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Abstract

Hockey analytics involves obtaining information from games so that coaches, managers,
and teams can make better decisions in training, playing, and hiring. As there is a large
amount of information available in each game, manual analysis is difficult and tedious, so
automated computer vision techniques have been developed to acquire and process data
more efficiently.

One key component to such analysis is the location information of players and events.
This information can be obtained using a technique called rink registration, which involves
estimating the homography matrix needed to warp an overhead template of the rink onto
video frames, or vice versa. By doing this, we can obtain the location of objects in video
with respect to the fixed reference frame of the overhead template. Current methods focus
on NHL rinks, which have a standardized size and have similar appearances. However, the
quality of results drop when other types of rinks are used, because the existing methods
are not trained to work on non-NHL rinks.

This work seeks to improve the rink registration process by making it more robust to
differences in rinks, while maintaining good accuracy. It also tries to develop a generalized
system that can work on a variety of rink types, such as NHL, Olympic, and European,
without the need for additional rink-specific training or expensive annotations. By devel-
oping this rink-agnostic system, it can provide rink registration results regardless of rink,
making analysis more equitable for smaller groups. It also reduces the cost needed as it only
requires broadcast video and the overhead rink template, without the need for additional
technology to be installed or annotations to be made. The results of this rink-agnostic
system are competitive with the results of an NHL-only baseline on NHL rinks and are
noticeably better than the baseline on non-NHL rinks. The rink-agnostic system achieves
a 1.1% IOUpart improvement on the Olympic 2014 rink and a 8.8% IOUpart improvement
on the Berlin Mercedes-Benz Arena rink.
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Chapter 1

Introduction

1.1 Premise

Sports analytics is a field that involves extracting information from sports games to analyze
and improve player and team performance. It has grown and advanced as technology
developed to cater to the large sports market. Different sports are popular around the
world with millions cheering at events of various scales, from local teams playing all the
way up to games played at the international stage. One such sport is hockey. It has a large
following especially in North America, where the NHL’s yearly revenue was $2.3 billion in
the 2020/21 season [13]. Each hockey team strives to outperform each other, and sports
analytics can help with this by providing statistics about individuals and teams.

One field that can be linked to hockey analytics is computer vision, which analyzes
images and videos to obtain information. The vast quantity of data from games means these
are difficult to process manually, so improvements in computer vision can help automate
this process. Computer vision techniques can provide information that would otherwise be
almost unobtainable due to the sheer scale of the data and the fast paced nature of the
game. This extracted information is then used for further analysis.

1.2 Motivation

Hockey analytics can provide teams and managers with information about various players
and their interactions. This can affect training, coaching, and hiring decisions, such as
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Figure 1.1: Warping frame to overhead. The inverse of the homography matrix can be
used to warp overhead to frame.

determining areas of improvement for players, or developing new strategies. It can also
affect minor leagues or junior leagues, as NHL teams recruit players from these leagues
based on analysis of their performance. In such a competitive sport with high revenue and
popularity, each team will definitely try to use whatever they can get to outperform each
other, and data-driven solutions are one way to optimize player and team performance.
For example, statistics involving shots, possession, and blocking are measured to determine
player performance [28].

Providing automatic analysis from broadcast video allows for information to be obtained
regardless of rink. This improves access to such information for smaller leagues or teams.
They do not need to have specialized technology in their rinks and do not need to annotate
data manually, which would have required large amounts of time, funding, and effort. This
makes access to the information more equitable for smaller groups and minor leagues, while
also saving time and cost for larger teams.

1.3 Scope

This thesis primarily focuses on the task of rink registration. This involves estimating
the homography transformation required to warp an overhead template to the broadcast
video feed, or vice-versa using the inverse transformation. Once the homography matrix is
obtained, the true location of everything in the video frame can be identified with respect
to a fixed reference frame. An example of rink registration can be seen in Figure 1.1.

This is an integral part of hockey analytics, as knowing the location of the players and
events is one of the first steps for further analysis, such as determining missed opportunities.
The only input required is the broadcast video feed and the overhead template of the rink.
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This thesis first describes improvements that are made to an existing homography esti-
mation work. It then describes a method that generalizes homography estimation to work
on all rink types. This rink-agnostic system would work on multiple rink types without the
need for additional rink-specific training or the need for expensive annotations of non-NHL
data. The system is tested on non-NHL rinks such as Olympic or European rinks, with-
out additional training or setup. Finally, this work will discuss a method to generate the
overhead rink templates that are used in some homography estimation methods, for cases
where the rink template may not be readily available. Overall, this thesis seeks to make
advancements in the field of homography estimation for the purpose of rink registration,
and generalizes it to be more robust to rink type and appearance.
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Chapter 2

Background and Related Works

This chapter covers works relating to the field of homography estimation for the purposes
of sports field registration.

2.1 Homography Estimation

Homography is an aspect of image processing where one plane is warped onto another
plane. It can be used in a variety of different tasks, such as image stitching and structure
from motion [38]. It can also be used to describe how a plane can be viewed from different
perspectives, as seen in Figure 2.1.

The matrix itself is a 3 × 3 matrix, H, that has eight degrees of freedom (DoF), and
relates the transformation between two planes up to a scale factor. Specifically, the matrix
transforms points in one plane (x, y) to points on another plane (x′, y′), with an unknown
scaling s. To remove this scaling, homography matrices are often normalized so that the
final value, h33, is fixed to 1. When used on a set of points of one plane, it is able to
calculate their locations in another plane, as seen in equation 2.1. In rink registration, it
can be used to warp the broadcast frame points onto an overhead template, or vice-versa
using the inverse matrix. In 2.1, [x, y, 1]T can represent the frame pixels, while [x′, y′, 1]T

would represent coordinates in the overhead template space.

s

x′

y′

1

 = H

xy
1

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

xy
1

 (2.1)
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Figure 2.1: How a plane can be viewed from two different perspectives, and the homography
that can be used to warp between the perspectives. From Szelinski et al. [38].

Homography transformations are a superset of affine transformations such as rotation,
translation, scaling, and shearing [14]. However, while affine transformations keep straight
lines straight and parallel lines parallel after the transformation, homography transforma-
tions only need to keep straight lines straight.

Traditional homography estimation techniques often involve identifying feature pairs
from image pairs using methods such as SIFT [27] and ORB [32]. Once we obtain at least
four matches, direct linear transformation (DLT) can be used to calculate the terms of the
homography matrix [14]. To handle noise and possible mismatches, the feature matching
stage acquires many point matches and uses random sample consensus (RANSAC) to
determine accurate sets of 4-point matches to feed into the DLT [9] .

Homography could also be estimated directly from two images if they were close enough
in perspective and appearance. This can be done using pixel-based direct homography
optimization, as described by Szeliski et al. [39]. One method involves using gradient
descent to minimize the sum of squared differences (SSD) between pixels. To improve
this process when there is a larger difference in position between images, a hierarchical
image pyramid is set up. The optimization is first performed at a coarse level before being
performed at finer levels. However, even with this, the difference between images must be
small, to ensure there is a large enough overlap to perform direct homography optimization
effectively. Furthermore, this can still take awhile to perform, which makes it difficult to
use when speed is a concern.
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Figure 2.2: How the 4-point method from Detone et al. works [8]. Four points can be
converted into a homography matrix using DLT. ∆u and ∆v represent the differences
between the points in the image, such that ∆u = u′ − u, ∆v = v′ − v.

Aside from these traditional techniques, deep learning methods were also developed.
DeTone et al. [8] were one of the first to estimate homography via deep learning. They
used a Visual Geometry Group (VGG) based model to estimate the location of four corners
of one image in the image space of the other image. These sets of point estimates can then
be converted into a homography via DLT [14] [8], as matching four (x,y) pairs is enough
to solve the eight unknowns in the matrix. An example of this approach can be seen in
Figure 2.2.

Zhou and Li [48] describe how directly estimating homography parameters via deep
learning was difficult due to the different scaling needed for each parameter. They de-
scribed that as the reason for the 4-point approach used by DeTone, and proposed an
alternate method where the normalized homography was directly estimated instead. By
using normalization, the homography matrix parameters were altered to have relatively
similar distributions, making them more suitable for the loss functions used by deep learn-
ing models [48].

2.2 Homography Estimation in Sports

In hockey rink registration and other sports registration tasks, homography estimation
is difficult using traditional approaches [29]. Hockey rinks can be quite featureless, with
markings being sparse or occluded by players. Thus traditional feature detection models

6



Figure 2.3: SIFT [27] features on a hockey broadcast frame. Unfortunately, the vast
majority of detected features do not relate to rink features.

often choose points on players, audience, or shadows, which are not desirable because these
are not part of the fixed rink template. This issue is shown in Figure 2.3.

Direct homography estimation using pixel-based alignment is also not viable due to its
long calculation time and the fact that the inputs needs to be close together in perspective
[39]. The movement of the players and audience, along with screen elements such as scores
and advertising may also cause incorrect solutions to be generated.

With the advent of deep learning, new models have been developed for homography
estimation. Various models and pipelines specialized for sports field registration were
also developed to overcome the above issues. Homayounfar et al. [15] utilize semantic
segmentation to isolate field marking data to use in a Markov random field. Chen and
Little [3] set up a camera-pose database with predefined poses. Then they select the best
pose by comparing it to features and edge images extracted from the input image, before
refining the pose. This can be seen in Figure 2.4. Sha et al. [33] also use a dataset
system, except they replace the edge images with semantic segmentation maps for use in
the comparison.

Nie et al. [29] use a U-net model to estimate the location of a series of keypoints
uniformly spread across the rink template, which can then be used to calculate the homog-

7



Figure 2.4: Pipeline for the dataset approach described by Chen and Little [3].

raphy. This keypoint-based estimation is then further refined based on feature heatmaps
extracted from the input image, alongside the previous input frame’s heatmaps [29]. This
approach is visualized in Figure 2.5. The keypoint method was expanded upon by Chu et
al. [7], who used better keypoint estimation based on dynamic filter learning, and removed
the refining step as they found it no longer necessary.

Jiang et al. [21] use a deep neural network to estimate the locations of four points of
the input frame on an overhead template, similar to Detone et al. [8]. This estimated
homography is used to warp the template, resulting in a second input that can be used
by a refinement network. The refinement model then calculates the relative homography
between the original image and the initial estimate [21]. This approach was improved by
Shi et al. [35], who utilize a self-supervised method of warping dataset images to provide
a greater set of synthetic data for training.

2.3 Metrics To Assess Homography

Intersection over union (IOU) is a common metric in the field of computer vision when
identification of areas is being performed, such as segmentation and homography. The
area of the ground truth is compared with the area from the estimate, and the ratio of

8



Figure 2.5: Pipeline for the keypoint approach described by Nie et al. [29].

the intersection over the union of the areas is returned. For evaluating the quality of
homography in sports registration, two variants are used: IOUpart and IOUwhole.

IOUpart involves warping the image frame onto the overhead template using the ho-
mography estimate and the homography ground truth. The areas are then compared via
IOU. In this case, only the area of the rink visible in the frame is compared.

For IOUwhole, the ground truth homography is matrix multiplied with the inverse of the
estimated homography matrix. The resulting matrix product can then be used to warp
the overhead template to show the differences between the homographies even on portions
out of view of the camera. An example showing both IOUpart and IOUwhole can be seen
in Figure 2.6. Note that both IOU types use the areas of the rink rather than the area
covered by only the lines in the rink.

2.4 Conclusion

This chapter covers different works relating to the problem of homography estimation for
the purpose of rink-registration. It also describes some of the background metrics involved,
namely IoUpart and IoUwhole. Different techniques relating to homography estimation have
achieved competitive results, and the lack of publicly available code and data makes it
difficult to compare them fully. However, the fact that different techniques exist show
that there is no consensus on the proper approach as of yet. Furthermore, there are other
ways to contribute to the field apart from just improving accuracy, and we make such a
contribution with a rink-agnostic homography estimation pipeline.

9



(a) IOUpart (b) IOUwhole

Figure 2.6: IOUpart vs IOUwhole for hockey rink registration. The slight grey regions in
image (a) around the white shape show the region that is not overlapped for IOUpart. For
image (b) we see that the red region is not overlapping the green region at the edges, even
though the center region is relatively aligned.

10



Chapter 3

Improving Homography Estimation

We first replicate a recent model from Shi et al. [35] to determine the efficacy of exist-
ing techniques on our data. We will then describe some contributions that improve the
augmentations and pipeline to increase model accuracy.

3.1 Method

The method used in this section is based on Shi et al. [35]. However, no data or code is
publicly available, so the reproduced method and model itself has been replicated based
on available information from the paper but cannot be assured to be exactly the same.

A two part approach is used to estimate the homography of incoming broadcast feed
frames needed to warp the frames onto the overhead template (and vice-versa). The first
stage is an initial estimator module, which takes the original video frame, and identifies
an estimate of the homography. This estimate is used to warp the overhead template
and produces a warped template. This is fed alongside the original frame as input into
the refinement module. The refinement module produces a homography that corrects the
initial homography estimate, and can be combined with it to produce the final homography
we want. The full pipeline is shown in Figure 3.1.

The initial estimator module is a Resnet18-based regressor that takes in the broadcast
frame as input, and estimates the location of four frame points on the overhead template,
similar to previous works such as Detone et al. [8], Jiang et al. [21], and Shi et al. [35].
The points used are the two bottom corners of the image, and two points 60% of the
way up the image sides. The top portion was avoided to ensure the points were on the

11



Figure 3.1: Full pipeline of the initial estimator + refinement model approach. It consists
of two models: one that estimates an initial homography, and one that refines the estimate.

rink itself, which is usually closer to the bottom of the image for broadcast video, rather
than on the audience. These four points and their estimated new locations can be used to
calculate homography using the direct linear transformation (DLT) [14]. This generates
the homography needed to warp from the frame to the overhead, and the inverse matrix
is used to warp the overhead template to frame view to generate a warped template. This
process can be seen in Figure 3.2.

Figure 3.2: Estimating the location of four points from the initial image in the overhead
view. Once the four points in the overhead frame are obtained, DLT can be used to obtain
the homography needed to perform the warp.
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Figure 3.3: In this case, the overhead template is warped using the result of the ini-
tial estimator module, to produce the warped template seen on the left. The refinement
module takes the warped template and the actual video frame, and tries to calculate the
homography needed to warp between the two using the 4-point approach.

This warped template is concatenated with the video frame and fed into the refinement
model as its input. The refinement model is also a Resnet18-based regressor that estimates
the homography difference between the frame and the warped template. It uses the 4-point
approach as well, although the points used are positioned 25% or 75% of the way across
the image, such that each point is 25% of the way from the two closest edges. An example
is seen in Figure 3.3.

The refinement model has two input branches, similar to the one from Shi et al. [35],
except without the scoring portion. A diagram can be seen in Figure 3.4. The left branch
processes the hockey frame while the right branch processes the warped template. Due
to the lower amount of detail in the warped template, the usual Resnet blocks on the
right branch are replaced by convolutions with fewer parameters. Non-local blocks were
also added to improve the model’s ability to capture long range dependencies [43]. These
blocks are similar to attention as they compare features from all positions using weighted
averaging [43].

The end result of the refinement portion is a refinement homography that corrects the
difference between the initial estimate and the video frame. Thus, we can perform matrix
multiplication using it and the initial estimate homography to obtain a more accurate final
homography.
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Figure 3.4: Diagram of refinement model. It is based on the one created by Shi et al. [35],
with slight differences such as the addition of non-local layers.
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Figure 3.5: An example perturbation used to train the refinement module. The blue
rectangle on the left image shows four original points, while the yellow show the range
of possible perturbations. The right side shows how the perturbation affects the warped
template, with the green representing the original location and the red representing the
warped version after perturbation.

3.1.1 Training Process

For the initial estimator, the model was trained using roughly 4500 broadcast frames from
NHL videos, along with their ground truth homographies. The model was trained for 400
epochs with smooth L1 loss, a batch size of 16, and an AdamW optimizer with an initial
learning rate of 0.0001. A step scheduler was also included, that reduced the learning rate
by 10× at 200 and 300 epochs.

For the refinement model, the training process is more complicated, as our goal was
to teach it to calculate the small homography warps between the warped templates and
the video frame. In order to do so, we use perturbations to generate synthetic warped
templates.

To generate a perturbation homography, we select a rectangle in the image, and shift
each of the four points by a small amount. This can be seen in Figure 3.5, where the
blue rectangle represents the original four points, and the yellow rectangles represent the
ranges to which each point can be perturbed. The original and perturbed sets of points can
be used to generate a perturbation homography. When combined with the frame’s origi-
nal homography via matrix multiplication, this allows us to generate a synthetic warped
template by warping the overhead template.

This process is seen in Figure 3.5 with the red line template representing the synthet-
ically perturbed warped template, and the green lines representing the original frame’s
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Table 3.1: Number of frames and games used for the training, validation, and test data.

Split Number of Frames Number of Games
Training 4501 16
Validation 914 4

Test 756 4

homography. We feed the randomly generated perturbed warped templates (red template
lines in the example) and the input frames during the training, and the model learns to
identify the perturbation warp needed to go from the red line template to the green line
template (which is not seen by the model). Note that in places where the templates overlap,
the example image becomes yellow due to how it is visualized.

The refinement model was trained for 350 epochs with smooth L1 loss, a batch size of
16, and an AdamW optimizer with an initial learning rate of 0.0001. A step scheduler was
also included that reduced the learning rate by x10 at 150 and 250 epochs. Training for
this model and all subsequent models was done using one to two NVIDIA RTX 2080 Ti
GPUs.

3.1.2 Data

The NHL data used here includes frames from 24 different games. The splits are listed in
Figure 3.1.

3.2 Augmentations and Improvements Made

We further improve the model from Shi et al. [35] by making several adjustments during
model training. Increased augmentation such as zoom augmentations helped cover cases
that were rare in the dataset, such as closer camera zooms. This was done during training
by scaling the images randomly by a factor of 1 − 2×, and calculating the corresponding
homography needed to perform that scaling as well. This would allow us to augment the
images while providing the necessary ground truth alteration to match the changes, as the
scaling homography can be matrix multiplied with the ground truth homography.
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Figure 3.6: Examples of copy-paste augmentation. Here, players from other scenes are
added to simulate how rink features could be occluded naturally during hockey videos.
This is used to improve the model’s robustness against occlusion.

Non-local blocks were added to the refinement model, to capture long-ranged depen-
dency information, as described by Wang et al. [43]. These include context information
relating different features across the image, such as relationships between the faceoff circles
and different lines.

We also add copy-paste augmentation to provide a way to improve the model’s robust-
ness against occlusions. This augmentation is based on the work of Ghiasi et al. [12], which
takes portions of other images to augment current images with new objects to segment.
In our case, however, we use this to paste players from other images into current frames
during training. These players provide a natural way to block parts of the rink, and help
improve the model’s robustness against occlusions of rink features by players that occur
naturally throughout a game. Examples can be seen in Figure 3.6.

3.3 Temporal Approach to Pipeline

Another improvement that was investigated was the temporal approach to this pipeline.
Although briefly mentioned in [35], we delve deeper to investigate the effects this method
has on the resulting homography estimates.

The temporal approach of this pipeline involves using the refinement model to calculate
the homography needed to warp successive frames in video. This allows the system to
skip the homography initial estimator, resulting in faster inference. The downside is that
this only works when the video has sufficient fps such that there is only a small amount
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of movement between successive frames. However, 30 fps has been seen to be sufficient
during tests.

A diagram illustrating the overall pipeline can be seen in Figure 3.7.

This approach works because the refinement model is trained to identify small changes
in homography, and successive frames in videos usually only have a small change in per-
spective. However, there needs to be a system to determine if any major break occurs in
the video, such as if the broadcast video changes to a closeup. Thus, the video should be
split beforehand into sections that focus on general gameplay, and avoid commercial breaks
or replays from behind the net/close-ups. This can be done via shot transition detection.
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Figure 3.7: Pipeline demonstrating the temporal method of inference. In this system,
the initial homography estimator is only used in the first frame of the clip, and only the
refinement module is used for later frames. It calculates the warp needed to go between
successive frames in the video.
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3.4 Results

The results using the initial homography estimator and the refinement model can be seen
in Tables 3.2, 3.3 and 3.4. In Table 3.2, we see how the homography and color based
augmentations added improved test accuracy by 0.2-1.4%. These results were acquired
from a single seed, so different seeds may vary the results by a small amount. However,
the overall trends are still valid as runs with slight differences in setup still yielded similar
results.

In Table 3.3, the addition of non-local blocks increased the accuracy due to improve-
ments in capturing long range dependencies, albeit very slightly. The fact that the accura-
cies only increased slightly suggests that the long-range dependencies were either captured
to a sufficient degree beforehand, or were not too relevant.

In Table 3.4 we see that the refinement model is needed to improve the initial estimate
as the initial estimator results can often be off. We also see how copy-paste augmentations
further improved the IoUpart by a small amount.

During some segmentation experiments, the copy-paste augmentation helped improve
the model’s ability to identify small features such as faceoff dots when they were occluded.
An example can be seen in Figure 3.8. Thus, we included it in the final model even though
the accuracy increase was relatively minor, since it improved the model’s robustness against
occlusion.

Examples of the homography estimation results can be seen in Figure 3.9. The middle
row shows examples of cases where the initial estimate was off, but the refinement model
was able to correct the mistake. The bottom row shows a couple of examples where even
the refined model was unable to align some lines correctly.

The temporal approach resulted in roughly the same IoU as the initial estimator +
refinement method. However, it was seen in some cases that it improved estimation results

Table 3.2: Accuracy increases due to added homography and color augmentation on re-
finement model.

Model IoU (part) IoU (whole)
Refined Model (base) 96.9% 86.4%

Refined Model (with augmentation) 97.1% 87.8%
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Figure 3.8: Segmentation model experiments involving copy-paste augmentation. The
bottom row highlights the effect copy-paste augmentation has on the model’s ability to
deal with occlusion. The model trained with copy-paste augmentation was able to segment
the faceoff spot (seen in pink), while the model without the augmentation was affected by
the occlusion.
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Figure 3.9: Examples of homography results. The green lines represent ground truth, the
yellow lines represent the initial estimator result, and the blue lines represent the refined
estimate result. Bottom row shows a couple of cases where lines are still not aligned even
after refinement.
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Table 3.3: Accuracy increases due to non-local blocks.

Model IoU (part) IoU (whole)
Refined Model (no non-local) 97.1% 87.8%
Refined Model (with non-local) 97.2% 87.9%

Table 3.4: Accuracy increases due to copy-paste augmentation on both initial estimator
and refinement model.

Model IoU (Part) IoU (Whole)
Initial Estimator (no copy-paste) 96.0% 86.2%
Initial Estimator (with copy-paste) 96.2% 86.3%
Refined Model (no copy-paste) 97.2% 87.9%
Refined Model (with copy-paste) 97.3% 88.1%

when screen advertising and other screen elements occluded the rink. This is due to skip-
ping the initial estimator, as that model has to estimate a large warp from the overhead
view to the image view. This is thought to be a more difficult problem than what the
refinement model solves, which is calculating a small warp between two similar perspective
images. Thus the initial estimator may not have been robust enough to handle the unex-
pected screen occlusion, whereas the refinement model handled it just fine. An example of
this case is seen in Figure 3.10.

3.5 Conclusion

This chapter shows the results of a model based on [35] trained on our data. It highlights
some improvements that can be made during augmentation to improve robustness against
rarer camera orientations and occlusions. It also demonstrates the benefits of the temporal
method, which can improve speed and provide increased robustness against difficult cases
that the initial estimator is unable to deal with.

Some future research into this field include architecture improvements to produce sim-
ilar results in a smaller model, or with faster inference. As well, efficient smoothing mech-
anisms can also be applied to produce cleaner results during video inference.
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Figure 3.10: Example case where temporal approach improved results. In this case, the
temporal approach managed to warp the scene correctly, even though it was partially
occluded by visual elements (such as advertising or transitions between clips).
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Chapter 4

Rink Agnostic Homography

This chapter describes a method for rink-registration that is agnostic to the type of rink
used, and works in a wide variety of rinks without any additional training data.

Most existing rink registration systems focus on NHL rinks, which have a strict stan-
dardization system [44] [35] [21] [29]. This means that each rink is the same size, with
the same positions for features such as faceoff circles, blue lines, and goal lines. However,
non-NHL rinks also exist. For example, many European rinks follow the International Ice
Hockey Federation (IIHF)/Olympic hockey rink format, which is wider than the NHL stan-
dard [1]. This standardization is not as strict, resulting in varying rink sizes and feature
location changes in different rinks. For example, some arenas in Finland have sizes that
fall between IIHF and NHL sizes [10]. Also, minor leagues and recreational rinks may not
follow standards as strictly, resulting in more differences. Examples of different rinks can
be seen in Figure 4.2.

Models trained on NHL rinks, due to geometric differences, sometimes will not work
during inference on rinks that that have geometry or feature placements different than the
NHL rinks. For example, running the model in Chapter 3 on Olympic data often results in
errors in the warping process. This is due to the system not being designed to work with
other rink types. Examples can be seen in Figure 4.1.

Training on different rink setups using the existing methods would require labelled
ground truth for those rink types, which is time-consuming and expensive to produce.
Furthermore, such data would produce a model that is designed to work on that rink type,
which results in a different model and training data being needed for each rink variation.

Thus, the rink-agnostic pipeline aims to address these problems. It is designed to work
on a wide variety of rinks without the need for additional training data beyond the NHL
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Figure 4.1: Examples of baseline results on non-NHL rinks. Green is ground truth, light
blue is initial estimator, and dark blues is the final estimate. We see that the NHL-specific
model sometimes does not work in these conditions, even after scaling results to match the
template size differences.

data used to train the models in Chapter 3. This is done using domain adaptation and
synthetic data methods to improve the model’s generalization ability on different rinks.
All that is needed during inference is the video frames and an overhead view of the rink
template, which can be generated using various rink dimensions.

We propose a novel pipeline with three main modules (models) to resolve the afore-
mentioned issues. The first model performs semantic segmentation on the input image to
produce a segmentation map. The following two models estimate and refine a homogra-
phy estimation based on the segmentation map and the corresponding rink template. To
address the lack of data for non-NHL rinks, we implement domain adaptation techniques,
use improved augmentations, and use synthetic data to simulate different possible rinks.

To the best of our knowledge, this pipeline is the first system designed for sports rink
registration that is able to work on a variety of rink types, making it rink-agnostic. It is
able to estimate homography for multiple rink types with competitive accuracy, despite
only having labelled data for a single rink type.

4.1 Related Works

The rink-agnostic pipeline consists of modules that perform segmentation and are trained
with domain adaptation. Thus this section will provide a brief overview on those fields.
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Figure 4.2: Examples of different rinks. On top of the differences between rink shape
and feature positioning, there are also differences in color, advertising frequency, and how
faceoff circles were filled. Faceoff circle differences are highlighted using dashed boxes.
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4.1.1 Semantic Segmentation

Semantic segmentation involves classifying each pixel in an image into several provided
categories. With the advent of deep learning, many models were developed to do this for
fields such as autonomous driving and remote sensing.

Long et al. [25] popularized the use of fully convolutional networks (FCNs) for the
purpose of semantic segmentation, which was a major milestone in the development of
deep learning models for semantic segmentation [25]. To obtain the necessary information
to accurately segment the image, Long et al. reinterpret the final fully connected layers
of a CNN as convolutional layers with kernels covering their entire input region [25]. This
results in the model outputting a classification map, which can be used for segmenting
each pixel. Due to the downsampling however, this map is generally smaller than what is
needed, so a form of upsampling is needed to recover the original size. Long et al. interpret
upsampling with factor f as convolving with fractional stride 1/f . This can be done via
backward convolution (also known as deconvolution) with an output stride of f , which
is simple and efficient to implement [25]. The filters used for this deconvolution can be
learned to improve the upsampling results. Skip connections were also included to link
semantic information from previous layers to the output.

Ronneberger et al. [31] designed the U-net model which builds upon the fully convolu-
tional network by setting up a dedicated encoder and decoder structure. In U-net, the x-y
sizes of the feature maps first decrease in the encoder, before expanding in the decoder,
and connections are made between equivalent sized blocks in the encoder and decoder in
order to provide more information during the expansion process [31].

The DeepLab series of models further build upon the U-net structure by adding various
techniques such as Atrous Spatial Pyramid Pooling (ASPP) and image level pooling, to
improve long range and global context information acquisition [4] [5] [6]. DeepLabV3+
in particular, combined benefits of various past models together [6]. The spatial pyramid
pooling in the encoder allows for contextual information to be captured at multiple scales.
The decoder portion helped create accurate segmentation boundaries during the upscaling
process by using skip connections to obtain information from the encoding stages.

Various vision transformer based approaches were also used for semantic segmentation,
taking advantage of the improvements transformers provided to the field of image pro-
cessing. SETR was one the earliest, adapting the Vision Transformer (ViT) by using a
classification ViT as the encoder and using convolutional layers in the decoder to produce
an output map [47].

Further improvements to the ViT encoder were done by Wang et al. in their Pyramid
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Vision Transformer, which naturally introduces a pyramid structure to ViTs for higher
resolution predictions in tasks such as segmentation [42]. Swin Transformers took a differ-
ent approach compared to traditional ViTs by using a hierarchical approach with shifted
windows, to model at different scales and improve complexity when larger images are used
[24].

Segformer also used a hierarchical approach in their encoder to provide multi-scale con-
text information [45]. They also incorporate convolutions during their transformer blocks
to provide implicit position encoding, removing the need for explicit position-encoding
during the embedding stage. This allows for the resolution at test time to differ from the
resolution in training without needing to interpolate position encodings [45].

4.1.2 Domain Adaptation for Semantic Segmentation

Unsupervised domain adaptation (UDA) involves trying to bridge the domain gap caused
by differences between the labelled training data (source domain) and unseen test data
(target domain). UDA tries to mitigate this issue by training on both labelled source data
and some unlabelled target data and using techniques to improve the model’s performance
in the target domain. Techniques such as maximum mean distances [26], adversarial learn-
ing [11], and self-training [41] have been used for deep learning to improve the model’s
ability to bridge the domain gap.

Self-training methods in particular seem to perform well for UDA in the field of semantic
segmentation, with several recent works using it [16] [17]. DAformer by Hoyer et al. use
a teacher-student approach for self-training, where a teacher model is gradually updated
using exponential mean average of the student weights, and is used to produce pseudo-
labels of the target data for the student to train with [16]. Masked Image Consistency
(MIC) uses a similar approach that can be added on top of existing domain adaptation
methods [18]. It involves masking the target images fed into the student model to train
it to learn contextual relations between different components in the target image. The
loss is then computed between the predicted heatmap and a pseudo-label generated by the
teacher model, which has access to the entire image.

The rink-agnostic pipeline takes techniques from this field into account to improve
performance on the unseen target domain of Olympic and other non-NHL rinks, especially
during the segmentation stage of the pipeline.
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4.1.3 Semantic Segmentation and Homography

Some models have used homography to improve the results of semantic segmentation,
especially in cases where the resulting segmentation is expected to follow a structure that
is known beforehand. Examples can include organ semantic segmentation in biology, where
the organ components have a roughly known structure, and this prior can be used to provide
a better segmentation.

Lee et al. [22] develop an Image-and-Spatial Transformer Network (ISTN), which con-
sists of two components: an image transformer network (ITN) that generates a represen-
tation of two input images, and a spatial transformer network (STN) that is trained to
find the affine transform needed to align the resulting feature representations together[20].
Sinclair et al. build upon this work in their Atlas-ISTN by setting the ITN to be a semantic
segmentation network, and using the result of that in an STN to warp an “atlas” template
to a proper orientation [36]. The main goal of the Atlas-ISTN is to develop a semantic
segmentation of the organ that is free of artifacts or noise thanks to the final result being
a warp of the prior template, guided by the initial ITN segmentation [36].

Our pipeline uses a similar approach of performing segmentation before estimating a
warp matrix. However, the main goal is estimating the matrix used to warp the template,
rather than getting the warped segmentation itself. Furthermore, we require a homography
matrix rather than an affine matrix in order to map one plane onto another. We only have
ground truth training data for a single source domain, and use UDA techniques to improve
results on other rink types.

Other sports registration systems have used segmentation to extract feature information
before further analysis [15] [46]. However, none of them do so for the purpose of performing
rink-agnostic homography.

4.2 Methodology

We propose an end-to-end system for rink-agnostic homography estimation. It takes in
video frames and the overhead template of the rink as input, and outputs the homography
needed to warp the template onto the frame. Our pipeline consists of three components:

1. A semantic segmentation model takes in the input video frame and outputs a semantic
segmentation map.
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2. An initial homography estimator takes the segmentation map and the overhead rink
template as input and outputs the homography needed to align the two together.
This homography is then used to warp the overhead template and produce a warped
template estimate.

3. Finally, a refinement model takes the segmentation map and warped templates as
input and produces a refinement homography to adjust the warped template estimate
to be closer to the proper orientation seen in the segmentation map. This process
can be iterated to further improve the homography.

The overall pipeline and how the three components interact with each other can be
seen in Figure 4.3. However, we still have a lack of labelled training data for non-NHL
rinks. To solve this issue, we use domain adaptation, augmentations, and synthetic data
to train each component separately. This helps make the system more rink agnostic and
helps overcome the lack of data for other domains.

The segmentation module is trained via domain adaptation techniques on both labelled
NHL and unlabelled non-NHL data. Augmentations such as logo augmentation are also
added, to simulate differences in appearance between rinks and further improve general-
izability. The other two modules are trained in a semi-supervised manner using synthetic
data, in order to generalize them to different rink types.

4.2.1 Rink Parameterization

The rinks used for synthetic data are developed by randomly altering distances between
different features of the rink. The eight distance parameters are:

1. Distance from the left/right sides of the rink template to goal lines.

2. Radius of corner.

3. Distance from the top/bottom edge of rink to offensive zone faceoff circles.

4. Distance from the goal lines to the offensive zone faceoff circles.

5. Distance from the offensive zone faceoff circles to the blue lines.

6. Distance from the blue line to the center line.

7. Distance from the neutral zone faceoff spots to the blue lines.

8. Distance from the top/bottom edge of rink and center faceoff circle.
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Figure 4.3: Pipeline of the process during test time, showing the three major components.
The inputs to the pipeline are the video frame fed to the segmentation model and the
overhead template fed to the initial estimator. The iteration of the refinement model has
been omitted for clarity.
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Figure 4.4: The eight distance parameters visualized on overhead rink segmentation tem-
plate. The central faceoff circle is in red, the neutral zone faceoff spots are pink, and the
offensive zones’ faceoff circles are in turquoise.

These parameters can be seen in Figure 4.4. These distance parameters, plus the type
of goal crease (semi-circle or cropped semicircle, seen in Figure 4.5), form the basis of rink
generation, and thus each rink can be defined by eight distance parameters and one goal
crease shape parameter. Example rinks can be seen in Figure 4.6.

4.2.2 Semantic Segmentation Module

The semantic segmentation module is designed to identify the various rink features in
broadcast video frames, regardless of the type of rink used. Different rinks such as NHL
and Olympic rinks can have different structures, and there usually isn’t a scaling or direct
linear transformation that can warp the rinks to be the same form. These rinks are seen
in Figure 4.7. However, although the various features such as faceoff circles and blue lines
may differ in size and positioning, they will still exist in all major rinks. This allows them
to be used as classes for semantic segmentation regardless of which rink the image was
taken from.

In order to improve the model’s ability to generalize on all rinks, we used heavy aug-
mentation as well as domain adaptation techniques. On top of general augmentations
such as Gaussian noise, color augmentation, shifts, tilts and zooms, we added copy-paste
augmentation and logo augmentation.
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(a) Semi-circle goal crease
shape

(b) Cropped semi-circle goal
crease shape

Figure 4.5: Two goal crease shapes

Figure 4.6: Examples of randomly generated rinks. The feature types and rough positions
were kept constant, while the sizes, scales, and more precise positioning was varied each
time. Some differences include goal crease shape, wider rinks having more space between
faceoff circles and edges, and the blue lines and goal lines being in shifted locations. For
example, the two bottom rinks are wider than the two top ones, and also have a larger
distance from goal line to the edges of the rink (wider yellow region).
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Figure 4.7: The line and segmentation overhead templates used for NHL (left) and Olympic
(right) rinks. Note that in reality, both rinks are the same lengthwise, and the Olympic
rinks are wider than the NHL rinks. They were both scaled to fit the same template space
for this analysis, while maintaining their length to width ratios.

Augmentations

Copy-paste augmentation is based on the work of Ghiasi et al. [12]. However, their copy-
paste system involved pasting instances from one image onto the other to improve the
instance segmentation of items in different scenarios. In our case, we copy-paste players
from other images to simulate the natural occlusion of rink features. This is used to improve
the model’s ability to segment rink features even when they are occluded.

Logo augmentation is designed to simulate the random advertising and text that may
appear on different rinks. Randomized text, rectangles, and circle fillings are added in
areas with space that may have logos in some rinks. This is done to teach the network to
ignore the effects of such advertising. Examples can be seen in Fig. 4.8.

Domain Adaptation

We also use domain adaptation to improve the model’s performance on Olympic rinks,
where we do not have any ground truth segmentation training data. In particular, we
adopt some methods described in MIC [18], to improve the model’s ability to learn the
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Figure 4.8: Examples of logo augmentation, which sometimes added text, rectangles, and
circle fillings in order to augment the existing dataset further.

context between different components in the target domain. This would allow us to use
unlabelled non-NHL data during our training.

We primarily add the exponential moving average (EMA) teacher-student and input
masking behavior to our pipeline, as described by Hoyer et al. [18]. The EMA teacher-
student approach has been shown to improve results for semi-supervised training [40, 16],
and in domain adaptation self-training. In this case, the target domain of non-NHL rinks
is unlabelled and pseudo-labels generated by the teacher are used instead. So during
training, we have a student model that learns via loss functions, and a teacher model
whose weights are altered over time based on the EMA of the student’s weights over time.
When training on the unlabelled target domain, the teacher has access to the unmasked
image, and produces a pseudo-label.

The student, however, only has access to the masked input and produces a segmentation
mask which is compared against the pseudo-label with a segmentation loss. This loss is
weighted by the confidence weighting of the pseudo-label (as pseudo-labels may not be
precise), and used to update the student model. The teacher’s weights are then updated in
turn via the EMA equation, as seen in equation 4.1, where t denotes timestep, Φ denotes
teacher weights, Θ denotes student weights, and α is a smoothing factor [40]. The usage
of MIC is seen in Figure 4.9.

Φt+1 ← αΦt + (1− α)Θt (4.1)

We used a DeepLabV3+ model [6] from the Segmentation Models PyTorch library[19]
as the segmentation model in this case. We also used focal loss for the segmentation loss
[23], and AdamW optimizer. It was trained for 180 epochs, with a step learning rate
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Figure 4.9: Pipeline of MIC method from Hoyer et al. [18]. It promotes the model to
learn contextual clues as it needs to identify the hidden areas based on information from
other non-hidden areas. The dashed rectangles highlight some areas that the model needs
to correct. These areas were masked.

scheduler than reduced the learning rate by 10× every 70 epochs. Segformer models were
also tested, but did not provide noticeable improvement over the DeepLabV3+ models in
our cases.

4.2.3 Homography Estimator Module

The homography estimator module consists of a Resnet18-based regressor that estimates
the normalized homography matrix, in a similar manner as Zhou and Li [48]. During
the inference time, it takes the segmentation map output of the first module alongside an
overhead template of the rink as input. It then produces an estimate of the homography
needed to warp the overhead template to be aligned with the segmentation map (which
makes it also aligned with the actual input frame if the segmentation map is accurate).

However, during training, we use synthetic data because we only had labelled training
data for NHL rinks. To generalize effectively on all rink setups and sizes, we use synthetic
rink generation to simulate different rink setups. This is done by altering various distances
in the overhead template, such as the distance between faceoff circles and the goal line,
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Figure 4.10: Data generation and training process of the homography estimation mod-
ule. The overhead template and warped template are used as input, and the resulting
homography and warped output template are compared with the ground truth. Note the
normalization and unnormalization of the homography is omitted in this image for clarity.

or the distance between blue lines and the center line. Examples of these can be seen in
Fig. 4.6, and the process was described in Section 4.2.1.

During data generation, we choose from common pre-defined rinks such as NHL or
Olympic rinks, or create our own randomly generated rink to serve as the initial overhead
rink template. This would thus improve its accuracy on a wide variety of rinks, as the
model would be trained on a wide variety of templates.

The next step in data generation involves acquiring a homography to warp the overhead
rink to create a warped template. To do this, we use a ground truth homography matrix
from the NHL dataset, and augment it with slight perturbations, zooms, and flips. The
resulting warped template simulates what a segmentation mask input would look like,
and is used as the synthetic data. This process can be seen in Fig. 4.10. We use ground
truth homographies from the NHL training set to represent the range of homographies that
correspond to broadcast video. The augmentations applied to the homography matrix help
cover this expected range. It also covers potential differences in homography ranges that
may occur when we use different templates, as the rink sizes can differ in those cases.
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During training, the overhead rink template and warped template are fed as input
to the initial homography estimator, which estimates the normalized homography. This
homography is then used to warp the overhead template to produce a warped template
output. This is done using grid-sampling, which preserves the gradient flow and allows the
loss to be propagated back to the estimator model. The normalized homography estimate
is compared with the ground truth homography via smoothed L1-loss, while the warped
template output is compared with the original warped template via L1 loss. This process
can be seen in Fig. 4.10. The model was trained for 180 epochs, with AdamW optimizer
and a step learning rate scheduler than reduced the learning rate by 10× every 75 epochs.

Note that the model only outputs a homography, so it cannot directly produce a copy
of the warped template that was given as input. Thus, it needs to learn the homography
required to warp the overhead template to the warped template input. During test time,
we take the homography estimate and use it for the next module in the pipeline.

4.2.4 Refinement Module

The final module in the pipeline is the refinement model. During test time, its input
consists of the segmentation mask from the first module alongside a warped template
using the homography estimate from the second module. During training however, we
once again leverage the use of synthetic data and semi-supervised learning to improve the
model’s performance on multiple rink types.

For training data generation, we follow a similar scheme as Shi et al. [35], where we take
an existing ground truth homography and image, and augment them before feeding them
into the model for training. This augmentation step involves selecting four random points
in a rectangle on the image and perturbing them by a small amount. The perturbation
amount for x and y is randomly selected from a uniform distribution. The previous and
new positions of these points can then be used to produce a homography matrix, which
is used to warp the image. The warped image and original image are then sent to the
model during training, and it tries to calculate the homography needed to perform this
warping process. In our case however, rather than using the video frame directly, our image
consists of the overhead template warped by an existing ground truth homography. This
homography is augmented before use, and is used to represent examples of rink orientations
as viewed by the camera. This process is visualized in Fig. 4.11.

The refinement model is a Resnet18-based regressor, and uses the four-point approach
to estimate homography, where it estimates the locations of four points from one image in
the image space of the other. These sets of points can then be converted into a refinement
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Figure 4.11: Data generation for refinement. The blue rectangle represents an example
initial four corners, and the yellow rectangle represent the possible perturbations for this
example. The shift in homography can be seen on the right, with green being the original
rink position and red being the perturbed version.

homography via DLT [14], and will represent the warp needed to align the two input
images. An example of pre-refinement inputs and a resulting refinement can be seen in
Fig. 4.12. The model was trained for 180 epochs, with an AdamW optimizer, smooth-L1
loss, and a step learning rate scheduler than reduced the learning rate by 10× every 75
epochs.

During test time, the refinement process can be iterated to further improve the homog-
raphy refinement. The refinement homography can be combined with the initial estimate
to produce a better estimate. This estimate is then used to warp the overhead template to
produce a better warped template, which is fed back as input alongside the segmentation
map. The refinement model performs this warp estimation process repeatedly, improving
the alignment each time. In practice however, the alignment is only improved for the first
few times, as small misalignments may not be aligned properly. Thus, we restrict at test
time the number of iterations to three, as we found not much improvement beyond that.
This process is visualized in Fig. 4.13.

4.3 Results and Discussion

We first present experimental results for each component in the pipeline, and then describe
the results for the overall pipeline.
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Figure 4.12: Example of refinement. The left side shows the two input images overlaid
on each other, and the right side shows the alignment that can occur after the refinement
matrix is calculated.

Figure 4.13: Refinement iteration during testing. The resulting refinement matrix can be
combined with the initial homography estimate to create a better warped template, which
is fed into the refinement model again.
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Table 4.1: Overall Intersection over Union (IOU) results from the validation set of NHL
games. Although the augmentation and domain adaptation (DA) improvements did not
affect the overall numbers much, they produce qualitative improvements on the target
dataset results.

Model Overall IOU
NHL-Only Model 78.3%

Model with Augmentations 78.6%
Model with Augmentations and DA 78.5%

4.3.1 Segmentation Module

The segmentation module was trained to predict 11 different classes of pixels from input
images, including general areas such as background and defensive zones to more specific
features such as center line and goals.

The copy-paste and logo augmentation had a minor effect on the overall results for
the source domain, as seen in Table 4.1. Qualitatively however, these augmentations were
able to improve the model’s ability to identify parts occluded by players. Some features
such as faceoff spots can be occluded completely by players, for example. Therefore,
these augmentations help the model to learn to segment such features even when they are
occluded by people, as the model would be trained on more examples of such cases.

We perform a sanity check by comparing an NHL-only trained model with the domain
adaptation trained model, to ensure the accuracy did not drop on a validation set of NHL
rinks. This can be seen in Table 4.1.

Results on NHL rinks can be seen in Table 4.2. Accuracy for these segmentations are
measured via intersection over union (IOU), a common metric for this type of task. For
the source domain validation set, we can see how the results are good for classes that cover
areas, but have more errors in classes that represent lines or spots. This is partially because
lines and spots are more likely to be obscured by players or the boards at the bottom of
the rink, and any small deviation in prediction can cause a large IOU drop.

The domain adaptation model resulted in higher results on the target domain of non-
NHL rinks, when compared with the NHL-only trained model. It was tested on various
unlabelled target domain data, such as Olympic/European rinks. This shows that even
with heavy augmentation, the changes between NHL and non-NHL rinks can still be quite
large, resulting in a domain gap that needs to be bridged in another way.
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Table 4.2: Intersection over Union (IOU) results for each class for segmentation models
trained on source domain vs both domains. These results are the validation results from a
set of held-out data on other NHL rinks and matches (source domain).

Class Single-Domain Domain Adaptation
Background 97.1% 97.0%
Behind Goal 87.0% 86.2%
Blue lines 45.4% 51.3%

Center Faceoff Circle 95.2% 95.0%
Center Line 62.3% 60.6%

Outer Faceoff Circles 94.4% 94.4%
Outer Faceoff Spots 61.6% 61.0%

Goal Creases 81.8% 81.5%
Neutral Zone 94.9% 94.4%

Inner Faceoff Spots 46.8% 47.2%
Defense Zones 94.8% 94.9%
Overall Average 78.3% 78.5%

Although no labels, and thus no quantitative results, are available, qualitative analysis
can still be done, where the predicted segmentation map is compared with the original
image, to see if the components line up. Examples of this can be seen in Fig. 4.14, using
results on the Olympic and European validation set, which has different Olympic-style
rinks not seen by any model during training. In it, we see in (c) and (d) that the base
segmentation model misclassifies portions of the offensive zones (white) as green (which
represents the neutral zone). However, using the improved segmentation model that in-
corporates our new augmentations and domain adaptation, these errors were fixed, as the
model is trained to work in more varied situations.

The results of the model trained with domain adaptation and our copy-paste and logo
augmentations were noticeably better. In particular, cases of major misclassified regions
and missing regions that were present in the predictions from the base segmentation model
were fixed in the domain adaptation trained model. This system is scalable such that it
can work on full game videos as well as individual frames.
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(a) Input Image 1 (b) Input Image 2

(c) Base Segmentation (d) Base Segmentation

(e) Improved Segmentation (f) Improved Segmentation

Figure 4.14: Examples of Olympic style rink images and corresponding predicted segmen-
tation maps from a baseline model and an improved model with logo augmentation and
DA. Domain adaptation and logo augmentation have improved the generalization capabil-
ities of the model, allowing it to segment this new rink better than the no DA model.
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Table 4.3: Intersection over Union (IOU) results using ground truth homographies from
the validation set of NHL games. Different stages in the pipelines are compared, such as
Initial Estimator Model (IEM), Refinement Model (RM), and Iterative Refinement (IR).
The multi-rink model with iterative refinement achieves similar accuracy as the NHL-Only
pipeline on our data. However, it has the added benefit of working on non-NHL rinks as
well.

Pipeline IOUpart

NHL-Only Baseline IEM 96.0%
Rink-Agnostic IEM 94.4%

NHL-Only Baseline IEM + RM + IR [35] 96.9%
Rink-Agnostic IEM + RM 96.7%

Rink-Agnostic IEM + RM + IR 96.9%

4.3.2 Homography Estimator Module

The homography estimation module is designed to roughly estimate the homography
needed to warp the rink template onto an input image (or vice-versa by inverting the
homography matrix to warp in the opposite direction). To compare homography results
for homography estimation, we use IOUpart, where only the portion of the rink template
that would have been in the image is considered. We use IOUpart because the ground
truth data collected was primarily done with just the visible portion in mind, and thus the
ground truth for IOUwhole may not have been accurate. The image is warped using both the
predicted homography and the ground truth homography, and the resulting intersection
and union are calculated.

As with the semantic segmentation model, we compared a model trained solely on the
source domain NHL rink with another model trained on multiple rink types and randomly
generated rinks. This helps determine the viability of a rink-agnostic homography estima-
tor. The source-domain trained initial estimator model performed 1.6% better than the
multi-rink trained model on the NHL validation dataset, as seen in Table 4.3. However,
the multi-rink trained model is still competitive and has the added benefit of working for
multiple types of rinks, whereas the NHL-only model results sometimes had inaccuracies.
The refinement module, later on, is used to improve the accuracy of the warps.
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4.3.3 Refinement Module

The refinement model is the last component of the pipeline. It is designed to determine
small homography differences between the segmentation mask output of the first model
and the warped template created using the homography estimate of the second model.
The refinement model must accurately calculate the homography needed to align the two
inputs, and is trained on multiple fixed rinks and randomly generated rinks.

The refinement process results on the synthetic data used in validation have an accuracy
of approximately 98% IOUpart.

4.3.4 Overall Pipeline

The results of the overall pipeline were analyzed to determine how well this system works
on both NHL and non-NHL data. We use a model based on Shi et al. [35] as the baseline,
which was replicated because the source code, original model, and data were unavailable
to the public. Using the source domain NHL validation set, the results of our pipeline are
roughly on par with that of the baseline, as seen in Table 4.3.

The visual results for this approach on the NHL validation data can be seen in Fig. 4.15.
As seen in the images, the pipeline can warp the template to be closely aligned to the
markings on the rink.

Adding iterations to refinement improves the accuracy by a small amount as the refine-
ment module can make further adjustments to the estimated homography after applying
the previous refinement to the estimate. We compared single round refinement vs itera-
tive refinement and saw the overall results on the NHL data improved by a small amount
with iterations, as seen in Table 4.4. Further adding iterations to refinement beyond three
iterations did not increase the result by a meaningful amount.

On Olympic data, the resulting warps are usually close, but there are sometimes quali-
tative issues where the warped template is misaligned. One potential cause for this involves
problems during the segmentation stage, where the segmentation maps are not fully accu-
rate. Sometimes, regions such as faceoff circles or the bottom edge of the rink may not be
segmented accurately and can be shifted from their true location, as seen in Fig. 4.16. In
the top right image, the white region (representing the offensive zone) is uneven. Ideally it
should form a curve that matches the bottom of the boards, which hide the bottom part
of the rink from view of the camera. In the bottom right location, the marked faceoff spot
is barely visible. Ideally it should be larger, like the other faceoff spots in the image.
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Figure 4.15: Example results on NHL validation data. Green is ground truth, light blue is
initial homography estimate, and dark blue is the final homography after refinement. Note
that sometimes the green may be covered completely by the blue at points due to how the
results are visualized.

Overall results on two types of non-NHL rinks (Olympic 2014 and Berlin Mercedes-
Benz Arena rink) can be seen in Table 4.5. Here we see that the NHL-only model results
are not as good, even after scaling is provided to make the template closer to the NHL
template. The rink-agnostic model is more robust to arena template changes as it performs
better than the baseline with these non-NHL rinks. It is more robust to rink appearance
differences as well, since the performance of the NHL-model dropped dramatically on the
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Table 4.4: Intersection over Union (IOU) results using ground truth homographies from
the validation set of NHL games. The first and second iterations of the refinement module
have the largest effect, while later iterations do not have much effect. We stop at three
iterations as results do not change much after.

Pipeline With Different Refinement Iterations IOUpart

No Refinement 94.4%
Refinement with 1 Iteration 96.7%
Refinement with 2 Iteration 96.9%
Refinement with 3 Iteration 96.9%

Figure 4.16: Examples of segmentation on Olympic rinks. The left two are examples where
the segmentation is accurate, whereas the right two shows some more obvious defects.
These include missing spots or over/underflowing edges (marked in red boxes).
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Table 4.5: IOUpart results on two non-NHL rinks. The rink-agnostic model outperforms
the NHL-only baseline, especially in the Berlin arena where there are more differences in
rink appearance.

Pipeline Berlin Arena Olympic 2014 Arena
NHL-only Baseline 87.7% 96.2%

Rink-Agnostic Model 96.5% 97.3%

Berlin arena, whereas the rink-agnostic model is not affected much.

Examples of the refinement model predictions can be seen in Fig. 4.17. The left side
shows some examples of accurate rink registration, while the right side shows examples of
misalignments. The top row also has the segmentation overlaid on top, highlighting the
slight issues with the segmentation mentioned before.

Using batch size 64 on a single NVIDIA RTX 2080 Ti GPU, the inference time takes
roughly 90s to estimate the homography per minute of gameplay footage at 30 fps. Further
parallelization via larger batch sizes and more GPUs may improve inference time.

4.4 Conclusion

This chapter presents a novel approach to sports rink registration, by using a three part
pipeline that is generalized to work on multiple rink types, despite only having labelled
data for NHL rinks. The models are able to learn how to process different rink types and
overcome a lack of labelled training data. This is done by using domain adaptation and
augmentation techniques in the segmentation module, along with synthetic data and self-
supervised methods in the homography and refinement modules. By doing this, we do not
need additional labelled training data for other rink types, thus greatly saving annotation
time and effort. This also produces a single model capable of working on multiple rink
types.

Results show that the current pipeline is competitive with results obtained by su-
pervised NHL trained models, while also having the ability to estimate homography for
non-NHL rink types as well, demonstrating great potential. Some improvements in seg-
mentation and handling of segmentation inaccuracies can be made to further improve the
robustness and accuracy of the pipeline.
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Figure 4.17: Example results on Olympic validation data. Light blue is initial homography
estimate, dark blue is the final homography after refinement, and green indicates ground
truth. These cases show that although the alignment can be quite close usually, sometimes
the alignment can still be off even after refinement for the Olympic rinks, likely due to the
difficulty in segmenting these rinks.
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Chapter 5

Rink Generation

In the previous chapter, one of the inputs to the system is the overhead template of the
rink. Normally, the dimensions and feature positions for this can be acquired by a diagram
of the rink, measuring the features on the ice, or from an overhead image of the entire rink.
However, if these options are unavailable, we may need to acquire this information from
video of the arena instead.

This chapter will describe a semi-automated method of estimating the dimensions of
the rink from a series of broadcast video frames showing the rink. These frames need to
be close together in terms of rink orientation and cover over a quarter of the rink when
combined. The method proposed uses segmentation, homography, and image stitching to
produce a rough overhead template. The dimensions of rink features that we need can be
accessed from this rough overhead template.

5.1 Methodology

The process of constructing the overhead template from the images is done in four phases:

1. Segmentation: All frames used for this process are first converted into segmentation
maps.

2. Calculating warp-to-overhead homography: The homography warp needed to go from
an image of the center of the rink to the overhead view is calculated. This forms the
centerpiece of the rough template, and is adjusted such that lines are straight.
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3. Image Stitching - growing the rough overhead template: The homography warps are
calculated between close pairs of images (such as successive frames in video). These
homography matrices are combined with the warp-to-overhead homography from the
previous step to warp each frame to the overhead view.

4. Forming Complete Overhead Template: Dimensions from the rough overhead tem-
plate are calculated, and used to create a full overhead rink with those parameters.

5.1.1 Segmentation

At the start of this process, all frames involved are converted into segmentation maps. This
helps the later phases ignore foreground objects such as players, non-essential features such
as audience, and items such as ads or scores overlaid on the screen. It is also useful as later
steps would need to analyze dimensions and distances of rink features, which are more
easily accessible if the images are converted into segmentation maps.

The model used is the same segmentation model in Chapter 4, and thus has the same
benefits and downsides as the one in that chapter.

5.1.2 Warp to Overhead

First, a “centerpiece” frame is selected, that shows a wide view of the center of the rink. The
centerpiece is then warped to overhead view by a homography estimated from a Resnet-18
based regressor.

This overhead warping regressor is trained on randomly generated rinks to warp them
to the overhead view, by using the 4-point method of homography estimation. This goal
is slightly different from the models in the previous chapter. The previous chapter’s model
had the overhead template known as an input, and thus had some additional information
not present in this case, as our ultimate goal here is to develop the overhead template.
The model in this case is trained to warp centerpieces of random rinks to the overhead
view while the template is unknown. It used synthetic rinks during this process, so that
it would be trained to warp different types of rinks. This warping process is illustrated in
Figure 5.1.

Once the warped centerpiece is known, the average distances from the center to the top
edge, bottom edge, and blue lines are calculated, to generate a straightened “guide” of the
center piece. This is done by calculating the average distances from the center to the blue
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Figure 5.1: Example of warping a “centerpiece” segmentation map to the overhead view

(a) Straightening guide (b) Straightening Process

Figure 5.2: Straightening process to ensure the lines in the centerpiece are vertical. The
right image shows the overlap of the centerpiece and straightening guide, and direct ho-
mography optimization is used to align them together.

lines, along with the distance from the center to the top edge and bottom edge. An exam-
ple of the straightening guide and the straightening process can be seen in Figure 5.2. The
warped centerpiece is then straightened by calculating the homography between the center-
piece and straightening guide using image alignment via direct homography optimization
[39] [2].

5.1.3 Image Stitching

Once we obtain the homography needed to go from centerpiece to overhead, we can now
calculate the warp needed to go from other frames to the centerpiece. This is done via
direct homography optimization, because this is done only once per rink type, making
speed less of a concern. We calculate the homography warp between close pairs of frames,
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Figure 5.3: Example of segmentation, comparison, and homography warp estimation. Once
the homography matrix is calculated between pairs of frames, it is combined with the
overhead warping matrix to warp the new frame onto the overhead.

and then combine these warps together. When used in conjunction with the homography
for warping the centerpiece to overhead, this lets us calculate the homography to go from
each frame to overhead, growing the template as seen in Figure 5.3. The first image
shows the segmentation of the current frame in the series. The second image shows the
previous segmentation in the series overlayed on the current frame. The third image shows
how alignment can be used to warp the current frame onto the previous frame. The last
image shows how this alignment homography can be combined with the warp-to-overhead
homography, in order to grow the rough overhead template. The portion on the right of
the overlap is newly added.
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Figure 5.4: Calculating the distance between faceoff circle and rink top edge on a rough
template. Averages are used to calculate the y-position of the edge (shown as a red dashed
line), and the radius of the faceoff circle (shown as a red dashed circle).

5.1.4 Forming Complete Overhead Template

Now that the rough overhead template is obtained, the parameters needed for rink gen-
eration can be extracted. The parameters and rink generation scheme are the same as
described in section 4.2.1.

In order to calculate the 8 distance parameters, we average distances between features
in the rough template. An example can be seen in Figure 5.4. Here, we wish to calculate
the distance between faceoff circle and the top of rink. The average value of the top edge
pixels in the vicinity are used as the top edge value, represented by the red dashed line.
The average distance to the edge of the rough faceoff circle is used as the radius, with the
estimated circle shown in red. The distance between the two features is then calculated
and represented as a black line between the features in this example.

The rink is supposed to be symmetric both horizontally and vertically, so only a quarter
of the rough rink needs to be visible in order to start estimating distances.
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Figure 5.5: Rink generation on a series of synthetic rinks. The left side are the re-generated
rinks, whereas the right side are the original rinks. Usually the re-generated rink is close
to the original in these cases.

5.2 Results

This system was tested on both synthetic and real rinks. For synthetic rinks, the images
consisted of warped versions of the rink template, bypassing the segmentation stage as the
warped rink templates are already segmented. When the system is run in this case, the
results are generally good, as the system can re-generate the original rinks used, as seen
in Figure 5.5.

When tested on real rinks, the results were mixed, depending on the quality of the seg-
mentation and image stitching. Issues in segmentation can cause the homography direct
optimization to be off slightly, causing errors during image stitching. An example of recon-
struction from a series of frames of real rinks can be seen in Figure 5.6. The Olympic 2014
rink reconstructed version seems to have calculated the distance between faceoff circles and
top of edge to be smaller than the true value. This results in the turquoise faceoff circles
being closer to the edge compared to the true location. For the NHL rink, the horizontal
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(a) Olympic 2014 (b) NHL

Figure 5.6: Reconstruction of two rinks. Rough templates are shown above, and a com-
parison of the reconstructed version vs the ground truth are seen below.

location of various features seems to be closer to the middle compared to the true location,
resulting in faceoff circles and blue lines being shifted closer to the center than the true
values. Nevertheless, these results are promising, and will improve if the segmentation and
alignment issues are reduced.

5.3 Conclusion

Rink generation from a series of frames may be needed in cases where the rink template
is unavailable. The rink template provides the fixed reference template that broadcast
video frames are warped onto, making it an important part of rink registration. Issues
with the template also have negative effects when trying to align it with rink features
during homography estimation. Thus, it is important to have a template available that is
accurate. This rink generation method provides a way to estimate rink parameters and is a
novel way to generate a rink template from select broadcast frames. It is able to re-create
synthetic rinks, and provides a suitable estimate for real rinks as long as the segmentation
is clean.

Issues to be addressed mostly involve improving the segmentation model to be more
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robust to different rink types. Replacing the direct homography estimation during the
image stitching portion with a homography warp estimator deep learning model could also
improve robustness against segmentation inaccuracies, but may not be as accurate in clean
cases. Ideally, the best case is still obtaining the rink parameters directly, such as from a
diagram or image of the overhead rink.
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Chapter 6

Conclusion

Rink localization is an important aspect of hockey analytics, as it allows for all video
frames to be warped onto the same reference template. In conjunction with player track-
ing, it allows for the location of everything in the video to be identified. This enables
further analysis such as velocity calculations, direction of movement, and scoring and pass-
ing opportunities. With this information and further analysis, teams can make better
informed decisions during hiring and improve player performance, which is all vital in such
a competitive sport.

This thesis presents various improvements made for automatic rink localization from
video. First, robustness improvements were implemented on an existing homography esti-
mation method, and a temporal setup was also tested using those models.

Then, a novel rink-agnostic setup was developed, with the goal of providing homography
estimation for all rinks as long as the template was available, regardless of rink type or
appearance. This system would work without the need for additional ground truth training
data for other rink types and does not need any additional rink-specific training for non-
NHL rinks. This was achieved thanks to the use of domain adaptation, augmentations,
synthetic data, and self-supervised learning.

Finally, a novel rink generator was proposed, in order to estimate the rink template
in cases where it is unavailable. All three systems rely on broadcast video information,
which is readily available for rinks without the need to install additional technology. This
reduces the time and cost associated with the analysis, making it more equitable and more
available to smaller groups. With the robust rink registration models described in this
thesis, location information can be more readily obtained in a wide variety of matches and
rinks. This allows for further analysis to be done, even on non-NHL rinks.
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6.1 Directions for Future Research

Further research can be made to improve the accuracy of the models used in these systems.
For example, the rink-agnostic homography estimator and the rink generator both rely
on segmentation, so improving its robustness would allow for more accurate estimations,
especially on rinks with differing appearance to standard NHL rinks. This may be done
by testing new state-of-the-art domain adaptation techniques, to help train this model on
more varied rinks.

Smoothing techniques and additional temporal information can also be applied to the
homography estimation systems developed in this thesis. This would take advantage of
the fact that the input is video, and can help reduce the effect of singular “bad” frames
with blurs, motion, or other imperfections.

Improved image stitching can also be used for the rink generator. This can help make
the rough rink generation step more robust, as currently it is susceptible to issues with
segmentation. By having a more robust image stitching system, it may be possible to
ignore some minor segmentation issues.
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