
 
 

Appendix E 
 

Supplementary Information for Chapter 6: Development of tools to 
calculate ion mobility at arbitrary field strengths 

 

This appendix contains the supporting information for Chapter 6, and is analogous to the 

supporting information to the following manuscript: 

 

Haack, A.,* Ieritano, C.,* Hopkins, W. S. MobCal-MPI 2.0: An Accurate and 
Parallelized Package for Calculating Field-Dependent Collision Cross Sections and 
Ion Mobilities. Analyst. 2023, 148, 3257 – 3273. *Equal contribution. 

https://pubs.rsc.org/en/content/articlelanding/2023/AN/D3AN00545C 

 

 

*Equal contribution.
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Supplementary Sections 

Section S6-1: A brief review of other CCS calculation tools 

1. In the mid-1990s, the MobCal program1,2 was published for CCSs in helium, which is, arguably, the 

most famous CCS predictor. It allows for three different types of CCS calculations: (1) the Projection 

Approximation (PA), in which the “shadow” of the ion is averaged over all orientations, (2) the 

Exact Hard Sphere Scattering (EHSS) model, which actually calculates collision trajectories of the 

ion-neutral pair but treats their interaction with a hard-sphere potential, and (3) the Trajectory 

Method (TM), which is similar to the EHSS model but uses a more realistic Lennard-Jones (LJ) 12-

6 potential. As these methods increase in accuracy (from PA to TM), their computational cost also 

increases. The MobCal code was later expanded to N2 as collision gas3,4 and further updates to the 

interaction potential were undertaken, specifically accounting for the polarizability of N2 and its 

quadrupole moment.5,6 Recently, further updates to the interaction potential and parallelization of 

the code, now termed MobCal-MPI, increased accuracy and especially speed of the calculations.7,8 

2. A lesser common known variant of the MobCal code is the HPCCS program,9 which also utilizes the 

TM and can compute CCSs in He and N2. 

3. The IMoS code10–12 became also quite popular in recent years. In contrast to MobCal, IMoS explicitly 

calculates the drag inflicted on the ion through the bath gas. This is done by a trajectory method 

(with realistic interaction potentials), where the velocity of both the ion and bath gas are explicitly 

considered. This is in contrast to MobCal where the relative velocity of the ion-neutral pair is 

considered. Despite the different mathematical approach as compared to MobCal, it has been shown 

that both methods perform equally well.13 IMoS then obtains the ion mobility coefficient, 𝐾𝐾, from 

the calculated drag and the CCS through rearranging Eq. (4) of the main manuscript. 

4. Collidoscope14 is yet another CCS predicter utilizing the TM and a LJ 12-6 interaction potential 

including polarizability for both He and N2 as collision gases. Its accuracy was reported to be similar 

to IMoS. Parallelization of the code makes it similar fast to MobCal-MPI, HPCCS and IMoS. 
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5. Large ions (proteins, supramolecular complexes, etc.) make the usage of the TM both computationally 

infeasible but also unnecessary. Because of their size, the fine details of the scattering process become 

less important and projection approximation algorithms provide sufficiently accurate results. A 

prominent example is the PSA method.15–18 Through careful calibration of the collision probabilities, 

even temperature dependencies of the CCS are reproduced. 
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Section S6-2: Collision dynamics 

The amount of momentum transferred upon a collision between two particles (at relative velocity 𝑔𝑔, 

impact parameter 𝑏𝑏 and assuming a spherically symmetric interaction potential), can be calculated from 

the scattering angle, 𝜒𝜒, and is proportional to 1 − cos𝜒𝜒. In Figure S6-1, some example trajectories are 

shown for two different relative velocities and a set of impact parameters (ranging from 𝑏𝑏 = 0 to a cut-

off value 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚). It further shows the amount of momentum being transferred as a function of the impact 

parameter. The integral under these curves is proportional to the momentum transfer cross section, 

𝑄𝑄(1)(𝑔𝑔). We can separate collision events into two categories: glancing collisions (large 𝑏𝑏, only probing 

the attractive part of the potential) and striking collisions (small 𝑏𝑏, probing both the attractive and 

repulsive part of the potential). Both kinds contribute to the overall momentum transfer for small 

velocities but as can be seen in Figure S6-1, for higher relative velocities, only the striking collisions 

transfer momentum. At higher velocities, trajectories with large 𝑏𝑏 do not significantly contribute to the 

total momentum transfer. 

 

Figure S6-1. Left: Collision trajectories for two different relative speeds, 𝑔𝑔∗, and for a set of impact 
parameters, 𝑏𝑏∗ (in dimensionless units). Right: Corresponding momentum transfer as a function of 𝑏𝑏∗2. 
The interaction potential is assumed to be spherically symmetric and the grey circle denotes the distance 
at which the potential becomes repulsive. 
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Thus, when integrating over both the velocity as well as impact parameter space, using a common upper 

limit, 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚, will result in a lot of trajectories that do not contribute to the overall momentum transfer 

integrals. This can be seen even better in Figure S6-2, which shows the momentum transfer as contour 

plot over both velocity and impact parameter space. As can be seen, most trajectories (started at pairs 

of (𝑏𝑏, 𝑔𝑔)) would yield close to zero momentum transfer and can thus be neglected to save computing time. 

Consequently, it is beneficial to calculate a 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 value for each velocity grid point. This was already 

done in the original MobCal implementation, the strategy for which is retained in MobCal-MPI 2.0. This 

is depicted with the red line in Figure S6-2. This way, at every of the inp velocity points, imp impact 

parameter (and orientation) samples are taken, but only for 𝑏𝑏 ≤ 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚(𝑔𝑔), where there is significant 

momentum transfer. 

 

Figure S6-2. Contour plot of 1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜒𝜒 (proportional to the momentum transfer) as a function of the 
impact parameter, 𝑏𝑏, and the relative velocity, 𝑔𝑔, of the colliding particles (both in dimensionless units). 
The red line denotes the threshold values 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚(𝑔𝑔) for every velocity point. 

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚(𝑔𝑔) 
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Section S6-3: Evaluating Collision Integrals using the Chapman-Enskog 

Formalism 

The motion of ions through a gas is governed by the Boltzmann transport equation.19 The quantity of 

interest in this framework is the ion velocity distribution, 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖. One can calculate the drift velocity (𝑣𝑣𝐷𝐷) 

as a moment of the ion velocity distribution (𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖; Eq. S1), for which we use the convention that the 

electric field points along the 𝑧𝑧-axis. Note that 𝑛𝑛 is a normalization factor.20 

 𝑣𝑣𝐷𝐷 = 〈𝑣𝑣𝑧𝑧〉 = 1
𝑛𝑛

�𝑣𝑣𝑧𝑧𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 d𝑣𝑣 (S1)  

   Although the velocity distribution of the bath gas particles (𝑓𝑓𝑏𝑏𝑏𝑏) can be described by a Maxwell-

Boltzmann distribution at temperature 𝑇𝑇 , 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 will be distorted compared to 𝑓𝑓𝑏𝑏𝑏𝑏 due to the acceleration 

caused by the electric field. Within the framework of 2TT, field-induced acceleration of the ion is 

accommodated by introducing a second temperature (𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖) that accounts for the skewed velocity 

distribution. The effective temperature described in Error! Reference source not found. – Error! 

Reference source not found. reflects the distribution of relative velocities between bath gas particles 

and ions. In general, 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 ≥ 𝑇𝑇 . To solve for 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖, one can apply the Chapman-Enskog 

formalism,21,22 which expresses 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 as a Taylor series of basis functions. 2TT expands on this formalism 

by using Burnett-like basis functions, which are defined in Eqs. S2 and S3:23,24 

 

 𝜓𝜓𝑙𝑙𝑚𝑚
(𝑟𝑟)(𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖) = 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖

𝑙𝑙 𝑆𝑆𝑙𝑙+1/2
(𝑟𝑟) (𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖

2 )(𝑌𝑌𝑙𝑙
𝑚𝑚(𝜃𝜃, 𝜙𝜙)) (S2) 

   

 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
2 = 𝑚𝑚𝑣𝑣2

2𝑘𝑘𝐵𝐵(𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖)
 (S3) 

   

Here, 𝑆𝑆𝑙𝑙+1/2
(𝑟𝑟)  are Laguerre polynomials, 𝑌𝑌𝑙𝑙

𝑚𝑚 are the spherical harmonics, 𝑚𝑚 is the molecular mass of the 

ion, and 𝑣𝑣 is its velocity. 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 acts as dimensionless velocity to simplify the equations. Rather than 
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solving for the full ion velocity distribution, 2TT attempts to find solutions only to the moments of these 

basis functions. This is sufficient for ion mobility because the drift velocity can be expressed as moment 

of 𝜓𝜓10
(0), as per Eq. S4. 

 𝑣𝑣𝐷𝐷 = �2𝑘𝑘𝐵𝐵(𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖)
𝑚𝑚 �𝜓𝜓10

(0)� (S4) 

   Iterative computation is used to solve for these moments, with higher-order approximations requiring 

additional iterations. The specifics of the iterative procedure are beyond the scope of this manuscript, 

although interested readers are directed to references 23 and 24 for further information. 
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Section S6-4: Velocity grid limits 

To ensure that the integration over the relative velocity is accurate, limits for the velocity grid must be 

chosen such that the integrand, 𝑄𝑄(𝑙𝑙)𝜔𝜔(𝑠𝑠), is significantly close to zero at those limits. Since it is not 

possible to predict the magnitude and functional dependency of 𝑄𝑄(𝑙𝑙)(𝑔𝑔), we focused on the weight 

functions 𝜔𝜔(𝑠𝑠). I.e., we want to find velocity limits such that upon integration, the error caused by the 

cutoff becomes negligible. To simplify the algebra, we work with unitless velocity and temperature: 

 

 𝑔𝑔∗2 = 𝜇𝜇𝑔𝑔2

2𝜖𝜖′  (S5a) 

 

 𝑇𝑇 ∗ = 𝑘𝑘𝐵𝐵𝑇𝑇
𝜖𝜖′  (S5b) 

 

Here, 𝜇𝜇 is the reduced mass of the collision pair, 𝑘𝑘𝐵𝐵 is the Boltzmann constant, and 𝜖𝜖′ = 1.34 meV is a 

fixed energy constant.1 Writing the weight functions now in dimensionless units: 

 

 𝜔𝜔(𝑠𝑠)(𝑔𝑔∗, 𝑇𝑇 ∗) = �
(𝑐𝑐 + 1)!

2
𝑇𝑇 ∗𝑠𝑠+2�

−1

× 𝑔𝑔∗2𝑠𝑠+3 exp�−𝑔𝑔∗2

𝑇𝑇 ∗ � (S6) 

 

we can express their integrals as: 

 

 � 𝜔𝜔(𝑠𝑠)(𝑔𝑔∗, 𝑇𝑇 ∗)

𝐺𝐺𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

0

d𝑔𝑔∗ = 1 − 1
(𝑐𝑐 + 1)!

 Γ�𝑐𝑐 + 2,
𝐺𝐺𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑟𝑟

2

𝑇𝑇 ∗ � (S7a) 
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 � 𝜔𝜔(𝑠𝑠)(𝑔𝑔∗, 𝑇𝑇 ∗)
∞

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢

d𝑔𝑔∗ = 1
(𝑐𝑐 + 1)!

 Γ�𝑐𝑐 + 2, 𝐺𝐺𝑙𝑙𝑖𝑖𝑙𝑙𝑒𝑒𝑟𝑟
2

𝑇𝑇 ∗ � (S7b) 

 

where Γ is the upper incomplete gamma function and 𝐺𝐺𝑙𝑙𝑖𝑖𝑙𝑙𝑒𝑒𝑟𝑟 and 𝐺𝐺𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑟𝑟 define the lower and upper limit 

for the velocity integration, respectively. From this, we can obtain and 𝐺𝐺𝑙𝑙𝑖𝑖𝑙𝑙𝑒𝑒𝑟𝑟 and 𝐺𝐺𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑟𝑟 by defining 

acceptable errors, i.e., asking how close the integrals of Eq. (S7) should be to unity: 

 

 1
(𝑐𝑐 + 1)!

 𝛤𝛤 �𝑐𝑐 + 2,
𝐺𝐺𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑟𝑟

2

𝑇𝑇 ∗ � = 𝜉𝜉𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑟𝑟 (S8a) 

 

 1
(𝑐𝑐 + 1)!

 𝛤𝛤 �𝑐𝑐 + 2,𝐺𝐺𝑙𝑙𝑖𝑖𝑙𝑙𝑒𝑒𝑟𝑟
2

𝑇𝑇 ∗ � = 1 − 𝜉𝜉𝑙𝑙𝑖𝑖𝑙𝑙𝑒𝑒𝑟𝑟 (S8b) 

 

Because 𝑄𝑄(𝑙𝑙)(𝐺𝐺𝑙𝑙𝑖𝑖𝑙𝑙𝑒𝑒𝑟𝑟) ≫ 𝑄𝑄(𝑙𝑙)(𝐺𝐺𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑟𝑟), we pick a tighter value for 𝜉𝜉𝑙𝑙𝑖𝑖𝑙𝑙𝑒𝑒𝑟𝑟. However, a too low 𝐺𝐺𝑙𝑙𝑖𝑖𝑙𝑙𝑒𝑒𝑟𝑟 will 

result in lost trajectories because at very low relative velocities collision particles will stick to/orbit the 

ion. In the end, we chose: 

 

 𝜉𝜉𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑟𝑟 = 10−3    →�
𝑠𝑠=4

    𝐺𝐺𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑟𝑟 = �16.455 ⋅ 𝑇𝑇𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑟𝑟
∗  (S9a) 

 

 𝜉𝜉𝑙𝑙𝑖𝑖𝑙𝑙𝑒𝑒𝑟𝑟 = 10−4    →�
𝑠𝑠=1

    𝐺𝐺𝑙𝑙𝑖𝑖𝑙𝑙𝑒𝑒𝑟𝑟 = �0.0862 ⋅ 𝑇𝑇𝑙𝑙𝑖𝑖𝑙𝑙𝑒𝑒𝑟𝑟
∗  (S9b) 

 

Here, 𝑇𝑇𝑙𝑙𝑖𝑖𝑙𝑙𝑒𝑒𝑟𝑟
∗  is calculated from 𝑇𝑇𝑏𝑏𝑚𝑚𝑏𝑏ℎ and 𝑇𝑇𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑟𝑟

∗  is calculated from 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑚𝑚𝑚𝑚 according to Eq. (S1b). 
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Section S6-5: Avg-N2 versus CoM-N2 Potentials 

 

Figure S6-3. Van-der-Waals interaction potentials (Exp-6) for the CoM-N2 and Avg-N2 versions 
depending on the orientation of the N2 molecule (described by the angle 𝜃𝜃). While the CoM-N2 potential 
is independent on 𝜃𝜃, the Avg-N2 potential shows a strong dependency. For a head-on collision (𝜃𝜃 = 0°), 
the potential becomes repulsive faster. This is more realistic because for a head-on collision, as one end 
of the N2 molecule reaches the collision partner significantly earlier than its CoM. 
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Section S6-6: Precision for high-field calculations 

 

Figure S6-4. Distributions of relative CCS uncertainties, 𝜎𝜎𝐶𝐶𝐶𝐶�𝛺𝛺(1,1)�/𝛺𝛺(1,1), for the validation set 
(N = 50) for different combinations of velocity sample points (inp) and orientation/impact parameter 
sample points (imp) when calculating mobilities/CCS between 298 K and 800 K. Blue numbers below 
each distribution correspond to mean relative CCS uncertainties and black numbers to average computing 
time.  
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Section S6-7: Connection between alpha function and dispersion plot 

The alpha function of an ion describes how the mobility at higher field strengths deviates from its value 

at infinitely small field strengths: 

 𝛼𝛼�𝐸𝐸
𝑁𝑁

� =
�𝐾𝐾 �𝐸𝐸

𝑁𝑁��

�𝐾𝐾(0)�
− 1 (S10) 

 

In differential mobility spectrometry, to probe this alpha function, an asymmetric, oscillating field is 

applied containing both high- and low-field strengths. This separation field, 𝐸𝐸𝑆𝑆(𝑡𝑡) can have many forms 

(square wave, double sine, etc.)25 but it is required that 

 

 
1
𝜏𝜏
 �𝐸𝐸𝑆𝑆(𝑡𝑡) d𝑡𝑡

𝜏𝜏

0

= 〈𝐸𝐸𝑆𝑆(𝑡𝑡)〉 = 𝐸𝐸𝑆𝑆〈𝑓𝑓(𝑡𝑡)〉 = 0 (S11a) 

 

 〈𝑓𝑓2𝑖𝑖+1(𝑡𝑡)〉 ≠ 0 (S11b) 

 

where 𝐸𝐸𝑆𝑆(𝑡𝑡) = 𝐸𝐸𝑆𝑆𝑓𝑓(𝑡𝑡) with 𝑓𝑓(𝑡𝑡) being the normalized form of the waveform and 𝐸𝐸𝑆𝑆 its amplitude 

(maximum value). 𝜏𝜏 denotes the time for one wave cycle. Additional to the separation field, a constant 

field, 𝐸𝐸𝐶𝐶, is applied to ensure ion transmission. Thus, the total field is 

 

 𝐸𝐸(𝑡𝑡) = 𝐸𝐸𝑆𝑆𝑓𝑓(𝑡𝑡) + 𝐸𝐸𝐶𝐶 (S12) 

 

A dispersion plot now measures the compensation field, 𝐸𝐸𝐶𝐶, ideal for ion transmission in dependence of 

the separation field amplitude, 𝐸𝐸𝑆𝑆. To obtain the alpha function from a measured dispersion plot, 
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Buryakov26 suggested the following method: First, the dispersion plot data is fitted to an uneven 

polynomial of (2𝑁𝑁 + 1)-th order: 

 

 𝐸𝐸𝐶𝐶 = �𝐵𝐵2𝑖𝑖+1𝐸𝐸𝑆𝑆
2𝑖𝑖+1

𝑁𝑁

𝑖𝑖=1
 (S13) 

 

The obtained coefficients 𝐵𝐵2𝑖𝑖+1 can then be used to determine the alpha function, expressed as even 

polynomial:26,27 

 

 𝛼𝛼(𝐸𝐸) = �𝛼𝛼2𝑖𝑖𝐸𝐸2𝑖𝑖
𝑁𝑁

𝑖𝑖=1
 (S14a) 

 

 𝛼𝛼2𝑖𝑖 = 1
〈𝑓𝑓2𝑖𝑖+1(𝑡𝑡)〉

�𝐵𝐵2𝑖𝑖+1 + �(2(𝑛𝑛 − 𝑘𝑘) + 1)𝐵𝐵2𝑘𝑘+1𝛼𝛼2(𝑖𝑖−𝑘𝑘)�𝑓𝑓2(𝑖𝑖−𝑘𝑘)�
𝑖𝑖−1

𝑘𝑘=1
� (S14b) 

 

Note that this workflow can show deviations at the higher end of the field strengths, as is the case with 

every polynomial fitting. The lower end (𝐸𝐸 → 0) is not an issue since the enforcement of 𝐵𝐵0 = 𝛼𝛼0 = 0 

ensures the correct behaviour, namely 𝐸𝐸𝐶𝐶(𝐸𝐸𝑆𝑆 = 0) = 0 and 𝛼𝛼(𝐸𝐸 = 0) = 0. Conversely, the dispersion 

plot can also be predicted from knowing the alpha function. If 𝐸𝐸𝐶𝐶 is expected to be very small as 

compared to 𝐸𝐸𝑆𝑆, Buryakov’s first order approximation equation can be used:26 

 

 𝐸𝐸𝐶𝐶 = 〈𝛼𝛼𝑓𝑓(𝑡𝑡)〉𝐸𝐸𝑆𝑆
1 + 〈𝛼𝛼〉 + 〈𝛼𝛼′𝑓𝑓(𝑡𝑡)〉𝐸𝐸𝑆𝑆

 (S15) 

 

Note, that 𝛼𝛼 = 𝛼𝛼�𝐸𝐸𝑆𝑆(𝑡𝑡)� but we omitted the field dependency for notational clarity. Further, 𝛼𝛼′ =

d𝛼𝛼/d𝐸𝐸. However, this equation breaks down if 𝐸𝐸𝐶𝐶 becomes large as we recently showed in another 
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publication.28 In this case, the compensation value, 𝐸𝐸𝐶𝐶, can be determined iteratively. I.e., starting with 

a guess, 𝐸𝐸𝐶𝐶
(𝑏𝑏𝑢𝑢𝑒𝑒𝑠𝑠𝑠𝑠), we calculate the net drift velocity of the ion caused by the asymmetry of the waveform 

according to 

 

 〈𝑣𝑣𝐷𝐷〉 = �𝐾𝐾 ⋅ [𝐸𝐸𝑆𝑆𝑓𝑓(𝑡𝑡) + 𝐸𝐸𝐶𝐶
(𝑏𝑏𝑢𝑢𝑒𝑒𝑠𝑠𝑠𝑠)]� (S16) 

 

Again, note that we omitted the explicit dependency of the mobility on the total separation field, 𝐾𝐾 =

𝐾𝐾�𝐸𝐸(𝑡𝑡)� = 𝐾𝐾(𝐸𝐸𝑆𝑆𝑓𝑓(𝑡𝑡) + 𝐸𝐸𝐶𝐶). The mobility can be obtained from the alpha function by rearranging Eq. 

(S8). We then use the obtained net drift velocity to obtain a new guess for the separation field as 

 

 𝐸𝐸𝐶𝐶
(𝑖𝑖𝑒𝑒𝑙𝑙) = 𝐸𝐸𝐶𝐶

(𝑖𝑖𝑙𝑙𝑜𝑜) − 〈𝑣𝑣𝐷𝐷〉
𝐾𝐾(0)

𝛿𝛿𝑜𝑜𝑚𝑚𝑚𝑚𝑢𝑢 (S17) 

 

where 𝛿𝛿𝑜𝑜𝑚𝑚𝑚𝑚𝑢𝑢 is a damping factor usually used in iterative procedures. The new guess of 𝐸𝐸𝐶𝐶 is used again 

in Eq. (S14) and this procedure is repeated until 〈𝑣𝑣𝐷𝐷〉 < 𝑣𝑣𝑏𝑏ℎ𝑟𝑟𝑒𝑒𝑠𝑠ℎ, i.e., until the drift velocity left is 

negligible. 
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Section S6-8: Details concerning the empirical correction to 2TT 

S6-8.1: Choice of functional form 
Siems et al.29 compared 2nd order 2TT with accurate modelling of an ion’s mobility using the Gram-

Charlier (GC) approach for idealized test systems, i.e., atomic ions in atomic gases. They found that 

2TT yields good results over a broad range of field strength (0-50 Td) but shows 5-7% deviations above 

100 Td. For the “heavy ion” case, i.e., when the ion is much heavier than the bath gas particle, the 

deviations are zero at low fields, then the 2TT mobilities become increasingly too small, eventually 

reaching a constant underestimation at very high field strengths. To correct for this deviation, we should 

pick a form that matches this behaviour: no deviations at low fields, constant deviation at very high 

fields and a smooth transition in between. Thus, we chose  

 

 𝐾𝐾𝑐𝑐𝑖𝑖𝑟𝑟𝑟𝑟 = 𝑓𝑓𝑐𝑐𝑖𝑖𝑟𝑟𝑟𝑟 ⋅ 𝐾𝐾2𝑇𝑇𝑇𝑇  (S18a) 

 

 𝑓𝑓𝑐𝑐𝑖𝑖𝑟𝑟𝑟𝑟 �𝐸𝐸
𝑁𝑁

� = 1 + 𝐴𝐴exp�− 𝐵𝐵
𝐸𝐸/𝑁𝑁

� (S18b) 

 

As can be seen in Figure S6-5, the form of 𝑓𝑓𝑐𝑐𝑖𝑖𝑟𝑟𝑟𝑟 fulfills these requirements. At low fields 𝑓𝑓𝑐𝑐𝑖𝑖𝑟𝑟𝑟𝑟 = 1 so that 

𝐾𝐾𝑐𝑐𝑖𝑖𝑟𝑟𝑟𝑟 = 𝐾𝐾2𝑇𝑇𝑇𝑇 . Increasing the field strength leads to an increase in 𝑓𝑓𝑐𝑐𝑖𝑖𝑟𝑟𝑟𝑟 up to a fixed correction of 

𝐾𝐾𝑐𝑐𝑖𝑖𝑟𝑟𝑟𝑟 = (1 + 𝐴𝐴)𝐾𝐾2𝑇𝑇𝑇𝑇  in the limit of very high 𝐸𝐸/𝑁𝑁 , corresponding to a relative increase of the mobility 

by 𝐴𝐴 (%). How fast we switch from 𝑓𝑓𝑐𝑐𝑖𝑖𝑟𝑟𝑟𝑟 = 1 to 𝑓𝑓𝑐𝑐𝑖𝑖𝑟𝑟𝑟𝑟 = 1 + 𝐴𝐴 is determined by 𝐵𝐵. 
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Figure S6-5. Functional form of the empirical correction used here. The parameters A and B determine 
the limit at very high fields and the speed of the rise, respectively. Here, we used representative values 
of 𝐴𝐴 = 6 % and 𝐵𝐵 = 140 Td. 

 

Further justification of the functional form chosen comes from comparison of the difference between 

measured and predicted alpha function of protonated amoxapine (see Fig. 6A of the main manuscript). 

Given multiplicative nature of our correction, we can obtain the needed correction from the experimental 

and 2TT predicted alpha function according to 

 𝑓𝑓𝑏𝑏𝑟𝑟𝑢𝑢𝑒𝑒 =
𝛼𝛼𝑒𝑒𝑚𝑚𝑢𝑢𝑏𝑏 + 1
𝛼𝛼2𝑇𝑇𝑇𝑇 + 1

 (S19) 

 

S6-8.2: Examples of dispersion plots utilizing the empirical correction 
Calculated mobilities within 2nd order 2TT (𝐾𝐾2𝑇𝑇𝑇𝑇 ) were used to model dispersion plot behavior of the 

132 compounds in the “high-field validation set” according to the method (see Section S6-7). In general, 

we find that 2TT overestimates the measured dispersion plots, which is in line with the deviations found 

by Siems et al. To study the extent in which 𝐾𝐾2𝑇𝑇𝑇𝑇  needs to be corrected, we fit the parameters 𝐴𝐴 and 

𝐵𝐵 for all 132 compounds such that the experimental dispersion plots were predicted most accurately. 

The average over all parameters 𝐴𝐴 and 𝐵𝐵 were then used as common empirical correction. 
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The results of this procedure can be seen in Figure S6-6 for two examples. As mentioned in Chapter 6.11, 

the uncorrected 2TT overshoots the measured dispersion plots. Individual fitting of the empirical 

correction, however, yields dispersion plots that are very well within the experimental uncertainties. This 

gives us confidence that the functional form chosen is well suited for this task. Finally, Figure S6- shows 

the calculated dispersion plots utilizing the fixed empirical correction (𝐴𝐴𝑚𝑚𝑎𝑎𝑏𝑏, 𝐵𝐵𝑚𝑚𝑎𝑎𝑏𝑏). In case of Bentazon, 

this still yields very good agreement with the experimental data since the individually fitted empirical 

correction parameters are almost identical to the averaged ones. In contrast, the fixed empirical correction 

shows larger deviations to the experimental data as compared to the individually fitted ones. This can 

also be seen by comparing the correction parameters, which are rather different for the individually and 

fixed empirical correction. Specifically, the fixed empirical correction if too large and thus corrects the 

mobilities more than needed. Nevertheless, we would argue that the dispersion plot with (fixed) empirical 

correction resembles the experimental one better or at least as good as the uncorrected 2TT predicted 

one.  

 

Figure S6-6. Measured and calculated dispersion plots of Bentazon (left) and Salicylic Acid (right). 
Calculated dispersion plots are shown for uncorrected 2nd order 2TT, for 2TT with individually fitted 
empirical correction, and for 2TT with the fixed empirical correction utilizing 𝐴𝐴𝑚𝑚𝑎𝑎𝑏𝑏 = 6.1 % and 
𝐵𝐵𝑚𝑚𝑎𝑎𝑏𝑏 = 143 Td.
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S6-8.3: Correlation of A  and B fit parameters to physicochemical properties 
Prior to using the average of the distributions of 𝐴𝐴 and 𝐵𝐵, i.e., 𝐴𝐴𝑚𝑚𝑎𝑎𝑏𝑏 and 𝐵𝐵𝑚𝑚𝑎𝑎𝑏𝑏, we attempted to correlate 

the optimized 𝐴𝐴 and 𝐵𝐵 parameters to properties relevant to the simulation of collision dynamics. 

However, no significant correlation between any of the selected quantities was found (Figure S6-7).  

 

Figure S6-7. Correlation between the 𝐴𝐴 and 𝐵𝐵 parameters to typical parameters appearing in the 
formalism of ion mobility, namely the number of atoms (𝑁𝑁𝑚𝑚𝑏𝑏𝑖𝑖𝑚𝑚𝑠𝑠), the reduced mass (µ), the low field 
mobility (𝐾𝐾(0)), the first collision integral (𝛺𝛺(1,1)), alpha function coefficients (𝛼𝛼2 and 𝛼𝛼4) and important 
ratios of collision integrals (𝐴𝐴∗ = 𝛺𝛺(2.2)/𝛺𝛺(1,1), 𝐵𝐵∗ = (5𝛺𝛺(1,2) − 4𝛺𝛺(1,3))/𝛺𝛺(1,1), and 𝐶𝐶∗ = 𝛺𝛺(1,2)/𝛺𝛺(1,1)). 
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Section S6-9: Additional plots from benchmarking MobCal-MPI 2.0 

  

Figure S6-8. Benchmarking of runtimes to calculate CCSs in dependence of the number of cores used 
in parallel computing. Slopes corresponding to linear regression of the benchmarking data are shown on 
the right side of each figure. (Left): Test data is composed of the 238 different conformers of the 
validation set. (Right): Test data is composed of 12 peptides from the peptide set. All calculations are 
repeated for three different random seed numbers. The linear behavior shows the expected 𝒪𝒪(𝑁𝑁) 
dependency with respect to the number of atoms, whereas the 1/𝑁𝑁𝑐𝑐𝑖𝑖𝑟𝑟𝑒𝑒𝑠𝑠 decrease in the slopes (numbers 
adjacent to the regressions) indicates efficient parallelization. 
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