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Abstract

With the advent of the Event Horizon Telescope (EHT), we have the ability to observe
the lensed emission from hot plasmas near event horizons. It contains entangled infor-
mation about the turbulent magnetohydrodynamic accretion processes and the black hole
spacetime. We present studies of both coherent and stochastic variable features measur-
able from EHT data, and by applying them to libraries of simulations, we describe how
they inform on the underlying accretion flow. For a rapidly varying source like Sgr A∗, we
find that variability is greatest on the largest spatial scales and the longest timescale, and
find a universal power-law variability prescription in the visibility domain. For a slowly
varying source like M87∗, we measure a correlation timescale and a rotation rate, which
is inconsistent with the velocity of the fluid causing the emission. The strong predictions
from the simulations of the variability measures we create are consistent with current EHT
data. We also create a static analytical midplane accretion flow model and use variable
simulations to motivate a prescription to incorporate turbulent effects. Our model matches
SANE models well and struggles with the more variable MAD models. It can incorporate
non-Kerr metrics, can connect the black hole scales to their large-scale environment, and
can be incorporated in existing parameter estimation frameworks to fit EHT data.
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Chapter 1

Introduction

Black holes are some of the most extreme objects in the universe. Their inherent lack of a
surface means that matter can access vast gravitational potentials, reach highly-relativistic
speeds, and create large-scale magnetic fields. These environments are conducive to a
multitude of electromagnetic emission mechanisms, whose luminosity can be comparable
to and even greater than the light of an entire galaxy while coming from a region the size
of a solar system. Thus, the environments near black holes provide the best opportunity
to test extreme plasma physics and gravity.

1.1 Black Holes

In General Relativity (GR), matter and energy cause curvature in spacetime described by
a metric (Einstein, 1915; Wald, 1984). When the matter is a static spherically-symmetric
bounded object, the spacetime in the vacuum surrounding the object is described by the
Schwarzschild solution (Schwarzschild, 1916). If the object has enough mass within some
radius, it develops an event horizon, the defining feature of a black hole. An event horizon
is a null surface that divides the spacetime, such that lightlike trajectories emanating from
one side (in this case, the inside of the black hole) cannot cross into the other. Matter and
light can still traverse from the outside of the black hole to the inside, and generally, a black
hole’s mass always increases. From an observational standpoint, we can thus describe the
spacetime everywhere with the vacuum Schwarzschild metric, which is entirely categorized
by one parameter, the black hole mass M . Its event horizon is located at the Schwarzschild

1



radius,

RSch =
2GM

c2
, (1.1)

where G is the universal gravitational constant, and c is the speed of light.

Black holes need not be spherically-symmetric. For the case of an azimuthally-symmetric
black hole, the metric is described by the Kerr solution, introducing a second parameter,
the angular momentum J (Kerr, 1963; Wald, 1984). The Schwarzschild metric is the Kerr
solution with J = 0, and there exists a maximum angular momentum for the black hole
of |J | = GM2/c. When later constructing physical simulations, we use the dimensionless
spin, a∗ = Jc/GM2, which in general has both an amplitude and an orientation. Rotation
changes the location of the event horizon and introduces an ergoregion where every light
or matter particle must co-rotate with the black hole. In this ergoregion, it is possible for
matter to extract some of the energy and angular momentum from the black hole via the
Penrose process (Penrose & Floyd, 1971). The no-hair theorem in GR makes a power-
ful prediction that every static azimuthally-symmetric vacuum solution must be the Kerr
solution, described by only three parameters, M , J , and the charge Q, regardless of the
distribution of matter inside the event horizon1 (Israel, 1968; Carter, 1971).

Black holes need not be stationary. As a normal star undergoes a core-collapse su-
pernova phase, it can develop an event horizon and become a stellar-mass black hole (see
Burrows & Vartanyan, 2021, and references therein). Once all of the material falls into the
event horizon, the details of the initial star become irrelevant, and the spacetime outside
is described by the stable static Kerr metric. When two black holes collide, the resulting
object is also a black hole described by the Kerr metric (Pretorius, 2005; Abbott et al.,
2016a). Thus, these seemingly perfect gravitational objects can form, remain, and interact
with their environments in an observable way. It has also been proposed that primordial
black holes could have formed in the early dense universe (Carr & Kühnel, 2020).

As a stellar-mass black hole resides in a galaxy, it can gravitationally interact with
other stars or ambient galactic matter. The matter gains energy as it falls into the black
hole and can release it through many electromagnetic emission mechanisms. A black hole
can also collide with other black holes, releasing gravitational waves in the process. Both
of these effects have been detected, providing strong evidence that these objects are, in
fact, black holes (Webster & Murdin, 1972; Bolton, 1972; Remillard & McClintock, 2006;
Abbott et al., 2016b). Though the process is not well understood, a black hole’s mass can

1In principle, the electromagnetic charge on a black hole could be nonzero and affect the spacetime.
However, for the matter in our universe, electromagnetism is much stronger than gravity, and any significant
black hole charge would be equilibrated on timescales much shorter than black hole formation.
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increase to 106−10M⊙, thus becoming a supermassive black hole (SMBH) and residing in
the center of a galaxy (Kormendy & Ho, 2013). A SMBH is much lighter than all of the
matter in its host galaxy, but it can energize nearby gas enough to have an enormous effect
on the evolution of its galaxy. Evidence for the existence of SMBHs primarily comes from
their effects on nearby stars and gas (Lynden-Bell, 1969; Soltan, 1982; Ghez et al., 1998;
Genzel et al., 1997; Broderick & Narayan, 2006).

Light rays traveling near a black hole are lensed. For a far-away observer, we can
determine the observed image by tracking the light rays back in time and determining from
where the light could have originated. For a non-spinning black hole, there is an unstable
photon orbit located at a radius of 1.5RSch. A light ray starting from the observer at a
radius of

Rshadow =
√
27

GM

c2D
(1.2)

will slowly approach the photon orbit. Here, D is the distance between the black hole
and the observer, and black hole spin changes this formula by about 10%. Light rays
inside Rshadow fall into the event horizon, and light rays outside extend to some point at
infinity. Thus, if the black hole is lit uniformly on all sides far away, the observer would
see a “shadow” located at Rshadow. For a more complex emission structure, the observer
sees some combination of the emission along the light ray’s path. For the systems we later
introduce, the emission is expected to peak near the event horizon and be optically thin.
Thus, the brightness is expected to be largest near the shadow edge, since that is where the
light ray has the largest path length through the emission region. Inside of the shadow,
the image would have a brightness depression, caused by a combination of lensing and
Doppler-boosting effects (Luminet, 1979; Falcke et al., 2000; Narayan et al., 2019).

1.1.1 Black Holes in their Galactic Context: Accretion and Jets

A SMBH in a galactic center environment is surrounded by a reservoir of gas called the
circumnuclear disk. The origins and details of this reservoir of gas remain a topic of
study, and they are set by the evolution of the galaxy. The gas is typically magnetized,
with large ranges in temperature (see Moran 2008, and references therein for an example
of a cool accretion flow; see Event Horizon Telescope Collaboration et al. 2019a for an
example of a hot accretion flow). The relative motion of the black hole with respect to
the galaxy, and thus to this reservoir of gas, is small due to SMBHs living for much longer
than settling timescales (Reid et al. 1999; Merritt et al. 2007; see Pesce et al. 2021a for a
counterexample). At about the Bondi radius of 105RSch, the gas enters the black hole’s
sphere of influence and becomes an accretion flow as it falls in (Bondi, 1952). For example,
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near the Milky Way’s SMBH, the surrounding gas is probably composed of stellar winds
emanating from the orbiting Wolf–Rayet stars (Cuadra et al., 2008; Calderón et al., 2020;
Ressler et al., 2020).

As the matter falls in, the deep gravitational potential accelerates it and the accretion
of fast-moving magnetized gas is transformed into dynamically-important magnetic fields.
Furthermore, the gas is compressed as it falls in, densifying and heating it, sometimes up
to the virial temperature of ∼ 1012K (Yuan & Narayan, 2014). Depending on the specifics
of the material, it can radiate and cool as it falls in. The result is that without a surface to
stop it, the gas near the event horizon can be hot, dense, highly magnetized, and moving
at near the speed of light. This environment creates a wide range of possible emission
mechanisms, the radiation from which can feed back into the motion of the accretion flow.

It is possible for the radiation to exert a force strong enough to counterbalance gravity,
leading to the Eddington luminosity,

LEdd =
4πGMmpc

σT

, (1.3)

where mp is the proton mass, and σT is the Thomson scattering cross section. As an
estimate, the Eddington luminosity is an upper limit followed by many accreting systems,
though non-steady or anisotropic radiation can exceed this value. If all of the infalling gas
turns into radiation, we get the Eddington mass accretion rate,

ṀEdd =
LEdd

c2
. (1.4)

It is practically impossible for a black hole system to efficiently convert all of the accreted
material into radiation, and efficiencies can range from 10−7 to 10−1. The remaining energy
goes into heating the gas, or perhaps in the kinetic energy of outflows.

As a crude estimate, the mass (energy) of accreting matter scales with the density,
while emission mechanisms scale with the density squared. Thus, systems with a high mass
accretion rate relative to the mass of the central object are more efficient in converting mass
energy into radiation.

Since the incoming gas has a net angular momentum and magnetic flux, it is conserved
as the gas reaches the event horizon. The rotation, gravity, and gas and magnetic pressure
roughly balance together to create an accretion disk, though its thickness can vary sub-
stantially. The magnetic flux builds up in the inner flow and can accelerate particles and
create relativistic jets of material emanating from the black hole, probably in the direction
of the black hole spin or orthogonal to the accretion disk plane. These jets have been
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observed and extend far beyond the SMBH’s host galaxy, and through jets, the SBMH
influences the evolution of its galaxy (McNamara & Nulsen, 2012; Kormendy & Ho, 2013).
It is unclear how accretion flows create jets and how jets accelerate their material, and
observations have thus far placed this process as occurring quite close to the event horizon
(Lu et al., 2023). Current theories for jet formation invoke ordered poloidal magnetic fields
that extract energy either from the black hole or the accretion disk (Blandford & Znajek,
1977; Blandford & Payne, 1982). Between the jet and the disk (the corona), the gas is
likely outflowing, so that not all of the mass and angular momentum of the incoming gas
ends up in the black hole (Yuan & Narayan, 2014).

Galaxies with a central region brighter than the stellar emission have an Active Galactic
Nucleus (AGN). This extra emission is likely caused by an accreting SMBH and provides
the best opportunity to study them. In the unified theory of AGN, the SMBH is surrounded
by an accretion disk close by, and by an absorptive dusty torus far away (Urry & Padovani,
1995; Netzer, 2015). Radio-loud AGN are observed in a high- or low-power state, likely
due to their SMBH’s mass accretion rate, with the cutoff predicted at Ṁ ∼ 0.01ṀEdd

(Xie & Yuan, 2012; Yuan & Narayan, 2014). High-power AGN probably have sub-virial
temperatures and thin disks as they efficiently transform gravitational energy into light.
Low-power AGN do not efficiently radiate and instead transform the gravitational energy
into heat, leading to thick puffy disks.

The rest of the AGN classifications can be explained by the inclination of the observer,
whether that be near the jet, obscured by the dusty torus, or in the region between. For
high-energy AGN, when the observer is not aligned with the jet, the observer sees a quasar,
with further differences explained by whether or not the dusty torus obscures the SMBH.
For low-energy AGN, at the same inclinations, the observer sees either a broad or narrow
line radio galaxy. When the observer is aligned with the jet, it is a blazar, with high-
power blazars called Flat-Spectrum Radio Quasars (FSRQs) and low-power blazars called
BL Lacs (named after the prototype object BL Lacertae). Most of the sources we will be
interested in are blazars or low-power AGN.

The two SMBHs with the largest known angular size on the sky are Sagittarius A*
(Sgr A∗) and Messier 87* (M87∗; Ramakrishnan et al. 2023). The former is located in
the Milky Way, and measured through direct observations of orbiting stars, has a mass of
4× 106M⊙ and a distance of 8 kpc, giving an expected angular size of its shadow of 50µas
(Do et al., 2019; Gravity Collaboration et al., 2019). Sgr A∗ has a mass accretion rate of
≲ 10−6M⊙/yr ≈ 10−4ṀEdd (Genzel et al., 2010). Thus, Sgr A∗ is a low-luminosity AGN,
and it has a spectral energy distribution (SED) that peaks near 1 mm (Event Horizon
Telescope Collaboration et al., 2022a, and references therein). From increasingly higher-
frequency radio observation of Sgr A∗, the emission at ≳ 1 mm is expected to be optically

5



thin and originate from a compact region within 150µas (15 RSch; Doeleman et al. 2008;
Bower et al. 2014; Issaoun et al. 2019). This is also where the frequency dependence of
the scattered size of Sgr A∗ turns over, indicating that we can see through the interstellar
scattering screen (Bower et al., 2006; Johnson et al., 2018). Although there is evidence for
energetic outflows a few million years ago, no jet has been conclusively detected (Falcke &
Markoff, 2000; Yusef-Zadeh et al., 2016; Yang et al., 2022). Sgr A∗ also has daily X-ray
flares and both theoretical models and near-infrared observations hint that they are caused
by nonthermal electron hotspots accelerated by magnetic reconnection events (Broderick
& Loeb 2006a; GRAVITY Collaboration et al. 2018; Haggard et al. 2019, and references
therein).

M87∗, on the other hand, is one of the most massive known SMBHs with ∼ 6.5×109M⊙
(Liepold et al., 2023; Osorno et al., 2023; Simon et al., 2023) 2. It is 17 Mpc away, which
leads to an angular size of its shadow of 40µas (Cantiello et al., 2018). The mass accretion
rate is ≲ 0.1M⊙/yr ≈ 10−3ṀEdd, so M87∗ is a low power AGN (Di Matteo et al., 2003).
Like Sgr A∗, its SED peaks near 1 mm, where it is also expected to be optically thin
(EHT MWL Science Working Group et al., 2021). However, M87∗ has a prominent jet, the
first discovered, and it contains a substantial fraction of M87∗’s emission (Curtis, 1918; Lu
et al., 2023). Radio measurements place the jet as originating at the core, and spots have
been traced traveling outward along the jet (Hada et al., 2016).

There are 3 main emission mechanisms in Sgr A∗ and M87∗. The millimeter emission is
caused by synchrotron radiation and bremsstrahlung causes high-energy emission. A subset
of photons from each of these sources is inverse Compton-scattered to higher frequencies.
There may also be emission due to pair annihilation in the evacuated jet region (Anantua
et al., 2020). From a hydrodynamic view, Sgr A∗ and M87∗ are both in the collisionless
regime, although magnetic interactions could effectively decrease the mean free path and
anisotropically couple fluid elements. Thus, the electron distribution function need not be
thermal. Coloumb collisions are generally insufficient to transfer internal energy from the
ions to the electrons, leading to different temperatures for the two populations (Mahadevan
& Quataert, 1997; Yuan & Narayan, 2014). For the millimeter images we will later be
interested in, we will need to know the density, electron energy distribution, and velocity
and magnetic field.

2Traditionally, the mass of M87∗ as measured through stellar or gas kinematics differs by about a factor
of 2. Due to the many assumptions underlying the estimate from gas kinematics, we choose the higher
mass estimate (Jeter & Broderick, 2021).
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1.2 The Event Horizon Telescope

The most interesting phenomena in black holes occur near their event horizons. The Event
Horizon Telescope (EHT) is a new instrument with the angular resolution to observe (at
least) two SMBHs on event-horizon scales (Event Horizon Telescope Collaboration et al.,
2019b). At millimeter wavelengths, M87∗ and Sgr A∗ are both mostly optically-thin and
are bright enough to measure at 0.5-2.5 Jy. Ground-based observations at these frequencies
are possible in several bands where atmospheric water vapor does not absorb all the light.
However, the diffraction limit of a source is directly proportional to the wavelength of light
and inversely proportional to the diameter of the telescope aperture. For 1 mm emission
and a 50µas black hole shadow, the Rayleigh criterion results in a telescope aperture of
5,000 km, approaching the size of the Earth.

1.2.1 Very-Long Baseline Interferometry

To achieve the necessary angular resolution, the EHT uses a technique known as Very-
Long Baseline Interferometry (VLBI; Thompson et al. 2017). In VLBI, an instrument is
composed of many radio dishes at different places around the world. Each observatory
looks at the same source at the same time and records the signal. A traditional telescope
would focus these signals, i.e., change their path length and add them up. In VLBI, the
signals are time-shifted to replace the change in path length and then correlated. For
any pair of dishes, known as a baseline, the result is a complex number corresponding to
the amplitude and phase of the Fourier mode on the sky set by the projected distance
and direction between the two dishes. With a large number of dishes, VLBI gives an
approximation to the Fourier transform of the on-sky image, which can theoretically be
inverted to produce the image.

Practically, instruments do not have enough dishes to fully fill out the Fourier plane.
To get more data, an instrument can observe over timescales of a day (or night), and as
the Earth rotates3, the projected distances and directions between all the dishes change,
and more of the Fourier plane is filled out. This Earth-aperture synthesis with VLBI
traditionally assumes that the source is stationary over a night, an assumption broken by
the EHT with Sgr A∗. The maximum resolution is set by the longest baseline, and with
a high enough signal-to-noise ratio and sufficient coverage, reconstruction methods can
super-resolve with some image assumptions.

3Foucault (1851)
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1.2.2 Submillimeter VLBI with the EHT

Figure 1.1: Representative EHT baseline coverage during the 2017 observing campaign of
M87∗. The left panel is a zoom-in of the right panel showing the short baselines (large
scales) from co-located observatories. The dashed circles represent the minimum resolving
scale. Labels indicate the pair of stations creating each baseline. This figure is taken from
Figure 1 of Event Horizon Telescope Collaboration et al. (2019c).

The EHT is a VLBI instrument observing at 230 GHz, with extensions planned for 345
GHz. There are a maximum of 11 stations at 9 geographic locations, though currently
available datasets have not included 3 of them (Event Horizon Telescope Collaboration
et al., 2019b,d). This results in a typical EHT observation covering only a small portion
of the Fourier plane; Figure 1.1 shows an example for M87∗. An EHT observation has 102
to 104 scan-averaged data points. Directly inverting the data results in a “dirty map” and
contains many pathologies. Combined with independent uncertainties for each data point,
the uncertainty in the resulting image is large, with non-local correlations on small and
large scales.

In order to solve the inverse imaging problem, a number of techniques have been used:
CLEAN-based deconvolution algorithms DIFMAP (Shepherd, 1997) and AIPS (Greisen
2003; also used in Carilli & Thyagarajan 2022), regularized maximum likelihood algorithms
eht-imaging (Chael et al., 2016, 2019) and SMILI (Akiyama et al., 2017a,b), sampling-
based Bayesian posterior exploration methods Themis, (Broderick et al., 2020b,a), DMC
(Pesce, 2021), and Comrade (Tiede, 2022), a wavelet deconvolution algorithm DoG-HiT
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(Müller & Lobanov, 2022), a Bayesian deep learning framework (Sun et al., 2022), and a
Bayesian variational inference method (Arras et al., 2022). Each of these incorporates some
assumption or prior on the allowed image structure, e.g., image positivity, smoothness, flux
compactness, or sparsity. Each thus results in a large space of possible images that fit the
data, though only for the Bayesian methods will this correspond to a statistical posterior
of images. It is important to note that these images are not the data, and much more
discriminatory power exists for methods that extract physics directly from the Fourier
data.

At EHT frequencies, the primary observational handicap is the atmospheric water vapor
in the atmosphere, which changes over timescales of minutes, attenuates the signal, and
scrambles the phase delays, equivalent to a complex gain. Since the number of baselines is
greater than the number of stations for more than 3 stations, most of these gains can be
independently reconstructed for each scan. However, the EHT cannot currently constrain
the absolute phase gradient of the Fourier data, equivalent to a shift of the image position
on the sky every scan.

Future instruments will substantially expand the spatial and temporal scales that such
images probe. Upcoming ground-based projects, e.g., the ngEHT, promise to produce
improvements in resolution by pushing toward shorter wavelengths, major improvements in
sensitivity, and the capacity to probe variability in these sources on timescales of minutes
(see e.g., Doeleman et al., 2019; Raymond et al., 2021). Space-based VLBI missions,
building on the demonstrated recent success of RadioAstron (Gómez et al., 2016; Kardashev
et al., 2017; Johnson et al., 2021), have the potential to increase imaging resolution by
orders of magnitude, both improving the view of EHT targets and expanding the number
of horizon-scale sources commensurately (Johnson et al., 2019; Pesce et al., 2021b).

1.2.3 Summary of Current EHT Results

Images of the two horizon-scale EHT targets, M87∗ and Sgr A∗ have now been published,
revealing in unprecedented detail the astrophysical processes at work in the innermost
regions of accretion flows and in the region responsible for launching jets (Event Horizon
Telescope Collaboration et al. 2019a,b,d,c,e,f, hereafter M87* Paper I-VI, Event Horizon
Telescope Collaboration et al. 2022b,a,c,d,e,f, hereafter Paper I-VI). Figure 1.2 shows the
2017 EHT images of M87∗ and Sgr A∗ as reconstructed by the Event Horizon Telescope
Collaboration.

The first EHT observations of M87∗ revealed a bright ring with a central brightness
depression. When identified with the lensed event horizon, silhouetted against the luminous
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(a) EHT Observations of M87∗. Figure taken from M87∗ Paper IV.

(b) EHT Observations of Sgr A∗. Figure taken from Paper I.

Figure 1.2: First EHT observations of the two horizon-scale sources, M87∗ (a) and Sgr A∗

(b). Both sources show a bright ring of emission. M87∗ varies over the course of one week,
with the brightest region moving from the left to the bottom of the ring. The four small
panels below the image of Sgr A∗ represent four possible morphologies, with the histograms
detailing the number of images reconstructed in Paper III. The size of the beam is shown
by the white circle in the bottom right.
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plasma in its vicinity, the bright ring had the size predicted by GR for the black hole mass
measured by stellar dynamics. The ring had a brightness asymmetry, which informed the
direction of motion of the gas. The gas surrounding M87∗ was hot and magnetized and
consistent with fluid simulations. Over the week of observation (of order 10 times the light
crossing time), M87∗ showed a moderate change in the structure of the emission, mainly
by a brightness asymmetry that moved clockwise. Bayesian imaging techniques support
a connection of the ring and jet, as well as higher evidence for a thin bright photon ring
(Broderick et al. 2022a; also, see Lu et al. 2023).

The first EHT observations of Sgr A∗ also revealed a ring and brightness depression,
though with less confidence and without a robust constraint on the emission structure.
Sgr A∗ was found to contain both structural and unresolved variability; this contributes
to the uncertainty in the average image, and the work in Chapter 3 was instrumental in
separating the average image from the variability (Georgiev et al. 2022; Broderick et al.
2022b; M87∗ Paper IV). Simulations were mostly consistent with the observations, with
the largest discrepancy caused by the variability in the total flux.

Images of both M87∗ and Sgr A∗ are grossly consistent with the expectations from
theoretical modeling of the near horizon region (Luminet 1979; Falcke et al. 2000; Broderick
& Loeb 2006b; Broderick et al. 2009; Broderick & Loeb 2009; Mościbrodzka et al. 2009;
Dexter et al. 2009, 2012; Mościbrodzka et al. 2014, 2016; M87∗ Paper V; Paper V). This
is largely a result of two generic elements that shape horizon-scale images: the strong
gravitational lensing that imposes the central flux depression, or shadow, independent of
the underlying accretion flow; and the relativistic motions within the emission region due
to Doppler beaming and shifting (Luminet, 1979; Falcke et al., 2000; Broderick & Loeb,
2009; Narayan et al., 2019). The former is fully described by GR, and thus fully determined
in the absence of new physics. In contrast, the latter is dependent on astrophysical details
within the emission region, and thus model dependent.

The EHT has also observed several blazars to study the jet structure on 10-100 RSch.
These are 3C 279 (Kim et al., 2020), J1924-2914 (Issaoun et al., 2022), NRAO 520 (Jorstad
et al., 2023), and OJ 287 (in preparation). All show a collection of blobs along the path
of a jet. These are typically polarized and are moving outward from a central core. In
addition, the EHT has observed a forked jet in the radio galaxy Centaurus A (Janssen
et al., 2021).
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1.3 GRMHD Simulations and Synthetic Images

Astrophysical plasmas are usually modeled as a fluid and their evolution is described by the
conservation of mass, energy, and momentum, and by Maxwell’s equations. The material
around the SMBHs of interest is hot and ionized, and most likely made of hydrogen, so it
is modeled as a soup of ions and electrons. At its most basic level, this is done with the
coupled Vlasov-Maxwell equations, which track the distribution of particles through phase
space. This technique, applied through particle-in-cell codes, is very computationally ex-
pensive but can find self-consistent heating mechanisms and electron distribution functions
in collisionless plasmas.

The first major assumption is to take moments of the Vlasov equation, yielding the
continuity and Euler equations. When the particle distribution function is isotropic and
local, one can prescribe an equation of state and thus ignore kinetic viscosity/heating
effects. Placing this gas in a relativistic spacetime, which itself is affected by the mass via
the GR field equations, leads to GRMHD simulations, which have been applied to a variety
of systems (Hawley et al., 1995; Stone & Pringle, 2001; Davis et al., 2010; Tchekhovskoy
et al., 2011; McKinney et al., 2012; Narayan et al., 2012; Palenzuela et al., 2013; Mösta
et al., 2014; Porth et al., 2014; Paschalidis et al., 2015; Shiokawa et al., 2015; Combi &
Siegel, 2023).

Black hole accretion flows are necessarily dynamic and non-laminar; the magnetohydro-
dynamic (MHD) turbulence that facilitates the transfer of angular momentum responsible
for driving material inward is an essential feature of accretion flow models on compact
objects (Shakura & Sunyaev, 1973; Balbus & Hawley, 1991). The resulting variability is
expected to manifest on a wide variety of temporal and spatial scales, ranging from the
cyclotron scale to the orbital scale. An a priori understanding of the properties of fully
developed MHD turbulence remains an active area of study (see, e.g., White et al., 2020;
Narayan et al., 2021, and references therein). Misaligned accretion flows, i.e., systems
in which the angular momentum of the accreting gas is not aligned with the spin of the
central black hole, will result in additional variability (Dexter & Fragile, 2013; Chatterjee
et al., 2020; Ressler et al., 2020). It is, therefore, nontrivial that state-of-the-art (GRMHD)
simulations of the magnetized plasmas near the black hole are in broad agreement with
the observed image morphologies (M87∗ Paper V; Paper V).
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1.3.1 GRMHD Simulations of EHT Sources

In order to generate synthetic images for the black hole systems targeted by the EHT, we
use fluid simulations of accreting plasma in the Kerr black hole spacetime and, through
simulation of emission and absorption mechanisms, the synthetic images that would be seen
by a distant observer. The fluid simulations treat the plasma as an ideal, single-temperature
fluid that is governed by the equations of ideal GRMHD. A detailed description of these
equations can be found in Gammie et al. (2003), and we write them where applicable in
Chapter 2. Each chapter uses slightly different assumptions, parameter spaces, and codes
for the GRMHD fluid simulations and images.

Our ideal GRMHD simulations make several assumptions. First, we assume that the
plasma can be treated as a fluid, even though the mean free path of particles in the flows is
often much longer than the characteristic length scales in the systems. Second, we assume
that the plasma has infinite conductivity, such that the magnetic field lines are “frozen”
into the fluid.

In reality, kinetic processes in the (near-)collisionless plasma may increase the effective
particle collision rate and allow deviations from the ideal fluid picture that can modulate
typical variability timescales (see e.g., Foucart et al., 2016). Deviations from the infinite
conductivity ideal fluid approximation (including the effects of viscous or resistive dissipa-
tion and heat conduction) may alter the thermodynamics of the flow (see Foucart et al.
2017 for a discussion; see Chandra et al. 2017, Most & Noronha 2021, and Most et al. 2021
for descriptions of viscosity in GRMHD; see, e.g., Ripperda et al. 2020 for an exploration of
the effect of finite resistivity, especially in the context of plasmoid-mediated reconnection
powering flares). It is particularly important to resolve the spatial scales on which the
aforementioned dissipation mechanisms act (e.g., Ripperda et al. 2021). Variability time-
scales governed by turbulent dissipation or reconnection may, however, be very different in
collisionless plasmas, and be strongly affected by non-thermal electron distribution func-
tions, requiring a first-principles relativistic kinetic approach (e.g., Guo et al. 2014; Sironi
& Spitkovsky 2014; Kunz et al. 2014; Werner et al. 2016; Zhdankin et al. 2017; Comisso &
Sironi 2018; Bransgrove et al. 2021; Nättilä & Beloborodov 2021). All of these effects could
cause significant changes in average structure or variability not captured in the simulations
used in this work.

We also assume that the radiation is not dynamically important to the flow so that it
can be treated entirely in a post-processing step. The non-radiative assumption is a valid
approximation for our systems of interest, Sgr A∗ and M87∗, where accretion is radiatively
inefficient and Ṁ ≪ ṀEdd; here Ṁ is the accretion rate (Yuan & Narayan, 2014).
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We assume an ideal gas equation of state for the plasma with adiabatic index, Γad
4. The

system evolves on a stationary background spacetime that is unaffected by the accretion
flow, whose total energy content is orders of magnitude lower than the central supermassive
black hole. In this work, we choose the spin axis to point in the y-direction in the image
and v-direction in the Fourier domain.

Concretely, the numerical simulations are initialized with an axisymmetric hydrody-
namically stable Fishbone–Moncrief torus (Fishbone & Moncrief, 1976), that is parame-
terized by the inner radius of the disk, rin and the radius at pressure maximum, rmax. The
torus is chosen to rotate either in the same (a∗ > 0) or opposite (a∗ < 0) direction as the
black hole. An axisymmetric electromagnetic vector potential is used as the initial condi-
tion for the magnetic field (see Wong et al. 2022 for more details), and the thermal energy
of the fluid is perturbed to seed development of instabilities such as the magneto-rotational
instability (MRI; Balbus & Hawley, 1991) and kickstart accretion. After ≳ 5, 000GM/c3,
the inner region reaches a quasi-steady state so that: the initial condition of the simulation
has a negligible effect on the final state, and the simulation can reproduce the relatively
steady-state light curve observed over the 2017 EHT observations of Sgr A∗, which exhibits
variability on the scales of 10% (Paper II; Paper V). There is evidence that Sgr A∗ may have
recently been in a period of increased accretion (see e.g., Montero-Castaño et al., 2009),
but such more complex feeding scenarios are beyond the scope of this work. Far from the
black hole, the simulation is dominated by its initial condition, which supplies material to
the inner turbulent flow. Since the torus is initialized with finite mass, in long-duration
studies, it is possible that an appreciable fraction of the disk mass may accrete onto the
black hole. This net decline may introduce an “artificial” systematic downward trend in
long timeseries generated from the simulation.

The strength and structure of the magnetic field during the late-time, quasi-equilibrium
phase dictate the magnetic flux, Φmag threading the event horizon. Each simulation we
consider equilibrates into one of two qualitatively different modes of accretion, each of
which has a characteristic value of the non-dimensionalized magnetic flux, ϕ ∼ Φmag/

√
Ṁ .

When ϕ ∼ ϕc, where ϕc ∼ 15 (Tchekhovskoy et al. 2011 but using the unit convention of
Porth et al. 2019) is the critical value at which the local magnetic pressure near the event
horizon balances the inward fluid ram pressure, we obtain a magnetically arrested disk
(MAD) (Bisnovatyi-Kogan & Ruzmaikin, 1974; Igumenshchev et al., 2003; Narayan et al.,
2003). In contrast, when ϕ ≪ ϕc, the system produces a standard and normal evolution
(SANE) disk (Narayan et al., 2012; Sa̧dowski et al., 2013).

4The symbol γ is used for the adiabatic index in Chapter 2.
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MAD

In ideal MHD, the magnetic flux is advected at the fluid velocity. If the material entering
the black hole system is magnetized and the material ends up inside the black hole, then
magnetix flux accumulates on the horizon. MAD accretion takes this effect to the extreme,
where enough magnetic flux builds up to inhibit accretion. In MAD accretion, the magnetic
flux is highly ordered with a large magnetosphere around the black hole. Away from the
midplane, the magnetic pressure is sufficient to prevent the material from accreting. Near
the midplane, accretion is possible, but it is choppy and characterized by transient ejection
events where evacuated bubbles of magnetic flux that have accumulated on the horizon are
expelled by the system. The strong magnetic fields near the horizon thus squish the disk,
forcing the infalling plasma to accrete in thin, disordered accretion filaments or strands.

The jets in MAD simulations extract energy from the black hole via the Blandford-
Znajek mechanism (Tchekhovskoy et al., 2011). Thus, MADs efficiently transform the in-
falling material into outflows, and make certain predictions about the relationtship between
mass accretion rate and jet power on larger scales (Event Horizon Telescope Collaboration
et al., 2022e).

SANE

In contrast, when the advected magnetic flux is low or randomly oriented, the steady state
is characterized as a SANE disk with less ordered magnetic fields, though still dynamically
important. SANE disks are turbulent and angular momentum transport is thought to
be governed by the MRI. Due to the more disordered magnetic field structure, SANE
disks are thick and have steady accretion. Unlike MADs, SANEs can have more drastic
vertical electron temperature profiles, as the lower variability means less mxing between
the midplane ant the corona. The jets in SANEs can still extract energy from the black
hole, but are less efficient than MADs.

1.3.2 Synthetic Images of Black Holes

The GRMHD fluid simulations are used to generate images through general relativistic
radiative transfer (GRRT), which proceeds in two steps. First, photon trajectories are
computed backward from the camera into the simulation domain by solving the geodesic
equation. Then, the covariant radiative transfer equation is solved forward to the camera
along the precomputed photon geodesics, accounting for emission and absorption from the

15



local plasma. The majority of results in this work consider images generated under the
“fastlight” assumption, in which we approximate the fluid as unchanging during the entire
GRRT process so that any image corresponds to a single (Kerr–Schild) timeslice.

The GRRT procedure takes as input:

• the fluid and electromagnetic data (mass density, fluid internal energy, fluid velocity,
magnetic field) on a particular Kerr–Schild timeslice,

• a prescription for translating local fluid data into emission and absorption transfer
coefficients at the appropriate observing frequency,

• the mass and spin of the central black hole, and

• camera parameters (including distance to source D and inclination angle i).

Here the inclination is defined as the angle between the line of sight to the observer and
the black hole spin axis. In principle, we could introduce an azimuthal position angle of
the camera, but there is not a unique choice for accretion flows aligned with the black hole
spin.

The equations of non-radiative GRMHD are invariant under rescalings of length and
time with the black hole mass, M , and rescalings of the fluid density, internal energy, and
square of magnetic field strength with some density scale. The angular scale of the image,
GM/(c2D), is fixed by providing the distance to the source, D.

The expected near-collisionless nature of the plasma in the galactic center accretion
system likely produces a flow in which the electron and ion components are best described
as having different temperatures, Te ̸= Ti. Since our fluid simulations only track the total
energy of the fluid, it is necessary to prescribe the temperature of the electrons, which are
responsible for the emission. We use the electron temperature prescription described in
Paper V, which is based on the model of Mościbrodzka et al. (2016), in which the ratio of
ion to electron temperatures is a function of the local plasma β = Pgas/Pmag, according to

Ti

Te

= Rhigh
β2

1 + β2
+

1

1 + β2
. (1.5)

Heuristically, this model allows the two species to have approximately equal temperatures
in the low-density, highly magnetized jet region and produces increasingly cool electrons
in the bulk disk as the free parameter Rhigh is increased. In this work, we assume that the
electrons are well described by a thermal distribution, which is parameterized by a single
(temperature) variable.
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Numerical Implementation

In the present work, we consider fluid simulations performed by the following GRMHD
codes: KHARMA and iharm3d (Prather et al., 2021), KORAL (Sądowski et al., 2013, 2014),
and BHAC (Porth et al., 2017). These codes solve a set of conservation laws, where the
conserved quantites correspond to the mass, energy-momentum, and magnetic fluxes. In
addition, one of the electromagnetic equations is a spatial constraint. The fluid variables
are evolved on a fixed grid, where the time coordinate is chosen depending on the static
background metric used. Each code makes its own choices about numerical floors, grid
geometry, and numerical schemes. See Porth et al. 2019 for a comparison of contemporary
GRMHD codes.

The synthetic images of the GRMHD “snapshots” are generated by performing general
relativistic ray tracing. We consider images or “frames” produced using the ipole and
BHOSS GRRT codes; Gold et al. 2020 presents a comparison of contemporary GRRT codes.

1.4 Comparing Phenomenological and Physical Models
to EHT data

With the analysis of EHT data being mostly limited to forward modeling, there is a grow-
ing need for models that incorporate prior knowledge of the expected physical processes
constructed in a way that can be robustly compared to the EHT data. These models range
from full GRMHD simulations to geometric models, each with their own assumptions and
systematics.

1.4.1 GRMHD Models

GRMHD models begin from first principles, make simplifying assumptions, and simulate
the emitting material as a fluid. Separate models perform the ray-tracing and radiative
transfer to create reasonably self-consistent movies of black holes. These movies are tur-
bulent with stochastic variability and it is not feasible to exactly match a simulation with
an observation. Thus, data comparisons are done statistically, using the simulations’ pre-
diction for some type of variance. This has been done for EHT observations, with average
image scoring for M87∗ (M87∗ Paper V; M87∗ Paper VI) and noise modeling for Sgr A∗

(Paper IV; Paper V). Alternatively, one could compare some quantity measured both from
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a library of simulations and from the data. For example, Paper V used an m-ring to ask
whether the simulated and observed data had similar radii, widths, and asymmetries.

However, GRMHD simulations are computationally expensive and only sparsely sample
the possible space of black holes and fluid parameters. With existing GRMHD simulation
libraries, it is possible to measure and compare the effects of the black hole spin and the
accretion state (MAD or SANE). However, it is difficult to test the robustness of results
to assumptions, as measuring the effects of, e.g., resistivity, radiative forces, disk misalign-
ment, and outer boundary conditions requires new fluid simulations. Comparatively, the
radiative transfer is computationally cheaper, so exploring different types of electron ther-
modynamics, camera position, or emission frequencies can be done using standard Bayesian
sampling methods (or grid searches as in M87∗ Paper V and Paper V). Thus, improving the
capability of GRMHD simulations to extract physical information from EHT data entails
either more computational ability or more sophisticated geometric and semi-analytical ap-
proximations. Existing data can already place strong constraints on models, though they
have only explored a small parameter space.

1.4.2 Geometric Models

The conceptually simplest models are geometric, e.g., a sum of gaussians, rings, or disks,
motivated by features seen either in data or simulations. These models have the advantage
of being robustly measurable, but are difficult to interpret, and often require also being
applied to GRMHD simulations to connect geometric results to physical results. Many
implementations of these types of models exist in data fitting frameworks, such as Themis,
eht-imaging, DMC, and Comrade, and these models have successfully been used to interpret
EHT data (M87∗ Paper VI; Paper IV; Lockhart & Gralla 2022; Saurabh & Nampalliwar
2023). In some sense, images are models with a large number of parameters and strong
priors and contain similar interpretational difficulties. Placing physically-motivated priors
increases the interpretability of geometric models, under the assumption that the source is
indeed described by the now semi-physical model. For example, motivated by the presence
of a photon ring in GR and in many simulations, Broderick et al. (2022a) added a thin bright
ring to an image model, greatly increasing the precision of the parameter estimation and
increasing evidence for the presence of a photon ring. Variability in geometric models can
be incorporated through time-variable parameters, and this technique is used to measure
jet speeds in 3C 279 and OJ 287 (Kim et al., 2020).

Improving geometric models entails describing model features such that they encompass
a wide range of possible physical effects expected in accretion flows. For this, libraries of
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GRMHD simulations and images are useful as extraction and validation tools. Examples
of such models include principal component analysis (Medeiros et al., 2023), and gaussian
random fields as stochastic variability (Lee & Gammie, 2021). We contribute to these types
of models in Chapter 3 and Chapter 4.

1.5 Semi-Analytical and Phenomenological Accretion Flow
Modelling

Due to the stochastic nature of turbulent variability, it is not necessary to model every
aspect of an accretion flow to produce a comparison to EHT data. Semi-analytical models
make simplifying assumptions about the structure and variability of the flow in order to
greatly reduce the computational cost and to explore a wider range of possible physical
assumptions. Ray-tracing and radiative transfer are computationally cheap enough to be
done normally, though they can be approximated as well.

1.5.1 Bondi Accretion

A common approximation of accretion flows is static, spherically-symmetric accretion of
an ideal fluid, with no radiation or viscosity (Bondi, 1952; Frank et al., 2002). The result-
ing Bondi–Hoyle–Lyttleton accretion requires that the accretion flows conserves mass and
momentum and adiabatically heats the gas as it is compressed. The accretion flow has
three constants of motion,





−4πr2ρv, Conservation of mass
p
ργ
, Conservation of energy

v2

2
+ γ

γ−1
p
ρ
− GM

r
, Conservation of momentum

(1.6)

where r is the radius, p is the gas pressure, ρ is the density, v is the radial velocity, and γ is
the adiabatic index. Bondi accretion comes in three types depending on the sound speed
of the gas (cs =

√
γp/ρ). When the incoming gas velocity is low, the gas always remains

subsonic and approaches zero as the gas reaches the central object. When the incoming gas
velocity is high, the gas reaches a pressure barrier where it becomes supersonic and either
turns around or shocks to a subsonic solution. The third type of solution, or transonic,
passes through a critical point at the sonic radius with a gas velocity equal to the sound
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speed. This point happens at a radius of

rsonic =
GM

2c2s
. (1.7)

This transonic solution is taken as the Bondi accretion solution. A similar solution exists
for a wind.

In Bondi accretion, the mass accretion rate, and density, pressure, and velocity profiles
are entirely determined by the central object’s mass and the density and pressure at infinity.
All of these quantites increase in magnitude towards the black hole with a power-law
dependence on radius. Usefully,

Ṁ ∼ G2M2ρ

c3s

∣∣∣∣
r=∞

, (1.8)

with leading factors of order unity.

Bondi accretion provides order-of-magnitude estimates for how much mass can be sup-
plied by a black hole’s environment. Notably, it scales as M2, whereas the radiation-limited
Eddington limit scales as M . For supermassive black holes, the environment roughly exists
outside of ∼ 105RSch, and thus Bondi accretion is typically used as a sub-grid model for
galactic/cosmological simulations.

However, accretion on black holes is not spherical, as we can observe jets. As such, this
type of model is insufficient to explain structure in EHT images but can provide reasonable
estimates for ancillary observations (Quataert et al., 1999; Di Matteo et al., 2003; EHT
MWL Science Working Group et al., 2021).

1.5.2 Angular Momentum Transport

Adding rotation complicates matters substantially. For vertically-symmetric, axisymmetric
accretion, the midplane accretion flow has the following constants:





p

ργ
, Conservation of energy

r2Ω, Conservation of angular momentum
v2

2
+ γ

γ−1
p
ρ
− GM

r
+

(r2Ω)
2

2r2
, Conservation of radial momentum

(1.9)

where Ω is the angular velocity. From the last expression, we see the creation of an effective
potential barrier. The r−2 dependence of the angular momentum term is always positive
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and larger than the r−1 dependence of the gravitational term for small enough radius.
Thus, material with angular momentum cannot reach the central infinitessimal object in
this paradigm. Note that the finite size of a black hole and general relativistic effects do
allow gas with small angular momentum to reach the horizon (see Chapter 2), but the gas
from the reservoir easily has a larger value.

For matter to accrete, there must be a mechanism for outward angular momentum
transport. Molecular viscosity is insufficient; the mean free path in the flow is

λ

r
≈
(

T

1012K

)2(
v

rΩK

)(
H

r

)(
r

RSch

)1/2
(

Ṁ

ṀEdd

)−1

, (1.10)

where ΩK is the Keplerian angular velocity and H is the disk height. Thus, the Reynolds
number of the virialized fluid is often greater than 109, such that the gas would not accrete.
The lack of viscosity is due to the long mean free path – the same problem that makes
the fluid approximation inadequate. The same solution applies – magnetic fields in these
plasmas are dynamically relevant, and can presumably create an effective fluid viscosity
wherever the magnetic processes are saturated. However, three-dimensional turbulence is
typically dominated by the largest spatial scales, and thus the form of the effective viscosity
will depend on the global properties of the accretion flow.

1.5.3 The α-Viscosity Prescription

It is possible to introduce a form of angular momentum transport, and thus viscous heating,
in a way that allows the fluid equations to have analytical solutions (see Yuan & Narayan
2014, and references therein). The fundamental assumption is that, in the saturated tur-
bulent accretion flows, the shear is driven by large-scale features (such as vorticies, or MRI
spatial modes). The largest of these features are of the size of the accretion disk height,
and information travels through them at the sound speed. More specifically, the kinematic
viscosity,

ν = αcsH, (1.11)

where cs is the soundspeed, H is the disk height, and α is a proportionality constant
containing all of the information about viscosity (Shakura & Sunyaev, 1973). Importantly,
Equation 1.11 is not self-consistently found from GRMHD simulations, though it has had
success in explaining observations 5.

5That is, α = 0, or no viscosity and no angular momentum transport, is a poorer explanation than
positive α < 1.
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A secondary major assumption is included to better model the gross features of accre-
tion flows. As the gas infalls, it is possible that the effective viscosity heats mainly the ions
in the gas, which do not efficiently transfer the energy to the radiating electrons. Similarly
to the viscosity it is possible to parametrize this with a constant,

f ≡ Advected energy
Viscous Heating

= 1− Radiated Energy
Viscous Heating

. (1.12)

The solutions to this model (to first order in α) are




Ṁ ∼ rs

ρ ∼ α−1ṀM−1/2r−3/2

p ∼ α−1ṀM1/2r−5/2

v ∼ αM1/2r−1/2

Ω ∼ M1/2r−3/2

H ∼ r

Viscous Heating ∼ ṀMr−4

. (1.13)

The mass accretion rate can be a power law in radius, representing a loss of mass due to
a vertical wind, and still keep the self-similar nature of the solutions. The proportionality
constants are functions of α, f , and the power-law of the mass accretion rate s. Depend-
ing on the value of these constants, the flow is characterized as an advection-dominated
accretion flow (ADAF), slim disk, or a thin disk.

Thin Disk

When f ≈ 0 and s = 0, the solutions correspond a thin disk of the type introduced by
Shakura & Sunyaev (1973). The gas in these disks is nearly Keplerian with small radial
velocities. Since the gas takes so long to arrive at the black hole, it can radiate almost all
of its internal energy, thus cooling the disk. The cool disk means low pressures, which leads
to small disk heights. However, the density is high, and these disks are optically-thick.

A relativistic result of this thin disk has been obtained by Novikov & Thorne (1973).
For a black hole, the Keplerian angular velocity does not always increase near the black
hole; there exists an innermost stable circular orbit. Inside of this region, the angular
momentum in this model is constant, corresponding to a no-torque condition at the inner
boundary of the disk. Physically, this means that the relativistic effects cause the gas to
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rapidly infall, creating an evacuated region near the black hole. Outside of this boundary,
the gas still infalls slowly.

The viscosity assumption relies upon an equilibrium of the different ways in which
energy can be partitioned. Then, regardless of the source of the viscosity, it is local and
proportional to that seen by the gas pressure. In these thin disks, this is plausible since
the largest non-local effects are limited by a small vertical height, and the gas has many
orbits to equilibrate microphysical effects. However, this need not be (and will not be) the
case for hotter, thicker accretion flows.

This thin disk model has had success explaining X-ray binaries (see, e.g., Li et al. 2005),
particularly their SEDs peaking at X-ray frequencies. It fares less well for AGN, such as
the sources we wish to describe (Kokubo, 2018).

Slim Disks

The assumptions underlying thin disks are only valid when the gas can radiate faster than
viscous heating. However, for increasingly large mass accretion rates near the Eddington
limit, the advected energy grows faster than the radiated energy and the gas can no longer
remain radiatively efficient. The accretion flow then transitions to a slim disk. In an
appropriate limit, slim disks converge to the earlier thin disk model.

A slim disk is thicker, characterized by faster infall velocities, and does not have an
evacuated region inside of the innermost stable circular orbit. Slim disks have super-
Eddington mass accretion rates, and can even have super-Eddington luminosities, where
the radiation escapes vertically and does not inhibit accretion. As the gas cannot efficiently
radiate and 0 < f < 1, the inner region of the accretion flow is more luminous than the
outside.

Thin and slim disks make different predictions for the behavior of SEDs of AGN. How-
ever, their applicability remins uncertain (Castelló-Mor et al., 2017). Slim disks are not
good approximations to Sgr A∗ or M87∗, as these systems have a much smaller accretion
rate.

Advection-Dominated Accretion Flows

An ADAF has f ≈ 1 and a low mass accretion rate. In these systems, nearly all of
the energy is advected into the black hole. Fundamentally, this happens because the low
mass accretion rates lead to low densities and thus energy cannot be efficiently transferred
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from the viscously-heated ions to the radiating electrons. Thus, a two-temperature flow is
essentially required. As the gas infalls and becomes hot, the pressure increases, and ADAFs
are thick or quasi-spherical, and sub-Keplerian. Like slim disks, their emission peaks near
the black hole.

ADAFs are a decent model for AGN where their SED shows a peak near millimeter
wavelengths (Yuan & Narayan, 2014). These require a hot temperature, explained by the
inefficient radiation, and magnetic fields to produce the synchrotron emission. However,
classical ADAFs do not track the structure of the magnetic fields. SANE, but not MAD,
simulations do show magnetic fields that are random and mainly respond to the fluid flow,
so there is some confidence that the assumptions of ADAFs are not broken in the accretion
flow. However, the α-viscosity prescription is rarely satisfied in simulations, and more
complicated structures exist in the corona and jet (Narayan et al., 2012).

1.5.4 Semi-Analytical Models for EHT Sources

Semi-analytical also models motivate accretion flows with parametrized fluid variables,
such as ones where each fluid quantity follows a radial power law (Broderick et al., 2009;
Pu & Broderick, 2018). It is computationally feasible to directly fit these semi-analytical
models along with a radiative transfer routine in, e.g., the Bayesian parameter estimation
framework Themis. Similarly, a Kerr axisymmetric equatorial emission model has been
implemented for fitting to EHT observations (Palumbo et al., 2022).

Similar semi-analytical models exist for the black hole jet. In the force-free paradigm,
the jet is assumed to be magnetically dominated, resulting in an analytical model for
the fluid (Tchekhovskoy et al., 2008; Broderick & Loeb, 2009). This paradigm has been
extended to incorporate GR effects (Pu & Takahashi, 2020).

Semi-analytical models are not limited to the average emission. The daily flares in
Sgr A∗ and the moving features in the jet of M87∗ and other blazars hint at moving spots
of gas, with either a higher density or a different electron distribution function. These have
been modeled as shearing midplane hotspots (Tiede et al., 2020), infalling arc-shaped gas
clouds (Moriyama et al., 2019), shearing hotspots embedded in a jet (Jeter et al., 2020), and
fully reconstructed with a neural network approach (Levis et al., 2022). When applied to
EHT data, these variable features promise high-precision measurements of the spacetime,
the accretion flow, and the determination of the type of jet-launching mechanisms.

None of these semi-analytical models are self-consistent, in that they do not create
their main effects from known microphysical processes. Rather, they are approximations
of features in EHT data we wish to describe. Their parameters dictate the large-scale
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behavior of complex processes, which data can then efficiently inform. The assumptions
underlying each semi-analytical model can be tested with, e.g., GRMHD simulations, which
we contribute to in Chapter 2. Targeted simulations can further inform extensions to semi-
analytical models to include effects like jet loading mechanisms, magnetic reconnection
events, kinetic viscosity, and impacts of galactic boundary conditions. Thus, improving the
ability of EHT data to inform physics via semi-analytical models entails a cycle of creating
increasingly more sophisticated models, validation with and motivation from simulations,
and comparisons against data.

1.6 Thesis Summary

In this thesis, we use SMBHs and their environments to study accretion and gravity,
with a focus on EHT data. In Chapter 2 and Appendix A, we construct an extendable
static GRMHD midplane model and compare it with a library of GRMHD simulations.
We find significant agreement with SANE models and motivate a variability prescription
based on special solutions with zero radial velocity. In Chapter 3 and Appendix B, we
study the variability present in a library of GRMHD images of Sgr A∗. We find a universal
power-law prescription for the variability and create measurements by which EHT data can
discriminate accretion flow types. In Chapter 4, we study coherent variability in GRMHD
images of M87∗, and create a set of metrics to distinguish accretion flows. Surprisingly, we
find that the features moving in synthetic EHT images do not correspond to gas moving
at the fluid velocity. Finally, we summarize and conclude in Chapter 5.

Combined, these three projects are all in service of improving the models necessary
to interpret horizon-scale EHT observations. Our semi-analytical model has a degree of
validity in that it can encompass many of the expected turbulent effects. It can also be
connected to large scales, incorporate non-GR spacetimes, and can efficiently explore a
vast parameter space. When compared to future EHT data, a simulation-consistent semi-
analytical model can provide information about the underlying spacetime and perform
tests of GR. It can also answer ongoing questions about the role of turbulence in accretion,
which can further be applied to an array of astrophysical systems. Finally, it can be used
to provide a connection of the black hole, the galactic feeding environment, and the large-
scale jet, and as a sub-grid model for galactic simulations. The observables mined from
libraries of GRMHD images directly inform the interpretability of appropriate geometric
models. They are also crucial to understanding the variability seen in EHT data. This
data then answers questions about the inertial cascade of astrophysical turbulence, and
how it depends on plasma properties, such as temperature, ionization state, and mean-free
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path length. Frameworks in which to fit geometric and semi-analytical models already
exist, so our model improvements can be straightforwardly included and tested against
EHT observations. We leave their implementation and validation to future work.
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Chapter 2

A GRMHD-motivated Variability
Decomposition for Semi-analytical
Accretion Flows

2.1 Introduction

Data and images coming from the EHT contain a mix of information. In order to separate
gravity, emission mechanisms, and accretion flow turbulence, we need physical simulations
that include all of those effects. However, this is plagued by high computational cost, and
so simulations typically cover only one realization of the possible accretion flow. Most of
the information contained is random turbulence about some average accretion state.

Semi-analytical models attempt to simulate the average fluid state, and perhaps some
simplified variability, as these are the quantities expected to be measured robustly in
data. These “static” models1 are much faster to compute and can be applied to study a
vast parameter space of possible accretion flows, and can be physically extrapolated to
test gravity. Furthermore, they can cover many scales, connecting the black hole to its
environment. However, the details of the effects of variability on the average solution are
typically significant. Semi-analytical accretion flows that use the α-viscosity prescription,
such as ADAFs, do not approximate time-variable fluid simulations well, and require better
models of the variability. No simple variability model exists that can explain the saturated
turbulence state and be consistent with simulations.

1In a static model, the density, pressure, velocity, and magnetic field are constant in time, but the
material is still moving with the fluid velocity.
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Code Flux a∗ Γad rin rmax Resolution Cadence
KHARMA MAD 0, ±0.5, ±0.94 4/3 20 41 288×128×128 5
KHARMA SANE 0, ±0.5, ±0.94 4/3 10 20 288×128×128 5

Table 2.1: GRMHD fluid simulation parameters. rin and rmax are in units of GM/c2, and
the cadence is in units of GM/c3.

We use ten GRMHD simulations and assume the variability they contain is indicative
of accretion flows. We describe them in Section 2.2 and measure the importance of their
variability on the average solution in Appendix A. We find that the impact of variability
is moderate in SANE models and significant in MAD models, with the midplane seeing
the least impact from variability. Limiting ourselves to the midplane for simplicity, we
construct an analytic static midplane model and build intuition by showing its behavior in
several regimes in Section 2.3. In particular, we note that solutions that exist in one part
of the accretion flow do not extend everywhere and that permitted regions are bounded
by critical solutions with zero radial velocity. To incorporate variability, we study one
simulation from each of the two accretion flow types in Section 2.4 and construct an
approximation to the midplane profiles, composed of an inner and outer critical solution.
When applied to all the simulations, it is successful for SANE models but struggles with
the overpowering variability present in MAD models. We then interpret the variability
assumptions and discuss the implications toward a more complete variability prescription.

2.2 Description of the GRMHD Simulation Library

In this chapter, we are interested in finding semi-analytical models that contain a sufficient
prescription for the steady-state turbulence. We use GRMHD simulations as a test set
and as motivation for the ideas presented in the (semi-)analytical models. The simulations
used in this chapter are also used in ??, and their numerical details are given in Table 2.1.
A summary of GRMHD simulations and their limitations is given in Section 1.3. In this
section, we outline the GRMHD equations, which we will later use to derive a static model.
We also describe the salient features in the simulations.

2.2.1 The Ideal GRMHD Equations

The equations of ideal GRMHD model a fluid in a background spacetime with a system
of partial differential equations (PDEs). For a full derivation and description, see Gammie
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et al. (2003). The fluid primitive variables are the rest mass density, ρ, the gas pressure, p,
the 4-velocity uα, and the magnetic field 4-vector bα. GRMHD assumes that the energy-
momentum tensor is given by

Tαβ =
(
ρ+ uE + p+ b2

)
uαuβ +

(
p+

b2

2

)
gαβ − bαbβ, (2.1)

where gαβ is the metric, and uE = p/(γ − 1) is the internal energy for an ideal gas. The
set of equations governing the conservation of energy and momentum are

∇αT
αβ = 0, (2.2)

and the conservation of mass is given by

∇α (ρu
α) = 0. (2.3)

Since we are in the ideal non-resistive limit, Ohm’s law enforces that the electric field in
the frame of the plasma vanishes. Thus, the magnetic field is governed by the source-free
part of Maxwell’s equation,

∇αM
αβ = 0, (2.4)

where the dual of the electromagnetic field tensor,

Mαβ = uαbβ − bαuβ. (2.5)

Additionally, the fluid velocity and magnetic field must satisfy uαuα = −1 and bαuα = 0.

A useful combination of the GRMHD equations that we will employ later is

γ − 1

p

[
uβ∇αT

αβ + bβ∇αM
αβ +

ρ+ uE + p

ρ
∇α(ρu

α)

]
= uα∂α ln

(
p

ργ

)
= 0. (2.6)

2.2.2 Kerr Metric

In GR, the unique solution for a spinning black hole is given by the Kerr metric. To avoid
coordinate discontinuities at the event horizon, the GRHMD simulations use Kerr-Schild
coordinates, that is, ds2 = gαβx

αxβ with xα = (t, r, θ, ϕ) and

gαβ =
1

Σ




− (Σ− 2r) 2r 0 −2ar sin2 θ
2r Σ + 2r 0 −a (Σ + 2r) sin2 θ
0 0 Σ2 0

−2ar sin2 θ −a (Σ + 2r) sin2 θ 0
[
(r2 + a2) Σ + 2a2r sin2 θ

]
sin2 θ


 , (2.7)

where Σ = r2 + a2 cos2 θ. The area element is
√
−|g| = Σsin θ. Where we later plot

cross-sections in the r-θ plane, we cylindrical Kerr-Schild coordinates, labeled R,Z.
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2.2.3 Salient Features of the GRMHD Simulations

Figure 2.1: Indicative structure of a cross-section of a MAD, a∗ = 0 simulation. The density
is shown in the heat map, and the arrows represent the direction of the velocity in the R-Z
plane with the length of the arrow roughly measuring the logarithm of its magnitude. The
top left region shows the time- and azimuthally-averaged quantities, while the right shows
the instantaneous values at 25, 000GM/c3 and some azimuth. The bottom left region
shows the simulation grid with every 4× 4 points shown.

We use 10 GRMHD simulations spanning the two accretion states, MAD and SANE,
and five spin values, a∗ ∈ {−0.94,−0.5, 0, 0.5, 0.94}. The simulations are run for 30, 000GM/c3

30



and consist of dumps of code variables saved every 5 GM/c3 to a precision of about one
part in 106. The GRMHD dumps are in a computational coordinate, and we first convert
all quantities to Kerr-Schild coordinates before averaging. This makes the two analytical
equations satisfied exactly at each frame and location. Additionally, there is an expected
draining of the initial mass reservoir leading to a direct long-timescale trend in density,
pressure, and magnetic field strength. Thus, we limit averaging and analysis to the last
1,000 frames to avoid the draining effect. This leads to a sampling error that has radial
and poloidal structure.

The length and time units are in terms of the black hole mass. The units of the magnetic
field, pressure, and density can all be rescaled without affecting the GRMHD equations,
so an arbitrary scaling is chosen. Velocities are in units of the speed of light, c.

Figure 2.1 shows a collection of general features of the simulations as seen in the MAD,
a∗ = 0 simulation. The bottom left region shows the grid, which has finer spacing in the
midplane and near the black hole. The top left shows a time- and azimuthal-average of the
density and velocity. The right shows a slice in time and azimuth of the same quantities.

The simulations all average to a vertically-symmetric state where the midplane is dense
with a scale height comparable to the radius. MAD models are typically thinner than
SANEs due to stronger magnetic pressure. The gas in the disk accretes inward, with a
heavily simulation-dependent outflow in the corona. The gas rotates faster close to the
black hole, with a complex vertical dependence. The magnetic field in the midplane is
dynamically important but changes changes directions often. It becomes stronger, more
ordered, and poloidal near the poles as the magnetic flux accretes with the plasma.

2.2.4 Mean decomposition

The simulations exhibit hydrodynamical-like turbulence, with eddies and traveling waves.
The MADs in particular have flaring episodes, where built-up magnetic flux is expelled,
pausing accretion. A primary goal of this work is to find a static model that can approxi-
mate the effects of these variable effects.

One simple approach is to identify this static model with the time- and azimuthal-
average of the simulations. Similar to an ADAF or thin disk model, we could then have
static fluid equations with some extra terms included. Averaging the GRMHD equations
yields time- and azimuthally- independent equations, but these are not fluid equations.
Due to the nonlinear nature of the fluid differential equations, the averages of products do
not necessarily equal products of averages.
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In Appendix A, we calculate the effects of averaging the GRMHD equations using
the solutions from GRMHD simulations and identify in which pieces the magntiude of
variability becomes significant. We find that variability is least important in the midplane,
especially for SANE models. We will now use this variability in the GRMHD simulations
to understand how to amend a static accretion model.

2.3 Static Analytic Midplane Model

The analysis in Appendix A hints that a static model could be a reasonable approximation
to the fluid near the midplane, at least for some GRMHD simulations. Towards that com-
parison, in this section, we rewrite the GRMHD equations in terms of auxiliary variables
for which the midplane profiles can be integrated analytically. We then explore the behav-
ior of the static midplane model in GRMHD-motivated regimes focusing particularly on
regions that have zero radial velocity. We will later show that midplane profiles of GRMHD
simulations are heavily influenced by these regions. We also explore a toy variability model
which strongly suggests that accretion flows with zero radial velocity are important limits
for variable simulations.

2.3.1 A Midplane GRMHD Accretion Model

Variable Change

The GRMHD equations are functions of the primitive variables, {ρ, p, uα, bα}. We introduce
a set of auxiliary variables {ρ, S, Tα,Mα} and, with the exception of ρ, label these as A⃗.
We will show that these auxiliary variables are constant in radius. The forward conversion
is:

Mα ≡ M rα

ρur
=

urbα − bruα

ρur
, (2.8)

Tα ≡ H + b2

ρ
uα − br

ρur
bα, (2.9)

S ≡ p

ργ
, (2.10)

where H = ρ+ γp/(γ − 1). We have chosen the radial direction as the one of interest (by
dividing by ur), but the following relations hold for any direction. Note that Mr = 0 by
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construction and Tr can be set by the velocity normalization condition. Here, we introduce
Latin indices i, j to represent t, θ, ϕ.

For the inverse relations, we have

p = Sργ (2.11)

and
uα =

ρ

ur

urTα + brMα

H + ρ2M2
=

ρ

H
HTα +Mαρ

2M · T
H + ρ2M2

, (2.12)

where M · T = MαTα = MiTi, and similarly M2 = gijMiMj. We can alternatively find
ur by

ur2 = (girui)
2 − grr

(
gijuiuj + 1

)
(2.13)

and
ur =

ur − griui

grr
, (2.14)

thus removing all dependence on Tr. Requiring ur2 > 0 constrains the possible space of A⃗,
a point which will be crucial in later analysis. The magnetic fields are

bα = ρMα +
br

ur
uα = ρMα +

ρ2M · T
H uα. (2.15)

It is also useful to note that

b2 = ρ2M2 +

(
br

ur

)2

. (2.16)

With these substitutions, we can write

Mαβ = ρ
(
uαMβ −Mαuβ

)
(2.17)

and
Tα
β = ρuαTβ − ρMαbβ +

(
p+

b2

2

)
δαβ . (2.18)

The r-direction of the electromagnetic equations becomes

0 = ∂α

(√
−|g|Mαr

)
= −∂α

(√
−|g|ρMαur

)
. (2.19)

There are no Christoffel symbols as Mαβ is an anti-symmetric tensor. The rest of the
electromagnetic equations become

0 = ∂α

(√
−|g|ρuαMβ −

√
−|g|ρMαuβ

)
, (2.20)
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Variable Expression Physical Quantity
S p/ργ Specific entropy
Tt T r

t /(ρu
r) Specific energy

Tϕ T r
ϕ/(ρu

r) Specific angular momentum
Mt (urbt − utbr)/(ρur) Specific temporal magnetic flux
Mϕ (urbϕ − uϕbr)/(ρur) Specific azimuthal magnetic flux

Table 2.2: Collection of the auxiliary variable symbols and descriptions.

which can combine with the continuity equation and Equation 2.19 to become

uα∂αMβ = urMα∂α

(
uβ

ur

)
. (2.21)

Similarly, the energy-momentum equations become

uα∂αTβ = urMα∂α

(
bβ
ur

)
− 1

ρ
∂β

(
p+

b2

2

)
+ Γγ

αβ (ρu
αTγ − ρMαbγ) . (2.22)

For our purposes, rather than writing the r- or θ-direction of this equation, we instead take
the entropy equation

uα∂αS = 0. (2.23)

Midplane Equations

We now impose that the metric is independent of t, ϕ and that both the metric and the
accretion flow are vertically symmetric at the midplane. That is, we assume Tθ = Mθ =
uθ = bθ = 0. Under this assumption, we can write

ur∂r




S
Tt

Tϕ

Mt

Mϕ




= −ui∂i




S
Tt

Tϕ

Mt

Mϕ




+ urMi∂i




0
bt/u

r

bϕ/u
r

ut/ur

uϕ/ur




− 1

ρ




0
∂t(p+ b2/2)
∂ϕ(p+ b2/2)

0
0




. (2.24)

The derivatives in the right-hand side are in t, ϕ only (since Mr = 0). For a static model,
all of the terms in the right-hand side are 0, and the solution is

ur∂rA⃗ = 0, (2.25)
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and thus the auxiliary variables are constant in radius. This does however require a density
profile, as the continuity equation requires a boundary condition on ∂θu

θ, or an amount of
mass leaving the midplane. For what follows, we instead assume the boundary condition
is an input to the model given as a fixed ρ(r).

The second possible solution is that ur = 0, which defines a special relationship between
the auxiliary variables, the density, and r. We label these special values “critical”. Static so-
lutions can thus be piecewise, changing between zero radial velocity and constant auxiliary
variables. Table 2.2 shows the auxiliary variable symbols and their physical meaning.

2.3.2 Static Model Solutions

In this section, we briefly note some properties of the static GRMHD midplane model to
build intuition for the ideas in Section 2.4. In particular, we explore the behavior leading
to zero radial velocity, and it will become the basis for the variability prescription. The
GMRHD simulations typically have weak pressure and magnetic fields in the midplane, so
we focus on these limits. We assume the Kerr metric in Kerr-schild coordinates as written
in Subsection 2.2.2 for the following descriptions, and give all auxiliary variable values in
units of G = c = 1.

No Magnetic Field and No Pressure

In the limit of no magnetic field, and no pressure, we are reduced to the geodesic equations,
with uϕ = Tϕ and ut = Tt. Most interesting is the equation for the radial velocity, which
becomes

ur2 = −a2∗ + (r − 2)r

r2
− r − 2

r3
T 2
ϕ +

4a∗
r3

TϕTt +
a2∗(r + 2) + r3

r3
T 2
t . (2.26)

Figure 2.2 shows plots of the radial velocity and its dependence on the auxiliary con-
stants in two regimes for a∗ = 0. The following behaviors also hold for nonzero spin, but
the exact formulas are spin-dependent.

The left panel shows ur where Tϕ = 0, or no angular momentum. For Tt < −1, there
exists a solution everywhere and ur →

√
T 2
t − 1 as r → ∞. However, when Tt > −1, the

solution only exists for r < 2/(1 − T 2
t ). At greater radii, the gas is given an energy of

−ut < 1, but even non-moving gas would have more energy than this.

The middle panel has a specific angular momentum of Tϕ = 5. Similarly to the first case,
when Tt < −1, the solution exists everywhere. However, at larger Tt > −1, the solution
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Figure 2.2: Radial midplane velocity in static model where S = Mt = Mϕ = 0. The left
panel has Tϕ = 0 or no angular momentum, and the middle panel has Tϕ = 5. The right
panel instead has Tt = −1, or zero velocity at infinite radius, and varies Tϕ. The red dot
shows a critical location that separates the space of solutions.

splits into two allowed regions, the outer of which contains a stable circular orbit. The two
allowed regions meet at a critical point, thus allowing a solution where gas inflows close to
the black hole, but outflows far away. The first unallowed region is at large radii, like in
the previous case. The second (inner) unallowed region is a consequence of the gas having
too much angular momentum to fall into the black hole. For zero spin, if |Tϕ| <

√
12, the

strength of the black hole potential is always strong enough to pull the gas in, the stable
circular orbit disappears, and no second unallowed region forms.

The third panel shows the case where Tt = −1, and thus the gas has ur = 0 at infinity.
This case is most relevant for the GRMHD simulations. When the gas comes in with an
angular momentum less than some critical value |Tϕ| < Tϕ,crit(rcrit), the gas reaches the
black hole. More angular momentum than this causes the gas to stop at some radius (or
turn around and outflow). This critical value is

Tϕ,crit(rcrit) = ±2
(√

a∗ + 1 + 1
)
, (2.27)

and it happens at rcrit = ∓a∗ + 2
√
1− a∗ + 2. The location of this critical value is marked

with a red dot.
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No Magnetic Field with Pressure

Figure 2.3: Radial midplane velocity in the static model where Mt = Mϕ = 0 and Tt = −1.
The left panel has Tϕ = 0 and the right panel has Tϕ = 5.

We repeat the same analysis as in Section 2.3.2, and confine ourselves to the limit of
no magnetic field, a∗ = 0, and Tt = −1. In this regime,

ur2 = − r − 2

r3(H/ρ)2
T 2
ϕ +

2

r
− 1 +

1

(H/ρ)2
, (2.28)

with H = ρ+γp/(γ−1) and γ = 4/3. For what follows, we set ρ as a constant in r, but the
results from radial profiles we will later consider from GRMHD simulations qualitatively
show the same behavior.

Figure 2.3 shows the dependence of the radial velocity and allowed regions on the
specific angular momentum and the entropy (via the enthalpy H). The left panel has
zero angular momentum. Similar to the effects of varying the energy, high entropy gas is
confined to the region near the black hole. The right panel has higher angular momentum,
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and, as previously, a second (inner) unallowed region forms for all values of H that have
ρ > 0.

Critical Curves

Of interest will be the surface in (r, ρ, A⃗) that has ur = 0, as this sets the boundary of
allowed solutions. We later refer to these as critical solutions. As a general rule, Scrit and
Tt,crit decrease with radius, and Tϕ,crit has a more complicated behavior we explore in the
next section.

2.3.3 Variability Approximation

Characteristic Argument

Solving Equation 2.24 is of similar complexity to solving the fully variable GRMHD equa-
tions. However, we are only interested in a time- and azimuthally- averaged solution.
Since this equation does not have any dependence on t, ϕ, one could imagine writing it in
conservation form,

∂rA⃗ = ∂tf⃗t

(
r, A⃗

)
+ ∂ϕf⃗ϕ

(
r, A⃗

)
, (2.29)

where A⃗ are the auxiliary variables, and f⃗t and f⃗ϕ chosen such that their derivatives with
respect to A⃗ give Equation 2.24. For bounded A⃗, averaging this equation over a large time
leads to ∂r⟨A⃗⟩ = 0. However, this formalism is invalid since the auxiliary variables are
discontinuous, as solutions to many hyperbolic PDEs naturally are, and thus ∂r⟨A⃗⟩ ̸= 0.
This hints that we can approximate the contributions of the variable behavior entirely by
some ansatz for these discontinuities.

Locally, solutions to hyperbolic PDEs are transported along characteristics. For exam-
ple, an equation of the form

∂tu+Λi∂iu = 0 (2.30)

has
(wn · u)

(
t+ dt, xi + λi

ndt
)
= (wn · u) (t, xi), (2.31)

where wn are the eigenvectors of Λi, and the speeds are the eigenvalues, λi
n. Each com-

bination of variables is locally transported with its own characteristic speed. Since Λi

depends on u, the characteristics evolve with the variables leading to two types of discon-
tinuities. When characteristics cross, the solution is over-constrained and the two possible
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solutions are separated by an evolving discontinuity known as a shock. When a region has
no characteristics leading to it, the solution is under-constrained and the region is filled
with a solution that has all of its characteristics emanating from a single point (known as
a rarefaction wave). The specifics of these cases are chosen by the original conservation
form of the GRMHD equations and followed in the GRMHD simulations (see Toro 2009
for an exhaustive overview).

There is a third type of discontinuity specific to our problem. When we evolve a solution
in time, it can be shown that the GRMHD equations have finite characteristic speeds for
nonzero density. In fact, these are exactly the entropic, sonic, Alfvén, and fast and slow
magnetosonic wave speeds found in a perturbative analysis. When we change to evolve in
radius instead of time, the characteristic speeds are inverted. Where they were zero before,
they are infinite now.

To approximate the effects of variability, we assume that

1. At every radius, there is a random distribution in t, ϕ of the fluid auxiliary variables,
A⃗.

2. In the absence of discontinuities, the A⃗(t, r, ϕ) can be connected via characteristics
to a linear combination of A⃗(t, rin,out, ϕ) at some inner or outer radius. This leaves
the distribution of A⃗ unchanged.

3. Shocks and rarefaction waves do not significantly change this distribution from one
radius to another. The next section shows support for this when the timescale of
variability is greater than the infall time, but this assumption will ultimately fail.

Under these assumptions, the primary contribution to the variability will be the disconti-
nuities arising from characteristics that have speed 0. Since the t, θ, and ϕ directions are
determined by the Killing fields and vertical symmetry in the midplane, this defines the
r-direction, and thus zero speed.

Evolution of a Solitary Auxiliary Variable

In this section, we show that when only one of the auxiliary variables is allowed to vary,
the global solutions converge to a combination of a critical and constant solution. For
simplicity, we take Mt = Mϕ = S = 0, Tt = −1, zero spin, and allow Tϕ to only be a
function of t, r. In this limit, the metric in Kerr-Schild coordinates is

ds2 = −
(
1− 2

r

)
dt2 +

(
1 +

2

r

)
dr2 +

4

r
dtdr + dΩ2. (2.32)
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The GRMHD equations become that of geodesics, and thus Tϕ = uϕ. We have

uα =





1

r − 2


r − 2

√
2

r
−

(r − 2)T 2
ϕ

r3


 ,−

√
2r2 − (r − 2)T 2

ϕ

r3
, 0,

Tϕ

r2



 , (2.33)

where we pick the convention for an ingoing flow. The only non-trivial fluid equation is

ur∂rTϕ + ut∂tTϕ = 0, (2.34)

where we take Tϕ as the integrating variable for numerical simplicity. For this toy example,
we take the shock speed to be 2

vshock =
1

2

(
ur

ut

∣∣∣∣
left

+
ur

ut

∣∣∣∣
right

)
. (2.35)

We can now numerically solve Equation 2.34. We do this with a one-dimensional reconstruct-
evolve-average (REA) solver validated on the inviscid Burger’s equation.

Static Boundary Conditions

Here, we perform two tests with static boundary conditions to describe the main types of
behavior in the dynamical system. For the first test, labeled case 1, we initialize Tϕ(t = 0) =
3 and set an outer boundary condition of Tϕ(r = 10) = 4.5. For the second test, labeled
case 2, we initialize Tϕ(t = 0) with the infinite time limit of Case 1 and set an outer
boundary condition of Tϕ(r = 10) = 3.5.

Figure 2.4 shows the solutions for cases 1 and 2. Each case converges to the initial state
of the other at infinite times. Also shown in the left panel are characteristics originating
from (t, r) = (0, 10) for Tϕ = 3.5 (solid), Tϕ = 4 (dashed), and Tϕ = 4.5 (dotted). These
divide the solution space into 4 regions.

In case 1, the gas inserted at the outer radius is infalling slower than the initial gas.
This creates a rarefaction wave carrying gas with 3.5 < Tϕ < 4.5 with each piece of gas
moving along its own characteristic. For gas in the first (from left to right) region, the

2The shock speed is determined by the original form of the GRMHD equations. However, by changing
variables, we have assumed derivative continuity, thus altering the shock speed. This is exacerbated by the
assumptions of the toy model and ρ = 0 in particular, so we use an average speed as an approximation.
Our choice does not change the conclusions of this toy example.
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Figure 2.4: Example solutions to the GRMHD midplane equations where only Tϕ(t, r) can
vary. The left two panels show the time-evolved solutions with different boundary and
initial conditions. The right panel shows the value of Tϕ as t → ∞ for the two cases. The
black lines in the left panel are specially-chosen characteristics that divide the solution into
4 regions.

material only sees the initial infalling gas and thus has Tϕ = 3.5. The second region is the
portion of the rarefaction wave that eventually ends up in the black hole. This region has
ur < 0 everywhere, or more specifically, Tϕ < Tϕ,crit(rcrit) = 4. Had we not set the entropy
S, and therefore the gas pressure, to zero, this region would be slowly evacuated of matter
as all the characteristics enter the black hole. For Tϕ > 4 (the third region), each of the
characteristics turns around at

2r2turn = (rturn − 2)T 2
ϕ (2.36)

for Schwarzschild. As they attempt to turn around, they are immediately hit (i.e. shocked)
by gas slightly further out and kept in place. The further away gas is itself kept in place by
gas at a larger radius all the way out to the boundary condition keeping the whole system
stable. Since this gas originated from rarefaction, with the introduction of pressure, this
gas would also decrease in density over time as it is expanded to cover more volume. The
fourth region is similar to the third region, except that all the gas has Tϕ = 4.5 enforced
by the boundary condition.

The third panel in Figure 2.4 shows the result of case 1 as t → ∞. For r ≳ 7.38,
the gas is entirely dominated by the boundary condition, and the auxiliary variables are
constant. Between 4 < r ≲ 7.38, the gas converges to have ur = 0, analytically calculable
with Equation 2.36. For r < 4, the turning radius for Tϕ,crit, the only infalling gas left
has Tϕ = Tϕ,crit(rcrit) = 4. Note that since we imposed ur ≤ 0, the final state of the inner
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gas is reached regardless of the initial conditions for sufficiently large incoming angular
momentum.

Case 2 is simpler. When gas with a faster infalling speed hits the final state of case 1,
it shocks and replaces the existing gas. Since this case has an outer boundary condition
less than Tϕ,crit, its final state is a constant Tϕ.

These two tests indicate that the boundary conditions each try to push the radial profile
either toward a constant value for Tϕ(rout) ≤ Tϕ,crit(rcrit) or towards the three-section curve
as seen in case 1 for Tϕ(rout) > Tϕ,crit(rcrit). Only close to the outer radius does the infinite-
time solution depend on the specific value of the boundary condition.

Variable Boundary Conditions

Figure 2.5: Similar to Figure 2.4 with a sinusoidally-variable outer boundary condition.
The initial value is set to Tϕ(t = 0) = 4 for both cases. The right panel shows the average
values as well as a band covering all covered values. The average begins at t = 50GM/c3

for case 3 and t = 100GM/c3 for case 4, and both cases are averaged over an integer
number of wavelengths of the outer boundary sinusoid.

In the GRMHD simulations, the outer boundary is variable, and the solution to which
this model converges may change for a variable boundary condition. We perform two more
tests (cases 3 and 4) to test the effect of short- and long-timescale variability.

Figure 2.5 shows the solutions corresponding to cases 3 and 4. Both cases have their
initial condition set to the critical value (i.e., Tϕ = 4), and this initial gas quickly falls into
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the black hole. Case 3 has

Tϕ(r = 10) = 4.2 + 0.5 sin

(
2π

tc3

5GM

)
(2.37)

, and case 4 has

Tϕ(r = 10) = 4.2 + 0.5 sin

(
2π

tc3

100GM

)
. (2.38)

In case 3, the fast-moving gas overtakes the slower gas at around r ≈ 7GM/c2 before
both can fall into the black hole. This results in a static solution for r ≲ 7GM/c2. In case
4, the gas has time to fall into the black hole before the boundary conditions appreciably
change, and thus every radius feels the effects of every boundary condition.

The GRMHD simulations are, at minimum, variable on the timescale of an orbit, though
often for much longer. For this Schwarzschild example, this timescale is hundreds of GM/c3,
greater than the infall time, and so we expect GRMHD simulations to behave more like
case 4.

Note on Multiple Variables

If only one of the auxiliary variables is allowed to vary at a time, then each equation can
be written as

∂tA⃗+
ur

ut
∂rA⃗ = 0, (2.39)

with the exception of

∂tMt + ur

[
ut − urMt ∂

∂Mt

(
ut

ur

)]−1

∂rMt = 0. (2.40)

All of these have a zero characteristic speed when ur = 0. Thus, when each auxiliary
variable is treated independently, the gas behaves like in the previous section. As it falls
in, it either maintains constant auxiliary variables or, if that would lead to an unallowed
solution, continues along a critical curve with ur = 0.

Of course, when adding in the effects of interactions, the distribution of variability at
a particular radius can evolve differently as information travels throughout the flow. To
understand these interacting effects, we must now turn toward the GRMHD simulations.
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2.4 Comparison with GRMHD Simulations

We now apply the intuition from Subsection 2.3.1 to compare the model to the GRMHD
simulations in the midplane. Specifically, we compare to the median midplane profiles
of the auxiliary variables and take appropriate quantiles when discussing variability. We
will first focus on the SANE models, using a∗ = 0 as a motivating test case. We’ll first
show that the effects of variability are closely related to the critical solutions with zero
radial velocity. From this, we construct an approximation that matches the profiles of all
the SANE simulations with fewer than a doubling of the number of parameters. These
approximations will not work as well for the MAD models. We then discuss the physical
interpretation of this approximation and highlight the successes and failures of the ideas
behind the model.

2.4.1 SANE Models

Zero Spin

Figure 2.6: Midplane radial profiles of the density and auxiliary variables for a SANE,
a∗ = 0 simulation. Solid lines are the median in the time range 25, 000-30, 000GM/c3, and
the shaded region shows the inner 68% percentile. The three dots indicate the locations
expanded in detail in Figure 2.7. The dashed and dotted line represent two possible critical
solutions with specific parameters listed in Table 2.3.
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Figure 2.7: Corner plot of the auxiliary variables for the SANE, a∗ = 0 simulation in
the midplane for three radii. Dashed lines show the contour of ur = 0 with only the two
corresponding auxiliary variables changing, and the rest set to S = Mt = Mϕ=0, Tt = −1,
and Tϕ = Tϕ,crit, appropriately.
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Figure 2.6 shows the median and variability in the midplane radial profiles of the density
and auxiliary variables for a SANE, a∗ = 0 simulation. Were these generated from a static
simulation, we would expect any static density profile and constant values for the five
auxiliary variables. This is not the case; as the gas falls in, Tϕ varies by a factor of 2,
and Tt and S increase, though the latter two have only a minor effect on the overall flow.
Physically, this means that the gas heats up more than through adiabatic compression, and
there must is a mechanism that reduces the angular momentum and increase the radial
momentum. The magnetic field varies much more than its median value and also does
not significantly impact the overall flow. Still, the variability in the simulation is small,
such that calculating the primitive variables p, uα, bα from the median auxiliary variables
matches well with the median primitive variables to within the ability of the simulation to
measure these quantities.

The analysis in Section 2.3.3 suggests that if we extend the static model so that only the
angular momentum Tϕ varies in time, the overall fluid solution would be constant auxiliary
variables and a piecewise critical solution to Tϕ. The orange dashed line shows this critical
solution for S = 0.008. The curving down at large radii is due to the specifics of the density
profile and is likely caused by the simulation not equilibrating to a steady state at large
radii. Although this solution grossly matches the primary observed behavior, it fails to
quantitatively match Tϕ, and does not explain the change in S or Tt.

Figure 2.7 shows a triangle plot of the distribution (in time) of the auxiliary variables for
the SANE, a∗ = 0 simulation. These distributions were constructed at a chosen midplane
value of (r, θ, ϕ) and sampled in the range t = [25, 000, 30, 000]GM/c3. The static GRMHD
solutions we derived had these five auxiliary variables constant in radius, and follow critical
values (ur = 0) where the solution no longer exists. To that end, in some of the panels,
we show the critical values that lead to ur = 0, varying only the two associated auxiliary
values. The rest are set to the default outer solution, namely zero magnetic field and
pressure, and energy Tt = −1 such that ur → 0 as r → ∞. For the default Tϕ,crit, we take
the piecewise solution through Equation 2.27,

Tϕ,crit =

{√
2
√
r
√

a2+(r−2)r−2a

r−2
, r ≥ −a− 2

√
1− a+ 2

2
(
1−

√
1− a

)
, r < −a− 2

√
1− a+ 2

. (2.41)

If we approximate the flow with auxiliary variables that don’t interact (as in Sec-
tion 2.3.3), the distributions should be truncated as the gas falls and more of the distribu-
tion creates zero radial velocity. This is not the case, but the correlations between auxiliary
variables and their change with radius follow similar behavior to the critical values. This is
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most evident where changes in Tϕ are concerned, as these are responsible for the dominat-
ing change in the structure of the flow. The other notable correlations are in the magnetic
fields. If we take Tϕ = Tϕ,crit, Tt = −1, and S = 0, then any value along

Mϕ =
2a+ (r − 2)Tϕ,crit

a2(r + 2)− 2aTϕ,crit + r3
Mt (2.42)

will still yield ur = 0 for r ≥ rcrit. This correlation corresponds to where b2 = 0. Since this
roughly matches the correlation seen in the simulation, it implies that the magnetic fields
are varying in such a way that their effect on the momentum of the flow (in particular,
through ur) is negligible.

Motivated by the dependence of the flow structure on the critical solutions with ur = 0,
we propose that the variability can be split into two important effects. The first is a global
effect which sets the evolution of the distributions through allowed regions in the space
of auxiliary variables that have ur2 > 0. As fluctuations push close to ur = 0, the gas
tries to stay still, which is unstable. The second effect is local and somehow mixes the
distributions of nearby elements through the wave interactions we have so far ignored. As
these waves propagate, they move information through the flow until some stable steady
state is reached. We leave further understanding of this to future work and approximate
its effect in the next section.

GRMHD Approximation

We introduce the approximation of the median GRMHD SANE radial profiles as a sum of
two critical solutions. The motivating idea is that an outer boundary condition feeds in
gas which pushes the solution towards one critical solution. This has:

S = Sout ≈ 0,

Tt = Tt,out ≈ −1,

Tϕ = Tϕ,crit,

Mt = Mt
out ≈ 0,

Mϕ = Mϕ
out ≈ 0.

Here, Tϕ,crit behaves as described in Section 2.3.3 and approximately equals Equation 2.41.
We need not set its outer value, since the angular momentum can keep increasing well past
the steady-state regime of the simulations. We also introduce a second solution sourced
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Spin Sin Sout Tt,in Tt,out Tϕ,in Tϕ,out Mt
in Mϕ

out Mϕ
in Mϕ

out

-0.94 0.045 0.008 -0.973 -0.998 3.7 >7 -0.02 0 -0.001 0
-0.5 0.055 0.008 -0.97 -0.998 3.4 >7 -0.05 0 -0.002 0
0 0.065 0.008 -0.97 -0.998 3 >7 -0.15 0 -0.005 0

0.5 0.095 0.008 -0.961 -0.998 2.7 >7 0.04 0 0.001 0
0.94 0.2 0.008 -0.93 -0.998 1.8 >7 -0.03 0 0.001 0

Table 2.3: SANE simulation fitting values.

by some saturated state near the black hole, which attempts to push the solution towards
a different critical solution:

S = Scrit,

Tt = Tt,crit,

Tϕ = Tϕ,in,

Mt = Mt
in,

Mϕ = Mϕ
in.

Here, the critical values start at some constant Sin, Tt,in near the black hole and stay
constant as the radius increases. When ur = 0, we have a critical surface to move on (in
r, A⃗), and only one solution to choose from. We arbitrarily choose it such that Scrit varies
linearly from Sin to 0 as Tt,crit varies linearly from Tt,in to −1.

These two solutions are both shown in Figure 2.6 with the outer solution in orange
(dashed) and the inner solution in magenta (dotted). To get the final combined solution,
we take the average of the two,

A⃗ =
A⃗out + A⃗in

2
. (2.43)

Comparison with All SANE Simulations

Figure 2.8 compares our model (dashed) to the GRMHD simulations (solid). It agrees well
at all radii. In particular, there are breaks in the median radial profiles of the entropy,
energy, and angular momentum (S, Tt, and Tϕ,out, respectively) and our midplane approx-
imation gets the correct location. It mostly matches the radial dependence on either side
of the break, except for the entropy, where we have limited ourselves to a constant value
at small radii. The simulations’ entropies do have a break, but they increase as the gas
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Figure 2.8: Median radial midplane profiles for the GRMHD SANE simulations (solid) and
our GRMHD approximation (dashed). Our model quantitatively matches the locations of
the breaks in the entropy, energy, and angular momentum, as well as their behaviors on
either side. The median magnetic fields in the simulations are very noisy and consistent
with zero.

falls into the black hole. The magnetic fields in the simulations are small and variable, so
measuring a typical value from the simulations is difficult. Similarly, the radial profiles in
our model are minimally affected by the particular value of the magnetic field parameters.

The values used to generate the model curves are listed in Table 2.3. There are nom-
inally 10 parameters. All those associated with the magnetic field can be consistent with
zero. The value for Tϕ need not be set, so we extend the angular momentum to the full
range of the solution. The outer values for the entropy and energy have been set to match
the simulations better, but we can still get good fits with S = 0 and Tt = −1. Thus, we
have a 5-parameter fit (plus the given simulation density profile) that reproduces the three
nonzero GRMHD simulation auxiliary variables and has the correct spin dependence.

2.4.2 MAD Models

Zero Spin

Figure 2.9 and Figure 2.10 show the profiles and the corner plot for the MAD, a∗ = 0
simulation. Similar to the SANE model, the main effect is a decrease in angular momentum
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Figure 2.9: Same as Figure 2.6, but for the MAD, a∗ = 0 simulation.

as gas falls into the black hole, as well as slight increases in the entropy and energy. The
auxiliary variables are still influenced by the curves which have ur = 0.

The key difference with SANE models is the higher degree of variability. Near the black
hole, there exist large fluctuations with small Tϕ, small density, large entropy, and large Tt.
These also have a greater magnitude of the magnetic field, and this behavior is seen in all
MAD simulations. This large variability presents a problem in describing static profiles, as
the primitive variables constructed from the median auxiliary variables do not correspond
well to the median primitive variables. This is primarily due to the large variance in Tϕ

which makes ⟨uα⟩⟨uα⟩ ̸= −1 and instead contain significant radial structure. Unlike in
the SANE simulations, to properly characterize the flow, we need the co-variances of the
auxiliary variables along with the median values.

All MAD Simulations

Figure 2.11 shows the median midplane profiles of the auxiliary variables for the five MAD
simulations. Also shown in bands is the magnitude of the variability, which is particularly
important for the energy and angular momentum. The spin dependence in the MAD
simulations roughly matches the SANEs, as well as the decrease in angular momentum
and increase in entropy and energy as the gas infalls. Though less visible, there is evidence
for similar breaks in the auxiliary variables in the two accretion flow types.
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Figure 2.10: Same as Figure 2.9, but for the MAD, a∗ = 0 simulation.

The main difference is in the angular momentum, which does not settle to a constant
value near the black hole but rather becomes more variable. Similarly, the energy does
not become constant and increases by a greater amount. Outside of the break in the
entropy, MAD and SANE profiles follow roughly the same radial power law; however,
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Figure 2.11: Median radial midplane profiles for the GRMHD MAD simulations (solid
lines) and the inner 68% region. The MAD simulations are more variable than the SANEs,
particularly for the energy and angular momentum.

while the SANE entropy flattens near the black hole, the MAD entropy becomes steeper.
Surprisingly, the magnetic field appears to have the same level of variability (at least,
far from the black hole), despite the more ordered magnetic structure in MAD models.
However, they differ significantly, as the average magnitude of the magnetic field in MAD
simulations is larger and strongly correlated with other auxiliary variables, especially near
the black hole. All of these effects combined imply the existence of a significant turbulent
effect near the black hole that heats up and massively accelerates the gas.

The approximation that worked for SANEs fails for the MAD models. The radial
dependence of the most dynamically-relevant quantity, the angular momentum Tϕ, does not
behave like Tϕ,crit/2 at large radii, but more like Tϕ,crit. If there is some sourced turbulence
near the black hole like in the SANE models, its effects do not reach in the same way to
large radii. Furthermore, the angular momentum switches sign near the black hole, thus
approaching another critical surface at approximately −Tϕ,crit (though this value varies
slightly with spin). Many of the other auxiliary variables approach multiple surfaces with
ur = 0 due to the higher variability, especially when combined with the larger variability
in the density.
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2.4.3 Successes and Failures of the Static Model

We now have a physically-motivated model that, once calibrated to the behavior of SANE
simulations, accurately matches the behavior for different spins. At a minimum, it is an
interpolation machine, one that can extrapolate to some non-Kerr metrics and to large
radii. Moreover, it implies a specific non-linear way in which the saturated turbulence
affects the median midplane profiles, and can be extended to the flow away from the
midplane.

Outward Information Travel

Figure 2.12: Median-subtracted angular momentum in the simulation midplanes. The
variability in the MAD models is larger, and all simulations show structures that appear
to be moving outwards at all radii.

Figure 2.12 shows the median-subtracted angular momentum at a slice in the midplane
and some constant azimuthal angle for all the simulations. As also found in Section 2.4.2,
the variability in the MAD models is larger than in the SANEs. Moreover, the variability is
not random; there are clear structures that appear to be moving outward. They typically
move faster than the sonic, Alfvén, or radial speeds, and more closely match the azimuthal
velocity. This does not necessarily mean that anything in the system is moving outward.
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There could be, for example, spiral features in the flow that when rotated past a fixed
azimuth, appear as a radially outgoing gas. Nevertheless, there is constantly information
traveling outward from the event horizon.

At the beginning of the simulation, the gas starts far from the black hole and infalls, and
thus information travels inward. In fact, the median radial velocity is typically negative
everywhere the simulation has reached a steady state. Our model assumed that both the
gas near the horizon and at some outer radius were each trying to bring the flow to a
particular solution (constant auxiliary variable or zero radial velocity). The simulations
have support for this assumption.

Radial Characteristics

In Section 2.3.3, where the auxiliary variables did not interact, each boundary condition
was associated with a connected region within which ur2 > 0. Figure 2.13 assumes a
simulation’s distribution of auxiliary variables at some radius and tracks the maximum
radius in either direction that solution could exist for.

Near the black hole, all the gas within about rcrit is infalling and can make it to the
horizon. However, none of the gas outside of about r ≳ 10GM/c3 can. Further from the
black hole, the range of radii that one location influences is somewhat small. Thus, there
must be some local effect that evolves the distribution, and it must be present at all radii,
perhaps with the exception of those very close to the horizon.

In a flat Cartesian spacetime, we would still expect this effect to exist. Mathematically,
it takes the form of the shocks and rarefaction waves we ignored. Physically, it corresponds
to steady-state turbulence. There exist many prescriptions for turbulence in many regimes,
and there is evidence in the GRMHD simulations that these prescriptions could be applied
on top of a global background critical solution with ur = 0 that incorporates the large-scale
gravitational and rotational effects.

Angular Momentum Variability in MAD models

Figure 2.14 shows Tϕ for two MAD models as well as the two critical solutions with ur = 0.
These are given by the first line of Equation 2.41. In the SANE models, we used the idea
that the gas near the horizon created a particular fluctuation that then pushed the entire
gas toward an inner critical solution. For the MADs, a similar idea holds, but at small
radii, there is a larger distribution of possible auxiliary variable values.
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Figure 2.13: Probability density of the truncating radius where a static solution exists for
a SANE, a∗ = 0 simulation. Bottom panels show example characteristics moving at the
ur/ut for the instantaneous auxiliary variables and density. The filled circles represent
the starting radii and times. Top panels show the maximum (blue) and minimum (green)
distribution of the truncating radius taken over all values from 25, 000 to 30, 000GM/c3.
The three columns correspond to three different starting locations.

Near the black hole, the two critical Tϕ seem to partially bound the variability in the
GRMHD simulations. This could either be gas exploring every possible angular momentum
before it falls in or fluctuations created near the horizon truncating when they cannot travel
further outward. The variability present in MADs but not in SANEs is not random but
rather fills out a region in the space of auxiliary variables between critical surfaces.
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Figure 2.14: Comparison of the variability in the angular momentum of two MAD GRMHD
simulations with the critical value that causes ur = 0. The solid lines and shaded regions
match Figure 2.11. For the critical curves, Tt = −1, and S = Mt = Mϕ = 0. The
variability in the simulation profiles follows the critical solution at small radii.

Density and the Vertical Structure

In constructing the midplane model, we essentially assumed a boundary condition on the
vertical derivative of all quantities. This was not a complete set, and we chose to set
the density to the GRMHD profile. By doing so, we conflated variability in the density
with variability in the auxiliary variables. Especially for the MAD models, this remains
a problem. We can solve this by solving the static GRMHD equations as a function of
r, θ with proper outside boundary conditions. We leave this extension for future work.
However, it is interesting to note that each boundary condition will correspond to a region
of an allowed solution. The method by which the static model approximated the SANE
simulations implies that a similar average of an inner and outer critical solution could well
approximate the vertical structure of SANE models.

Furthermore, the density profiles in most simulations converge to a curious 3-section
function. The density peaks both at the black hole and at some middle radius. We connect
this effect to the ideas for the formation of critical solutions in Section 2.3.3. There, the
mass would increase with radius, since the rarefaction waves stretched out the gas as it
fell in. Similarly, if we interpret the information traveling outward as also rarefying before
converging to a critical solution, then we would expect a decrease in density with radius.
These effects would meet near rcrit, where the angular momentum was low enough so all
the gas could fall in. Indeed, for the SANE simulations, the minimum occurs near this
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value with the appropriate spin dependence.

Arbitrary Choices in the Approximation

We made two significant arbitrary choices in the approximation to SANE models. For
the inner critical solution, we had two auxiliary variables to vary (S and Tt) along the
critical surface such that they lead to their default values at infinite radius. Without
an understanding of the mechanism by which the entropy and energy evolve to a critical
solution, we cannot repeat the analysis of Section 2.3.3. However, if we had, we could then
write a relationship between Scrit and Tt,crit independent of radius. By choosing them to
be linearly related, we have essentially assumed that Sin is close to zero and Tt,in is close
to −1, and linearly expanded. From the variability observed in the SANE simulation, this
approximation holds well.

The second choice is to take an equally-weighed average of the inner and outer critical
solutions. For every radius, this corresponds to a point in the space of auxiliary variables
between two critical surfaces, and there does not seem to be anything special about this
location (e.g., ur does not reach a maximum value there). We choose an average only
because it approximates the simulations well and a first-principles approach to the evolution
of the distribution of auxiliary values should settle on a better choice.

2.5 Conclusions

In this chapter, we studied the variability in GRMHD simulations and constructed a model
to approximate the median midplane profiles. For this, we used 10 simulations spanning
the two accretion flow types, MAD and SANE, and 5 spin values.

Since the GRMHD equations can be decomposed into an average and a variability piece,
we first directly computed the contributions of the variability on the average solution. For
SANE simulations, we find that the impact of the covariance of variability fluctuations is
small in the midplane and disk, only becoming significant in the corona and jet. MAD
simulations, on the other hand, are more variable, though the midplane remains the lo-
cation where variability effects on the GRMHD equations are minimized. However, the
effects on the primitive variables of interest are not as negligible, and we further test this
by constructing a midplane model.

In the midplane, for a vertically symmetric static axisymmetric solution, the GRMHD
equations can be integrated analytically for a given density profile. The radial constants,
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which we dub the auxiliary variables, correspond to the specific entropy, energy, angular
momentum, and temporal and azimuthal magnetic flux. However, a midplane solution
does not necessarily cover the entire accreting region, and we highlight three cases relevant
in the simulations. When the angular momentum is large, the incoming gas cannot reach
the black hole. When the energy or entropy is too large, gas near the black hole cannot
have originated from infinity. That is, the gas would need to be heated more than gravity
and adiabatic compression would dictate.

We then look at the temporal evolution of the model when only the angular momentum
can vary at a time. The solution converges to a piecewise solution, where the gas has a
constant angular momentum wherever the solution exists, and follows a critical surface
with zero radial velocity otherwise. If the incoming gas is itself variable, the solution
still follows either a constant or a critical solution, but now depends on the distribution
of variability being input. This motivates us to introduce a variability model where the
midplane solution is some combination of static auxiliary variables and critical solutions.

We first test this model with the GRMHD SANE simulations. Due to their low vari-
ability, the median auxiliary variables and density provide a nearly complete description of
the midplane flow. Furthermore, the radial dependence of the full distribution of auxiliary
variables is heavily influenced by the critical surfaces. Upon applying our static model,
we find that we can approximate the SANE profiles as averages of two critical solutions.
The first is an outer solution that has a high angular momentum, and nearly zero entropy,
magnetic fields, and velocity, and is characterized by a decrease in angular momentum as
the gas falls in, until it settles at some metric-dependent value. The second is an inner so-
lution, and has some saturated values for all the auxiliary variables, while the entropy and
energy get smaller as the radius increases. This approximation required several arbitrary
assumptions, so we make no physical interpretation of the saturated auxiliary values.

The approximation works well for the five SANE simulations, and can reproduce the
complex radial structure better than the classical ADAF model. Although it nominally
has 10 parameters, about half of those can be set by reasonable constraints on the type
of accretion flow. The auxiliary variable profiles are characterized by a number of breaks
and multiple types of radial dependencies. Our model consistently gets the location of
the breaks, and after setting the magnitude of the fluid variables, our model matches the
simulations’ radial dependencies. Since our model assumes only a vertically-symmetric,
axisymmetric, static metric, it is poised to make strong predictions for GRMHD SANE
profiles in non-Kerr spacetimes.

Since the MAD models are more variable, it is not straightforward to characterize their
profiles with just a median value, and they require at least some measure of the magni-
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tude of the variability. Nevertheless, like the SANE models, the distribution of auxiliary
variables is clearly influenced by the critical solutions. Unfortunately, the variability is too
great, and we cannot decompose the profiles into an average of two solutions. To better
approximate the MAD models, we need a self-consistent way of tracking the distribution
of the variables, and not just their medians.

To fully be able to reduce variable simulations to static ones, future work is needed
on the evolution of the distribution of variability as bounded by the critical solutions.
Our model can be extended to two dimensions, and there is evidence that the variability
distributions will become even more important in the corona region.
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Chapter 3

A Universal Power Law Prescription for
Variability from Synthetic Images of
Black Hole Accretion Flows

3.1 Introduction

The event-horizon sources the EHT observes are expected to be variable on timescales
of their light-crossing time, which is about a minute for Sgr A∗. This variability is a
consequence of the turbulent magnetohydrodynamic features present on all spatial scales
and is consistently observed in simulated images of black holes. Thus, it is now relevant
for EHT observations to develop the theoretical expectations for the short-timescale (≲
GM/c3) and small-spatial scale (≲ GM/c2) aspects of these images.

For Sgr A∗ in particular, the light curve is significantly variable and has been well
characterized at near-infrared and radio wavelengths (Wielgus et al. 2022, and references
therein; Witzel et al. 2012; Gravity Collaboration et al. 2020; Witzel et al. 2021; Paper II).
Below a break that lies between 2 and 8 hrs, the light curve variability is consistent with a
red noise process, having a power-law spectrum that is dominated by the longest timescales.
At 1.3 mm wavelengths, the typical degree of variability is observed to be less than 10%
during the 2017 EHT observing campaign (Wielgus et al., 2022). The EHT observations
of Sgr A∗ imply a similar degree of variability in the source structure (Paper IV).

The variability properties of Sgr A∗ are grossly consistent with the expectations from
GRMHD simulations (Paper V). These simulations exhibit coherent and stochastic struc-
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tural fluctuations on timescales spanning all of those accessible to the simulation domain;
for Sgr A∗, this ranges from seconds to many days.

The presence of substantial horizon-scale variability in EHT targets has dramatic impli-
cations for the analysis of EHT VLBI data. Sgr A∗ and, to a lesser degree, M87∗ necessarily
violate the stationarity assumptions underlying Earth-aperture synthesis. In the case of the
former, this presents a significant impediment to imaging and model comparison (Broderick
et al. 2022b; Paper III; Paper IV). At the same time, direct measurements of the struc-
tural variability – i.e., variability caused by the evolving source structure – provide a novel
constraint on models of the underlying astrophysical processes responsible for accretion
(Wielgus et al., 2020).

In this chapter, we explore the properties of the structural variability observed within
simulated images from the large library of GRMHD simulations produced to interpret
Sgr A∗ (Paper V). These simulations span a wide range of black hole and accretion flow
properties: including spin, inclination, flow type, and microphysical electron heating pre-
scription. We do this primarily via the construction of statistical measures of the structural
variability within the images. We find a surprising degree of uniformity, despite the extreme
variation among image morphologies.

This work in this chapter is also presented in Georgiev et al. (2022). We begin in
Section 3.2 with a description of the GRMHD simulations. Definitions of the statistical
measures employed can be found in Section 3.3. Application to the GRMHD library from
Paper V can be found in Section 3.4 and the dependence on the accretion flow properties
is discussed in Section 3.5. Finally, conclusions may be found in Section 3.6.

In order to span a large parameter space, the GRMHD simulations have made signifi-
cant assumptions, some of which we can test with targeted simulations. We study longer
timescale simulations and the effects of secular evolution in Subsection B.1.3. In Subsec-
tion B.1.2, we study the effects of grid resolution, and we briefly discuss differences between
fastlight and the “slowlight” alternative in Subsection B.1.1. We compare the results from
two separate fluid simulation codes in Subsection B.1.4. We show applications of our re-
sults to EHT data as shown in Paper IV and Paper V in Section B.2. In addition, we
comment on the applicability of the analysis in light of the current inability of the EHT to
measure the absolute position of sources in Section B.3. Section B.4 contains a collection
of average images for many of the simulations used.
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3.2 Horizon-scale Observations and Simulations of Sgr A∗

The immediate application of this work is to observations of the supermassive black hole at
the galactic center, Sgr A∗. In this section, we describe the current leading-edge observa-
tions of Sgr A∗ using the EHT and identify the necessary outputs any physical model must
contain. Then, we describe a library of GRMHD simulations, from which the synthetic
EHT observables are created.

3.2.1 EHT Observables

The EHT is a global VLBI array of radio telescopes. Each pair of concurrently observing
telescopes forms a baseline and measures the complex Fourier transform of the on-sky in-
tensity distribution I(x, y, t) – visibility V(u, v, t). Hence, at time t, the measured visibility
is

V(u, v, t) =
∫∫

dxdye−2πi(ux+vy)I(x, y, t). (3.1)

In 2017, the EHT array consisted of eight stations at six geographical sites (Paper II).
However, not all stations can observe Sgr A∗ simultaneously, and hence the available data
correspond to only 13 non-redundant baselines. This results in a sparse sampling in the
Fourier domain. The Fourier coordinates (u, v) probed by each baseline are time-dependent
themselves, as an effect of the Earth’s rotation. In a standard approach, the source is
assumed to be static on the timescale of the observations (∼ several hours), thus allowing
the use of the Earth’s rotation for the aperture synthesis (Thompson et al., 2017). Sgr A∗

constitutes an unusual case in which this condition is violated, as the angular resolution of
the EHT (about 25 µas, Paper III) corresponds to a linear scale of only 2.5 Schwarzschild
radii, given Sgr A∗’s mass and distance (Do et al., 2019; Gravity Collaboration et al.,
2019). This translates to a light crossing time of 100 s, or 5 GM/c3, and sets the shortest
timescale of structural variability to which EHT observations are sensitive. The longest
timescales probed during an observing night correspond to several hours, or ∼ 103 GM/c3.
Therefore, the source is expected to vary over the timescale of the observations.

The 2017 EHT VLBI baselines probe spatial scales varying from 0.5 Gλ to 8.7 Gλ,
corresponding to angular scales of about (25 − 400)µas (Paper III). Additionally, two of
the EHT sites, ALMA and SMA, are themselves connected element interferometric arrays,
probing linear scales of ∼ 106 Schwarzschild radii. While the phased-up signal is used for
the VLBI EHT observations (Goddi et al. 2019; Paper II), the internal correlations between
the individual telescopes can be used to generate the total flux light curves, representing
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the time-dependent total flux of the compact Sgr A∗ source (Wielgus et al., 2022), unre-
solved at spatial scales of ∼ 100 kλ. These observations effectively correspond to V(0, 0, t)
for a compact Sgr A∗ source. We neglect any large-scale structure like the Sgr A∗ “min-
ispiral”, which is overresolved on baselines longer than ∼ 100 kλ and filtered out from the
observations (any large-scale source structure is naturally missing in the simulated images,
which only represent the event horizon scale compact source and are limited by a corre-
spondingly narrow field of view). The variability of the light curve thus corresponds to the
scaling of the integrated flux density of the source, rather than to a structural variability
related to spatial redistribution of brightness in the resolved image.

In this work, we characterize the spatiotemporal variability of the visibility domain
representation of a broad collection of GRMHD simulations. We attempt to characterize
the typical deviation of V(u, v, t) from the average across the whole simulation, to provide
a physically motivated prior for the measured source variability probed by the EHT (Brod-
erick et al., 2022b). In order to facilitate the structural variability analysis of the resolved
source, we consider the properties of simulated images normalized by the corresponding
light curves (instantaneous total flux values).

3.2.2 Modeling the Galactic Center

Following Paper V, we set the mass of the black hole to be M = 4.14 × 106M⊙ where
M⊙ is the solar mass, and the distance to be D = 8.127 kpc (Do et al., 2019; Gravity
Collaboration et al., 2019). The field of view (FOV) of the images is chosen large enough
to contain the majority of the flux (Paper V). The density scale is chosen so that the average
simulated observed compact flux at 230 GHz matches the EHT observed value of 2.4 Jy
(Wielgus et al., 2022)1. For small enough mass accretion rates, the gas is optically-thin
and the image intensity is proportional to the density scale. At 2.4 Jy, Sgr A∗ is marginally
optically-thin, so these GRMHD images can loosely approximate other optically-thin black
hole systems, such as M87∗ with an appropriate mass and flux rescaling.

A full list of fluid simulations used in this work can be found in Table 3.1. We use
simulations created by three algorithms, HARM (KHARMA and iharm3d), KORAL, and
BHAC.

1Due to approximations made in fitting for the density scale, the total flux in the simulations varies by
about 20 %.
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Label Code Flux a∗ Γad rin rmax Resolution Cadence
A KHARMA MAD 0, ±0.5, ±0.94 4/3 20 41 288×128×128 5
A KHARMA SANE 0, ±0.5, ±0.94 4/3 10 20 288×128×128 5
B iharm3d MAD 0.94 13/9 20 41 384×192×192 0.5
C KORAL MAD 0, ±0.3, ±0.5, 13/9 20 42-43 288×192×144 10-50

±0.7, ±0.9
D BHAC MAD 0, ±0.5, ±0.94 4/3 20 40 384×192×192 10
D BHAC SANE 0, ±0.5, ±0.94 4/3 6 12 512×192×192 10
E BHAC MAD 0.94 4/3 20 40 963, 1283, 1923 10

Table 3.1: GRMHD fluid simulation parameters. The radii are in units of the gravitational
radius, GM/c2, and the cadence in units of GM/c3. The resolution study in model set E
is composed of three simulations where, e.g., 963 = 96× 96× 96.

Label Code Rhigh i (deg) Avg. Flux (Jy) FOV Res. Start End Cadence
A ipole 1, 10, 40, 160 10-170 2.08-2.47 200 0.5 15,000 20,000 5
A ipole 1, 10, 40, 160 10-170 2.06-2.48 200 0.5 20,000 25,000 5
A ipole 1, 10, 40, 160 10-170 2.13-2.47 200 0.5 25,000 30,000 5
Bs ipole 40 60 3.3 160 1 5,520 9,249.5 0.5
B ipole 40 60 3.3 160 1 5,357 9,357 0.5
C ipole 20 10-170 2.24 - 2.43 200 0.5 10,000 100,000-113,500 10-100
D BHOSS 1, 10, 40, 160 10-90 2.4 200 0.5 20,000 25,000 10
D BHOSS 1, 10, 40, 160 10-90 2.4 200 0.5 25,000 30,000 10
E BHOSS 10 30 1.93-2.00 160 0.5 12,000 15,000 10

Table 3.2: GRMHD image properties. The labels match Table 3.1. The inclinations are
spaced in 10-degree increments and all start, end, and cadence times are in units of GM/c3.
Bs is imaged using slowlight. The field of view and resolutions are in µas.
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HARM

iharm3d is an implementation of the HARM algorithm outlined in Gammie et al. 2003,
and KHARMA is a GPU port of iharm3d closely following the original codebase and
functionality (also see Prather et al. 2021). The GRMHD models produced by KHARMA
that are considered for this work include MAD and SANE states, each spanning five spins,
a∗ = 0, ±1/2, ±15/16 (hereafter written as 0, ±0.5, and ±0.94). These simulations form
model set ‘A’. A comprehensive study of these models can be found in Dhruv 2023.

The GRMHD snapshots produced by these codes are imaged using the publicly available
GRRT code ipole (Mościbrodzka & Gammie, 2018). A comprehensive discussion of the
steps and approximations involved in the generation of these synthetic images from HARM
output using ipole can be found in Wong et al. 2022. The images span nine inclinations
from 10 to 170 degrees, and four values of Rhigh from 1 to 160. From each simulation, three
windows each of length 5, 000 GM/c3 are chosen and treated as separate simulations with
different density scales.

We also consider a high cadence MAD simulation (a∗ = 15/16) carried out with
iharm3d, for the study of short timescales and the effects of the fastlight approximation
(cf. model set ‘B’).

KORAL

The GRMHD models used from KORAL are all in the MAD state with spins of a∗ =
0, ±0.3, ±0.5, ±0.7, ±0.9. These simulations were run for 100, 000 GM/c3 to study
the effects of long timescale trends. They form model set ‘C’ and have been studied in
Narayan et al. 2021.

These simulations were also imaged using ipole (Mościbrodzka & Gammie, 2018),
using a cadence of 100 GM/c3 between times 10, 000 GM/c3 and ∼ 100, 000 GM/c3, with
some segments of some simulations further imaged at a lower cadence. Using the electron
temperature prescription of Mościbrodzka et al. (2016), only Rhigh = 20 is sampled. We
sample inclinations of i ∈ {10, 30, 50, 70, 90, 110, 130, 150, 170}. For each model set, we set
the density scale, M, to produce an average total flux of 2.4 Jy across the time window,
consistent with the Sgr A∗ total flux measured by Wielgus et al. (2022) during the EHT
2017 campaign. Since these simulations are run for such a long time, the mass accretion
rate drops noticeably as the torus drains. To counteract this, we allow the density scaling
M to evolve slowly with time by fitting for a and b in lnM = a + b(tc3/GM) instead of
the constant value of M used for all other codes in this work. This procedure effectively
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assumes that the effects of the draining torus are limited only to the total flux light curve;
this assumption is somewhat tested in Subsection B.1.3.

BHAC

The BlackHoleAccretionCode (BHAC) is a multidimensional GRMHD code to solve the
equations of GRMHD in arbitrary spacetimes (Porth et al., 2017; Olivares et al., 2019).
GRMHD simulations of magnetized accretion flows onto black holes have been performed
in both MAD and SANE states with five different black hole spin, a∗ = 0, ±1/2, ±15/16.
Imaging of these GRMHD simulations is performed by the GRRT code (BHOSS) (Younsi
et al., 2012, 2020). Only inclinations less than 90 degrees are considered as the simulations
are approximately equatorial symmetric. These simulations and images correspond to
model set ‘D’.

We have also performed a resolution test by performing the same fluid simulation with
three increasingly lower resolutions. This simulation is in the MAD state with a∗ = 15/16
and forms model set ‘E’.

3.2.3 Salient Features of the GRMHD Simulations

Figure 3.1 shows an example output from the simulating procedure for two simulations of
model set A on each row. The left three panels show three consecutive frames and the
right panel shows an average over all frames in this simulation. The differences in the two
simulations chosen are indicative of the wide range of morphology and variability present
among simulations.

Source emission is limited to within several times the gravitational length scale. Im-
ages typically show asymmetric ring-like emission, with an asymmetric flux distribution
extending to larger scales. Variability in this extended region is mainly composed of co-
herent moving features. On the short timescales shown, these features move less, i.e., the
variability on these timescales is lower.

3.3 Power Spectral Density Characterization of the Vari-
ability

For each simulation in the GRMHD library, the evolving emission structure is described
by a series of “frames,” each of which is uniquely determined at time t by its intensity at
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Figure 3.1: Example consecutive frames (left 3 columns) and average image (rightmost
column) of a two models from model set A with different structural variability. The top
row show a SANE model with a∗ = 0.5, Rhigh = 10, and i = 50 degrees and the bottom
panel shows a MAD model with a∗ = −0.94, Rhigh = 160, and i = 90 degrees. The average
is over the third window (25,000 to 30,000 GM/c3) of each simulation. Images in each row
share a common colorscale.

every pixel location (x, y). The full time series of frames from a single simulation then
describes a dynamic “image” I(x, y, t) of the evolving emission structure. Our goal is to
characterize the variability in the images contained within the GRMHD library. In this
paper, we work primarily with both spatial and temporal power spectral density (PSD)
representations of the source structure. In this section, we define our PSD construction
formalism and describe some general behavior. As we shall see in Section 3.4, we will be
dealing with red-noise processes, so we also introduce filtering and averaging procedures to
produce accurate statistical representations in the temporal and spatial scales of interest.
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Parameter Units Name Description
I(x, y, t) Jy sr−1 image intensity at position (x, y) at time t
ĪT (x, y, t) Jy sr−1 time-smoothed image intensity at position (x, y) smoothed over a timescale T around time t

L(t) Jy light curve spatially-integrated image intensity of I(x, y, t) at time t
L̄T (t) Jy time-smoothed light curve spatially-integrated image intensity of ĪT (x, y, t) at time t

I(x, y, t) sr−1 light-curve-normalized image I(x, y, t)/L(t)
Φ(u, v, ω) Jy2 Hz−2 spatiotemporal PSD squared amplitude of the three-dimensional Fourier transform of I(x, y, t)
PT (u, v, t) Jy2 mean-subtracted PSD PSD of the mean-subtracted image, I(x, y, t)− ĪT (x, y, t)
⟨PT ⟩(u, v) Jy2 average mean-subtracted PSD PT (u, v, t) averaged in time
⟨P̂T ⟩(u, v) unitless average residual PSD PSD of the residual image, I(x, y, t)− ĪT (x, y, t), averaged in time

Table 3.3: Description of terminology and symbols used in this chapter.

3.3.1 Variability PSD Definitions

The spatiotemporal PSD of a set of images is given by the complex square of the three-
dimensional Fourier transform of I(x, y, t),

Φ(u, v, ω) = |Fxyt [I(x, y, t)]|2 ≡ F∗
xyt [I(x, y, t)]Fxyt [I(x, y, t)] , (3.2)

where

Fxyt(f) ≡
∫∫∫

f(x, y, t)e−2πi(ux+vy+ωt)dxdydt, (3.3)

is a three-dimensional spatial Fourier transform from (x, y, t) to (u, v, ω), and the asterisk
denotes complex conjugation. We will often work with the “spatial PSD” of the image, in
which the Fourier transform is only performed on the two-dimensional spatial portion of
I(x, y, t),

Fxy(f) ≡
∫∫

f(x, y, t)e−2πi(ux+vy)dxdy. (3.4)

In this paper, we will often refer to the spatial PSD as simply the PSD, and we will specify
otherwise when referring to the full spatiotemporal PSD.

In the absence of variability, the PSD computed at any time t would be identical to the
PSD computed at any other time. However, variability in the source introduces variability
into the PSD as well, which we can characterize in terms of its variance with respect to an
average,

⟨PT (u, v, t)⟩ =
〈∣∣Fxy

[
I(x, y, t)− ĪT (x, y, t)

]∣∣2
〉
. (3.5)
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where the angled bracket notation,

⟨f(t)⟩ ≡ 1

τ

∫ τ

0

f(t)dt, (3.6)

represents an average in time over the total duration τ of the simulation. In Equation 3.5,
ĪT (x, y, t) is a time-averaged version of the image, defined using a Gaussian smoothing
kernel,

ĪT (x, y, t) =

∫
I(x, y, t′)

1√
2πT

exp

[
−(t− t′)2

2T 2

]
dt′. (3.7)

Here, T is the smoothing timescale and we introduce the bar and subscript notation ĪT to
denote Gaussian smoothing over this timescale. As T → ∞, ⟨PT ⟩ measures the variance
of the amplitude spectrum at every spatial frequency (u, v). For finite T , contributions to
this variance from timescales longer than T are suppressed. For the red-noise processes
relevant to this work, ⟨PT ⟩ will thus be dominated by the variability on timescale T (for
more discussion and application, see Subsection 3.3.3 and Subsection 3.4.2).

We note that ⟨PT ⟩ is in general not a complete description of the source variability.
Because physical variability originates from continuous processes, we expect the Fourier
intensities at (u, v, t) and at (u + ∆u, v + ∆v, t + ∆t) to be strongly correlated for small
values of ∆u, ∆v, and ∆t. We also expect the strength of this correlation to decrease as
these separations increase. ⟨PT ⟩ is just this correlation evaluated at ∆u = ∆v = ∆t = 0.

In the context of astrophysical observations, variations on the largest spatial scales
(u, v) = (0, 0) are captured by the light curve,

L(t) =

∫∫
I(x, y, t)dxdy (3.8)

with a similar definition of LT containing the total flux of IT . When L(t) is known, it can
be used to remove the variability on the largest spatial scale by “light-curve-normalizing”
the image,

I(x, y, t) ≡ I(x, y, t)

L(t)
. (3.9)

The corresponding light-curve-normalized version of ⟨PT ⟩ is given by,

⟨P̂T (u, v, t)⟩ =
〈∣∣Fxy

[
I(x, y, t)− ĪT (x, y, t)

]∣∣2
〉
, (3.10)

with ĪT (x, y, t) defined by replacing I → I in Equation 3.7. We refer to Equation 3.10
as the “residual” PSD, with an analogous image-domain counterpart I(x, y, t)− ĪT (x, y, t)
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that we refer to as the residual image. In practice, removing the large-scale variability in
this way also removes some fraction of the variability contained on all spatial scales that
are correlated with (u, v) = (0, 0). The impact of this light curve normalization procedure
is explored in Subsection 3.4.4.

Practically, the angled brackets in Equation 3.6 are an average over all of the frames
in a simulation, that is

⟨f(t)⟩ ≈
∑

i f(ti)∆t∑
i ∆t

, (3.11)

where ∆t is the frame spacing2. The integral in the definition of the time-smoothed image
in Equation 3.7 is similarly replaced with a sum,

ĪT (x, y, tj) ≈
∑

i I(x, y, ti) exp [−(ti − tj)
2/(2T 2)]∆t∑

i exp [−t2i /(2T
2)]∆t

, (3.12)

where ti is the frame time. Therefore, outside of the time region of the simulation, the
Gaussian weighting kernel is set to zero and when T approaches the length of the simulation,
the time-smoothed image approaches the uniformly-weighted mean.

To compute the Fourier transforms in Equation 3.3 and Equation 3.4, we use the fast
Fourier transform algorithm implemented in NumPy (Harris et al., 2020). When we later use
Φ for a qualitative comparison, we average the temporal Fourier Transform over multiple
time windows of a simulation to reduce the statistical error. The spatial Fourier transforms
in the calculation of ⟨PT ⟩ and ⟨P̂T ⟩ of a compact source are done on images padded with
a large zero array. No significant change occurs when increasing the pixel size or reducing
the field of view of the original images. The time-averaged power spectra constructed as
described in Equation 3.5 and Equation 3.10 are averaged over many images, and therefore
many independent realizations of the underlying random processes of interest, reducing
the statistical uncertainty in the variability PSDs.

3.3.2 PSD Behavior on Short Baselines

While the detailed structure of the PSD depends on the specifics of the source variability,
we can understand its broader structural characteristics in light of a few relatively simple

2The KORAL runs used for the exploration in Subsection B.1.3 have non-uniform frame spacing. For
these, each frame’s ∆t is found as half the time difference between the previous and successive frames. For
the first and last frames, the simulation-averaged frame spacing is used. No temporal Fourier transforms
are taken for these simulations.

70



considerations. The PSD structure on the largest spatial scales can be described by an
expansion of the PSD about (u, v) = (0, 0). For any function f(x, y), its spatial Fourier
transform expanded around this point is given by

Fxy(f) ≈
∫∫

[1− 2πi(ux+ vy) + . . . ] f(x, y)dxdy. (3.13)

Because ⟨PT ⟩ is an even function in (u, v), it must flatten out on large enough spatial scales
and will thus be dominated by the first term in the Fourier expansion

⟨PT ⟩ ≈ ⟨PT ⟩(0, 0) =
〈[

L(t)− L̄T (t)
]2〉 (3.14)

for small enough (u, v), typically those measuring structures larger than the source size.
As T → ∞, the value of ⟨PT ⟩ on the largest scales approaches the variance in the light
curve. For T → 0, the zero-baseline behavior is determined by the temporal power spectral
density of the light curve; see Subsection 3.3.3 and Subsection 3.4.3.

However, the first term in the expansion of ⟨P̂T ⟩ is zero by construction. Therefore, the
leading term in the expansion is

⟨P̂T ⟩ ≈ 4π2

〈[∫∫
(ux+ vy)

(
I − ĪT

)
dxdy

]2〉
(3.15)

= 4π2
〈[

u
(
X − X̄T

)
+ v

(
Y − ȲT

)]2〉 (3.16)

where we have rewritten the equation in terms of the centroids of emission as

X (t) =
1

L(t)

∫∫
xI(x, y, t)dxdy (3.17)

and a similar definition for Y(t). It follows that on the largest spatial scales, ⟨P̂T ⟩ along
any direction in (u, v) will behave like a power law in baseline length with an index of 2.
It is also interesting to note that for a symmetric (i.e., even) function, all the odd terms of
the expansion in Equation 3.13 are zero. Therefore, a large-scale power law index of 2 is
an indicator of asymmetric variability in the residual image. More generally, the coefficient
in Equation 3.16 is a measure of the amount of variability in the centroid of emission.

The identification of the short-baseline variability described here with an astrometric
quantity (the position of the image centroid) raises a practical question. Where an absolute
phase reference is available, such a measurement is well defined (see, e.g., Reid & Honma,
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2014; Broderick et al., 2011). However, for the current EHT specifically and VLBI studies
typically, atmospheric phase delays preclude a full reconstruction of the visibility phases
on timescales longer than the atmospheric coherence time; at 230 GHz for the EHT, this
is on the timescale of seconds (M87∗ Paper II). These unknown station-based phase errors
are degenerate with an arbitrary shift in the image centroid. We discuss the implications
for the short-baseline structure of ⟨P̂T ⟩ further in Section B.3. Because our focus in this
paper is on the theoretical predictions of variability and the signatures of astrophysical
processes contained therein, in the remainder of this paper we presume that absolute
phase information is available.

3.3.3 Temporal PSD

The dependence of ⟨PT ⟩ on averaging timescale T can be represented by an integral of the
temporal PSD. Here, we show how ⟨PT ⟩ and ⟨P̂T ⟩ contain information about variability on
different timescales. Applying Parseval’s theorem to Equation 3.5 as τ → ∞, the integral
transforms into the Fourier domain,

lim
τ→∞

⟨PT ⟩ = lim
τ→∞

1

τ

∫
dωΦ(u, v, ω)

(
1− e−2π2ω2T 2

)2
. (3.18)

Subtracting a moving average on different timescales is thus equivalent to applying a high-
pass filter to the temporal variability at each spatial scale. Where Φ is a red-noise process3,
this integral is dominated by frequencies near ω ∼ 1/2πT , so

⟨PT ⟩ ≈ Φ (u, v, 1/2πT ) . (3.19)

This equivalence is demonstrated for a GRMHD simulation in Subsection 3.4.2. As T → ∞,
⟨PT ⟩ is formally affected by the inability to measure infinite times, but will theoretically
converge to the variance map of Fxy(I). On finite timescales, it can be shown that

d ln⟨PT ⟩
d lnT

= 1− 1

⟨PT ⟩τ

∫
dω

dΦ

d lnω

(
1− e−2π2ω2T 2

)2
. (3.20)

For a red-noise process, we can thus directly relate the temporal behavior of ⟨PT ⟩ to the
spatiotemporal PSD,

d ln⟨PT ⟩
d lnT

∣∣∣∣
T

≈ 1− d lnΦ

d lnω

∣∣∣∣
ω=1/2πT

. (3.21)

3The Gaussian smoothing procedure we employ during averaging effectively softens the high-pass filter,
to the point where there exists a maximum power-law index (equal to 4) beyond which the spectrum
remains red even after filtering. The GRMHD simulations used in this work typically have power-law
spectral indices less than this value in the spatial and temporal scales of interest.
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More specifically, if Φ ∼ ω−η near the dominating frequencies at ω ∼ 1/2πT , then ⟨PT ⟩ ∼
T η−1. An equivalent characterization exists for the light-curve-normalized version, with
the replacement PT → P̂T and I → I.

3.4 Application to GRMHD

We now apply the formalism presented in Section 3.3 to the GRMHD library, and we
characterize the resulting variability PSDs. Specifically, we explore how the variability
PSDs depend on the averaging timescale, the light curve normalization, and how the spatial
component depends on the orientation. For the representative examples provided in this
section, we use a SANE simulation from model set A, with a∗ = 0.5, Rhigh = 40, and an
inclination of 90 degrees4. It includes five realizations each of length 5, 000 GM/c3 from
5, 000 GM/c3-30, 000 GM/c3 (only the last three are listed in Table 3.2)5. Where otherwise
stated, we instead use simulation set B, which samples frames at a higher cadence.

In Subsection 3.4.1 and Subsection 3.4.2, we discuss the red-noise of the spatiotemporal
PSD and describe the equivalence between the mean-subtraction procedure and applying
a filter to the spatiotemporal PSD. In Subsection 3.4.3, we show the dependence on the
averaging timescale. In Subsection 3.4.4, we demonstrate the effect of normalizing by the
light curve. In Subsection 3.4.5, we discuss the short and long baseline limits, and we
explore azimuthal dependence in Subsection 3.4.6.

3.4.1 Red-Noise Power Spectrum

Figure 3.2 shows the three-dimensional spatiotemporal PSD of a representative GRMHD
simulation, and Figure 3.3 shows two-dimensional and one-dimensional slices of the same
PSD. A single point (u, v, ω) in Φ(u, v, ω) is a measure of the variability at a temporal
frequency ω and at a spatial frequency (u, v). The GRMHD simulations produce charac-
teristically red-noise variability in all dimensions, with the spatiotemporal PSD generically
increasing towards small (u, v, ω) and exhibiting its maximum power at (u, v, ω) = (0, 0, 0).

4Georgiev et al. (2022) erroneously labeled this simulation as a∗ = 0.94.
5For reference, 5, 000 GM/c3 is about 30 hours for Sgr A∗ and 5 years for M87∗.
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Figure 3.2: A graphical representation of the three-dimensional PSD, Φ(u, v, ω), with the
different cube faces showing two-dimensional slices along u = 0, v = 0, and ω = 0. The
PSD is a red-noise process in all dimensions, with the power being maximized on both the
largest spatial scales and the longest temporal scales. For this example, we use a SANE
simulation from model set A with a∗ = 0.5, Rhigh = 40, an inclination of 90 degrees, and
its power spectrum has been averaged over its five time windows.
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Figure 3.3: Top: Two-dimensional and one-dimensional slices of an example spatiotem-
poral PSD for the same simulation as shown in Figure 3.2 (i.e., a SANE simulation from
model set A with a∗ = 0.5, Rhigh = 40, and i = 90◦). The left panel shows Φ(0, v, ω),
corresponding to the left face of the cube in Figure 3.2. Due to the red-noise nature of
GRMHD simulations, the majority of the power lives on the largest spatial scales and on
the longest temporal scales. The various dashed lines show the locations of one-dimensional
slices along the spatial and temporal dimensions, whose corresponding power spectra are
shown in the middle and right panels, respectively. The cyan and green curves in the right
panel correspond to Φ(0, 0, ω) and Φ(0, 4.1 Gλ, ω), respectively, and the red and orange
curves in the middle panel correspond to Φ(0, v, 0) and Φ(0, v, 0.05 c3/2πGM), respectively.
Φ(0, v, 0) corresponds to the visibilities of the average image, which contains a prominent
ring of emission that produces the ringing signature evident in the red curve. Bottom:
Same as the top row, but showing the spatiotemporal PSD for the light-curve-normalized
images. The light-curve-normalization procedure removes all power from (u, v) = (0, 0),
and some non-unit fraction of the power at non-zero spatial frequencies (i.e., those small
enough to be strongly correlated with the light curve).
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Figure 3.4: Illustration of the Gaussian mean-subtraction procedure for the same simula-
tion as in Figure 3.2 (model set A, SANE, a∗ = 0.5, Rhigh = 40, and i = 90◦). Top: Solid
lines show the light curve and its mean on different timescales T . The dashed lines show the
mean-subtracted light curve. Bottom: Solid lines show the power spectral density of the
mean-subtracted light curves and the original light curve. The effect of mean-subtraction is
equivalent to multiplying the power spectral density of L(t) by the filter in Equation 3.18.
The cyan curve in the bottom panel is the same as that in the top right panel of Figure 3.3.
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3.4.2 Mean Subtraction

The spatiotemporal PSD evaluated at (u, v) = (0, 0) represents the complex square of
the Fourier transform of the light curve. The top panel of Figure 3.4 shows an example
light curve L(t), time-smoothed versions of that light curve L̄T (t) for several choices of the
averaging timescale T (solid lines), and the residual light curve after subtracting out these
averaged versions (dashed lines). The bottom panel of Figure 3.4 shows the temporal PSD
of these residual light curves, equivalent to the (u, v) = (0, 0) slice of the spatiotemporal
PSD of the mean-subtracted image.

The act of constructing an average mean-subtracted PSD on an averaging timescale
T is equivalent6 to multiplying Φ by the filter described in Equation 3.18. Owing to the
red-noise nature of the system, the resulting (i.e., filtered) spatiotemporal PSD peaks near
ω = (2πT )−1; this effect is visually apparent in the bottom panel of Figure 3.4. One
consequence of this effect is that when performing an integral of the mean-subtracted PSD
with respect to ω (such as in Equation 3.18), the result will be dominated by a single
timescale; we thus have ⟨PT ⟩(0, 0) ≈ Φ(0, 0, 1/2πT ).

This equivalence between the mean subtraction procedure and a simple evaluation of
the spatiotemporal PSD extends beyond just the light curve (i.e., it holds even when u
or v are nonzero). For all spatial scales on which the temporal variability is a red-noise
process, ⟨PT ⟩(u, v) will approximately measure Φ(u, v, 1/2πT ).

3.4.3 Spatial Properties and Averaging Timescale

The spatiotemporal PSD evaluated at ω = 0 represents the complex square of the Fourier
transform of the average image (see, e.g., the red curves in the middle column of Figure 3.3).
Because these GRMHD simulations designed for Sgr A∗ typically exhibit a ring of emission
in the image domain (see Figure 3.1), they often show a Bessel function-like behavior in
the Fourier domain with a first minimum near ∼2–3Gλ.

The spatio-temporal PSD evaluated at ω > 0 measures the variability power at a par-
ticular temporal frequency, as a function of the spatial size of the contributing fluctuations
in the image. Figure 3.5 shows a one-dimensional slice of the average mean-subtracted
PSD, ⟨PT ⟩(0, v), for a MAD simulation with a∗ = 0.94, Rhigh = 40 and an inclination

6This equivalence only strictly holds in the limit where the total duration of the light curve is much
longer than the averaging timescale T . Effects when this property does not hold are explored in Subsec-
tion B.1.3.

77



of 60 degrees (the slowlight simulation from model set Bs) on several different averag-
ing timescales T . From the arguments in Subsection 3.4.2, ⟨PT ⟩(0, v) ≈ Φ(0, v, 1/2πT ),
and thus ⟨PT ⟩(0, v) contains information about the variability on approximately a single
timescale. We can see that for large T , the amount of variability as measured by this
average mean-subtracted PSD is larger. As T → ∞, ⟨PT ⟩(0, v) shows a broken power-law
behavior, exhibiting a flat spectrum in v up to some threshold spatial frequency, and then a
falling power law at higher spatial frequencies. On spatial scales larger than about 200µas
(corresponding to spatial frequencies smaller than 1Gλ) the simulations contain no signif-
icant structure, and thus no significant variability, so the average mean-subtracted PSD
on these scales must be flat. On smaller spatial scales (i.e., higher spatial frequencies), the
observed power-law behavior reflects a combination of the average image structure as well
as the dissipative MHD turbulence cascade; we explore this small-scale behavior in more
detail in Subsection 3.4.5. For shorter averaging timescales, the total amount of variability
power decreases and the location of the break moves to higher spatial frequencies.

The zero-baseline limit of ⟨PT ⟩(0, v) only measures properties of the light curve. Specif-
ically, as in Equation 3.14, it measures the variance of the light curve on the timescale T .
Figure 3.5 shows that ⟨PT ⟩(0, 0) for this simulation roughly scales as T 2 for small T , so
the temporal power spectrum of the light curve should fall as ω−3 (see Subsection 3.3.3).
On large finite spatial scales, for all T where ⟨PT ⟩(0, v) is constant in v, the temporal
power spectrum of the variability should scale with ω identically to the light curve. We
note that other simulations (i.e., with different accretion parameters) can in general have
different temporal spectral power law indices, but this falling power-law behavior at large
ω is common to all.
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Figure 3.5: Effect of the averaging timescale on the average mean-subtracted PSD. The
top panel shows ⟨PT ⟩(0, v) for different T . All show a flat spectrum up until some breaking
spatial frequency, after which the spectrum falls as some power law. As the averaging time
decreases, the amount of power in the variability similarly decreases and the break location
moves to larger values of v. The bottom panel shows the same information as a function
on T . For small T , every spatial scale follows the same rising power law with a flattening
turnover at different time scales for different v. The simulation used is the single slowlight
simulation in model set Bs, which is MAD, with a∗ = 0.94, Rhigh = 40, and an inclination
of 60 degrees.
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3.4.4 Effects of Normalization by the Light Curve

On short baselines, we expect the PSD to be dominated by variability that is heavily
correlated with the light curve variability. By light-curve-normalizing as described in Sub-
section 3.3.1, we thus expect to remove a large fraction of the short-baseline variability.
The two rows in Figure 3.3 show the same simulation before and after normalizing by the
light curve. By definition, all variability is removed from (u, v) = (0, 0), but we further see
a decrease in the PSD at all spatial frequencies below ∼1Gλ. We interpret this decrease in
power on small spatial frequencies to mean that the majority of variability on large spatial
scales is indeed strongly correlated with the variability in the light curve. At higher spatial
frequencies, the PSD remains unchanged, indicating that the variability on small spatial
scales is independent of the large-scale variability.

Figure 3.6 shows the dependence of ⟨P̂T ⟩ on the averaging timescale T . For spatial
frequencies larger than the break location, ⟨P̂T ⟩ shows the same behavior as ⟨PT ⟩, i.e. a
power-law with the same index. The break locations of the two PSDs are not equivalent,
with ⟨P̂T ⟩ breaking at smaller spatial scales than ⟨PT ⟩. On larger spatial scales, the flat
part of ⟨PT ⟩ has been reduced to an increasing power-law in v with a power-law index that
is independent of T .
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Figure 3.6: Same as Figure 3.5, but for the average residual PSD. ⟨P̂T ⟩ shows an increasing
power law at short baselines up to some break, after which the spectrum falls as some
different power law. Similar to ⟨P̂T ⟩, as the averaging time decreases, the amount of power
in the variability decreases, and the break moves to larger values. The simulation used is
the single slowlight simulation in model set Bs, which is MAD, with a∗ = 0.94, Rhigh = 40,
and an inclination of 60 degrees.
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Figure 3.7: Profiles of the Fourier amplitudes of the average image, average mean-
subtracted PSD, and the average residual PSD. The timescale used is T = ∞, and the
average residual PSD has been rescaled by ⟨L2⟩ such that it retains units of Jy2. On long
baselines, ⟨PT ⟩ and ⟨P̂T ⟩ are the same, as the variability there is almost independent from
the light curve. On short baselines, ⟨PT ⟩ ∼ v0 and ⟨P̂T ⟩ ∼ v2 (green dashed line) as
expected from Subsection 3.3.2. The simulation used from model set A is the same as in
Figure 3.2 and is in the SANE state with a∗ = 0.5, Rhigh = 40, and i = 90◦. This figure
differs from figure 7 of Georgiev et al. (2022), which erroneously labeled the blue curve as
the square Fourier amplitudes.
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3.4.5 Short and Long Baseline Power Law

Figure 3.7 shows ⟨PT ⟩(0, v) and ⟨P̂T ⟩(0, v) for the same simulation as used in Subsec-
tion 3.4.1, as well as the PSD of the average image. On the smallest spatial frequencies,
we can see the ⟨P̂T ⟩(0, v) ∝ v2 behavior expected from Subsection 3.3.2, and this behavior
continues up to a spectral break near ∼1Gλ. The higher-order terms from Equation 3.13
must therefore remain subdominant to the v2 term below the break. From this empiri-
cal behavior, we can deduce that the location of the break lies approximately on the v2

power law defined in Equation 3.16. The break therefore contains information about the
variability of the centroid of emission in the total image.

For any image structure I(x, y, t), we can generically decouple the time-variable com-
ponent from the average image as

I(x, y, t) = Ī(x, y) + δI(x, y, t)

= Ī(x, y) [1 + δ(x, y, t)] , (3.22)

where Ī(x, y) is understood to be the time-averaged image as T → ∞ and we have defined
δ ≡ δI/Ī. Upon applying our mean-subtracting procedure (see Equation 3.5), we would
measure

PT (u, v, t) =
∣∣Fxy

[
I(x, y, t)− Ī(x, y)

]∣∣2

=
∣∣Fxy

[
Ī(x, y)δ(x, y, t)

]∣∣2

=
∣∣Fxy

[
Ī(x, y)

]
∗ Fxy [δ(x, y, t)]

∣∣2 , (3.23)

where the ∗ symbol represents convolution. If the Fourier transforms, Fxy

[
Ī
]

and Fxy [δ],
have uncorrelated phases, and if both have amplitudes that fall as a power-law at large
(u, v), then PT (u, v, t) will be dominated by the shallower power-law component at long
baselines.

Figure 3.7 shows that ⟨PT ⟩ follows a similar power law at large spatial frequencies as
the Fourier transform of the average image, suggesting that the variability in GRMHD
simulations is perhaps better described by an uncorrelated multiplicative random field δ,
rather than an uncorrelated additive field δI. Under this assumption, we would expect
the long-baseline power law of the variability in GRMHD simulations to match that of
their average images and would conclude that the spectrum of the “true” variability δ is
steeper than that of the average image. Alternatively, the average image power law could
be steeper, in which case the long baseline behavior of the variability PSDs would be
dominated by δ.
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At the longest baselines, there is a slight upturn in the squared amplitudes of the
average image, and in both variability PSDs. We attribute this to the limited numerical
accuracy with which image data from the GRMHD image library is saved (keeping only six
nonzero digits). The associated truncation error introduces a white noise floor that while
negligible for the baselines probed by the EHT, can dominate above 100 Gλ.

3.4.6 Azimuthal Dependence

Figure 3.8 shows ⟨P̂T ⟩(u, v) as T → ∞ for the same simulation as in Figure 3.2 and
Figure 3.3. Near (u, v) = (0, 0), the average residual PSD has little power due to the light-
curve-normalization. On short baselines, from Equation 3.16, a constant ⟨P̂T ⟩(u, v) occurs
on an elliptical contour, with the minor and major axis in the direction of the largest and
smallest variation in the centroid of emission, respectively. This elliptical behavior remains
as long as the u2 dependence, up until the break location. The major and minor axes are
often either aligned with or perpendicular to the direction of the black hole spin axis (see
Section B.4). On spatial frequencies larger than the break location, the power-law falls
with an index determined by the average image in every direction (see Subsection 3.4.5).

3.5 Variability for Different Accretion Flows

Given our understanding of the morphology of the GRMHD variability PSDs from Sec-
tion 3.4, we now explore the trends seen with different simulation types.
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Figure 3.8: Azimuthal dependence of ⟨P̂T ⟩ for the same simulation as in Figure 3.2 (i.e.,
a SANE simulation from model set A with a∗ = 0.5, Rhigh = 40, and i = 90◦). The top
panel shows ⟨P̂T ⟩ in the infinite T limit, with zero power at the center corresponding to
the light-curve-normalization. The bottom panel shows a horizontal and vertical slice.
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3.5.1 Universal Power Law

Figure 3.9 shows the visibility amplitudes of the average image, ⟨PT ⟩, and ⟨P̂T ⟩ for all
the simulations in model set A for infinite averaging time T . We explore these PSDs
only along and orthogonal to the direction of the black hole spin axis, as these typically
encompass the extrema of the variability (see Subsection 3.4.6 and Section B.4). The
variability for each simulation follows the behavior described in Section 3.4, and each
variability PSD can be approximated as a broken power law. Moreover, the different
simulations are remarkably consistent over different magnetic field configurations, black
hole spins, temperature prescriptions, and viewing inclinations, with similar broken power
law parameters.

The short baseline behavior of flat ⟨PT ⟩ and a ⟨P̂T ⟩ that rises as |u|2 match the expecta-
tions from a finite size geometry. The amount of power at short baselines and the location
of the break are unique to each simulation and likely contain physical information about
the underlying variability. Between about 2 Gλ and 30 Gλ, the long-baseline behavior is
similar to that of the underlying average image. This suggests a common origin for both,
e.g., the variability could be described as an average image multiplied by an uncorrelated
random field (see Subsection 3.4.5).

This behavior can occur if the local variability in the fluid is random and caused by
processes that scale with the density (e.g., rotational velocity, shearing). The global vari-
ability would then scale with the average density, and where the emitted intensity scales
with the density, the variability in the observed image would appear multiplicative to the
average image. However, the departure between the variability PSDs and that of the back-
ground average image above 30 Gλ implies that the relationship between the small-scale
fluctuations and the time-averaged image structure is more complicated. More precise
identification of the physical source of the universality of the variability PSDs is compli-
cated by the interactions of the global accretion state, the emissivity, and the radiative
transfer along photon trajectories, and we leave its study to future work.
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Figure 3.9: The average image visibilities (top), average mean-subtracted PSD (middle),
and average residual PSD (bottom) along the u (left) and v (right) directions for the 360
simulations in model set A (KHARMA). All PSDs use infinite averaging time. For ⟨PT ⟩,
all simulations show a flat spectrum for small baselines and a power-law dropoff at large
baselines. For ⟨P̂T ⟩, all simulations show a broken power-law spectrum, rising as |u|2 for
small baselines, and a power-law dropoff at large baselines. The long-baseline power laws
are remarkably consistent among different simulation types.
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3.5.2 PSD Dependence on Flow Parameters
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Figure 3.10: Effect of simulation parameters on the average residual PSD at (u, v)=(0.5
Gλ, 0) and infinite averaging time T . The simulations used are from model sets A and D,
and each of their windows is shown. The measurement is proportional to the variance in
the centroid of emission orthogonal to the black hole spin axis.

We now turn our attention to understanding the dependence of the variability PSDs on
GRMHD simulation parameters. The parameter space and possible PSD measurements
are vast, and trends across simulations are typically limited to small pieces of the parameter
space. Therefore, in this section, we limit ourselves to explaining the trends across models
for two measurements from the variability PSDs and briefly comment on other extensions.

Figure 3.10 shows the measurement of ⟨P̂T ⟩(0.5 Gλ, 0) for infinite averaging time T for
each of the 360 models in model set A and 200 from model set D. The primary source
of uncertainty is that each window is short enough to have a separate realization of tur-
bulence. We show all three or two windows separately to provide a visual representation
of the spread in this measurement, which matches the 25% estimate from the analysis in
Subsection B.1.3. This measurement at short baselines is dominated by the |u|2 depen-
dence and thus only probes variability caused by the variance in the centroid of emission
orthogonal to the spin axis (i.e., along the disk). For a visual representation to accompany
the following arguments, we refer the reader to Section B.4, which shows this variance
relative to its location in the average images.
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MAD simulations show little change across spin, inclination or Rhigh. This is not
necessarily surprising: in MAD flows, the emission is typically produced close to the event
horizon and is centered around the midplane, in the region where filamentary accretion
strands are separated by the strong magnetic pressures and plunge from intermediate
radius down to the horizon. When the majority of the emission comes from this violent,
disorganized region, the precise details of the accretion model and thermodynamics may
not strongly influence the detailed morphology of the emission.

For SANEs, however, there is a clear decrease in variability for larger corotating spin,
larger Rhigh, and more edge-on viewer inclination. In contrast with the MADs, the mor-
phology of the SANE emission region can be much more strongly affected by the details
of the model, and the split between Rhigh = 10 and Rhigh = 40 coincides with a change
from emission dominated by the disk or the jet sheath, respectively. For disk-dominated
Rhigh ≲ 10, the variability is much more pronounced for face-on inclinations, where any
part of the disk may light up, than for edge-on inclinations, where the emission, and there-
fore variability, is limited to the Doppler-boosted gas moving toward the observer on only
one side of the black hole. For jet-dominated Rhigh ≳ 40, the emission comes from further
off the midplane and is not as beamed, thus changing inclination has little effect on the
emission region size orthogonal to the spin axis. Note that for these jet-dominated models
the component along the spin axis does depend on inclination.

Figure 3.11 is analogous to Figure 3.10, but showing ⟨P̂T ⟩(0, 0.5 Gλ)/⟨P̂T ⟩(0.5 Gλ, 0) for
infinite average time T . This is in the short-baseline regime, and therefore we can interpret
trends through the axial ratio of the covariance ellipse of the distribution of centroids of
emission. MAD and SANE simulations are split, with MADs seeing more variability along
the disk where the average bulk of the emission is concentrated, and SANEs seeing more
along the jet, which is especially lit up in models with large Rhigh. SANE simulations
show a split between disk- and jet-dominated emission as in Figure 3.10. The simulations
dominated by jet emission have small ratios (i.e., < 1) since the variability comes from
different parts of the jet and counter-jet lighting up. This effect becomes more pronounced
at edge-on inclinations where the average image resembles two disjoint emitting regions
along the direction of the spin axis.

For long baselines, the variability PSDs are related to the power spectrum of the average
image. Therefore, any trends seen in the variability would likely be similar to trends in
the average image, which can more easily be obtained from data. On short timescales
(small T ), simulations show a clear power law dependence on T with a temporal break,
which, like the two PSD measurements discussed in this section, can discriminate accretion
flow types. However, on shorter timescales, it becomes increasingly difficult to provide a
physical origin for the PSD measurement trends, and we leave its study to future work.
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Figure 3.11: Effect of simulation parameters on the ratio of the average residual PSDs at
(u, v)=(0.5 Gλ,0) and (u, v)=(0,0.5 Gλ) for infinite averaging time T . The simulations
used are the same as in Figure 3.10. The measurement is equivalent to the ratio of the
variance of the centroid of emission orthogonal to the black hole spin axis to that along
the black hole spin axis.

3.5.3 Application to Sgr A∗

Current EHT observations of Sgr A∗ provide only sparse temporal and spatial coverage
of the (u, v)-domain. A measurement of the variability PSDs from EHT data is further
obscured by instrumental and calibration effects. However, tests on synthetic data from
GRMHD simulations in Broderick et al. (2022b) show that ⟨P̂T ⟩ can be well constrained
with current observations for 2 Gλ ≲ |u| ≲ 6 Gλ.

Motivated by these findings, we show measurements of ⟨P̂T ⟩ from GRMHD simulations
that have been generated to mimic the EHT observations of Sgr A∗. For each simulation,
we diffractively scatter the image with the kernel from Johnson et al. (2018) to include
the effects of interstellar scattering. We then average its variability PSDs over all possible
position angles of the scattering screen, and then azimuthally average. Finally, we fit each
resulting scattered ⟨P̂T ⟩ϕ with a power law between 2 Gλ < |u| < 6 Gλ and take our
measurement to be the value of the fit at |u| = 4 Gλ. This procedure is shown for the
simulation used in Subsection 3.4.1 in Figure 3.12.

The equivalent of the full scattered ⟨P̂T ⟩ϕ is measured from EHT data in Paper IV,
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Figure 3.12: Example of the diffractive scattering and fitting procedure. The blue line
shows the azimuthally-averaged ⟨P̂T ⟩ for the same simulation as in Subsection 3.4.1 for
infinite averaging time T . The six overlapping gray lines correspond to ⟨P̂T ⟩ϕ after mul-
tiplication by a diffractive scattering kernel with an orientation of 0◦–180◦ relative to the
black hole spin axis. The average over these is shown as a black line, to which we fit a
power-law between 2 Gλ < |u| < 6 Gλ (orange line), and take as a measurement the value
of this fit at |u| = 4 Gλ (orange point).

and the amplitude and slope of this power-law measurement are compared to data and
interpreted in Paper V7.

Figure 3.13 shows this measurement constructed for infinite averaging time T . Unlike
at short baselines, ⟨P̂T ⟩ near 4 Gλ is similar for many of the considered accretion flow
parameters, predicting a universal amount of GRMHD variability to within an order of
magnitude.

The main trend is with inclination, with face-on models showing less variability than
edge-on models. This is likely mirroring average visibilities, where face-on models have a

7The convention in Paper V and Section B.2 differs by a factor of 2, due to the use of visibility amplitudes
instead of complex visibilities. The rest of the procedure is identical.
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Figure 3.13: Azimuthally averaged ⟨P̂T ⟩ evaluated at observationally tractable baseline
lengths for infinite averaging time T . The average residual PSD is diffractively scattered,
azimuthally averaged, and averaged over orientations of the scattering screen. The value
of the scattered ⟨P̂T ⟩ϕ at 4 Gλ comes from a power-law fit at long EHT baseline lengths.
Though it can be well constrained by data, this quantity is from a region of (u, v)-space
where the average residual PSD is common among many accretion flow types.

larger area of emission, thus larger variability. Further discriminatory power is limited by
the noisiness of the simulations, with separate windows and codes providing the leading
uncertainty in the measurement of ⟨P̂T ⟩.

3.6 Summary and Conclusions

Motivated by the EHT observations of Sgr A∗, in this paper, we have developed a framework
for characterizing the spatiotemporal power spectrum of variability observed towards an
accreting supermassive black hole system. We have applied this framework to the library
of GRMHD simulations and associated GRRT images produced by Paper V, which span
a range of physical properties (magnetic flux configurations, black hole spin, temperature
prescription), numerical properties (code, resolutions, initialization, simulation length, time
from initialization, and other approximations), and observer locations. While these models
were produced specifically to match the expected emission from Sgr A∗ during the 2017
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EHT observation period, one can reasonably expect our findings to be applicable to a
range of systems in the optically-thin regime, following a proper scaling of a black hole
mass and total flux. We find that the variability power spectrum is generically a red-
noise process in both the temporal and spatial dimensions; i.e., the simulations exhibit the
highest variability power on the longest timescales and on the largest spatial scales. This
find will become important when separating coherent variability in Chapter 4. To focus
on variability in excess of the spatiotemporal mean, we have considered primarily the PSD
behavior after subtracting out the time-averaged source structure and normalizing it by
the light curve.

All of the GRMHD simulations show remarkably similar structures in their variability
PSDs. The spatial PSDs along any direction can be described by a broken power law, with
a small range of long-baseline indices (∼ 2 − 3) and break locations (∼ 1 − 3 Gλ). The
long-baseline indices correspond to a combination of the turbulent power spectrum and the
average image. The break location informs the largest spatial scale on which variability is
present, which is roughly the size of the emission region. On long baselines, the power-law
index of the variability PSD tracks that of the Fourier transform of the average image,
which is itself similar across simulations. The observed universality in the long-baseline
PSD behavior could arise if the variability came in the form of an average image whose
structure is modulated by an uncorrelated, multiplicative random field. In this picture,
it is the Fourier transforms of the average images which are similar among simulations,
and the random field could be caused by any process (e.g., MHD turbulence) that has a
long-baseline power-law index steeper than that of the average image.

On any given spatial scale, the power in the variability about the average image increases
with averaging time up to some breaking timescale, beyond which it remains constant. That
is, for every spatial scale there exists a maximum necessary averaging time, above which
the variability power on that spatial scale remains unchanged with increased averaging. On
short baselines (below ∼ 1 Gλ), this breaking timescale is greater than 103 GM/c3, and it
is shorter on longer baselines. The implication for EHT observations of M87∗ is that the
variability “noise” seen across a single night of observing should be approximately constant
with baseline length, and the expectation from GRMHD simulations is that the average
magnitude of this variability should be less than 1% of the total flux. Across a week of
observations, the expected variability power increases to several percent, though it remains
flat with baseline length on the range of baselines probed by the EHT. These expectations
qualitatively match the observed behavior of M87∗, which the EHT found to exhibit little
or no intra-day variability, and a modest amount of inter-day variability (M87∗ Paper IV).
Significant structural variation can be expected on timescales of months and years, which
has been observationally confirmed by Wielgus et al. (2020). For Sgr A∗, we expect that
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the variability should manifest as a broken power law “noise,” with large contributions on
short baselines and decreasing contributions on longer baselines. Normalizing the visibility
amplitudes by the light curve removes the largest component of this variability noise.

The azimuthal structure of the variability PSDs tracks the average images, that is,
the variability typically occurs where the emission does. Especially on longer baselines
where the variability PSDs and average images are similar, we expect the variability to
discriminate between accretion flows less than the average images could, and the latter are
observationally easier to measure. The variability can better distinguish different accretion
flows from measurements on short baselines (|u| ≲ 1 Gλ), where the variability is larger.
Here, the variability power is proportional to the variance in the centroid of emission, the
most variable spatial mode after the light curve. The entire temporal PSD of a short
baseline measurement of the variability (i.e. for a time series of the centroid of emission)
for timescales greater than ∼30 GM/c3 contains unique discriminating power. However,
with the current EHT instrumental effects, such a measurement would contain degeneracies
with the average image.

We find that a measurement of the average residual PSD on short baselines – and thus
a measurement of the covariance ellipse of the centroid of emission – wields some power to
discriminate between the different accretion flows in our GRMHD library. In particular, the
MAD and SANE accretion states exhibit distinct emission centroid behaviors relative to the
direction of the black hole spin axis. A centroid ellipse that is strongly elongated along the
direction of the spin axis suggests a variable jet, which is often seen in SANE simulations
that support hot funnels. In such a case, the magnitude of variability orthogonal to the spin
axis can constrain the black hole spin, with more positive spins producing less variability
in this direction. Centroid ellipses that are strongly elongated along the direction of the
disk (i.e., assumed perpendicular to the spin axis) are instead more typical of edge-on
MAD states, which have more equatorial emission structures. In this case, spin constraints
are more difficult because the variability in MAD simulations does not significantly change
with spin or temperature prescription. Circular centroid ellipses suggest a face-on accretion
flow, or perhaps an emission region that is further from the black hole. In such cases, the
amount of variability in the direction of the disk could distinguish whether the accretion
flow is in the SANE state with emission dominated by hot electrons in the disk. For each
of the cases described, the temporal behavior also holds significant discriminating power,
though it remains a more uncertain measurement from the simulations used here, and is
left for future study.

Lastly, we note that the work and conclusions rely entirely on the assumption that
the accretion flows around black holes and Sgr A∗ in particular are described by ideal
GRMHD and that the assumptions within those simulations are valid. We have attempted
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to address the latter by individually studying small excursions in resolution, the fastlight
approximation, accretion flow evolution, random initialization, and further assumptions
made with different simulation codes. Primarily, we find that the variability evolves on long
timescales and that even simulations run for as long as 30, 000 GM/c3 may be insufficient
for the characterization of variability statistics.
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Chapter 4

A Set of Coherent Variability Metrics to
Distinguish Accretion Flow Properties
from Synthetic Images of M87*

4.1 Introduction

The EHT can provide independent images for the black hole M87* on each day of obser-
vation. The dynamical timescale of M87* is GM/c3 ≈ 9 hrs, and thus subsequent days are
expected to have strongly correlated images. Combined, these images are a slowly varying
movie, one in which we can track features and measure coherent variability. Presumably,
moving features in images originate as similarly moving features in the accretion flow; thus
variability can inform about the underlying emission mechanisms, dynamics, or the black
hole spacetime.

This idea has been applied to M87* in previous work by tracking blobs of emission
moving along the jet on scales of 10-1,000 GM/c2 (Hada et al., 2016; Walker et al., 2016).
Closer to the black hole, magnetic reconnection events could create a local spot of accel-
erated electrons, which either fall into the black hole or are expelled in the jet (Broderick
& Loeb, 2006a; Tiede et al., 2020; Jeter et al., 2020). GRMHD simulations of black holes
consistently create coherent features, though they aren’t necessarily transported with the
flow (see Section 1.3 and references therein; Conroy et al. 2023). Thus, it is of interest to
connect the coherent variability in EHT images to a physical process in a measurable way
to learn about the physics of the accretion flow.
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Label Code Flux a∗ Γad rin rmax Resolution Cadence
A KHARMA MAD 0, ±0.5, ±0.94 4/3 20 41 288×128×128 5
A KHARMA SANE 0, ±0.5, ±0.94 4/3 10 20 288×128×128 5
B iharm3d MAD 0.94 13/9 20 41 384×192×192 0.5

Table 4.1: GRMHD fluid simulation parameters. rin and rmax are in units of GM/c2, and
the cadence is in units of GM/c3.

In this chapter, we measure three quantities from a library of GRMHD movies, which
are in principle measurable from EHT data, and relate them to details of the accretion
flow. The first two are a correlation timescale and an image-averaged rotation rate. Be-
sides relating physical processes to an image, these also help validate the assumptions of
independent snapshots in existing analyses of EHT data (M87∗ Paper V; M87∗ Paper VI).
We find results inconsistent with the idea that coherent variability is caused by features
moving with the fluid velocity. Motivated by the first EHT results of M87* and by results
in this chapter, we introduce the third measurement as a position angle of a dipole moment,
mimicking a rotating spot. A similar analysis of the position angle of GRMHD simulations
and EHT data has been carried out in Wielgus et al. (2020). We compare to EHT data
and show consistency with the simulations, and present predictions for variability in future
EHT observations.

We introduce the library of GRMHD simulations and images in Section 4.2 and describe
the methodology of correlation measurements in Section 4.3. We present the results applied
to one simulation in Section 4.4 and to the whole library in Section 4.5, which also explores
potential origins for an unexpectedly low rotation rate. Finally, in Section 4.6, we measure
and compare the dipole moment of the simulation library and EHT data.

4.2 GRMHD Simulations and Images of M87∗

We utilize a library of GRMHD fluid simulations which are then imaged to produce movies
of M87∗. For a complete description of the details of the simulations, see Section 1.3, and
for a description of the codes, see Chapter 3. From observations of the jet in M87∗, we
have a strong constraint on the inclination angle, i = 17◦ or i = 163◦ depending on the
orientation of the black hole spin and fluid rotation (Walker et al., 2016). Half of these
inclinations can be further excluded by the relative position angles of the brightest spot
in the EHT images and the large-scale jet (M87∗ Paper V). The other half of the images
correspond to an image flip. Therefore, we take an inclination of 163◦ for a∗ ≥ 0 and
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Label Code Rhigh i (deg) Flux (Jy) FOV Res. Start End Cadence
A ipole 1, 10, 40, 160 17,163 0.5-0.56 200 0.5 25,000 30,000 5
Ae ipole 40 17 0.45 160 0.5 5,000 9,000 5
Bs ipole 40 163 0.42 160 1 6.506.5 10,375.5 0.5,3
B ipole 40 163 0.42 160 1 5,488 9,357 0.5,3

Table 4.2: GRMHD image parameters. The simulation Ae is a MAD, a∗ = −0.5, and is
split into elevation slices. The simulation Bs is imaged using slowlight, and all others use
the fastlight approximation. The field of view and resolution are in µas. Inclinations are
17◦ for a∗ < 0 and 163◦ for a∗ ≥ 0.

Figure 4.1: Example frames from the GRMHD simulation library. Shown here are a
representative MAD (top) and SANE (bottom) simulation with three sequential frames
(left) and the average image (right). The inclination used is nearly face-on, with frames
typically showing rotating spiral features.

17◦ for a∗ < 0. The latter of these has the black hole spin axis pointing away from the
observer, and the angular momentum of the disk pointing at the observer. By convention,
we choose the y-direction to correspond to these spin axis.

The spatial and density scales of the images are irrelevant in this work as long as the
flux is low enough for the gas to be optically thin; following M87∗ Paper V, the simulations
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have M = 6.5×109M⊙ and D = 16.8 Mpc. We do not know details of the magnetic flux or
the electron temperature, so we survey over the typical MAD/SANE models and Rhigh =
1, 10, 40, 160. One of these simulations is split into elevation regions and only emission
from that region is considered, resulting in a movie for each elevation slice. A full set of
fluid parameters are given in Table 4.1 and corresponding image parameters in Table 4.2.
We also use a separate simulation to test the effects of the fastlight approximation and to
test the effects of cadence.

Figure 4.1 shows representative images of two example simulations. GRMHD images
of M87* show an average image of a bright ring and diffuse emission, dominated by gravi-
tational lensing effects in the optically-thin regime. On top of this, we see spiral features
that rotate in the same direction as the accretion flow and are roughly centered at the
black hole. The total brightness, asymmetry, and other large-scale image modes also vary
in the simulations. We make an inherent assumption in this chapter that the large-scale
effects are caused by boundary conditions, i.e., by the structure of the infalling material at
large radii. The small-scale spiraling features are likely emerging from the saturated state
of the turbulence. These fluctuations depend on details of the fluid, so we now measure
their correlation timescales and rotation rates to classify them.

4.3 Image-Averaged Correlations

We wish to measure the correlations of the fluctuations present in the GRMHD movies.
Finding them is challenging since the simulations have a red-noise power spectrum, with
the largest fluctuations occurring on the longest timescales (see Chapter 3), and the finite
simulations do not necessarily probe sufficiently long timescales. We attempt to mitigate
this in two ways: by lightcurve-normalizing and by mean-subtracting on a fixed timescale.
We also explore here the effects of smoothing the images as an approximation to the
resolution of the EHT.

We define an image-integrated correlation of two images A(x, y, t) and B(x, y, t) in a
standard way and incorporate a way to focus on single timescales. That is,

C =

∫∫
(A− ⟨A⟩)(B − ⟨B⟩)dxdy√[∫∫

(A− ⟨A⟩)2dxdy
] [∫∫

(B − ⟨B⟩)2dxdy
] , (4.1)

where the integral over x, y is approximated with a sum over pixels, and the angled brackets
represent some temporal average. We can get a measure of the simulation correlation by
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averaging the correlation over all sets of images (A, B) either a time ∆t or angle ∆ϕ apart.
We denote this ⟨C⟩(∆t,∆ϕ), and by definition, ⟨C⟩(0, 0) = 1.

Note that this quantity is not easily measurable from independent EHT images as the
lack of an absolute complex phase in the Fourier data makes each observation indepen-
dently shifted, scrambling the concept of an average image. This problem goes away in
the presence of a stationary feature, e.g., a bright ring of emission. Instrument improve-
ments, such as frequency phase transfer, or phase referencing can ameliorate the inability
of the EHT to measure absolute position. We leave the exact resolution of this issue and
application to/validation with EHT data to future work.

4.3.1 Lightcurve-Normalization

Figure 4.2: Total flux lightcurves of a sample of the simulations used. The left panel
contains MAD models for all spin values, and the right panel contains the same for SANE
simulations, with only Rhigh = 1 (solid) and Rhigh = 160 (dashed) shown. The short
timescale variability is roughly stochastic, but there are long-timescale trends, such as a
decaying flux in the SANE, a∗ = 0.94 model.

One mitigation strategy is to assume that the long-timescale effects are dominated by a
fluctuation in the total flux lightcurve. This is, again, motivated by the findings in Chap-
ter 3, where we found that the largest variability is on the largest spatial scales. Figure 4.2
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shows the total flux lightcurves for a representative subset of the models used. The total
flux of frames can vary by up to an order of magnitude during the 5, 000GM/c3 time
window shown. The existence of these long-timescale trends indicates that the simulations
have not been run long enough to reach a steady state. The mass within the simulation,
initially organized as a hydrodynamically stable torus, also drains, causing the mass ac-
cretion rate (related to the total flux) to drop on timescales of about 15, 000GM/c3. This
is particularly evident in the SANE, Rhigh = 1 simulation. To counteract this effect, we
normalize each frame to have a unit total flux, that is

I(x, y, t) = I(x, y, t)

L(t)
=

I(x, y, t)∫∫
I(x, y, t)dxdy

. (4.2)

Where the optical depth is large, this is equivalent to changing the mass scale of the
simulations. However, near the photon ring, the longer photon path decreases the optical
depth, and this will lead to artifacts in the correlations.

We find the lightcurve by summing over pixels and use a sum over frames to find the
average of I.

4.3.2 Mean-Subtraction

The second mitigation strategy is to impose a temporal filter on the calculation of the
mean. Given an image, I(x, y, t), we define a Gaussian-weighed mean, so that images
separated by long times correspond to a correlation of 0, and we are not affected by the
finite simulation length. Similarly to Chapter 3, we define a moving mean as

⟨I⟩ = ĪT (x, y, t) =

∫
I(x, y, t′)

1√
2πT

exp

[
−(t− t′)2

2T 2

]
dt. (4.3)

Numerically, this integral becomes a sum over frames, and the normalization is over all
included frames. Practically, we need only choose a T longer than any correlation timescale
of the small-scale spiral fluctuations, but small enough to get many independent samples
in a simulation length.

4.3.3 Smoothing

In order to approximate the effects of the EHT beam size, we convolve the images with a
circular gaussian with a standard deviation of 10µas, or a FWHM of ∼ 23.6µas. Practi-
cally, this is done with the multidimensional gaussian filter in SciPy (Jones et al., 2001–).
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4.3.4 Centering

Lastly, to calculate correlations between images at different angles, we need to choose a
center, and there is no unique choice. Most GRMHD images show a bright ring corre-
sponding to lensed emission, which is expected to be near the shadow edge. For a face-on
black hole, this curve is a circle whose center1 changes with spin,

xcenter = 2a∗ sin 17
◦GM

Dc2
≈ 2.22a∗µas. (4.4)

We instead find this center from the average image using the following procedure applicable
to EHT images. First, we guess the center location and draw 36 rays emanating from this
position at 10-degree intervals. For each, we find the radius to the maximum brightness
location and find the standard deviation of these radii among the different rays. We choose
the center of the image as the one that minimizes this standard deviation. This center is
used for all frames of the simulation and is not found independently on the smoothed
images or the lightcurve-normalized images. Note that applying this procedure to EHT
data may not key in on the same feature, as our procedure requires a higher resolution to
find a brightness peak. This is partly explored in Section 4.6, but will ultimately need to
be validated on synthetic data.

Figure 4.3 shows the images before and after shifting to the center of the bright ring.
The simulation used is a MAD, with a∗ = 0.94, Rhigh = 1, and an inclination of 163◦, so
it is maximally offset by gravitational effects. Before centering, the ring is offset, and the
peaks along the cardinal directions do not align with a flip of the image. After measuring
a center and shifting the images, the brightness peaks in all directions are better aligned.
For the majority of simulations, this center agrees with the center of the shadow (red dot).
This procedure will result in measuring rotations about the center of the bright ring, which
does not necessarily match every rotating feature in the system.

4.4 Application to One Simulation

We now apply the procedures of the previous section and interpret the generic features
simulations produce. We also test the effects of smoothing, lightcurve-normalization, and
averaging timescale. In particular, we are interested in the coherent fluctuations which
manifest as spiral arms instead of the more prominent total flux and brightness asymmetry
variations that are expected from changes in the mass accretion rate far away from the
black hole.

1The GRMHD coordinates are centered at the black hole with the spin axis pointing vertically.
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Figure 4.3: Demonstration of the centering procedure. The left column shows the raw
GRMHD frame, while the right shows the frame after shifting. The top row contains the
images, with the red dot representing the theoretical center of the photon ring given by
Equation 4.4. The bottom row shows horizontal and vertical slices along the center of the
images as solid lines, with dashed lines flipped along the respective axis for comparison
purposes. Before centering, there is a clear offset in the bright ring structure, and after
centering, the peaks all lie on top of each other.
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Figure 4.4: Dependence of the correlation on mean-subtraction, lightcurve-normalization,
and smoothing for a simulation with the strongest long-timescale trends. Different colors
show mean-subtraction on different timescales. Solid lines show the unsmoothed image,
and dashed lines show the image smoothed with a gaussian with a standard deviation of
10µas. The left panels are the original images, while the right panels use the images after
lightcurve normalization. The bottom panels contain the same lines as the top but zoomed
in to highlight the short-timescale behaviors.

4.4.1 Long-Timescale Variability

Figure 4.4 shows the effects of smoothing the images, lightcurve-normalization, and the
mean image subtraction procedure. The correlation shown involves no rotation and is
independent of a center choice. We specifically choose a simulation with one of the strongest
long-timescale trends to explore effective mitigation strategies (SANE, with a∗ = 0.94 and
Rhigh = 1). With no mitigation, there is a hint of two separate timescales, one on the
order of 30GM/c3 and another of more than 1, 000GM/c3. It is unclear whether this long
timescale is physically important or a numerical artifact of either finite simulation length
or a draining of the torus.

Applying lightcurve-normalization has a massive effect. Since Equation 4.1 is inde-

104



pendent under a scaling factor, the lightcurve-normalization procedure only affects the
weighting of each image in the average. If the long-timescale effects are limited to a scal-
ing of the mass accretion rate and the gas were optically thin everywhere, this procedure
would remove the effects relating to a draining torus. The correlation function is certainly
reduced; however, there is still a residual effect. For large T , there still appear to be two
correlation timescales. We attribute this to the photon ring being optically thick, and
thus the rescaling has not equally reduced the long timescale correlation in the bright ring
structure.

The mean subtraction procedure is equivalent to a filter applied to a power spectrum,
and as we take mean images on shorter timescales, all correlations at long ∆t are delib-
erately suppressed. For this simulation, as we suppress the long-timescale behavior, the
measured correlation timescale is entirely determined by the choice of T . If applied to
EHT data, this timescale would be set by the time over which observations were taken,
noting that we can always subdivide data to measure averages on smaller timescales.

For the rest of this chapter, we use a combination of lightcurve-normalization and an
averaging timescale to focus on the short-timescale effects. We take T = 100GM/c3 and
do not consider timescales longer than this. EHT reconstructions will inherently smooth
flux on scales smaller than a beam, and smoothing images has a net effect of lengthening
correlation timescales. In this work, we do not include smoothing and leave its study to
future work when it is applied to EHT data.

4.4.2 Rotation

Figure 4.5 shows a simulation’s correlation map as a function of both time and rotation.
The left panel shows the correlation when only lightcurve-normalization is used to mitigate
the long-timescale effects. For |∆ϕ| ≲ 15◦, the correlation timescale extends longer than
any other structure and is distinct from the structure at small ∆t. In order to separate this,
we perform the mean subtraction procedure, thus entirely removing the long-timescale cor-
relations. The shape of the short-timescale correlation is preserved; however the correlation
value is suppressed everywhere, so we measure the timescale at ⟨C⟩ = 0.2. The timescale
of the mean-subtracted correlation roughly matches an e-folding time of the correlation
without mean-subtraction.

Immediately apparent in Figure 4.5 is that the correlation has a preferred direction,
about 1 degree per GM/c3. This rotation is expected, as the GRMHD movies look like ro-
tating spirals, and is precisely the effect we wish to measure. To better measure these rota-
tions, we first calculate the contour of ⟨C⟩ = 0.2 from an interpolated two-dimensional mea-
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Figure 4.5: Correlation as a function of time and angle. The left panel shows an infinite
averaging time, while the right has T = 100GM/c3, thus suppressing long-timescale cor-
relations. As a result, while the left contour is ⟨C⟩ = 1/e, the matching right contour is
about ⟨C⟩ = 0.2. The correlation maps have been interpolated from the original 5GM/c3

temporal spacing for visual clarity and for smoother contours.

surement. Then, we define the maximum correlation timescale as the correlation timescale
at the angle where it reaches its maximum. Lastly, we define the rotation rate as ∆ϕ/∆t to
this location. We also define an uncertainty in the rotation rate as the collection of rotation
rates that have a correlation timescale of 95% of the maximum timescale. In practice, this
uncertainty will be set by the ability to reconstruct images from EHT data.

4.5 Application to Many Simulations

Figure 4.6 shows the contours of ⟨C⟩ = 0.2 for all the simulations in model set A covering
the two accretion states (MAD/SANE), 5 spin values, and 4 Rhigh values. Most simulations
appear to have a preferred rotation rate, and a correlation timescale of about 30GM/c2.
The flip in rotation rate is caused by the flip in inclinations for a∗ < 0, such that the
observed rotation is always in the direction of the large-scale disk. From these contours,
we measure the angle of the maximum timescale and measure an error as all the rotation
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Figure 4.6: Contours of constant correlation ⟨C⟩ = 0.2 for different accretion flow types.
The specifics are identical to those used for the simulation in Figure 4.5. The rotation of
features is aligned with the direction of the accretion disk, even for retrograde models.

rates which give a timescale 95-100% of the maximum timescale. The primary source of
uncertainty in this procedure is the low cadence of the frames. These measurements are
summarized in Figure 4.7.

MAD and SANE accretion flows behave differently. All MAD models give the nearly
constant rotation rate of about ±0.8 degrees per GM/c3, independent of Rhigh. Since
the MAD models are dominated by streams of irregular accretion near the midplane, the
emission tends not to depend on the specifics of the electron temperatures. There is a weak
dependence of the rotation rate on the spin, possibly due to a slower azimuthal velocity
at retrograde spin. The correlation timescale inversely depends on the magnitude of the
spin. Since the black hole event horizon is smaller for larger spin magnitudes, this could
originate from an emission region at smaller radii where timescales are shorter.

SANE models are split into three groups. For Rhigh = 1, the emission comes from the
midplane and can extend significantly further out than the photon ring, particularly for
retrograde spin. This is seen in the correlation timescales, which seem to be related to
the typical radius of emission and decrease with a∗. For Rhigh = 10, the emission is still
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Figure 4.7: Synthesis of the rotation rate and maximum correlation timescale for the
simulations in Figure 4.6. The rotation rates for a∗ < 0 have been flipped to better show
the trend with spin.

dominated by the midplane, but now a significant portion of the emission originates closer
to the black hole. This gas is evolving faster, thus the correlation timescale decreases.
The gas at higher values of Rhigh originates from regions closer to the jet. These results
indicate that the gas features in the corona/jet region that are responsible for the main
image emission rotate slower than features in the midplane.

4.5.1 Origin of the Rotation Rate

Most GRMHD simulations predict a rotation rate of about 0.8◦ per GM/c3. A natural
assumption is that the spiral features rotating in the image are caused by spiral features
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Figure 4.8: Contours of uϕ/ut = 0.8◦/(GM/c3) for the simulations used. In the midplane,
this rotation rate occurs at a radius of about 15GM/c3, far away from the emission region.
Retrograde and zero spin models can reach this rate close to the black hole but above the
midplane.

in the accretion flow rotating at the same angular velocity, Ω = uϕ/ut ≈ 0.8◦ c3/GM . In
the midplane, the GRMHD simulations are roughly Keplerian, with

Ω ≈ ΩK =
GM

r3/2 − a
. (4.5)

Equating these, the rotation rate in the images would need to come from r ≈ 17GM/c2,
well outside of the emission region. Taking a more rigorous approach, Figure 4.8 shows the
contours of this rotation rate, that is, a map of where emission would need to come from
so that the rotation rate in the images matches the rotational fluid velocity. For a∗ = 0.5
and a∗ = 0.94, this only happens far away from the black hole. For zero and retrograde
spin, however, it is possible for the emission to originate from slightly above the midplane
and thus match the image rotation rate with Ω.

In this section, we argue that the rotational rates observed in GRMHD movies corre-
spond to features moving in the accretion flow at a different speed than the fluid velocity,
akin to a backward traveling spiral wave. First, we rule out a lensing effect, by testing
the effects of the fastlight approximation and by a rotating hot spot. Then, we study the
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effects of including emission only from a particular latitude to show that each latitude
contributes to the total correlation map with the same rotation rate.

Slowlight vs Fastlight

Figure 4.9: Correlation as a function of time and angle for the same simulation imaged
with (right) and without (left) the fastlight approximation. The contours correspond to
⟨C⟩ = 0.2 after interpolating in the same way as in Figure 4.5. The two simulations produce
similar results.

All of the images so far have used the fastlight approximation, in which the accretion
flow is assumed to be constant during the imaging process. However, the velocity of
the gas is comparable to the speed of light near the black hole, and it is possible this
affects an observed rotation rate. To test the effects of this fastlight approximation, we
use model sets B and Bs, composed of the same fluid simulation, but imaged with and
without the fastlight approximation, respectively. Similarly as done in Chapter 3, we align
the two simulations’ time windows by maximizing the cross-correlation of their total flux
lightcurves with respect to a time offset. After this, the lightcurves are very similar, and
both simulations have the same time cadence and window length. Imaging is done with
dumps spaced 0.5GM/c3, but only every sixth frame (i.e., a cadence of 3GM/c3) is used
for the correlation analysis.
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Figure 4.9 shows the time and azimuthal correlation of the two simulations. The corre-
lation is a measure averaged over many images, and although individual snapshots of the
two simulations are visually distinct, ⟨C⟩ appears similar. Quantitatively, a typical corre-
lation measurement of the two simulations differs by 5− 10%, slightly above the statistical
noise from using ∼ 1000 images. Certainly, there is not enough of a difference to explain
the image features rotating slower than the gas rotation.

Hotspot

An image of a black hole accretion flow mixes the emission from many locations of gas,
so it is possible that a feature moving in the accretion flow may not appear to move the
same way after being lensed. For this test, we use the RIAF+hotspot model in Tiede et al.
(2020).

The constant RIAF background is from Broderick et al. (2016) with the parameters
slightly changed to match the total flux of M87*, and thus the approximate amount of
optical depth. On top of this diffuse background, there is an overdensity of electrons
placed in the midplane at r = 8.5GM/c2. The center of this spot has

ur = ur
K + α(ur

ff − ur
K) (4.6)

and
Ω = ΩK + (1− κ)(Ωff − ΩK) (4.7)

where the K subscript refers to Keplerian motion, and ff refers to freefall. For this spot,
we set κ = 1 and α = 0.005, so that the spot has a fixed rotation rate as it falls into the
black hole. Since the spot has a finite size, it shears and diffuses and does not keep its
original shape. The model is imaged at an inclination of 18.2◦.

Figure 4.10 shows images of this hotspot model and the correlation map. Also shown is
the rotation rate of the spot at its initial location of r = 8.5GM/c2. There is a prominent
rotation rate that matches the Keplerian rate, and thus the approximate rotation of the
spot in space. Thus, we conclude that for a face-on black hole such as M87*, an orbiting
feature in the gas creates a similarly orbiting feature in the images with the same rotation
rate.

Elevation

The contours of uϕ/ut in Figure 4.8 suggest that, for zero or retrograde spin, a slow rotation
rate could be present in the gas close to the black hole, but above the midplane.
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Figure 4.10: Example frames and correlation map of an orbiting hotspot model. The top
panels show four sequential frames (left) and the average image (right). The bottom panel
shows the same quantity as in Figure 4.5. The solid black line is the fluid rotational rate
of the Keplerian spot at a radius of 8.5GM/c2, and matches the observed rotation in the
images.

To test this, we decompose images of a simulation into elevation slices labeled as model
set Ae. Each image of each slice corresponds to emission only taken in some range of z.
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From the image sets of each slice, we independently measure the correlations, although
they are all centered on the same position. The simulation used is MAD, with Rhigh = 40
and a∗ = −0.5 and imaged at an inclination of 17◦. The spacings in z are every 0.5GM/c3

from −9.5GM/c3 to 9.5GM/c3, and we take 1000 images from the time window 25, 000-
30, 000GM/c2. With this inclination, positive z corresponds to emission coming from
nearer to the observer than negative z.

Figure 4.11 shows example images and the correlation contours in the same style as
Section 4.5 for the slices near the midplane. The bulk of the emission comes from near
the midplane as that is where the gas density is highest. The images constructed as a
sum of elevation slices are similar to the images created using all the gas, implying that
optical depth effects are minor. The correlation contours similarly match between the two
simulations (solid black and grey dashed lines).

The different elevation slices have roughly the same rotation rate, at least for the dom-
inating emission near the midplane. The correlation timescale increases with the elevation
away from the observer. However, the relative contribution to the emission decreases, so
the correlation of the full simulation is some combination of bright midplane emission, and
prominently correlated emission away from the midplane. Each elevation slice contributes
with the same rotation rate.

Figure 4.11 also shows the average fluid rotational velocity at r = 4GM/c3 as rays
emanating from (∆t,∆ϕ) = (0, 0). These do not equal the rotation seen in the images and
are sometimes in the opposite direction. To make them match, the emitting radius would
need to be further out for higher elevations. For z = 2GM/c3 above the midplane, the gas
rotates in the same direction as the black hole (opposite the rotation seen in images) all
the way to r ∼ 7GM/c2. Therefore, it is unlikely that the coherent fluctuations are so far
away from the black hole and rotate with the average fluid velocity.

It is noteworthy that the fluid velocity often varies by 100%, and so it is possible that
the rotating features only appear when the value of Ω briefly lowers in magnitude. It is
also possible that the features are not moving gas, but rather a spiral wave backward-
propagating with about half the fluid velocity and vertical structure such that there is not
much change in correlation rotation rate with elevation. We leave an exact connection
for future work and note that the vertical structure of the fluid velocity is insufficient to
explain the discrepancy between the average fluid velocity and the observed correlation
rotation rate.
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Figure 4.11: Example frames and correlation contours of a simulation sliced along elevation.
The top row of panels shows the time-averaged images for each slice (left) and the sum over
slices (right). The second row of panels shows a single image at 5, 000GM/c2 from each
slice (left) and the combined image (right). The percentages measure the contributions
of a slice to the total image flux. The bottom plot shows the contours of correlation for
each slice, the sum over the slices, and the simulation including all gas in the imaging
process. The lines near (0, 0) show the average Ω of the gas in the corresponding slice at
r = 4GM/c2.
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4.6 Image Dipole Moments

The results of the correlation analysis clearly indicate that the dominant variability is ex-
pected to be rotating features. In fact, EHT observations of M87* see a general morphology
of a bright ring with some asymmetry that changes on a timescale of a week (M87∗ Paper I;
see Figure 1.2). In this section, we turn this into a possible constraint on accretion flows
by comparing the dipole moments of simulations and data.

4.6.1 Methodology

For both the simulations and the data, we define the dipole moment angle as

D(t) = arctan

[∫∫
dxdyI(x, y, t) sinϕ∫∫

dxdyI(x, y, t)
,

∫∫
dxdyI(x, y, t) cosϕ∫∫

dxdyI(x, y, t)

]
, (4.8)

where

sinϕ =
x√

x2 + y2
and cosϕ =

y√
x2 + y2

. (4.9)

The integrals are evaluated as a sum over pixels, and the GRMHD images are centered
before this calculation as described in Subsection 4.3.4.

For EHT data, we take the results of Broderick et al. (2022a). These fit 2017 EHT
observations of M87* with a Bayesian image model, and thus the resulting image samples
represent a posterior distribution. For each image on each day, we center as before and
calculate a dipole moment. There is no guarantee that the angle measured on reconstructed
images corresponds to the same angle on a “truth” image; however, we note that this
Bayesian imaging model can recover brightness asymmetries reasonably well (Tiede, Paul,
2021). In particular, the dipole moment measurement is sensitive to a convolution with
a beam size, since the center of the images changes when the standard deviation of the
convolution kernel becomes larger than 5µas. We leave a more rigorous validation and
calibration of the measured position angle to future work and include EHT data merely as
indicative.

As we are primarily concerned with variability, we will define as our observable the
change in position angle of the dipole moment over a period of time. Published EHT data
of M87∗ has observations separated by 1 day (3GM/c3) and by 5 days (13GM/c3). In
addition, there are ongoing observations spaced by approximately 1 year (1, 000GM/c3).
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4.6.2 Sampling Rate and Slowlight

Figure 4.12: Change in the angle of the dipole moment in 3GM/c3 (left) and 13GM/c3

(right) for the same simulation imaged with slowlight (blue) and fastlight (green). Also
shown is the result when each simulation only has each 10th frame, or 5GM/c3 temporal
spacing (dashed).

As before, there is a worry that the fastlight approximation may impact the variability.
Here we perform a test whereby we calculate the dipole moment for both the slowlight and
fastlight simulations. Additionally, the simulation cadence does not match the observation
cadence, so we linearly interpolate the dipole angle to match. Since the slowlight simulation
has a small cadence of 0.5GM/c3, we can test whether the interpolation changes the
recovered amount of variability. Figure 4.12 shows the predicted change in the dipole
moment for the simulations in model sets B and Bs. Both the fastlight approximation and
the linear interpolation have negligible effects on the measurement.

4.6.3 Dipole Moments of the GRMHD Simulation Library

Figure 4.13 and Figure 4.14 show the dipole angle change in 1 day and 5 days, respectively.
Over 1 day, the simulations all predict that the dipole moment shouldn’t change more than
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Figure 4.13: Change in the dipole moment over 1 day for all simulations in model set A.
The vertical dashed line and surrounding bands are the EHT measurements between April
5 and April 6.

about 5◦, regardless of the type of accretion flow. This is expected, as even the fastest
moving features couldn’t travel more than about 10µas in a day. Five days, however,
allows for more complex motion, while still being shorter than the maximum correlation
timescales found in Section 4.5. Figure 4.14 shows that the retrograde simulations exhibit
larger coherent variability, especially for MAD models. The EHT data prefers a clockwise
change in the position angle from the 2017 observations. The amount is consistent with
the prediction from the simulations.

Figure 4.15 shows the predicted change in the dipole moment over a year. Retrograde
models allow a broader range of possibilities, typically ±90◦, as these simulations have
messier emission structures. The SANE, a∗ = 0.94, Rhigh > 40 models are dominated by
emission in the jet and corona region, and evidently, this region does not produce much
variability. Thus, a one-year measurement of the change in position angle can inform on
the regions where the emission originates.
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Figure 4.14: Same as Figure 4.13, but for 5 day spacing. EHT data is taken between April
6 and April 11.

4.7 Summary and Conclusions

In this chapter, we have presented a set of metrics to measure coherent variability and
applied them to a library of GRMHD simulations of black hole accretion flows suited
for M87∗. These simulations covered the two accretion flow types (MAD/SANE), 5 spin
values, and 4 values of the Rhigh electron temperature prescription. For each simulation,
we construct a map of the average correlation for images spaced apart in time and rotation
angle.

The first metric we present is the maximum correlation timescale, which measures how
long fluctuations in simulations last until they diffuse out. This timescale is between 20-
50GM/c3, providing a baseline for analyses that use one simulation to generate many
independent snapshots (see, e.g., M87∗ Paper V). We find that MAD models have a longer
correlation timescale for non-spinning black holes, and it increases with spin magnitude.
SANE models have a more complex behavior which roughly depends on the location of the
emitting region. Generally, the further away the emission region is from the black hole,
the longer the correlation timescale.
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Figure 4.15: Same as Figure 4.15, but for 1 year spacing.

The second measurement was a rotation rate. The GRMHD library gives a consistent
rotation rate of about 0.8◦ c3/GM , aligned with the angular momentum of the large-scale
disk. There is a weak dependence on spin and a larger dependence on the emission region
through the Rhigh parameter. Prograde models have slightly higher rotation rates and
jet/corona-dominated models have moderately higher rotation rates. The measured rota-
tion rates do not match the average rotation of the fluid velocity in the emission region.
To provide further rigor to this statement, we performed a series of tests confirming that
neither lensing effects nor the vertical locations of the emitting gas are responsible for this
discrepancy.

The third measurement is the position angle of the dipole moment, mimicking a bright
region on a ring of emission. We measure this quantity on both simulation and EHT
data and provide an interpretational comparison. Essentially all of the simulations are
consistent with the observed variability in M87∗ over both one and five days. We also
present a prediction for the maximum change of the dipole moment for the 2018 EHT
observation of ±90◦.

These three measurements provide a means to connect observed coherent variability to
physical processes. They are not unique, and any measure of short-timescale variability
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which is well-constrained by data can be plugged into the procedures set up here and
calculated from the GRMHD image library. It is, however, necessary to validate these
methods on synthetic data to ensure that the process of reconstructing images from EHT
data does not bias the measurement of interest or create variability where none exists. We
leave the application to further real and synthetic EHT and ngEHT data for future work.
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Chapter 5

Summary and Conclusions

With EHT observations of Sgr A∗ and M87∗ reaching precisions that challenge current
models, we need methods that collect all of the physical and systematic effects in order
to robustly constrain theories of plasma physics and gravity. Along with these, we need
an understanding of what features in the data drive constraints, both to build confidence
in results and to design better instruments. In this thesis, we contribute to these tasks in
two ways. First, we study the variability present in dynamical simulations and attempt to
separate the variability from the average accretion flows in order to build a more consistent
variability prescription for semi-analytical models. The resulting model we build can then
be directly fit to data and used to extract parameters of interest. Second, we analyze a vast
library of simulated black hole images and extract measures of variability in the short- and
long-timescale regimes relevant for M87∗ and Sgr A∗, respectively. In the case of Sgr A∗,
this disentangling of variability is a necessity for the reconstruction of average images. For
both sources, these variability measures provide a means by which we can use variability
in EHT data to discriminate between accretion flow models.

5.1 On a Semi-Analytical Model of Black Hole Accre-
tion Flows

In Chapter 2, we further the understanding of magnetohydrodynamical turbulence in black
hole accretion flows by building a static midplane model and comparing it against variable
GRMHD simulations. We use 10 simulations, spanning five spin values and the two ac-
cretion flow types, MAD and SANE. All the simulations converge to a quasi-steady state,
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indicating that there is a stable configuration within which the variability impacts the
background flow.

We first measure how well the average GRMHD fluid variables satisfy their constituent
equations, essentially quantifying the effects of the nonlinear fluid interactions. We find
that due to numerical shortcomings, we can only robustly measure averages and fluctua-
tions in the disk and corona regions where the density is sufficiently large. We then find
that the effects of the variability are less important in the midplane, with different behav-
iors in MAD and SANE models. SANE models are quieter, and most of their variability
is driven by the variance in the velocity and the vertical momentum flux. MAD models
are much more variable, and they are driven by variability in almost every constituent
equation.

Motivated by these findings, and by the simplicity of the GRMHD equations in the
midplane, we construct a static axisymmetric GRMHD midplane model assuming vertical
symmetry. It takes the form of 5 auxiliary variables that are constant in radius. These
physically correspond to a specific entropy, energy, angular momentum, and a temporal
and azimuthal magnetic flux, and, along with a given density profile, fully describe the
flow. Importantly, a solution that exists at one radius may not exist everywhere. We then
describe the behavior of the static accretion flow for several cases relevant to GRMHD
flows. When the angular momentum is too high, the gas from far away cannot reach the
black hole. When the entropy or energy is too large, the gas could not have originated
from far away.

Upon incorporating the ability of one auxiliary variable to vary in time, we find that
solutions converge to a piecewise solution. If a solution constructed from constant auxiliary
variables would not exist at some radius, then instead the radial velocity is zero. Depending
on the boundary conditions of the accretion flow, the average auxiliary variables become
some combination of radial constants and their critical values that lead to a zero radial
velocity.

From this behavior, we construct an approximation for variability in accretion flows
as an average of two piecewise solutions. The first solution has a boundary condition at
infinite radius, with approximately no radial momentum, no pressure, and no magnetic
field, but some finite angular momentum. In this solution, as the gas falls in, it eventually
stops and enters a region with zero radial velocity. Near the black hole, the solution reverts
to a constant angular momentum, equal to the maximum that a particle can have at infinity
and still reach the black hole. The second solution has a boundary condition at the event
horizon and has some finite energy, entropy, angular momentum, and magnetic field. As
information travels outward, this solution also reaches a zero radial velocity and stops,
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and this applies to all radii past a certain point. Finally, we average the two solutions to
complete the approximation.

The approximation works well for SANE models while being many orders of magnitude
faster to compute. Due to their relatively low variability, the radial profiles of SANE
models can be well described by their median values, which contain spin-dependent breaks
and radial dependencies. Our approximation takes as input the “true” density profiles
and matches the auxiliary variable profiles and their spin dependencies. MAD models are
more variable, and so their description requires more than a median midplane value, so
our approximation fails. However, the MAD model profiles and their variability strongly
indicate these models are also driven by the critical solutions with zero radial velocity.

In order to extract physical information from EHT data, three main future extensions
are required. The first is a two-dimensional static model upon which we could construct
our inner and outer critical solutions. It is likely that the static model would then require
numerical integration and a more complex boundary condition. The second is the integra-
tion of this GRMHD approximation into existing parameter estimation frameworks such
that EHT data directly informs on the metric and boundary parameters. A key necessity
will be the validation that the images created from the static model correspond to averages
of GRMHD movies of black holes. Lastly, the third main extension is the understanding
of how the distributions of the auxiliary variables evolve in space. This is a requirement
for MAD models, where variability is large, but also for interpreting the inner saturated
critical solutions. We leave these extensions to future work.

5.2 On Using Variability in EHT Data to Constrain Ac-
cretion Flows

In Chapter 3 and Chapter 4, we construct two libraries of simulated images relevant for
M87∗ and Sgr A∗. These cover the two accretion states, MAD and SANE, multiple spin
values, different properties of electron thermodynamics (i.e., Rhigh values), and observer
inclination. M87∗ varies on timescales of an observing night, and Sgr A∗ varies on timescales
of a minute. Combined with the observational necessities of the EHT, these sources either
give a picture of moving emission structures or a map of the statistical properties of the
variability. Thus, we develop two separate methods to measure this variability.
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5.2.1 M87∗

Measurements of the jet in M87∗ indicate that the black hole inclination is nearly face-on.
Thus, images are composed of a bright ring and spiral arms that rotate with the flow. We
focus on these spiral features and create three measurements of their coherent variability.
The first is a correlation timescale measuring how long features remain before diffusing out.
The second is a rotation rate of the spiral features, and the third is the position angle of the
dipole moment. For the first two measurements, we first construct a correlation map, i.e.,
a time-average of the image-averaged correlations for frames spaced in time and position
angle. We also separate out the variability associated with the mass accretion rate or with
long-timescale trends not sufficiently captured by the simulations by mean-subtracting and
lightcurve-normalizing.

The simulations show a clear rotation rate in their correlation maps in the same di-
rection as the large-scale accretion flow, as well as a unique correlation timescale. MAD
models have nearly the same rotation rate of ∼ 0.8◦c3/GM regardless of spin or Rhigh, and
their correlation timescale peaks for zero spin. SANE models have more variance in the
rotation rate depending on the location of the flow parameters, though still averaging to
the same rotation rate as the MAD models. The correlation timescales are 10-50GM/c3

and their dependence on model type can be explained by a change in the emission region.
Importantly, this short correlation timescale validates assumptions about the independence
of snapshots in EHT analyses that have used one simulation to generate a population of
turbulent realizations.

The typical rotation rate we measure in the GRMHD images is about half the amount
expected from the fluid velocity. We argue that the spiral features in the images correspond
to similar features in the accretion flow, yet move at a different speed than the fluid
velocity (e.g., a backward-traveling wave). To build confidence in this assertion, we use
a toy model composed of a static accretion flow and a shearing orbiting hot spot. The
resultant correlation maps clearly show a rotation rate that matches the velocity of the
orbiting spot. We also test the effects of the fastlight approximation, confirming that there
are no spurious lensing effects altering rotation rate measurements. When looking only at
emission from a small latitude range, we find that emission coming from every part of the
simulation has the same rotation rate, inconsistent with the average fluid velocity.

EHT images of M87∗ support the idea that the event horizon emission can be composed
of some ring-like structure and moving spots on that ring. To quantify these and connect
them to the GRMHD simulations, we measure the dipole moment of all the images in the
simulation library. We then choose a measurement of the change in this dipole moment
over a day (3GM/c3), a week (13GM/c3), and a year (1, 000GM/c3), as these are the
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timescales we can probe with EHT data. We find that most simulations predict a similar
narrow range of the change in the dipole moment, which varies more on longer timescales.
Current EHT observations are consistent with the predictions of the simulations. The
prediction for the 2018 EHT observations is that the dipole moment will have changed by
fewer than 90 degrees.

To fully use the results of the correlation analysis, there needs to be a similar way
to measure it from the data. Few observations are available, so any average image or
correlation map will be subjected to a high amount of sampling noise. A key necessary
test is to determine whether the correlation measure in the GRMHD images is altered
after it has gone through the EHT image reconstruction process. The correlation we have
looked at is image-averaged, and more information would exist in, e.g., an optical flow map
that determines where in the image and in what direction fluctuations move. Furthermore,
it may be possible to directly correlate along the tracks in the Fourier domain for which
the EHT has data, though this increases the difficulty of interpreting motions. The dipole
moment analysis can also be extended by measuring variability in parameters of more
sophisticated models in both simulations and EHT observations. We leave these possible
extensions for future work.

5.2.2 Sgr A∗

Sgr A∗ is variable on timescales much shorter than current EHT observations, so a statis-
tical measure of variability is needed. We quantify it with a lightcurve-normalized mean-
subtracted PSD, which can be calculated from both GRMHD images and EHT data. We
apply it to a library of simulations constructed for Sgr A∗, and find that variability is
greatest on the longest timescales and largest spatial scales. We also find a universal bro-
ken power-law behavior. On large scales, the power-law index is 2, and the amplitude
directly measures the variance in the centroid of emission. The break location and small-
scale power-law index contain information about a mix of the average image and the MHD
turbulence. On shorter timescales, as more applicable to M87∗ or a subset of Sgr A∗ data,
the power in the variability lessens and the break location moves to longer baselines.

In particular, we find that the variability PSDs have the most discriminatory power on
short baselines, where the variability is driven by the covariance ellipse of the centroid of
emission. Much of its dependencies on accretion flow type are driven by the shape of the
average emission, which in turn is driven by the fluid emission regions. The variability is
most sensitive to the inclination of the source, whether the flow is a MAD or a SANE,
and in the case of SANE models, whether the emission comes from the disk or corona.
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Motivated by the ability of EHT data to measure the variability PSDs, we compare the
amplitude of the azimuthally-averaged scattered residual PSD at 4Gλ. The simulation
library predicts a narrow range near 10−3.

These results are consistent with EHT observations. M87∗ has very little variability
over a one-night observation, and a small, but detectable, amount when considering a
whole week. The variability in Sgr A∗ is only robustly quantifiable on long baselines and
averaged over azimuth, and it follows a power law. The power-law index matches the
predictions from simulations, and the magnitude is on the lower half of the range at 4Gλ.
This agreement implies the GRMHD simulations are producing variability similar to the
EHT data, or that our universal measurement or variability is dominated by some other
quantity, such as the average emission.

Crucially, these results are used as the basis of a broken power-law variability noise
model, which is required to produce average images of Sgr A∗. As EHT data improves,
the noise model will need to expand to cover a two-dimensional structure and timescale
dependencies. We provide descriptions of both in this work and as the data more precisely
measures the level of variability, it can provide discriminatory power for libraries of sim-
ulations. Since the variability is strongest on large scales, in order to best use Sgr A∗ to
study variable accretion flows, our work points to improving the EHT instrument to have
better short-baseline coverage and gain calibration.

5.3 Thesis Conclusions in an Astrophysical Context

Much of the work in this thesis directly addresses difficulties in extracting information
about physical processes from EHT observations of black holes at event horizon scales. In
particular, the EHT can constrain deviations from GR and make precise measurements
of metric parameters when the astrophysics are known. The chief systematic uncertainty
is the state of the accreting gas and its turbulent variability. We’ve mitigated this by
constructing models and measurements which both remove variability as an uncertainty
and use variability to extract information about the saturated MHD processes.

We have found that the structural variability predicted by GRMHD simulations is
consistent with data for both short and long timescales. This did not have to be the case;
this initial success of GRMHD in describing black hole accretion flows adds confidence to
the applicability of GRMHD in other astrophysical systems.

Our work in measuring the power spectra of GRMHD images has broad implications for
VLBI. The expectations of the shapes of these power spectra have been used by the EHT
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Collaboration to model and reconstruct the stochastic variability and average images for
a source that breaks traditional assumptions about Earth-aperture synthesis. The success
in modeling Sgr A∗ variability opens the door to observing other rapidly varying sources
with high angular resolution using VLBI.

We’ve also identified a manner in which the turbulence in accretion flows saturates.
Importantly, it can straightforwardly be extended to non-GR spacetimes and more complex
vertical structures. For SMBHs, the type of models we created can rapidly test a wide
variety of GRMHD-like accretion flows. They can also describe how the relativistic outflows
behave, and thus how SMBHs affect their cosmic environment’s evolution. For other
accreting systems, from protoplanetary disks to quasars, our work has implications about
the type of turbulent angular momentum and energy transport. Even more broadly, it can
be applied to many astrophysical (and terrestrial) systems where fluid turbulence takes a
leading role.
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Appendix A

Importance of Variability in GRMHD
simulations

In Chapter 2, we construct a static model and compare it to variable simulations. Taking
this procedure in reverse, it is possible to uniquely decompose the simulations into an
average piece and fluctuations. If we identify the average with our static model, and impose
that it follows the static GRMHD equations, we can use the simulations to measure how
much the variability back-reacts on the average solution.

A.1 Averaging

Here, we detail the theory behind the time- and azimuthal-averaging process. The conser-
vation laws take the form of a non-linear system of partial differential equations

∂αF
αi(v⃗) + Si(v⃗) = 0 (A.1)

with v⃗ = {ρ, p, uα, bα}. Written in this form, the fluxes are Fαi = {ρuα, Tαβ,Mαβ}, and
the source terms are

Si = Fαi∂α
√

−|g|√
−|g|

+ {0,Γβ
αγT

αγ, 0}. (A.2)

The solutions to the GRMHD simulations are variable, and we’ll assume they can be
described by some average state with fluctuations. In the absence of these fluctuations,
Equation A.1 becomes a set of two-dimensional differential equations, vastly simplifying
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the problem. The fluctuations will, however, back-react on the average state, so we first
measure and classify this effect.

We decompose these fluid variables into their average values and fluctuations about
this mean as

v⃗(t, r, θ, ϕ) = ⟨v⃗⟩(r, θ) + δv⃗(t, r, θ, ϕ) =
1

2πT

∫ T

0

∫ 2π

0

v⃗dϕdt+ δv⃗. (A.3)

with angled brackets averaging over t and ϕ, and ⟨δv⃗⟩ = 0 by construction. We can expand
the fluxes and source terms in Equation A.1 about these averages

Fαi(v⃗) = Fαi
∣∣
⟨v⃗⟩ +

∂Fαi

∂vj

∣∣∣∣
⟨v⃗⟩

δvj +
1

2

∂2Fαi

∂vj∂vk

∣∣∣∣
⟨v⃗⟩

δvjδvk +O
(
δvjδvkδvl

)
. (A.4)

Note that this expansion terminates at fourth order by the nature of the GRMHD equa-
tions. The average fluxes are the fluxes of the average fluid variables plus contributions
from correlated fluctuations,

⟨Fαi⟩ = Fαi
∣∣
⟨v⃗⟩ +

1

2

∂2Fαi

∂vj∂vk

∣∣∣∣
⟨v⃗⟩

⟨δvjδvk⟩+O
(〈
δvjδvkδvl

〉)
. (A.5)

It is precisely these extra contributions that we will measure from the GRMHD simulations.

Upon averaging Equation A.1, we find that the terms involving the fluxes are

〈
∂αF

αi
〉
=

1

2πT

∫ 2π

0

F ti
∣∣T
0
dϕ+

1

2πT

∫ T

0

F ϕi
∣∣2π
0
dt+ ∂r⟨F ri⟩+ ∂θ⟨F rθi⟩ (A.6)

≈ ∂r⟨F ri⟩+ ∂θ⟨F rθi⟩, (A.7)

and a similar expression for the source terms. The azimuthal integrals go to zero exactly,
but the temporal terms only go to zero as T → ∞ and the start and end fluid states
are sufficiently similar. This is an assumption that the accretion flow is in a steady state
with saturated variability and no secular evolution. We’ve also assumed that the metric
is independent of the t and ϕ coordinates, a condition satisfied by the Kerr-Schild metric
used in the simulations.

Thus, we define two types of residuals. To measure the effects of numerically integrating
by summing simulation dumps, non-infinite T , and numerical floors in the GRMHD code,
we define Ri

1 by
∂r⟨F ri⟩+ ∂θ⟨F rθi⟩+ ∂r⟨Sr⟩+ ∂θ⟨Srθ⟩ = Ri

1. (A.8)
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To measure the effects of the average of correlations between fluctuations, we define Ri
2 as

∂r

(
F ri
∣∣
⟨v⃗⟩

)
+ ∂θ

(
F θi
∣∣
⟨v⃗⟩

)
+ ∂r

(
Sr|⟨v⃗⟩

)
+ ∂θ

(
Sθ
∣∣
⟨v⃗⟩

)
= Ri

2. (A.9)

In addition to the differential equations, we have two analytical equations, whose residuals
we append to Ri

1 and Ri
2. Respectively, these are ⟨uαuα⟩ and ⟨bαuα⟩ to Ri

1, and ⟨uα⟩⟨uα⟩
and ⟨bα⟩⟨uα⟩ to Ri

2.

A.2 The Magnitude of Variability in GRMHD Simula-
tions

In this section, we use the GRMHD simulations to calculate both the residuals in the
averaged equations and in the equations of the averages. To interpret the results, we must
first create a normalization with which to compare these residuals.

A.2.1 Normalization

Due to GRMHD simulations solving differential equations, the solutions will contain a
fractional numerical error, which will have spatial structure as the underlying fluid variables
change. Primarily, all primitive variables increase in magnitude close to the black hole.
Therefore, we need a normalization to define what constitutes a “small” residual.

For analytical equations, we set the normalization to 1 for the residuals associated with
uαuα = −1 and

√
⟨bαbα⟩ for residuals associated with bαuα = 0. For differential equations

of the form of Equation A.1, we choose the normalization

N i =
〈∣∣∂rF ri

∣∣+
∣∣∂θF θi

∣∣+
∣∣∂ϕF ϕi

∣∣+
∣∣Si
∣∣〉 (A.10)

This effectively measures the typical size of the terms being balanced in the equations.

A.2.2 Testability of Simulations

Figure A.1 shows the normalized residuals of the GRMHD simulations including only the
effects of the numerical integration. The quantity shown is the L2 norm over all the
equations, that is

L2

(
Ri

1

N i

)
=

√√√√∑

i∈Eq.

(
Ri

1

N i

)2

(A.11)
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Figure A.1: Normalized residuals of the average of the GRMHD equations. The residuals
are small near the midplane but become greater in the jet region. The white region in the
middle left of each panel corresponds to the region outside the simulation domain, not the
event horizon.

with the colorbar chosen to highlight any residuals more than 1%. The residuals have
structure, with numerical effects becoming stronger away from the midplane, and often
along contours that resemble the jet-corona boundary.

There are a few empirically-found reasons for non-negligible residuals. Primarily, an
average quantity at each location corresponds to a summation of a subsampled red-noise
signal with only 128×1000 points. For our choice of normalization, this creates a numerical
floor of about 10−3. Near the polar axis, the simulations have an evacuated region and
are filled with a numerical density floor to avoid unphysical wave speeds. In addition to
the larger grid size near the poles, the average residuals of the GRMHD equations become
greater there.

Between the poles and the midplane, the MAD models accrue more error than the
SANEs do solely from the continuity equation, roughly corresponding to the region where
⟨bαbα⟩/⟨ρ⟩ ≳ 1. Here, a typical dump has a very low density, so numerical floors and effects
become more impactful. The SANE models have contributions from each constituent
equation roughly equally.
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Thus, for these GRMHD simulations, we can only expect to measure the effects of
variability in the accretion disk and corona region.

A.2.3 Effects of Variability

Figure A.2: Similar to Figure A.1, but showing normalized residuals of the GRMHD
equations when evaluated for the average quantities. The residuals are greater but still
have the smallest residuals in the midplane. MAD models have greater residuals than
SANE models.

Figure A.2 shows the normalized residuals similar to Figure A.1, but now separating all
the averages of products in the GRMHD equations into products of averages. The residuals
are greater, with the general structure remaining the same.

At the midplane, SANE models have small residuals, implying that incorporating the
variability is not important for midplane profiles. MAD models have thin disks squished by
strong magnetic pressures and characterized by outward bursts of magnetized evacuated
regions. Evidently, these variable effects have a significant impact in the region directly
above the midplane.

Figure A.3 and Figure A.4 show the contributions to the average residuals from each
constituent equation for a SANE, a∗ = −0.94 and MAD, a∗ = 0 simulation, respectively.
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Figure A.3: Normalized residuals split up by the constituent GRMHD equation for the
SANE simulation with a∗ = −0.94. The equations in the plots signify which equation’s
residual is being shown. For the top right panel, we show 1−⟨bα⟩⟨bα⟩/⟨bαbα⟩, which is not
included in Figure A.2.

Shown also in these figures’ top right panel is the difference between the average magnetic
pressure ⟨bαbα⟩ and the magnetic pressure caused by the average magnetic field ⟨bα⟩⟨bα⟩.

The SANE simulation has large residuals in parabolic bands in the corona region.
These correspond to where the standard deviation of the variability in the 4-velocity be-
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Figure A.4: Same as Figure A.3, but for a MAD simulation with a∗ = 0.

comes comparable to its magnitude, as indicated by the large residuals in the velocity
normalization conditions. Besides this, only the θ-component of the energy-momentum
equations has large residuals in this region, indicating that the turbulent fluctuations are
only transporting poloidal momentum. The residuals in the electromagnetic equations have
more structure (i.e., they are noisier), but this is due to the relatively small contributions
of the magnetic field to the accretion flow.

The largest residuals in the MAD simulation also occur from the vertical momentum
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balance equation. Since the disk in the MAD simulations is thinner, these large residuals
extend nearly to the midplane. The MAD simulations have lower radial velocity than the
SANEs, so the relative fluctuations in the velocity have a greater effect on the velocity
normalization equation. The rest of the energy-momentum equations have a similar struc-
ture to the mass conservation law, hinting that the residuals are caused by variability that
only transports momentum by a loss of mass. The source of the mass loss through cor-
related fluctuations remains unknown, however. The magnetic fields are more ordered in
MADs than SANEs, so their residuals are less noisy. We leave the explanation of specific
contributions of constituent equations to the overall variability for future work.
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Appendix B

Limitations of Measuring Variability in
GRMHD Images of Black Holes and
Applications to Sgr A∗

B.1 The Impact of GRMHD Numerical Approximations

B.1.1 Dependence on the Fastlight Approximation

The model sets used in this work primarily use the fastlight approximation, where the
fluid output is saved at constant values of the Kerr-Schild timelike coordinate and each
image is constructed using only one of these fluid outputs, effectively assuming that the
background flow is constant in time as light propagates through all space. In contrast,
slowlight (or finite-speed light) methods account for the evolution of the fluid by loading
the changing fluid state (i.e., a sequence of constant-Kerr-Schild time snapshots) as light
propagates through space. In our approach, the fluid data at an arbitrary spacetime event
are synthesized by performing linear interpolation in both space (between neighboring
grid zones) and time (between sequential fluid snapshots). Since the fluid velocity at the
emission region has a significant component in each fluid output and the scale of the system
is not much smaller than its light-crossing time, we expect an approximated fastlight image
to deviate from the truth for temporal and spatial scales comparable to the gravitational
scales.

To test the numerical effects of this approximation on the power spectra, we imaged
a MAD simulation with a∗ = 0.94 with fluid outputs at a short cadence of 0.5 GM/c3
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Figure B.1: Effect of the fastlight approximation on the PSDs for the same simulation as in
Figure 3.5 and Figure 3.6. The top panel shows ⟨PT ⟩ for images in which the fluid evolves
during one photon trajectory (slowlight; solid lines), and for images where the fluid is set
static (fastlight; dashed lines). The bottom panel shows the same for ⟨P̂T ⟩. On shorter
timescales, the fastlight approximation suppresses variability.

(model set B). For the fastlight imaging, each fluid output creates one image for a viewer
far from the black hole. For the slowlight imaging, the same viewing screen was offset
in time corresponding to the time the light ray would need to travel from the black hole
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so that the fastlight and slowlight images would roughly span the same accretion history.
To find this offset more exactly, we compared the light curves of the two simulations and
maximized their correlations relative to a time shift. The light curves are dominated by
the longest timescales, and thus are nearly identical with the appropriate time shift. After
this calibration procedure, the two sets of images have the same cadence and nearly the
same start and end point.

Figure B.1 shows the effect of using the fastlight approximation on ⟨PT ⟩ and ⟨P̂T ⟩.
Solid lines show the “true” slowlight quantities, and dashed lines show the fastlight ap-
proximation. For long timescales, the approximation holds, likely due to long timescale
variability caused by gas farther from the black hole, which only has a small component of
its velocity orthogonal to the timelike coordinate. On shorter timescale, the fastlight ap-
proximation consistently suppresses variability on all spatial scales, though the magnitude
of the difference is not a particularly large one.

B.1.2 Dependence on Simulation Resolution

Numerical GRMHD simulations lay out a grid upon which the fluid is evolved. Therefore,
they set a lower boundary on the spatial size of fluctuations of the fluid properties. It is not
known whether physics at the unmodelled small scales could cause large-scale deviations in
the fluid properties through perhaps a different saturation of the MHD turbulence. These
potential different states could manifest as different variability power spectra.

In order to test the effects of finite spatial resolution, we have performed GRMHD
simulations of a MAD model with a∗ = 0.94 in three different resolutions, 963, 1283,
and 1923 starting from an identical initial condition (model set E). Figure B.2 shows
the variability PSDs for these three simulations. Although there are differences in the
variability PSDs, there is no clear trend with resolution, hinting that the main source of
the variability stems from physics on the resolved larger scales. This test does not preclude
the possibility of the simulations not being sufficiently resolved, but resolving such effects
likely requires far greater resolutions, and is thus outside the scope of this work.
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Figure B.2: Effect of varying fluid simulation resolution on the variability PSDs. In the
top panel, the lines measure the average mean-subtracted PSD for the same simulation
with a resolution of 963 (solid), 1283 (dashed), and 1923 (dotted). The bottom panel shows
the same for the average residual PSD. For the case considered, no clear trend is seen for
any of the timescales measured.
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Figure B.3: Effect of simulation length on the measurement of the average mean-subtracted
PSD. For a simulation of length τ , we designate a sliding window of some shorter length
with a separate realization starting every frame. The points show the median of ⟨PT ⟩(0, 0)
over all sliding windows, and the error bars show the inner 68% percentiles. From model
set A (circles, solid lines), we use a MAD state with a∗ = −0.94, Rhigh = 10, and i = 10,
with each of its three segments shown. From model set C (triangles, dashed lines), we use
a MAD state with a∗ = −0.9, Rhigh = 20, and i = 10.

B.1.3 Dependence on the Turbulent Realization

For each of the simulations considered in this work, the total length of time available
(τ in Section 3.3) is finite, and thus we only have access to one possible realization of
turbulence. Therefore, for a given simulation length, our PSD measurement will be one
random draw from a distribution of possible PSDs. Here we try to characterize any bias
and the distribution width expected for such a measurement.
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Figure B.4: Effect of simulation length on the variability PSDs. The left column shows
⟨PT ⟩(0, v) (top) and ⟨P̂T ⟩(0, v) (bottom) for a MAD simulation from model set C with
a∗ = −0.9, Rhigh = 20, and i = 10 with T = 30, 000 GM/c3. This simulation has been split
up into 18 windows of length 5,000 GM/c3. No trend exists with window start time, but a
scatter exists. The right column shows a measurement of this scatter for every simulation
in model set C along v = 0 (blue) and u = 0 (red). The median value over these simulations
is shown along v = 0 (cyan) and u = 0 (orange) and shaded bands show the entire range
over 81 simulations.
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For the conclusions in this work, we primarily use simulations of length 5, 000 GM/c3.
As a representative, we choose a simulation in the MAD state from model set A with
a∗ = −0.94, Rhigh = 10, and i = 10. It contains three independent realizations. As the
“true” model, we take a simulation in the MAD state from model set C, with a∗ = −0.9,
Rhigh = 20, and i = 10. Using only frames with cadence 50GM/c3, it covers 70, 000GM/c3,
thus containing the equivalent of 14 separate realizations of the representative simulations.

From each simulation, we constructed a sliding window of some shorter time. From each
sliding window, we calculate ⟨PT ⟩(0, 0), treating each independently. Figure B.3 shows
⟨PT ⟩(0, 0) for different sliding window lengths. For each sliding window length, the error
bars and points show the 16, 50, and 84 percentiles over every sliding window. Note that
these sliding windows are not independent, and the number of uncorrelated sliding windows
is approximately the ratio of the sliding window length to τ . Thus, the measurements of
the percentiles for ratios ≲ 10 are not robust. Where there are enough independent sliding
windows, these percentiles represent a distribution of potential measurements of ⟨PT ⟩(0, 0)
for a simulation with shorter τ .

Building confidence, a measurement of the median of ⟨PT ⟩(0, 0) using the shorter sim-
ulation does fall within the measured distribution from the longer simulation, despite the
two simulations having slightly different values of spin and Rhigh. For both simulations,
this median is constant over sliding window length, with a deviation occurring when the
window length is comparable to the averaging time, T . This is simply because the numer-
ical Gaussian mean-subtraction from Equation 3.7 truncates when the simulation ends,
thus shortening the effective T used in the calculation of ⟨PT ⟩(0, 0). The distribution of
⟨PT ⟩(0, 0) becomes narrower with increasing sliding window length, though it is unclear if
that is due to fewer samples or a stabilization of the variability on long enough timescales
or both.

We can use these results to extrapolate the PSD measurements from finite to infinite
τ . For these accretion flow parameters, the measurement of the distribution of ⟨PT ⟩(0, 0)
calculated using multiple realizations of total length only τ ≳ 1, 500GM/c3 contains the
infinite τ limit within the distribution of these realizations. For τ ≲ 1, 500GM/c3, this
empirical extrapolation is only valid up to some maximum value of T .

Assuming the conclusions found for ⟨PT ⟩(0, 0) hold for ⟨PT ⟩(u, v) and ⟨P̂T ⟩(u, v), we
now characterize how the uncertainty associated with a single turbulent realization behaves
across different baseline lengths. The left column in Figure B.4 shows the same procedure
as Figure B.3 for nonzero baselines. A slight difference exists, since in this test, we do not
require a constant simulation cadence, and it includes images from earlier in the simulation.
No clear trend exists with starting time, indicating that the variability is not secularly
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evolving. These PSDs combined form a distribution, whose width we characterize as a
scatter by the standard deviation of the logarithm of the variability PSDs. The right
column in Figure B.4 shows this modulation index for all the simulations in model set C,
each containing a potentially different cadence and simulation length. The bands show
the maximum range of possible scatters over all simulations. For ⟨P̂T ⟩(u, v), the scatter
is relatively constant in baseline length and (u, v)-direction. We take this to mean that
a single measurement of ⟨P̂T ⟩(u, v) for simulation length τ is different from any other
realization of ⟨P̂T ⟩(u, v) by approximately a tenth of an order of magnitude (i.e. 25%).
Note that for a τ small enough determined by some timescale of the simulation (τ ≲
1, 500GM/c3 in Figure B.3), there will be a bias along with this distribution width. Further
note that model set C only contains MAD models with Rhigh = 20, and other accretion
flow parameters could show different distribution widths.

B.1.4 Code Comparison

GRMHD simulations include many numerical approximations and choices that vary be-
tween codes. To test the effects of these different implementations, we compare the vari-
ability PSDs from model sets A (using only inclinations less than 90 degrees) and D. These
come from different fluid modeling codes (KHARMA and BHAC) and different GRRT codes
(ipole and BHOSS), and contain 200 simulations with matching fluid and imaging param-
eters (see Subsection 3.2.2). Each simulation has three windows in model set A and two
windows in model set D. To compare these, we introduce a difference measure,

D(x, y) = 2

〈∣∣∣∣log10
x

y

∣∣∣∣
〉

windows
, (B.1)

where x and y stand in for one of the variability PSDs for two simulations, and the aver-
aging is performed over all the possible window combinations. This measure is a natural
extension of the standard deviation in the log domain in the limit of two data points,
and so is analogous to that used in Figure B.4. Differences between codes could also
stem from simulations segments being separate turbulence realizations, so we can compare
the difference between windows in separate codes to that between windows in one code.
When comparing within the same code, the averaging only includes independent window
combinations.

This difference measure is shown for all simulations in Figure B.5. The red and green
regions show the range of differences between separate windows in the same simulations,
which arises from separate windows corresponding to different turbulence realizations.
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Figure B.5: Effect of code used on the variability PSDs. The quantity shown is the
difference measure as defined in Equation B.1. Rows show the two variability PSDs from
Section 3.3 and columns show the difference along the u and v directions. Shaded regions
show the minimum and maximum of the difference measure over all simulations, and lines
show the median. The red/orange (model set A) and green/lime (model set D) regions
correspond to the difference between separate windows of the same simulations, while the
blue/cyan regions show the difference between model sets A and D, and therefore the
difference between codes.
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These are similar to the regions in Figure B.4, and include a larger sampling of GRMHD
parameters, but with only two or three measurements compared per simulation.

The blue regions show the range of differences between the two model sets. On short
baselines |u| ≲ 10Gλ, the inter-code and intra-code differences are similar, with the median
inter-code difference somewhat larger. On these large scales, the choices in each code
are subdominant to the uncertainty in the PSD measurements from a single realization.
On longer baselines, the inter-code differences are larger. For ⟨P̂T ⟩, the typical (median)
deviation between codes is a tenth of an order of magnitude (i.e. 25%).

A comparison of the difference in ⟨P̂T ⟩ on short baselines among these model sets can
also be seen through the difference of the centroid of emission in the images in Section B.4.

The inter-code differences stem from a variety of numerical and algorithmic choices,
some of which have been studied and quantified for GRMHD in Porth et al. 2019 and
GRRT in Gold et al. 2020, and we leave further study of code differences for future works.

B.2 Applications to 2017 EHT Observations of Sgr A∗

The formalism developed in Chapter 3 has been applied to the 2017 EHT observations of
Sgr A∗. Since the EHT data is already in the Fourier domain, calculating the lightcurve-
normalized mean-subtracted PSD can be done directly, though not without significant
challenges pertaining to the sparsity of the data (Broderick et al., 2022b). Figure B.6
shows the variability PSD as measured over 5 days of Sgr A∗ observations, as well as the
expectations from the GRMHD image library (Paper IV). Although the simulations are on
average more variable than the data, many of them are consistent with the data. This did
not have to be true; the simulations predicted a universal amplitude and slope, and thus,
there is some support that, despite all of their assumptions, the GRMHD simulations are
producing the right type of variability.

Figure B.7 shows which GRMHD models are consistent with the observed structural
variability in Sgr A∗ at 4Gλ as defined in Subsection 3.5.3. There is a slight favoring of
face-on models and a disfavoring of a∗ = −0.94 models. Specific trends may be understood
through Figure 3.13, and the failing models are typically noisier than the data1. The
specific details of the calculation of the structural variability can be found in Broderick
et al. (2022b), Paper IV, and Paper V.

1In Paper V, the GRMHD code H-AMR was used alongside KHARMA and BHAC.
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Figure B.6: Normalized structural variability in 2017 EHT observations of Sgr A∗. Black
points show measurements from the data, and the orange lines and bands are a broken
power law fit. The red lines and bands show the range covered by GRMHD simulations
in this work. Purple lines and bands represent the refractive scattering noise, and gray
triangles are the thermal noise. This figure is figure 18 of Paper IV.
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Figure B.7: GRMHD constraints from the normalized structural variability PSD at 4Gλ
and the 2017 EHT observations of Sgr A∗. Green indicates that models from all codes
pass, yellow that models from one or two codes fail, and red that all three fail. This figure
is figure 35 of Paper V.

B.3 Short-baseline PSD and Observational Systematic
Uncertaities

The short baseline expansion made in Equation 3.16 faces a number of practical complica-
tions in standard VLBI analysis applications. These include:

1. The time-averaged truth image is not known a priori, and thus typically, ĪT is un-
available. As a result, any approximation of the mean is not strictly constrained in
the same manner as ĪT is to I.

2. Each visibility is subject to individual statistical uncertainties (e.g., thermal errors)
that impose a floor on the variability associated with the measurement details.

3. In the absence of an absolute phase calibration, unknown atmospheric delays add
a large (many 2π) random station-based component to the phases of the measured
visibilities. These phase shifts vary on the atmospheric coherence time, which at
230 GHz, can be as short as tens of seconds.
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The last of these presents a significant complication for the interpretation of observational
estimates of the variability PSDs.

In the absence of a separate phase reference, for VLBI arrays the individual station
phase delays are typically set via self-calibration: an optimization process in which the
individual station phases are estimated during image reconstruction that leverages the
image priors (e.g., positivity) and the fact that the number of baselines, N(N − 1)/2,
is larger than the number of unknown station phase delays, N , when N > 3, rendering
the problem over-constrained. Nevertheless, this procedure is formally degenerate with
an overall phase shift and linear phase gradient. The former is benign, and we will not
consider it further. The latter, a linear phase gradient, is equivalent to translating the
source in the image domain. It is for this reason that, in the absence of a phase reference,
VLBI does not have the capacity to constrain the absolute position of the source being
imaged.

Additional practical limitations include additional sources of variability (e.g., interstel-
lar scattering), station gain amplitudes, and polarization leakage, all of which will result
in effective mismatches between the true intrinsic V and that observed. We will, however,
neglect these in favor of addressing the phase shifts.

The above considerations enter into the formalism of Subsection 3.3.2 in two ways:
first the conceptual severing of ĪT and I, and second, the introduction of additional time-
dependent phase shifts of V . That is, the observed visibilities are

Vobs = Ve2πiu·X (B.2)

for some arbitrary X(t) that describe the unknown phase shifts. As a result, the observed
intensity map is shifted by X, i.e., Iobs(x) = I(x+X).

We will require the first four terms (but only the first three explicitly) in the Fourier
series expansion employed in Equation 3.16, i.e., after expanding

e−2πiu·x = 1− 2πiu · x− 2π2(u · x)2 + 4π3

3
i(u · x)3 + . . . (B.3)
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with associated contributions to the complex visibility:

V0 =

∫ [
I(x+X)− ĪT (x)

]
d2x = 0

V1 = −
∫

2πi(u · x)
[
I(x+X)− ĪT (x)

]
d2x = −2πiu · (X −X − X̄ T )

V2 = −
∫

2π2(u · x)2
[
I(x+X)− ĪT (x)

]
d2x = −2π2uTCu+

V2
1

2

V3 =

∫
4π3

3
i(u · x)3

[
I(x+X)− ĪT (x)

]
d2x

(B.4)

where X and X̄ T have their meanings from Subsection 3.3.2 and C is the second moment
of I(x+X)− ĪT (x). Therefore, to order |u|4,

⟨P̂T ⟩ =
〈
|V1|2 + |V2|2 + V∗

1V3 + V∗
3V1

〉

=

〈
4π2

[
u · (X −X − X̄ T )

]2
+ 4π4

(
uTCu

)2
+Qu · (X −X − X̄ T )

〉 (B.5)

where Q is a collection of non-singular terms that are of order |u|3.
In principle, in the absence of additional information, the value of X is arbitrary. In

practice, X will be selected on the basis of the prior assumptions underlying the analysis,
e.g., temporal regularization or minimization of the deviations from a static model. When
they are chosen such that X = X − X̄ T , the quadratic terms are eliminated altogether,
leaving the short-baseline behavior of the average residual PSD completely determined by
the quartic term, ⟨P̂T ⟩ = 4π4

(
uTCu

)2. Where X ̸= X − X̄ T , the short-baseline PSD is
reflective of the manner in which this is selected.

B.4 GRMHD simulation images and their centroids

Figure B.8, Figure B.9, and Figure B.10 provide average images of the GRMHD simulations
in model set A corresponding to the last window and only showing inclinations of 10, 50,
and 90 degrees. Overlaid on the average images are the 1-σ covariance ellipses of the
centroid of emission for model sets A and D, scaled larger by a factor of 10. These are
directly related to the trends discussed in Subsection 3.5.2.
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Figure B.8: Average images of the GRMHD simulations at 10-degree inclination. Ellipses
show 1-sigma contours of the distribution of the centroid of emission for each window in
model sets A (solid green) and D (dotted cyan), scaled up by a factor of 10 for visual
clarity. Average images are for the last window of model set A only. The black hole axis
is pointed up for positive spin, and down for negative spin. Color corresponds to intensity
per pixel, and is not the same among images.
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Figure B.9: Similar to Figure B.8 for 50-degree inclination.
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Figure B.10: Similar to Figure B.8 for 90-degree inclination.
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