
Metasploit for Cyber-Physical
Security Testing with Real-Time

Constraints

by

Sulav Lal Shrestha

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2023

© Sulav Lal Shrestha 2023

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Chapter 1, Section 2.4 from Chapter 2, Chapter 3, Chapter 4 and Chapter 5 of this thesis
have been adapted from the paper [67] which has been published in the SciSec 2022:
Science of Cyber Security conference in Matsue, Japan. The portions of the thesis adapted
from the paper are reproduced with permission from Springer Nature. The author of this
thesis is the primary author of the accepted paper, along with co-authors Taylor Lee and
Professor Sebastian Fischmeister. Taylor Lee is a Graduate Student under the supervision
of Professor Sebastian Fischmeister in the Real-Time Embedded Software Group at the
University of Waterloo.

iii

Abstract

Metasploit is a framework for cybersecurity testing. The Metasploit Framework in-
troduced the Hardware Bridge API to enable security testing of cyber-physical systems.
Cyber-physical systems and tests/attacks on the systems are subject to real-time con-
straints. Hence, this research aims to study the temporal characteristics of tests imple-
mented using the framework. Several factors, such as the programming language used to
write tests, overhead added by the framework, scheduling policies, etc., affect the latency
and jitter. This study considers the Controller Area Network (CAN) used in automotive
systems to study the effect of those factors on the temporal characteristics of the tests. The
study evaluates (i) latency and jitter for transmission and reception of the CAN messages
in the network and (ii) the jitter in the periodicity in the periodic transmission of CAN
messages. Based on the results, the study determines the best combination of the factors
to minimize the latency and jitter in the tasks considered.

This work performs a case study on actual tests/attacks subject to real-time constraints
and analyses the suitability of executing the tests using Metasploit. The study analyses
the performance of tasks implemented as Metasploit modules and shows how choices of
some factors can significantly improve the temporal characteristics without modifying the
Metasploit Framework. The study compares the temporal characteristics of the tests imple-
mented using the Metasploit Framework to the tests implemented using a microcontroller
platform, in this case, Arduino Uno. This work proposes a framework to integrate the
Metasploit Framework with tests that are executed on a microcontroller platform.

iv

Acknowledgements

I would like to thank my supervisor Dr. Sebastian Fischmeister for providing me with the
opportunity to join the research project and for his guidance in developing the thesis.

v

Dedication

To my parents.

vi

Table of Contents

Author’s Declaration ii

Statement of Contributions iii

Abstract iv

Acknowledgements v

Dedication vi

List of Figures x

List of Tables xi

List of Abbreviations xii

1 Introduction 1

1.1 Related Work . 2

1.2 Contributions . 3

1.3 Organization of the Thesis . 4

2 Background 5

2.1 Automotive Cybersecurity . 5

vii

2.2 Controller Area Network (CAN) . 5

2.2.1 CAN Frames . 7

2.2.2 Error Handling and Fault Confinement 10

2.3 Security in a CAN Network . 11

2.3.1 Vulnerabilities in CAN Protocol . 12

2.3.2 Attacking Methodologies . 12

2.4 Cyber-Attack as a Real-Time Process . 13

2.4.1 CAN-Flood Attack . 13

2.4.2 Bus-Off Attack . 14

2.5 The Metasploit Framework . 16

2.6 Hypothesis Testing . 16

2.6.1 Nature of Sample(s) . 16

2.6.2 Direction of Test . 17

2.6.3 Tests for Comparing One or Two Sample Distributions 18

2.6.4 Tests for Comparing More Than Two Sample Distributions 19

2.6.5 p-value Correction . 19

2.6.6 Effect Size . 20

3 Experiment Design 21

3.1 Factors affecting Temporal Characteristics 21

3.1.1 Programming Language . 22

3.1.2 Scheduling Policy and Process Priority 22

3.1.3 Period of a Periodic Task . 22

3.1.4 Effect of using Metasploit . 23

3.1.5 Just-in-Time (JIT) Compilation . 23

3.1.6 Hardware Setup . 23

3.2 Program Configuration . 24

3.3 Experimental Setup . 25

viii

3.4 Experiments . 27

3.4.1 Experiment 1: Jitter in Periodicity 27

3.4.2 Experiment 2: Transmission Latency 28

3.4.3 Experiment 3: Round-Trip Latency 29

4 Observations 30

4.1 Effect of using Metasploit Framework . 31

4.2 Effect of Language Configurations . 33

4.3 Effect of Scheduling Configurations . 34

4.4 Effect of Period on Periodicity Jitter . 36

4.5 Temporal Characteristics of Arduino Uno 37

5 Case Study 39

5.1 CAN-Flood Attack . 39

5.2 Bus-Off Attack . 40

6 Microcontroller Integration with Metasploit 42

6.1 Proposed Framework . 42

6.2 A Realization of the Proposed Framework 43

7 Conclusion 45

References 47

APPENDICES 54

A Data Summary and Statistical Tests 55

ix

List of Figures

2.1 Typical automotive CAN network . 6

2.2 Standard CAN frame with field names — the numbers in the boxes represent
the number of bits . 7

2.3 Extended CAN frame with field names — the numbers in the boxes represent
the number of bits . 10

2.4 State diagram for CAN protocol error handling 11

3.1 Experimental setup showing a CAN network with two nodes and Logic An-
alyzer connected to the CAN bus. 27

4.1 Plot of mean jitter in periodic CAN transmission versus sleep duration for
different program configurations . 31

4.2 Box-Plot of jitter in periodic CAN message transmission with a period of 5.0s 32

4.3 Box-Plot of transmission latency for different program configurations . . . 32

4.4 Box-Plot of round-trip latency for different program configurations 33

4.5 Graph showing mean jitter in periodic CAN message transmission for se-
lected program configurations from Figure 4.1. 37

5.1 Setup for CAN-Flood attack with two CAN nodes 39

5.2 Setup for Bus-Off attack with three CAN nodes 40

6.1 Proposed framework for integration of microcontroller test platform with
Metasploit module . 43

x

List of Tables

2.1 Description of a standard CAN frame . 8

2.2 Description of an extended CAN frame . 9

3.1 Individual configurations and their possible values 25

3.2 List of program configurations along with sleep function and CAN interface
used for the configurations . 26

4.1 List of system calls made along with the number of times the system call
was made to transmit a CAN message forMetasploit-Ruby-∗ andMetasploit-
Ruby:C-∗ . 35

4.2 Number of involuntary context switches and wait time of a process in the
ready queue for Metasploit-Ruby-∗ program configurations for the program
shown in Pseudocode 2 for 1000 iterations 36

A.1 Data summary for Experiment 1 (period 5.0s) 56

A.2 Table showing p-value for Brunner-Munzel test, CLES and difference in
mean (µs) for two sample distributions for Experiment 1 (period 5.0s) . . . 57

A.3 Data summary for Experiment 2 . 58

A.4 Table showing p-value for Brunner-Munzel test, CLES and difference in
mean (µs) for two sample distributions for Experiment 2 59

A.5 Data summary for Experiment 3 . 60

A.6 Table showing p-value for Brunner-Munzel test, CLES and difference in
mean (µs) for two sample distributions for Experiment 3 61

xi

List of Abbreviations

ANOVA Analysis of Variance 19

CAN Controller Area Network 1–3, 5, 7, 10–16, 21–23, 25, 27–31, 34–36, 39, 45, 46, 48

CLES Common Language Effect Size 20, 34, 48, 50, 52, 54

CPS Cyber-Physical System 1, 2, 45

DoS Denial-of-Service 13

ECU Electronic Control Unit 5, 12

FFI Foreign Function Interface 24

IQR Inter-Quartile Range 48, 49, 51, 53

JIT Just-in-Time 2, 3, 21, 23, 24, 33, 45, 46

REC Reception Error Count 10, 11

RTR Remote Transmission Request 10

TEC Transmission Error Count 10, 11, 14

UART Universal Asynchronous Receiver-Transmitter 44

xii

Chapter 1

Introduction

Integrating networked computing with physical systems exposes the physical systems to
threats typically seen in the cyber domain. With advancements in computer-controlled
physical systems and networked systems, physical systems are progressively going cyber-
physical. A malicious agent can gain control of the networked system or disturb the system,
which may lead to disastrous consequences. Stuxnet is one such example of threats to
Cyber-Physical System (CPS) that caused sustainable damage to a nuclear program [45].

The automotive industry is one such industry in which traditionally physical compo-
nents like the powertrain are getting integrated with computing, and more essentially,
networked computing [37]. Such integration allows attackers to access the systems inside
the vehicle and compromise the subsystems [35]. Once the attackers gain access to some
subsystems, the attackers can find ways to access other subsystems. One notable case
study was an attack on a 2014 Jeep Cherokee, which found the ability to kill the engine,
turn the brakes off and attack the parking assist feature to take control of the steering [54].

Attacks on CPS can have real-time constraints. The Bus-Off attack [24] on the Con-
troller Area Network (CAN) [19] of automotive systems is one such attack with temporal
constraints. The correctness of real-time processes depends upon the completion of the
process within the given temporal constraints. Deviation from the given timing require-
ment can cause the system to fail. For example, control algorithms require strict timing
and are initially designed without taking into consideration the delays and jitter that exist
in real-world scenarios. Consequently, the delays and jitter degrade the performance of the
control system [51]. CPS experience similar problems to control systems but face longer
delays as network latency amplifies the jitter, which degrades the performance further [15].
In the context of real-time attacks, the effectiveness or correctness of the attack depends

1

on the timely execution of the attack.

For any given task, the use of a framework standardizes the process of executing the
task. Such standardization makes the task execution uniform and makes knowledge trans-
fer easier. This study focuses on a framework for cybersecurity: Metasploit [13]. The
Metasploit Framework consists of a suite of tools used to test security vulnerabilities and
execute attacks. Any task, such as scanning a target or exploiting the target, is imple-
mented as a module in Metasploit. A framework, such as Metasploit, also promotes the
reuse of code and components, in this case, the modules. For CPS, it is important to test
the security of both the cyber components and cyber-controlled physical components. The
Hardware Bridge API in the Metasploit Framework extends the framework’s support to
hardware-related tests for CPS like Internet-of-Things and Industrial Control Systems [68].

Several factors can affect the temporal characteristics of a process running in an oper-
ating system (OS). Such factors include the priority of the process, the scheduling policy
used by the OS, and the language used to implement the software. Hence, to make the
use of Metasploit suitable for executing real-time tasks, this research studies the tempo-
ral characteristics of tests implemented as a Metasploit module. This work considers the
following factors (i) the use of a framework as opposed to a standalone program, (ii) the
scheduling policy used by the operating system, (iii) process priority, (iv) the program-
ming language used to implement the test (v) use of Just-in-Time (JIT) compilation in
case of Ruby programming language and (vi) periodicity in the case of the periodic task.
To evaluate the effects of the factors, the study performs three experiments to evaluate
(i) message transmission latency, (ii) message round-trip latency and (iii) jitter in periodic
message transmission.

1.1 Related Work

Pozzobon et al. evaluated several CAN interface access modules for use in automotive
security test frameworks, using round-trip latency and transmission-reception rates as the
evaluation metrics [61]. In the study, Pozzobon et al. studied the round-trip latency,
transmission rate and reception rate of CAN messages for multiple hardware modules like
the Native CAN interface in Beaglebone Black, CAN interface in Raspberry Pi 2 using
MCP2515 CAN controller [43], USBtin USB-to-CAN adapter [31], etc. Sojka et al. [69]
provided a comparison of Linux CAN drivers - LinCAN and SocketCAN based on the
round-trip time of CAN messages.

Researchers have studied the effects of different task compositions, schedules, and pri-
orities [23, 51] on the jitter in real-time tasks. In the case of a General Purpose Operating

2

System, the user of the OS does not have much control over the scheduling policies. Linux
does provide the ability to change the priority and scheduling algorithm for a process to
some extent. Dubey et al. [27] implemented a control algorithm to control jitter in the sam-
pling interval for a program running on a General Purpose Operating System. The authors
treated jitter in the sampling interval as an error signal that the control system aimed to
control. The suggested control algorithm ran in user-space instead of kernel-space, which
made the use of the algorithm easier.

When the control task includes nodes in a network, the network latency also acts as a
source of jitter. Roque et al. [63] evaluated the performance of an in-vehicle communication
system by characterizing the jitter present in the timing of critical CAN messages. Imai
et al. [41] used a time-delay compensation method to compensate for jitter in a networked
control system. The method uses “Jitter Buffers” to suppress jitter due to time-varying
network latency.

Researchers have dedicated efforts to integrate systems with special requirements into
general-purpose systems. Bollella and Jeffay [18] designed a system in which a real-time
kernel could co-exist with a general-purpose kernel to support real-time solutions in com-
mercial systems. Ramamritham et al. [62] acknowledged that even though Windows NT
is not a real-time OS, the timing requirements for the OS warranted a study due to the
acceptance of the OS in industrial applications.

The use of Metasploit as a cyber-physical security testing tool for time-sensitive appli-
cations is yet to be explored. This study focuses on examining the timing characteristics
of tests implemented as a Metasploit module.

1.2 Contributions

This work contributes to the understanding of performing security tests and assessment of
networked embedded systems in the following ways:

• The work systematically analyzes and evaluates the effect of the implementation
language, scheduling policy, process priority, JIT Compilation, and use of framework
on the performance related to temporal characteristics in Metasploit.

• The work quantitatively analyzes the temporal characteristics of tests or attacks
executed using the Metasploit Framework.

• Based on the results, the work provides the best practices and recommendations for
using Metasploit to test time-sensitive networked embedded systems.

3

• The work proposes a framework to integrate microcontroller-based tests with the
Metasploit Framework.

1.3 Organization of the Thesis

The rest of the thesis has been organized into six additional chapters. Chapter 2 provides
background information on the topics discussed in this thesis. Chapter 3 describes the
experiment designed to evaluate the performance of the Metasploit Framework using cho-
sen metrics. Chapter 4 presents the observations made on the results of the experiments.
Chapter 5 presents case studies conducted using the Metasploit Framework. Chapter 6
presents the proposed framework to integrate microcontroller-based tests with the Metas-
ploit Framework, and Chapter 7 concludes the thesis.

4

Chapter 2

Background

2.1 Automotive Cybersecurity

Automotive systems consist of mechanical, electrical and electronic components. Many
components in an automotive system are controlled by software. Moreover, components in
automotive systems are connected to the Internet. Such inclusion of software and connec-
tion to the Internet introduces attack surfaces on automotive systems. For e.g., an automo-
tive system may consist of cameras, Electronic Control Unit (ECU), Light Detection and
Ranging (LIDAR), Bluetooth, Wi-Fi, etc. An automotive system may be equipped with
Assisted Driving technology, and computer vision algorithms may be running onboard the
system. Figure 2.1 shows a typical automotive CAN network [50]. The figure shows two
CAN networks, one low-speed CAN bus and another high-speed CAN bus, connected by a
CAN gateway. The diagram also shows different automotive ECUs connected to the CAN
network. While such features enrich the automotive system, these features also increase
additional attack surfaces for an adversary. Hence, cybersecurity should be taken into
account for making automotive systems safe.

2.2 Controller Area Network (CAN)

CAN bus has become the de facto standard for communication between Automotive
ECUs [30]. CAN is a multi-master, message broadcast network. The CAN communication
protocol is a carrier-sense, multiple-access protocol with collision detection and arbitration
on message priority (CSMA/CD+AMP) [39]. Only one node can transmit a message in

5

Gateway

Low Speed
CAN Bus

High Speed
CAN Bus

Radio

Global
Positioning

System

Infotainment
System

On-Board
Diagnostic

Telematics

Door Control

Light Control

Climate
Control

Body
Control

Engine
Control

Transmission
Control

Oil Supply
Control

Powertrain

Anti-Skid
Brake System

Supplemental
Restraint
System

Emergency
Brake Assist

Security
System

Figure 2.1: Typical automotive CAN network

6

1 11 1 6 0-64 15 1 1 1 7 3

SO
F

R
TR

C
R

C
 D

el
im

ite
r

AC
K

AC
K

D
el

im
ite

r

IF
S

Id
en

tif
ie

r

D
LC

D
at

a

C
R

C

EO
F

Standard CAN Frame

1 1

ID
E

R
es

er
ve

d
Bi

t

Figure 2.2: Standard CAN frame with field names — the numbers in the boxes represent
the number of bits

the network at a particular instant in time. When multiple nodes attempt to transmit a
message in the CAN bus simultaneously, bit-wise bus arbitration decides which node gets
to transmit its message. The bus arbitration depends on the identifier field of the CAN
message frame. A CAN message does not consist of a transmitter or receiver identifier.
Instead, each CAN frame consists of a message identifier. The identifier provides the CAN
frame its meaning and its priority. The lower the identifier’s numeric value, the higher the
message priority. A logic-0 in the CAN Network is called a dominant bit, and a logic-1 is
called a recessive bit. When two nodes try to write to the bus simultaneously and the bits
being written are different in the identifier field, the bus is driven to a dominant bit state.
Thus, the node which writes the dominant bit to the bus wins the arbitration.

2.2.1 CAN Frames

There are four types of CAN frames.

Data Frame Data frames consist of actual message or data that the nodes want to
convey to other nodes in the network. Figure 2.2 shows the CAN frame format for the
standard CAN frame, and Table 2.1 shows the description of each field in the standard
CAN frame. Figure 2.3 shows the CAN frame format for the extended CAN frame, and
Table 2.2 shows the description of each field in the extended CAN frame.

7

Field Name Length Description
(bits)

SOF 1 Start of Frame

Identifier 11 An identifier to represent the message and
message priority

RTR 1 Remote Transmission Request bit. 0
means the frame is a data frame. 1 means
the frame is a remote request frame.

IDE 1 Identifier Extension bit. 0 means the frame
is a standard CAN frame. 1 means the
frame is an extended CAN frame

Reserved Bit 1 Reserved bit. Must be dominant, but it is
accepted as either dominant or recessive.

DLC 4 Data Length Code. Denotes the number
of bytes in data field.

Data Field 0-64 Data

CRC 15 Cyclic Redundancy Checksum

CRC Delimiter 1 Must be recessive.

ACK 1 Acknowledgement bit. Transmitter sends
a recessive bit and receiver can assert a
dominant bit.

ACK Delimiter 1 Must be recessive.

EOF 7 End of Frame. Must be recessive.

IFS 3 Inter-Frame Spacing. Must be recessive.

Table 2.1: Description of a standard CAN frame

8

Field Name Length Description
(bits)

SOF 1 Start of frame

Identifier A 11 An identifier to represent the message and
message priority

SRR 1 Substitute Remote Request. Must be 1.

IDE 1 Remote Transmission Request bit. 0
means the frame is a data frame. 1 means
the frame is a remote request frame.

Identifier B 18 Second part of the identifier, which repre-
sents the message and message priority.

RTR 1 Remote Transmission Request bit. 0
means the frame is a data frame. 1 means
the frame is a remote request frame.

IDE 1 Identifier Extension bit. 0 means the frame
is a standard CAN frame. 1 means the
frame is an extended CAN frame

Reserved Bit 1 Reserved bit. Must be dominant, but it is
accepted as either dominant or recessive.

DLC 4 Data Length Code. Denotes the number
of bytes in the data field.

Data Field 0-64 Data

CRC 15 Cyclic Redundancy Checksum

CRC Delimiter 1 Must be recessive.

ACK 1 Acknowledgement bit. Transmitter sends
a recessive bit and receiver can assert a
dominant bit.

ACK Delimiter 1 Must be recessive.

EOF 7 End of Frame. Must be recessive.

IFS 3 Inter-Frame Spacing. Must be recessive.

Table 2.2: Description of an extended CAN frame

9

1 11 1 6 0-64 15 1 1 1 7 3

SO
F

R
TR

C
R

C
 D

el
im

ite
r

AC
K

AC
K

D
el

im
ite

r

IF
S

Id
en

tif
ie

r A

D
LC

D
at

a

C
R

C

EO
F

Extended CAN Frame

11 18
Id

en
tif

ie
r B

SR
R

ID
E

2

R
es

er
ve

d
Bi

ts

Figure 2.3: Extended CAN frame with field names — the numbers in the boxes represent
the number of bits

Remote Frame A node in a CAN network can send a message in the bus autonomously.
If a node in the network wants to request data for a specific message identifier, the node
can send a remote frame. The Remote Transmission Request (RTR) bit in a remote frame
is recessive. A remote frame consists of no data field.

Error Frame Error frame is used to indicate errors in the CAN nodes or in the network
using error flags. An error flag can be Active Error Flag (six dominant bits) or a Passive
Error Flag (six recessive bits). When Transmission Error Count (TEC) or Reception Error
Count (REC) is greater than 127 and less than 255 for a node, the node transmits a Passive
Error Frame. When TEC or REC is less than 128, the node transmits an Active Error
Frame. The details behind TEC and REC are explained in Section 2.2.2.

Overload Frame A node sends an overload frame to inject additional delay between
data or remote frames if the node receives CAN messages faster than the node can process.

2.2.2 Error Handling and Fault Confinement

There are a number of errors in the CAN protocol — Bit Error, Stuff Error, CRC Error,
ACK Error, etc. The study concerns itself with a bit error. Each node in the CAN bus
monitors whatever it writes onto the bus. If a node writing onto the bus detects that the
bus state is not what the node has written, then it detects an error, which is called the

10

Error
Active

Error
Passive

Bus Off

TEC > 127
or

REC > 127

TEC <= 127
and

REC <= 127

TEC > 255Reset

Figure 2.4: State diagram for CAN protocol error handling

bit error. For an error detected by a node, the node transmits an error frame on the bus.
Each node maintains two counters: TEC and REC. For an error during transmission, the
transmitting node increases TEC by 8. For an error during reception, the receiving node
increases REC by 1. For every error-free transmission, TEC is decreased by 1. For every
error-free reception, REC is decreased by 1.

Figure 2.4 shows the state transition diagram for error handling in CAN protocol. Each
node in the CAN bus starts in an Error-Active state. Depending upon the TEC and REC
values, a node may switch to Error-Passive state or Bus-Off state. When TEC or REC
exceeds 127, the node goes to Error-Passive state. When TEC exceeds 255, the node goes
to the Bus-Off state. In the Bus-Off state, the node loses its ability to transmit and receive
CAN messages.

2.3 Security in a CAN Network

The sections below discuss vulnerabilities and attacking methodologies in a CAN network.

11

2.3.1 Vulnerabilities in CAN Protocol

CAN Protocol was designed to solve the problem of minimizing the wires needed to form a
network of ECUs in an automotive system. CAN Protocol was not designed with security
in consideration. The CAN Protocol renders itself vulnerable due to following reasons [50]:

Broadcast Communication Any node in a CAN network can receive messages trans-
mitted by any other node in the network. And any node in the network can transmit
messages in the network that can be received by any other node in the network.

Lack of encryption The messages flowing in the network can be read and analyzed by
any other node in the network.

Lack of authentication A node in a CAN network can impersonate any other node
in the network. CAN protocol does not necessitate that a node has an identity in the
network. Only messages have an identity in the network. So, any node in the network can
transmit messages impersonating the functionality of another node in the network.

Message Identifier-based Priority Scheme The lower the identifier of a message, the
higher its priority in the CAN network. This implies a malicious node in the network can
deny access to the bus to non-malicious nodes in the network by flooding the network with
high-priority messages or messages with low message identifiers.

2.3.2 Attacking Methodologies

This section discusses ways of attacking the nodes in a CAN network.

Frame Sniffing A CAN Network is a broadcast network. So, any node in the network
can sniff CAN Frames in the network. By analyzing CAN Frames, functionalities of the
ECUs connected to the CAN Network can be known [47].

Frame Injection Since a CAN Network does not have node authentication, once a
malicious node gets access to the network, the node can inject frames in the network [50].

12

Dominant-Bit Assertion CAN’s priority-based arbitration scheme allows a node to
assert a dominant bit on the bus indefinitely to cause all other nodes in the CAN Network
to back off from accessing the network [47]. Palanca et al. [58] used this methodology to
mount a Denial-of-Service (DoS) attack.

2.4 Cyber-Attack as a Real-Time Process

This section discusses how an attack on an automotive network can have real-time con-
straints. Researchers have identified and documented several attacks on the CAN Net-
work [20, 22, 24, 29, 36, 47, 59]. This study demonstrates the role temporal characteris-
tics play in cybersecurity-related tests/attacks using two attacks on the CAN Network (i)
CAN-Flood Attack [22, 10] and (ii) Bus-Off Attack [24]. The study chooses the two attacks
because the success of the attacks requires certain temporal requirements to be met.

2.4.1 CAN-Flood Attack

The section discusses the threat model and attack model for a CAN-Flood attack.

Thread Model

In a CAN Network, if two nodes try to transmit messages with different CAN IDs simul-
taneously, the node that sends a message with a smaller CAN ID wins the arbitration. So,
if a malicious node frequently sends a CAN message with a low CAN ID, non-malicious
nodes do not get the chance to send messages with a higher CAN ID. Such contention for
access to the bus leads to the non-malicious nodes experiencing Denial-of-Service.

In a CAN-Flood Attack, the adversary has the capability to transmit and receive mes-
sages in the targeted CAN network. The objective of the CAN-Flood attack is to transmit
CAN messages with a low CAN ID as frequently as possible.

Attack Model

A CAN Bus network has at least three nodes, including the adversary node. The adversary
transmits CAN messages in the network, with message identifier numerically lower than
all other CAN messages flowing in the network, as frequently as possible.

13

Temporal Requirements

The temporal requirement in this attack is to minimize the temporal distance between two
CAN messages transmitted by the malicious node.

2.4.2 Bus-Off Attack

The Bus-Off attack [24] exploits the error handling and fault confinement mechanism of
CAN communication protocol. The attack focuses on causing a bit-error during the trans-
mission of a message by the target node.

Threat Model

In a CAN network, there’s a node V which is the target of the attack. An adversary A has
access to the CAN network and can transmit messages to and receive from the network.
A’s objective is to cause the target node V to enter a Bus-Off state such that node V
loses its ability to transmit messages to and receive from the network. The adversary A
can determine all the information necessary for the attack, such as the CAN ID, message
body and the timing of the targeted message.

Attack Model

The objective of Adversary A is to cause a bit-error while Node V is transmitting Message
M on the CAN bus. To cause a bit-error, Adversary A needs to start sending the message
at exactly the same instant as Node V with the same message identifier that is being sent
by Node V . In such a case, both the nodes A and V win the bus arbitration, and both
nodes continue sending the rest of the message. To cause the bit-error, Node A needs
to craft the message body such that in one of the bit positions, Message M is recessive,
whereas Message C is dominant. When Node V sends a recessive bit and Adversary A
writes a dominant bit, the bus goes to a dominant bit state. Node V detects an error and
increments its TEC by 8. By repeatedly causing a bit error in the message transmitted by
Node V , Node V ’s TEC eventually exceeds 255. Consequently, Node V enters the Bus-Off
state. To predict the instant at which Node V starts writing the message onto the bus,
Adversary A targets a message M , which is sent by Node V periodically.

14

Attack Setup

There are three nodes in a CAN network: X , V and A, where X is the trigger node, V is
the target node, and A is the adversary node. The Bus-Off attack is executed with the
help of preceded messages. The attack events progress as follows:

• X transmits Message K periodically with a period T .

• Immediately after transmitting Message K, X transmits k preceded messages P1, P2,
..., Pk.

• When V and A receive Message K, V transmits MessageM (targeted message) and
A transmits Message C (attack message). The attack and target messages must have
the same CAN ID. The attack message must differ from the target message such that
a bit in the attack message is dominant, whereas the corresponding bit in the target
message is recessive.

Temporal Requirements

If the instant at which V and A start writing the messages C andM onto the bus differs by
even a single bit, the attack fails. Considering a bitrate of 500 kbps, the bit-length is 2µs.
By using the preceded messages, the timing requirement of the attack message injection
becomes relaxed. Instead of 1 bit-length, the timing requirement is now the message length
of the preceded message.

The study takes into account the difference in CAN message round-trip latency of the
target and the adversary nodes. Let the delay between trigger message K and target
message M be Dtarget, in the absence of preceded messages. Let the delay between K
and attack message C be Dattack, in the absence of preceded messages. Due to jitter, the
delays or round-trip times for the nodes are not deterministic [40, 24]. Let Dtarget,max be
the upper bound on Dtarget and Dattack,max be the upper bound on Dtarget.

Let the temporal lengths of trigger, precede, target and attack messages be ttrigger,
tprecede, ttarget and tattack, respectively. If tk is the instant of the start of the trigger message,
then the preceded messages should keep the bus busy until at least
tk +max(Dtarget,max, Dattack,max)− ttrigger, i.e.,

k ∗ tprecede ≥ (max(Dtarget,max, Dattack,max)− ttrigger) (2.1)

where, k is the number of preceded messages required to keep the bus busy such that
the MessagesM and C synchronize.

15

2.5 The Metasploit Framework

The Metasploit Framework is a platform for penetration testing built using the Ruby pro-
gramming language. It consists of a suite of tools to test security vulnerabilities, enumerate
networks, execute attacks, and evade detection. The Metasploit Framework is focused on
network and software penetration testing. The Hardware Bridge API broadens the scope
of the Metasploit Framework by expanding its capabilities onto the physical world of hard-
ware devices. The Hardware Bridge API aims to unify tools pertaining to security testing
with the use of hardware devices. Some of the devices that have been used with the help
of the Hardware Bridge API are CAN, ZigBee, Bluetooth, OBD-II, etc.

2.6 Hypothesis Testing

Given any one or two sample distributions, hypothesis testing can be used to decide if the
given distributions support a particular hypothesis or not. The decision is made based
on a probabilistic inference on the given sample distribution(s). A hypothesis is stated in
terms of a null hypothesis (H0) and an alternative hypothesis (H1). There can be different
types of hypothesis testing which are discussed below.

2.6.1 Nature of Sample(s)

Based on the nature of the sample(s), a hypothesis test can be categorized into the following
three categories.

One Sample Test

If the test compares a sample distribution against the population distribution, then the
test is called a One Sample Test.

Independent Samples Test

In an Independent Samples Test, the idea is to compare one sample distribution with an-
other sample distribution, not a population distribution. The two samples are independent
as opposed to paired, which is discussed below.

16

Paired Samples Test

In a Paired Samples Test, the test compares one sample distributionX with another sample
distribution Y , where Y consists of the same subjects as X. The difference between X and
Y is that the subjects of X have gone through treatment or some process about which the
hypothesis is getting tested.

2.6.2 Direction of Test

The null hypothesis states that there is no “significant” difference between certain char-
acteristics of the two distributions being compared. If the characteristic of interest is the
mean of the sample distribution, then the null hypothesis states that the two means are the
same. Based on the alternative hypothesis, the test can be categorized into the following
categories.

Two-tailed Hypothesis Testing

Let us consider the mean of the distributions µ1 and µ2. In a two-tailed hypothesis testing,
the null hypothesis states that u1 equals µ2. The alternative hypothesis is that µ1 is either
greater than or less than µ2.

H0 : µ1 = µ2

H1 : µ1 ̸= µ2

One-tailed Hypothesis Testing

In one-tailed hypothesis testing, the alternative hypothesis states greater than or less than
the relation between the two parameters. If the alternative hypothesis states a greater
than relationship, then the hypothesis can be given as:

H0 : µ1 ≤ µ2

H1 : µ1 > µ2

If the alternative hypothesis states a less-than relationship, then the hypothesis can be
given as

H0 : µ1 ≥ µ2

H1 : µ1 < µ2

17

2.6.3 Tests for Comparing One or Two Sample Distributions

Hypothesis testing may be one-tailed or two-tailed, and the testing may be one-sample
or independent-samples or paired-samples. There can be a number of tests for hypothesis
testing. Once a test is chosen and the test statistic is calculated, we check if the calculated
test statistic falls in the critical region or not. If the test statistic falls in the critical region,
we reject the null hypothesis and accept the alternative hypothesis. The critical region is
decided using a significance level (α) and the corresponding confidence interval. For e.g.
a significance level of 0.05 means that we are willing to accept a 5% error in rejecting the
null hypothesis or we have a confidence interval of 95% in rejecting the null hypothesis.
The tests calculate the p-value, which is the probability that favours the null hypothesis.
If the p-value lies in the critical region, then we reject the null hypothesis.

Based on the nature of distribution, i.e., known population variance, homogeneity of
variance, and normality of the distribution, one of the following tests can be chosen. The
z-test makes the following assumptions:

1. Population distribution is known.

2. Population variance is the same as the sample variance.

3. The sample distribution follows a normal distribution.

If the assumption about known population distribution cannot be met, Student’s t-test [70]
can be used. The Student’s t-test makes the following assumptions:

1. Sample distribution follows a normal distribution.

2. The two distributions being compared have the same variance.

When comparing two sample distributions, if the assumption about the variance of two
distributions being the same cannot be met, Welch’s t-test [71] can be used. Welch’s t-test
makes the assumption that the sample distribution follows a normal distribution.

If the data does not follow a normal distribution, then non-parametric tests like Wilcoxon
Rank Sum Test [73] can be used for independent samples test. For paired samples,
Wilcoxon Signed Rank Sum Test can be used. Wilcoxon Rank Sum Test tests the hypoth-
esis that two randomly selected samples from distributions, say X and Y , are different.
However, the test still assumes equal variances in the sample distributions. Fligner and
Policello [34] suggested the Robust Rank Order Test for sample distributions which are not

18

normal distributions and do not have equal variances [44]. The Fligner-Policello [34] test
assumes a continuous distribution, i.e. no ties. The Brunner-Munzel Test [21] extends the
test to allow for unequal variance and discrete or ordered categorical random variables.

2.6.4 Tests for Comparing More Than Two Sample Distributions

The tests discussed in Section 2.6.3 can be used for one sample, two independent samples
or two paired samples. One-Way Analysis of Variance (ANOVA) [32, 33] can be used
when comparing more than two distributions on a single independent variable when the
distributions follow the assumptions stated for Student’s t-test. For n independent samples,
the hypothesis can be stated as

H0 : µi = µj;∀i, j = 1, ..., n

H1 : ∃i, j : 1, ..., n such that µi ̸= µj; i ̸= j

The null hypothesis says that all the distributions have the same statistic (say mean).
The alternative hypothesis says that one or more statistic is different for the sample dis-
tributions.

One-Way ANOVA cannot be used if the distributions violate the assumptions made
for Student’s t-test. One-Way Welch’s ANOVA [72] can be used when comparing more
than two distributions on a single independent variable when the distributions follow the
assumptions stated for Welch’s t-test.

Kruskal-Wallis Test [48] is a non-parametric equivalent of ANOVA for multiple sample
distributions. Kruskal-Wallis Test can be used for non-normal sample distributions with
equal variances.

2.6.5 p-value Correction

When performing any hypothesis testing, there’s a certain error associated with rejecting
the null hypothesis, even when the null hypothesis is true for the population. This error is
called Type-I error (α) or False Positive Rate. When performing multiple tests, we need to
consider the Family-Wise Error Rate (FWER), which is the probability of seeing at least
one significant result erroneously. When performing m multiple tests,

FWER = 1− (1− α)m (2.2)

19

So to maintain FWER less than the desired value of α, calculated values of the p-value
for each test must be adjusted. Various methods exist for p-value corrections - Bonferroni’s
Correction [28], Holm’s Method [38], etc.

2.6.6 Effect Size

The tests such as the ones discussed in Section 2.6.3 and Section 2.6.4 allow making a
decision on whether an alternative hypothesis should be accepted or not. However, the
tests do not provide any information on if any two distributions are different or how much
they differ. It is important to specify the effect size in such a case. Effect size provides a
way to check the magnitude of the difference between the two distributions. For normally
distributed data, when Student’s t-test or Welch’s t-test is used for hypothesis testing,
effect size such as Cohen’s d [25] can be used. When hypothesis testing is done using
Wilcoxon Rank Sum Test or Brunner-Munzel Test, effect size such as Common Language
Effect Size (CLES) [52] can be used. CLES states the probability that a sample from one
distribution is smaller than a sample from another distribution.

20

Chapter 3

Experiment Design

The study aims to evaluate and improve the temporal characteristics of modules in Metas-
ploit. There are a number of choices available, from the creation of the software to the
execution of the software. The study considers such choices as factors that affect the tem-
poral characteristics of a task. The study considers the following factors: 1) Programming
Language, 2) Process Scheduling Policy and Process Priority 3) Periodicity of a Periodic
Task 4) JIT Compilation 5) Effect of using the Metasploit Framework 6) Hardware Setup.
To determine which combination of factors provides better temporal control, we perform
experiments to estimate 1) jitter in the periodicity (∆tp) of CAN message transmissions
2) transmission latency and jitter (∆ttx) for a CAN message 3) round-trip latency and jit-
ter (∆trt) for a CAN message under different combinations of factors. Additionally, jitter
in the periodicity of periodic CAN message transmissions is estimated for different periods
along with the program configurations. The experiments use standard CAN frames.

3.1 Factors affecting Temporal Characteristics

There are a number of choices available from the creation of software to the execution of the
software. The study considers such choices as the “factors” in the timing of a task. There
are a number of factors that can affect the timing of a process executing in an operating
system.

21

3.1.1 Programming Language

The language used to write a program is very significant with respect to the speed of
execution and execution jitter. Metasploit is implemented using the Ruby programming
language. Metasploit modules are written in Ruby as well. Ruby is not a systems program-
ming language and is not efficient or fast compared to a systems programming language
like C [57]. C is a compiled language whereas Ruby is an interpreted language. The study
performed by Heer shows that a (CPU intensive) program written in C is nearly 188 times
faster than a corresponding program written in Ruby [14]. The task chosen in this study is
I/O intensive as opposed to CPU intensive. Nonetheless, the authors expect the C program
to be faster than the corresponding Ruby program.

3.1.2 Scheduling Policy and Process Priority

A General Purpose Operating System like Ubuntu (Linux) has several processes running
at once. When several processes are vying for CPU time, the scheduling policy and process
priority can affect the timing of the processes. The exposition in [46] provides information
on the different process priorities and scheduling methods used in Linux. SCHED OTHER
is the default scheduling method for processes in Linux. Processes with SCHED OTHER
scheduling get priorities in the range of 100-139, which are provided in the form of nice
values. The priorities 100-139 are mapped to nice values -20 to +19, -20 being the highest
priority. The default nice value of a process with SCHED OTHER scheduling is 0. Linux
also provides SCHED FIFO and SCHED RR for processes that need real-time scheduling.
The processes with SCHED FIFO or SCHED RR scheduling get the priorities in the range
of 0-99, 99 being the highest. The study of the effect of the scheduling policies under
different task compositions is out of the scope of the study. The study considers default
task composition which is in the system under fresh install of the Ubuntu 20.04 Linux
distribution, plus essential tasks like a code editor, a terminal to execute tests and the
tests themselves.

3.1.3 Period of a Periodic Task

For evaluation of jitter in periodic CAN messages, the experiment uses the sleep method
(actual sleep function used is shown in Table 3.2). Calling the sleep method in a program
causes the program to suspend the execution for a specified amount of time. One of
the questions this study considers is: does jitter in periodicity depend upon the duration

22

of sleep? To answer this question, this study conducts experiments with different sleep
durations.

3.1.4 Effect of using Metasploit

Metasploit is a framework and specific tests in this framework are implemented as modules.
The framework provides access to hardware in the form of APIs, which may affect the tim-
ing characteristics of the operation under consideration. For the task under consideration
i.e., transmitting and receiving CAN messages, Metasploit provides APIs [12] which are
wrappers around can-utils [11] (userspace utilities for SocketCAN [4]). This study com-
pares how the timing characteristics of an operation implemented as a Metasploit module
differs from a standalone implementation.

3.1.5 Just-in-Time (JIT) Compilation

A program runs faster when the program is in a form directly executable on the proces-
sor [17]. JIT compilation is one of the approaches taken to speed up the execution of
programs written in interpreted languages. In JIT compilation, the programs are compiled
during the first run such that the subsequent runs of the program or parts of the program
are faster. Ruby is an interpreted language and provides the option to run Ruby programs
with JIT enabled. To determine the effect of JIT compilation on the temporal character-
istics of the tests, the experiments conducted include standalone Ruby programs with and
without JIT enabled.

3.1.6 Hardware Setup

The hardware setup, for e.g., the CPU, and the I/O devices, used can affect the timing
of the task. To communicate with the CAN network, a general-purpose computer needs
to use a USB-to-CAN module. The specific module used adds latency and jitter to the
communication. Pozzobon et al. conducted a survey on the latency introduced by different
USB-to-CAN modules [61]. The study does not cover all the USB-to-CAN modules avail-
able. A detailed study on the effect of the hardware setup used is not in the scope of this
study. However, the study does consider a microcontroller platform and proposes a frame-
work to integrate tests on a microcontroller with Metasploit in Chapter 6. For the proposed
framework, the study chooses Arduino Uno [16] as the choice of the microcontroller.

23

3.2 Program Configuration

This study uses the term configuration to denote a particular choice of factor. Instead of
defining a separate configuration for each factor, we group some of the factors. Table 3.1
shows the different configurations and the values each configuration can have.

Framework Configuration Framework configuration tells if the program is a stan-
dalone program or, implemented as a Metasploit module or running in a microcontroller
such as Arduino Uno. A framework configuration can be Standalone or, Metasploit or,
Arduino.

Language Configuration Language configuration shows which language is used to im-
plement the program. The values for this configuration can be C, Ruby and Ruby:JIT. Here,
Ruby means the program written in Ruby is executed without enabling the JIT feature
of the Ruby interpreter. Ruby:JIT means the program written in Ruby is executed with
JIT enabled. Additionally, the study introduces another language configuration Ruby:C.
Ruby:C means that the functionality is implemented as a function in a C shared library,
which is then called from a Ruby program using Foreign Function Interface (FFI) [53].
This particular configuration is important because Metasploit modules are implemented in
Ruby. So, to utilize the advantages offered by C, the actual intended functionality of the
module is implemented in C as a shared library function which can then be called from a
Metasploit module written in Ruby.

Scheduling Configuration Scheduling configuration combines the scheduling policy
and process priority factors. The study considers three scheduling configurations: (i) De-
fault, (ii) FIFO, and (iii) RR. Default scheduling configuration means that the program,
when executed, uses the default scheduling policy, i.e. SCHED OTHER and the default
nice value of 0. FIFO scheduling configuration means that the scheduling policy used for
the process is SCHED FIFO and the process priority used is 99. RR scheduling configura-
tion means that the scheduling policy used for the process is SCHED RR and the process
priority used is 99.

Naming Convention This study refers to a combination of individual configurations as
a program configuration. To name the different program configurations used in the exper-
iments, this study uses the naming convention of [Framework Configuration] - [Language

24

Configuration Values

Framework Metasploit, Standalone, Arduino
Language C, Ruby, Ruby:JIT, Ruby:C

Scheduling Default, FIFO, RR

Table 3.1: Individual configurations and their possible values

Configuration] - [Scheduling Configuration]. For example, a program configuration men-
tioned as Standalone-C-FIFO means (i) the program is a standalone program (i.e., not
a Metasploit module, or an Arduino Uno program), (ii) the program is implemented in
C, and (iii) the program is executed with SCHED FIFO scheduling policy and a process
priority of 99. Table 3.2 shows all the configurations that the study considers along with
the sleep function used to achieve periodicity in Experiment 1 and the tool/library/API
used to interact with CAN bus. To imply that a particular discussion is applicable to all
the values of a specific configuration, the thesis uses the wildcard character - asterisk (∗).
For example, Metasploit-Ruby-∗ means that the discussion is applicable for the program
type configuration of Metasploit, language configuration of Ruby and all scheduling con-
figurations. Since the study uses the Arduino Programming Language [1] for Arduino Uno
and scheduling configuration is not applicable to Arduino Uno, the program configuration
that uses Arduino Uno is shortened to Arduino.

3.3 Experimental Setup

The experimental setup is shown in Figure 3.1. The experiment assumes a test/attack
scenario in which the system-under-test is able to transmit and receive CAN messages.
The figure shows a CAN bus connection between two CAN nodes. Node 1 is the system-
under-test (SUT). For Metasploit and Standalone framework configurations, the SUT node
is a 4-core i5 computer with 16 GB of RAM, and each core has a frequency of 1.60 GHz. The
SUT node uses the Metasploit framework - version 6.0.55-dev running on Ubuntu 20.04
Linux Distribution. The average CPU load when no tests are running is nearly 0.05%.
The USB-to-CAN module used in Node 1 is Peak CAN [60]. For Arduino framework
configuration, the SUT node is an Arduino Uno with a MCP2515 [43] CAN controller
and MCP2551 [42] CAN transceiver. The nodes are configured to use a bitrate of 500
kbps. A CAN network requires at least two nodes in the network, and Node 2 completes
the requirement along with Node 1, which is the SUT. The setup consists of Salae Logic

25

S. No. Program Configuration Sleep Function CAN Interface

1 Metasploit-Ruby-Default sleep [9] APIs provided
2 Metasploit-Ruby-FIFO by Metasploit [12]
3 Metasploit-Ruby-RR

4 Metasploit-Ruby:C-Default usleep [5] SocketCAN [4]
5 Metasploit-Ruby:C-FIFO
6 Metasploit-Ruby:C-RR

7 Standalone-Ruby-Default sleep [3] can-utils [11]
8 Standalone-Ruby-FIFO
9 Standalone-Ruby-RR
10 Standalone-Ruby:JIT-Default
11 Standalone-Ruby:JIT-FIFO
12 Standalone-Ruby:JIT-RR

13 Standalone-Ruby:C-Default usleep [5] SocketCAN [4]
14 Standalone-Ruby:C-FIFO
15 Standalone-Ruby:C-RR
16 Standalone-C-Default
17 Standalone-C-FIFO
18 Standalone-C-RR

19 Arduino delay [2] arduino-CAN library [55]

Table 3.2: List of program configurations along with sleep function and CAN interface
used for the configurations

26

Analyzer to record the CAN messages along with timestamps for analysis. The logic
analyzer is configured to sample the signals at 16MHz.

Node 1
(System-Under-Test) Node 2

Salae Logic Analyzer

CAN High

CAN Low

CAN Ground

Figure 3.1: Experimental setup showing a CAN network with two nodes and Logic Analyzer
connected to the CAN bus.

3.4 Experiments

The study performs the following three experiments to evaluate temporal characteristics
for different program configurations.

3.4.1 Experiment 1: Jitter in Periodicity

Experiment 1 is designed to estimate the jitter in periodicity. Node 1 executes the task of
sending a CAN message periodically with a period Tdesired. If ti is the instant at which ith
message is seen on the CAN bus, then the jitter for ith transmission (∆tp,i) is calculated
as,

∆tp,i = ti − ti−1 − Tdesired (3.1)

Let the mean jitter in sleep duration be µp and the standard deviation be σp. The periodic
task is realized by Pseudocode 1. The experiment is performed for 1000 iterations for each
program configuration for the sleep durations { 0.1s, 0.5s, 1.0s, 2.0s, 5.0s, 10.s, 20.0s }.

27

Pseudocode 1: Periodic CAN Message Sender

Input: Sleep Duration T , No. of iterations N
1 for i=0; i<=N; i++ do
2 send can msg();
3 call sleep function(T);

3.4.2 Experiment 2: Transmission Latency

Experiment 2 is designed to estimate latency and jitter in the transmission of a CAN mes-
sage. The transmission latency is the time required between the initiation of a transmission
of a message from the program/application until the actual presence of the message on the
bus. Pseudocode 2 realizes the task to be performed for Experiment 2. Node 1 sends
two CAN messages without any explicit delay between the two transmissions. Then the
transmission latency (∆ttx) is the temporal spacing between the two messages. Let µtx

be the mean transmission latency and σtx be the standard deviation in the transmission
latency called jitter in transmission latency.

Pseudocode 2: Program under test for the estimation of ∆ttx
Input: Sleep Duration T , No. of iterations N

1 for i=0; i<N; i++ do
2 send CAN message 1();
3 send CAN message 2();
4 sleep for some specific time(T);

Let t0,i be the instance of time at the start of ith CAN-Message-1. Let t1,i be the
instance of time at the start of ith CAN-Message-2. Let t0,length be the temporal length
of CAN-Message-1. Then, the temporal spacing between ith pair of CAN-Message-1 and
CAN-Message-2 is given as,

∆ttx,i = t1,i − t0,i − t0,length (3.2)

The temporal spacing between the two messages is calculated using Saleae Logic Ana-
lyzer 16. The experiment is performed for 1000 iterations for each configuration.

28

3.4.3 Experiment 3: Round-Trip Latency

Experiment 3 is designed to estimate the round-trip latency of the system-under-test in a
CAN network. The round-trip latency is defined as the amount of time it takes for a CAN
message to reach the application and for the CAN message transmitted by the application
as the response to appear in the CAN bus. Pseudocode 3 realizes the task to be performed
for this experiment. Node 2 sends a CAN message (say Pe,0) on the network. On receiving
Message Pe,0, Node 1 sends another message (say Pe,1) on the network. Let the round-trip
latency (∆trt) be defined as the temporal spacing between the two messages Pe,0 and Pe,1.
Let the mean round-trip latency be µrt and the jitter in round-trip latency be the standard
deviation σrt.

Let t0,i be the instance of time at the start of the trigger message i. Let t1,i be the
instance of time at the start of the triggered message. Let t0,length be the temporal length
of the trigger message. Then, the temporal spacing between ith pair of trigger messages
and the triggered message is given as,

∆trt,i = t1,i − t0,i − t0,length (3.3)

The temporal spacing between the two messages is calculated using Saleae Logic Ana-
lyzer 16. The experiment is performed for 1000 iterations for each program configuration.

Pseudocode 3: Program under test for the estimation of ∆trt
Input: No. of iterations N

1 for i=0; i<N; i++ do
2 wait for CAN message();
3 send CAN message();

29

Chapter 4

Observations

This chapter discusses the results of the experiments described in Section 3.4. Figure
4.1 shows the plot of mean jitter in the periodicity of transmitted CAN messages for
different sleep durations and different program configurations, as observed in Experiment 1.
Standalone-Ruby-∗ and Standalone-Ruby:JIT-∗ program configurations are indicated using
dotted lines and ‘X’ markers. Metasploit-Ruby-∗ program configurations are indicated using
solid lines with circle markers. Program configurations which use a C-based implementation
(C or Ruby:C language configurations) do not have any markers. The markers hide the
error bars in some of the plot lines.

Figure 4.3 shows the box plot for transmission latency for different program configura-
tions, as observed in Experiment 2. The data summary is given in Table A.3. Figure 4.4
shows the box plot for round-trip latency for CAN messages for different program config-
urations, as observed in Experiment 3. The data summary for Experiment 3 is given in
Table A.5.

The work compares data between different program configurations to draw conclusions.
From Shapiro-Wilk test [66], we find that the sample distributions do not follow a normal
distribution. From Levene’s test [49], we find that the variances of the sample distributions
are not equal. Since the sample distributions are non-normal, we use non-parametric tests
for hypothesis testing. The sample distributions do not have the same variance. Hence,
from the non-parametric test, we use Brunner-Munzel [21] test for hypothesis testing. The
study uses a significance level of 0.05 for drawing conclusions based on the p-values. To
evaluate the effects of framework, language and scheduling configurations, Section 4.1,
Section 4.2 and Section 4.3 use the transmission latency data (shown in Figure 4.3 and
Table A.3), round-trip latency data (shown in Figure 4.4 and Table A.5) and periodicity

30

0.1s 0.5s 1.0s 2.0s 5.0s 10.0s 20.0s
Sleep Duration in seconds

100

101

102

M
ea

n
Jit

te
r i

n
m

illi
se

co
nd

s (
lo

g-
sc

al
e)

Metasploit - Ruby - Default
Metasploit - Ruby - FIFO
Metasploit - Ruby - RR
Metasploit - Ruby:C - Default
Metasploit - Ruby:C - FIFO
Metasploit - Ruby:C - RR
Standalone - Ruby - Default
Standalone - Ruby - FIFO
Standalone - Ruby - RR
Standalone - Ruby:JIT - Default
Standalone - Ruby:JIT- FIFO
Standalone - Ruby:JIT- RR
Standalone - Ruby:C - Default
Standalone - Ruby:C - FIFO
Standalone - Ruby:C - RR
Standalone - C - Default
Standalone - C - FIFO
Standalone - C - RR
Arduino

Figure 4.1: Plot of mean jitter in periodic CAN transmission versus sleep duration for
different program configurations

jitter data for 5.0s (shown in Figure 4.2 and Table A.1). The study makes the choice to use
periodicity jitter data for only a single value of periodicity in order to simplify the anal-
ysis. The choice of using 5.0s as the value of periodicity is discussed in Section 4.4. The
analysis already involves three independent variables (framework, language and schedul-
ing configurations) for three experiments. The work discusses the effect of periodicity in
Section 4.4.

4.1 Effect of using Metasploit Framework

To evaluate the effect of using the Metasploit Framework instead of a standalone program
for a test, we compare Metasploit-Ruby-∗ program configuration with Standalone-Ruby-∗.
Rows 22, 23 and 24 in Table A.2, Table A.4, and Table A.6 show these comparisons. In all
three experiments, the Standalone-Ruby-∗ program configurations have lower latency and
jitter compared to Metasploit-Ruby-∗.

The APIs provided by the Metasploit Framework seem to be adding overhead in ac-
cessing the hardware interface. The Standalone-Ruby-∗ program configurations use the

31

0 5 10 15 20 25 30 35
Jitter in Periodicity (milliseconds)

Metasploit - Ruby - Default
Metasploit - Ruby - FIFO

Metasploit - Ruby - RR
Metasploit - Ruby:C - Default

Metasploit - Ruby:C - FIFO
Metasploit - Ruby:C - RR

Standalone - Ruby - Default
Standalone - Ruby - FIFO

Standalone - Ruby - RR
Standalone - Ruby:JIT - Default

Standalone - Ruby:JIT- FIFO
Standalone - Ruby:JIT- RR

Standalone - Ruby:C - Default
Standalone - Ruby:C - FIFO

Standalone - Ruby:C - RR
Standalone - C - Default

Standalone - C - FIFO
Standalone - C - RR

Arduino

Pr
og

ra
m

 C
on

fig
ur

at
io

n

Figure 4.2: Box-Plot of jitter in periodic CAN message transmission with a period of 5.0s

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Transmission Latency (milliseconds)

Metasploit - Ruby - Default
Metasploit - Ruby - FIFO

Metasploit - Ruby - RR
Metasploit - Ruby:C - Default

Metasploit - Ruby:C - FIFO
Metasploit - Ruby:C - RR

Standalone - Ruby - Default
Standalone - Ruby - FIFO

Standalone - Ruby - RR
Standalone - Ruby:JIT - Default

Standalone - Ruby:JIT - FIFO
Standalone - Ruby:JIT - RR

Standalone - Ruby:C - Default
Standalone - Ruby:C - FIFO

Standalone - Ruby:C - RR
Standalone - C - Default

Standalone - C - FIFO
Standalone - C - RR

Arduino

Pr
og

ra
m

 C
on

fig
ur

at
io

n

Figure 4.3: Box-Plot of transmission latency for different program configurations

32

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Round-Trip Latency (milliseconds)

Metasploit - Ruby - Default
Metasploit - Ruby - FIFO

Metasploit - Ruby - RR
Metasploit - Ruby:C - Default

Metasploit - Ruby:C - FIFO
Metasploit - Ruby:C - RR

Standalone - Ruby - Default
Standalone - Ruby - FIFO

Standalone - Ruby - RR
Standalone - Ruby:JIT - Default

Standalone - Ruby:JIT - FIFO
Standalone - Ruby:JIT - RR

Standalone - Ruby:C - Default
Standalone - Ruby:C - FIFO

Standalone - Ruby:C - RR
Standalone - C - Default

Standalone - C - FIFO
Standalone - C - RR

Arduino
Pr

og
ra

m
 C

on
fig

ur
at

io
n

Figure 4.4: Box-Plot of round-trip latency for different program configurations

commandline utilities cansend and candump to transmit and receive CAN messages. The
Metasploit-Ruby-∗ configuration uses the same commandline utilities with a wrapper over
the utilities.

With respect to the sleep function in Metasploit-Ruby-∗, for the sleep durations consid-
ered, the actual sleep was realized by the program configuration using calls to ppoll system
call [7]. Each call to ppoll is made for a duration of 200ms. For a sleep duration of 5.0s,
25 calls to ppoll are made with a duration of 200ms in each call. For Standalone-Ruby-∗
program configuration, a single call to ppoll is made with the actual duration of the sleep.

4.2 Effect of Language Configurations

Language configuration had the most pronounced effect on the temporal characteristics in
the experiments. The section first discusses the effect of JIT compilation in the case of
standalone Ruby programs. The section compares standalone Ruby programs with and
without JIT compilation. Rows 28, 29 and 30 in Table A.2, Table A.4, and Table A.6
show that there’s no evidence that JIT compilation in Standalone-Ruby:JIT-∗ programs
improve the temporal characteristics of the tests compared to Standalone-Ruby-∗.

For all the experiments performed, program configurations using C or Ruby:C language
configurations had the least latency and jitter. The study compares theMetasploit-Ruby:C-

33

Default configuration with all the other configurations which use Ruby language configu-
ration. Rows 1 through 9 in Table A.2, Table A.4 and Table A.6 show the comparison.
The comparison shows that, in each of the three experiments, Metasploit-Ruby:C-Default
has lower latency and jitter (i.e., p-value < 0.05) compared to Metasploit-Ruby-∗. Using
strace to monitor the system calls Metasploit-Ruby-∗ is making in order to transmit a
CAN message, we found that Metasploit-Ruby-∗ is making more system calls compared to
Metasploit-Ruby:C-∗, as shown in Table 4.1.

One of the differences between using Ruby programming language and using C pro-
gramming language is the number of calls made to open a connection to CAN socket and
close it. The programs written using Ruby programming language use can-utils to transmit
or receive CAN messages. Each call to can-utils utility opens and closes the connection.
For e.g. calling cansend 1000 times to transmit 1000 messages results in 1000 opening of
connection to CAN socket followed by 1000 closing of the connection. The programs writ-
ten using C programming language use the SocketCAN library directly, which provides the
flexibility to open the connection to CAN socket once, transmit 1000 messages and then
close the connection.

Comparing Standalone-C-∗ with Metasploit-Ruby:C-∗ (rows 25, 26 and 27 in Table
A.2, Table A.4 and Table A.6), the study finds that Metasploit-Ruby:C-∗ is as good as
Standalone-C-∗ in terms of temporal characteristics. In most of the Brunner-Munzel [21]
tests, the p-values are greater than the significance level, indicating that Standalone-C-∗
does not have better temporal characteristics compared to Metasploit-Ruby:C-∗. In the
Brunner-Munzel tests where p-values are less than the significance level, the shift in the
mean is low and/or CLES is close to 0.5.

4.3 Effect of Scheduling Configurations

Rows 10 through 15 in Table A.2 show Brunner-Munzel [21] tests for comparing FIFO
with Default scheduling configuration for Experiment 1. Rows 16 through 21 in Table
A.2 show Brunner-Munzel tests for comparing RR with Default scheduling configuration
for Experiment 1. The p-values (< 0.05) indicate that FIFO and RR show improvement
in jitter in periodicity compared to Default scheduling configuration. The shift in mean
due to FIFO and RR is in the range of milliseconds for Ruby and Ruby:JIT language
configurations. The shift in mean due to FIFO and RR is in the range of tens or hundreds
of microseconds for C and Ruby:C language configurations.

For Experiment 2 and Experiment 3, the improvement in temporal characteristics is
not as evident as in the case of Experiment 1. Brunner-Munzel tests (rows 10 through 21 in

34

System Call Metasploit-Ruby-∗ Metasploit-Ruby:C-∗

socket 1 1
ioctl 1 1
bind 1 1
write 1 1
close 1 1
fcntl 1 0
fstat 1 0

getsockname 1 0
setsockopt 1 0

futex 25 0
connect 1 0
getpid 11 0

getsockopt 2 0
ppoll 3 0
select 2 0
sendto 1 0

recvfrom 1 0
read 2 0

getpeername 1 0
shutdown 1 0

Table 4.1: List of system calls made along with the number of times the system call was
made to transmit a CAN message for Metasploit-Ruby-∗ and Metasploit-Ruby:C-∗

Table A.4 and Table A.6) show evidence in favour of the alternative hypothesis, i.e., FIFO
and RR improve temporal characteristics, in some cases and in favour of null hypothesis
in other cases. The shift in the mean transmission and round-trip latency due to the use
of FIFO or RR instead of Default scheduling configuration are small compared to the
shift in mean due to the use of Standalone framework configuration or use of Ruby:C lan-
guage configuration. The authors monitored the number of involuntary context switches
(available in the \proc\PID\status file in Linux) and the amount of time the processes
spent in the ready queue waiting for CPU time (available in the \proc\PID\schedstat file
in Linux). The data in Table 4.2 shows that there was indeed a reduction in involuntary
context switches and the time waited by the process in the ready queue. For a single
iteration, the reduction in the wait time is nearly 4 microseconds. Considering that the
CAN message transmission latency for Metasploit-Ruby-∗ is in the range of tens of mil-

35

Scheduling No. of Involuntary Wait Time in Ready
Configuration Context Switches Queue (microseconds)

Default 84 7184
FIFO 1 2976
RR 4 3091

Table 4.2: Number of involuntary context switches and wait time of a process in the ready
queue for Metasploit-Ruby-∗ program configurations for the program shown in Pseudocode
2 for 1000 iterations

liseconds, the improvement due to scheduling configuration is not as evident as is in the
case of improvement due to change in the use of framework configuration and language
configuration.

4.4 Effect of Period on Periodicity Jitter

From Figure 4.1, mean jitter for periodic tasks implemented using Metasploit-Ruby-∗ con-
figurations is an order of magnitude higher compared to mean jitter in Standalone-Ruby-∗
configurations. InMetasploit-Ruby-∗ configurations, mean jitter is in the range of hundreds
of milliseconds except for a period of 5.0s, for which the jitter is in the range of tens of mil-
liseconds. For Metasploit-Ruby:C-∗ configurations, the jitter is not so different compared
to Standalone-C-∗ or Standalone-Ruby:C-∗ configurations. As discussed in Section 4.1, it
was found that in Metasploit-Ruby-∗ configurations, sleep is implemented in multiples of
200ms sleep durations. A sleep period of 0.1 seconds would result in an actual sleep period
of at least 0.2 seconds. A sleep period of 0.21 seconds would instead result in a sleep period
of at least 0.4 seconds. Another interesting behaviour is that the number of 0.2 seconds
sleep blocks is sometimes more than the required number of 200ms sleep durations. For
0.1s and 0.5s sleep durations, the actual sleep durations were 0.2s and 0.6s. In the case
of sleep durations of 1.0s, 2.0s, 10.0s and 20.0s, even though the sleep durations are mul-
tiples of 200ms sleep duration, there was an extra 200ms sleep call for the specified sleep
durations. For the sleep duration of 5.0s, the number of 200ms sleep calls was as required,
i.e. 25. Hence, the jitter in periodicity for 5.0s sleep duration is lower than for other sleep
durations. This is also the reason the study uses jitter data for 5.0s sleep duration for
analysis in the above sections.

Figure 4.5 shows a plot of mean jitter in periodic CANmessage transmission Standalone-
Ruby-∗, Standalone-C-∗ and Arduino program configurations. Standalone-Ruby-Default

36

0.1s 0.5s 1.0s 2.0s 5.0s 10.0s 20.0s
Sleep Duration in seconds

0

5

10

15

20

25

30

M
ea

n
Jit

te
r i

n
m

illi
se

co
nd

s

Standalone - Ruby - Default
Standalone - Ruby - FIFO
Standalone - Ruby - RR
Standalone - C - Default
Standalone - C - FIFO
Standalone - C - RR
Arduino

Figure 4.5: Graph showing mean jitter in periodic CAN message transmission for selected
program configurations from Figure 4.1.

and Arduino program configurations show increasing mean jitter with the sleep duration
(or the period). Figure 4.5 does not show such increasing mean jitter for Standalone-
Ruby-FIFO, Standalone-Ruby-RR and Standalone-C-∗ configurations. In the case of Ruby
programming language, the sleep function call uses ppoll system call. On checking the time
spent in the ppoll system call for various sleep durations using strace tool, ppoll system call
shows similar increasing jitter with sleep duration. The usleep function in C programming
language uses clock nanosleep system call [6].

4.5 Temporal Characteristics of Arduino Uno

This section compares the temporal characteristics of Arduino with Metasploit-Ruby:C-
Default. The section chooses Metasploit-Ruby:C-Default program configuration for com-
parison with Arduino. The Brunner-Munzel test [21] presented in Row 31 in Table A.2
and Table A.4 shows that Arduino has worse jitter in periodicity and worse transmission
latency compared to Metasploit-Ruby:C-Default (p-value < 0.05). In the case of round-trip
latency, the Brunner-Munzel test in Row 31 of Table A.6 shows that Arduino is better than

37

Metasploit-Ruby:C-Default.

Regarding the dependency of jitter in periodicity, from Figure 4.1, the study finds that
the jitter in periodicity increases with the period and is worse compared to the Metasploit-
Ruby:C-Default program configuration. To check the increasing jitter in Arduino Uno,
the study checked the mean jitter for a period of 160 seconds for a sample size of 100.
The study found the mean jitter for the period of 160 seconds to be 157.3 milliseconds.
The study found the mean jitter values for the last three periods (5s, 10s and 20s) to be
5.4ms, 10.3ms, and 19.9ms, respectively. This data on the mean jitter for the period of 160
seconds is consistent with the data obtained for other values of the period and emphasizes
the nature of increasing jitter with the value of the period.

38

Chapter 5

Case Study

This chapter explores the program configurations discussed in effect. The case studies done
below demonstrate the effect of the configurations on the timing characteristics studied in
the experiments in Section 3.4 and consequently on the success of the attacks. We analyze
how theMetasploit-Ruby-Default configuration compares to theMetasploit-Ruby:C-Default
configuration in actual testing/attack scenarios.

5.1 CAN-Flood Attack

Node 1
(Adversary)

Node 2
(Target)

CAN High

CAN Low

Figure 5.1: Setup for CAN-Flood attack with two CAN nodes

The thesis provided background information on the CAN-Flood attack in Section 2.4.1.
To effectively cause Denial-of-Service to non-malicious nodes, the malicious node needs to
increase the bus-load by sending messages with a low CAN ID. To monitor the bus-load
due to a malicious node, the study designates a node as the adversary in a CAN Network,
with only the adversary sending CAN messages. The study measures the bus-load in the
CAN network. The setup is shown in Figure 5.1. On using the Metasploit-Ruby-Default
configuration to execute the CAN-Flood attack [22, 10], the bus load increases from 0%

39

to 3%. On using the Metasploit-Ruby:C-Default configuration, the bus load increases from
0% to 79%. The study highlights the improvement offered by using C to implement the
CAN-Flood attack compared to Ruby.

5.2 Bus-Off Attack

Node 1 Node 3
(Raspberry Pi 3 - Target)

CAN High

CAN Low

Node 2
(Adversary)

Figure 5.2: Setup for Bus-Off attack with three CAN nodes

The thesis provided background on Bus-Off attack [24] in Section 2.4.2. The setup
shown in Figure 5.2 is used to evaluate the Bus-Off attack. Node 1 uses Metasploit-
Ruby:C-Default to transmit the preceded messages periodically. Node 2 uses Metasploit
to transmit the attack messages, with the first preceded message sent by Node 1 acting as
the trigger message. Node 3 (Raspberry Pi 3) is the target of the attack. Node 3 transmits
the target message on the reception of the first preceded message from Node 1.

For Node 3, the round-trip latency is estimated to be 541µs with a jitter of 24µs.
For Node 2, the study chooses the Metasploit-Ruby:C-Default configuration. The round-
trip latency for Node 2 is then 2134µs with a jitter of 517µs (from the data shown in
Table A.5). Since there is a difference in the round-trip latency of the target node and
the adversary node, Node 1 must keep the bus busy such that the target message and the
attack message synchronize. Using two standard deviations as the upper bound on the
round-trip latency, Dtarget,max is 589µs and Dattack,max is 3168 µs. Considering ttrigger to
be 220µs and tprecede to be 248µs, the number of preceded messages needed is 12 (using
Equation 2.1). In the Bus-Off attack experiment discussed, in 100 attempts, on average,
611 attack messages were needed before the target node entered the Bus-Off state. Using

40

Metasploit-Ruby-Default configuration as the adversary, the difference in round-trip latency
between adversary (mean latency = 18361µs and standard deviation = 1443µs, from Table
A.5) and the target node is so high that the bus-off attack does not succeed. When the Bus-
Off attack experiment was performed with Node 2 using Raspberry Pi 3, in 100 attempts,
on average, 56 attack messages were needed to force the target node into the bus-off
state. This Bus-Off attack experiment highlights the drawback of the high latency in a
Metasploit-based adversary compared to the target node.

41

Chapter 6

Microcontroller Integration with
Metasploit

A computer-based test platform has the overhead of an operating system kernel and has
to compete with many processes running in the system for CPU, memory and I/O. A
microcontroller-based test platform can provide better temporal characteristics for tests
compared to a computer-based test platform (refer to Section 4.5). This chapter discusses
how the Metasploit Framework can be used in coordination with a microcontroller-based
test platform.

6.1 Proposed Framework

The Metasploit Framework provides a repository or database of vulnerabilities, exploits,
post-exploitation modules, etc. A test or attack that can or needs to be implemented using
a microcontroller can also be stored as a module in the Metasploit Framework. Once all
the modules which are run in a microcontroller are available for use with the Metasploit
Framework, a test module is written in order to load the microcontroller program onto the
microcontroller and execute the test.

A test module has the following interfaces - info module, load test, start test, info test
and stop test. Figure 6.1 shows the interfaces in the test module, which is an integration
of a Metasploit Module and a Microcontroller Test Platform. The info module interface
provides information about the module and about what the test does. The run module
interface starts the module. The Metasploit Module (as part of the Metasploit Framework)

42

Metasploit Module Microcontroller

load_test

start_test

info_test

stop_test

info_module

run_module

Metasploit
Console

Figure 6.1: Proposed framework for integration of microcontroller test platform with
Metasploit module

implements the interfaces info module and run module. The load test interface allows the
Metasploit Module to load the test onto the microcontroller. The interface can be realized
using a bootloader where the bootloader waits for the Metasploit Module to send the actual
test so that the bootloader can initiate the test. The load test interface can also be realized
using a flashing tool which flashes the program binary onto the microcontroller. The
microcontroller implements the start test, info test and stop test interfaces. The Metasploit
Module utilizes the interfaces to control the test execution using start test and stop test.
The Metasploit Module utilizes the interface info test to gain information about the status
of the execution of the test.

6.2 A Realization of the Proposed Framework

In this study, an Arduino Uno has been utilized as the microcontroller for integration with
Metasploit Module. A Metasploit Module implements the info module and run module
interfaces. The run module interface builds the test, loads the test onto the microcontroller
and invokes start test interface to start the test. The arduino cli tool is used to build or
compile the Arduino program (or sketch) and flash the binary onto the Arduino board.

43

The Metasploit Module and the Arduino Program communicate over Universal Asyn-
chronous Receiver-Transmitter (UART) port. The Arduino Program registers an interrupt
on the UART port. The program waits for commands from the Metasploit Module from
UART port to start, stop or return information of the test. The Arduino Program acts
accordingly on receiving commands from the Metasploit Module. When the Metasploit
Module invokes the info test interface, the module waits for a response ending in a new-
line character from the Arduino Program. Pseudocode 4 shows the pseudocode for the
realization of the proposed framework using Arduino Uno. The program handles the com-
mands related to the interfaces start test, stop test and info test in the command handler
function.

Pseudocode 4: Pseudocode showing the realization of the proposed framework
using Arduino Uno

1 function setup():
2 register UART interrupt()
3 other initializations()
4 function uartIsr():
5 var command ← uart input
6 function mainloop():
7 if (new command received):
8 command handler(var command)
9 if (start condition met):

10 run test()

44

Chapter 7

Conclusion

It is necessary to ensure the security of both cyber and physical components in a CPS.
The Metasploit Framework extended the support for testing cyber-physical systems by
introducing the Hardware Bridge API. The authors argue that the framework needs to
be evaluated considering the real-time constraints of the tests designed for CPS. This
study determined the jitter in the periodic transmission of CAN messages, the latency
transmission of a CAN message and the round-trip latency of a CAN message for different
combinations of factors - use of framework, language and scheduling configuration. The
study showed that the methods and APIs provided by Metasploit perform significantly
more operations under the hood compared to a C implementation of the same functionality.
Hence, using Metasploit-provided APIs can add significant latency and jitter to the task
under consideration (in this case, CAN message transmission and reception).

For the periodic transmission of CAN messages, the study found some interesting ob-
servations. First, the results showed increasing jitter in the period with respect to actual
sleep duration in the ppoll system call used in the sleep function in Ruby when executed
with the SCHED OTHER scheduling policy. The study found similar increasing behaviour
in jitter in the case of the delay function in Arduino Uno as well. Second, the study showed
that the sleep duration took effect in multiples of 200ms in Metasploit.

The results show that the improvement due to the real-time scheduling policies was
small compared to the improvement due to the use of C programming language for imple-
menting the tests in case of transmission and round-trip latency. The number of involuntary
context switches and wait time in the ready queue were reduced due to the use of real-time
scheduling policies with high process priorities. Enabling JIT compilation in Ruby during
the execution of a Ruby script did not bring any discernible improvement in the temporal

45

characteristics for the task of interacting with the CAN network. The thesis compared
the temporal characteristics of a microcontroller using Arduino Uno as an example with a
Metasploit module. The thesis proposed a framework in order to integrate tests that are
executed on a microcontroller.

Each cyber-physical system is different, and each test can have different timing con-
straints. For tests with real-time constraints, the temporal characteristics need to be
analyzed for each system-under-test, test and platform used for the test. Regardless, this
study has shown the extent of the effect of different factors on the temporal characteristics
of tests implemented as a Metasploit module. This study has shown that the latency and
jitter in the transmission and reception of CAN messages using the Metasploit Frame-
work are improved significantly by implementing the functionality in C as a shared library.
This study showed the extent of the impact of using real-time scheduling policies and JIT
compilation on the temporal characteristics of the tests.

46

References

[1] Arduino Programming Language Reference. https://www.arduino.cc/reference/

en/.

[2] Documentation for delay function in Arduino. https://www.arduino.cc/

reference/en/language/functions/time/delay/.

[3] Documentation for sleep function in Ruby. https://apidock.com/ruby/Kernel/

sleep.

[4] Documentation for SocketCAN library. https://docs.kernel.org/networking/

can.html.

[5] Documentation for usleep function in C. https://man7.org/linux/man-pages/

man3/usleep.3.html.

[6] Documentation on clock nanosleep system call. https://linux.die.net/man/2/

clock_nanosleep.

[7] Documentation on ppoll system call. https://linux.die.net/man/2/ppoll.

[8] Metasploit Framework: Automotive Post-Exploitation Modules. https:

//github.com/rapid7/metasploit-framework/tree/master/documentation/

modules/post/hardware/automotive.

[9] Metasploit Framework: sleep function. https://github.com/rapid7/

metasploit-framework/blob/b4991a97d02572a323470aa0906e934cce1b7843/

lib/rex.rb#L102.

[10] Metasploit Module: CAN-Flood. https://github.com/rapid7/

metasploit-framework/blob/master/modules/post/hardware/automotive/

can_flood.rb.

47

https://www.arduino.cc/reference/en/
https://www.arduino.cc/reference/en/
https://www.arduino.cc/reference/en/language/functions/time/delay/
https://www.arduino.cc/reference/en/language/functions/time/delay/
https://apidock.com/ruby/Kernel/sleep
https://apidock.com/ruby/Kernel/sleep
https://docs.kernel.org/networking/can.html
https://docs.kernel.org/networking/can.html
https://man7.org/linux/man-pages/man3/usleep.3.html
https://man7.org/linux/man-pages/man3/usleep.3.html
https://linux.die.net/man/2/clock_nanosleep
https://linux.die.net/man/2/clock_nanosleep
https://linux.die.net/man/2/ppoll
https://github.com/rapid7/metasploit-framework/tree/master/documentation/modules/post/hardware/automotive
https://github.com/rapid7/metasploit-framework/tree/master/documentation/modules/post/hardware/automotive
https://github.com/rapid7/metasploit-framework/tree/master/documentation/modules/post/hardware/automotive
https://github.com/rapid7/metasploit-framework/blob/b4991a97d02572a323470aa0906e934cce1b7843/lib/rex.rb#L102
https://github.com/rapid7/metasploit-framework/blob/b4991a97d02572a323470aa0906e934cce1b7843/lib/rex.rb#L102
https://github.com/rapid7/metasploit-framework/blob/b4991a97d02572a323470aa0906e934cce1b7843/lib/rex.rb#L102
https://github.com/rapid7/metasploit-framework/blob/master/modules/post/hardware/automotive/can_flood.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/post/hardware/automotive/can_flood.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/post/hardware/automotive/can_flood.rb

[11] SocketCAN Userspace Utilities and Tools. https://github.com/linux-can/

can-utils.

[12] Source code for APIs provided by Metasploit for Interaction with CAN
interface. https://github.com/rapid7/metasploit-framework/blob/master/

modules/auxiliary/server/local_hwbridge.rb.

[13] Metasploit - Penetration Testing Software, Website: https://www.metasploit.com/.
https://www.metasploit.com/, 2022.

[14] Speed comparison of programming languages. https://niklas-heer.github.io/

speed-comparison/, 2023.

[15] Huthaifa Al-Omari, Francis Wolff, Christos Papachristou, and David McIntyre. An
Improved Algorithm to Smooth Delay Jitter in Cyber-Physical Systems. In 2009
International Conference on Scalable Computing and Communications; Eighth Inter-
national Conference on Embedded Computing, pages 81–86, 2009.

[16] Arduino. Arduino Uno R3 - Product Reference Manual. https://docs.arduino.cc/
resources/datasheets/A000066-datasheet.pdf, 2023.

[17] John Aycock. A Brief History of Just-in-Time. ACM Comput. Surv., 35(2):97–113,
June 2003.

[18] G. Bollella and K. Jeffay. Support for real-time computing within general purpose
operating systems-supporting co-resident operating systems. In Proceedings Real-Time
Technology and Applications Symposium, pages 4–14, 1995.

[19] Robert Bosch et al. Can specification version 2.0. Robert Bosch GmbH, Postfach, 50,
1991.

[20] Mehmet Bozdal, Mohammad Samie, and Ian Jennions. A Survey on CAN Bus Proto-
col: Attacks, Challenges, and Potential Solutions. In 2018 International Conference
on Computing, Electronics Communications Engineering (iCCECE), pages 201–205,
2018.

[21] Edgar Brunner and Ullrich Munzel. The nonparametric Behrens-Fisher problem:
asymptotic theory and a small-sample approximation. Biometrical Journal: Jour-
nal of Mathematical Methods in Biosciences, 42(1):17–25, 2000.

48

https://github.com/linux-can/can-utils
https://github.com/linux-can/can-utils
https://github.com/rapid7/metasploit-framework/blob/master/modules/auxiliary/server/local_hwbridge.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/auxiliary/server/local_hwbridge.rb
https://www.metasploit.com/
https://niklas-heer.github.io/speed-comparison/
https://niklas-heer.github.io/speed-comparison/
https://docs.arduino.cc/resources/datasheets/A000066-datasheet.pdf
https://docs.arduino.cc/resources/datasheets/A000066-datasheet.pdf

[22] Paul Carsten, Todd R. Andel, Mark Yampolskiy, and Jeffrey T. McDonald. In-Vehicle
Networks: Attacks, Vulnerabilities, and Proposed Solutions. In Proceedings of the 10th
Annual Cyber and Information Security Research Conference, CISR ’15, New York,
NY, USA, 2015. Association for Computing Machinery.

[23] A. Cervin. Improved Scheduling of Control Tasks. In Proceedings of 11th Euromicro
Conference on Real-Time Systems. Euromicro RTS’99, pages 4–10, 1999.

[24] Kyong-Tak Cho and Kang G Shin. Error handling of in-vehicle networks makes them
vulnerable. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 1044–1055, 2016.

[25] Jacob Cohen. Statistical power analysis for the behavioral sciences. Academic press,
2013.

[26] Marco Di Natale, Haibo Zeng, Paolo Giusto, and Arkadeb Ghosal. Understanding
and using the controller area network communication protocol: theory and practice.
Springer Science & Business Media, 2012.

[27] Abhishek Dubey, Gabor Karsai, and Sherif Abdelwahed. Compensating for Tim-
ing Jitter in Computing Systems with General-Purpose Operating Systems. In 2009
IEEE International Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing, pages 55–62, 2009.

[28] Olive Jean Dunn. Multiple comparisons among means. Journal of the American
statistical association, 56(293):52–64, 1961.

[29] Miro Enev, Alex Takakuwa, Karl Koscher, and Tadayoshi Kohno. Automobile Driver
Fingerprinting. Proceedings on Privacy Enhancing Technologies, 2016:34 – 50, 2016.

[30] Konrad Etschberger, Roman Hofmann, Joachim Stolberg, Christian Schlegel, and
Stefan Weiher. Controller area network: basics, protocols, chips and applications.
IXXAT Automation, 2001.

[31] Thomas Fischl. USBtin - USB to CAN interface. https://www.fischl.de/usbtin/,
2016.

[32] Rory A. Fisher. Studies in crop variation. I. An examination of the yield of dressed
grain from Broadbalk. The Journal of Agricultural Science, 11:107 – 135, 1921.

49

https://www.fischl.de/usbtin/

[33] Rory A. Fisher and Winifred A. Mackenzie. Studies in crop variation. ii. the manurial
response of different potato varieties. The Journal of Agricultural Science, 13:311 –
320, 1923.

[34] Michael A Fligner and George E Policello. Robust rank procedures for the Behrens-
Fisher problem. Journal of the American Statistical Association, 76(373):162–168,
1981.

[35] Dip Goswami, Reinhard Schneider, Alejandro Masrur, Martin Lukasiewycz, Samar-
jit Chakraborty, Harald Voit, and Anuradha Annaswamy. Challenges in Automotive
Cyber-Physical Systems Design. In 2012 International Conference on Embedded Com-
puter Systems (SAMOS), pages 346–354, 2012.

[36] Bogdan Groza and Pal-Stefan Murvay. Security Solutions for the Controller Area Net-
work: Bringing Authentication to In-Vehicle Networks. IEEE Vehicular Technology
Magazine, 13(1):40–47, 2018.

[37] Roland E. Haas and Dietmar P. F. Möller. Automotive Connectivity, Cyber Attack
Scenarios and Automotive Cyber Security. In 2017 IEEE International Conference
on Electro Information Technology (EIT), pages 635–639, 2017.

[38] Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian
journal of statistics, pages 65–70, 1979.

[39] Steve Corrigan HPL. Introduction to the controller area network (CAN). Application
Report SLOA101, pages 1–17, 2002.

[40] Tingting Hu. Deterministic and flexible communication for real-time embedded sys-
tems. 2015.

[41] Ryusuke Imai and Ryogo Kubo. Introducing Jitter Buffers in Networked Control
Systems With Communication Disturbance Observer Under Time-Varying Commu-
nication Delays. In IECON 2015 - 41st Annual Conference of the IEEE Industrial
Electronics Society, pages 002956–002961, 2015.

[42] Microchip Technology Inc. MCP2551 - High-Speed CAN Transceiver. https://ww1.
microchip.com/downloads/en/devicedoc/20001667g.pdf, 2016.

[43] Microchip Technology Inc. MCP2515 - Stand-Alone CAN Controller with
SPI Interface. https://ww1.microchip.com/downloads/en/DeviceDoc/

MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf, 2019.

50

https://ww1.microchip.com/downloads/en/devicedoc/20001667g.pdf
https://ww1.microchip.com/downloads/en/devicedoc/20001667g.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf

[44] Julian D Karch. Psychologists should use Brunner-Munzel’s instead of Mann-
Whitney’s U test as the default nonparametric procedure. Advances in Methods and
Practices in Psychological Science, 4(2):2515245921999602, 2021.

[45] Stamatis Karnouskos. Stuxnet Worm Impact on Industrial Cyber-Physical System
Security. In IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics
Society, pages 4490–4494, 2011.

[46] Michael Kerrisk. The Linux Programming Interface: A Linux and UNIX System
Programming Handbook, chapter 35, pages 733–752. No Starch Press, USA, 1 edition,
2010.

[47] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham,
et al. Experimental security analysis of a modern automobile. In 2010 IEEE sympo-
sium on security and privacy, pages 447–462. IEEE, 2010.

[48] William H Kruskal and W Allen Wallis. Use of ranks in one-criterion variance analysis.
Journal of the American statistical Association, 47(260):583–621, 1952.

[49] Howard Levene. Robust tests for the equality of variance in: Olkin, i., contributions
to probability and statistics: Essays in honor of harold hotelling, 1960.

[50] Jiajia Liu, Shubin Zhang, Wen Sun, and Yongpeng Shi. In-Vehicle Network Attacks
and Countermeasures: Challenges and Future Directions. IEEE Network, 31(5):50–58,
2017.

[51] M. Lluesma, A. Cervin, P. Balbastre, I. Ripoll, and A. Crespo. Jitter Evaluation of
Real-Time Control Systems. In 12th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA’06), pages 257–260, 2006.

[52] Kenneth O McGraw and Seok P Wong. A common language effect size statistic.
Psychological bulletin, 111(2):361, 1992.

[53] Wayne Meissner. ffi — RubyGems.org. https://rubygems.org/gems/ffi/, 2021.

[54] Charlie Miller and Chris Valasek. Remote Exploitation of an Unaltered Passenger
Vehicle. Black Hat USA, 2015(S 91), 2015.

[55] Sandeep Mistry. Source code for CAN Library for Arduino. https://github.com/

sandeepmistry/arduino-CAN.

51

https://rubygems.org/gems/ffi/
https://github.com/sandeepmistry/arduino-CAN
https://github.com/sandeepmistry/arduino-CAN

[56] Subhojeet Mukherjee, Hossein Shirazi, Indrakshi Ray, Jeremy S. Daily, and Rose F.
Gamble. Practical DoS Attacks on Embedded Networks in Commercial Vehicles. In
ICISS, 2016.

[57] Sebastian Nanz and Carlo A Furia. A comparative study of programming languages
in rosetta code. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, volume 1, pages 778–788. IEEE, 2015.

[58] Andrea Palanca, Eric Evenchick, Federico Maggi, and Stefano Zanero. A Stealth,
Selective, Link-Layer Denial-of-Service Attack Against Automotive Networks. In
Michalis Polychronakis and Michael Meier, editors, Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, pages 185–206, Cham, 2017. Springer Interna-
tional Publishing.

[59] Andrea Palanca, Eric Evenchick, Federico Maggi, and Stefano Zanero. A Stealth,
Selective, Link-Layer Denial-of-Service Attack Against Automotive Networks. In
DIMVA, 2017.

[60] PEAK-System. PCAN-USB: CAN Interface for USB. https://www.peak-system.

com/PCAN-USB.199.0.html?&L=1, 2022.

[61] Enrico Pozzobon, de, and Nils Weiss. A Survey on Media Access Solutions for CAN
Penetration Testing. 2018.

[62] K. Ramamritham, Chia Shen, O. Gonzalez, S. Sen, and S. Shirgurkar. Using windows
nt for real-time applications: experimental observations and recommendations. In
Proceedings. Fourth IEEE Real-Time Technology and Applications Symposium (Cat.
No.98TB100245), pages 102–111, 1998.

[63] Alexandre S. Roque, Nasser Jazdi, Edisons P. Freitas, and Carlos E. Pereira. Per-
formance Analysis of In-Vehicle Distributed Control Systems Applying a Real-Time
Jitter Monitor. In 2020 IEEE 18th International Conference on Industrial Informatics
(INDIN), volume 1, pages 663–668, 2020.

[64] Nipun Jaswal Sagar Rahalkar. Metasploit Revealed: Secrets of the Expert Pentester.
Packt Publishing Ltd, 2017.

[65] D. Seto, J.P. Lehoczky, and Liu Sha. Task Period Selection and Schedulability in
Real-Time Systems. In Proceedings 19th IEEE Real-Time Systems Symposium (Cat.
No.98CB36279), pages 188–198, 1998.

52

https://www.peak-system.com/PCAN-USB.199.0.html?&L=1
https://www.peak-system.com/PCAN-USB.199.0.html?&L=1

[66] Samuel Sanford Shapiro and Martin B Wilk. An analysis of variance test for normality
(complete samples). Biometrika, 52(3/4):591–611, 1965.

[67] Sulav Lal Shrestha, Taylor Lee, and Sebastian Fischmeister. Metasploit for cyber-
physical security testing with real-time constraints. In International Conference on
Science of Cyber Security, pages 260–275. Springer, 2022.

[68] Craig Smith. Exiting the Matrix: Introducing Metasploit’s Hardware Bridge. https:
//www.rapid7.com/blog/post/2017/02/02/exiting-the-matrix/, 2017.

[69] Michal Sojka, Pavel Ṕı̌sa, Martin Petera, Ondřej Špinka, and Zdeněk Hanzálek. A
comparison of Linux CAN drivers and their applications. In International Symposium
on Industrial Embedded System (SIES), pages 18–27, 2010.

[70] Student. The probable error of a mean. Biometrika, 6(1):1–25, 1908.

[71] Bernard L Welch. The generalization of ‘STUDENT’S’problem when several different
population variances are involved. Biometrika, 34(1-2):28–35, 1947.

[72] Bernard Lewis Welch. On the comparison of several mean values: an alternative
approach. Biometrika, 38(3/4):330–336, 1951.

[73] F Wilcoxon. Individual comparisons by ranking methods. Biom Bull 1 (6): 80–83,
1945.

53

https://www.rapid7.com/blog/post/2017/02/02/exiting-the-matrix/
https://www.rapid7.com/blog/post/2017/02/02/exiting-the-matrix/

APPENDICES

54

Appendix A

Data Summary and Statistical Tests

The tables below show the data summary for the experiments in Section 3.4 and the results
of Brunner-Munzel tests between various program configurations. Tables A.1, A.3 and A.5
show the mean, standard deviation, median and Inter-Quartile Range (IQR) for (i) the
jitter in periodic CAN message transmission with period of 5.0s, (ii) the transmission
latency, and (iii) the round-trip latency for different program configurations respectively.
The sample size for each program configuration is 1000.

Table A.2, Table A.4, and Table A.6 show the p-values for Brunner-Munzel Test [21]
between the program configuration in PrgConfig 1 column and the program configuration
in PrgConfig 2 column. Each test between PrgConfig 1 and PrgConfig 2 has the alternative
hypothesis that when a random sample is chosen from PrgConfig 1 and one from PrgConfig
2, the random sample from PrgConfig 1 has a smaller value compared to the sample from
PrgConfig 2. The tables also show CLES [52], which is the probability that the random
sample from PrgConfig 1 has a smaller value than the random sample from PrgConfig 2.
The last column “∆µ” shows the difference in mean between PrgConfig 1 and PrgConfig
2 as the measure of unstandardized effect size. Table A.4 shows the tests between the
program configurations for data in Table A.3. Table A.6 shows the p-value for the Brunner-
Munzel test, CLES and the difference in means for the two program configurations for
data in Table A.5. The p-values shown in the tables are p-values corrected using Holm’s
method [38] for multiple tests.

In the tables, MSF stands for Metasploit and STN stands for Standalone. The framework configura-
tions have been shortened to fit the tables within the page boundaries.

55

Program Configuration mean (µs) sd (µs) median (µs) IQR(µs)

Metasploit - Ruby - Default 33755.8 2366.3 34330.0 1450.0
Metasploit - Ruby - FIFO 28552.7 2611.5 29340.0 1748.8
Metasploit - Ruby - RR 28523.3 2400.5 29110.0 1550.0

Metasploit - Ruby:C - Default 699.4 161.5 750.0 155.0
Metasploit - Ruby:C - FIFO 612.4 165.4 660.0 220.0
Metasploit - Ruby:C - RR 670.6 120.6 700.0 120.0

Standalone - Ruby - Default 12600.3 1080.1 12910.0 429.2
Standalone - Ruby - FIFO 6478.7 554.3 6660.0 150.0
Standalone - Ruby - RR 6442.4 522.3 6650.0 343.5

Standalone - Ruby:JIT - Default 12577.0 1170.9 13000.0 230.5
Standalone - Ruby:JIT- FIFO 6465.7 558.4 6660.0 170.0
Standalone - Ruby:JIT- RR 6476.7 504.4 6656.0 190.0

Standalone - Ruby:C - Default 713.7 152.1 740.0 144.0
Standalone - Ruby:C - FIFO 672.5 129.9 710.0 138.5
Standalone - Ruby:C - RR 683.6 155.0 710.0 170.0

Standalone - C - Default 742.8 133.4 764.0 140.0
Standalone - C - FIFO 482.4 107.0 440.0 100.0
Standalone - C - RR 482.1 108.7 440.0 126.2

Arduino 5388.4 8.0 5390.0 10.0

Table A.1: Data summary for Experiment 1 (period 5.0s)

56

PrgConfig 1 PrgConfig 2 p-value CLES ∆µ (µs)

1 MSF-Ruby:C-Default MSF-Ruby-Default 0.0 1.0 -33056.4
2 MSF-Ruby:C-Default MSF-Ruby-FIFO 0.0 1.0 -27853.3
3 MSF-Ruby:C-Default MSF-Ruby-RR 0.0 1.0 -27823.9
4 MSF-Ruby:C-Default STN-Ruby-Default 0.0 1.0 -11900.9
5 MSF-Ruby:C-Default STN-Ruby-FIFO 0.0 1.0 -5779.3
6 MSF-Ruby:C-Default STN-Ruby-RR 0.0 1.0 -5743.0
7 MSF-Ruby:C-Default STN-Ruby:JIT-Default 0.0 1.0 -11877.6
8 MSF-Ruby:C-Default STN-Ruby:JIT-FIFO 0.0 1.0 -5766.3
9 MSF-Ruby:C-Default STN-Ruby:JIT-RR 0.0 1.0 -5777.3

10 MSF-Ruby-FIFO MSF-Ruby-Default 0.0 0.93 -5203.1
11 MSF-Ruby:C-FIFO MSF-Ruby:C-Default 0.0 0.69 -87.0
12 STN-Ruby-FIFO STN-Ruby-Default 0.0 1.0 -6121.6
13 STN-Ruby:JIT-FIFO STN-Ruby:JIT-Default 0.0 1.0 -6111.3
14 STN-Ruby:C-FIFO STN-Ruby:C-Default 0.0 0.6 -41.2
15 STN-C-FIFO STN-C-Default 0.0 0.92 -260.4

16 MSF-Ruby-RR MSF-Ruby-Default 0.0 0.93 -5232.5
17 MSF-Ruby:C-RR MSF-Ruby:C-Default 0.0 0.63 -28.8
18 STN-Ruby-RR STN-Ruby-Default 0.0 1.0 -6157.9
19 STN-Ruby:JIT-RR STN-Ruby:JIT-Default 0.0 1.0 -6100.3
20 STN-Ruby:C-RR STN-Ruby:C-Default 0.0 0.56 -30.1
21 STN-C-RR STN-C-Default 0.0 0.92 -260.7

22 STN-Ruby-Default MSF-Ruby-Default 0.0 1.0 -21155.5
23 STN-Ruby-FIFO MSF-Ruby-FIFO 0.0 1.0 -22074.0
24 STN-Ruby-RR MSF-Ruby-RR 0.0 1.0 -22080.9

25 STN-C-Default MSF-Ruby:C-Default 1.0 0.44 43.4
26 STN-C-FIFO MSF-Ruby:C-FIFO 0.0 0.75 -130.0
27 STN-C-RR MSF-Ruby:C-RR 0.0 0.86 -188.5

28 STN-Ruby:JIT-Default STN-Ruby-Default 1.0 0.46 -23.3
29 STN-Ruby:JIT-FIFO STN-Ruby-FIFO 1.0 0.5 -13.0
30 STN-Ruby:JIT-RR STN-Ruby-RR 1.0 0.47 34.3

31 Arduino MSF-Ruby:C-Default 1.0 0.0 4689.0

Table A.2: Table showing p-value for Brunner-Munzel test, CLES and difference in mean
(µs) for two sample distributions for Experiment 1 (period 5.0s)

57

Program Configuration mean (µs) sd (µs) median (µs) IQR (µs)

Metasploit - Ruby - Default 16911.9 2937.2 17518.0 845.9
Metasploit - Ruby - FIFO 16641.4 2713.5 17076.0 799.9
Metasploit - Ruby - RR 16851.7 2445.3 17178.3 802.7

Metasploit - Ruby:C - Default 10.1 0.2 10.0 0.1
Metasploit - Ruby:C - FIFO 10.1 0.2 10.0 0.1
Metasploit - Ruby:C - RR 10.1 0.2 10.0 0.1

Standalone - Ruby - Default 5364.5 682.5 5500.4 57.9
Standalone - Ruby - FIFO 5106.4 566.6 5190.4 44.6
Standalone - Ruby - RR 5022.6 667.8 5148.8 46.2

Standalone - Ruby:JIT - Default 5387.4 626.1 5506.3 54.4
Standalone - Ruby:JIT - FIFO 5078.1 636.5 5191.5 44.0
Standalone - Ruby:JIT - RR 5127.0 518.7 5200.0 42.0

Standalone - Ruby:C - Default 10.1 0.2 10.0 0.1
Standalone - Ruby:C - FIFO 10.1 0.2 10.0 0.1
Standalone - Ruby:C - RR 10.1 0.3 10.0 0.1

Standalone - C - Default 10.1 0.2 10.0 0.1
Standalone - C - FIFO 10.1 0.2 10.0 0.1
Standalone - C - RR 10.1 0.3 10.0 0.1

Arduino 366.1 3.3 368.1 6.0

Table A.3: Data summary for Experiment 2

58

PrgConfig 1 PrgConfig 2 p-value CLES ∆µ (µs)

1 MSF-Ruby:C-Default MSF-Ruby-Default 0.0 1.0 -16901.8
2 MSF-Ruby:C-Default MSF-Ruby-FIFO 0.0 1.0 -16631.3
3 MSF-Ruby:C-Default MSF-Ruby-RR 0.0 1.0 -16841.6
4 MSF-Ruby:C-Default STN-Ruby-Default 0.0 1.0 -5354.4
5 MSF-Ruby:C-Default STN-Ruby-FIFO 0.0 1.0 -5096.3
6 MSF-Ruby:C-Default STN-Ruby-RR 0.0 1.0 -5012.5
7 MSF-Ruby:C-Default STN-Ruby:JIT-Default 0.0 1.0 -5377.3
8 MSF-Ruby:C-Default STN-Ruby:JIT-FIFO 0.0 1.0 -5068.0
9 MSF-Ruby:C-Default STN-Ruby:JIT-RR 0.0 1.0 -5116.9

10 MSF-Ruby-FIFO MSF-Ruby-Default 0.0 0.65 -270.5
11 MSF-Ruby:C-FIFO MSF-Ruby:C-Default 1.0 0.51 0.0
12 STN-Ruby-FIFO STN-Ruby-Default 0.0 0.95 -258.1
13 STN-Ruby:JIT-FIFO STN-Ruby:JIT-Default 0.0 0.96 -309.3
14 STN-Ruby:C-FIFO STN-Ruby:C-Default 0.01 0.54 0.0
15 STN-C-FIFO STN-C-Default 1.0 0.49 0.0

16 MSF-Ruby-RR MSF-Ruby-Default 0.0 0.61 -60.2
17 MSF-Ruby:C-RR MSF-Ruby:C-Default 1.0 0.51 0.0
18 STN-Ruby-RR STN-Ruby-Default 0.0 0.95 -341.9
19 STN-Ruby:JIT-RR STN-Ruby:JIT-Default 0.0 0.96 -260.4
20 STN-Ruby:C-RR STN-Ruby:C-Default 1.0 0.49 0.0
21 STN-C-RR STN-C-Default 1.0 0.5 0.0

22 STN-Ruby-Default MSF-Ruby-Default 0.0 1.0 -11547.4
23 STN-Ruby-FIFO MSF-Ruby-FIFO 0.0 1.0 -11535.0
24 STN-Ruby-RR MSF-Ruby-RR 0.0 1.0 -11829.1

25 STN-C-Default MSF-Ruby:C-Default 1.0 0.51 0.0
26 STN-C-FIFO MSF-Ruby:C-FIFO 1.0 0.49 0.0
27 STN-C-RR MSF-Ruby:C-RR 1.0 0.49 0.0

28 STN-Ruby:JIT-Default STN-Ruby-Default 1.0 0.46 22.9
29 STN-Ruby:JIT-FIFO STN-Ruby-FIFO 1.0 0.51 -28.3
30 STN-Ruby:JIT-RR STN-Ruby-RR 1.0 0.15 104.4

31 Arduino MSF-Ruby:C-Default 1.0 0.0 356.0

Table A.4: Table showing p-value for Brunner-Munzel test, CLES and difference in mean
(µs) for two sample distributions for Experiment 2

59

Program Configuration mean (µs) sd (µs) median (µs) IQR (µs)
Metasploit - Ruby - Default 18361.4 1442.7 18637.5 1026.5
Metasploit - Ruby - FIFO 18084.6 5515.7 18635.5 1029.5
Metasploit - Ruby - RR 17990.6 5784.8 18797.5 1085.8

Metasploit - Ruby:C - Default 2134.3 516.7 1989.1 1003.0
Metasploit - Ruby:C - FIFO 2191.5 504.1 2197.1 986.8
Metasploit - Ruby:C - RR 2195.3 511.2 2277.5 1000.2

Standalone - Ruby - Default 8661.4 989.3 8680.3 1275.2
Standalone - Ruby - FIFO 8781.5 831.4 8830.8 1021.7
Standalone - Ruby - RR 8778.7 799.5 8850.8 984.9

Standalone - Ruby:JIT - Default 9246.3 695.5 9109.8 976.9
Standalone - Ruby:JIT - FIFO 8711.6 890.2 8703.8 1179.9
Standalone - Ruby:JIT - RR 8732.5 860.5 8712.7 1223.8

Standalone - Ruby:C - Default 2321.5 475.9 2658.2 915.8
Standalone - Ruby:C - FIFO 2141.9 516.7 2064.1 1012.9
Standalone - Ruby:C - RR 2148.4 511.9 1918.0 1007.8

Standalone - C - Default 2281.2 497.5 2656.1 940.5
Standalone - C - FIFO 2207.0 490.7 2396.0 958.5
Standalone - C - RR 2249.3 483.5 2473.2 931.5

Arduino 595.4 7.3 596.0 11.0

Table A.5: Data summary for Experiment 3

60

PrgConfig 1 PrgConfig 2 p-value CLES ∆µ (µs)

1 MSF-Ruby:C-Default MSF-Ruby-Default 0.0 1.0 -16227.1
2 MSF-Ruby:C-Default MSF-Ruby-FIFO 0.0 1.0 -15950.3
3 MSF-Ruby:C-Default MSF-Ruby-RR 0.0 1.0 -15856.3
4 MSF-Ruby:C-Default STN-Ruby-Default 0.0 1.0 -6527.1
5 MSF-Ruby:C-Default STN-Ruby-FIFO 0.0 1.0 -6647.2
6 MSF-Ruby:C-Default STN-Ruby-RR 0.0 1.0 -6644.4
7 MSF-Ruby:C-Default STN-Ruby:JIT-Default 0.0 1.0 -7112.0
8 MSF-Ruby:C-Default STN-Ruby:JIT-FIFO 0.0 1.0 -6577.3
9 MSF-Ruby:C-Default STN-Ruby:JIT-RR 0.0 1.0 -6598.2

10 MSF-Ruby-FIFO MSF-Ruby-Default 0.8 0.52 -276.8
11 MSF-Ruby:C-FIFO MSF-Ruby:C-Default 1.0 0.44 57.2
12 STN-Ruby-FIFO STN-Ruby-Default 1.0 0.48 120.1
13 STN-Ruby:JIT-FIFO STN-Ruby:JIT-Default 0.0 0.75 -534.7
14 STN-Ruby:C-FIFO STN-Ruby:C-Default 0.0 0.58 -179.6
15 STN-C-FIFO STN-C-Default 0.0 0.6 -74.2

16 MSF-Ruby-RR MSF-Ruby-Default 1.0 0.49 -370.8
17 MSF-Ruby:C-RR MSF-Ruby:C-Default 1.0 0.44 61.0
18 STN-Ruby-RR STN-Ruby-Default 1.0 0.48 117.3
19 STN-Ruby:JIT-RR STN-Ruby:JIT-Default 0.0 0.74 -513.8
20 STN-Ruby:C-RR STN-Ruby:C-Default 0.0 0.57 -173.1
21 STN-C-RR STN-C-Default 1.0 0.49 -31.9

22 STN-Ruby-Default MSF-Ruby-Default 0.0 1.0 -9700.0
23 STN-Ruby-FIFO MSF-Ruby-FIFO 0.0 0.99 -9303.1
24 STN-Ruby-RR MSF-Ruby-RR 0.0 1.0 -9211.9

25 STN-C-Default MSF-Ruby:C-Default 1.0 0.41 146.9
26 STN-C-FIFO MSF-Ruby:C-FIFO 0.0 0.57 15.5
27 STN-C-RR MSF-Ruby:C-RR 1.0 0.46 54.0

28 STN-Ruby:JIT-Default STN-Ruby-Default 1.0 0.25 584.9
29 STN-Ruby:JIT-FIFO STN-Ruby-FIFO 1.0 0.5 -69.9
30 STN-Ruby:JIT-RR STN-Ruby-RR 1.0 0.5 -46.2

31 Arduino MSF-Ruby:C-Default 0.0 1.0 -1538.9

Table A.6: Table showing p-value for Brunner-Munzel test, CLES and difference in mean
(µs) for two sample distributions for Experiment 3

61

	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Related Work
	Contributions
	Organization of the Thesis

	Background
	Automotive Cybersecurity
	Controller Area Network (CAN)
	CAN Frames
	Error Handling and Fault Confinement

	Security in a CAN Network
	Vulnerabilities in CAN Protocol
	Attacking Methodologies

	Cyber-Attack as a Real-Time Process
	CAN-Flood Attack
	Bus-Off Attack

	The Metasploit Framework
	Hypothesis Testing
	Nature of Sample(s)
	Direction of Test
	Tests for Comparing One or Two Sample Distributions
	Tests for Comparing More Than Two Sample Distributions
	p-value Correction
	Effect Size

	Experiment Design
	Factors affecting Temporal Characteristics
	Programming Language
	Scheduling Policy and Process Priority
	Period of a Periodic Task
	Effect of using Metasploit
	Just-in-Time (JIT) Compilation
	Hardware Setup

	Program Configuration
	Experimental Setup
	Experiments
	Experiment 1: Jitter in Periodicity
	Experiment 2: Transmission Latency
	Experiment 3: Round-Trip Latency

	Observations
	Effect of using Metasploit Framework
	Effect of Language Configurations
	Effect of Scheduling Configurations
	Effect of Period on Periodicity Jitter
	Temporal Characteristics of Arduino Uno

	Case Study
	CAN-Flood Attack
	Bus-Off Attack

	Microcontroller Integration with Metasploit
	Proposed Framework
	A Realization of the Proposed Framework

	Conclusion
	References
	APPENDICES
	Data Summary and Statistical Tests

