacent. Hence C ∪C ′ is a theta graph. We will show
that σC(1)σC(3) . . . σC(2n−3) = σC′(1)σC′(3) . . . σC′(2n−3) and sgn(σC) ̸= sgn(σC′). Since
C and C ′ each contain 2n− 2 vertices and their union contains at most all 2n− 1 vertices
of Kn,n−1, the intersection of C and C ′ is a path with at least 2n−3 vertices. The cycles C
and C ′ contain all vertices in B, so the path C ∩C ′ contains n− 1 vertices in B and n− 2
vertices in A. Thus C \ C ′ and C ′ \ C each contain exactly one vertex in A. Therefore,
the sequence σC(1)σC(3) . . . σC(2n−3) is equal to the sequence σC′(1)σC′(3) . . . σC′(2n−3)
and the sequences σC and σC′ differ in exactly one even indexed entry. Let 2k be the
index such that σC(2k) ̸= σC′(2k). Since σC(i) = σC′(i) for all indices other than 2k, the
vertex σC′(2k) is the one vertex v in A\V (C) and the vertex σC(2k) is the one vertex v

′ in
A\V (C ′). Hence the permutations σC(0)σC(2) . . . σC(2n−4)v and σC′(0)σC′(2) . . . σC′(2n−
4)v′ can be obtained from each other by one 2-element transposition. Therefore sgn(σC) ̸=
sgn(σC′).

Lemma 6.2.14. The graph Θ[L1] is bipartite with bipartition (X,L1\X) where X = {C ∈
L1 : sgn(σC) = 1}. Furthermore |X| = |L1 \X| = α.

Proof. Observe that X ⊆ L1 is the set of cycles C such that sgn(σC) = 1 and that
sgn(σC′) = −1 for all C ′ ∈ L1 \ X. By Proposition 6.2.13, there are no edges between
vertices in X or between vertices in L1 \X. Thus (X,L1 \X) is a bipartition of Θ[L1].

There are (n−2)!
2

sequences σ such that σ = σC(1)σC(3) . . . σC(2n − 3) for some C ∈
L1. Since there are n!

2
even (or odd) permutations of length n and (n−2)!

2
choices for the

sequence σC(1)σC(3) . . . σC(2n − 3) for some C ∈ L1, we have |X| = n!(n−2)!
4

= α (and
|L1 \X| = α).

Let S be the collection of sequences σ such that σ = σC for some C ∈ C. Let S1 ⊆ S
be the collection of sequences σC for some C ∈ L1.

We will now define a collection of functions that will each give rise to a perfect matching
of the vertices in L1. Informally, each function will map each cycle C ∈ L1 to an adjacent
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cycle C ′ ∈ L1 where the vertex of A not in C is swapped with a vertex of C to obtain C ′.
For each k ∈ [0, n − 2], define a function fk : S1 → S1 where fk(σ) = σ′ and σ′ is defined
as follows. First, let v be the element of A that is not in {σ(2i) : 0 ≤ i ≤ n− 2}. Now, we
define σ′(2k) = v and σ′(i) = σ(i) for all i ∈ [0, 2n − 3] \ {2k}. The element of A that is
not in σ′ is σ(2k), hence fk(σ

′) = σ. Furthermore, since σ(2k) ̸= v, we know fk(σ) ̸= σ.
Therefore, each fk is an involution. For each k ∈ [0, n−2], since C∪C ′ is a theta graph for
any two cycles C,C ′ ∈ L1 where fk(σC) = σC′ , the function fk determines pairs of cycles
that are adjacent in Θ. For each k ∈ [0, n − 2], define Mk to be the set of edges CC ′ in
Θ[L1] such that fk(σC) = σC′ . Observe that each Mk is a perfect matching of L1. Also,
observe that Mi ∩Mj = ∅ for i ̸= j.

Proposition 6.2.15. The independence number of Θ[L1] is α.

Proof. Since Θ[L1] is bipartite and each part has size α by Lemma 6.2.14, the independence
number is at least α. Since Θ[L1] has a perfect matching, the independence number is at
most |L1|/2 = α.

Since Θ[L1] is a subgraph of Θ, the following proposition clearly follows from the
previous proposition.

Proposition 6.2.16. The independence number of Θ is at least α.

For each k ∈ [0, n−2], define Nk to be a set of edges between a vertex in L1 and a vertex
not in L1, as follows. For each adjacent pair C1 ∈ L1 and C ∈ Ld where d ≥ 2, we say
the edge C1C is in Nk if and only if there exists a theta subgraph of Kn,n−1 whose cycles
are C, C1, and some cycle C2 ∈ C such that C2 and C intersect in exactly one edge, and
σC1(2k) ∈ V (C2)\V (C). Since |V (C2)| = |V (C1)|−|V (C)|+2 = 2(n−1)−2(n−d)+2 = 2d,
we know that C2 ∈ Ln−d. Observe that C ∩C1 is a subpath of C1 that contains all vertices
of C, the set E(C) \ E(C1) contains exactly one edge e, and e is a chord of C1 in C1 ∪ C.

Proposition 6.2.17. Let k ∈ [0, n− 2] and let C1, C
′
1 ∈ L1 where C1C

′
1 ∈Mk. Let C ∈ Ld

where d ≥ 2. If CC1 ∈ Nk, then CC
′
1 ∈ Nk.

Proof. Since CC1 ∈ Nk, we know there is a theta subgraph of Kn,n−1 whose cycles are
C, C1 and some C2 ∈ C such that C2 and C intersect in exactly one edge and σC1(2k) ∈
V (C2)\V (C). Note that V (C), V (C2) ⊆ V (C1). Since C1C

′
1 ∈Mk, we have σC1(i) = σC′

1
(i)

for all i ∈ [0, 2n− 3] \ {2k} and σC′
1
(2k) /∈ V (C1). Let C

′
2 be the cycle obtained from C2 by

deleting the vertex σC1(2k) and adding the vertex σC′
1
(2k) and edges from σC′

1
(2k) to the

neighbours of σC1(2k) in C2. Observe that C, C ′
1, and C

′
2 are the three cycles of a theta
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subgraph of Kn,n−1. Since σC1(2k) /∈ V (C), the edges in E(C2)∪E(C ′
2) \ (E(C2)∩E(C ′

2))
are not in C, hence C and C ′

2 intersect in exactly one edge. Since σC′
1
(2k) /∈ V (C1) and

V (C) ⊆ V (C1), we know σC′
1
(2k) /∈ V (C); therefore σC′

1
(2k) ∈ V (C ′

2) \ V (C). Now it
follows that CC ′

1 ∈ Nk.

Proposition 6.2.18. Let C1 ∈ L1 and C ∈ Ld where 2 ≤ d ≤ n − 3. If CC1 ∈ Nk for
some k ∈ [d+ 1, n− 1− d], then the vertices σC1(2n− 3), σC1(1), and σC1(3) are in C.

Proof. Since CC1 ∈ Nk, there is a theta subgraph of Kn,n−1 whose cycles are C, C1,
and some cycle C2 ∈ C such that C2 and C intersect in exactly one edge and σC1(2k) ∈
V (C2) \ V (C).

First we claim that the vertex σC1(0) is in C. If σC1(0) is not in C, then σC1(0) and
σC1(2k) are both in V (C1) \ V (C). Since C1 \ C is a path with 2d − 2 vertices, it follows
that the distance between σC1(0) and σC1(2k) in C1 is less than 2d− 2. Therefore, we have
0 ≤ 2k ≤ 2d − 4 or 2(n − d) + 1 ≤ 2k ≤ 2n − 3. This implies that 0 ≤ k ≤ d − 2 or
n − d + 1 ≤ k ≤ n − 2, so k /∈ [d + 1, n − 1 − d], which is a contradiction. Therefore, the
vertex σC1(0) is in C.

Now we claim that the vertex σC1(1) is in C. If not, then since σC1(0) is in C and
C ∩C1 is a path, the vertex σC1(2n−3) is in C as well, while the vertex σC1(3) is not in C.
Therefore C2 is the union of the edge σC1(0)σC1(2d−1) and the subpath of C1 from σC1(0)
to σC1(2d−1) that contains σC1(1). That is, C2 = σC1(0)σC1(1) . . . σC1(2d−1)σC1(0). Since
the vertex σC1(2k) is in C2 \C, we have 2 ≤ 2k ≤ 2(d− 1), so k /∈ [d+1, n− 1− d], which
is a contradiction. Therefore, the vertex σC1(1) is in C.

Next we claim that the vertex σC1(2n − 3) is in C. If not, then since σC1(0) and
σC1(1) are in C, the vertex σC1(3) is in C as well. Therefore C2 is the union of the edge
σC1(0)σC1(2(n−d)−1) and the subpath of C1 from σC1(0) to σC1(2(n−d)−1) that contains
σC1(2n−3). That is, C2 = σC1(0)σC1(2(n−d)−1)σC1(2(n−d)) . . . σC1(2n−3)σC1(0). Since
the vertex σC1(2k) is in C2 \C, we have 2(n− d) ≤ 2k ≤ 2(n− 2), so k /∈ [d+1, n− 1− d],
which is a contradiction. Therefore, the vertex σC1(2n− 3) is in C.

Finally, we claim that the vertex σC1(3) is in C. If not, then C2 ∩ C1 is either the
subpath of C1 from σC1(1) to σC1(2d) or σC1(2) to σC1(2d+ 1) that contains σC1(3). That
is, C2 = σC1(1)σC1(2) . . . σC1(2d)σC1(1) or C2 = σC1(2)σC1(3) . . . σC1(2d + 1)σC1(2). Since
the vertex σC1(2k) is in C2 \ C, we have 2 ≤ 2k ≤ 2d, so k /∈ [d+ 1, n− 1− d], which is a
contradiction. Therefore, the vertex σC1(3) is in C.

Lemma 6.2.19. Let C1 ∈ L1 and C ∈ Ld where 2 ≤ d ≤ n − 3. If CC1 ∈ Nk for some
k ∈ [0, n−2], then the number of integers i ∈ [0, n−2] such that CC1 ∈ Ni is exactly d−1.
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Proof. Since CC1 ∈ Nk, there is a theta subgraph of Kn,n−1 whose cycles are C, C1, and
some cycle C2 ∈ Ln−d such that C2 and C intersect in exactly one edge and σC1(2k) ∈
V (C2)\V (C). Since C2 is the graph induced on (E(C1)\E(C))∪(E(C)\E(C1)), the cycle
C2 is the only cycle in a theta graph with C and C1. Therefore, the edge CC1 is in Ni if
and only if σC1(2i) ∈ V (C2) \ V (C). Let P = C2 \C and notice that P is a subpath of C1

that contains exactly 2d− 2 vertices, where d− 1 of them are in A and d− 1 are in B. The
vertices of A in C1 have even indices in σC1 , therefore, there are d− 1 integers i ∈ [0, n− 2]
such that the vertex σC1(2i) is in P . That is, there are d − 1 integers i ∈ [0, n − 2] such
that the vertex σC1(2i) is in V (C2) \ V (C). Thus, there are exactly d − 1 sets Ni where
i ∈ [0, n− 2] such that CC1 ∈ Ni.

Lemma 6.2.20. Let C ∈ Ld where 2 ≤ d ≤ n − 3 and let k ∈ [d + 1, n − 1 − d]. If
CC1 ∈ Nk for some C1 ∈ L1, then Nk contains at least d!(d− 1)! edges incident with C.

Proof. Consider a theta subgraph of Kn,n−1 whose cycles are C, C1, and some C2 ∈ Ln−d

such that C2 and C intersect in exactly one edge and σC1(2k) ∈ V (C2) \ V (C). By
Proposition 6.2.18, we know that σC1(2n− 3), σC1(1), and σC1(3) are in C. Since C ∪C1 is
a theta graph, the intersection C ∩C1 is a path. Let p ∈ [3, 2n− 2− 2d] such that C ∩C1

is the path in C1 from σC1(p + 2d − 1) to σC1(p) that contains σC1(2n − 3), σC1(1), and
σC1(3). Since the vertex σC1(2k) is not in C, we know p+ 1 ≤ 2k ≤ p+ 2d− 2.

Let N1(C) be the set of cycles D ∈ L1 such that D is the union of the path C ∩ C1

and a path P in Kn,n−1 on 2d vertices with endpoints σC1(p+2d− 1), σC1(p) and all other
vertices not in C. There are d vertices in A \ V (C) and d − 1 vertices in B \ V (C), so
there are d! ways to choose and order the A vertices in P and (d− 1)! ways to order the B
vertices in P . Therefore, there are d!(d− 1)! choices for P , and thus for D, which implies
|N1(C)| = d!(d− 1)!.

Consider a cycle D in N1(C) such that D is the union of C ∩ C1 and P . Since cycles
in L1 contain all vertices in B, we know by definition that σC1(1) = σD(1). Furthermore,
since C ∩ C1 is a subpath of C1 and D, it follows that σC1(ℓ) = σD(ℓ) for all ℓ ∈ [0, p] ∪
[p+2d− 1, 2n− 3]. Let D2 be the union of the path P and the edge σD(p+2d− 1)σD(p).
Since σD(p + 2d − 1), σD(p) are the endpoints of P , the graph D2 is a cycle. The graph
C ∪ D ∪ D2 is a theta subgraph of Kn,n−1 where D2 and C intersect in exactly one edge
(σD(p + 2d− 1)σD(p)). Furthermore, since p + 1 ≤ 2k ≤ p + 2d− 2, the vertex σD(2k) is
in V (D2) \ V (C). Thus CD is in Nk.

Therefore, each D ∈ N1(C) is a cycle where CD ∈ Nk. That is, the set Nk contains at
least |N1(C)| = d!(d− 1)! edges incident to C.
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Proposition 6.2.21. Let C ∈ Ld and C
′ ∈ Ld′ where 2 ≤ d ≤ d′ ≤ n

2
and let k ∈ [0, n−2].

If CC1, C
′C1 ∈ Nk for some C1 ∈ L1, then C and C ′ are adjacent in Θ.

Proof. Since CC1, C
′C1 ∈ Nk, all vertices in C and C ′ are also in C1. Now, since the vertex

σC1(2k) is not in C or C ′, the number of vertices in C ∪C ′ is at most |V (C1)|−1 = 2n−3.
Since C contains 2(n−d) vertices and C ′ contains 2(n−d′) vertices, the number of vertices
in the intersection C ∩C ′ is at least 2n− 2d− 2d′ + 3 ≥ 3. Since C and C ′ both intersect
C1 in a path that contains all of their vertices, the intersection C ∩C ′ is either one or two
paths. Thus, at least one path in C ∩C ′ contains at least two vertices, so the cycles C and
C ′ share at least one edge.

Since the vertex σC1(2k) is not in C or C ′, the edges incident with σC1(2k) in C1 are
not in C or C ′. Let e be an edge incident with σC1(2k) in C1 and let G be the connected
graph C ∪ C ′ ∪ C1 − e. Since E(C) \ E(C1) and E(C ′) \ E(C1) each contain a different
edge that is a chord of C1 in C1 ∪C ∪C ′, we have |E(C1 ∪C ∪C ′)| = |V (C1 ∪C ∪C ′)|+2.
Since G has the same vertex set as C1 ∪ C ∪ C ′, the number of edges in G is |V (G)| + 1.
Now, it follows from Lemma 2.3.2 that C and C ′ are contained in a theta subgraph of G.
Therefore, the cycles C and C ′ are adjacent in Θ.

For each k ∈ [0, n − 2], define Rk to be a set of edges between vertices in C \ L1, as
follows. For each adjacent pair C ∈ Ld and C ′ ∈ Ld′ where 2 ≤ d ≤ d′, we say the edge
CC ′ is in Rk if and only if there exists C1 ∈ L1 such that CC1, C

′C1 ∈ Nk. In other words,
the set Rk contains all edges in Θ \ L1 that are in a triangle with two edges in Nk. By
Proposition 6.2.21, every pair of edges CC1 and C ′C1 in Nk with a common end C1 in L1

is contained in such a triangle, so CC ′ is in Rk.

Lemma 6.2.22. Let C1 ∈ Ld1 and C2 ∈ Ld2 where 2 ≤ d1 ≤ d2 ≤ n
2
. If C1C,C2C ∈ Nk

for some k ∈ [d2+1, n−1−d2] and some C ∈ L1, then the number of integers i ∈ [0, n−2]
such that C1C2 ∈ Ri is at most d2 − 1.

Proof. By Proposition 6.2.18, the vertices σC(2n− 3), σC(1), and σC(3) are in C1 and C2.
By Proposition 6.2.21, the cycles C1 and C2 are adjacent in Θ; thus, their union C1 ∪C2 is
a theta graph. Let P = C1 ∩C2 be the intersection of C1 and C2. Since C1 ∪C2 is a theta
graph, the graph P is a path. The path P contains at least five vertices, as it contains
σC(2n − 3), σC(0), σC(1), σC(2), and σC(3). Furthermore, since V (C1), V (C2) ⊆ V (C),
the vertices in P are also in C. Let s and t be integers such that 3 ≤ s < t ≤ 2n− 3 and
the vertices σC(s), σC(t) are the endpoints of P . For convenience, we also let u = σC(s)
and v = σC(t). (Figure 6.1 shows the theta graph C1 ∪ C2 where C2 is the outer cycle.)
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Figure 6.1: The cycles C1 and C2 in Lemma 6.2.22.

Let Z be the set of integers i such that C1C2 ∈ Ri. Since C1C2 ∈ Ri if and only if
there exists a cycle D ∈ L1 such that C1D,C2D ∈ Ni, the set Z is also the set of integers
i such that C1D,C2D ∈ Ni for some D ∈ L1. Let i be an integer in Z. We will show
that 2i ∈ [t − 2d2 + 2, 2d2 − 2 + s]. Since i ∈ Z, there exists a cycle D ∈ L1 such that
C1D,C2D ∈ Ni.

For each j ∈ {1, 2}, since CjD ∈ Ni, the intersection Cj ∩D is a path that contains all
vertices of Cj and the set E(Cj)\E(D) contains exactly one edge, say ej. Thus, the graph
Cj \ {ej} is the path Cj ∩D. Therefore, the graph C1 ∪ C2 \ {e1, e2} is a subgraph of D.

Claim 6.2.22.1. The path P is a subpath of D.

Proof. If not, then since e1, e2 are the only edges in E(C1 ∪C2) \E(D), at least one of the
edges e1, e2 is in P . Say e1 is in P , which implies e1 is in C1 and C2. Thus, the edge e1 is
in C2, but is not in D. Since the set E(C2) \E(D) contains exactly the edge e2, it follows
that e1 = e2. Let x and y be the endpoints of e1. Since C1 ̸= C2, each cycle intersects
D in a different path; however, both paths have endpoints x and y. Since D is a cycle,
there are two paths Q1, Q2 from x to y in D. Therefore, without loss of generality, for each
j ∈ {1, 2}, the path Cj \ {ej} is Qj. This implies that V (C1) ∪ V (C2) = V (D). Since the
vertex σD(2i) is not in C1 or C2, we have a contradiction.
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For each j ∈ {1, 2} and w ∈ {u, v}, let ewj be the edge in E(Cj)\E(C3−j) incident with
w.

Claim 6.2.22.2. Let w ∈ {u, v}. The cycle D contains at most one of ew1 , e
w
2 .

Proof. If D contains both ew1 , e
w
2 , then w has degree 3 in D, which is a contradiction.

Let P1 be the graph C1∪C2 \ {eu1 , ev2} and let P2 be the graph C1∪C2 \ {ev1, eu2}. Claim
6.2.22.2 implies that all edges in C1 ∪ C2 are in D other than at most one of eu1 , e

u
2 and

at most one of ev1, e
v
2. Additionally, by definition of Ni, the cycle D contains at least one

of eu1 , e
v
1 and at least one of eu2 , e

v
2. Therefore, the cycle D contains either P1 or P2 as a

subgraph.

For each j ∈ {1, 2} and w ∈ {u, v}, let xwj be the endpoint of ewj other than w. Observe
that P1 is a path with endpoints xu1 and xv2, and P2 is a path with endpoints xu2 and xv1.
Therefore, the cycle D is either the union of P1 and an xu1 , x

v
2-path in Kn,n−1 \ (C1 ∪ C2)

or the union of P2 and an xu2 , x
v
1-path in Kn,n−1 \ (C1 ∪ C2).

Recall that s and t are the integers in [3, 2n − 3] such that the endpoints of P are
u = σC(s) and v = σC(t). Thus, the path P contains 2n− 1− t+ s vertices.

Claim 6.2.22.3. 2d2 ≤ t− s+ 1.

Proof. The cycle C2 contains 2(n − d2) vertices and the path P contains 2n − 1 − t + s
vertices. Since P is a subpath of C2, it follows that 2(n− d2) ≥ 2n− 1− t+ s. Simplifying
the inequality gives 2d2 ≤ t− s+ 1.

Since cycles in L1 contain all vertices in B, we know by definition that σC(1) = σD(1).
Furthermore, since P is a subpath of C and D, it follows that σC(ℓ) = σD(ℓ) for all
ℓ ∈ [0, s] ∪ [t, 2n − 3]. The following two claims will determine the remaining indices of
V (C1 ∪C2) in σD, which we will use to determine the range of possible values for i. Recall
that the vertex σD(2i) is not in C1 ∪ C2 since C1D,C2D ∈ Ni. Also, since P contains
2n − 1 − t + s vertices, note that, for each j ∈ {1, 2}, the number of vertices in the path
Cj \ C3−j = Cj \ P is 2(n− dj)− (2n− 1− t+ s) = t− s+ 1− 2dj.

Claim 6.2.22.4. If P1 is a subpath of D, then 2i ∈ [t− 2d2 + 2, 2d1 − 2 + s].

Proof. The vertex xu2 of C2 \ C1 is incident with u in P1 and the distance from σD(0)
to u is less than the distance from σD(0) to xu2 . Therefore, since u = σD(s), we have
xu2 = σD(s + 1). The path C2 \ C1 contains t− s + 1− 2d2 vertices and has endpoints xu2
and xv2. Thus, it follows that x

v
2 = σD(t+ 1− 2d2).
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Similarly, the vertex xv1 of C1 \C2 is incident with v in P1 and the distance from σD(0)
to v is less than the distance from σD(0) to xv1. Therefore, since v = σD(t), we have
xv1 = σD(t − 1). The path C1 \ C2 contains t − s + 1 − 2d1 vertices and has endpoints xv1
and xu1 . Thus, it follows that x

u
1 = σD(t− (t− s+ 1− 2d1)) = σD(s− 1 + 2d1).

Now we know the path P1 contains σD(ℓ) for all ℓ ∈ [0, t+1−2d2]∪ [s−1+2d1, 2n−3].
Since the vertex σD(2i) is not in P1, the integer 2i is in [t+ 2− 2d2, s− 2 + 2d1].

In the following claim, we consider the case where P2 is in D instead of P1. The proof
is very similar to the proof of Claim 6.2.22.4.

Claim 6.2.22.5. If P2 is a subpath of D, then 2j ∈ [t− 2d1 + 2, 2d2 − 2 + s].

Proof. The vertex xu1 of C1 \ C2 is incident with u in P2 and the distance from σD(0)
to u is less than the distance from σD(0) to xu1 . Therefore, since u = σD(s), we have
xu1 = σD(s + 1). The path C1 \ C2 contains t− s + 1− 2d1 vertices and has endpoints xu1
and xv1. Thus, it follows that x

v
1 = σD(t+ 1− 2d1).

Similarly, the vertex xv2 of C2 \C1 is incident with v in P2 and the distance from σD(0)
to v is less than the distance from σD(0) to xv2. Therefore, since v = σD(t), we have
xv2 = σD(t − 1). The path C2 \ C1 contains t − s + 1 − 2d2 vertices and has endpoints xv2
and xu2 . Thus, it follows that x

u
2 = σD(t− (t− s+ 1− 2d2)) = σD(s− 1 + 2d2).

Now we know the path P2 contains σD(ℓ) for all ℓ ∈ [0, t+1−2d1]∪ [s−1+2d2, 2n−3].
Since the vertex σD(2i) is not in P2, the integer 2i is in [t+ 2− 2d1, s− 2 + 2d2].

By Claims 6.2.22.4 and 6.2.22.5, and since d1 ≤ d2, the integer 2i is at least t− 2d2 +2
and at most 2d2− 2 + s. Therefore, the even integer 2i is in [t− 2d2 + 2, 2d2− 2 + s]. The
number of even integers in [t− 2d2 + 2, 2d2 − 2 + s] is at most⌈

1
2
(2d2 − 2 + s− (t− 2d2 + 2) + 1)

⌉
= d2 − 1 +

⌈
1
2
(s− t+ 2d2 − 1)

⌉
.

By Claim 6.2.22.3, the expression s − t + 2d2 − 1 is at most 0, hence the number of even
integers in [t− 2d2 + 2, 2d2− 2 + s] is at most d2− 1. Therefore, the size of the set Z is at
most d2 − 1.

At this point, for each k ∈ [0, n − 2], we have three disjoint sets Mk, Nk, Rk of edges.
Edges in Mk are between vertices in L1, edges in Nk are between a vertex in L1 and a
vertex in Ld for some d ≥ 2, and edges in Rk are between a vertex in Ld and a vertex
in Ld′ where d, d′ ≥ 2. A sketch of the first few layers and some examples of edges in
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Mk, Nk, and Rk can be found in Figure 6.2. The supersaturation lemma for Θ (Lemma
6.2.29), proved at the end of this subsection, relies only on the edges in these sets. Each
edge between vertices in L1 is in Mk for at most one value of k; however, edges with at
least one endpoint not in L1 may be in Nk or Rk for more than one value of k. In order
to prove the supersaturation lemma, we start by considering the edges in Mk ∪ Nk ∪ Rk

individually for each k ∈ [0, n− 2]. To avoid over-counting the edges in Mk ∪Nk ∪Rk for
multiple values of k, we define a fractional colouring so that the sum of fractional colours
for each edge is at most 1.

Figure 6.2: A sketch of the overlap graph of M(Kn,n−1).

First, we define a weight function ϕk : E(Θ) → R for each colour k ∈ [0, n − 2], as
follows. For each e ∈ E(Θ), let

ϕk(e) =

{
|{i : e ∈Mi ∪Ni ∪Ri}|−1 if e ∈Mk ∪Nk ∪Rk

0 otherwise.

We say each edge e ∈ E(Θ) has colour k ∈ [0, n−2] with weight ϕk(e). If e ∈Mk∪Nk∪Rk,
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then e has colour k ∈ [0, n − 2] with positive weight, so we say that C and C ′ are k-
neighbours, which is denoted by C ∼k C

′. Furthermore, if an edge e has colour k ∈ [0, n−2]
with positive weight, then we say e is a k-edge.

Note that if e ∈ Mk, then since e is in Mi for at most one i, we know ϕk(e) = 1. In
the following two corollaries, we determine the weight ϕk(e) for each e ∈ Nk and a lower
bound on the weight ϕk(e) for each e ∈ Rk.

Corollary 6.2.23. Let C1 ∈ L1 and C ∈ Ld where d ≥ 2. If C ∼k C1 for some k ∈
[0, n− 2], then ϕk(CC1) =

1
d−1

.

Proof. Since C1 ∈ L1 and C ∈ Ld and C ∼k C
′, the edge CC1 is in Nk. Now it follows

from Lemma 6.2.19 and the definition of ϕk that ϕk(CC1) =
1

d−1
.

Corollary 6.2.24. Let C ∈ Ld and C ′ ∈ Ld′ where 2 ≤ d ≤ d′. If C ∼k C
′ for some

k ∈ [d′ + 1, n− 1− d′], then ϕk(CC
′) ≥ 1

d′−1
.

Proof. Since C ∈ Ld and C ′ ∈ Ld′ and C ∼k C
′, the edge CC ′ is in Rk. Now it follows

from Lemma 6.2.22 and the definition of ϕk that ϕk(CC
′) ≥ 1

d′−1
.

For each k ∈ [0, n − 2] and V ⊆ C, define ek(V ) =
∑

e∈E(Θ[V ]) ϕk(e). The following
proposition establishes that the number of edges induced by a subset V of vertices in the
overlap graph is at least the sum of the weights of the k-edges induced by V .

Proposition 6.2.25. For any V ⊆ C, we have e(V ) ≥
∑n−2

k=0 ek(V ).

Proof. For each edge CC ′ ∈ E(Θ), if CC ′ is in Mk ∪Nk ∪Rk for some k ∈ [0, n− 2], then

n−2∑
k=0

ϕk(CC
′) = |{i : CC ′ ∈Mi ∪Ni ∪Ri}|−1|{i : CC ′ ∈Mi ∪Ni ∪Ri}| = 1.

However, if CC ′ is not in Mk ∪ Nk ∪ Rk for any k ∈ [0, n − 2], then
∑n−2

k=0 ϕk(CC
′) = 0.

Since
n−2∑
k=0

ek(V ) =
n−2∑
k=0

∑
e∈E(Θ[V ])

ϕk(e) =
∑

e∈E(Θ[V ])

n−2∑
k=0

ϕk(e),

it follows that
n−2∑
k=0

ek(V ) ≤
∑

e∈E(Θ[V ])

1 = e(V ).
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Next, our goal is to show that the sum of weights of k-edges induced by a set V of
vertices within a certain depth in Θ, where |V | ≤ |L1|, is minimized when V ⊆ L1. To
prove this, we consider a counterexample set V of vertices and then show that we can
replace a vertex in V \ L1 with a vertex in L1 \ V without increasing the sum of k-edge
weights.

Lemma 6.2.26. Let δ ∈ [n − 2] and γ > 0 and k ∈ [δ + 1, n − 1 − δ]. For each set
V ⊆

⋃δ
i=1 Li, there exists a set V ′ ⊆ L1 such that |V ′| = min(|V |, |L1|) and ek(V ′) ≤ ek(V ).

Proof. Suppose not. Let V ⊆
⋃δ

i=1 Li be a counterexample such that ek(V ) is minimized
and, subject to that, |V ∩L1| is maximized. Since V is a counterexample, we may assume
that there exists at least one vertex in V that is not in L1. Also, if L1 ⊆ V , then V ′ = L1

satisfies the lemma, so we may assume that there exists at least one vertex in L1 that is
not in V .

Claim 6.2.26.1. For every pair C1, C
′
1 ∈ L1 such that C1 ∼k C

′
1, at least one of C1, C

′
1 is

in V .

Proof. Suppose towards a contradiction that there exist C1, C
′
1 ∈ L1\V such that C1 ∼k C

′
1.

If there does not exist a k-neighbour C ∈ V of C1, then V ′ = V \ {D} ∪ {C1} for any
D ∈ V \ L1 is a set of the same size as V that induces at most as many k-edges as V and
|V ′ ∩ L1| > |V ∩ L1|, which is a contradiction.

Let C be a k-neighbour of C1 in V ∩ Ld such that 2 ≤ d ≤ δ is minimum. Consider
any other k-neighbour C ′ ∈ V ∩ Ld′ of C1 where d ≤ d′ ≤ δ. By Corollary 6.2.23, the
weight ϕk(C

′C1) is
1

d′−1
. By Proposition 6.2.21, the edge CC ′ is in Rk and thus C ∼k C

′.

Now by Corollary 6.2.24, the weight ϕk(CC
′) is at least 1

d′−1
. Therefore ϕk(C

′C1) =
1

d′−1
≤

ϕk(CC
′). Consider the set V ′ = V ∪ {C1} \ {C}. First observe that

ek(V
′) = ek(V ) +

∑
C′∈V : C′∼kC1

(
ϕk(C

′C1)− ϕk(CC
′)
)

≤ ek(V ).

Additionally, notice that |V ′| = |V | and |V ′∩L1| > |V ∩L1|. Therefore V ′ is a set with the
same size as V where ek(V

′) ≤ ek(V ) and |V ′∩L1| > |V ∩L1|, which is a contradiction.

Claim 6.2.26.2. For some d ≥ 2, there exists a cycle C ∈ Ld ∩ V with a k-neighbour
C1 ∈ L1 \ V .
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Proof. Suppose not. Let d ≥ 2 and C ∈ Ld ∩ V . So by assumption, all neighbours of C in
L1 are in V . Thus, by Lemma 6.2.20, the cycle C has at least d!(d − 1)! k-neighbours in
L1 ∩ V . By Corollary 6.2.23, the weight ϕk(CD) is 1

d−1
for all k-neighbours D ∈ L1 of C.

Therefore
∑

D∈L1∩V :C∼kD
ϕk(CD) ≥ d!(d− 1)! · 1

d−1
≥ 2. Since L1 \ V is not empty, there

exists a cycle C1 ∈ L1 \ V . By assumption, there is no cycle in V \ L1 with a k-neighbour
in L1 \V , so C1 has no k-neighbours in V \L1. Let C

′
1 be the k-neighbour of C1 in L1. By

Claim 6.2.26.1, the cycle C ′
1 is in V . Consider the set V ′ = V ∪ {C1} \ {C}. Observe that

ek(V
′) ≤ ek(V ) + ϕk(C1C

′
1)−

∑
D∈L1∩V :C∼kD

ϕk(CD)

≤ ek(V ) + 1− 2

< ek(V ).

Therefore, the set V ′ has the same size as V and ek(V
′) < ek(V ), which is a contradiction.

Now consider a pair of cycles C1, C
′
1 ∈ L1 where C1 ∼k C

′
1 and C1 /∈ V such that there

exists C ∈ V \L1 where C ∼k C1. Such cycles C,C1, C
′
1 exist by Claim 6.2.26.2. By Claim

6.2.26.1, it follows that C ′
1 ∈ V .

Let C be a k-neighbour of C1 in V ∩ Ld such that 2 ≤ d ≤ δ is minimum. By Lemma
6.2.20, the cycle C has at least d!(d−1)!/2 pairs of k-neighboursD,D′ ∈ L1 whereD ∼k D

′.
Therefore, by Claim 6.2.26.1, we have C ∼k D for at least d!(d−1)!/2 vertices D ∈ V ∩L1.
By Corollary 6.2.23, the weight ϕk(CD) is 1

d−1
for any D ∈ L1 where D ∼k C. Thus,∑

D∈V ∩L1

ϕk(CD) ≥ d!(d− 1)!

2
· 1

d− 1
=
d!(d− 2)!

2
≥ 1.

Since ϕk(C1C
′
1) = 1, it follows that

∑
D∈V ∩L1

ϕk(CD) ≥ ϕk(C1C
′
1).

Consider any other k-neighbour C ′ ∈ V ∩ Ld′ of C1 where d ≤ d′ ≤ δ. By Corollary
6.2.23, the weight ϕk(C

′C1) is 1
d′−1

. By Proposition 6.2.21, the edge CC ′ is in Rk and

thus C ∼k C ′. Now by Corollary 6.2.24, it follows that ϕk(CC
′) ≥ 1

d′−1
. Therefore

ϕk(C
′C1) =

1
d′−1
≤ ϕk(CC

′).

Consider the set V ′ = V ∪ {C1} \ {C}. Observe that

ek(V
′) = ek(V ) + ϕk(C1C

′
1)−

∑
D∈V ∩L1

ϕk(CD) +
∑

C′∈V \L1 : C′∼kC1

(
ϕk(C

′C1)− ϕk(CC
′)
)

≤ ek(V ).
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Therefore V ′ is a set with the same size as V where ek(V
′) ≤ ek(V ) and |V ′∩L1| > |V ∩L1|,

which is a contradiction.

Now we know that the sum of weights of k-edges induced by a set V of vertices within a
certain depth in Θ, where |V | ≤ |L1|, is minimized when V ⊆ L1. In the following lemma,
we determine a lower bound on the sum of weights of k-edges induced by a subset V of
vertices from L1, where the size of V is sufficiently large.

Lemma 6.2.27. Let γ > 0 and k ∈ [0, n − 2]. If V ⊆ L1 where |V | ≥ (1 + γ)α, then
ek(V ) ≥ γα.

Proof. Let Z = {C ∈ L1 : sgn(σC) = 1}. By Lemma 6.2.14, the pair (Z,L1 \ Z) is a
bipartition of Θ[L1] where |Z| = |L1 \ Z| = α. Let X = Z ∩ V and Y = V ∩ (L1 \ Z).
Since X ⊆ Z and Y ⊆ L1 \ Z, the pair (X, Y ) is a bipartition of Θ[V ]. Now let Yk =
{C ′ ∈ L1 : C ∼k C

′ for some C ∈ X} and notice that Yk ⊆ L1 \ Z. Since Mk induces a
perfect matching of Θ[L1], the number of k-edges induced by V is at least the size of the
intersection of Yk and Y . Since |Yk| = |X| and the union of Yk and Y is at most the size
of L1 \ Z, it follows that:

ek(V ) ≥ |Yk ∩ Y |
= |Yk|+ |Y | − |Yk ∪ Y |
≥ |X|+ |Y | − |L1 \ Z|
= |V | − α.

By assumption, we have |V | ≥ (1 + γ)α, hence ek(V ) ≥ (1 + γ)α− α = γα.

Since many of the results in this subsection apply only to sets of vertices above a certain
depth in Θ, we prove the following lemma to show that the number of vertices below a
certain depth is relatively small compared to the number of vertices in L1.

Lemma 6.2.28. For n ≥ 17,

n−2∑
d=⌊n−1

4
⌋+1

|Ld| ≤
64

(n− 1)2
α.

Proof. For each d ∈ [n − 2], the number of cycles in Ld is n!(n−1)!
2(n−d)d!(d−1)!

by Lemma 6.2.5.
Therefore,

n−2∑
d=⌊n−1

4
⌋+1

|Ld| ≤ 2(n− 1)α
n−2∑

d=⌊n−1
4

⌋+1

1

(n− d)d!(d− 1)!
.
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Since d(n− d) ≥ n− 1 for all d ∈ [n− 2], we have

n−2∑
d=⌊n−1

4
⌋+1

|Ld| ≤ 2α
n−2∑

d=⌊n−1
4

⌋+1

1

(d− 1)!2

= 2α · 1

⌊n−1
4
⌋!

n−2∑
d=⌊n−1

4
⌋+1

1

(d− 1)!

≤ 2α · 1

⌊n−1
4
⌋!
· 2

⌊n−1
4
⌋!

=
4α

⌊n−1
4
⌋!2
.

Since ⌊n−1
4
⌋! ≥ n−1

4
for n ≥ 17, it follows that

n−2∑
d=⌊n−1

4
⌋+1

|Ld| ≤
64α

(n− 1)2
.

Finally, we are ready to prove a supersaturation lemma for Θ, which is the main result
of this subsection and will be used in an application of a container method in Subsection
6.2.5. Recall that Θ is the overlap graph of M(Kn,n−1). The vertex set of Θ is C, the set
of circuits of M(Kn,n−1). Two vertices C,C ′ in Θ are adjacent if and only if they are in
the same theta subgraph of Θ.

Lemma 6.2.29 (Supersaturation Lemma for Θ). For each integer n ≥ 17 and each real

number γ ≥ e2√
n−1

, if B ⊆ C with |B| ≥ (1 + γ)n!(n−2)!
4

= (1 + γ)α, then B spans at least
γn!(n−1)!

16
= γα(n−1)

4
edges in Θ.

Proof. Let δ = ⌊n−1
4
⌋ and notice that δ is in [n − 2]. Let B′ = B ∩

⋃δ
d=1 Ld. By Lemma

6.2.28, the set B′ has size at least
(
1 + γ − 64

(n−1)2

)
α. Let γ′ = γ − 64

(n−1)2
. Since n ≥ 17,

we have (n − 1)1/2 ≤ (n−1)2

163/2
≤ (n−1)2

64
. Now we know 64

(n−1)2
≤ 1√

n−1
≤ 1

2
· e2√

n−1
≤ γ/2.

Therefore γ′ ≥ γ/2.

Since B′ is a subset of B, the number of edges spanned by B is at least the number of
edges spanned by B′. Thus, it is sufficient to prove that the number of edges induced by
B′ is at least γα(n−1)

4
.
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For each k ∈ [δ + 1, n− 1− δ], there exists a set B′′ ⊆ L1 where |B′′| = min(|B′|, |L1|)
and ek(B′′) ≤ ek(B′) by Lemma 6.2.26. The minimum of |B′| and |L1| is at least (1 + γ′)α,
hence |B′′| ≥ (1 + γ′)α. Now by Lemma 6.2.27, it follows that ek(B′′) ≥ γ′α. Therefore
ek(B′) ≥ γ′α.

The size of the set [δ+1, n−1−δ] is n−1−2δ = n−1−2⌊n−1
4
⌋ ≥ n−1

2
. By Proposition

6.2.25, we have e(B′) ≥
∑

k∈[0,n−2] ek(B′). The sum of ek(B′) over all colours k is at least

as much as the sum of ek(B′) for k ∈ [δ + 1, n− 1− δ]. Therefore,

e(B′) ≥
∑

k∈[δ+1,n−1−δ]

ek(B′)

≥ γ′α(n− 1)

2
.

Since γ′ ≥ γ/2, it follows that e(B′) ≥ γα(n−1)
4

.

6.2.5 Applying a container method

First, we determine an upper bound for the number of stable sets in Θ(M(Kn,n)) by apply-
ing the Supersaturation Lemma 6.2.11 to Corollary 5.2.2, a result implied by a container
method proved by Kohayakawa, Lee, Rödl, and Samotij in [23]. The corollary states that
for q,N ∈ Z+, R ∈ R+, and β ∈ [0, 1] where R ≥ e−βqN , if G is an N -vertex graph where
eG(U) ≥ β

(|U |
2

)
for every U ⊆ V (G) containing at least R vertices, then the number of

stable sets of G is at most ( eN
q
)q · 2R. For more information about container methods and

Corollary 5.2.2, see Section 5.2.

Theorem 6.2.30. log i(Θ(M(Kn,n))) ≤ n!2

2n

(
1 +O

(
logn√

n

))
.

Proof. First, in this proof, let Θ denote Θ(M(Kn,n)). Let R =
(
1 + e2√

n

)
n!2

2n
. Let q = n!2

2n
√
n

and β = 2n
√
n

n!2
= 1

q
. Finally, let N = |V (Θ)|. Since N < en!2

2n
by Corollary 6.2.6, we have

e−βqN < n!2

2n
< R. Let U ⊆ V (Θ) be a set of vertices of size (1+γ)n!

2

2n
where γ ≥ e2√

n
. Since

γ ≥ e2√
n
≥ 8

n
for n ≥ 1, it follows from Lemma 6.2.11 that the number of edges spanned by

U is at least γn!2

4
. Note that since |V (Θ)| < en!2

2n
, we know γ < e−1. Since e2√

n
≤ γ < e−1,

β

(
|U |
2

)
≤ β · |U |

2

2
≤ 2n

√
n

n!2
· (1 + γ)2n!4

8n2
=

(1 + γ)2n!2

4
√
n

≤ γn!2

4
,
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so the number of edges spanned by U is at least β
(|U |

2

)
. Thus, the conditions of Corollary

5.2.2 are satisfied and it follows that Θ contains at most
(
eN
q

)q · 2R stable sets.

Since N < en!2

2n
,

log

((
eN

q

)q

· 2R
)

= q log

(
eN

q

)
+R

≤ n!2

2n
√
n
log(e2

√
n) +

(
1 +

e2√
n

)
n!2

2n

=
n!2

2n

(
1 +

e2√
n
+

log(e2
√
n)√

n

)
=
n!2

2n

(
1 +

log(e2
√
n) + e2√
n

)
.

Therefore, the number of stable sets in Θ is at most 2
n!2

2n

(
1+O

(
logn√

n

))
.

By a very similar proof, we obtain a similar upper bound for the number of stable sets
in Θ(M(Kn,n−1)).

Theorem 6.2.31. log i(Θ(M(Kn,n−1))) ≤ n!2

2n

(
1 +O

(
logn√

n

))
.

Proof. First, in this proof, let Θ denote Θ(M(Kn,n−1)). Let R =
(
1 + e2√

n−1

)n!(n−2)!
4

. Let

q = n!(n−2)!√
n−1

and β = 2
√
n−1

n!(n−2)!
= 2

q
. Finally, let N = |V (Θ)|. Since N < en!(n−1)!

2(n−1)
by

Corollary 6.2.6, we have e−βqN < n!(n−1)!
2(n−1)

< R. Let U ⊆ V (Θ) be a set of vertices of

size at least (1 + γ)n!(n−2)!
4

where γ ≥ e2√
n−1

. Note that since |V (Θ)| < en!2

2n
, we know

γ < e− 1. By Lemma 6.2.29, the number of edges spanned by U is at least γn!(n−1)!
16

. Since
e2√
n−1
≤ γ < e− 1, we have

β

(
|U |
2

)
≤ β · |U |

2

2
≤ 2
√
n− 1

n!(n− 2)!
· (1 + γ)2n!2(n− 2)!2

32
=

(1 + γ)2n!(n− 1)!

16
√
n− 1

≤ γn!(n− 1)!

16
,

so the number of edges spanned by U is at least β
(|U |

2

)
. Thus, the conditions of Corollary

5.2.2 are satisfied and it follows that Θ contains at most
(
eN
q

)q · 2R stable sets.
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Since N < en!(n−2)!
2

,

log

((
eN

q

)q

· 2R
)

= q log

(
eN

q

)
+R

≤ n!(n− 2)!√
n− 1

log

(
e2

2

√
n− 1

)
+

(
1 +

e2√
n− 1

)
n!(n− 2)!

4

=
n!(n− 2)!

4

(
1 +

e2√
n− 1

+
4 log(e2

√
n− 1/2)√

n− 1

)
=
n!(n− 2)!

4

(
1 +

4 log(e2) + 2 log(n− 1)− 4 log(2) + e2√
n− 1

)

Therefore, the number of stable sets in Θ is at most 2
n!(n−2)!

4

(
1+O

(
logn√

n

))
.

6.2.6 The main theorems

We are now ready to prove the main results of this section.

Theorem 6.0.1. log coext(M(Kn,n)) =
n!2

2n
(1 + o(1)).

Proof. Since Kn,n has n!2

2n
Hamiltonian cycles by Lemma 6.2.1, there are 2

n!2

2n distinct sets of
Hamiltonian cycle. Since no theta subgraph of Kn,n contains more than one Hamiltonian
cycles, each set of Hamiltonian cycles is a stable set of Θ(M(Kn,n)). Therefore, we have

log i(Θ(M(Kn,n))) ≥ n!2

2n
.

By Proposition 6.2.7, if n ≥ 16, then the graph Kn,n has at most n!2

2n2 cycles with length

at most 2
3
(2n + 3). By Theorem 6.2.30, we have log i(Θ(M(Kn,n))) ≤ n!2

2n

(
1 + O

(
logn√

n

))
.

Thus, by Lemma 6.1.3,

n!2

2n
≤ log coext(M(Kn,n)) ≤

n!2

2n

(
1 +O

(
log n√
n

)
+

1

n

)
,

which implies that log coext(M(Kn,n)) =
n!2

2n
(1 + o(1)).

Theorem 6.0.2. log coext(M(Kn,n−1)) =
n!(n−2)!

4
(1 + o(1)).

Proof. By Proposition 6.2.16, we have log i(Θ(M(Kn,n−1))) ≥ n!(n−2)!
4

.
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By Proposition 6.2.8, if n ≥ 18, then the graph Kn,n−1 has at most n!(n−2)!
4n

cycles with

length at most 2
3
(2n+2). By Theorem 6.2.31, we have log i(Θ(M(Kn,n−1))) ≤ n!(n−2)!

4

(
1+

O
(

logn√
n

))
. Thus, by Lemma 6.1.3,

n!(n− 2)!

4
≤ log coext(M(Kn,n−1)) ≤

n!(n− 2)!

4

(
1 +O

(
log n√
n

)
+

1

n

)
,

which implies that log coext(M(Kn,n−1)) =
n!(n−2)!

4
(1 + o(1)).
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Chapter 7

Coextensions of Dowling geometries

Dowling geometries are frame matroids, which are defined using biased graphs. As we saw
in Chapter 6, biased graphs correspond to coextensions of graphic matroids. In particular,
the connected corank-2 restrictions of a graphic matroid M(G) are the theta subgraphs
of G. For frame matroids, theta subgraphs with all cycles unbalanced are circuits; that
is, they are connected corank-1 restrictions. The connected corank-2 restrictions of a
Dowling geometry are difficult to describe concisely, so instead of defining them precisely,
we describe adjacencies in the circuit graph as needed. In this chapter, we do not need to
restrict ourselves to only considering connected corank-2 restrictions, so we use the circuit
graph Ω(DG(n,Γ)) instead of the overlap graph, which was used in the previous chapter.
Recall that Ω(DG(n,Γ)) has vertex set C(DG(n,Γ)) where two vertices are adjacent if and
only if they are contained in a corank-2 restriction of DG(n,Γ).

In this chapter, we prove the following bounds on the number of coextensions of the
Dowling geometry DG(n,Γ), which is denoted coext(DG(n,Γ)). Recall that the Dowling
geometry DG(n,Γ) is defined using the finite (multiplicative) group Γ, which has order q.
Also, recall that o(1) denotes an unspecified function of n which goes to 0 as n goes to
infinity and log denotes the base-2 logarithm.

Theorem 7.0.1.

1

8
n!(n− 4)qn−1(q − 1) ≤ log(coext(DG(n,Γ))) ≤

q
√
e

8
(n+ 1)!qn−1(q − 1) log(n)(1 + o(1)).

If we include a (1+ o(1)) term in the lower bound, then the lower and upper bounds in
Theorem 7.0.1 almost match, but they differ by a factor of q

√
e log(n), which is logarithmic
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in n. If we instead asymptotically bound the double log of coext(DG(n,Γ)), then this
logarithmic factor becomes a term in the function represented by o(1). This is shown in
the following corollary, which is directly implied by Theorem 7.0.1.

Corollary 7.0.2.

log(log(coext(DG(n,Γ)))) = n log n(1 + o(1)).

In order to prove the bounds in Theorem 7.0.1, we determine bounds on the number
of stable sets in the circuit graph of DG(n,Γ) and use Corollary 3.2.6. The lower bound is
established by finding a large stable set in the circuit graph. To prove the upper bound, we
describe a subgraph of Ω(DG(n,Γ)) on a particular edge set which we show is isomorphic
to a subgraph of a Hamming graph. Bounds determined in Chapter 4 for the number of
stable sets in certain Hamming graphs are then used.

Notice in Theorem 4.3.2 that the lower bound for the number of stable sets in the
Hamming graphs relevant to this chapter contain a log factor, similar to the upper bound.
Since the lower bound in Theorem 7.0.1 does not use analysis of Hamming graphs, it
seems likely that it can be improved by using Hamming graphs. If lower bound version of
Shearer’s Lemma 2.2.3 exists, it seems hopeful that it could be used with the lower bound
in Theorem 4.3.2 to find a bound matching the upper bound in Theorem 7.0.1, up to lower
order terms.

Conjecture 7.0.3. For some fixed real number c,

log(coext(DG(n,Γ))) = c(n+ 1)!qn−1(q − 1) log(n)(1 + o(1)).

7.1 Preliminaries

First, we recall the definition of a Dowling geometry DG(n,Γ). A similar definition and
a relevant discussion on Dowling geometries can be found in [40], although note that
Dowling geometries are denoted Qn(Γ) in [40]. Let n be a positive integer. Let Γ be a
finite (multiplicative) group with identity element 1 and let q = |Γ|. Recall the construction
of the graph KΓ

n , which has vertex set [n]. The edge set of KΓ
n is Γ×

(
[n]
2

)
∪ {βu : u ∈ [n]}

and the incidence function f of KΓ
n is defined as follows. For each (γ, {u, v}) ∈ Γ ×

(
[n]
2

)
,

let f((γ, {u, v})) = {u, v} and for each u ∈ [n], let f(βu) = {u}. Informally, the graph KΓ
n

has vertex set [n], an edge labelled γ between each pair {u, v} ∈
(
[n]
2

)
for each γ ∈ Γ, and

a loop labelled βu on each vertex u ∈ [n]. For an edge e = (γ, {u, v}), let γ be called the
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edge label of e and recall that u and v are called the endpoints of e. The ground set of
DG(n,Γ) is E(KΓ

n ).

Recall the function ψ : Γ× Z2
>0 → Γ where, for each (γ, x, y) ∈ Γ× Z2

>0,

ψ((γ, x, y)) =

{
γ if x ≤ y

γ−1 if y < x
.

Let C be a cycle of KΓ
n with at least two edges and arbitrarily assign an orientation to

it. Let the vertices and edges of C, beginning with a vertex, be v1, e1, v2, e2, . . . , vk, ek, v1,
where ei = (γi, {vi, vi+1}) for each i ∈ [k]. We say C is balanced if

∏k
i=1 ψ((γi, vi, vi+1)) = 1.

Note that the definition of a balanced cycle does not depend on the chosen cyclic ordering
of the cycle [40]. A cycle is unbalanced if it either has a single edge or is not balanced. Let
B be the collection of balanced cycles of KΓ

n . The circuits of DG(n,Γ) consist of the edge
sets of all of the balanced cycles together with the edge sets of all of the hinged, tight, and
loose cuffs in which none of the cycles are balanced. Recall that the Dowling geometry
DG(n,Γ) is the frame matroid represented by (KΓ

n ,B).

Now we are ready to prove some preliminary results about Dowling geometries. These
results establish the number of certain cuffs or cycles in KΓ

n . Note that when we refer to
a loop in a cuff, we are referring to a graphic loop, not a matroid loop.

Proposition 7.1.1. For each t ∈ [0, n − 2], the number of (n + 1 − t)-cuffs in KΓ
n is at

most (n+2)!
8t!

qn−t−1(q − 1)2.

Proof. Let M = DG(n,Γ). Let C denote the collection of (n + 1 − t)-cuffs in KΓ
n . Let

L ⊆ C denote the collection of (n+1− t)-cuffs in KΓ
n that contain a loop. Define a function

Φ : C → 2E(M)n+1−t
as follows. For each C ∈ C, let

Φ(C) = {(e1, e2, . . . , en−1−t, f1, f2) : e1e2 . . . en−1−t is a Hamiltonian path of C and

f1, f2 ∈ V (C) \ {e1, . . . , en−1−t} each have an end with degree at least 3 in C}.

Each cuff is determined by its edges, so each tuple in E(M)n+1−t appears in the Φ-
image of at most one cuff. For A ⊆ C, let Φ(A) =

⋃
C∈A Φ(C). Observe that |Φ(C)| is the

number of tuples (e1, e2, . . . , en−1−t, f1, f2) in E(M)n+1−t where KΓ
n [{e1, . . . , en−1−t}] is a

Hamiltonian path of some cuff C.

Claim 7.1.1.1. |Φ(C \ L)| ≤ 2n!
t!
qn−t−1(n− t− 1)2(q − 1)2.
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Proof. Consider a tuple T = (e1, . . . , en−1−t, f1, f2) in Φ(C \ L). Thus, there exists a cuff
C ∈ C such that T ∈ Φ(C). Since there are

(
n

n−t

)
(n − t)!qn−1−t paths of length n − t − 1

in KΓ
n where one endpoint of the path is marked, there are

(
n

n−t

)
(n− t)!qn−1−t choices for

the elements e1, . . . , en−t−1.

Since C is a cuff, it has no vertex of degree 1, so at least one of f1, f2 is incident with e1
and at least one is incident with en−1−t. Since f1, f2 each have an endpoint with degree at
least 3 in C, there exist i ̸= j ∈ {1, n− t− 1} such that the edge f1 is incident with ei and
the edge f2 is incident with ej. Let vi be the vertex f1 and ei share. Let vj be the vertex
f2 and ej share. Since no cuff in C \ L has a loop, there are (n − t − 1) choices for the
endpoint of f1 other than vi and at most (q− 1) choices for the edge label. Similarly, there
are (n− t− 1) choices for the endpoint of f2 other than vj and at most (q − 1) choices for
the edge label. Therefore, there are at most 2(n− t− 1)2(q − 1)2 choices for the elements
f1, f2.

Claim 7.1.1.2. |Φ(L)| ≤ 2n!
t!
qn−t−1(n− t− 1)(q − 1).

Proof. Consider a tuple T = (e1, . . . , en−1−t, f1, f2) in Φ(L). Thus, there exists a cuff C ∈ C
such that T ∈ Φ(C). Since there are

(
n

n−t

)
(n − t)!qn−1−t paths of length n − t − 1 in KΓ

n

where one endpoint of the path is marked, there are
(

n
n−t

)
(n − t)!qn−1−t choices for the

elements e1, . . . , en−t−1.

Since C is a cuff, it has no vertex of degree 1, so at least one of f1, f2 is incident with
e1 and at least one is incident with en−1−t. Since f1, f2 each have an endpoint with degree
at least 3 in C, there exist i ̸= j ∈ {1, n − t − 1} such that the edge f1 is incident with
ei and the edge f2 is incident with ej. Since each cuff in L has a loop, there is one choice
for the edge in {f1, f2} that is a loop and there are at most (n− t− 1)(q − 1) choices for
the other edge. Therefore, there are at most 2(n − t − 1)(q − 1) choices for the elements
f1, f2.

Claim 7.1.1.3. If C ∈ C \ L, then |Φ(C)| ≥ 16.

Proof. Since C has no loops, there exist distinct edges e1, e2 in a cycle D of C and distinct
edges e3, e4 in another cycle D′ of C where each of e1, e2, e3, e4 is incident with a vertex of
degree at least 3. Observe that, for i ∈ {1, 2} and j ∈ {3, 4}, the graph C \ {ei, ej} is a
Hamiltonian path of C. There are four choices for i and j, two ways to order ei and ej,
and two ways to order the Hamiltonian path C \ {ei, ej}; therefore, there are at least 16
tuples in Φ(C).

Claim 7.1.1.4. If C ∈ L, then |Φ(C)| ≥ 4.
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Proof. Let e1 be a loop in C. Since C contains at least two unbalanced cycles, there exists
an edge e2 ̸= e1 such that C \ {e1, e2} is a Hamiltonian path of C. There are two ways to
order e1, e2 and two ways to order the Hamiltonian path, so there are at least 4 tuples in
Φ(C).

Since each tuple is in the Φ-image of at most one cuff,

|C| ≤ |Φ(C \ L)|
minC∈C\L |Φ(C)|

+
|Φ(L)|

minC∈L |Φ(C)|
.

By Claims 7.1.1.1, 7.1.1.2, 7.1.1.3, and 7.1.1.4,

|C| ≤ n!

t!
qn−t−1(n− t− 1)(q − 1)

(
1

8
(n− t− 1)(q − 1) +

1

2

)
≤ n!

t!
qn−t−1(q − 1)2

(
1

8
(n− t− 1)2 +

1

2
(n− t− 1)

)
=
n!

t!
qn−t−1(q − 1)2

(
1

8

(
(n− t)2 + 2(n− t)− 3

))
.

Since t ≥ 0 and n2 + 2n− 3 ≤ n2 + 3n+ 2 = (n+ 1)(n+ 2), we have

|C| ≤ n!

8t!
qn−t−1(q − 1)2(n+ 1)(n+ 2)

≤ (n+ 2)!

8t!
qn−t−1(q − 1)2

Proposition 7.1.2. For each t ∈ [1, n − 1], the number of balanced (n + 1 − t)-cycles in
KΓ

n is n!
(t−1)!(n+1−t)

qn−t.

Proof. Consider a balanced (n + 1 − t)-cycle C in KΓ
n , which has n + 1 − t vertices. Let

the vertices and edges of C, beginning with a vertex, be v1, e1, v2, e2, . . . , vn+1−t, en+1−t, v1.
There are

(
n

n+1−t

)
ways to choose the n+1− t vertices in C and (n− t)! ways to order them

in a cycle. Since C is balanced, we know
∏n+1−t

i=1 ψ(ei) = 1, which implies ψ(en+1−t) =(∏n−t
i=1 ψ(ei)

)−1
. Thus, since the edge endpoints are known, there are qn−t choices for the

edges e1, . . . , en−t and one choice for the edge en+1−t. Therefore, there are n!
(t−1)!(n+1−t)

qn−t

balanced (n+ 1− t)-cycles in KΓ
n .

Proposition 7.1.3. For each t ∈ [0, n − 2], the number of (n + 1 − t)-cuffs in KΓ
n that

contain a loop or parallel edges is at most n!
t!
(n− t− 1)qn−t−1(q − 1)2.
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Proof. Let C denote the collection of (n+1− t)-cuffs in KΓ
n that contain a loop or parallel

edges. Define a function Φ : C → 2E(DG(n,Γ))n+1−t
as follows. For each C ∈ C, let

Φ(C) = {(e1, e2, . . . , en−1−t, f1, f2) : e1e2 . . . en−1−t is a Hamiltonian path of C and

f1, f2 ∈ V (C) \ {e1, . . . , en−1−t} each have an end with degree at least 3 in C}.

Each cuff is determined by its edges, so each tuple in E(DG(n,Γ))n+1−t appears in the
Φ-image of at most one cuff. For A ⊆ C, let Φ(A) =

⋃
C∈A Φ(C). Observe that |Φ(C)| is the

number of tuples (e1, e2, . . . , en−1−t, f1, f2) in E(DG(n,Γ))
n+1−t where KΓ

n [{e1, . . . , en−1−t}]
is a Hamiltonian path of some cuff C.

Claim 7.1.3.1. |Φ(C)| ≤ 4n!
t!
(n− t− 1)qn−t−1(q − 1)2.

Proof. Consider a tuple T = (e1, . . . , en−1−t, f1, f2) in Φ(C). Thus, there exists a cuff C ∈ C
such that T ∈ Φ(C). Since there are

(
n

n−t

)
(n − t)!qn−1−t paths of length n − t − 1 in KΓ

n

where one endpoint of the path is marked, there are
(

n
n−t

)
(n − t)!qn−1−t choices for the

elements e1, . . . , en−t−1.

Since C is a cuff, it has no vertex of degree 1, so at least one of f1, f2 is incident with
e1 and at least one is incident with en−1−t. Since f1, f2 each have an endpoint with degree
at least 3 in C there exist i ̸= j ∈ {1, n − t − 1} such that the edge f1 is incident with ei
and the edge f2 is incident with ej. Since each cuff in C has a loop or parallel edges, one
of {f1, f2} is a loop or has the same endpoints as e1 or en−t−1. Since there are q − 2 edges
that have the same endpoints as e1 or en−t−1, there are q−1 choices for the edge in {f1, f2}
that is a loop or parallel edge and there are at most (n− t− 1)(q− 1) choices for the other
edge. Since there are two choices for i and j, there are at most 2(n− t− 1)(q− 1)2 choices
for the elements f1, f2.

Claim 7.1.3.2. If C ∈ C, then |Φ(C)| ≥ 4.

Proof. Let e1 be a loop or parallel edge in C. Since C contains at least two unbalanced
cycles, there exists an edge e2 ̸= e1 such that C \{e1, e2} is a Hamiltonian path of C. There
are two ways to order e1, e2 and two ways to order the Hamiltonian path, so there are at
least 4 tuples in Φ(C).

Since each tuple is in the Φ-image of at most one cuff,

|C| ≤ |Φ(C)|
minC∈C |Φ(C)|

.
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By Claims 7.1.3.1 and 7.1.3.2,

|C| ≤ n!

t!
(n− t− 1)qn−t−1(q − 1)2.

The following lemma upper bounds the number of circuits in DG(n,Γ) with size at
most 5n

6
+1. We will see in Section 7.4 that this upper bounds the number of small circuits

in DG(n,Γ).

Lemma 7.1.4. If Ct denotes the set of (n+ 1− t)-circuits of DG(n,Γ), then

n−1∑
t=⌊n/6⌋−1

|Ct| = o((n+ 1)!qn−1).

Proof. The set Ct contains precisely the (n+1− t)-cuffs and the balanced (n+1− t)-cycles
of KΓ

n . Therefore, by Propositions 7.1.1 and 7.1.2,

n−1∑
t=⌊n/6⌋−1

|Ct| ≤
n−1∑

t=⌊n/6⌋−1

1

8

n!

t!
qn−t−1

(
(n+ 2)2(q − 1)2 +

8tq

n+ 1− t

)

≤ n!qn+1

8

n−1∑
t=⌊n/6⌋−1

1

t!qt
(n+ 2)2(1 + o(1))

≤ n!qn+1

8

(
5n

6
+ 2

)
n2

(⌊n/6⌋ − 1)!q⌊n/6⌋−1
(1 + o(1))

= n!nqn−1

(
5q4

6 · 8
· n2

(n/6− 2)!qn/6

)
(1 + o(1))

= o((n+ 1)!qn−1).

7.2 Lower bound

In this section, we determine a lower bound for the number of stable sets in the circuit
graph of DG(n,Γ), based on a large stable set.

Consider a tight k-cuff C which contains cycles Ca and Cb, with lengths a and b,
respectively. For each i ∈ {a, b}, let ui be the vertex of degree 4 in Ci and let wi be the
minimum neighbour of ui in Ci. Let v1e1v2e2 . . . vaeava+1 and v′1e

′
1v

′
2e

′
2 . . . v

′
be

′
bv

′
b+1, where
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va+1 = v1 = ua, v2 = wa, v
′
b+1 = v′1 = ub, and v′2 = wb, be the vertices and edges of

Ca and Cb. For each edge e in KΓ
n , let φ(e) denote the edge label of e. We say C is

symmetric if φ(e1)φ(e2) . . . φ(ea) = φ(e′1)φ(e
′
2) . . . φ(e

′
b). Note that tight cuffs with loops

are not symmetric.

Proposition 7.2.1. If n ≥ 5 and T0 denotes the set of tight symmetric (n + 1)-cuffs in
KΓ

n , then |T0| ≥ 1
8
n!(n− 4)qn−1(q − 1).

Proof. Let M = DG(n,Γ). Define a function Φ : T0 → 2E(M)n+1
as follows. For each

C ∈ T0, let

Φ(C) = {(e1, e2, . . . , en−1, f1, f2) : e1e2 . . . en−1 is a Hamiltonian path of C and

f1, f2 ∈ V (C) \ {e1, . . . , en−1} each have an end with degree at least 3 in C}.

Each cuff is determined by its edges, so each tuple in E(M)n+1 appears in the Φ-
image of at most one cuff. For A ⊆ T0, let Φ(A) =

⋃
C∈A Φ(C). Observe that |Φ(T0)|

is the number of tuples (e1, e2, . . . , en−1, f1, f2) in E(M)n+1 where KΓ
n [{e1, . . . , en−1}] is a

Hamiltonian path of some tight symmetric (n+ 1)-cuff C.

Claim 7.2.1.1. |Φ(T0)| ≥ 2n!qn−1(n− 4)(q − 1).

Proof. Consider a tuple T = (e1, . . . , en−1, f1, f2) in Φ(T0). Thus, there exists a cuff C ∈ T0
such that T ∈ Φ(C). Since there are n!qn−1 paths of length n−1 in KΓ

n where one endpoint
of the path is marked, there are n!qn−1 choices for the elements e1, . . . , en−1.

Since C is a tight cuff, one of f1, f2 is incident with e1, the other is incident with en−1,
and both are incident with a vertex u of degree 4. If u is chosen to be a vertex in C that
is not an endpoint of e1 or en−1, then there are n − 4 choices for u and q − 1 choices for
the edge label of f1. Since C is symmetric, there is then one choice for the edge label of
f2. Since there are two ways to order f1, f2, there are at least 2(n − 4)(q − 1) choices for
the elements en, en+1.

Claim 7.2.1.2. If C ∈ T0, then |Φ(C)| = 16.

Proof. Since C has no loops, there exist edges e1, e2 in a cycle D of C and edges e3, e4 in
another cycle D′ of C where each of e1, e2, e3, e4 is incident with the vertex of degree 4 in
C. Observe that, for i ∈ {1, 2} and j ∈ {3, 4}, the graph C \ {ei, ej} is a Hamiltonian path
of C, and there are no other Hamiltonian paths of C. There are four choices for i and
j, two ways to order ei and ej, and two ways to order the Hamiltonian path C \ {ei, ej};
hence |Φ(C)| = 16.
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Since each tuple is in the Φ-image of at most one cuff, it follows from claims 7.2.1.1
and 7.2.1.2 that

|T0| ≥
|Φ(T0)|

maxC∈T0 |Φ(C)|
≥ 1

8
n!qn−1(n− 4)(q − 1).

Lemma 7.2.2. The set T0 is a stable set of Ω(DG(n,Γ)).

Proof. Suppose towards a contradiction that cuffs C1, C2 ∈ T0 are adjacent. For each
i ∈ [2], let ui be the vertex of degree 4 and let Di, D

′
i be the cycles in Ci. By Proposition

2.4.2, the edge sets of C1 and C2 differ in exactly one element. For each i ∈ [2], let ei be
the edge in Ci that is not in C3−i. Without loss of generality, say ei is in Di. Therefore,
the cycles D1, D2 differ in exactly one edge and D′

1 = D′
2. This means that u1 = u2. For

each i ∈ [2], let wi be the minimum neighbour of ui in Di and let γi be the product of edge
labels φ(e) of edges e in Di, following the cycle, beginning with the edge uiwi and ending
with the other edge incident with ui.

Note that the degree sequence of C1 and C2 is 4, 2, 2, . . . , 2. If the endpoints of e1 both
have degree 2, then e2 has the same endpoints as e1. If one endpoint of e1 has degree
4, then C1 \ {e1} has degree sequence 3, 2, . . . , 2, 1, where the vertices of degree 3 and
degree 1 are incident with e1 in C1. Since C1 \ {e1} is a subgraph of C2 and C2 has degree
sequence 4, 2, 2, . . . , 2, the endpoints of e2 are also the vertices with degree 3 and degree 1
in C1\{e1}. That is, the edges e1 and e2 have the same endpoints. Since e1 and e2 have the
same endpoints, the cycles D1 and D2 contain the same vertices, in the same cyclic order.
In particular, this means w1 = w2. Thus, the product of edges labels of D1 is different
than the product of the edge labels of D2. That is, γ1 ̸= γ2, which is a contradiction.

Corollary 7.2.3. log i(Ω(DG(n,Γ))) ≥ 1
8
n!(n− 4)qn−1(q − 1).

Proof. By Lemma 7.2.2, the set T0 of cuffs is a stable set in Ω(DG(n,Γ)). Since every
subset of a stable set is itself a stable set, the result follow from Proposition 7.2.1.

7.3 Upper bound

In this section, we determine an upper bound for the number of stable sets in the circuit
graph of DG(n,Γ). This is done by comparing certain subsets of the circuit graph with
Hamming graphs.
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Lemma 7.3.1. Let n ≥ 3 be an integer and let t ∈ [0, ⌊n/2⌋]. Let Ct denote the collection
of (n+ 1− t)-cuffs of KΓ

n . If Ωt(n,Γ) denotes the subgraph of Ω(DG(n,Γ)) induced on Ct,
then log i(Ωt(n,Γ)) ≤ 1

8t!
n!(n− t)qn−t−1(q − 1) log(n− t)(1 + o(1)).

Proof. Let C denote the set of (n+ 1− t)-cuffs C of KΓ
n where each cycle in C has length

at least 3. That is, cuffs in C have no loops or parallel edges. Let Ωt denote the subgraph
of Ωt(n,Γ) induced on C.

Recall that S([n]) denotes the set of permutations of [n]. Define a function Φ : V (Ωt)→
2S([n]) as follows. For each C ∈ V (Ωt), let

Φ(C) ={σ ∈ Sn : σ(1)σ(2) . . . σ(n− t) is a Hamiltonian path of C

and σ(1), σ(n− t) are adjacent to a vertex with degree at least 3 in C}.

Claim 7.3.1.1. For each C ∈ V (Ωt), the size of Φ(C) is at least 8t!.

Proof. First, consider a loose or tight cuff C. Since all cycles in C have length at least 3,
there are exactly four vertices x1, x2, y1, y2 in the cycles of C that are adjacent to the vertex
or vertices with degree at least 3. Let x1, x2 be in one cycle of C and let y1, y2 be in the
other. For each w ∈ {x, y} and i ∈ [2], let P

w3−i
wi be the path from wi to w3−i that does not

contain a vertex with degree at least 3 in C. Let P be the path between vertices of degree
3 if C is a loose cuff or the vertex of degree 4 if C is a tight cuff. For each w ∈ {x, y} and
i, j ∈ [2], if v ∈ {x, y} \ {w}, then Pw3−i

wi P P
v3−j
vj is a Hamiltonian path of C where wi and

v3−j are adjacent to a vertex with degree at least 3. There are eight choices for w, i, and
j, and t! ways to order the elements in [n] \ V (C), so |Φ(C)| ≥ 8t!.

The remaining case to consider is a hinged cuff. Let C be a hinged cuff and let u1, u2
be the vertices of degree 3 in C. Since all cycles in C have length at least 3, at most
one (u1, u2)-path in C has length 1. Let P be the shortest (u1, u2)-path in C. For each
i ∈ [2], let xi be the neighbour of ui in one (u1, u2)-path that is not P , and let yi be the
neighbour of ui in the other (u1, u2)-path that is not P . Note that for w ∈ {x, y}, we may
have w1 = w2. For each w ∈ {x, y} and i ∈ [2], let P

w3−i
wi be the path from wi to w3−i

that does not contain u1 or u2. For each w ∈ {x, y} and i ∈ [2], if v ∈ {x, y} \ {w}, then
P

w3−i
wi u3−iPui P

v3−i
vi is a Hamilton path of C where wi and v3−i are adjacent to a vertex

with degree at least 3 in C. Also, for w ∈ {x, y} and i ∈ [2], if v ∈ {x, y} \ {w}, then
P

w3−i
wi u3−i P

vi
v3−i

ui(P − u3−i) is a Hamiltonian path of C where the first and last vertices
of the path are adjacent to a vertex with degree at least 3 in C. There are four choices for
w and i, two distinct ways to construct a desired Hamiltonian path, and t! ways to order
the elements in [n] \ V (C), so |Φ(C)| ≥ 8t!.
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We use sets of vertices in Ωt that contain a certain permutation in their Φ-image to find
subgraphs of Ωt that are similar to Hamming graphs. In fact, we show that subgraphs of
Ωt are isomorphic to induced subgraphs of a Hamming graph, which helps us determine an
upper bound on the number of stable sets in Ωt. For each permutation σ ∈ S([n]), define
a set Hσ = {C ∈ V (Ωt) : σ ∈ Φ(C)}. By Claim 7.3.1.1, each vertex in Ωt is in at least 8t!
of these sets.

Let σ be a permutation in S([n]).

Claim 7.3.1.2. There exists a set of edges E ⊆ E(Ωt[Hσ]) such that Ωt[Hσ]\E is isomor-
phic to an induced subgraph of H(q, . . . , q︸ ︷︷ ︸

n−1−t

, (n− t)(q − 1), (n− t)(q − 1)).

Proof. Recall that 1 is the identity of the group Γ. For each i ∈ [n − 1 − t], let Si =
Γ and for j ∈ {n − t, n + 1 − t}, let Sj = {(γ, k) : γ ∈ Γ \ {1}, k ∈ [n − t]}. Let
H = H(q, . . . , q︸ ︷︷ ︸

n−1−t

, (n − t)(q − 1), (n − t)(q − 1)) be the Hamming graph whose vertices are

(n+ 1− t)-tuples in S1 × S2 × · · · × Sn+1−t, where two vertices are adjacent if and only if
they differ in exactly one coordinate.

We define a function ϕ : Hσ → V (H), as follows. Let C be a cuff in Ωt[Hσ]. Thus, the
sequence σ(1)σ(2) . . . σ(n− t) is a Hamiltonian path of C and σ(1), σ(n− t) are adjacent to
a vertex with degree at least 3. Since C contains no loops or parallel edges, each edge can
be identified by two distinct vertices in C. For each i ∈ [n− 1− t], let (γi, {σ(i), σ(i+1)})
be the edge with endpoints σ(i), σ(i+1) in C. Let k1, k2 ∈ [n− t] and δ1, δ2 ∈ Γ such that
(δ1, {σ(1), σ(k1)}), (δ2, {σ(n− 1− t), σ(k2)}) are the two edges in E(C) \ {(γi, {σ(i), σ(i+
1)}) : i ∈ [n− t− 1]}. Let γn−t and γn+1−t be defined, as follows:

γn−t =

k1−1∏
j=1

ψ((γj, σ(j), σ(j + 1))) · ψ((δ1, σ(k1), σ(1))) and

γn+1−t =
n−1−t∏
j=k2

ψ((γj, σ(j), σ(j + 1))) · ψ((δ2, σ(n− 1− t), σ(k2))).

Now, we define
ϕ(C) = (γ1, γ2, . . . , γn−1−t, (γn−t, k1), (γn+1−t, k2)).

Since the cycles σ(1)σ(2) . . . σ(k1)σ(1) and σ(k2)σ(k2+1) . . . σ(n−1−t)σ(k2) are unbal-
anced, we have γn−t, γn+1−t ̸= 1. Therefore, the tuple ϕ(C) is a vertex of H. Furthermore,
two cuffs differ in at least one edge, so ϕ is injective.
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Consider C1, C2 ∈ Hσ. We claim that if ϕ(C1) and ϕ(C2) are adjacent in H, then C1

and C2 are adjacent in Ωt[Hσ]. Since C1 and C2 are both in Hσ, they both have vertex
set V = {σ(1), σ(2), . . . , σ(n− t)}. The graph C1 is a Hamiltonian path of KΓ

n [V ] and two
additional edges. Since ϕ(C1) and ϕ(C2) are adjacent, they differ in exactly one coordinate,
so C2 contains one edge that is not in C1. Therefore, the graph C1 ∪ C2 is a Hamiltonian
path of KΓ

n [V ] and three additional edges. Note that each pair of edges in C1 ∪ C2 is in
a cycle or cuff in C1 ∪ C2. Since C1 ∪ C2 contains at least one unbalanced cycle, the rank
of E(C1 ∪ C2) in DG(n,Γ) is n. Thus, the corank of DG(n,Γ) restricted to E(C1 ∪ C2) is
|E(C1 ∪ C2)| − r(DG(n,Γ)|E(C1 ∪ C2)| = n + 2 − n = 2. That is, the circuits C1, C2 are
contained in a connected corank-2 restriction of DG(n,Γ). Thus, it follows that C1 and
C2 are adjacent in Ωt[Hσ].

Since ϕ(C1)ϕ(C2) ∈ E(H) implies C1C2 ∈ E(Ωt[Hσ]), there exists a set E ⊆ E(Ωt[Hσ])
such that C1, C2 are adjacent in Ωt[Hσ] \E if and only if ϕ(C1) and ϕ(C2) are adjacent in
H. That is, the graph Ωt[Hσ] \ E is isomorphic to an induced subgraph of H.

Claim 7.3.1.3. log i(Ωt[Hσ]) ≤ qn−t−1(n− t)(q − 1) log((n− t)(q − 1)).

Proof. By Claim 7.3.1.2 and Propositions 2.3.5 and 2.3.4, we have

i(Ωt[Hσ]) ≤ i(H(q, . . . , q︸ ︷︷ ︸
n−1−t

, (n− t)(q − 1), (n− t)(q − 1))).

By Theorem 4.3.2, it follows that log i(Ωt[Hσ]) ≤ qn−t−1(n−t)(q−1) log((n−t)(q−1)).

Now, we use Shearer’s Lemma (Lemma 2.2.3) to find an upper bound for log i(Ωt). Let
F = {Hσ : σ ∈ S([n])} and let A denote the collection of stable sets of Ωt. Observe that
|F| = n! and |A| = i(Ωt). By Claim 7.3.1.1, each vertex in Ωt is in at least 8t! sets in F .
For each σ ∈ S([n]), the intersection of Hσ and a stable set A ∈ A is a stable set in the
graph Ωt[Hσ], so |{Hσ ∩ A : A ∈ A}| = i(Ωt[Hσ]). Thus, by Shearer’s Lemma 2.2.3,

i(Ωt) ≤
∏
F∈F

i(Ωt[Hσ])
1
8t! = i(Ωt[Hσ])

n!
8t! .

Taking the base-2 logarithm of both sides gives log i(Ωt) ≤ 1
8t!
n! log i(Ωt[Hσ]). By Claim

7.3.1.3, it follows that log i(Ωt) ≤ 1
8t!
n!(n− t)qn−t−1(q − 1) log((n− t)(q − 1)).

By Proposition 2.3.8,

log i(Ωt(n,Γ)) ≤ log i(Ωt) + |V (Ωt(n,Γ)) \ C|

≤ 1

8t!
n!(n− t)qn−t−1(q − 1) log((n− t)(q − 1)) + |V (Ωt) \ C|.

105



The elements of V (Ωt(n,Γ)) \ C are precisely the (n+1− t)-cuffs with a cycle of length at
most 2 and the balanced (n+ 1− t)-cycles. By Propositions 7.1.3 and 7.1.2,

|V (Ωt(n,Γ)) \ C| ≤
n!

t!
qn−t−1(n− t− 1)(q − 1)2 +

n!

(t− 1)!(n+ 1− t)
qn−t

≤ n!

t!
(n− t)qn−t−1(q − 1) log(n− t)

(
q − 1

log(n− t)
+

qt

(n− t)2(q − 1)2 log(n− t)

)
.

Therefore, since t ≤ n/2,

log i(Ωt(n,Γ)) ≤
1

8t!
n!(n− t)qn−t−1(q − 1) log(n− t)(1 + o(1)).

Lemma 7.3.2. log i(Ω(DG(n,Γ))) ≤
q√e
8
(n+ 1)!qn−1(q − 1) log(n)(1 + o(1)).

Proof. For each t ∈ [0, n− 1], let Ct denote the set of (n+ 1− t)-circuits in DG(n,Γ). By
Proposition 2.3.7 and Lemmas 7.3.1 and 7.1.4,

log i(Ω(DG(n,Γ))) ≤
n/2∑
t=0

log i(Ωt(n,Γ)) +
n−1∑
t=n/2

|Ct|

≤
n−1∑
t=0

n!

8t!
(n− t)qn−t−1(q − 1) log((n− t)(q − 1))(1 + o(1))

+ o((n+ 1)!qn−1)

≤ 1

8
(n+ 1)!qn−1(q − 1) log(n)

n−1∑
t=0

1

t!qt
(1 + o(1))

≤
q
√
e

8
(n+ 1)!qn−1(q − 1) log(n)(1 + o(1)).

7.4 The main theorem

Finally, we are ready to prove the main theorem of this chapter.

Theorem 7.0.1.

1

8
n!(n− 4)qn−1(q − 1) ≤ log(coext(DG(n,Γ))) ≤

q
√
e

8
(n+ 1)!qn−1(q − 1) log(n)(1 + o(1)).
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Proof. Since DG(n,Γ) is the frame matroid of (KΓ
n ,B), Lemma 2.5.1 implies that there are

at most 6 circuits in a corank-2 restriction of DG(n,Γ). Now it follows from Proposition
2.4.3 that the smallest circuit in a corank-2 restriction of DG(n,Γ) has size less than
5
6
(n + 2). Therefore, the number of small circuits in DG(n,Γ) is at most the number of

circuits in DG(n,Γ) with size at most 5
6
(n + 2). Thus, by Lemma 7.1.4, the number of

small circuits in DG(n,Γ) is o((n+ 1)!qn−1). Now, by Corollary 3.2.6 and Lemma 7.3.2,

log coext(DG(n,Γ)) ≤
q
√
e

8
(n+ 1)!qn−1(q − 1) log(n)(1 + o(1)) + o((n+ 1)!qn−1).

and the upper bound in the theorem follows. The lower bound follows from Corollary 3.2.6
and Corollary 7.2.3.
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Chapter 8

Coextensions of projective
geometries

Recall that, for a positive integer n and a prime power q, a rank-n projective geometry
over the finite field GF (q) is denoted PG(n− 1, q). In this chapter, we prove the following
lower and upper bounds on the number of coextensions of PG(n− 1, q), which is denoted
coext(PG(n − 1, q)). Recall that o(1) denotes an unspecified function of n which goes
to 0 as n goes to infinity and log denotes the base-2 logarithm. For each real number
x, let νx denote the shifted factorial (x−1;x−1)∞, which is equal to the infinite product∏∞

k=1(1− x−k). Note that νx is a constant less than 1 if x > 1.

Theorem 8.0.1.

qn
2

(n+ 1)!(q − 1)n
(νq log(q − 1) + o(1))

≤ log(coext(PG(n− 1, q)))

≤ qn
2

n!(q − 1)n
(νq log

2(q − 1) + o(1)).

The lower and upper bounds in Theorem 8.0.1 are very similar, but they differ by a
factor of n log(q−1), which is linear in n. If we instead asymptotically bound the double log
of coext(PG(n− 1, q)), then this linear factor becomes a term in the function represented
by o(1). This is shown in the following corollary, which is directly implied by Theorem
8.0.1.
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Corollary 8.0.2.

log(log(coext(PG(n− 1, q)) = n2(log(q) + o(1)).

In Corollary 8.0.2, we get an asymptotically exact value for log log(coext(PG(n−1, q)),
up to lower order terms. The o(1) term here seems to hide a lot of information about the
number of coextensions of a projective geometry; however, since this number is so large,
Corollary 8.0.2 is interesting to observe.

The lower bound in Theorem 8.0.1 is determined by a straightforward greedy argument,
so it seems likely that it can be improved.

Conjecture 8.0.3. For some fixed real number c,

log(coext(PG(n− 1, q))) =
qn

2

n!(q − 1)n
(c+ o(1)).

In this chapter, we also consider the special case of binary projective geometries PG(n−
1, 2). In this case, we find the asymptotic number of coextensions of PG(n− 1, 2) on the
log scale, which is given in the following theorem.

Theorem 8.0.4.

log(coext(PG(n− 1, 2))) =
2n

2

(n+ 1)!
(ν2 + o(1)).

This chapter begins with preliminary results in Section 8.1. We prove preliminary
results about shifted factorials, collections of circuits, and the circuit graph. In this chapter,
we define Ct(n, q) to be the set of (n+1−t)-circuits of PG(n−1, q). Note that C0(n, q) is the
set of spanning circuits of PG(n− 1, q). In order to prove the main results of this chapter,
we make use Corollary 3.2.6 and bounds on the number of stable sets in the circuit graph of
PG(n−1, q). Recall the circuit graph of PG(n−1, q), denoted Ω(PG(n−1, q)), is the graph
with vertex set C(PG(n − 1, q)) where two circuits C,C ′ are adjacent if and only if they
are contained in a corank-2 restriction of PG(n− 1, q). Of particular use is the subgraph
of the circuit graph induced on the set of spanning circuits of PG(n − 1, q). Therefore,
we define Ω0(n, q) to be the induced subgraph Ω(PG(n − 1, q))[C0(n, q)]. In Sections 8.2
and 8.3, we prove lower and upper bounds for i(Ω0(n, q)), the number of stable sets in the
subgraph of the circuit graph of PG(n− 1, q) induced on the set of spanning circuits.
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8.1 Preliminaries

Shifted factorials

Recall that the p-shifted factorial , denoted (a; p)n, is the product
∏n−1

k=0(1 − apk), where
(a; p)0 = 1 and (a; p)∞ is the infinite product

∏∞
k=0(1 − apk). For each real number q,

the shifted factorial (q−1; q−1)∞, which is equal to the infinite product
∏∞

k=1(1 − q−k), is
denoted νq. Note that νq is a constant less than 1 if q > 1.

Proposition 8.1.1. (q−1; q−1)n = νq(1 + o(1)).

Proof.

(q−1; q−1)n = (q−1; q−1)∞ ·
1∏∞

k=n+1

(
1− 1

qk

) = νq

∞∏
k=n+1

qk

qk − 1
= νq(1 + o(1)).

Proposition 8.1.2. The value of (q−1; q−1)k is at least 1
2
, for all integers k ≥ 1 and q ≥ 3.

Proof.

(q−1; q−1)k =
∏
i≥1

(
1− 1

qi

)
· 1∏∞

i=k+1

(
1− 1

qk

)
≥

∏
i≥1

(
1− 1

qi

)
≥ 1−

∑
i≥1

1

qi
≥ 1− 1

q − 1
=
q − 2

q − 1
≥ 1

2
.

Circuit bounds

Proposition 8.1.3. There are at most q + 1 circuits in a corank-2 restriction of PG(n−
1, q).

Proof. Let M = PG(n−1, q) and let X be a set of elements of M such that r∗(M |X) = 2.
Let Y = E(M) \ X and observe that (M |X)∗ = M∗/Y . Thus, since M is GF (q)-
representable, the matroid M∗/Y is a rank-2 GF (q)-representable matroid. By Propo-

sition 2.6.1, the matroid M∗/Y has at most
[
2
1

]
q
= q2−1

q−1
= q + 1 hyperplanes. Since the

hyperplanes of M∗/Y correspond to the circuits in M |X, the dual of M∗/Y , there are at
most q + 1 circuits in M |X.
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In order to bound the number of coextensions of a projective geometry, we use the
number of certain circuits. Proposition 2.6.1 immediately implies the following corollary.

Corollary 8.1.4. For t ∈ [0, n− 2], the number of (n+ 1− t)-circuits in PG(n− 1, q) is

qn
2−nt

(n+ 1− t)!(q − 1)
· (q

−1; q−1)n
(q−1; q−1)t

.

The following proposition gives an upper bound on the number of non-spanning circuits
in PG(n− 1, q).

Proposition 8.1.5.
∑n−2

t=1 |Ct(n, q)| ≤
qn

2

q−1

(
1

qn(n+1−
√
n)!

+ n
qn

√
n

)
.

Proof. By Corollary 8.1.4,

n−2∑
t=1

|Ct(n, q)| =
n−2∑
t=1

qn
2−nt

(n+ 1− t)!(q − 1)

(q−1; q−1)n
(q−1; q−1)t

≤ qn
2

q − 1

n−2∑
t=1

1

qnt(n+ 1− t)!

≤ qn
2

q − 1

(√
n−1∑
t=1

1

qnt(n+ 1− t)!
+

n−2∑
t=

√
n

1

qnt(n+ 1− t)!

)
.

(8.1)

For all positive integers i, j where i ≤ j, we have qni ≤ qnj and (n+ 1− i)! ≥ (n+ 1− j)!.
Therefore,

√
n−1∑
t=1

1

qnt(n+ 1− t)!
≤

√
n−1∑
t=1

1

qn(n+ 2−
√
n)!

≤
√
n

qn(n+ 2−
√
n)!
≤ 1

qn(n+ 1−
√
n)!

,

(8.2)

and

n−2∑
t=

√
n

1

qnt(n+ 1− t)!
≤

n−2∑
t=

√
n

1

qn
√
n(n+ 1− (n− 2))!

≤ n−
√
n

6 · qn
√
n
≤ n

qn
√
n
.

(8.3)
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Applying the bounds found in Equations 8.2 and 8.3 to Equation 8.1 gives
∑n−2

t=1 |Ct(n, q)| ≤
qn

2

q−1

(
1

qn(n+1−
√
n)!

+ n
qn

√
n

)
.

Corollary 8.1.6.
∑n−2

t=1 |Ct(n, q)| = o
(

qn
2

(n+1)!(q−1)n

)
.

Proof. By Proposition 8.1.5,

n−2∑
t=1

|Ct(n, q)| ≤
qn

2

q − 1

(
1

qn(n+ 1−
√
n)!

+
n

qn
√
n

)
≤ qn

2

(n+ 1)!(q − 1)n

(
(n+ 1)!(q − 1)n−1

qn(n+ 1−
√
n)!

+
(n+ 2)!(q − 1)n−1

qn
√
n

)
≤ qn

2

(n+ 1)!(q − 1)n

(
(n+ 1)

√
n(q − 1)n−1

qn
+

(n+ 2)!(q − 1)n−1

qn
√
n

)
=

qn
2

(n+ 1)!(q − 1)n
· o(1).

Circuit graph preliminaries

Proposition 8.1.7. The degree of each vertex C in Ω0(n, q) is (n+ 1)((q − 1)n−1 − 1).

Proof. In Ω0(n, q), all vertices are spanning circuits of PG(n − 1, q) and two circuits are
adjacent if and only if they are contained in a corank-2 restriction of PG(n − 1, q). By
Proposition 2.4.2, two vertices C,C ′ in Ω0(n, q) are adjacent if and only if C ∩C ′ is a basis
of PG(n− 1, q).

There are n + 1 elements in C and C \ {e} is a basis of PG(n − 1, q) for all elements
e in C. By Lemma 2.6.3, for each basis B of PG(n − 1, q), there are precisely (q − 1)n−1

elements e′ of PG(n − 1, q) such that B ∪ {e′} is a circuit. Therefore, there are precisely
(q − 1)n−1 − 1 elements e′ ̸= e of PG(n− 1, q) such that (C \ e) ∪ e′ is a circuit, for each e
in C. Thus, the degree of each vertex C in Ω0(n, q) is at most (n+ 1)((q − 1)n−1 − 1).

Suppose towards a contradiction that (C\{e1})∪{e′1} and (C\{e2})∪{e′2} are the same
circuit, for some e1, e2 ∈ C where e1 ̸= e2 and e

′
i ̸= ei for each i ∈ [2]. Since (C\{e1})∪{e′1}

contain the element e2, it follows that (C \ {e2}) ∪ {e′2} contains e2. Thus, the element
e′2 = e2, which is a contradiction. Therefore, the degree of each vertex C in Ω0(n, q) is
exactly (n+ 1)((q − 1)n−1 − 1).
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Theorem 8.1.8. log i(Ω0(n, 2)) =
2n

2

(n+1)!
(ν2 + o(1)).

Proof. By Proposition 8.1.7, the degree of each vertex in Ω0(n, 2) is (n+1)((2−1)n−1−1) =
0, therefore every subset of vertices in Ω0(n, 2) is a stable set. That is, the number of stable

sets in Ω0(n, 2) is 2
|V (Ω0(n,2))|. There are 2n

2

(n+1)!
(1
2
; 1
2
)n vertices in Ω0(n, 2) by Corollary 8.1.4.

Now the result follows from Proposition 8.1.1.

8.2 Lower bound

The following lemma gives a lower bound on the number of stable sets in Ω0(n, q).

Lemma 8.2.1. log i(Ω0(n, q)) ≥ qn
2

(n+1)!(q−1)n
(νq log(q − 1) + o(1)).

Proof. The graph Ω0(n, q) has
qn

2
νq

(n+1)!(q−1)
(1+ o(1)) vertices by Corollary 8.1.4 and Proposi-

tion 8.1.1. From Proposition 8.1.7, each vertex in Ω0(n, q) has degree (n+1)((q−1)n−1−1).
Therefore, by Theorem 2.3.9,

log i(Ω0(n, q)) ≥
⌊

qn
2
νq(1 + o(1))

(n+ 1)!(q − 1)((n+ 1)(q − 1)n−1 − n)

⌋
log((n+ 1)(q − 1)n−1 − n)

≥ qn
2
νq

(n+ 2)!(q − 1)n
(log(n+ 1) + (n− 1) log(q − 1))(1 + o(1))

≥ qn
2
νq

(n+ 2)!(q − 1)n
(n− 1) log(q − 1)(1 + o(1))

≥ qn
2
νq log(q − 1)

(n+ 1)!(q − 1)n
(1 + o(1)).

8.3 Upper bound

In order to determine an upper bound for i(Ω0(n, q)), we use a spectral version of the
container method for regular graphs, which depends on the smallest eigenvalue of Ω0(n, q).
Before we determine this eigenvalue, we need a few definitions and lemmas. For positive
integers m and k, the Johnson graph J(m, k) is the graph whose vertices are the k-subsets
of a fixed m-set where two vertices are adjacent if and only if they intersect in k − 1
elements. The smallest eigenvalue of J(m, k) and its multiplicity is given on page 179 of
the textbook [8] by Brouwer and Haemers.
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Lemma 8.3.1 ([8]). The smallest eigenvalue of J(m, k) is

min
0≤i≤n+1

(k − i)(m− k − i)− i

with multiplicity
(
m
k

)
−

(
m
k−1

)
.

Together with the previous lemma, we will use an interlacing result in Godsil and
Royle’s textbook [16] to determine the smallest eigenvalue of Ω0(n, q).

Lemma 8.3.2 (Theorem 9.1.1 in [16]). Let A be a real symmetric n× n matrix and let B
be a principal submatrix of A with order m×m. Let θ1(A) ≥ θ2(A) ≥ · · · ≥ θn(A) be the
eigenvalues of A and let θ1(B) ≥ θ2(B) ≥ · · · ≥ θm(B) be the eigenvalues of B. Then, for
i = 1, . . . ,m,

θn−m+i(A) ≤ θi(B) ≤ θi(A).

Since adjacency matrices are real symmetric square matrices and the adjacency matrix
of an induced subgraph H of a graph G is a principal submatrix of the adjacency matrix
of G, Lemma 8.3.2 immediately implies the following corollary.

Corollary 8.3.3. Let G be a graph with n vertices and let H be an induced subgraph of
G with m vertices. Let θ1(G) ≥ θ2(G) ≥ · · · ≥ θn(G) be the eigenvalues of G and let
θ1(H) ≥ θ2(H) ≥ · · · ≥ θm(H) be the eigenvalues of H. For i ∈ {1, . . . ,m},

θn−m+i(G) ≤ θi(H) ≤ θi(G).

Now we are ready to determine the smallest eigenvalue of Ω0(n, q), which is done in the
following lemma.

Lemma 8.3.4. If n ≥ 5 and q ≥ 3, then the smallest eigenvalue of Ω0(n, q) is −(n+ 1).

Proof. The Johnson graph J( q
n−1
q−1

, n+1) is the graph whose vertices are the (n+1)-subsets

of a fixed set of qn−1
q−1

elements where two vertices are adjacent if and only if they intersect

in n elements. The (n+ 1)-circuits of PG(n− 1, q) are (n+ 1)-subsets of E(PG(n− 1, q))
that are adjacent in Ω0(n, q) if and only if they intersect in n elements, by Proposition
2.4.2. If we take the fixed set with qn−1

q−1
elements to be E(PG(n−1, q)), then Ω0(n, q) is an

induced subgraph of J( q
n−1
q−1

, n+1). Let C0 denote the set of (n+1)-circuits of PG(n−1, q);
that is, C0 is the vertex set of Ω0(n, q).
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Let k = qn−1
q−1

and let λ1 ≥ λ2 ≥ · · · ≥ λk be the eigenvalues of J(k, n + 1). Let

µ1 ≥ µ2 ≥ · · · ≥ µ|C0| be the eigenvalues of Ω0(n, q). Corollary 8.3.3 gives the interlacing of
the eigenvalues of an induced subgraph of some graph G with the eigenvalues of G, which
implies that λ|C0| ≥ µ|C0| ≥ λk.

By Lemma 8.3.1, the smallest eigenvalue of J(k, n+ 1) is

min
0≤i≤n+1

(n+ 1− i)(k − (n+ 1)− i)− i = −(n+ 1)

with multiplicity
(

k
n+1

)
−

(
k
n

)
. Therefore, the eigenvalue λi is equal to −(n + 1) for all

i ∈ {
(
k
n

)
+ 1,

(
k
n

)
+ 2, . . . ,

(
k

n+1

)
}.

Claim 8.3.4.1. |C0| >
(
k
n

)
.

Proof. The binomial coefficient
(
k
n

)
is equal to

( qn−1
q−1

n

)
=

∏n−1
i=0

(
qn−1
q−1
− i

)
n!

=

∏n−1
i=0 (q

n − 1− i(q − 1))

n!(q − 1)n
.

Since qn − 1− i(q − 1) < qn, the value of
(
k
n

)
is less than qn

2

n!(q−1)n
. Therefore, the quotient

|C0|/
(
k
n

)
is greater than

qn
2
νq

(n+1)!(q−1)

qn2

n!(q−1)n

=
νq(q − 1)n−1

n+ 1
.

Since νq ≥ 1
2
by Proposition 8.1.2 and q ≥ 3, we have |C0|/

(
k
n

)
> 2n−2

n+1
. Since n ≥ 5, it

follows that 2n−2

n+1
≥ 1 and thus |C0| >

(
k
n

)
.

Since λi = −(n+1) for all i ∈ {
(
k
n

)
+1,

(
k
n

)
+2, . . . ,

(
k

n+1

)
}, it follows from Claim 8.3.4.1

that λ|C0| = −(n+ 1). Therefore, the smallest eigenvalue µ|C0| of Ω0(n, q) is −(n+ 1).

Now we are ready to establish an upper bound for i(Ω0(n, q)) using a spectral version
of the container method, as follows.

Theorem 8.3.5. log i(Ω0(n, q)) ≤ qn
2

n!(q−1)n
(νq log

2(q − 1) + o(1)).
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Proof. Let d be the degree of Ω0(n, q) and let N be the number of vertices in Ω0(n, q).
Thus, by Proposition 8.1.7 and Corollary 8.1.4, we have d = (n + 1)((q − 1)n−1 − 1) and

N = qn
2
νq

(n+1)!(q−1)
(1 + o(1)). Let −λ be the smallest eigenvalue of Ω0(n, q). By Lemma 8.3.4,

we have λ = n+ 1. Finally, let ε = log(d)−λ
d+λ

.

By Theorem 5.3.3,

i(Ω0(n, q)) ≤

N
d+λ

ln( d+λ
log(d)+λ

)+d∑
i=0

(
N

i

)
· 2(

λ
d+λ

+
log(d)−λ

d+λ
)N .

Using the standard bound
∑k

i=0

(
m
i

)
≤

(
em
k

)k
for positive integers k ≤ m, we find that

i(Ω0(n, q)) ≤
(

eN(d+ λ)

N ln( d+λ
log(d)+λ

) + d(d+ λ)

) N
d+λ

ln( d+λ
log(d)+λ

)+d

· 2
log(d)
d+λ

N

≤ 2
N

d+λ
((ln( d+λ

log(d)+λ
)+d(d+λ)/N)·log(e(d+λ)/ ln( d+λ

log(d)+λ
))+log(d)).

Taking the base-2 logarithm of both sides, we have

log i(Ω0(n, q)) ≤
N

d+ λ

((
ln

(
d+ λ

log(d) + λ

)
+
d(d+ λ)

N

)
log

(
e(d+ λ)

ln( d+λ
log(d)+λ

)

)
+ log(d)

)
≤ N

d+ λ

(
ln

(
d+ λ

log(d) + λ

)
log

(
e(d+ λ)

ln( d+λ
log(d)+λ

)

)
+ log(d)

)
+ d log

(
e(d+ λ)

ln( d+λ
log(d)+λ

)

)
.

Since d + λ = (n + 1)(q − 1)n−1, the base-2 logarithm of d + λ is equal to (n− 1) log(q −
1)(1 + o(1)). Using this and the values of N , d, and λ in terms of q and n yields

log i(Ω0(n, q)) ≤
qn

2
νq

(n+ 1)!(n+ 1)(q − 1)n
(n− 1)2 log2(q − 1)(1 + o(1))

≤ qn
2
νq log

2(q − 1)

n!(q − 1)n
(1 + o(1)).

8.4 The main theorems

Before proving the two main theorems of this chapter, we prove the following lemma that is
used in both. Recall that Cmin(M,≺) is the collection of circuits C ofM such that C is the
minimum circuit with respect to a total ordering ≺ of C(M) in some corank-2 restriction
of M .
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Lemma 8.4.1. For each positive integer n and prime power q where n ≥ q,

log i(Ω0(n, q)) ≤ log(coext(PG(n− 1, q))) ≤ log i(Ω0(n, q)) + 2
n−2∑
t=1

|Ct(n, q)|.

Proof. In this proof, let M = PG(n − 1, q) and let ≺ be a total ordering of C(M) that
refines the preorder by size. By Proposition 2.3.4, we have i(Ω0(n, q)) ≤ i(Ω(M). By
Proposition 2.3.8, it follows that log i(Ω(M) ≤ log i(Ω0(n, q)) +

∑n−2
t=1 |Ct(n, q)|. Applying

these bounds to Corollary 3.2.6, we find

log i(Ω0(n, q)) ≤ log coext(M) ≤ log i(Ω0(n, q)) +
n−2∑
t=1

|Ct(n, q)|+ |Cmin(M,≺)|. (8.4)

By Proposition 8.1.3, there are at most q + 1 circuits in a corank-2 restriction of M .
Thus, by Proposition 2.4.3, the smallest circuit in a corank-2 restriction of M has size at
most q

q+1
(n+2) = n+1− n−q+1

q+1
. Since n ≥ q, the smallest circuit in a corank-2 restriction

of M has size less than n+ 1. Let C ′ be the collection of circuits with size less than n+ 1.
Therefore, |Cmin(M,≺)| ≤ |C ′|. Since C ′ does not contain any (n+ 1)-circuits,

|Cmin(M,≺)| ≤ |C ′| ≤
n−2∑
t=1

|Ct(n, q)|.

Combining this bound on the number of small circuits with Equation 8.4 completes the
proof.

We are now ready to prove the main theorems of this chapter. First, we prove the
following result about binary projective geometries.

Theorem 8.0.4.

log(coext(PG(n− 1, 2))) =
2n

2

(n+ 1)!
(ν2 + o(1)).

Proof. Let q = 2 and assume n ≥ 2. The result follows from Lemma 8.4.1, Theorem 8.1.8,
and Corollary 8.1.6.

Next, we prove the main theorem about projective geometries over fields of order at
least 3.
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Theorem 8.0.1.

qn
2

(n+ 1)!(q − 1)n
(νq log(q − 1) + o(1))

≤ log(coext(PG(n− 1, q)))

≤ qn
2

n!(q − 1)n
(νq log

2(q − 1) + o(1)).

Proof. Since q is fixed, we may assume n ≥ q. The result follows from Lemma 8.4.1,
Theorem 8.3.5, and Corollary 8.1.6.
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Chapter 9

Extensions of representable matroids

In this chapter, we consider extensions of certain GF (q)-representable matroids. Since
all simple GF (q)-representable matroids are restrictions of PG(n− 1, q), determining the
number of extensions of a projective geometry sounds like a good place to start. However,
it is well known that the extensions of a projective geometry correspond to its flats, so
the extensions are easily enumerated. Although the problem of enumerating extensions is
straightforward for projective geometries, it is more involved for other GF (q)-representable
matroids, such as graphic matroids, as we will see in this chapter.

In Section 9.1, we discuss the correspondence between extensions and flats of projective
geometries. In Section 9.2, we enumerate the extensions of the cycle matroid of a complete
graph. Section 9.3 discusses some future directions for enumerating extensions of other
GF (q)-representable matroids.

9.1 Extensions of projective geometries

Recall that a projective geometry PG(n − 1, q) is isomorphic to M [A] where the columns
of A are representatives of the equivalence classes of V (n, q) \ {0}, where two vectors are
equivalent if they are a nonzero scaling of each other.

Given a flat F , let L be the collection of hyperplanes of PG(n− 1, q) that contain F .
Consider a rank-(n − 2) flat F ′ that contains F . Each hyperplane that contains F ′ is in
L. If F ′ is a rank-(n− 2) flat that does not contain F , then none of the hyperplanes that
contain F ′ are in L. Therefore, this collection L is a linear subclass. One can show that
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these linear subclasses are distinct and the only linear subclasses of PG(n − 1, q). This
implies that, for a projective geometry, linear subclasses are parameterized by flats.

However, a more straightforward proof follows from considering modular cuts instead
of linear subclasses. Recall that a modular cut [40] of a matroid M is a collection M of
flats of M with the following properties:

(i) If F ∈M and F ′ is a flat of M containing F , then F ′ ∈M.

(ii) If F1, F2 ∈M and r(F1) + r(F2) = r(F1 ∩ F2) + r(F1 ∩ F2), then F1 ∩ F2 ∈M.

We prove that the extensions of a projective geometry are parameterized by its flats using
modular cuts in the following proposition.

Proposition 9.1.1.

ext(PG(n− 1, q)) =
n∑

k=0

[
n

k

]
q

.

Proof. The extensions of a matroid M are parameterized by the modular cuts of M [40].
In a projective geometry, any two flats F1, F2 have the property that r(F1) + r(F2) =
r(F1 ∩ F2) + r(F1 ∩ F2) [40]. Therefore, each modular cut of PG(n − 1, q) has a unique
minimal element F . Thus, for each modular cutM of PG(n− 1, q), there exists a unique
flat F such thatM is precisely the set of flats F ′ that contain F as a subset. That is, the
number of modular cuts of PG(n − 1, q) is equal to the number of flats of PG(n − 1, q).
By Proposition 2.6.1, the number of flats in PG(n− 1, q) is

∑n
k=0

[
n
k

]
q
.

9.2 Extensions of the cycle matroid of a complete

graph

This section is based on the paper [38], which is joint work with Nelson and Van der
Pol. We prove the following result about the number of extensions of M(Kn+1), which is
denoted ext(M(Kn+1)). Recall that o(1) denotes an unspecified function of n which goes
to 0 as n goes to infinity and log denotes the base-2 logarithm.

Theorem 9.2.1. log ext(M(Kn+1)) =
(

n
n/2

)
(1 + o(1)).
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In order to prove this theorem, we bound the number of stable sets in the hyperplane
graph of M(Kn+1) and the number of small hyperplanes in M(Kn+1), and then apply
Lemma 3.2.3, which says that, for a matroid M ,

log i(Π(M)) ≤ log coext(M) ≤ log i(Π(M)) + |Hmin(M,≺)|.

Recall that Hmin(M,≺) is the collection of small hyperplanes; that is, hyperplanes H ∈
H(M) such that, for some rank-(r(M) − 2) flat F of M , the minimum hyperplane with
respect to ≺ that contains F is H.

It is helpful to think of the flats of M(Kn+1) as partitions of vertices. We say a k-
partition of a set S is an unordered partition of S into k nonempty parts. A set F is a
rank-(n + 1 − k) flat of M(Kn+1) if and only if the subgraph of Kn+1 induced on F has
precisely k components, each of which is complete. Thus, rank-(n+1−k) flats ofM(Kn+1)
correspond to k-partitions of [n + 1]. Flats F and F ′ satisfy F ⊆ F ′ if and only if the
partition corresponding to F refines the partition for F ′.

Recall that 2[n] denotes the collection of subsets of [n]. Consider the poset on 2[n]

partially ordered by the subset relation, also known as the Boolean lattice and denoted
2[n]. Note that two sets are comparable if one is a subset of the other. Let P(n) denote
the graph with vertex set 2[n] \ {∅} where two vertices are adjacent if and only if they are
disjoint or comparable in the Boolean lattice. Before proving that the hyperplane graph of
M(Kn+1) is isomorphic to P(n), we prove some preliminary results about the stable sets
of P(n).

An antichain of the Boolean lattice 2[n] is a set A of elements such that no two elements
in A are comparable. An intersecting antichain is an antichain A where X ∩ Y ̸= ∅ for all
X, Y ∈ A. That is, a collection A of sets is an intersecting antichain if and only if no two
sets X, Y in A are comparable or disjoint. Let AI(n) denote the collection of intersecting
antichains A ⊆ 2[n] \ {∅}.

Proposition 9.2.2. |AI(n)| = i(P(n)).

Proof. Consider a subset X ⊆ 2[n] \ {∅}. The set X is an intersecting antichain in AI(n) if
and only if no two sets X, Y in X are comparable or disjoint. The set X is a stable set in
P(n) if and only if no two sets X, Y in X are comparable or disjoint.

Lemma 9.2.3. |AI(n)| ≥ 2(
n

⌈(n+1)/2⌉).

Proof. Let A be the collection of subsets of [n] that have size ⌊n
2
⌋+ 1. There are

(
n

⌊n/2⌋+1

)
such subsets, hence A has size

(
n

⌊n/2⌋+1

)
.
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Since all sets in A have the same size, it follows that A is an antichain of 2[n]. Further-
more, since ⌊n

2
⌋ + 1 > n

2
, each pair of sets in A intersect in a nonempty set. This implies

that A is an intersecting antichain of 2[n].

Notice that each subset of A is also an intersecting antichain. Therefore, there are at

least 2(
n

⌊n/2⌋+1) intersecting antichains. Since ⌊n
2
⌋+ 1 = ⌈n+1

2
⌉, the result follows.

Antichains in the Boolean lattice are well studied and each intersecting antichain is
also an antichain. Thus, we use the following theorem of Kleitman to determine an upper
bound on the number of intersecting antichains in 2[n] \ {∅}.

Theorem 9.2.4 ([20]). The number of antichains in 2[n] is 2(
n

n/2)(1+o(1)).

It follows from Theorem 9.2.4 that the number of intersecting antichains in 2[n] \ {∅} is
at most 2(

n
n/2)(1+o(1)).

Now that we have upper and lower bounds for the number of stable sets in P(n), we
prove that this graph is isomorphic to the hyperplane graph of M(Kn+1).

Lemma 9.2.5. The graphs Π(M(Kn+1)) and P(n) are isomorphic.

Proof. In this proof, let M = M(Kn+1). For each hyperplane H of M , let ψ(H) ⊆ [n] be
the vertex set of the unique component of Kn+1[H] not containing the vertex n+1. Since,
for each nonempty X ⊆ [n], the partition {X, [n + 1] \ X} gives rise to a hyperplane H
of M with ψ(H) = X, the function ψ is a bijection from the set of hyperplanes of M to
2[n] \ {∅}.

Now we claim that two hyperplanes H1, H2 are adjacent in the hyperplane graph if and
only if ψ(H1), ψ(H2) are adjacent in P(n).

If H1, H2 are adjacent, then they intersect in a rank-(n−2) flat F , which corresponds to
a 3-partition of [n+ 1], say {X0, X1, X2}. Since hyperplanes correspond to 2-partitions of
[n+1], a hyperplane that contains F corresponds to a partition with parts Xi and Xj ∪Xk

where {i, j, k} = {0, 1, 2}. Without loss of generality, we may assume that n + 1 ∈ X2,
hence ψ(H1), ψ(H2) ∈ {X0, X1, X0 ∪ X1}. Therefore, ψ(H1), ψ(H2) are either disjoint or
comparable, which means they are adjacent.

If ψ(H1), ψ(H2) are adjacent, then they are either disjoint or comparable. Thus, there
exist nonempty disjoint set S, T ⊆ [n] such that ψ(H1), ψ(H2) ∈ {S, T, S ∪ T}. Hence, the
hyperplanes H1 and H2 each correspond to one of the following partitions: {S, [n+1]\S},
{T, [n+1]\T}, {S∪T, [n+1]\(S∪T )}. Each of these hyperplanes contain the rank-(n−2)
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flat that corresponds to the partition {S, T, [n + 1] \ (S ∪ T )}; therefore, the hyperplanes
H1 and H2 are adjacent.

Lemma 9.2.6. If F is a rank-(n− 2) flat of M(Kn+1), then there exists a hyperplane H
of M(Kn+1) that contains F such that one of the components of Kn+1[H] contains at most
n+1
3

vertices.

Proof. Let {X0, X1, X2} be the 3-partition of [n+ 1] that F corresponds to, where |X0| ≤
|X1| ≤ |X2|. A hyperplane that contains F corresponds to a partition with parts Xi and
Xj ∪Xk where {i, j, k} = {0, 1, 2}. There are three such partitions and each corresponds
to a hyperplane of M(Kn+1).

1 Since {X0, X1, X2} is a tripartition of [n+ 1], the smallest
set X0 has size at most n+1

3
. Therefore, the hyperplane H containing F that corresponds

to the bipartition {X0, [n+1] \X0} induces a component with vertex set X0. That is, one
of the components of Kn+1[H] contains at most n+1

3
vertices.

We are now ready to prove Theorem 9.2.1.

Proof of Theorem 9.2.1. In this proof, let M = M(Kn+1). Let ≺ be a total ordering of
H(M) such that if H ≺ H ′, then one of the components of Kn+1[H] contains at most the
same number of vertices as the smaller component of Kn+1[H

′]. That is, ≺ is a refinement
of the preorder of hyperplanes by the size of the smallest component they induce. By
Lemma 9.2.6, for each rank-(n−2) flat F , the minimum hyperplane with respect to ≺ that
contains F induces a component that contains at most n+1

3
vertices. Therefore, at most all

hyperplanes that induce a component with at most n+1
3

vertices are in Hmin(M,≺). Since
there are

(
n+1
k

)
ways to choose a k-set of vertices from [n+ 1],

|Hmin(M,≺)| ≤
⌊n+1

3
⌋∑

k=1

(
n+ 1

k

)
≤

(
e(n+ 1)

n+1
3

)n+1
3

= 2
n+1
3

log(3e) = o

((
n

n/2

))
.

By Lemma 9.2.5 and Lemma 9.2.3, we have log i(Ω(M)) ≥
(

n
⌈(n+1)/2⌉

)
. By Lemma 9.2.5

and Theorem 9.2.4, it follows that log i(Ω(M)) ≤
(

n
n/2

)
(1 + o(1)). Therefore, by Lemma

3.2.3, (
n

⌈(n+ 1)/2⌉

)
≤ log ext(M) ≤

(
n

n/2

)
(1 + o(1)) + o

((
n

n/2

))
,

which implies that log ext(M) =
(

n
n/2

)
(1 + o(1)).

1Note that not all partitions necessarily correspond to hyperplanes of M(G) for a graph G that is not
complete. In this case, there could be fewer hyperplanes that contain F .
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9.3 Extensions of other representable matroids

We have considered extensions of projective geometries and cycle matroids of complete
graphs, which are the densest simple matroids representable over a finite field and simple
graphic matroids, respectively. Of course, graphic matroids are also representable, but less
dense than projective geometries. Since cycle matroids of complete graphs have a much
wilder set of extensions than projective geometries, it would be interesting to know if there
is a way to distinguish between restrictions of PG(n− 1, q) with a tame set of extensions
and restrictions with a wild set of extensions. Is there a particular size that a restriction of
PG(n− 1, q) must have? Is there a representable matroid with a set of extensions wilder
than that of the cycle matroid of a complete graph? To start, it is natural to consider
matroids which are “almost” projective geometries or cycle matroids of complete graphs,
such as PG(n− 1, q) or M(Kn+1) with one element deleted.

Let e = uv be an edge in Kn+1 and let G = Kn+1 \ {e}. Here, we consider M =M(G).
In this case, all hyperplanes are the same as those in M(Kn+1), except for the one that
corresponds to the bipartition with one part being {u, v}. The flats of rank n − 2 are
the same, except the bipartition with one part being {u, v} corresponds to a flat and the
tripartitions with one part being {u, v} do not correspond to flats. If F is a rank-(n− 2)
flat of M , then F is a flat in M(Kn+1) that does not have {u, v} as one part or F is
the bipartition with {u, v} as one part. In the first case, the hyperplanes in M(Kn+1)
that contain F are still hyperplanes in M . In the second case, the only hyperplanes that
contain F correspond to {{u}, [n+1] \ {u}} and {{v}, [n+1] \ {v}}. In either case, if H is
a hyperplane of M that contains F , then one of the components of G[H] has at most n+1

3

vertices. This seems to imply that a version of Lemma 9.2.6 is true for G.

However, the hyperplane graph of M(G) is not an induced subgraph of the hyperplane
graph of M(Kn+1). Consider the tripartition {{u, v}, A,B} of [n + 1]. The bipartitions
{{u, v} ∪ A,B} and {{u, v} ∪ B,A} are vertices in both hyperplane graphs, but they are
adjacent in the hyperplane graph of M(Kn+1) and not in that of M(G). This is true for
every bipartition {A,B} of [n+ 1] \ {u, v}.

We might consider simply adding edges between these types of hyperplanes, but then
the analysis of small hyperplanes changes. In this case, the smallest part of a bipartition
that is a coarsening of a non-flat tripartition could have size n−2

2
. There are 2n−3 bipar-

titions of the set [n + 1] \ {u, v} and each bipartition gives rise to one small hyperplane
if the parts have distinct sizes or two small hyperplanes if the parts have the same size.
Thus, there are at most 2n−2 small hyperplanes of this form. Now our upper bound on the
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number of small hyperplanes is at most

n+1
3∑

k=1

(
n

k

)
+ 2n−2.

However, in this case, the hyperplane graph of M(G) is an induced subgraph of that of
M(Kn+1); therefore, using Lemma 3.2.3, we find(

n

n/2

)
(1 + o(1)) ≤ log ext(M(Kn+1 \ {e})) ≤

(
n

n/2

)
(1 + o(1)) + 2n−2. (9.1)

Recall that
(

n
n/2

)
= 2n√

n
(
√

2/π + o(1)), so 2n−2 is not asymptotically bounded above by(
n

n/2

)
. In fact, we could rewrite the right-hand side of Equation 9.1 as 2n(1

4
+ o(1)). Thus,

the bounds in Equation 9.1 are not particularly close together.

It would be interesting to find out which of the upper and lower bound is closer to the
truth. Since we have an idea of what the hyperplane graph of M(G) looks like without
adding extra edges, perhaps there is a better way to bound the number of stable sets in it.
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Chapter 10

Extensions of Dowling geometries

Let an extension of a matroid be called scarce if it corresponds to a scarce linear subclass.
In previous chapters, we determined bounds on the number of scarce (co)extensions by
counting stable sets in either the hyperplane, circuit, or overlap graph, and then used
Lemma 3.2.3, Corollary 3.2.6, or Corollary 3.2.8 to show that the number of (co)extensions
is not “much” more than the number of those that are scarce. In this chapter, we determine
a representation of the hyperplane graph of DG(n,Γ) and make partial progress towards
enumerating the extensions of DG(n,GF (3)∗).

The partial progress towards counting the extensions of a Dowling geometry in this
chapter focuses on counting scarce extensions, which correspond to stable sets in the hy-
perplane graph. The following theorem gives bounds on the number of scarce extensions
of a Dowling geometry over GF (3)∗. Let extsc(M) denote the number of scarce extensions
of a matroid M . Recall that o(1) denotes an unspecified function of n which goes to 0 as
n goes to infinity and log denotes the base-2 logarithm.

Theorem 10.0.1.

n2n−1(1
2
+ o(1)) ≤ log extsc(DG(n,GF (3)

∗)) ≤ n2n−1(1 + o(1)).

The lower and upper bounds in Theorem 10.0.1 differ, but only by a constant factor of
2. On the double log scale, this factor becomes a lower order term, so

log(log(extsc(DG(n,GF (3)
∗)))) = n(1 + o(1)).

In order to bound the number of extensions of DG(n,GF (3)∗) with Theorem 10.0.1 and
Lemma 3.2.3, we need an upper bound for the number of small hyperplanes. It would be
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interesting to know if the number of small hyperplanes is o(n2n−1), as this would imply that
the bounds in Theorem 10.0.1 apply to the number of extensions. Based on the analysis of
the small hyperplanes of M(Kn+1), it seems likely that the number of small hyperplanes
of DG(n,Γ) is “small” compared to the number of stable sets in the hyperplane graph.

Conjecture 10.0.2. For some fixed real number 1
2
≤ c ≤ 1,

log ext(DG(n,GF (3)∗)) = n2n−1(c+ o(1)).

10.1 Hyperplane graph

In this section, we start by identifying the structure of flats in DG(n,Γ). Then, we describe
a graph whose vertices are functions and prove that this graph is isomorphic to the hyper-
plane graph of DG(n,Γ). Recall that the hyperplane graph of a matroid M has vertex set
H(M) where two vertices (hyperplanes) H,H ′ are adjacent if and only if they intersect in
a rank-(n− 2) flat of M .

We also recall the definition of a Dowling geometry DG(n,Γ) here. Let n be a positive
integer. Let Γ be a finite (multiplicative) group with identity element 1 and let q = |Γ|.
Recall the construction of the graph KΓ

n , which has vertex set [n]. The edge set of KΓ
n

is Γ ×
(
[n]
2

)
∪ {βu : u ∈ [n]} and the incidence function f of KΓ

n is defined as follows.

For each (γ, {u, v}) ∈ Γ ×
(
[n]
2

)
, let f((γ, {u, v})) = {u, v} and for each u ∈ [n], let

f(βu) = {u}. Informally, the graph KΓ
n has vertex set [n], an edge labelled γ between each

pair {u, v} ∈
(
[n]
2

)
for each γ ∈ Γ, and a loop labelled βu on each vertex u ∈ [n]. For an

edge e = (γ, {u, v}), let γ be called the edge label of e and recall that u and v are called
the endpoints of e. The ground set of DG(n,Γ) is E(KΓ

n ).

Recall the function ψ : Γ× Z2
>0 → Γ where, for each (γ, x, y) ∈ Γ× Z2

>0,

ψ((γ, x, y)) =

{
γ if x ≤ y

γ−1 if y < x
.

Let C be a cycle of KΓ
n with at least two edges and arbitrarily assign an orientation to

it. Let the vertices and edges of C, beginning with a vertex, be v1, e1, v2, e2, . . . , vk, ek, v1,
where ei = (γi, {vi, vi+1}) for each i ∈ [k]. We say C is balanced if

∏k
i=1 ψ((γi, vi, vi+1)) = 1.

Note that the definition of a balanced cycle does not depend on the chosen cyclic ordering
of the cycle [40]. A cycle is unbalanced if it either has a single edge or is not balanced. Let
B be the collection of balanced cycles of KΓ

n . The circuits of DG(n,Γ) consist of the edge
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sets of all of the balanced cycles together with the edge sets of all of the hinged, tight, and
loose cuffs in which none of the cycles are balanced. Recall that the Dowling geometry
DG(n,Γ) is the frame matroid represented by (KΓ

n ,B).

Proposition 10.1.1. A set X is a rank-r flat of DG(n,Γ) if and only if the components
of KΓ

n induced on X consist of n− r complete graphs in which every cycle is balanced and
at most one component that is isomorphic to KΓ

k for some k ∈ [0, n].

Proof. If KΓ
n [X] has n − r components that are complete graphs in which every cycle is

balanced and at most one component that is isomorphic to KΓ
k for some k ∈ [0, n], then

X has rank n − (n − r) = r. Since adding an element to X would reduce the number
of components in KΓ

n [X] or add an unbalanced cycle to one of the complete components,
both of which would increase the rank of X, it follows that X is a flat.

To prove the forward direction, first, we claim that at most one component of KΓ
n [X]

contains an unbalanced cycle. Consider two unbalanced cycles C,C ′ and an edge e between
them. Since the edge sets of loose cuffs are circuits of DG(n,Γ), the edge e is in the closure
of E(C)∪E(C ′). Since X is a flat, it follows that C and C ′ are in the same component. If a
component G contains an unbalanced cycle C, then, since every edge (including loops) is in
a tight or loose cuff with C, the closure of E(G) is E(KΓ

n [V (G)]). That is, the component
G is isomorphic to KΓ

|V (G)|.

Consider a component G that does not contain an unbalanced cycle. Thus, G is a
simple graph. Let T be a spanning tree of G.

Claim 10.1.1.1. If T is a tree in KΓ
n , then the closure of E(T ) in DG(n,Γ) induces a

complete graph on V (T ) in which all cycles are balanced.

Proof. Consider u, v ∈ V (T ) that are not adjacent in T . There is one path between u and
v in T , so there is exactly one uv-edge e such that the cycle in T ∪ {e} is balanced. This
edge e is in cl(E(T )). Let E be the set of edges e such that the cycle in T ∪{e} is balanced.

Suppose towards a contradiction that not all cycles in T ∪ E are balanced. Let C be
an unbalanced cycle in T ∪E where |E(C)∩E| is minimum. Since the cycle in T ∪ {e} is
balanced for all e ∈ E, we know |E(C) ∩ E| ≥ 2. Let e1, e2 ∈ E(C) ∩ E and let P1, P2 be
the two disjoint paths in C between the endpoints of e1 and e2. Since T is connected, the
graph C \ {e1, e2} is connected as well. Thus, there exists a path P ⊆ T between a vertex
in P1 and a vertex in P2 that is otherwise disjoint from P1 ∪ P2. It follows that C ∪ P is
a theta graph. For each i ∈ [2], let Ci be the cycle in C ∪ P that contains ei and does not
contain e3−i. Since C is unbalanced, the theta graph C ∪ P has at least one unbalanced
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cycle. By Proposition 2.5.2, if one cycle in a theta graph is unbalanced, then at least two
of its cycles are unbalanced. Therefore, at least one of C1, C2 is unbalanced; without loss
of generality, say C1 is unbalanced. Since E(C1) \E(P ) is a subset of E(C), the edge e2 is
not in C1, and P ∩ E = ∅, it follows that |E(C1) ∩ E| < |E(C) ∩ E|. If |E(C1) ∩ E| ≥ 2,
then this contradicts the minimality of |E(C) ∩ E|. Otherwise, if |E(C1) ∩ E| = 1, then
C1 is balanced by the definition of E, which is a contradiction. Therefore, every cycle in
T ∪ E is balanced.

By the claim, we have cl(E(T )) = E(G) and G is a complete graph on V (T ) in which
all cycles are balanced. The rank of E(G) in DG(n,Γ) is |V (G)|−1. Let m be the number
of components of KΓ

n [X] in which every cycle is balanced. Thus, the rank of X in DG(n,Γ)
is n−m. Since we are given that the rank of X is r, there are n− r components that are
complete graphs in which every cycle is balanced.

An example of the components of K
GF (3)∗

7 induced on a hyperplane of DG(7, GF (3)∗)
can be seen in Figure 10.1.

Figure 10.1: The components induced on a hyperplane of DG(7, GF (3)∗).

We say a function f : X → Y is nonzero if f(X) ̸= {0}. We say a nonzero function
f : [n] → Γ ∪ {0} is canonical if f(v) = 1 where v ≤ w for all w ∈ supp(f). That is, a
nonzero function f is canonical if its first nonzero entry is 1. Note that [n] = V (KΓ

n ). Let
F be the collection of canonical functions f : V (KΓ

n ) → Γ ∪ {0}. We say two functions
f, f ′ : [n] → Γ ∪ {0} are equal up to rescaling, denoted f ≈ f ′, if there exists γ ∈ Γ such
that f(x) = f ′(x)γ for all x ∈ [n]. Let G(n,Γ) be the simple graph with vertex set F and
edges are defined as follows. If f, f ′ ∈ F where |supp(f)| ≥ |supp(f ′)|, then f and f ′ are
adjacent if and only if:
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(i) there exists γ ∈ Γ∪{0} and X ⊆ supp(f) such that f ′(x) = f(x)γ for all x ∈ X and
f |Y ≈ f ′|Y where Y = V (KΓ

n ) \X, or

(ii) supp(f) ∩ supp(f ′) = ∅.

We say an edge between f and f ′ is of type (x) where x ∈ {i, ii} if the corresponding
condition above holds.

Lemma 10.1.2. The graph G(n,Γ) is isomorphic to the hyperplane graph Π(n,Γ).

Proof. In this proof, let G = G(n,Γ) and let Π = Π(n,Γ). Define a function ϕ : V (G) →
V (Π), as follows. For each f ∈ V (G),

ϕ(f) = {(γ, {u, v}) : u, v ∈ V (KΓ
n ), u < v, and f(u) = γf(v)}

∪ {βu : u ∈ V (KΓ
n ) and f(u) = 0}.

Consider f ∈ V (G). We will show that ϕ(f) ∈ V (Π). Let H be the subgraph of KΓ
n

induced on the edge set ϕ(f). That is, H = KΓ
n [ϕ(f)]. Let V0 = {v ∈ V (KΓ

n ) : f(v) = 0}.
Since f(u) = 0 for every vertex u ∈ V0, we have f(u) = γf(v) for every pair of vertices
u, v ∈ V0 and every group element γ ∈ Γ. Furthermore, for each u ∈ V0, the loop on u
in KΓ

n is in ϕ(f). Therefore, all edges in KΓ
n between (not necessarily distinct) vertices in

V0 are in ϕ(f). That is, the graph KΓ
n [V0] is a subgraph of H. Let V = V (KΓ

n ) \ V0 be
the vertices not in V0 and let E = ϕ(f) \ E(KΓ

n [V0]) be the edges not induced by V0. For
u ∈ V0 and v ∈ V , we know f(u) ̸= γf(v) and f(v) ̸= γf(u) for any γ ∈ Γ, hence KΓ

n [V0]
is a component of H. For u, v ∈ V where u < v, since f(u), f(v) ̸= 0, the edge (γ, {u, v})
is in E where γ = f(u)f(v)−1, and no other uv-edge is in E. Therefore, the graph KΓ

n [V ]
is a simple, complete graph and a component of H.

Claim 10.1.2.1. Every cycle in KΓ
n [V ] is balanced.

Proof. Let C = v1e1v2e2 . . . v|V |e|V |v|V |+1 be a cycle in KΓ
n [V ] where v1 = v|V |+1 and ei =

(γi, vi, vi+1) for each i ∈ [|V |]. Let π =
∏|V |

i=1 ψ(γi, vi, vi+1). Consider i ∈ [|V |]. If vi < vi+1,
then ψ(γi, vi, vi+1) = γi = f(vi)f(vi+1)

−1. If vi+1 < vi, then ψ(γi, vi, vi+1) = γ−1
i =

(f(vi+1)f(vi)
−1)−1 = f(vi)f(vi+1)

−1. Therefore,

π =

|V |∏
i=1

f(vi)f(vi+1)
−1 = 1,

so the cycle C is balanced.
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Now it follows that the subgraph of KΓ
n induced on ϕ(f) has at most two components:

KΓ
n [V0], which is isomorphic to KΓ

|V0|; and K
Γ
n [V ], which is a complete graph where every

cycle is balanced. Since KΓ
n [V0] is connected and contains an unbalanced cycle, its edge set

has rank |V0| in DG(n,Γ). Since KΓ
n [V ] is connected and does not contain an unbalanced

cycle, its edge set has rank |V | − 1 in DG(n,Γ). Therefore, the edge set ϕ(f) has rank
|V0|+ |V | − 1 = n− 1. In order to complete the proof that ϕ(f) is a hyperplane, we argue
that cl(ϕ(f)) = ϕ(f).

Claim 10.1.2.2. cl(ϕ(f)) = ϕ(f).

Proof. If an edge between u ∈ V0 and v ∈ V is added to ϕ(f), then the two components
are connected, and the rank increases. Consider an edge (α, {u, v}) between u, v ∈ V that
is not in ϕ(f). Without loss of generality, assume u < v. Let C be a cycle induced by
ϕ(f) that contains the edge (γ, {u, v}). Let e1, e2, . . . , e|C|−1 be the edges in the path from
u to v in C \ (γ, {u, v}) where ei = (γi, vi, vi+1) for i ∈ [|C| − 1] and v1 = v|C|. Since C is a
balanced cycle,

|C|−1∏
i=1

ψ(γi, vi, vi+1) = γ.

Since the edge (α, {u, v}) is not in ϕ(f), we know α ̸= γ, which implies
∏|C|−1

i=1 γi ̸= α.
Therefore, the cycle C \ (γ, {u, v}) ∪ (α, {u, v}) is unbalanced; hence, adding an edge
between vertices in V to ϕ(f) increases its rank. Thus, it follows that cl(ϕ(f)) = ϕ(f).

In order to prove that ϕ is a bijection, we will define a function ζ : V (Π) → V (G), as
follows, and then show that ζ is the inverse function of ϕ. For each hyperplane H ∈ V (Π),
let ζ(H) = f where f ∈ F , as follows. By Proposition 10.1.1, there is a partition (V1, V2) of
the vertex set of KΓ

n , where |V1| ≥ 0 and |V2| ≥ 1, such the components of KΓ
n induced by

H are KΓ
n [V1] and a complete graph G′ with vertex set V2 in which every cycle is balanced.

If v ∈ V1, then let f(v) = 0. Let u be the vertex in V2 such that u ≤ v for all v ∈ V2. Let
f(u) = 1. Consider v ∈ V2 where v ̸= u. Since G′ is simple and complete, there is one
uv-edge (γ, {u, v}) in H. Let f(v) = γ−1f(u).

Since |V2| ≥ 1, not all vertices of KΓ
n are mapped to 0 by f , hence the function f is

nonzero. Since f(u) = 1 where u ≤ v for all v ∈ supp(f), the function f is canonical.
Therefore, the function f is in F .

Each hyperplane H induces at most two components G1, G2 of KΓ
n where G1 is iso-

morphic KΓ
k for some k ∈ [0, n − 1] and G2 is a complete graph in which every cycle is

balanced. The function ζ maps H to an assignment f of vertex labels which identify these
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components and, in the case of G2, the edge labels. The function ϕ determines the com-
ponents G1, G2 from the assignment f of vertex labels. Observe that ζ and ϕ are inverse
functions. Thus, they are bijections between the hyperplanes of Π and the functions of F .

Now we will prove that two vertices f1, f2 ∈ V (G) are adjacent in G if and only if ϕ(f1)
and ϕ(f2) are adjacent in Π. Consider two vertices f1, f2 ∈ V (G). Define the following
sets:

• X(0,0) = {v ∈ V (KΓ
n ) : f1(v) = f2(v) = 0},

• X(0,1) = {v ∈ V (KΓ
n ) : f1(v) = 0, f2(v) ̸= 0},

• X(1,0) = {v ∈ V (KΓ
n ) : f1(v) ̸= 0, f2(v) = 0}, and

• X(1,1) = {v ∈ V (KΓ
n ) : f1(v) ̸= 0, f2(v) ̸= 0}.

For each i ∈ [2], let H0
i be the component of KΓ

n [ϕ(fi)] isomorphic to KΓ
k for some k ∈

[0, n− 1] and let H1
i be the component of KΓ

n [ϕ(fi)] that is a complete graph where every
cycle is balanced. Observe that X(i,j) = V (H i

1) ∩ V (Hj
2) for each i, j ∈ {0, 1}. Let H

be the subgraph of KΓ
n induced on the edges that are in ϕ(f1) ∩ ϕ(f2). Since X(0,0) =

V (H0
1 ) ∩ V (H0

2 ), the graph H[X(0,0)] is a connected component of H and its edge set
has rank |X(0,0)| in DG(n,Γ). The graphs H[X(0,1)] and H[X(1,0)] are also connected
components of H, but they are induced subgraphs of complete graphs whose cycles are
balanced, hence r(E(H[X(0,1)])) = |X(0,1)| − 1 and r(E(H[X(1,0)])) = |X(1,0)| − 1. Let
H ′ = H[X(0,1) ∪X(1,0) ∪X(1,1)]. By definition of ϕ, the graph H ′ has no unbalanced cycles.

Claim 10.1.2.3. The functions f1 and f2 are adjacent if and only if the graph H ′ contains
exactly 2 components.

Proof. Suppose f1 and f2 are adjacent. If the edge between f1 and f2 is of type (ii), then
supp(f1) ∩ supp(f2) = ∅. Therefore, the set X(1,1) is empty and the sets X(0,1) and X(1,0)

are not empty. Thus, the graphs H[X(0,1)] and H[X(1,0)] are connected components of H.

Suppose, without loss of generality, that |supp(f1)| ≥ |supp(f2)|. If the edge between
f1 and f2 is of type (i), then there exists γ1 ∈ Γ ∪ {0}, γ2 ∈ Γ, and X ⊆ supp(f1) such
that f2(x) = f1(x)γ1 for all x ∈ X and f1(y) = f2(y)γ2 for all y ∈ Y = V (KΓ

n ) \X. Thus,
the set X(0,1) is empty. We claim that H[X(1,1)] is one component of H if X(1,0) ̸= ∅ and
H[X(1,1)] is two components of H otherwise.

If X(1,0) ̸= ∅, then γ1 = 0. Consider u, v ∈ X(1,1) where u < v. Since γ1 = 0, we have
that f2(u) = f1(u)γ2 and f2(v) = f1(v)γ2. By definition of X(1,1), for each i ∈ [2], there is
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one edge (δi, {u, v}) between u and v in H1
i where δi = fi(u)fi(v)

−1 ∈ Γ. Therefore,

δ1 = f1(u)f1(v)
−1 = (f2(u)γ

−1
2 )(f2(v)γ

−1
2 )−1 = f2(u)γ

−1
2 γ2f2(v)

−1 = f2(u)f2(v)
−1 = δ2.

Thus, the edge between u and v in ϕ(f1) has the same label as the edge between u and v
in ϕ(f2). It follows that H[X(1,1)] is connected.

If X(1,0) = ∅, then γ1 ̸= 0. For each j ∈ [2], let Vj ⊆ X(1,1) such that f2(v) = f1(v)γj for
each v ∈ Vj. For each i ∈ [2], there is one edge (δi, {u, v}) between u and v in H1

i where
δi = fi(u)fi(v)

−1 ∈ Γ. If u, v ∈ Vj where j ∈ [2], then

δ1 = f1(u)f1(v)
−1 = (f2(u)γ

−1
j )(f2(v)γ

−1
j )−1 = f2(u)γ

−1
j γjf2(v)

−1 = f2(u)f2(v)
−1 = δ2.

So the edge between u and v in ϕ(f1) has the same label as the edge between u and v in
ϕ(f2). It follows that H[V1] and H[V2] are connected. If u ∈ V1 and v ∈ V2, then

δ1 = f1(u)f1(v)
−1 = (f2(u)γ

−1
1 )(f2(v)γ

−1
2 )−1 = f2(u)γ

−1
1 γ2f2(v)

−1 ̸= f2(u)f2(v)
−1 = δ2.

So the edge between u and v in ϕ(f1) has a different label from the edge between u and v
in ϕ(f2), which implies that there are no edges in H between vertices in V1 and vertices in
V2. That is, the graph H[X(1,1)] has exactly two components.

Now suppose that the graph H ′ contains exactly 2 components. Each component exists
within H[X(0,1)], H[X(1,0)], or H[X(1,1)], hence one of X(0,1), X(1,0), X(1,1) is empty. If X(1,1)

is empty, then supp(f1) ∩ supp(f2) = ∅, which implies that f1 and f2 are adjacent by an
edge of type (ii). If, without loss of generality, X(0,1) is empty, then there exists γ1 ∈ Γ∪{0},
γ2 ∈ Γ, and X ⊆ supp(f1) such that f2(x) = f1(x)γ1 for all x ∈ X and f1(y) = γ2f2(y) for
all y ∈ Y = V (KΓ

n ) \X. Therefore, there is an edge of type (i) between f1 and f2.

Observe that the graph H ′ contains exactly 2 components if and only if r(E(H ′)) =
|V (H ′)|−2. Furthermore, since r(E(H[X(0,0)])) = |X(0,0)|, notice that r(E(H ′)) = |V (H ′)|−
2 if and only if r(E(H)) = |V (H)|−2. Thus, by Claim 10.1.2.3, the functions f1 and f2 are
adjacent in G if and only if r(E(H)) = |V (H)|− 2. Since ϕ(f1) and ϕ(f2) are hyperplanes,
their intersection is a flat, hence ϕ(f1) and ϕ(f2) intersect in a flat of rank |V (H)|−2 = n−2
if and only if f1 and f2 are adjacent. Therefore, the functions f1 and f2 are adjacent in G
if and only if ϕ(f1) and ϕ(f2) are adjacent in Π.

10.2 Stable set bounds

In this section, we determine upper and lower bounds on the number of stable sets in the
hyperplane graph of DG(n,GF (3)∗). We choose a small abelian group in order to better
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understand the graph defined in the previous section. For this section, let Γ = GF (3)∗.
Note that |Γ| = 2 and Γ contains an identity element 1 and an element −1 that is its own
inverse.

Since Γ = GF (3)∗, the graph G(n,Γ) has vertex set F and edges are defined as follows.
If f, f ′ ∈ F where |supp(f)| ≤ |supp(f ′)|, then f and f ′ are adjacent if and only if:

(i) supp(f) = supp(f ′),

(ii) supp(f) ⊂ supp(f ′) and f |supp(f) = ±f ′|supp(f), or
(iii) supp(f) ∩ supp(f ′) = ∅.

For each d ∈ [n], let Ld ⊆ V (G) be the set of vertices [f ] where |supp(f)| = d. We
consider each Ld to be layer d of G. For each d ∈ [n], let Sd = {V ⊆ [n] : |V | = d}. That
is, the set Sd is the set of supports of vertices in layer d. There are

(
n
d

)
possible supports

for a vertex f in layer d, hence |Sd| =
(
n
d

)
. For each d ∈ [n] and V ∈ Sd, let CV denote the

set of vertices f ∈ Ld where supp(f) = V .

Proposition 10.2.1. For each d ∈ [n] and V ∈ Sd, there are 2d−1 vertices in CV .

Proof. If supp(f) = V , then f(v) ∈ Γ for each v ∈ V and f(u) = 0 for all u ∈ [n] \ V .
Additionally, we have f(w) = 1 where w ∈ supp(f) and w ≤ v for all v ∈ supp(f). Thus,
since |Γ| = 2, there are 2 choices for the f -image of each v ∈ V \ {w}. Since V ∈ Sd, we
know that |V | = d. Therefore, there are 2d−1 functions with support V .

Proposition 10.2.2. For each d ∈ [n], there are
(
n
d

)
2d−1 vertices in Ld.

Proof. By Proposition 10.2.1, there are 2d−1 vertices in CV for each V ∈ Sd. Since Ld is
the disjoint union of CV over all V ∈ Sd, the layer Ld has size

∑
V ∈Sd

2d−1 = |Sd|2d−1 =(
n
d

)
2d−1.

Proposition 10.2.3. If V ⊆ [n], then the subgraph of G(n,Γ) induced on CV is a complete
graph.

Proof. Consider f, f ′ ∈ CV . By definition of CV , we know supp(f) = V = supp(f ′).
Thus, by definition of G(n,Γ), the vertices f and f ′ are adjacent. Therefore, since every
pair of vertices in CV are adjacent, the subgraph of G(n,Γ) induced on CV is a complete
graph.
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The following lemma gives a lower bound on the number of stable sets in G(n,Γ) by
finding a method of constructing large stable sets. The proof is instructive, so it is included,
but we find a better lower bound in Lemma 10.2.7.

Lemma 10.2.4. log i(G(n,Γ)) ≥
(

n
⌊n/2⌋+1

)
· ⌊n/2⌋.

Proof. In this proof, let G = G(n,Γ). Let d ∈ [⌊n/2⌋+1, n] and consider f, f ′ ∈ Ld. Since
f and f ′ both have support of size d, we know supp(f) ̸⊂ supp(f ′) and supp(f ′) ̸⊂ supp(f).
That is, edges between vertices in the same layer are not edges of type (ii). Since d > n/2,
the supports of f and f ′ have at least one element in common, so supp(f)∩ supp(f ′) ̸= ∅.
That is, edges between vertices with support size at least n/2 are not edges of type (iii).
Thus, the vertices f and f ′ are adjacent if and only if supp(f) = supp(f ′). This implies
that f and f ′ are adjacent if and only if f, f ′ ∈ CV for some V ∈ Sd. Therefore, for each
d ∈ [⌊n/2⌋ + 1, n], the subgraph G[CV ] is a clique and a component of the graph G[Ld]
induced on the vertices in layer d.

Consider layer d = ⌊n/2⌋ + 1. Let k =
(
n
d

)
, the number of elements in Sd. Let

V1, V2, . . . , Vk be the k sets in Sd. Let I = {X ⊆ Ld : |X ∩ CVi
| ≤ 1 for all i ∈ [k]}. Since,

for each i ∈ [k], the subgraph G[CVi
] is a component of the graph G[Ld], each set I ∈ I is

a stable set of G[Ld], and thus is a stable set in G. Therefore, the number of stable sets in
G is at least |I|.

Consider a set X ∈ I. Since, for each i ∈ [k], the set CVi
contains 2d−1 elements, there

are 2d−1 + 1 choices for the set X ∩ CVi
. Since k =

(
n
d

)
, there are (2d−1 + 1)(

n
d) choices for

the set X. Thus,

log i(G) ≥ log |I| ≥
(
n

d

)
(d− 1).

Lemma 10.2.5. log i(G(n,Γ)) ≤ n2n−1.

Proof. In this proof, let G = G(n,Γ). Let k =
∑n

d=0

(
n
d

)
= 2n. Let V1, V2, . . . , Vk be the

k subsets of [n]. Let U = {U ⊆ V (G) : |U ∩ CVi
| ≤ 1 for all i ∈ [k]}. That is, let U be

the collection of sets U ⊆ V (G) obtained by choosing at most one vertex from each set CV

where V ⊆ [n]. Since each such set CV induces a complete graph in G, at most one vertex
from each can be in a stable set of G. Therefore, if S is a stable set of G, then S ∈ U .
This implies that i(G) ≤ |U|.

By Proposition 10.2.1, for each V ⊆ [n] where |V | = d, the set CV contains 2d−1

elements. Thus, there are 2d−1 +1 choices for each vertex from layer d in a set in U . Since
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there are
(
n
d

)
subsets of [n] with size d, there are (2d−1 +1)(

n
d) choices for the vertices from

layer d in a set in U . Therefore,

i(G) ≤ |U| ≤
n∏

d=0

(2d−1 + 1)(
n
d).

Since 2d−1 + 1 ≤ 2d for d ∈ [n],

log i(G) ≤ log |U| ≤
n∑

d=1

(
n

d

)
d = n2n−1.

In the next lemma, we use some probability theory to get a slightly better lower bound
than that in Lemma 10.2.4. We use P(A) to denote the probability of an event A and E(A)
to denote the expected value of A. We refer to Chapter 2 of the textbook by Molloy and
Reed [31] for an introduction to probability theory at the level needed here. We also make
note of one preliminary result, as follows.

Proposition 10.2.6 (Markov’s Inequality [31]). For any positive random variable X,

P(X ≥ t) ≤ E(X)/t.

Lemma 10.2.7. log i(G(n,Γ)) ≥ n2n−1(1
2
+ o(1)).

Proof. In this proof, let G = G(n,Γ). Let ℓ = n
4
(1 − ε) where 0 < ε < 1

7
. Let k =∑⌊n/2+ℓ⌋

d=⌊n/2+1⌋
(
n
d

)
. Since there are k subsets V of [n] where |V | ∈ [⌊n/2 + 1⌋, ⌊n/2 + ℓ⌋],

there are k possible supports for the functions in
⋃⌊n/2+ℓ⌋

d=⌊n/2+1⌋ Ld. Let V1, V2, . . . , Vk be the

k subsets V of [n] where |V | ∈ [⌊n/2 + 1⌋, ⌊n/2 + ℓ⌋]. Let U = {{v1, v2, . . . , vk} : vi ∈
CVi

for all i ∈ [k]}. That is, let U be the collection of sets U ⊆ V (G) obtained by choosing
a vertex from each set CV where V ⊆ [n] and |V | ∈ [⌊n/2 + 1⌋, ⌊n/2 + ℓ⌋]. Note that each
such CV induces a complete graph in G. We are interested in the number of edges induced
by a set U in U , which can range from 0 to

(
k
2

)
. We will use bounds on the number of

sets that induce a “small” number of edges to lower bound the number of stable sets in G.
First, we will determine a lower bound for the size of U .

Claim 10.2.7.1. log |U| ≥ n2n−1(1
2
+ o(1)).

Proof. Consider layer d ∈ [⌊n/2 + 1⌋, ⌊n/2 + ℓ⌋]. For each V ⊆ [n] where |V | = d, the set
CV contains 2d−1 elements. Thus, there are 2d−1 choices for each vertex from layer d in a
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set in U . Since there are
(
n
d

)
sets in Sd, there are (2d−1)(

n
d) choices for the vertices from

layer d in a set in U . Therefore,

log |U| =
⌊n/2+ℓ⌋∑

d=⌊n/2+1⌋

(
n

d

)
(d− 1). (10.1)

To find a lower bound, we start by claiming that
∑⌊n/2+ℓ⌋

d=⌊n/2+1⌋
(
n
d

)
= 2n−1(1 + o(1)). We

prove this by upper bounding the difference
∑n

d=0

(
n
d

)
−

∑⌊n/2+ℓ⌋
d=⌊n/2+1⌋

(
n
d

)
. The partial sum∑⌊n/2⌋

d=0

(
n
d

)
is at most

⌊n/2⌋−1∑
d=0

(
n

d

)
+

(
n

n/2

)
≤ 2n−1 +

√
2

πn
2n.

The partial sum
∑n

d=⌊n/2+ℓ⌋+1

(
n
d

)
is at most

n
4
(1+ε)∑
d=0

(
n

d

)
≤

(
en

n
4
(1 + ε)

)n
4
(1+ε)

= 2
n
4
(1+ε) log(4e) ≤ 2

7n(1+ε)
8 .

Using these partial sum upper bounds and the identity
∑n

d=0

(
n
d

)
= 2n, we find

⌊n/2+ℓ⌋∑
d=⌊n/2+1⌋

(
n

d

)
≥ 2n − 2n−1 −

√
2

πn
2n − 2

7n(1+ε)
8 = 2n−1(1 + o(1)),

as desired. Since d ≥ ⌊n/2 + 1⌋ in Equation 10.1 we can replace (d− 1) with ⌊n/2⌋. Now
it follows that

log |U| ≥ ⌊n/2⌋
⌊n/2+ℓ⌋∑

d=⌊n/2+1⌋

(
n

d

)
≥ 1

2
n2n−1(1 + o(1)).

Define a function X : U → [0,
(
k
2

)
] where, for each vertex subset V ∈ U , let X(V ) be

the number of edges induced by V in the graph G. Let L =
⋃⌊n/2+ℓ⌋

d=⌊n/2+1⌋ Ld be the union of

the vertices in layers ⌊n/2+1⌋ to ⌊n/2+ ℓ⌋. Let U be chosen from U uniformly at random.
The probability that an edge e is induced by U is denoted P(e ∈ E(G[U ])). By linearity
of expectation, the expected value of X(U) is E(X(U)) =

∑
u,v∈L P(uv ∈ E(G[U ])).
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For each pair of distinct vertices u, v in L, let xuv = 1 if uv is an edge in G and let
xuv = 0 otherwise. Since the probability that an edge uv is induced by U is 0 if uv is not
in G and is P(u, v ∈ U) if uv is in G,

E(X(U)) =
∑
u,v∈L

xuvP(u, v ∈ U).

For each V ⊆ [n] where |V | ∈ [⌊n/2 + 1⌋, ⌊n/2 + ℓ⌋], the subgraph of G induced on CV is
a complete graph and a component of the graph G[L|V |]. Thus, since U contains exactly
one vertex from each of these complete graphs, we know xuv = 0 if u and v are in the same
layer and in U . Therefore,

E(X(U)) =

⌊n/2+ℓ⌋−1∑
i=⌊n/2+1⌋

∑
u∈Li

⌊n/2+ℓ⌋∑
j=i+1

∑
v∈Lj

xuvP(u, v ∈ U).

Claim 10.2.7.2. For i ∈ [⌊n/2 + 1⌋, ⌊n/2 + ℓ⌋], the probability that a vertex u ∈ Li is in
U is 21−i.

Proof. Let V ⊆ [n] such that u ∈ CV . Since u is in Li, we know |V | = i. The probability
that u is in U is 1

|CV | . By Proposition 10.2.1, there are 2i−1 vertices in CV . Thus, the

probability that u is in U is 1
2i−1 = 21−i.

Since vertices in different layers are chosen to be in U independently of each other, it
follows from Claim 10.2.7.2 that

E(X(U)) =

⌊n/2+ℓ⌋−1∑
i=⌊n/2+1⌋

∑
u∈Li

⌊n/2+ℓ⌋∑
j=i+1

∑
v∈Lj

xuv2
1−i21−j.

Consider vertices u ∈ Li and v ∈ Lj where i < j ∈ [⌊n/2+ 1⌋, ⌊n/2+ ℓ⌋]. If there is an
edge between u and v, then it is an edge of type (ii). Therefore, uv is an edge in G if and
only if supp(u) ⊂ supp(v) and u|supp(u) = ±v|supp(u).

Claim 10.2.7.3. Let i < j ∈ [⌊n/2+1⌋, ⌊n/2+ℓ⌋]. If u ∈ Li, then the number of functions
v ∈ Lj such that supp(u) ⊂ supp(v) and u|supp(u) = ±v|supp(u) is(

n− i
j − i

)
2j−i.
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Proof. Consider a function v ∈ Lj where supp(u) ⊂ supp(v) and u|supp(u) = ±v|supp(u).
There are j − i elements of [n] \ supp(u) that are in supp(v) \ supp(u), so there are

(
n−i
j−i

)
choices for the elements of supp(v) \ supp(u). For each x ∈ supp(v) \ supp(u), there are
two choices for the value of v(x). Finally, there are two choices for v|supp(u). Since v(y) = 1
for y = min(supp(v)), there are

(
n−i
j−i

)
2j−i+1/2 =

(
n−i
j−i

)
2j−i choices for the function v.

By Proposition 10.2.2, the number of vertices in Li is
(
n
i

)
2i−1. Thus, by Claim 10.2.7.3,

E(X(U)) =

⌊n/2+ℓ⌋−1∑
i=⌊n/2+1⌋

∑
u∈Li

⌊n/2+ℓ⌋∑
j=i+1

(
n− i
j − i

)
2j−i21−i21−j

=

⌊n/2+ℓ⌋−1∑
i=⌊n/2+1⌋

(
n

i

)
2i−1

⌊n/2+ℓ⌋∑
j=i+1

(
n− i
j − i

)
21−i21−i

=

⌊n/2+ℓ⌋−1∑
i=⌊n/2+1⌋

(
n

i

)
21−i

⌊n/2+ℓ⌋−i∑
j=1

(
n− i
j

)
.

Claim 10.2.7.4. If i ∈ [⌊n/2 + 1⌋, ⌊n/2 + ℓ⌋ − 1], the expression
(
n
i

)
21−i

∑⌊n/2+ℓ⌋−i
j=1

(
n−i
j

)
is maximized when i = ⌊n/2 + 1⌋.

Proof. The maximum value of
(
n
i

)
occurs when i = n/2. The maximum value of 21−i

occurs when i is as small as possible, which, in this case, is when i = ⌊n/2 + 1⌋. Since(
n−i
j

)
≤

(
n
j

)
for i ≥ 0 and j ≤ n−i

2
, the maximum value of

∑⌊n/2+ℓ⌋−i
j=1

(
n−i
j

)
also occurs

when i is minimized.

By Claim 10.2.7.4,

E(X(U)) ≤ ℓ

(
n

⌊n/2 + 1⌋

)
21−⌊n/2+1⌋

ℓ∑
j=1

(
⌈n/2⌉ − 1

j

)

≤ ℓ

(
n

n/2

)
21−n/2

ℓ∑
j=1

(
⌈n/2⌉ − 1

j

)
.

By Corollary 2.2.2, and since ℓ = n
4
(1− ε),

ℓ∑
j=1

(
⌈n/2⌉ − 1

j

)
≤

n
4
(1−ε)∑
j=1

(
n/2

j

)
≤ 2

n
2 e−

ε2n
8 .
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By Stirling’s approximation, we know
(

n
n/2

)
≤

√
2/π 2n√

n
. Therefore,

E(X(U)) ≤ ℓ

(
n

n/2

)
21−

n
2 2

n
2
− ε2n

8
log(e)

≤ n(1− ε)
4

√
2

π

2n√
n
· 21−

ε2n
8

log(e) = 2n(1−
ε2

8
log(e))

√
n

2π
(1− ε).

Proposition 10.2.6 (Markov’s Inequality) implies that P(X(U) < 2E(X(U))) ≥ 1
2
,

hence, by the equation above, it follows that

P(X(U) <
√
n2n(1−

ε2

8
log(e))) ≥ 1

2
.

Let a set V ∈ U be called good if the number of edges in G[V ] is less than
√
n2n(1−

ε2

8
log(e)).

Let Ug denote the collection of sets V in U that are good. Recall that U is a set chosen
from U uniformly at random. By the equation above it follows that P(U is good) ≥ 1

2
.

This implies that |Ug| ≥ 1
2
|U|. In other words, at least half of the sets in U are good.

Removing one endpoint from each edge induced by a set U ∈ U gives a stable set of

G. Thus, there exists a set V of at most 2E(X(U)) ≤
√
n2n(1−

ε2

8
log(e)) vertices such that

removing V from a good set U ∈ Ug results in a stable set. Let Sg denote the set of stable

sets S that are obtained from a good set U by removing at most
√
n2n(1−

ε2

8
log(e)) vertices.

Note that some stable sets in Sg are subsets of multiple good sets in Ug.
For each stable set S in Sg, let r(S) denote the number of good sets U that contain S

as a subset. Let I denote the collection of stable sets of G. Let r = maxS∈I r(S). Since
each stable set S is a subset of at most r good sets,

i(G) ≥ |Ug|
r
≥ |U|

2r
. (10.2)

Claim 10.2.7.5. log r ≤ 2n−1(1 + o(1)).

Proof. Let S be a stable set in Sg such that r = r(S). Let V be the collection of good sets
U ∈ Ug such that S ⊆ U . Thus, we know |V| = r. Each set U ∈ V contains the elements in
S and |U | − |S| elements from L. Let m = |U | − |S| and let v1, v2, . . . , vm be the elements
of U \ S. For each i ∈ [m], there exists a set Vi ⊆ [n] where ⌊n/2 + 1⌋ ≤ |Vi| ≤ ⌊n/2 + ℓ⌋
such that vi ∈ CVi

. By the definition of U , the sets V1, V2, . . . , Vm are distinct.

Recall that there are k sets V ⊆ [n] where ⌊n/2 + 1⌋ ≤ |V | ≤ ⌊n/2 + ℓ⌋. Thus, there
are at most

(
k
m

)
choices for the sets V1, V2, . . . , Vm. For each i ∈ [m], there are at most
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|CVi
| ≤ 2⌊n/2+ℓ⌋ ≤ 23n/4 choices for vi. Therefore, there are at most

(
k
m

)
(23n/4)m choices for

the elements v1, v2, . . . , vm. This implies that r = |V| ≤
(
k
m

)
(23n/4)m.

Since S is a stable set in Sg and U is a good set, the difference m = |U |− |S| is at most

2E(X(U)) ≤
√
n2n(1−

ε2

8
log(e)). Since k ≤ 2n−1, we have

(
k
m

)
≤ 22

n−1
. Therefore,

log r ≤ 2n−1 +
3n

4

√
n2n(1−

ε2

8
log(e)) = 2n−1(1 + o(1)).

By Equation 10.2 and Claims 10.2.7.5 and 10.2.7.1,

log i(G) ≥ log |U| − log r − 1

≥ n2n−1(1
2
+ o(1))− 2n−1(1 + o(1))

= n2n−1(1
2
+ o(1)).

Proof of Theorem 10.0.1. By Proposition 3.2.2, the stable sets of Π(DG(n,GF (3)∗)) corre-
spond to the scarce extensions of DG(n,GF (3)∗). Thus, the theorem follows from Lemmas
10.2.5 and 10.2.7.
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Glossary

DG(n,Γ) Dowling geometry of rank n over Γ. 27, 95, 127

GF (q) Galois field of order q. 10

Hmin(M,≺) The “small” hyperplanes of M . 38

Kn,m Complete bipartite graph with vertex set [n+m] and bipartition ([n], [n+m] \ [n]).
16

Kn Complete graph with vertex set [n]. 16

M(G) Cycle matroid of G. 21

M/X M contract X. 22

M \X M delete X. 22

M∗ The dual matroid of M . 22

M |X M restricted to X. 22

PG(n− 1, q) Projective geometry of rank n over GF (q) 28

Π(M) The hyperplane graph of M . 38

V (n, q) An n-dimensional vector space over GF (q). 28

(a; p)n The p-shifted factorial. 28, 110

Ω(M) The circuit graph of M . 39

C(M) The set of circuits of M . 21
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clM(X) The closure of X in M . 22

coext(M) The number of coextensions of M . 23

degG(v) Degree of v in G. 14

E(A) Expected value of A. 136

ext(M) The number of extensions of M . 23

H(M) The set of hyperplanes of M . 22(
X
k

)
The set of k-subsets of X. 10

oq(1) A function of q that goes to 0 as n goes to infinity. 12

o(1) A function of n that goes to 0 as n goes to infinity. 12

ln Natural (base-e) logarithm. 11

log Base-2 logarithm. 11

νq The shifted factorial (q−1; q−1)∞. 110

i(G) Number of stable sets in G. 18

Θ(M) The overlap graph of M . 41

P(A) Probability of A. 12, 136

rM(X) Rank of X in M . 22

r(M) Rank of M . 22
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Index

q-binomial coefficient, 28

adjacency matrix, 55
asymptotic, 11

biased graph, 25
balanced cycle, 25
unbalanced cycle, 25

circuit, 21
spanning, 21

circuit graph, 39
circuit property, 34

scarce, 34
coextension, 23
colinear subclass, 34

scarce, 34
container methods, 52
corank-2 restriction, 23
cuff, 25

hinged, 25
loose, 25
symmetric, 101
tight, 25

cycle matroid, 21

Dowling geometry, 27, 95, 127

eigenvalues, 55
extension, 23

frame matroid, 25

graph, 14
k-connected, 18
biased, 25
bipartite, 16
Cartesian product, 17
complete, 16
complete bipartite, 16
components, 16
connected, 15
cycle, 15
Hamiltonian cycle, 15
Hamiltonian path, 15
independence number, 16
induced subgraph, 14
isomorphic, 15
matching, 16
path, 15
simple, 14
spanning tree, 16
stable set, 16
subgraph, 14
theta, 16

graphic matroid, 21

Hamming graph, 17, 43
hyperplane, 22

small, 38
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hyperplane graph, 38
hyperplane property, 34

scarce, 34

Johnson graph, 41, 113

lift matroid, 25
linear, 10
linear subclass, 33

scarce, 34

matroid, 20
basis, 20
circuit, 21
closure, 22
contraction, 22
deletion, 22
dual, 22
flat, 22
hyperplane, 22
independent set, 20
line, 22
non-basis, 22

rank, 21
representable, 21
restriction, 22

overlap graph, 41

permutation, 11
even, 11
odd, 11

projective geometry, 28, 108, 119

representable, 21

sequence, 11
shifted factorial, 28, 110
stable set, 16
Stirling’s approximation, 12
supersaturation lemma, 53

theta graph, 16
theta property, 35

scarce, 35

uniform matroid, 41
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