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Abstract

Model pruning is a simple and effective method for compressing neural networks. By
identifying and removing the least influential parameters of a model, pruning is able to
transform networks into smaller, faster networks with minimal impact to overall perfor-
mance. However, recent research has shown that while overall performance may not be
significantly changed, model pruning can exacerbate existing fairness issues. Subgroups
that are underrepresented or complex may experience a greater than average impact from
pruning. Machine learning systems that use compressed neural networks may consequently
exhibit significant biases that could limit their effectiveness in many real world situations.

To address this issue, we analyze the effect on fairness of pruning a variety of image
classification models and propose a novel method for improving the fairness of existing
pruning methods. By analyzing the fairness impact of pruning in a variety of situations,
we further our understanding of the theoretical fairness impact of pruning could manifest
in real-world conditions. By developing a method for improving the fairness of pruning
methods, we demonstrate that the fairness impact of pruning can be influenced and enable
machine learning practitioners to improve the post-pruning fairness of their models.

Our analysis revealed that the fairness impact of pruning can be observed in many, but
not all, image classification systems that utilize deep learning and pruning. The dataset
used to train each model appears to influence how pruning affects the fairness of each
model. Models trained and pruned using the CelebA dataset did see a negative impact
on fairness while models trained and pruned using the Fitzpatrick17k dataset did not.
Manipulating the CelebA and CIFAR-10 datasets to remove or introduce potential sources
of bias does affect the fairness impact of pruning. The effect does not appear to be limited
to a single pruning method, but different pruning methods do not experience the effect
equally.

The fairness impact of data-driven pruning can be improved through a simple tweak to
the cross-entropy loss. The performance weighted loss function assigns weights to samples
based on the performance of the unpruned model and uses the corrected output of the
unpruned model as classification targets. These small changes improve the fairness of
existing pruning methods with some models. The performance weighted loss function
does not appear to be universally beneficial, but it is a useful tool for machine learning
practitioners who seek to compress models in fairness sensitive contexts.

iv



Acknowledgements

I would first like to thank my supervisor Prof. Alexander Wong for his support and
guidance throughout my degree. Your passion is inspiring and you have helped me to grow
as a researcher tremendously.

To everyone at the Vision and Image Processing Lab, thank you for your guidance and
camaraderie. Having the opportunity to work with, learn from and play board games with
you has been one of the highlights of my degree.

I would also like to thank Prof. Chen and Prof. Zelek for taking the time to review my
thesis. I greatly appreciate you taking the time to read my thesis.

Finally, I would like to thank the Natural Sciences and Engineering Research Council
of Canada, the Ontario Graduate Scholarship and the University of Waterloo for providing
me with the funding required to complete my degree.

v



Dedication

This thesis is dedicated to my parents, who have always been there for me. I would not
be here without you.

vi



Table of Contents

Author’s Declaration ii

Statement of Contributions iii

Abstract iv

Acknowledgements v

Dedication vi

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Defining Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Defining Model Compression . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Defining Fair Model Compression . . . . . . . . . . . . . . . . . . . 4

1.2 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

vii



2 Background 6

2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Designing Fair Machine Learning Systems . . . . . . . . . . . . . . . . . . 8

2.3 Convolutional Neural Network Compression . . . . . . . . . . . . . . . . . 10

2.3.1 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Fair CNN Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 An Empirical Analysis of Fair Pruning 13

3.1 Analysis Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Pruning Biased CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 CelebA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 Fitzpatrick17k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Adjusting the Attribute and Class Balance . . . . . . . . . . . . . . . . . . 18

3.4 Inducing Bias in an Unbiased Dataset . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Bias source: Underrepresentation . . . . . . . . . . . . . . . . . . . 21

3.4.2 Bias source: Visual artifact . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 The Performance Weighted Loss Function 25

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.2 Evaluating Fairness and Performance . . . . . . . . . . . . . . . . . 29

4.3.3 Loss Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.4 Ablation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

viii



5 Conclusion 37

5.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4.1 Identifying the Properties of Pruning Methods That Affect Fairness 39

5.4.2 Exploring More Sophisticated Methods for Improving Model Fairness 40

5.4.3 Developing a Fair Pruning Benchmark . . . . . . . . . . . . . . . . 40

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

References 42

APPENDICES 47

A Model Training and Pruning Parameters 48

ix



List of Figures

2.1 A simple feedforward neural network . . . . . . . . . . . . . . . . . . . . . 6

2.2 A simple convolutional neural network (CNN) . . . . . . . . . . . . . . . . 8

2.3 Unstructured and structured pruning of a simple CNN . . . . . . . . . . . 11

3.1 Sample CelebA images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Sample Fitzpatrick17k images . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Mean pruning performance with the CelebA dataset . . . . . . . . . . . . . 17

3.4 Mean pruning performance with the Fitzpatrick17k dataset . . . . . . . . . 18

3.5 Mean pruning performance with the CelebA dataset with alternative at-
tribute and class balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.7 Mean pruning performance with the CIFAR-10 dataset . . . . . . . . . . . 21

3.6 Sample CIFAR-10 images with and without the visual artifact . . . . . . . 21

3.8 Mean pruning performance with the CIFAR-10 dataset with underrepresen-
tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.9 Mean pruning performance with the CIFAR-10 dataset with visual artifact 24

4.1 Overview of the performance weighted loss (PW Loss) . . . . . . . . . . . 25

4.2 Mean pruning performance with and without the performance weighted loss
function on the CelebA task . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Mean pruning performance with and without the performance weighted loss
function on the Fitzpatrick17k task . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Mean pruning performance with and without the performance weighted loss
function on the CIFAR-10 task . . . . . . . . . . . . . . . . . . . . . . . . 32

x



4.5 Mean pruning performance with and without the performance weighted loss
function on the CIFAR-10 with underrepresentation and CIFAR-10 with
visual artifact tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6 Change in the proportion of the batch loss due to the use of the PW loss . 34

4.7 Pruning performance with the CelebA dataset when elements of the PW
loss are applied independently . . . . . . . . . . . . . . . . . . . . . . . . . 35

xi



List of Tables

1.1 Three Definitions of Fairness for Binary Classification . . . . . . . . . . . . 3

3.1 CelebA Training Data Composition . . . . . . . . . . . . . . . . . . . . . . 15

A.1 Parameters used for AutoBot pruning method . . . . . . . . . . . . . . . . 50

A.2 Parameters used for Taylor pruning method . . . . . . . . . . . . . . . . . 50

A.3 Parameters used for PW loss . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.4 Parameters used to retrain models . . . . . . . . . . . . . . . . . . . . . . . 51

xii



Chapter 1

Introduction

Deep learning systems have been applied to a variety of computer vision problems with
great success. By enabling a level of performance that was otherwise impossible to achieve,
deep learning has become a leading approach for computer vision tasks such as image
classification [45], object detection [52] and image segmentation [32]. Today, deep learning
systems are applied to a wide variety of applications such as medical imaging [41], mobile
photography [6] and factory automation [48].

However, the effectiveness of a system depends on more than task performance. Effi-
ciency and fairness are also important considerations. A system with an excessive compu-
tational cost may not be able to deployed in a cost effective manner and a system that has
poor performance for a subset of users may deepen social inequalities.

While the goals of computational efficiency and fairness may appear to be unrelated,
recent research has demonstrated that common methods for compressing deep learning
models to improve efficiency can exacerbate existing model biases [16, 36]. There is no
guarantee that the impact of model compression will be equal for all potential inputs.
Some inputs are more likely to be associated with decreased performance after model com-
pression. In particular groups which are complex or underrepresented are more likely to
see deteriorated performance from model compression [36]. The use of model compres-
sion could consequently cause deep learning systems to discriminate against particular
subgroups.

Discriminatory deep learning systems are not a hypothetical. Organizations such as
Amazon and Twitter have reworked resume scanning [5] and automatic cropping systems
[31] due to fairness concerns. Governments and regulators are also starting to take notice

1



of the issue. The White House specifically addresses the problem of fairness in AI systems
in their “Blueprint for an AI Bill of Rights” [17].

To avoid such issues, machine learning practitioners must consider the fairness impact
of each design decision they make in the creation of their system. Model compression
decisions are no exception. To use model compression practitioners should understand
and know how to manage the fairness impacts of model compression. In fairness sensitive
contexts such as healthcare, personnel management and security, using model compression
without considering the fairness impacts of compression could have significant social effects.

In this work, we aim to examine the relationship between model compression and
fairness for deep learning vision systems. In particular, we focus on convolutional neural
networks, the dominant deep learning approach for vision problems, and model pruning, a
highly popular approach for model compression.

1.1 Problem Definition

1.1.1 Defining Fairness

As fairness is a social concept there is no single formal mathematical definition for fairness.
At a high-level, fairness can be conceptualized as the idea that model performance should
be independent of a selected attribute. The attribute in question is context specific and
could correspond to social identifiers such as class, race and gender.

The particular fairness definition used for an application depends on the social context
of the application. In some situations it may be desired that the system has no significant
discrepancies in behaviour between all attribute subgroups. In other situations, parity in
a few key metrics may be sufficient.

To illustrate this, we can consider a few different definitions of fairness in binary classifi-
cation. As defined in Table 1.1, demographic parity, equalized odds and equal opportunity
are three simple notions of fairness that can be applied to binary classification [11]. Demo-
graphic parity simply states that a decision, Ŷ , is fair if it is independent of the attribute A
[11]. However, demographic parity is flawed in many circumstances as the ideal probabil-
ity of positive classification can vary between attribute subgroups. Equalized odds allows
for correlations between the attribute and the classification target by instead stating that
when given a classification target, Y , the correctness of a fair decision is independent of the
attribute [11]. Equal opportunity softens the equalized odds requirement by stating that
when given a positive classification target, the correctness of a fair decision is independent
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of the attribute [11]. If equalized odds holds true, the accuracies of the sample groups with
and without the attribute will be equal. If equal opportunity holds true, the true positive
rate will be equal for sample groups with and without the attribute.

Table 1.1: Three Definitions of Fairness for Binary Classification

Name Definition

Demographic Parity Pr{Ŷ = 1|A = 0} = Pr{Ŷ = 1|A = 1}
Equalized Odds Pr{Ŷ = 1|A = 0, Y = y} = Pr{Ŷ = 1|A = 1, Y = y} y ∈ {0, 1}
Equal Opportunity Pr{Ŷ = 1|A = 0, Y = 1} = Pr{Ŷ = 1|A = 1, Y = 1}

In contexts in which the effects of the system are primarily attributed to positive
classification, such as university admissions or security monitoring, equal opportunity may
be preferred over equalized odds as it more closely captures the impact of the system.
Ultimately, it is the impact of the machine learning system that is of concern. Performance
imbalances that have no impact on users are not fairness concerns. An appropriate fairness
definition mus therefore consider the impact of a system’s output within the social context
of the system.

Understanding fairness impacts without a particular system in mind can be difficult.
For this thesis, our approach is to study the overall fairness impact of compression with
the understanding that all of our findings may not be applicable to every system.

1.1.2 Defining Model Compression

Model compression is a process by which the size of a neural network can be reduced to
reduce computational cost. There are generally two goals of compression: reducing the
memory footprint of the network and reducing the inference time of the network. Per-
formant model compression approaches are able to achieve these objectives with minimal
impact to model performance.

There are many different compression approaches that have been proposed. Some
approaches focus on the number of model parameters while other approaches focus on the
size of each parameter [34]. Practitioners do not have to use a single approach to compress
a network. Instead, many compression approaches can be used in concert.

For this work, we focus on model pruning. Model pruning is a popular compression
approach in which parameters are removed from a model to reduce the size of the model
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[34]. Not all parameters in a neural network are equally important. Some parameters
may be redundant or unused, and have little impact on the model’s behaviour. Pruning
approaches seek to identify and remove these parameters.

1.1.3 Defining Fair Model Compression

For this work, we define fair model compression as the performant compression of a neural
network in a fair manner. In contrast to the model compression problem which emphasizes
the preservation of the overall performance of the mode, the fair model compression prob-
lem also considers the preservation of fairness. A fair model compression approach is able
to reliably compress a model to a specified degree of compression with minimal impact to
both overall performance and fairness.

As fairness has a context specific definition, so too does fair model compression. The
specific definition of fairness as well as the desired balance between overall performance
and fairness depend on context and goals of the system.

In this thesis, we consider a compression method unfair if the decrease in performance
experienced by samples in a subgroup is greater than the decrease experienced by samples
not in the subgroup. We measure performance using the area under the receiver operating
curve (ROC-AUC). As it is a threshold agnostic performance metric, the ROC-AUC is
a good measure of the model’s understanding and separability for a subgroup [2]. Fair
compression methods will induce similar changes in the ROC-AUC for all subgroups.

1.2 Contributions and Outline

This thesis aims to explore the problem of fair model compression by examining the existing
compression methods and developing a new compression method. The primary contribu-
tions of this thesis are an analysis of the fairness of existing compression methods and the
development of a method for improving the fairness of pruning approaches for model com-
pression. The goal of these contributions is to develop an understanding of the mechanism
by which unfairness can arise during model compression and to apply this understanding
to improve fairness during model compression.

Chapter 2 of this thesis provides background information on model compression and
fairness in machine learning. Chapter 3 presents a quantitative analysis of the fairness of
a selection of model pruning methods. Chapter 4 introduces a novel loss function that
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can improve the fairness of existing pruning methods. Chapter 5 concludes the thesis by
reflecting on the findings of the previous chapters, making recommendations and identifying
future work.
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Chapter 2

Background

2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a form of neural networks that are designed to
process images. By introducing an operation that is similar to the convolution into the
structure of a neural network, CNNs are able to effectively and efficiently process images.
Today, CNNs are used for a wide variety of tasks including image classification, object
segmentation and more [25].

As depicted in Figure 2.1, a basic feedforward neural network contains layers of inter-
connected nodes. Each node in the first layer uses the system inputs as its input values
while the nodes of every subsequent layer uses every node in the previous layer as its in-
put values. The output value of every node is calculated by applying a simple non-linear
transformation to a linear combination of its input values. The coefficients of the lin-
ear transformation, known as weights, determine the behaviour of the network while the
non-linear transformation enables the network to model non-linear behaviour.

Figure 2.1: A simple feedforward neural network. The value of each node in the network
depends on the values of all nodes in the previous layer.
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CNNs extend the feedforward neural network by replacing the fully connected layers of
the feedforward network with convolutional layers. A basic CNN structure is depicted in
Figure 2.2. Convolutional layers multiply and sum rectangular regions of an input image
with a filter in a sliding window fashion. Rather than connecting each node to all nodes
in the previous layer, nodes in convolutional neural networks are only connected to the
nodes found in a single rectangular region of the previous layer. Furthermore, as the filter
is applied to the whole image using a sliding window approach, filter weights are shared
across the entire input. These differences allows a convolutional layer to process an input
of a given size more efficiently than a fully connected layer.

The differences also impose two inductive biases. The use of continuous rectangular
regions assumes that related values can be found near each other. The use of constant
filters applied with a sliding window approach assumes that useful patterns can manifest
identically in all regions of the input. These assumptions are typically relevant for natural
images as objects depicted in images are typically located in continuous regions that can
be anywhere in the image. CNNs are consequently well suited for image processing tasks.

A CNN is trained to complete a specific task by finding the parameter values that
minimize a specified loss function for a training dataset. An iterative optimization approach
such as stochastic gradient descent is used to find the optimal parameter values. For
classification, the average cross-entropy is typically minimized. The cross-entropy, lCE, is
shown in equation 2.1, where M is the number of classes, yi is the true probability for the
ith class and ŷi is the predicted probability for the ith class.

lCE = −
M∑
i=1

yi log(ŷi) (2.1)

A typical CNN contains many convolutional layers followed by a small number of fully
connected layers. CNN architectures vary in properties such as the number of layers,
the number of filters in each layer and the size of each filter. Modern architectures also
introduce additional features such as residual layers that sum the output values of multiple
layers [13] and depth-wise separable convolutions which learn separate filters for each input
image channel [18]. However, all CNN architectures use the convolution as the primary
processing step. Convolutional layers contribute almost all of a CNN’s parameters and
almost all inference operations are related to convolutional layers.
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Figure 2.2: A simple convolutional neural network (CNN). The value of each node depends
on all nodes found in a region within the previous layer. Furthermore, each output channel
is formed using a single convolutional filter that is applied to the previous layer in a sliding
window fashion.

2.2 Designing Fair Machine Learning Systems

Machine learning (ML) systems are complex software systems that fit a model to a training
dataset. Through the fit procedure, the system learns how the desired behaviour can be
achieved. As the behaviour of the model is learned rather than specified, it can be difficult
to predict exactly how the system will perform. The model may adopt an approach that
works well for most inputs, but performs poorly for inputs from specific subgroups. In
other words, the model may learn unfair behaviour.

Fairness issues have been observed in a number of real world systems. Chest X-ray
screening systems [40], facial recognition systems [43] and resume screening systems [5]
have all been show to have biases. We can not simply assume that the ML systems we
develop will be fair. Instead we must carefully develop our ML systems with fairness in
mind. To this end, the field of fair machine learning aims to understand and mitigate
fairness issues in ML systems.

As described in Section 1.1.1, the precise definition of fairness depends on the context of
the system. Likewise, the precise methods required to design fair machine learning systems
also depend on the context of the system. Introducing auditing mechanisms to identify
fairness issues may be sufficient for one system while the prevention of fairness issues may
be a requirement for a different system.

As such, there are a diverse range of fair ML approaches that have been proposed. Dif-
ferent approaches target different areas within the machine learning system using different
methods. To design a fair machine learning system that is simultaneously performant and
robust to fairness issues, multiple approaches may need to be combined.
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We can group the available approaches by the system area they directly address. Fair
ML approaches have been developed that address the system’s data pipeline, model design,
fitting procedure and feedback protocol.

Approaches that modify the system’s data pipeline seek to mitigate fairness issues at
the source. These approaches may generate new training samples or transform existing
training samples to improve the fairness of the data pipeline. For instance, BiaSwap [23]
automatically generates new training images by merging bias-relevant details from one
image with bias-irrelevant details from another image. FARE [22] maps the inputs to an
encoding space with a provable upper-bound on the unfairness of a downstream classifier.

Model design approaches seek to improve fairness by adjusting the structure of the
model. Unfairness in ML systems is typically learned rather than designed. However, the
model design still controls how the model can be used, influencing system fairness. For
example, Norrenbrock, Rudolph, and Rosenhahn [35] propose the use of a model with
a sparse and low-dimensional final decision layer to improve interpretability and enable
human auditing of the model’s decision making process.

The fitting procedure determines how data is applied to select a single solution within
the solution space defined by the model design. Approaches that address the fitting proce-
dure seek to encourage the procedure to select a fair solution. These approaches may make
modifications such as introducing additional fitting stages or augmenting the loss function
with fairness criteria. Zhang et al. [49] propose an additional pre-processing stage that uses
unlabelled data to improve fairness. Jain, Huber, and Elmasri [20] characterize fairness
using a Bias Parity Score and incorporate this score into the system’s loss function.

Approaches that modify the feedback protocol seek to improve system fairness by al-
lowing fairness issues to be identified quickly. Swift and reliable fairness auditing may not
prevent fairness issues from arising, but it can identify unfair machine learning systems
that should not see continued use without modification. Many auditing frameworks [3, 38,
39] have been proposed to systematically identify any potential fairness issues in machine
learning systems.

While each of these approaches aim to improve the fairness of machine learning systems,
the way in which they do so varies greatly. Different combinations of approaches may be
optimal for different systems. To build fair systems, machine learning practitioners need to
analyze their system to determine which approaches would be most beneficial. This can be
challenging as machine learning systems are complex with many potential sources of bias.
The specific fairness impact of each machine learning design decision is not well understood.
Research into the sources of bias in machine learning systems and the approaches that best
address each source could help practitioners to design fair machine learning systems.
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2.3 Convolutional Neural Network Compression

Convolutional neural networks are powerful tools that have demonstrated real-world use-
fulness in many applications. However, CNNs contain millions of parameters and execute
millions of operations for each inference. Many large CNNs are simply unable to be used in
computationally constrained environments such as mobile phones and smart home devices.

CNN compression is the practice of transforming a large CNN into a small CNN.
High quality model compressions produce small models that performs similarly to the
large original model. It has been demonstrated that small CNNs that are the result of
compression generally outperform CNNs of a similar size that are trained directly [50].
Not all networks of equal size are equivalent. By training a large network to find a good
solution and then compressing the solution, we can build a small model that is tailored to
the selected task.

There are a variety of compression approaches that have been proposed. Pruning,
quantization, weight-sharing and tensor decomposition approaches are some of the more
common compression approaches [34]. Pruning approaches remove redundant and unused
parameters from the network. Quantization approaches reduce the precision of the param-
eters to reduce the size of each parameter. Weight sharing approaches reuse parameters to
reduce the number of independent parameters. Tensor decomposition approaches trans-
form parameter tensors into near-equivalent but smaller low-rank representations. In this
work, we focus on network pruning as it is a highly popular method that is applicable to
most CNNs.

2.3.1 Pruning

Neural network pruning removes parameters from the network to reduce the size of the
network. By reducing the number of parameters, pruning approaches directly reduce the
memory requirements of the network and the number of operations required for each in-
terference. Alternatively, pruning can be thought of as the identification of a subnetwork
that approximates the full network.

As illustrated in Figure 2.3, pruning approaches can be divided into two categories:
structured and unstructured [15]. Unstructured approaches prune individual parameters
whereas structured approaches prune groups of parameters. The solution space of struc-
tured approaches is constrained, but structured pruning approaches are often more prac-
tical than unstructured approaches. By pruning groups of parameters, entire high-level
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operations such as matrix multiplications and convolutions can be skipped, improving in-
ference times with standard hardware and software libraries [15]. Structured pruning of
CNNs typically involves pruning entire convolutional filters.

Unstructured Pruning

Structured Pruning

Figure 2.3: Unstructured and structured pruning of a simple CNN. Entire convolutional
filters are pruned in the structured example. This leads to easily realizable computational
gains as entire output channels no longer need to be computed.

Many pruning approaches have been proposed, each with a unique method of selecting
parameters to pruned. While simple approaches may only consider the parameter values,
other approaches use data to identify the least influential parameters. These approaches
often use gradient information or score each parameter through an optimization process.

Molchanov et al. [33] propose the use of a scoring metric based on a Taylor expansion
that uses gradient information to identify filters to prune. Discrimination-aware channel
pruning [51] uses gradient information from a loss function that contains a cross-entropy
term and a reconstruction error term. Ding et al. [7] propose ResRep, a method that in-
volves re-parameterizing the network into ‘remembering’ and ‘forgetting’ parts and training
each part using stochastic gradient descent with appropriate criteria. Castells and Yeom
[4] propose AutoBot, a method that inserts trainable bottlenecks into the network to se-
lectively restrict the flow of information to the parameters.
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As pruning can significantly alter a network, most pruning approaches retrain the net-
work after pruning. Some approaches repeatedly alternate pruning with retraining while
others use a single pruning step followed by a single retraining step.

2.4 Fair CNN Compression

While there is significant research in the fields of fair ML and CNN compression, existing
research into fair CNN compression is limited. Nevertheless, there is some existing research
into the relationship between compression and fairness in neural networks.

Researchers have established that compression can impact fairness and identified some
approaches to managing the fair compression problem. Hooker et al. [16] propose auditing
samples affected by model compression, called Compression Identified Exemplars, as an
approach for identifying and managing the negative effects of model compression. Paganini
[36] demonstrates how class imbalances and differences in class complexity can cause prun-
ing approaches that only consider overall accuracy to reduce class fairness. Joseph et al.
[21] propose a multi-part loss function intended to improve the alignment between predic-
tions between the original and pruned model. They demonstrate that their method can
have beneficial effects with respect to class-wise fairness.

Additionally, other papers have examined how compression methods can be used to
improve model fairness. While these papers are not addressing the problem of fair CNN
compression as defined in this work, they demonstrate the relationship between compres-
sion and fairness. Wu et al. [46] propose Fairprune, a method for improving model bias
using pruning. Fairprune prunes parameters using a saliency metric to increase model
fairness. Xu and Hu [47] propose the use of knowledge distillation and pruning to reduce
bias in natural language models. Marcinkevičs, Ozkan, and Vogt [30] propose a debiasing
procedure that involves pruning parameters using a gradient based influence measure.

All of these findings firmly establish that compression and fairness are related. However,
the nature of this relationship is still largely unknown due to the sparsity of available
research. It is not known how the problem could manifest in various environments and
very few approaches for managing the fairness impact of compression have been explored.
More research is needed to equip practitioners with the tools they need to consistently
compress CNNs in a fair manner.
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Chapter 3

An Empirical Analysis of Fair
Pruning

Only a small number of papers have examined the effect of pruning on fairness. Pa-
ganini [36] performed a series of experiments that demonstrated that pruning could have
a detrimental effect on subgroups that are complex or underrepresented in training data.
However, their analysis focused solely on class-wise fairness in datasets without known fair-
ness issues. Hooker et al. [16] demonstrated that pruning exacerbated biases for a model
trained with the CelebA dataset. However, their analysis was limited to a single model
trained on a single dataset and pruned with a single pruning method.

In this chapter, we examine the effect of filter pruning on a variety of convolutional
neural networks trained using a variety of datasets. We examine the effect of pruning
on networks with known biases using three different pruning protocols. We then extend
this analysis by manipulating the training data to eliminate possible sources of bias and
introduce potential sources of bias into a dataset without known biases.

3.1 Analysis Protocol

We evaluated three different filter pruning methods. The first method is AutoBot [4], an
accuracy preserving pruning method that uses trainable bottleneck parameters that limits
the flow of information through the model. The second method uses an importance metric
derived from the Taylor expansion of the loss function [33]. The third method is a simple
random pruning protocol that randomly selects filters to prune.
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As it is simply infeasible to evaluate all of the numerous pruning approaches that have
been proposed in literature, we selected three different pruning methods that represent the
pruning landscape. AutoBot is a novel pruning method that uses an optimization process
to identify the parameters to prune. It makes few assumptions about the structure of
the pruning network or the properties of parameters that should be pruned. The Taylor
method of Molchanov et al. [33] is an widely cited pruning method that iteratively prunes
filters using a derived metric that incorporates gradient information. This is an approach
that many new methods have extended. The random pruning method is not an approach
that we would expect to be used in real-world situations. However, it is useful as a baseline
against which the other methods can be compared.

We implemented the methods using the PyTorch library [37]. The methods were im-
plemented as three step pipelines in which the model is first pseudo-pruned by setting pa-
rameters to zero, fully pruned using the Torch-Pruning library [9] and retrained. Pseudo-
pruning allows for fast pruning during the pruning process while the full pruning step
removes the unused parameters, reducing the number of operations required for predic-
tion. Due to dependencies between parameters introduced by structures such as residual
layers, the achieved theoretical speedup can differ from the target theoretical speedup. All
hyperparameters for the pruning methods were selected using a hold-out validation set.
We repeated each experiment three times. All figures displaying model performance after
pruning are displaying the average of all trials.

3.1.1 Metrics

The methods were evaluated by pruning models with various target theoretical speedups,
defined as the number of floating point operations (FLOPS) of the original model divided
by the FLOPS of the pruned model. As our primary concern is the degradation of a model’s
overall behaviour towards different subgroups due to pruning, we compared the change in
the areas under the receiver operator curves (ROC-AUC) for relevant subgroups.

The ROC-AUC is a threshold agnostic metric that is calculated by measuring the
true positive and false positive rates of the model at various classification thresholds and
measuring the area under the resultant curve. A perfect classifier would have an ROC-
AUC of 1, while a random classifier would have a ROC-AUC of 0.5. By measuring the
ROC-AUC for each subgroup we can measure the model’s understanding of each subgroup
[2]. We calculate the change in subgroup ROC-AUC by measuring the ROC-AUC of the
model before and after pruning for a subgroup and subtracting the unpruned ROC-AUC
from the pruned ROC-AUC. For non-binary classification we used the average one-vs-rest
ROC-AUC.
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3.2 Pruning Biased CNNs

We tested all of our selected pruning methods using two different classification tasks in-
volving datasets with known biases.

Our first task was the celebrity face classification task using the CelebA dataset [27] as
outlined by Hooker et al. [16], in which a model is trained to identify faces as blonde or non-
blonde. The CelebA dataset contains over 200 000 images of celebrity faces with various
annotations. Sample CelebA images can be found in Figure 3.1 and the composition of the
CelebA training data is described in Table 3.1. While blonde non-male samples make up
14.05% of the training data, blond male samples make up only 0.85% of the training data.
We used the provided data splits with 80% of the available data being used for training
with the remaining data split evenly for validation and testing.

Our second task was the skin lesion classification task using the Fitzpatrick17k dataset
[10]. The Fitzpatrick17k dataset consists of 16 577 images of skin conditions. Sample
Fitzpatrick17k images can be found in Figure 3.2. We trained our models to classify the
samples as non-neoplastic, benign or malignant. Due to missing and invalid images we
were only able to use 16 526 images. Each sample in the dataset is assigned a Fitzpatrick
score that categorizes the skin tone of the sample. We trained our models on only samples
with light skin tone scores of 1 or 2, and evaluated the model on medium skin tone scores
of 3 or 4 as well as dark skin tone scores of 5 or 6. We used a random 25% of the medium
and dark skin tones as a validation set with the remainder used as a test set. As the skin
tones the model is trained on and evaluated on differ, this is an out-of-distribution task.

Table 3.1: CelebA Training Data Composition

Male Non-Male
Blonde 1387 22880

Non-Blonde 66874 71629

3.2.1 CelebA

We trained a ResNet-18 [14] model and a VGG-16 [42] model for the CelebA task. The
ROC-AUCs for the male and non-male subgroups of the ResNet-18 model were 0.9639 and
0.9794 respectively. The ROC-AUCs for the male and non-male subgroups of the VGG-
16 model were 0.9679 and 0.9825 respectively. Both models were pruned using target
theoretical speedups of 16, 32, 64, 128 and 256.
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Figure 3.1: Sample CelebA images

Figure 3.2: Sample Fitzpatrick17k images

The change in ROC-AUC for the pruning methods for the ResNet-18 and VGG-16
models can be found in Figure 3.3. Some of the VGG-16 models pruned using the Auto-
Bot random methods always predicted a single class. These degenerate models were not
included in the mean values plotted in the graph.

All methods, including the random method, were able to significantly reduce the size of
both models. However, they also caused divergent performance between the male and non-
male subgroups. For all tested methods, male samples experienced a larger degradation
in performance than non-male samples. This difference was significantly larger for the
ResNet-18 model than the VGG-16 model. The difference appears similar for all methods
with the ResNet-18 model but the Taylor method appears to be more fair and higher
performing with the VGG-16 model. Furthermore, for all methods, the difference is larger
at higher theoretical speedups.

These results indicate that pruning did exacerbate fairness issues. The magnitude of
the issue appears to be dependent on both the model and the pruning method used. Nev-
ertheless, we observed this phenomenon with all pruning methods, even random pruning.
As the random pruning method was affected, the process of selecting the parameters to
prune can not be the sole source of unfairness in the pruning process.

3.2.2 Fitzpatrick17k

We trained a ResNet-34 [14] model and a EfficientNet-V2 Medium [44] model for the
Fitzpatrick17k task. The ROC-AUCs for the medium and dark subgroups of the ResNet-
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Figure 3.3: Mean pruning performance of the ResNet-18 and VGG-16 models with the
CelebA dataset. A red star next to a data point indicates that a degenerate model was
excluded from that data point.

34 model were 0.8190 and 0.7329 respectively. The ROC-AUCs for the medium and dark
subgroups of the EfficientNet model were 0.8516 and 0.7524 respectively. Both models
were pruned using target theoretical speedups of 2, 4, 8, 16 and 32.

The change in ROC-AUC for all tested pruning methods for the Fitzpatrick17k models
can be found in Figure 4.3. Despite a bias against dark skin tones existing in the original
models, we do not see divergent AUC-ROC scores as the theoretical speedup increases. The
medium skin tone subgroup actually saw greater changes in AUC-ROC due to pruning.

Pruning does not appear to be guaranteed to exacerbate existing fairness issues. While
the unpruned models were biased against dark skin tones, pruning decreased performance
of the medium skin tone subgroup more than the dark skin tone subgroup. Therefore, in
certain situations pruning may actually improve fairness.

The difference between these results and the pruning results of CelebA task may be due
to the difference in bias between the two datasets. The CelebA models performed poorly
with the male subgroup as the label distribution of the male subgroup was highly skewed
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in the training data. In contrast, neither medium nor dark skin tones were included in
the training data for the Fitzpatrick17k models. Instead, the bias against dark skin tones
is likely due to the medium skin tones resembling more closely resembling the light skin
tones used for training. It is possible that performance penalties arising from a difference
in training and testing sample distributions may not be aggravated by pruning.
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Figure 3.4: Mean pruning performance with ResNet-34 and EfficientNet V2 Med. models
with the Fitzpatrick17k dataset.

3.3 Adjusting the Attribute and Class Balance

Our CelebA results demonstrated that pruning can exacerbate existing biases. However,
it is not clear which properties of the dataset cause this phenomenon. One simple pos-
sible cause is the underrepresentation of blond male samples in the dataset. To test this
hypothesis, we trained models using balanced subsets of the dataset.

We created three artificial datasets from the CelebA dataset by selected subsets of the
training data. The first subset was formed using 3.41% of the available training data such
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Figure 3.5: Mean pruning performance of the ResNet-18 model with the CelebA dataset
with alternative attribute and class balances.

that it was fully balanced, containing an equal number of male and non-male samples as
well as an equal number of blonde and non-blonde samples. The second and third subsets
were formed by adding additional samples to the first subset, altering the attribute or
class balance. The second subset contained an equal number of blonde and non-blonde
samples, but five times as many non-male samples as there were male samples. The third
subset contained an equal number of male and non-male samples, but five times as many
non-blonde samples as there were blonde samples. The full unmodified test set was used
for all subsets.

A ResNet-18 model was trained using each subset. Compared to the original model,
these new models had moderately lower performance for both the male and non-male
subgroups. The AUC-ROCs for the male subgroup are 0.9562, 0.9479 and 0.9183 for the
first, second and third subsets respectively. The AUC-ROCs for the non-male subgroup are
0.9713, 0.9732 and 0.9580 for the first second and third subsets respectively. The models
were pruned using the AutoBot and Taylor methods using target theoretical speedups of
16, 32, 64, 128 and 256. The performance after pruning for these models can be found in
Figure 3.5.
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The difference in performance after pruning between subgroups is smaller for all three
balanced datasets than it is for the original dataset. The Taylor pruning method saw the
greatest improvement in fairness due to improving class balance, but all pruning methods
did see benefits. For the AutoBot method, the results were similar across all three balanced
datasets. By a small margin, the model trained with dataset with an unequal class balance
but an equal attribute balance appears to have the fairest pruning results.

All three methods of balancing the data appeared to have a similar impact on fairness.
The unequal attribute balance of the second artificial dataset and the unequal class balance
of the third artificial dataset did not appear to have a significant impact on fairness.
The fairness issue observed when pruning the model trained the full CelebA dataset is
likely caused by the interplay of an unequal attribute distribution and an unequal class
distribution.

Improving the attribute and class balance did appear to improve fairness after pruning.
However, male samples still experienced a greater decrease in AUC-ROC due to pruning
than non-male samples. These results indicate that the dataset composition does influence,
but not fully explain, the fairness impact of model pruning.

3.4 Inducing Bias in an Unbiased Dataset

To further identify the causes of the fairness impact of pruning, we attempted to induce
the effect in a dataset with no known biases. We utilized the CIFAR-10 classification task
[24] for this purpose. The CIFAR-10 dataset consists of 50 000 training images and 10 000
testing images evenly distributed between 10 classes. We trained a ResNet-56 [14] model
to classify each testing images into the appropriate class. The ROC-AUC of the model is
0.9957.

We first pruned the model using our three pruning methods. These results can be found
in Figure 3.7. All three pruning methods were able to prune the model effectively. We then
retrained and repruned the model using two different manipulated CIFAR-10 datasets with
potential sources of bias. Our first source of bias was a class underrepresentation while our
second source of bias was a visual artifact that correlated with the image class. Sample
images with and without the artifact can be found in Figure 3.6.
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Figure 3.7: Mean pruning performance of the ResNet-56 model with the CIFAR-10 dataset.

CIFAR-10 Images Without Visual Artifact

CIFAR-10 Images With Visual Artifact

Figure 3.6: Sample CIFAR-10 images with and without the visual artifact

3.4.1 Bias source: Underrepresentation

To test if underrepresentation affects fairness during pruning we removed 80% of the sam-
ples associated with the cat and dog classes from the training set. We then trained a
new ResNet-56 model. This model had a ROC-AUC of 0.9948. The average one-vs-rest
ROC-AUC of the affected classes was 0.9880. The average one-vs-rest ROC-AUC of the
affected classes for the original ResNet-56 model was 0.9902.

We then pruned the new model using all three pruning methods and measured both
the overall ROC-AUC and the ROC-AUC of the affected classes. The results from these
experiments can be found in Figure 3.8.

At lower theoretical speedups the difference between the ROC-AUC of the affected
classes and the overall ROC-AUC is small for both the original model and the model trained
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on the data with underrepresentation. However, as the theoretical speedup increases, the
difference grows. This effect can be seen in the results for both of the models.

For the Taylor and random methods this divergence is slightly smaller for the model
trained on the data with underrepresentation than it is for the original model. For the
AutoBot method at larger theoretical speedups, this divergence is larger for the model
trained on the data with underrepresentation. It is difficult to identify precisely why the
AutoBot method was negatively affected by the underrepresentation, however we hypoth-
esize that the AutoBot approach is more sensitive to dataset composition as it imposes
very few inductive biases and prunes convolutional filters in a one-shot manner.

These results indicate that underrepresentation can worsen fairness issues during prun-
ing, but it is not guaranteed to do so. Introducing underrepresentation into the dataset
had a different effect for different pruning methods. The pruning method selected appears
to affect the impact of underrepresentation on fairness during pruning.
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Figure 3.8: Mean pruning performance of the ResNet-56 model with the CIFAR-10 dataset
with underrepresentation.

3.4.2 Bias source: Visual artifact

To test how the content of the image can affect fairness during pruning we introduced a
visual artifact into some of the training images. Images in the dog class had a 98% chance
of having a yellow square placed in the image at a random position. Images in other classes
had a 2% chance of containing the yellow square. If a yellow square is found in an image,
the image has a 84.5% chance of being associated with the dog class. This value can be
calculated using Bayes’ Theorum, as shown in equation 3.1 in which S denotes containing
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a square and D denotes being part of the dog class. While the square may be a simple
feature for a classifier to detect, high performing classifiers should not depend on it.

P (D|S) = P (S|D)P (D)

P (S|D)P (D) + P (S|D∁)P (D∁)
=

0.98× 0.1

0.98× 0.1 + 0.02× 0.9
= 0.845 (3.1)

We trained a new ResNet-56 model on the CIFAR-10 dataset with the visual artifact.
This model had a ROC-AUC of 0.9957. The one-vs-rest ROC-AUC of the dog class was
0.9914. We then pruned the new model using all three pruning methods and measured
both the overall ROC-AUC and the ROC-AUC of the dog class with and without the visual
artifact. The results from these experiments can be found in Figure 3.9.

For all pruning methods, the difference between the overall AUC-ROC and the AUC-
ROC of the dog class was small at all tested theoretical speedups when the original model
was pruned. In contrast, for all pruning methods with the model trained with the visual
artifact, the difference between the overall AUC-ROC and the AUC-ROC of the dog class
increased as the theoretical speedup increased. Introducing the visual artifact affected each
pruning methods ability to maintain the performance of the dog class. Furthermore, while
all pruning methods experienced this effect, they did not experience it equally. The Taylor
method was more affected than the AutoBot method.

Interestingly, the AUC-ROC of the dog class with the visual artifact was affected by
pruning in a similar manner as the AUC-ROC of the dog class without the visual artifact.
This indicates that the pruned models were not simply using the visual artifact as a shortcut
to bypass the need to maintain knowledge of more complex features. If this were the
case, we would expect performance to not deteriorate as significantly when the artifact is
included.

In natural images, the presence of an easy to detect feature that correlated with the
classification target could have the same effect as the yellow square. This may explain the
fairness issue observed with the CelebA dataset. The male property strongly correlates
with the classification target of blonde hair. This correlation could have a similar effect as
the correlation of the visual artifact. The pruning results of the CIFAR-10 model trained
with the visual artifact does appear similar to the pruning results of the CelebA models as
all pruning methods were affected.
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Figure 3.9: Mean pruning performance of the ResNet-18 and VGG-16 models with the
CIFAR-10 dataset with visual artifact.

3.5 Summary

In this chapter, the effects of pruning on fairness was examined. Convolutional neural
networks that were trained using the CelebA, Fitzpatrick17k and CIFAR-10 datasets were
pruned using three structured pruning methods.

When networks trained to classify images from the CelebA dataset as blonde or non-
blonde were pruned, the male subgroup saw a larger drop in ROC-AUC than the non-male
subgroup. Adjusting the dataset to rectify disparities in label balance and/or gender bal-
ance reduced this difference. When networks trained to classify skin lesions using the
Fitzpatrick17k dataset were pruned, existing biases were not aggravated. While the un-
pruned models were biased in favour of samples with a medium skin tone, the medium skin
tone subgroup saw a greater decrease in ROC-AUC than the dark skin tone subgroup. Fair-
ness issues during pruning were induced in CIFAR-10 models by manipulating the training
data. Reducing the representation of two classes in the training data induced a bias against
those classes during pruning for all pruning methods. Introducing a visual artifact that
strongly correlated with the image labels induced a bias during pruning. However, the size
of this effect varied across evaluated pruning methods.

These experiments demonstrate that pruning convolutional neural networks can, but
not necessarily will, exacerbate fairness issues. Training set composition and image features
that correlate with classification targets are two possible causes of this issue. The issue does
not appear to be isolated to a particular pruning method. However, the effects experienced
by each pruning method can vary in intensity. In the next chapter, a simple approach for
improving the fairness of convolutional neural network pruning is explored.
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Chapter 4

The Performance Weighted Loss
Function

Training Data Unpruned Model Unpruned Model
Output

Pruning Process

PW Loss

Pruned Model

Figure 4.1: Overview of the performance weighted loss (PW Loss). The PW loss modifies
the cross entropy loss of existing pruning methods to improve fairness through the use of
the unpruned model output.

In Chapter 3 the fair pruning problem was analyzed. This analysis revealed that pruning
can exacerbate existing model biases for some models. In this chapter we propose a simple
method to improve the fairness of existing pruning methods. We call our method the
performance weighted loss function.

We propose the performance weighted loss function as a simple method for boosting
the fairness of data-driven methods for pruning convolutional filters in convolutional neural
network image classifiers. As depicted in Figure 4.1, the performance weighted loss uses
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the output of the unpruned model to improve fairness during the pruning process. The
loss function consists of two small tweaks to the standard cross-entropy loss function to
prioritize the model’s performance for poorly-classified samples over well-classified samples.
These tweaks can be used to extend existing data-driven pruning methods without requiring
explicit attribute information.

We demonstrate the effectiveness of our approach by pruning classifiers using two dif-
ferent pruning approaches for the CelebA [27], Fitzpatrick17k [10] and CIFAR-10 [24]
datasets. Our results show that the performance weighted loss function can enable ex-
isting pruning methods to prune neural networks without significantly increasing model
bias.

4.1 Motivation

In the fair pruning problem, model performance can be significantly impacted for certain
sample subgroups. The highly impacted subgroups were characterized by poor represen-
tation in the training data or worse subgroup performance by the original model when
compared to unimpacted groups. The performance decrement induced by the pruning
process disproportionately impacts subgroups which are underrepresented and poorly clas-
sified.

To rectify this inequality, we can design a pruning process that prioritizes maintaining
the performance of samples from potentially impacted subgroups. However, we do not
need to develop a new pruning method from scratch to achieve this objective. Many
existing pruning methods use data to identify which model parameters should be removed.
Some methods use parameters learned via a loss minimization process whereas others
values derived from gradients calculated with respect to a loss function. By modifying the
loss function to prioritize samples from impacted subgroups, we can boost the fairness of
existing pruning methods.

4.2 Method

We make two different modifications to the standard cross-entropy loss function to trans-
form it into the performance weighted loss function (PW loss). We first apply sample
weighting to ensure that samples from impacted groups have a larger contribution to the
loss function. We then transform the sample labels to ensure that we are not reinforcing
undesirable model behaviours.
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As the attribute information required to identify impacted subgroups is not always
readily accessible, our weighting scheme does not depend on any external information. We
instead use the output of the original model to determine each sample weight. We assign
larger weights to samples for which the original model was not able to confidently classify.
The form of the scheme resembles the focal loss [26]. However, as the samples are weighted
using the outputs of the original model the weights do not depend on the current output
of the model and will not change during training. The weight assigned to the ith data
sample, wi, is given by the following equation:

wi = θ + (1− ŷi)
γ (4.1)

where ŷi is the predicted probability given by the original model for the sample’s true class,
θ ∈ [0, 1] is the minimum weight value and γ ≥ 0 controls the shape of the relation between
ŷi and wi.

We also emphasize the model performance through the use of corrected soft-labels in
the cross-entropy function. Rather than using the true labels of each sample, we use the
output of the original model for the loss function in the pruning process. Without this
change, the preservation of an originally poorly classified sample’s prediction probability
would result in a greater loss value than the preservation of an originally well classified
sample’s prediction probability. The use of true labels implicitly prioritizes the preservation
of model performance for samples that have predictions closer to their true labels. Using
the model output as soft-labels alleviates this implicit prioritization.

However, as we are assigning higher weights to samples that are originally classified by
the original model while also using the original model’s output as our labels, we are conse-
quently assigning the highest weights to incorrect labels. To avoid emphasizing incorrect
behaviours we correct the soft-labels. The corrected soft-label, ŷ∗

i is defined as:

ŷ∗
i =

{
ŷi if Ĉi = Ci

yi otherwise
(4.2)

where ŷi contains the prediction probabilities derived from the model output for the ith
sample, yi is the true label vector of the ith sample, Ĉi is predicted class of the ith sample
and Ci is the true class of the ith sample. The corrected soft-label takes on the value of
the model’s prediction probabilities when the prediction is correct and the true label when
the prediction is incorrect.

By the application of the performance weighted scheme and corrected soft-labels onto
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the standard cross-entropy function, the PW loss function, LPW , is defined by:

LPW =
N∑
i=1

wilCE(ŷ
∗
i , ŷ

′
i) (4.3)

where ŷ′
i contains the prediction probabilities derived from the model output for the ith

sample after pruning, lCE(ŷ
∗
i , ŷ

′
i) is the cross-entropy between the corrected soft-label and

the prediction probabilities of the pruned model for the ith sample, and N is the batch
size.

By using this loss function with existing data-driven pruning methods, we can reduce
the bias exaggerating effect of pruning by emphasizing samples that are more likely to be
negatively affected by pruning.

4.3 Experiments

4.3.1 Experimental Set-up

We applied the PW loss to the same pruning methods used in Chapter 3: the ‘AutoBot’
method of Castells and Yeom [4] and the ‘Taylor’ method of Molchanov et al. [33]. For
both methods, we pruned whole convolutional filters rather than individual neurons.

In the AutoBot method, the bottlenecks are optimized by minimizing a loss function
that includes the cross-entropy between the original and pruned model outputs, as well
as terms that encourage the bottlenecks to limit information moving through the model,
achieving a target number of FLOPS [4]. We applied the performance weighted loss func-
tion to the method by replacing the cross-entropy term in the loss function with the
performance weighted loss function. Additionally, we also used the performance weighted
loss function when retraining the model after pruning.

The importance metric of the Taylor expansion method is formed using the gradient of
the loss function with respect to each feature map and the value of each feature map [33].
This method alternates between training the network and pruning a filter. In our imple-
mentation, a filter is pruned every five iterations. We applied the performance weighted loss
function by replacing the loss functions used in the gradient calculation and model training
with the performance weighted loss function. Once again, we also used the performance
weighted loss function when retraining the model after pruning.
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For all methods we used the same hyperparameters that were used in Chapter 3. This
means that hyperparameters for the pruning methods were selected without the PW loss
applied and were used for both unmodified and PW loss method variants. We repeated
each experiment three times. All figures displaying model performance after pruning are
displaying the average of all trials. The figures also include the pruning results of the
unmodified methods from Chapter 3.

As in Chapter 3, we compared the change in the areas under the receiver operator
curves (ROC-AUC) for various subgroups for five different degrees of pruning. For non-
binary classification we used the average one-vs-rest ROC-AUC. We once again measured
the degree to which a model is pruned using the theoretical speedup.

4.3.2 Evaluating Fairness and Performance

After incorporating the PW loss into the AutoBot and Taylor pruning methods, we re-
peated some of our experiments from Chapter 3 to measure the impact of the PW loss on
fairness during pruning. The CelebA face classification task, the Fitzpatrick17k skin lesion
classification task, the CIFAR-10 classification task, the CIFAR-10 with underrepresenta-
tion task and the CIFAR-10 with visual artifact classification task were used. The models
that were trained for 3 were once again pruned for these new experiments. Additionally,
an EfficientNet-V2 Small [44] model was trained as a second CIFAR-10 model.

Pruning the CelebA Models

The ResNet-18 [14] model and VGG-16 [42] model trained for the CelebA task were pruned
using target theoretical speedups of 16, 32, 64, 128 and 256.

The change in ROC-AUC for all tested pruning methods with and without the PW
loss for the ResNet-18 and VGG-16 models can be found in Figure 4.2. Some of the VGG-
16 models pruned using the AutoBot and AutoBot with performance weighting methods
always predicted a single class. These degenerate models were not included in the mean
values plotted in the graph.

Performance weighting improved the fairness of pruning the ResNet-18 model with the
AutoBot and Taylor pruning methods, and the VGG-16 model with the Taylor pruning
method. The introduction of performance weighting improved the post-pruning male ROC-
AUCs for these methods. For all models and pruning methods, the PW loss appears to be
more impactful for male samples than non-male samples. At low theoretical speedups, the
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pruning methods with performance weighting were able to compress the model with only
small changes in fairness.

There were some situations in which performance weighting was not beneficial. At
higher theoretical speedups with the VGG-16 model, the PW loss was not significantly
beneficial. Additionally, applying performance weighting to the AutoBot method with the
ResNet-18 model appeared to prevent the method from achieving higher target theoretical
speedups.
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Figure 4.2: Mean pruning performance of the ResNet-18 and VGG-16 models with and
without the performance weighted loss function on the CelebA task.

Pruning the Fitzpatrick17k Models

The ResNet-34 [14] model and a EfficientNet-V2 Medium [44] model for the Fitzpatrick17k
task were pruned using target theoretical speedups of 2, 4, 8, 16 and 32.

While the unpruned models exhibited a moderate bias against darker skin tones, prun-
ing methods with and without the PW loss did not exacerbate this bias. This can be seen in
Figure 4.3. For all models, the performance weighted loss only had a small positive impact
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on performance at the lowest tested theoretical speedup. At other theoretical speedups it
had a negative or neglible impact on performance for both medium and dark subgroups.

These results indicate that performance weighting is not an appropriate solution for
all datasets and models that exhibit bias. Performance weighting is not a method for
debiasing a model. It is intended to limit the fairness impact of pruning. It may not be
beneficial in situations in which the impact of pruning does not exacerbate the exisitng
biases of the model.
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Figure 4.3: Mean pruning performance of the ResNet-34 and EfficientNet-V2 Med. models
with and without the performance weighted loss function on the Fitzpatrick17k task.

Pruning the CIFAR-10 Models

The ResNet-56 [14] model and EfficientNet-V2 Small [44] models for the CIFAR-10 task
were pruned using target theoretical speedups of 1.33, 2, 4, 8 and 16.

The ROC-AUCs of the ResNet and EfficientNet models were 0.9957 and 0.9995 respec-
tively. These models have no known fairness issues. However, we still applied the PW
loss to the pruning methods used with these models to understand its effect on the overall
performance of models without known biases.

As shown in Figure 4.4, the PW loss had very different impact on the pruning processes
for both models. For the ResNet-56 model, it improved performance for both tested pruning
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methods at all theoretical speedups. In contrast, with the EfficientNet-V2 Small model, it
had a negligible impact for AutoBot pruning and a detrimental impact for Taylor pruning.

A pruning approach that prioritizes the performance of poorly classified samples can
help improve the performance of models that do not have known fairness concerns. These
models may benefit from the PW loss due to hidden biases that are aggravated by pruning.
However, such an approach is not beneficial for all models. The PW loss should not be
applied indiscriminately.
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Figure 4.4: Mean pruning performance of the ResNet-56 and EfficientNet-V2 Small models
with and without the performance weighted loss function on the CIFAR-10 task.

Pruning the CIFAR-10 Models With Underrepresentation and Visual Artifact

The ResNet-56 [14] model for the CIFAR-10 with underrepresentation task and the ResNet-
56 [14] model for the CIFAR-10 with visual artifact task described in 3 were pruned using
target theoretical speedups of 1.33, 2, 4, 8 and 16.

As depicted in Figure 4.5, all model-method combinations saw moderate improvements
in fairness due to the introduction of performance weighting. Performance weighting in-
creased the ROC-AUC of the affected classes more than the overall ROC-AUC. This im-
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provement was smaller at higher theoretical speedups for the Taylor method while the
impact was more consistent at all theoretical speedups for the AutoBot method.

Performance weighting was able to improve the fairness of pruning when the source of
the fairness concern was underrepresentation and when the source of the fairness concern
was a visual artifact that correlates with the class label. Performance weighting appears
to be beneficial for models trained with a variety of bias sources.
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Figure 4.5: Mean pruning performance of the ResNet-56 model with and without the
performance weighted loss function on the CIFAR-10 with underrepresentation and CIFAR-
10 with visual artifact tasks.

4.3.3 Loss Analysis

To understand the impact the PW loss has during training, we analyzed the loss values of
each batch during pruning. Figure 4.6 depicts the change in loss values for each attribute
and class value for the first 200 batches of pruning the ResNet-18 CelebA model using the
AutoBot and Taylor methods after the PW loss was applied. The models were pruned using
a target theoretical speedup of 16 and the same random seed was used for batch selection for
all depicted experiments. While the precise number of samples in each subgroup randomly
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Figure 4.6: Change in the proportion of the batch loss due to the use of the PW loss,
segmented by class and attribute.

vary between batches, the number of samples in each subgroup for the entire training set
can be found in Table 3.1.

The introduction of the PW loss to the AutoBot pruning procedure causes a clear
increase in loss contribution of the blond male samples. Blond male samples are poorly
represented and poorly classified by the original model. An increase in the loss contribution
demonstrates that the PW loss is causing the model pruning process to place more emphasis
on the performance for this group to improve fairness. In contrast, the introduction of the
PW loss to the Taylor pruning procedure instead increases loss contribution of the non-
blond male samples and decreases the loss contribution of the blond male samples.

Despite the difference in loss contributions, in the results depicted in Figure 4.2, we did
see improved fairness between male and non-male samples for both pruning methods at the
utilized theoretical speedup with the use of the PW loss. This may be explained by the both
methods seeing an increased loss contribution from male samples after the introduction of
the PW loss, even if the specific samples which see an increase differ between pruning
methods. While the PW loss did not appear to have the same effect on the two pruning
methods, it was able to consistently increase the loss contribution of poorly represented
samples without explicit attribute information.

4.3.4 Ablation

To measure the effects of the components of the PW loss independently, we pruned our
ResNet-18 CelebA model using the AutoBot method with only the corrected soft-labels and
with only the weighting scheme described in equation 4.1. We applied the modifications to
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the only the pruning process, to only the retraining process and to both the pruning and
retraining processes.

The ablation results can be found in Figure 4.7. Both the modifications were only
effective when the retraining process was modified, indicating that simply modifying the
process by which parameters are selected to be pruning is insufficient to mitigate the
effects of bias. The corrected soft labels were similarly beneficial when they were applied
to pruning and retraining as they were when applied to just retraining. The weighting
scheme was most beneficial when applied only to the retraining process. Different parts of
the performance weighted loss appear to be more impactful for different parts of the pruning
process. In some situations is may be beneficial to solely apply the components of the
performance weighted loss. In particular, the use of corrected soft-labels does not require
the selection of any parameters, allowing it to be used in situations in which parameter
selection is not feasible.

We can also see that each test either has a similar effect as the full method or little effect
at all. It is possible that there is a tipping point at which any applied fairness boosting
methods cause the pruning process to converge to a fair solution instead of the original
unbiased solution. If the process is already converging to the fair solution, any additional
fairness boosting methods would have a small effect. If the fairness boosting methods are
insufficient to encourage convergence to a fair solution, the effect of the methods would be
minimal.
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Figure 4.7: Pruning performance of the ResNet-18 models with the CelebA dataset when
elements of PW loss are applied independently to the pruning process (left), and to the
pruning process as well as the post-prune retraining process (right).
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4.3.5 Summary

In this chapter, we presented the performance weighted loss function as a novel method
for mitigating the impact of convolutional neural network pruning on fairness. The perfor-
mance weighted loss function is a simple modification that can be applied to any pruning
method that uses the cross-entropy loss. Our experimental results indicate that the per-
formance weighted loss function can help prevent model biases from becoming exacerbated
in many, but not all, pruning processes. The performance weighted loss function is a use-
ful tool for practitioners who seek to compress existing models without introducing new
fairness concerns.
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Chapter 5

Conclusion

In this chapter, we summarize our key contributions detailed in Chapters 3 and 4, make
recommendations, identify the limitations of our work, outline potential future work and
discuss the implications of this thesis.

5.1 Summary of Contributions

In this thesis, the problem of fair pruning of convolutional neural networks was exam-
ined. In this problem, existing model biases are exacerbated by pruning for compression.
Consequently, models that are pruned to be able to be utilized in resource constrained
environments may be ill-suited for fairness sensitive environments. Previous work had
identified this problem and established a relationship between fairness and model compres-
sion, but the problem was not well explored. To explore this problem, we analyzed the
fairness effects of pruning in a variety of situations in Chapter 3 and proposed a simple
modification to the loss function to promote fairness during pruning in Chapter 4.

In Chapter 3, the effects of pruning on fairness was examined in a variety of situations.
Experiments were conducted using three different structured pruning methods and three
different datasets. These experiments revealed that pruning can have negative effects on
fairness. This effect does not appear to be guaranteed but it also does not appear to
be limited to particular pruning methods. The effect was influenced by manipulating the
datasets, identifying dataset composition and the presence of a visual feature that correlates
with the classification target as potential causes for this effect.
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In Chapter 4, the performance weighted loss function was proposed as a simple method
for improving the fairness of existing data-driven pruning methods. The loss function is
formed through two simple tweaks to the standard cross-entropy loss function that en-
courage the pruning process to prioritize maintaining the performance of poorly classified
samples. By using sample weighting and corrected soft-labels, the performance weighted
loss was able to improve the fairness of many of the tested classification tasks. While the
loss function is not universally beneficial, it is a useful tool for machine learning practi-
tioners seeking to prune networks in fairness sensitive environments.

5.2 Recommendations

The findings of this thesis lead us to make two recommendations: Machine learning prac-
titioners should consider fairness when pruning networks and machine learning researchers
should consider more than model performance when proposing new pruning methods.

Our experimental results demonstrate that pruning can negatively affect fairness and
that simple changes to the pruning process, such as the use of the performance weighted
loss, can mitigate this effect. Consequently, we believe it is important that practitioners
applying model pruning to real-world systems consider the fairness impact of their actions.
Practitioners should consider the social context of their system, identify the fairness issues
that could arise from pruning, test the fairness of the system and explore modifications to
the pruning process that could improve fairness. Practitioners should proceed thoughtfully
rather than simply assuming that pruning will have a neutral effect on fairness.

Machine learning researchers developing new pruning methods can aid practitioners in
the design of fair machine learning systems by describing the total impact of their pruning
method instead of solely focusing on overall performance. Most pruning methods aim
to preserve model performance. However, as we have demonstrated in this thesis, some
subgroups may experience greater than average changes in performance due to pruning.
Additional experiments to identify the properties of samples that are most negatively
affected by a pruning method could help practitioners understand which subgroups will be
most affected by the application of the pruning method.

5.3 Limitations

While we were able to demonstrate the fairness effects of pruning and the impact of the
performance weighted loss in a variety of situations, we were only able to evaluate pruning
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with a small number of models and a small number of pruning methods. More experimenta-
tion would be needed to identify the the conditions of environments in which practitioners
should be concerned about fairness during pruning. Similarly, evaluating the fairness im-
pacts of additional pruning methods would provide a more complete understanding into
how each pruning design decision affects fairnes. More work is required to understand how
pruning affects fairness in specific situations and how to best address the fairness concerns
of pruning for each situation.

5.4 Future Work

The fair pruning problem is neither solved nor fully understood. Additional work is required
to enable practitioners to easily, reliably and confidently utilize model pruning without
introducing any potential fairness concerns. Three key areas that could be addressed by
future work are identifying the properties of pruning methods that affect fairness, exploring
more sophisticated methods for improving model fairness and developing a fair pruning
benchmark.

5.4.1 Identifying the Properties of Pruning Methods That Affect
Fairness

Our results indicate that different models can respond differently to different pruning meth-
ods with respect to fairness and that simple tweaks to the pruning process can improve
fairness. However, the causes of this effect are not clear. Developing an understanding
of how the properties of the data, models and pruning methods all influence fairness dur-
ing pruning would allow for more targeted and sophisticated methods for addressing the
problem of fair pruning.

To develop this understanding, we will need to conduct more pruning experiments
to evaluate the fairness of pruning in various conditions. However, rather than simply
observing the fairness impact of pruning, we would need to influence the impact through
modifications to the pruning method, data and model. For instance, we could examine the
fairness of pruning on models trained using datasets with differing degrees of imbalances
or examine how each specific pruning design decision affects pruning in various contexts.
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5.4.2 Exploring More Sophisticated Methods for Improving Model
Fairness

The development of more sophisticated methods of fair pruning would provide machine
learning practitioners the tools they need to apply pruning to real-world models with-
out introducing fairness concerns. The method proposed in this thesis, the performance
weighted loss function, does appear to improve fairness in many contexts. However, it is
a simple approach and it is not beneficial for every model. Exploring more sophisticated
approaches could yield fair pruning methods that are more targeted, robust and adaptable.

5.4.3 Developing a Fair Pruning Benchmark

We believe that the development of a fair pruning benchmark could help accelerate the
development of fair pruning methods. While there are datasets suitable for fairness anal-
yses [10, 12] and common model-dataset combinations used to evaluate pruning methods
[1], there is currently no standardized approach for measuring the fairness of a pruning
method. Developing a fair pruning benchmark would allow researchers to easily compare
the fairness impacts of their pruning methods with prior methods. This would likely involve
the identification of the creation or identification of a dataset with attribute information,
training a model with known fairness issues to be pruned, and the identification of an
appropriate metric.

5.5 Discussion

As machine intelligence systems become increasingly sophisticated and integrated into our
everyday lives, the importance of ensuring those systems have a positive social impact
grows. We need to ensure that ML systems are not pushing human workers into poverty,
spreading misinformation and perpetuating systemic discrimination.

These problems can not be solved by clever engineering alone. Our social, political and
economic systems must adapt to new developments in ML. However, ML researchers and
practitioners still have an important role to play. Technical developments are an essential
part of the solution to the problem of ethical ML. Without understanding the abilities
and limitations of ML systems, we can not predict the impact they will have on society.
Without knowledge of methods for making ML systems more ethical, we have little recourse
when ethical issues are found.
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In this thesis, we furthered our understanding of how model pruning affects fairness
and developed a simple method to address this issue. We hope that our work will help
ensure the fairness of future machine learning systems that utilize model pruning.
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Appendix A

Model Training and Pruning
Parameters

To ensure transparency and enable reproducability, all parameters and procedures used to
train, prune and retrain the models can be found below. All experiments were implemented
using PyTorch 1.12.1 and torchvision 0.13.1 [37]. PyTorch Lightning 1.7.1 [8] was also used
to train the models.

The ResNet-18 [14] CelebA model was trained for 20 epochs using the AdamW [28]
optimizer with an initial learning rate of 0.0001 and a CosineAnnealingLR learning rate
scheduler with Tmax = 20 [29]. A batch size of 256 was used. The model was initialized
using the provided ImageNet weights from torchvision. All parameters in layers except
the final fully connected layer were frozen for the first 5 epochs after which they were
unfrozen with a learning rate equal to 0.01 times the global learning rate. Early stopping
was applied such that the parameters that achieved the lowest validation loss were saved
after training.

The VGG-16 [42] CelebA model was trained for 10 epochs using the AdamW [28]
optimizer with an initial learning rate of 0.0005 and a CosineAnnealingLR learning rate
scheduler with Tmax = 10 [29]. A batch size of 64 was used. The model was initialized
using the provided ImageNet weights from torchvision. All parameters in layers except
the final fully connected layer were optimized with a learning rate equal to 0.01 times the
global learning rate. Early stopping was applied such that the parameters that achieved
the lowest validation loss were saved after training.

The ResNet-34 [14] Fitzpatrick17k model was trained for 30 epochs using the AdamW
[28] optimizer with an initial learning rate of 0.001 and a CosineAnnealingLR learning rate
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scheduler with Tmax = 30 [29]. A batch size of 64 was used. The model was initialized
using the provided ImageNet weights from torchvision. All parameters in layers except the
final fully connected layer were frozen for the first 5 epochs after which they were unfrozen
with a learning rate equal to 0.001 times the global learning rate.

The EfficientNet V2 Medium [44] Fitzpatrick17k model was trained for 30 epochs using
the AdamW [28] optimizer with an initial learning rate of 0.001 and a CosineAnnealingLR
learning rate scheduler with Tmax = 30 [29]. A batch size of 32 was used. The model was
initialized using the provided ImageNet weights from torchvision. All parameters in layers
except the final fully connected layer were frozen for the first 5 epochs after which they
were unfrozen with a learning rate equal to 0.01 times the global learning rate.

The ResNet-56 [14] CIFAR-10 model was built using the implementation from Idelbayev
[19]. The model was trained for 200 epochs using the AdamW [28] optimizer with an initial
learning rate of 0.1 for the final fully connected layer and 0.01 for all other parameters.
The learning rate was multiplied by a factor of 0.1 at epochs 100, 150 and 175. A batch
size of 256 was used.

The EfficientNet V2 Small [44] CIFAR-10 model was trained for 10 epochs with an
initial learning rate of 0.001 and a CosineAnnealingLR learning rate scheduler with Tmax =
10 [29]. A batch size of 128 was used. The model was initialized using the provided
ImageNet weights from torchvision. All parameters in layers except the final fully connected
layer were frozen for the first 5 epochs after which they were unfrozen with a learning rate
equal to 0.01 times the global learning rate.

The parameter values used for our AutoBot [4] implementation can be found in Table
A.1. βAB refers to the parameter used by the AutoBot method to control the balance
between the different terms of its loss function.

The parameter values used for our Taylor [33] implementation can be found in Table
A.2. fprune refers to the frequency of the pruning. That is, the number of batch iterations
between the pruning of filters. Nfilters refers to the number of convolutional filters that are
pruned in each pruning instance.

The parameter values that are used for our PW losses can be found in Table A.3. Other
parameters were not changed when the PW loss was introduced.

After pruning, all models were retrained using the AdamW [28] optimizer and CosineAn-
nealingLR learning rate scheduler with a Tmax value equal to the number of epochs. The
parameter values used to retrain the models can be found in Table A.4.
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Table A.1: Parameters used for AutoBot pruning method

Dataset Model Learning Rate Batch Size Iters. βAB

CelebA ResNet-18 0.85 64 200 2.7
CelebA VGG-16 1.81 64 250 3.07

Fitzpatrick17k ResNet-34 1.5 32 400 0.5
Fitzpatrick17k EfficientNet V2 Med. 1.5 16 600 6.76
CIFAR-10 ResNet-56 0.7 128 200 5.3
CIFAR-10 EfficientNet V2 Small 1.88 64 200 2.0

Table A.2: Parameters used for Taylor pruning method

Dataset Model Learning Rate Batch Size fprune Nfilters

CelebA ResNet-18 0.01 64 5 1
CelebA VGG-16 0.01 64 5 1

Fitzpatrick17k ResNet-34 0.01 32 5 1
Fitzpatrick17k EfficientNet V2 Med. 0.01 16 4 8
CIFAR-10 ResNet-56 0.01 128 5 1
CIFAR-10 EfficientNet V2 Small 0.01 64 5 8

Table A.3: Parameters used for PW loss

Dataset Model Base Method θ γ

CelebA ResNet-18 AutoBot 0.3 1
CelebA ResNet-18 Taylor 0.8 0.5
CelebA VGG-16 AutoBot 0.75 3
CelebA VGG-16 Taylor 0.9 5

Fitzpatrick17k ResNet-34 AutoBot 0.8 2.5
Fitzpatrick17k ResNet-34 Taylor 0.95 3
Fitzpatrick17k EfficientNet V2 Med. AutoBot 0.8 2
Fitzpatrick17k EfficientNet V2 Med. Taylor 0.95 3
CIFAR-10 ResNet-56 AutoBot 0.5 1
CIFAR-10 ResNet-56 Taylor 0.5 1
CIFAR-10 EfficientNet V2 Small AutoBot 0.7 0.5
CIFAR-10 EfficientNet V2 Small Taylor 0.7 0.5
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Table A.4: Parameters used to retrain models

Dataset Model Learning Rate Batch Size Duration

CelebA ResNet-18 0.0001 256 30 epochs
CelebA VGG-16 0.0005 64 10 epochs

Fitzpatrick17k ResNet-34 0.0001 64 30 epochs
Fitzpatrick17k EfficientNet V2 Med. 0.00001 32 50 epochs
CIFAR-10 ResNet-56 0.001 256 200 epochs
CIFAR-10 EfficientNet V2 Small 0.00001 128 10 epochs
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