Subject-Specific Assistive Control of
a Stroke Rehabilitation Robot

by

Jason Hunter

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Applied Science
in
Systems Design Engineering

Waterloo, Ontario, Canada, 2023

(©) Jason Hunter 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Abstract

The branch of medicine known as rehabilitation involves an injured patient employ-
ing repetitive practices under the supervision of a physiotherapist in an effort to help
the patient recover motor control. But during stroke patient rehabilitation, therapists
lack objective measures of the subject’s movement performance unless sensors/markers are
physically placed on the subject’s body, which can often present an inconvenience and lack
of tangible benefit to the subject. Without removing the need for physiotherapists, rehab
robots can assist in improving the patient’s performance during repetitive movements. The
goal of this research is to focus on the symbiosis between the patient and robot such that
the rehabilitation exercise is tailored to each specific patient’s needs; subject-specific as-
sistive control of rehab robotics evaluates the user’s voluntary motion, from which robotic
assistance is then tailored based on the user’s ability or performance.

The end-effector-based robot used in this study is an actuated 2-degree of freedom
(DOF) 4-linkage planar parallelogram manipulator. To measure the user’s movement, an
inverse dynamic model of their upper arm as a planar 2-DOF linkage was used to estimate
the user’s shoulder and elbow joint torques, using real-time kinematic data. To obtain
this real-time kinematic data without physically placing sensors/markers on the user, a
system of two equations (which defined the user’s planar arm model in terms of their
shoulder and elbow joint angles) was solved in real-time, assuming the user’s shoulder
joint centre didn’t move in the horizontal plane. This joint angle estimation method was
experimentally validated against the gold standard of a digital goniometer on a healthy
subject, and further validated against pre-trained pose estimation models. The equation
solver achieved a root mean squared error (RMSE) of 0.66 degrees with respect to 10 frames
of goniometer measurements, and an RMSE of 0.84 degrees with respect to a pre-trained
computer vision pose estimation model used on the same 10 pose instances.

To measure each specific user’s positional and directional performance in following a
desired trajectory, the robot was equipped with a force sensor on the end-effector. The
directional performance was then used to implement a subject-specific adaptive control
approach. The idea was that if the resultant force direction of the user and the desired
resultant direction of the end-effector were within a small arbitrary threshold angle, then
the level of assistive torque applied by the robot would decrease. This scheme would
not only help promote human engagement but also maybe provide an indirect means of
measuring the patient’s motor control recovery because this would indicate the degree to
which the patient was improving their motor control. Future experiments will be conducted
on post-stroke patients at a local hospital, to evaluate the effectiveness of this control
scheme.

111

Different machine learning control strategies were also explored to try to remove the
requirement of finding an accurate physics-based model of the rehab robot, given that the
input data (i.e., trajectory parameters) and output (i.e., robot joint torque) data of the
multibody system used to represent its dynamics, could reliably be measured from pre-
vious trials by mounted sensors. The effectiveness of model-based control of a dynamic
multibody system is reliant upon the accuracy of a model of the actual system. Feed-
forward Computed-Torque control (CT), in particular, is only applicable when a perfect
(or accurate enough) model of the dynamic system is available. Otherwise, as the mis-
match between the model of the system and the real dynamics increases, an outer-loop
feedback term (e.g., proportional-integral-derivative (PID) control) becomes increasingly
crucial to correct for this increasing error. The three machine learning architectures that
were implemented using MATLAB’s neural network toolbox included a Deep Lagragian
Network (DeLaN), a Feed-forward Neural Network (FNN), and a Recurrent Neural Net-
work (RNN). None of these models produced promising results when deployed as part of
a C'T PID controller tested on the robot with no human using the robot.

An EMG-based human-robot interaction model between the rehab robot and a subject
user was then introduced since it was hypothesized that a subject’s muscle activations
(bicep brachii, tricep brachii, and deltoid) measured via SEMGs could map to the elbow
and shoulder joint torques exerted by the subject. A traditional way to convert nor-
malized EMG signals into the appropriate muscle joint torques is to use a biomechanical
muscle model, such as the three-component Hill model. However, including a general
muscle model within a multibody model introduces various drawbacks including muscle
redundancy, complex musculoskeletal geometry such as wrapping pathways, difficult-to-fit
parameters for each muscle, and parameter sensitivity. One method to potentially allevi-
ate the complex muscle geometry, redundancy, and interpretation of EMG signals within
a control framework is a machine learning model (i.e., neural network) trained by experi-
mental data. However, many neural network architecture configurations were not able to
achieve acceptable results on the testing data trial when trained on the training data set.
Experimental results showed that using muscle activations as an indicator for predicting
the subject’s joint torques to eventually replace the force sensor, was deemed not reliable.

v

Acknowledgements

I would like to thank my supervisor, Prof. John McPhee, for his support throughout
my Master’s degree. I would also like to thank my committee members for their advice
and support in crafting this thesis. Finally, I would like to thank all members of the

Motion Research Group for their help and advice. Being a part of this team was a unique
experience.

Dedication

This thesis is dedicated to my family.

vi

Table of Contents

Author’s Declaration
Abstract
Acknowledgements
Dedication

List of Figures

List of Tables

1 Introduction

1.1 Motivation and Thesis Goals

1.2 Thesis Organization

2 Background and Literature Review

2.1 OVErVIEW . . . o o o
2.2 Stroke Rehabilitation Robotics
2.3 Planar Rehabilitation Robot Control

2.4 Pose Estimation

2.4.1 Traditional Pose Estimation Methods

vii

ii

iii

vi

xi

XV

[\

S D kW W W

2.4.2 Deep Learningo

2.5 Machine Learning Control Strategies,
2.5.1 Feed-forward Neural Network (FENN)
2.5.2 Recurrent Neural Network (RNN)
2.5.3 Deep Lagrangian Network (DeLaN)

2.6 SUMMATY e

Performance-Based Assistive Control

3.1 Introduction
3.2 Rehabilitation Robot oo
3.2.1 Hardware
3.2.2 Software
3.2.3 Kinematics
3.24 Dynamics
3.3 2D Human Arm Model
3.3.1 Kinematics
3.3.2 Dynamics
3.4 Physical Human-Robot Interaction Model (Contact Force)
3.5 Performance-Based Control Scheme
3.6 Experimental Results on a Healthy Subject
3.6.1 Subject-Specific Trajectory Performance Results
3.6.2 Pose Estimation Results
3.6.3 Human Joint Torque Results
3.7 Conclusion

Using Machine Learning for Computed-Torque PID Control
4.1 Chapter Overview
4.2 Computed-Torque PID Control,

© © o0 oo

28

32
32
32
33
33
34
36
37
37
39
40
43
45
45
49
50
o1

4.3
4.4

4.5

Training Data
Simulations Results oo oo
4.4.1 Deep Lagrangian Network (DeLaN)
4.4.2 Feed-forward Neural Network (FNN)
4.4.3 Recurrent Neural Network (RNN)

Conclusion

5 EMG-Based Assistive Control

0.1
5.2

2.3

Control Scheme Overview
Experiments
5.2.1 Procedure
522 Results.

Conclusion s,

6 Conclusion and Future Work

6.1
6.2

Thesis Summary

Recommendations and Future Work

References

APPENDICES

A Graphical User Interface

Al
A2
A3
A4
A5

Instructions Tab L
Registration Tab
Robot Functionality Buttons
Human Joint Angles Tab
Parameters Tab oo

A.5.1 Pose Estimation Using Camera

X

65
65
66
67
68
70

71
71
72

74

79

A.5.2 Pose Estimation Without Camera

A.6 Human Joint Torques Tab

A.7 Trajectory Performance Tab

A.8 End-Effector Force Tab

List of Figures

2.1
2.2
2.3

24

2.5

2.6
2.7
2.8
2.9

2.10
2.11
2.12
2.13
2.14
2.15

The simulated 2-DOF robot drawing the cosine trajectories [28]. 12
A deep Lagrangian network’s training process [28]. 13

The torque required to generate the characters 'a’, ’d” and ’e” in black. Using
these samples DeLLaN was trained offline and outputted the red trajectory
(28], . 13

The median performance of DeLaN, the feed-forward neural network, and
the analytic baselines. The shaded areas highlight the 5* and the 95"
percentile [28]. 15

2-DOF sliding inverted pendulum model with 2 absolute coordinates. Note
that f(t) is meant to represent the dynamic friction force between the foot

and the ground. Lo 16
ANN model configuration. 0oL 17
RNN model configuration. L. 18
DeLaN model configuration. 19
2-DOF sliding inverted pendulum model with all 6 absolute coordinate def-

INILIONS. o oo 20
MapleSim model of the sliding inverted pendulum.. 25
Horizontal displacement of the base. 26
DeLaN’s Performance Against ADAMS. 27
FNN/ANN’s Performance Against ADAMS. 28
RNN’s Performance Against ADAMS. 29
Deep Learning Model’s Performance Against ADAMS vs. Number of Train-

ing Samples. 29

X1

2.16

Mass Torque Components Predicted by DelLaN Against Ground Truth Values. 30

2.17 Coriolis/Centripetal Torque Components Predicted by DeLaN Against Ground

2.18

3.1
3.2

3.3

3.4
3.5
3.6
3.7

3.8
3.9

3.10

3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6

Truth Values. 30
Gravitational and Conservative Torque Components Predicted by DeLaN

Against Ground Truth Values. 31
Stroke rehabilitation robot (top view). 0oL 33
Stroke rehabilitation robot (top view) with the coordinate system location

and end-effector position displayed. 35
Planar human arm model (top view) with the coordinate system (shoulder

joint location), link lengths, joint angles, and hand position displayed. . . . 38
Pose estimate example.o Lo oL 43
Snapshot of table 4.1 from Winter (2009) [50]. 44
Subject-specific performance-based control scheme. 44

Trajectory performance of the healthy subject, including the 2D positional
performance and directional performance. 46

The local-global force relation [19]. 47

Time series of the applied force by the user on the end-effector in both the
x- and y-directions. Lo 48

Planar human arm model (top view) with the ISB standard coordinate sys-
tem (shoulder joint location), link lengths, joint angles, and hand position
displayed. 50

Time series of the shoulder and elbow joint angles of the healthy subject. . 51
Time series of the shoulder and elbow joint torques of the healthy subject. 52

Computed-Torque PID block diagram. 55
First reference trajectory. oL 56
Second reference trajectory.o o7
Third reference trajectory.o L 58
Joint 1: Mass Torque + Coriolis Torque. 59
Joint 2: Mass Torque + Coriolis Torque. 60

xii

4.7 FNN performance on the first trajectory, when trained on the first trajectory
and the output set as the total applied robot torques minus the Mass and
Coriolis torques.

4.8 FNN prediction performance on the second trajectory, when trained on the
first trajectory and the output set as the total applied robot torques minus
the Mass and Coriolis torques.

4.9 FNN prediction performance on the third trajectory, when trained on the
first trajectory and the output set as the total applied robot torques minus
the Mass and Coriolis torques.

4.10 FNN performance on the first trajectory, when trained on the first trajectory
and the output set as the total applied robot torques.

4.11 FNN prediction performance on the second trajectory, when trained on the
first trajectory and the output set as the total applied robot torques.

4.12 FNN prediction performance on the third trajectory, when trained on the
first trajectory and the output set as the total applied robot torques.

5.1 Elbow Torque vs. Muscle Activations.
5.2 Shoulder Torque vs. Muscle Activations.

A.1 GUI tab showing the instructions for the patient and therapist to follow.
A.2 GUI tab showing the registration fields to be filled out by the patient. . . .

A.3 Push buttons that control the functionality of the robot being driven by a
Simulink control model. oo

A.4 Human joint angles tab, which shows the time series of the joint angles and
the corresponding range of motion.o

A.5 Video Tab of the Recording GUIL.
A.6 Parameters tab using a camera.
A.7 Parameters tab using no camera.

A.8 Human joint torques tab, which shows the time series of the joint torques
and the corresponding range of torques exerted by the patient.

A.9 Trajectory performance tab, which shows both the positional and directional
performance of the user during their trial.

xlil

64

64

69
69

84
85

A.10 Force performance tab, which shows the time series of the 2D force exerted
by the patient on the end-effector and the corresponding range of forces. . 92

X1v

List of Tables

2.1
2.2

3.1
3.2
3.3
3.4

Performance of each Deep Learning Model Against ADAMS for 65 = 5 rad /s. 26

Tracking performance of each deep learning model for 0y =5 rad/s vs. the

original generated data.. Lo oo 28
Stroke rehabilitation robot hardware specifications. 34
Link lengths. oo 34
Link masses, moments of inertia, and centres of gravity (CG). 36
Human joint angle validation results. 42

XV

Chapter 1

Introduction

New cases of stroke incidents have unfortunately become increasingly common occurrences,
especially among the higher-age populations [39]. Research into rehabilitation robotics,
however, has fortunately grown extensively and the number of these rehabilitation robots
on the market has dramatically grown. Robotic rehabilitation therapy can deliver either
high-dosage or high-intensity training, making it useful for patients with motor disorders
caused by stroke. Robotic devices used for human motor rehabilitation include either
end-effector or exoskeleton types; this thesis focuses on an end-effector-based robot.

1.1 Motivation and Thesis Goals

This thesis introduces a novel control scheme to enable more subject-specific adaptability
and examines the role that machine learning can play in identifying a robot’s unknown
dynamic model for model-based control. In an effort to make the control scheme subject-
specific and adaptive, the goal for this robot will be to adjust its joint torque contribution in
accordance with the user’s performance. Performance metrics will include the deviations
from the desired trajectory to measure the user’s positional accuracy, and the subject’s
directional performance, which is a function of the user’s force exertion on the robot’s
end-effector where a force sensor is mounted.

The effectiveness of model-based control of a dynamic multibody system is reliant upon
the accuracy of a model of the actual system. Computed-Torque feed-forward control, in
particular, is only applicable when a perfect (or accurate enough) model of the dynamic
system is available. Otherwise, as the mismatch between the model of the system and the

real dynamics increases, an outer-loop feedback term (e.g., proportional-integral-derivative
(PID) control) becomes increasingly crucial to correct for this increasing error. Different
machine learning control strategies will be explored to try to remove the requirement of
analytically finding an accurate model of a dynamic system, given that the input and output
data of the multibody system used to represent its dynamics, can be reliably measured
from previous trials using mounted sensors. The robot was also intended to be used for
experiments on post-stroke patients, but COVID and other reasons prevented us from
testing on post-stroke patients.

1.2 Thesis Organization

e Chapter 1 states the research motivations and goals. It then presents the thesis
organization.

e Chapter 2 provides the background of this thesis. A detailed review of rehabilitation
robotics is presented and the challenges and control strategies are discussed. Sec-
tions are also dedicated to the computer vision application of pose estimation and
machine learning control strategies, both of which serve as background information
for chapters 3 and 4, respectively.

e Chapter 3 introduces the subject-specific performance-based control by first intro-
ducing the rehabilitation robot including its hardware, software, kinematics, and
dynamics. Then, a 2D human arm model is introduced including its kinematics
and dynamics. The physical interaction model between the robot and the human
is also discussed. A novel subject-specific performance-based control scheme is then
introduced and used in an experiment on a healthy subject.

e Chapter 4 discusses the role of machine learning in robot control, and explores
three machine learning control strategies: a Deep Lagrangian Network (DeLaN),
a Feed-forward Neural Network (FNN), and a Recurrent Neural Network (RNN), to
be used to identify the robot’s dynamic model in a model-based computed-torque
proportional-integral-derivative (PID) controller.

e Chapter 5 introduces the concept of subject-specific active-based control using surface
electromyography (sEMG) to predict a subject’s joint torques, while using an end-
effector-based rehab robot that is not equipped with a force sensor.

e Chapter 6 summarizes this research. The limitations and recommended future work
of this project are also discussed.

Chapter 2

Background and Literature Review

2.1 Overview

In this chapter, a literature review is conducted into all of the relevant fields of study that
are used in this thesis. Furthermore, the technical foundation of these concepts, which is
later referenced in the subsequent chapters, is outlined.

2.2 Stroke Rehabilitation Robotics

According to the Centers for Disease Control and Prevention (CDC), “a stroke, sometimes
called a brain attack, occurs when something blocks the blood supply to a part of the
brain or when a blood vessel in the brain bursts” [12]. When this occurs, the muscles in
the arms, legs, hands and feet, are all affected as a result of damage to the central nervous
system [21]. In particular, in the days following a stroke episode, the muscles become limp
and may feel very heavy (i.e., flaccid or low tone). In the weeks or months after a stroke,
the muscles may shorten and become very tight, making them more difficult to move. This
is called spasticity (high-tone). These changes in muscle tone can lead to stiff, swollen,
and even painful joints. Post-stroke rehabilitation tries to mitigate these effects of muscle
tone changes that occur during post-stroke. But one of the most efficient and practical
methods of rehabilitating post-stroke patients’ motor recovery is by utilizing robotics.

The branch of medicine known as rehabilitation involves an injured patient employing
daily repetitive practices under the supervision of a physiotherapist. Without removing

the need for physiotherapists, the robot essentially operates as a means of assistance in
improving the performance of repetitive movements. The choice of movements, in coor-
dination with the robotic assistance, requires the physiotherapist’s clinical insight and is
thus selected specifically for each patient.

In efforts to automate the rehabilitation process for post-stroke patients, while also sav-
ing considerable time and effort on the part of the physiotherapist, robots have historically
been proven to be very effective [11, 38, 3, 48, 27]. Many of these rehabilitation robots are
also often equipped with force/torque sensors and encoders. The data obtained by these
mounted sensors can then be utilized to quantitatively analyze the patient’s progress over
multiple practice trials.

Utilizing rehabilitation robotics in a clinical setting also requires the development of a
user interface. Rehabilitation practices often include repetitive trials which are not always
compelling to stick to due to boredom after prolonged use. The practices promoted by
these robots also have to be more engaging for the patients, while also useful from the
perspective of the therapist. Hence, developing appropriate user interfaces for these robots
in consultation with therapists is paramount in order to maximize the use of rehabilitation
robots until a patient’s full recovery.

2.3 Planar Rehabilitation Robot Control

The categorization of control strategies for rehabilitation robotics can be divided into
High-Level and Low-Level. High-level control strategies are “explicitly designed to
provoke motor plasticity”. One example of high-level control is force-field control [20,

, 36]. On the other hand, low-level strategies strive to “control the force, position,
impedance, or admittance factors of high-level control strategies”. Much of the work
done in [19] have already addressed the performance of various low-level control strategies
including Sliding Mode Control (SMC), Linear Quadratic Regulator (LQR) control, and
Nonlinear Model Predictive Control (NMPC). The high-level control strategy that is of
most particular interest in this thesis is subject-specific assistive control.

It is worthwhile to note, however, that the level of assistance provided by the robot to
guide the subject in moving along a desired trajectory greatly affects the robot’s impact on
patient rehabilitation. Too little assistance may cause frustration and decrease motivation,
whereas too much assistance decreases active output and encourages slacking. This is
often referred to as challenge point theory, which was created by Mark A. Guadagnoli
and Timothy D. Lee. In accordance with the divisions of subject-specific assistive control

highlighted in [29, 31], the two divisions of subject-specific assistive control that are of
utmost interest in this thesis are active-based and performance-based adaptive controllers.

Active-Based Control

Active-based adaptive control methods primarily employ surface Electromyography (SEMG)
sensors/electrodes to estimate a specific subject’s motion intention. For instance, EMG
data can be mapped back to muscle activation to then be used to determine the intended
contribution of a particular muscle or a group of muscles. These control methods essentially
use these proportional EMG signals to determine/trigger the robot’s level of assistance for
each specific patient’s motor needs. In other words, they enable the robot to provide the
patient with “active” training. According to [22], active training involves the robot pro-
viding limited assistance according to the participant’s motion intention. This promotes
subject-specific motor relearning through the participant adjusting adaptively in response
to the robot’s corrective forces.

The interactive model by which a rehabilitation robot measures a user’s “intention”
often concerns the cognitive Human-Robot Interaction (cHRI) model [11]. The cHRI
model fundamentally concerns mental models (e.g., the central nervous system) and the
communication channels between humans and robots. Hence, the human intent is detected
before the user actually moves, and the necessary torque, velocity, and angle for the human
joints may be predicted [13]. Extensive research has already been widely conducted on
EMG-based active control when a subject is using a planar “end-effector” robot for the
upper extremity [0, 8, 47].

For context, EMG signals record muscle activation from the muscles underlying the
subject’s skin resulting from brain impulses sent by the central nervous system (CNS).
It delivers key movement intentions approximately 50-100 milliseconds before the user’s
action and then detects human muscular strength while the patient is in motion [23].
However, the intricacy of the musculoskeletal system between patients, the variations in
body composition between patients, and the possibility of improperly placing electrodes
that in turn cause skin irritation, all contribute to some of the limitations and drawbacks
of using EMG. It is also worthwhile to note that EMG tends to not be as well-indicative
of post-stroke patients’ movement intentions as it can be for predicting healthy patients’
intentions [0, 8]. This is because the improper placement of electrodes on post-stroke
patients who are often overweight is much more prevalent, post-stroke patients often have
higher movement variability when using a robotic device due to the inter-subject variability
in neuromuscular system damage, and there exists a higher intra-subject variability of

muscle activation patterns amongst post-stroke patients, all of which makes it more difficult
for robot controllers to accurately predict the post-stroke user’s motion intention.

Performance-Based Control

Performance-based adaptive controllers use the performance data of the patient, which are
often obtained using sensors, to adapt the assistance (force, impedance parameters, etc.)
or to reset the practice (trajectory, time, admittance parameters, etc.). These types of
controllers help to provide what is often referred to as “assist-as-needed training” and thus
enable these controllers to be subject-specific based on the specific subject’s performance.

The interactive model by which a rehabilitation robot conducts performance-based
adaptive control is the physical Human-Robot Interaction (pHRI) model [11]. The pHRI
model defines the scenario of humans and robots sharing the same workspace, coming
in touch with each other, exchanging forces, and cooperating in doing actions on the
environment.

2.4 Pose Estimation

Using pose estimation can allow for the estimation of the subject’s movement in real-time
when they are using the rehab robot. Pose estimation is a fundamental task in computer
vision and artificial intelligence (AI) that involves detecting, associating, and tracking
semantic key points, such that the position and orientation of human body parts in images
or videos are indicated [35]. These semantic key points of the human body are more
commonly referred to as human joints. This method of human joint detection is preferable
amongst subjects over marker-based motion capture approaches because markerless pose
estimation is non-invasive and inexpensive. Moreover, existing state-of-the-art models
are experimentally accurate enough to be applied to the application of tracking post-
stroke patients using a rehabilitation robot. A detailed review of the key chronological
advancements in pose estimation methods is highlighted in the following subsections.

2.4.1 Traditional Pose Estimation Methods

The earliest developed pose estimation methods utilized either parts-based models or pixel-
based approaches. Ramanan [10], for example, applied an edge-based deformable model
to obtain soft estimates of body part positions by defining pixel labels into region types.

Low-level segmentation cues were then learned to build part-specific region models. Later
iterations modified these algorithms by including methods such as grab cuts, foreground
extractors, and Gaussian mixture models [11], with Support Vector Machines (SVMs) and
Histogram of Orientated Gradients (HOGs) descriptors being used as detection methods

[11, 10, 53].

Other early models embraced poselets, which are body parts of one’s pose but are tightly
clustered in both appearance and configuration space. Bourdev et al. [1], for example, used
3D human pose annotations as pose references. Later pose estimation models attempted to
improve upon these methods. For instance, Johnson et al. [25] used a pictorial structure
model (PSM). A PSM models a person as a connected collection of parts such as the
head, torso, and limbs, by using an assortment of linear SVMs to encapsulate these parts
represented by HOG descriptors.

2.4.2 Deep Learning

Pose estimation research then shifted from traditional methods to deep learning when
'DeepPose’ by Toshev et al. [16] was published. DeepPose was based on the premise that
(x,y) coordinates of joints are regressed using a cascade regression of deep neural networks.

In recent years, state-of-the-art pose estimation methods began to use heat maps. Heat
maps were first introduced by Tompson et al. [11], where they tried to solve the regression
problem of joint locations using Gaussian probability. That is, for each coordinate pair,
there exists a 2D Gaussian with a small variance and mean centered at that joint location.
This regression problem is thus visualized by heat maps, where the probability of the
existence of a joint location at a region is intuitively indicated by the colour red, whereas
the probability that there is no joint located at a region would be indicated by the colour
blue.

Heat maps in pose estimation are involved in many deep learning architectures, but they
are most commonly used in CNNs [31]. One of these popular architectures is the stacked
hourglass architecture, which was first introduced by Newell et al. [34]. By its design, the
stacked hourglass network encompasses a CNN with a multi-context attention mechanism
for pose estimation through the use of residual layers. This approach uses convolutional
modules in a bottom-up, top-down configuration resembling hourglasses that are stacked.

Heatmaps, however, intrinsically suffer from quantization error and require excessive
computation to generate and post-process. McNally et al. [30] proposed to model indi-
vidual key points and sets of spatially related key points (i.e., poses) as objects within
a dense single-stage anchor-based detection framework. This method was called KAPAO

7

(pronounced "Ka-Pow”), for Keypoints And Poses As Objects. KAPAO was experimen-
tally found to be faster and more accurate than previous heatmap-based methods, due to
the post-processing.

2.5 Machine Learning Control Strategies

The effectiveness of the model-based control of a dynamic multi-body system is reliant upon
the accuracy of a model of the actual system. Specifically, low-level control strategies such
as LQR, MPC, SMC, and computed-torque PID are, in their formulations, reliant upon
an accurately derived model of a system these controllers are tuned to control. Computed-
Torque PID control is the focus of this section.

Computed-Torque PID control is a method for linearizing and decoupling the robotic
dynamics by using perfect dynamical models of robotic systems in order to control each
joint using other linear control strategies [13]. It is an approach that tries to be anticipatory,
rather than totally reactionary. However, as stated, it is only applicable when a perfect (or
accurate enough) model of the dynamical system is available. Otherwise, as the mismatch
between the model of the system and the real dynamics increases, the outer-loop feedback
PID term becomes increasingly crucial to correct for this increasing error.

Machine learning control strategies can serve to remove the requirement to find an
accurate model of a system, given that the input and output data of the multi-body
system used to represent its dynamics, can be reliably measured from previous trials using
mounted sensors. Three machine learning architectures are explored in further detail in
the following subsections below.

2.5.1 Feed-forward Neural Network (FNN)

A Feed-forward Neural Network (FNN) is a type of artificial neural network where the
connections between nodes do not form a cycle [54]. The desire to learn the dynamics of any
multibody system is inspired by the universal approximation theorem [12, 7]. The universal
approximation theorem for neural networks states that every continuous function that maps
intervals of real numbers to some output interval of real numbers can be approximated
arbitrarily closely by a multi-layer perceptron with just one hidden layer. Hence, given the
fact that kinematic data representing a trial of a moving robot can be measured as input,
and that torque exerted by the joints can be measured as output, an FNN can be trained to

represent the dynamics of any multibody system. In order to train such a network, back-
propagation is most often used [15]. In this algorithm, the network’s predicted output
values are compared with the correct output values, in order to calculate the value of some
predefined error function. By various techniques, the error can then be ”propagated back”
through the network to adjust the weights accordingly.

2.5.2 Recurrent Neural Network (RNN)

A Recurrent Neural Network (RNN) is another type of artificial neural network that is
different from an FNN in the sense that connections between nodes can form a cycle,
allowing output from some nodes to affect subsequent input to the same nodes. This allows
it to exhibit temporal dynamic behavior, process variable-length sequences of inputs, and
thus, potentially exceed the performance of an FNN trained on the same data [9, 1, 2]. In
keeping with the universal approximation theorem, an RNN should be able to be trained
to represent the dynamics of any multibody system.

2.5.3 Deep Lagrangian Network (DeLalN)

Notable results are often achieved by deep learning models that have been trained with
large amounts of data and have developed a suitable generalization capacity to perform
well on data not seen before. In the physical world, engineers tend to prefer to employ
classical modelling techniques to achieve their own notable results because they know these
models ensure physical plausibility, and are thus, guaranteed to generalize to unseen data.
These techniques, however, rely on physical assumptions that require knowledge about the
physical embodiment of a system. Moreover, obtaining the large amounts of data that are
necessary for deep learning models to adequately learn these physically embodied systems
in real time can be very challenging, and often, impractical. Instead, research groups such
as Lutter et. al. [28], have tried to bridge these techniques by developing novel deep
learning models that both directly incorporate physical insight and generalize well beyond
the training samples, while also requiring fewer training samples. This novel model is
known as the “Deep Lagrangian Network” (DeLaN) upon which Lagrangian Mechanics are
enforced through encoding a physics prior differential equation in a deep learning network
topology [1]. This differential equation is the Euler-Lagrange equation, a second-order
ODE, which is identical for all mechanical systems, except for systems with non-linear
dampers and nonholonomic constraints.

DeLaNs are unique in the sense that they’re able to learn the dynamics of any kinematic
structure, including trees and closed loop structures, without requiring any explicit knowl-
edge about the kinematic structure [28]. This is in strong contrast to the Newton-Euler
approaches, where the features are instead specific to the kinematic structure. It must also
be stated that the second-order ODE of the Euler-Lagrange equations is not being explic-
itly solved by the DeLaN, but rather, the DeLLaN only serves to guide the deep learning
model in deducing the system’s equations of motion. Therefore, the ODE is essentially
being generated by the DeLaN.

Within this project, Lagrangian Mechanics was used with generalized coordinates q
that defined a system, and with the generalized forces F that included both conservative
forces and non-conservative forces (e.g., friction), provided that they satisfied D’Alembert’s
principle. The Lagrangian, often denoted by L, is a non-unique function of generalized
coordinates q that fully describes the dynamics of a mechanical system. It’s defined as:

L=T-V (2.1)

Where T is the kinetic energy of the system and V' is the potential energy of the
system. The kinetic energy T is also a function of generalized coordinates q, and is defined
as follows:

T = d () (22)

Where H(q) is the frequently encountered symmetric and positive definite inertia ma-

trix. The purpose of the positive definiteness property of the inertia matrix H(q) is to

ensure that all non-zero velocities result in positive kinetic energies and that the inertia

matrix H(q) is invertible (non-singular) such that forward dynamics can be conducted.

After applying the calculus of variations, the familiar Euler-Lagrange equation with non-
conservative forces can be obtained:

doL oL _ (2.3)

Where T are the generalized forces and torques for each of the i generalized coordinates.
Substituting equation 2.1 for L and g—g = g(q) into equation 2.3 above results in:

H(@G + @ -) (5@ @) +ela) =7 (2.4

10

or

H(a)d +c(q,q) +g(a) =7 (2.5)
where
cla:d) = (@)~ 5 (5o(@"H@)D)) 26)

c(q,q) represents the centripetal and Coriolis forces and g(q) is the gravitational and
all conservative forces. Note from equation 2.4 that ¢(q,q) is in fact a function of H(q).
Most engineering approaches would approximate H(q) and g(q) using measured masses,
lengths, and moments of inertia. Deep learning approaches, on the other hand, would not
learn to approximate H(q) and g(q), but rather, it would ignore the underlying physical
structure and learn the desired joint torques directly from data, essentially as a function
of the generalized coordinates and its derivatives (q, ¢, and q). As stated before, DeLaN
tries to bridge this gap. The means through which it achieves this is by representing
the unknown functions H(q), g(q), and its derivatives as feed-forward neural networks
that only depend on the generalized coordinates q, and not its derivatives, contrary to
conventional deep learning approaches.

To demonstrate the applicability and extrapolation of DeL.aNs, two applications were
undertaken for the purpose of analyzing the performance of DeLLaNs simulated on multi-
body dynamic systems. The first application of DeLLaNs was performed by Lutter: simulat-
ing a 2-DOF robot drawing cosine trajectories (Figure 2.1) and character letter trajectories.
The last application of DeLLaN was performed by this thesis’ author on a simple sliding
inverted pendulum model, for the purpose of training and deploying an original DeLaN ar-
chitecture and evaluating its performance against FNNs and RNNs on a simpler multibody
dynamic system.

2-DOF Robot

Lutter et. al. [28] evaluated the performance of their DeLaN model using the tracking error
on their train and test trajectories and compared the model to an analytic inverse dynamics
model (Recursive Newton-Euler algorithm), a standard feedforward neural network (FNN),
and a PD-Controller. They also strictly limited all DeLLaN model predictions to real-time
and performed the learning online, which means that the training ran in a separate process
on the same machine and solved the optimization problem online starting from random

11

Cos 0
Cos 1

1.0 1

0.0 A

—(0.5 1

—1.0 1

—2.0 A

T T T T

T T
—05 0.0 0.5 1.0 L5 2.0
x [m]

Figure 2.1: The simulated 2-DOF robot drawing the cosine trajectories [28].

initialization. Once a new model became available, the inverse model f ~!in the control loop
was updated. Due to the limitations of the Quarc control software on Simulink, however,
online learning of the stroke robot used in this thesis was not possible, but rather, only
offline learning was possible and performed.

Below in figure 2.2 is Lutter’s [28] real-time control loop using a PD-Controller with a
feed-forward torque 7pp block to compensate the multibody system dynamics and control
the robot’s joint torques 7. The training process essentially reads the joint states and
applies joint torques to the joints in order to learn the system dynamics online starting
from random initialization.

Lutter’s 2-DOF robot was simulated using PyBullet (Coumans and Bai, 2016-2018)
and executed the desired character trajectories. This data set contained 20 single-stroke
characters [19], spatially and temporally re-scaled to comply with the robot kinematics.
Due to the different characters, the desired trajectories contained smooth and sharp turns
and covered a wide variety of different shapes, but were also limited to a small task space

12

:Control Loop :I Training Process |
1 ! [I
1
o I . |
9d, 9d: 9a : Ip_\flterse M?del :: Loss Inverse Model — :
i f~(9.9.4:8) :: LED || fYg.9.4;0) I
: W T T . ________ ___:
I g g g -
! 1
1 1
1 (O)=| PD-Controller L Robot o
I -
: :
I .
i 4.9 :

Figure 2.2: A deep Lagrangian network’s training process [28].

region. Figure 2.3 below shows the ground truth torques of the characters 'a’; ’d’, and
‘e’ in black, the torque ground truth components in black, and the learned decomposition
using their DeLaN model.

T Hig)g c(q.q) &lq) . Offline Testing Error
25 I

o
2
=4
£

Joint 0
Torque [Nm]
Tarqua [Nm]
Tarque [Nm]

Mean Squared Ermar

Mean Squared Error

Jaint 1
Tarque [Nm]

25
03 B Delal
¥
)
d a - d a L] d a e d a e 12 4 6 8 10 12 14 16 18 20

20 W FFNN
(] —
£ 0+ 4
215
g 01] _,__
g é’ Lib 2]
oo 0.5
-1
d a .
0.3
04
E'” E 0.2 S
] E 2
& E
Train Characters

1
d a e d a e 12 4 6 8 10 12 14 16 18 20
0.25
054
5 0.00
(- & —0.25
£ h—
—05 = —0.50 n1 1w
—0.2
—0.75
] —0.4

Figure 2.3: The torque required to generate the characters ’a’, ’d” and ’e’ in black. Using
these samples DeLaN was trained offline and outputted the red trajectory [28].

It is evident from figure 2.3 that given super-imposed torques as target data, DeLaNs
are able to learn and disambiguate the inertial torque contribution H(q)q, the Coriolis
and Centrifugal torque contribution ¢(q,q) and the gravitational and conservative torque
contribution g(q), since the respective curves overlap quite consistently. Hence, a DeLaN
is capable of learning the underlying physical model using the proposed network topol-
ogy trained with standard end-to-end optimization. The rightmost column in figure 2.3
shows the offline mean squared error (MSE) on the test set for the FF-NN/FNN and the

13

DeLaN with respect to different training set sizes. Note also that different training set
sizes correspond to the combination of n random characters (i.e., a training set size of 1
corresponds to training the model on a single character and evaluating the performance on
the remaining 19 characters). Nonetheless, the DeLaN conclusively obtained a lower test
MSE compared to the FF-NN/FNN, and this difference in performance tended to increase
when the training set was reduced. This increasing difference highlights DeLaN’s reduced
sample complexity and its good extrapolation behaviour to unseen samples.

When a DeLaN is learned online starting from random initialization, this difference in
performance between a DeLaN and an FF-NN/FNN is even more apparent. Figure 2.4
below shows the accumulated tracking error per testing character and the testing error av-
eraged over all test characters. The obtained tracking error is comparable to the analytic
model, which in this case contains the simulation parameters and is optimal. The quanti-
tative comparison of the accumulated tracking error shows that a DeLaN is able to obtain
a lower tracking error on all training set sizes compared to an FF-NN/FNN. This good
performance using only a few training characters shows that the DeL.aN characteristically
has a lower sample complexity and a better ability to extrapolate to unseen trajectories
when compared to an FF-NN/FNN.

Sliding Inverted Pendulum

The sliding inverted pendulum was modelled as a 2-DOF multibody system with one
frictionless revolute pivot joint connecting the two masses of the rod and the base, and one
prismatic joint connecting the base to the ground. Absolute coordinates were also used for
both masses (i.e., n = 6). Below in figure 2.5 is the model that was used for the sliding
inverted pendulum model, showing the definitions of two of the six absolute coordinates
([z1,y1, 01, 22, y2, 02]7), representing the two degrees of freedom of the system. The goal
was for the rod to move from —45° to 45°. Note that for the derivation of the equations
of motion for this system, M in the figure below will be referred to as m;, and m will be
referred to as ma.

As a baseline measure of comparison, the inverse dynamics performance of the DeLaN
in computing the driving torque of the sliding inverted pendulum was compared to the
driving torques computed by both a standard feed-forward artificial neural network (ANN)
and a recurrent neural network (RNN). The performance of these deep learning models
was determined based on the torques computed by the proprietary multibody dynamics
simulation software of MSC.ADAMS, which essentially serves as a gold standard for testing
deep learning models. The following measures were then taken in implementing these deep
learning models: the number of parameters for each model was set such that they were

14

Tracking Error

107 4 B FF-NN

i B DelaN
I RNE

I PD-Controller

107 4

10 4

10" 3 .—)\\‘“\w——&-ﬁ_,‘.’,a

101 4

Accumulated Tracking Error

T T T T T T T T T T
1 2 4 6 8 10 12 14 16 18 20
Train Characters

Figure 2.4: The median performance of Del.aN, the feed-forward neural network, and the
analytic baselines. The shaded areas highlight the 5* and the 95" percentile [23].

approximately equal, the maximum number of epochs was set to 100 for training each of
these three models such that a more reliable and valid comparison could be made, and
lastly, the Adam (adaptive moment estimation) optimizer was used in all of the three
models’ parameter optimization training processes as well. In training these models, 5-fold
cross-validation with random shuffling was used such that every training sample had an
equal opportunity to be both trained and tested as part of the validation set and thus,
make these deep learning models more robust to overfitting or selection bias. 101,000
data points were synthetically generated using the constraints of the joints and a constant
rotational driving constraint (i.e., method of appended driving constraints), for different
angular speeds of the rod about the revolute joint. As a result, the total number of training
samples was reserved to be 100,899, while the remaining 101 samples (i.e., one phase cycle),
representing the angular speed of 6, = 5 rad/s for the sliding inverted pendulum, was
reserved for testing the models against ADAMS. The detailed layout of each of these three
deep learning models is detailed in the form of illustrative flowcharts below.

15

x|

Figure 2.5: 2-DOF sliding inverted pendulum model with 2 absolute coordinates. Note
that f(t) is meant to represent the dynamic friction force between the foot and the ground.

According to Nasr et al. [33], the most effective configuration for this multi-layer
model in mapping kinematic signals to joint torque with minimal error is a wide and
shallow formation. Hence, in accordance with their recommended architecture, the ANN
was implemented with only two hidden layers, and the number of neurons in each of the two
hidden layers was set to approximately 4 times the number of inputs (number of inputs=6:
x1, O, and its first and second derivatives), resulting in 24 neurons for each of the two
hidden layers. Moreover, each layer was implemented with an activation function of the
rectified linear unit (ReLU). As a result, the total number of parameters of the network
was computed to be 793. The ANN configuration is depicted below in figure 2.6.

It can be stated that joint motion prediction can be improved by incorporating motion
history. Therefore, it was hypothesized that RNNs might have good accuracy in joint
modeling. Similar to the ANN, a wide and shallow configuration was adopted with two
hidden LSTM layers, with the first LSTM layer having an input shape of 101 (101 time
steps of each stance phase cycle from 0% to 100%) by 6 (number of input features: 1, s,
and its first and second derivatives). This input shape was achieved by simply reshaping the
input data into a 100,899 by 101 (time steps) by 6 matrix, such that each of the 999 stance
phase cycles could be treated as an input to the RNN. Moreover, the number of hidden
units in both of the hidden LSTM layers was set such that the number of parameters of the
RNN closely matched the number of parameters used in the implemented ANN. Hence,
this resulted in 7 hidden units being implemented in the first LSTM layer and 7 hidden

16

| Sequence Input with 1 x 6 Dimension]

1 x & Output Size
v

Dense Layer with 24 neurons
Activation Function: Rectified Linear Unit

Hidden

1 x 24 Qutput Size
Layers l put S

Dense Layer with 24 neurons
Activation Function: Rectified Linear Unit

1 x 24 Dutput Size
1

Output

L —E_ | Dense Layer Regression Output with 1 x 1 Dimension
ayer -

|

T

Figure 2.6: ANN model configuration.

units being implemented in the second LSTM layer of the network topology. The RNN
configuration is depicted below in figure 2.7.

The DelLaN was implemented in accordance with the number of parameters used for the
ANN, which was computed to be 793 using Python’s model summary function. Since the
DeLaN network topology consists of three parallel feed-froward artificial neural networks
representing H(q); ¢(q,q), which is a function of H(q) and H(q); and g(q); the number
of parameters for each of the three models was aimed to be about 265 (793/3). In an
effort to satisfy this, the number of neurons in the first hidden layer was set to 12, while
the number of neurons in the second hidden layer was set to 13, each with an activation
function of the rectified linear unit (ReLU). In terms of inputs to the network, the number
of inputs for this network was set to n = 2, where n is the number of degrees of freedom
of the system. Analogously, the number of outputs of H(q) was set to 2n, the number
of outputs of H(q) was set to 2n, and the number of outputs of g(q) was set to n. The
DeLaN configuration is depicted below in figure 2.8.

In analyzing the sliding inverted pendulum’s model, the first step will be to derive its
equations of motion using the Lagrange formulation. Then, the performance of each of the
three deep learning models will be compared based on the principles of inverse dynamics,

17

Sequence Input with 101 x 6 Dimension

/ L5TM Layer with 7 hidden units
Activation Function: Hyperbolic Tangent
"
— 101 Output Size
La
LSTM Layer with 7 hidden units
\ | Activation Function: Hyperbolic Tangent
101 x 7 Output Size
1
Output [, _ i
Laver _‘L meDistributed Dense Layer Regression Output with 101 x 1 Dimension
Ve - l

Figure 2.7: RNN model configuration.

and see how well their performances compare to the established gold standard of ADAMS.
Following this comparative analysis, the performance of each of the three deep learning
models will be compared again, based on a forward dynamics-driven tracking error metric
of the joint angle 6s.

When deriving the equations of motion of this 2-DOF model, the absolute coordinates
of ¢ = [x1,y1,01,72,y2,05]7 were used, and the figure 2.9 showing the local coordinate
systems of each rigid body was used, with both having the same origin point in the global
coordinate system (Figure 18). Note that xo = x(t) and 6, = 6(t) in figure 2.9 below.

The kinematic constraints of the system were derived based on the equations derived
by Haug [20] for revolute and prismatic joints, and the motion-driving constraint of the
revolute joint. Namely,

T, — X2
Y1 — Yo
{o}=9 wm =0 (2.7)
01
02 —wt

Now, the 5 x 6 Jacobian matrix {¢} , can be easily obtained as follows:

18

[Saquents Input with 1 x 2 Dimension] Soquence Input with 1 x 2 Dimension
i 1 x 2 Output Sire 1x 2 Output Size
'/ { Derie Layer with 12 neurons Dense Layer with 12 paurons |
| | Actvation Function: Rectified Linear Unit | | Actvation Funcion: Recofied Lineas Unit |
Hudden 1x Hidden_J{ Hios l 1x 12 Output Size
Layers Layers | Layers
| Dense Liyer w | Dense Layer with 1
| Acovamon Funenon: Rec Actvation Funciion: Rect ¢ Unit
| o 2
l ix Output Size
o u I il pr-verrpuen S "P%f " | _Dense Layer Regression Dutout with 2 x 1 Dimension |
Layer ¥ =

Figure 2.8: DeLaN model configuration.

—_
@)

{¢},= (2.8)

S OO O -
S O = = O
o= O OO
o O OO |
o O O

_ o O O O

It was from these five constraint equations where the 5 x 6 Jacobian matrix was derived
and then used to synthetically generate 101,000 data points of y1, 01, x2, Y2, and 5. Since
{o} , s a non-square matrix, and thus, non-singular for all ¢; at all time steps, this system
has no singularities. However, it is an unstable system at its upright equilibrium position.
Specifically, it’s at this point in space where there is no torque at the joint angle, but any
perturbation to the system would cause a gravitational torque to act on the pendulum to
make it fall over.

The velocity of the leg m can then be expressed in terms of the global frame coordinates:

19

Figure 2.9: 2-DOF sliding inverted pendulum model with all 6 absolute coordinate defini-
tions.

- A

VUm = l’li + (—92]{7) X

N

<sm(02)% + cos(6)]

)
- (x’l + 9%003(92)) Pt <—92§sm(92)> ; (2.9)

The Lagrangian function then becomes:

1 o, 1. ., 1 . . L 2 L 2 L
L= EMZ‘% + 3 mid? + gm ((331 + 925603(92)> + (—9253271(92))) — mggcos(eg)
(2.10)

In an effort to obtain the Euler-Lagrange equation for each of the 6 generalized coor-
dinates, the Lagrange function L. was inputted into the following function for each of the
6 generalized coordinates ¢;(i = 1,...,6):

d (0L OL 5
dt <8Qi> T 0g @i— jzl/\j (%4); (2.11)

q1 = X1

20

d (OL oL
i (55 o=@ ZA (Ga)jiimn

d) . - L
pr <Mx1 +m (:1:1 + 625005(62)>) —0=f(t)— X\

Simplifying,

My + miy + mgCOS(62>é2 — mgsin(ﬁg)ég =f(t)— M\

(M +m)&, + (mgcos(ﬁg)) 0y — mésin(eg)ég + A= f(t)

2 = U1:
d (OL\ OL °
I e — by .
it (357) = oy =~ SN
O—O: —)\2 —)\3
)\24’)\3 =0
q3 = Oy
d (0L oL
— [— = A (
dt (801) 861 Qel Z ¢q 71,4=3
0—0=—-X)\
/\4 :O
qs = T2:

21

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

&l&

d (0L oL
— [= =Q E 2.22
dt (83’52) Oy 2 A5 ($a);iis (2.22)

0-0=X\ (2.23)
-\ =0 (2.24)
45 = Y2:
d (0L 0L °
=) - = = — A o 2.25
dt (ay2> 8y2 Q?JQ jzl J ((b(I)]z,Z:E) ()
0—-0= X\ (2.26)
=0 (2.27)
Therefore, from equation 2.18,
A3 =0 (2.28)
g6 = 0o
d (0L 8L
— [— = >\ 2.29
L L L
[I 0y +m (xl + 02£003(92)> 5003(02) +m (92—szn(02)) (—gsm(@g))}

[(xl + 925003(92)> 6,2 sin(9,) + m (92%3@71(92)) (92%05(92)) + mgs sm(eg)]

2 2 2
(t) = Xs
(2.30)

22

Simplifying and substituting the equation for the mass moment of inertia of a slender
rod results in:

. d[L . L? . L L
1,05 + me 3'515003(92) + 921 + mzlegasm(%) - mggsin(%) =7(t)— A5 (2.31)

1 . I L .2 L I
ﬁmLQQQ—FmEcos(ﬁg)il—m:tleggsm(ﬁg)quHgZ+mj7192Esm(@g)—mggsm(ﬁg) =T7(t)— X5

(2.32)
1 . L . L
gmL O + mgcos(ﬁg)xl - mggsm(t%) =7(t) — A; (2.33)
A L . L
gmL 0y + mgcos(Gg) ¥ — mg§sm((92) + X5 =7(1) (2.34)
In matrix form,
[m+M 0 0 0 0 m&eos(f)] [_—méégsm(@g)_
0 100 —1 0 i 0
0 100 O 0 01 0
0 010 0 0 iy | T -1
0 000 O 0 Yo 0
m%cos(eg) 00 0_ 0 m_%Q] 0y | —mgZsin(6s) | (2.35)
10 000, £(t)
0 1 100} 0
L0 0010 AQ 10
1.0 000 f1*) 10
0 100 0f |} 0
(0 0 00 1] V7 7(t)

Reducing the 6 ODEs above to a minimal set of forward dynamics equations in terms
of the two degrees of freedom defined by z; and 6, results in:

ety i) () [Crbinton| =] e

23

In order to synthetically generate the data samples for the generalized coordinates ¢; =
(21, Y1, 01, T2, Y2, 02]7, the method of appended driving constraints requires the matrices of
—{¢}; and {v(q,q,t)}. Below are these derived matrices:

0
0

—{o}=]0 (2.37)
0

{v(@.¢,1)} = = ({o}e{d}) {d} — 2{d}a{d} — {}u
= —({otdd}), {d}
in — o

= - gl {d}

9.; (2.38)

Il
cocoooo

Referring back to equation 2.36, f(t) is the static friction force between the foot and
the ground. The formula is as follows:

2.39
= ng(M + mgcos(Qg)) (2.59)

where p is the static coefficient of friction and N is the vertical normal force of the
entire system on the ground. The value of p that was used was 0.6 for a concrete surface
[15]. The Euler-Lagrange equation that was of utmost interest, however, was the second
one (i.e., row) of equation 2.36. Namely,

L L? . L
m§cos(92)i1 + mgﬁg — mggsin(ﬁg) =7(t) (2.40)

24

because this is the equation that the deep learning model comparative inverse and
forward dynamic analyses were based upon. Also note that the values used for the mass
and length parameters were M =1 kg, m = 10 kg, and L = 1 m.

In contrast to the synthetic data generation process for yq, 61, xs2, yo, and 0, synthetic
data for the x-position of the foot x; was generated by solving the first of the two ODEs
above (first row of equation 2.36) for Z;, and then using backward Euler integration from
the current time step to the next time step, to solve for #; and x;.

The ODEs of equation 2.36 were also validated against the extracted equations of a
MapleSim model shown below in figure 2.10. The extracted equations matched exactly
those derived.

Type Rigid Body

» >4, ¥ Parameters

:]: 1 == [variable Point Mass

jf:}j—. m m_rod ke v
p—y

o 0 |
0] oo El- iy -

T_, 1 _ o m_rod-]_rod

oy L, "= 2

[+ o - Qs BN oo BN

° u° o Ic, . Ignore b
oooo - ==

Figure 2.10: MapleSim model of the sliding inverted pendulum.

As a result of synthetically generating data for the x-position of the base, x1, below in
figure 2.11 is the horizontal displacement of the base M for an angular speed of 6, = 5
rad/s. Since the base was not designed to be fixed to the ground, but rather as a rigid
body constrained to move along a prismatic joint connected to the ground, considerable
horizontal displacement was observed.

After training each of the deep learning models on 100,899 training samples, they were
then tested on the remaining 101 samples (i.e., one phase cycle), which were data samples
generated for an angular speed of 0y = 5 rad/s. Each model’s performance was then
compared against the driving torque computed by ADAMS using the root mean squared
error (RMSE) metric (Table 2.1), as well as plotted on the same axis as the curve generated
by ADAMS (Figures 2.12 - 2.14).

Note the high peak/spike at the beginning of the stance phase cycle as computed by
ADAMS. The reason for this high spike was that it was found that both the rod (m) and
the base (M) endured a significant peak in accelerations at the beginning of the cycle,
despite imposing the initial angular speed condition of 6y = 5 rad /s.

According to figures 2.12 - 2.14 and table 2.1, each of the deep learning models per-
formed relatively well in conducting inverse dynamics on the inverted pendulum model,

25

ﬂVHﬂEThH

D r T T T T T T =
\\.
™,
™,
0.05 - .
~,
e
U 1 F A , —
— ™ \
E “\
- N
* ,
015 ™, b
02+ - 4
0o5 L 1 Il 1 1
0 0.05 01 015 0.2 0.25 0.3
Time (z)

Figure 2.11: Horizontal displacement of the base.

Table 2.1: Performance of each Deep Learning Model Against ADAMS for 65 = 5 rad/s.

Model | RMSE (N - m) | Number of Parameters
DeLaN 2.097 801
ANN 2.257 793
RNN 2.221 820

despite the DeLaN performing slightly better than both the ANN and the RNN, even with
approximately the same number of parameters in the models. Thus, in an effort to further
analyze its potential use case, each of the deep learning models’ performance was analyzed
for different numbers of training samples, and also for a constant rotational motion driver
of fy =5 rad/s. Below in figure 2.15 is the performance of each deep learning model for
different numbers of training samples (i.e., distinct phase cycles), in terms of the RMSE
metric. Also note that 5-fold cross-validation was used for training as well, so the RNN
didn’t predict until 5 phase cycles were in the training set.

It’s evident from figure 2.15 that the DeLaN does indeed converge quicker than the
other two deep learning models. Given the scenario of when 999 stance phase cycles are

26

Inverted Pendulum - Driving Ankle Torque (5 rad/s)

35 4 =—— DelaN Predicted
ADAMS

Chal
=
u 25 1
g
E 20 1
=
'; 15 4 e
=
=
o 104

5 -

1] 20 40 R0 80 100

Stance Phase (%)

Figure 2.12: DeLaN’s Performance Against ADAMS.

not available for a deep learning model to be trained on, the DeLaN is undoubtedly the
preferred choice of a learning model. Moreover, unlike the ANN, RNN, and even ADAMS,
the DeLaN is capable of learning the underlying physical model and disambiguating the
individual torque components of the Euler-Lagrange equation. Below is the result of the
DeLaN being applied to this inverted pendulum:

It’s evident from figures 2.16 - 2.18 that the DeLaN is indeed capable of learning the
underlying physical model and disambiguating the individual torque components of the
Euler-Lagrange equation.

Forward dynamics (integration) calculations of equation 2.36 were performed for the
constant rotational motion driver of §; = 5 rad/s (i.e., , = 0 rad/s®) using backward
Euler integration. Below in table 2.2 are the 6, tracking results in terms of the root mean
squared tracking error metric.

It’s evident from table 2.2 above that all three deep learning models track the joint
angle 6, well for very small time steps (450 time steps), since equation 2.36 are stiff ODEs.

27

Inverted Pendulum - Driving Ankle Torque (5 rad/s)

35 —— ANN Predicted
| ADAMS
— 30 4
£
<
o 25
3
g
220 -
L]
-
< 15 -
(=
<
E 10 4
a
5 4
0 20 40 60 80 100

Stance Phase (%)

Figure 2.13: FNN/ANN’s Performance Against ADAMS.

Table 2.2: Tracking performance of each deep learning model for 6, = 5 rad/s vs. the
original generated data.

Model | §; RMSE (rad)
DeLaN 2.089 x10~18
ANN 6.037 x10~1®
RNN 5.025 x10~18

2.6 Summary

In this chapter, we presented the background and literature review on stroke rehabilitation
robotics, robot control, pose estimation, and machine learning control strategies including
FNNs, RNNs, and DeLaNs. But in particular to DeLaNs, by applying them to a simple
inverted pendulum model, a series of simulations and comparisons to solutions generated
by ADAMS determined that the DeL.aN was the most capable of learning the underlying
physical model using the proposed network topology trained with standard end-to-end
optimization. That is, even though a DeLaN is trained on super-imposed torques, it’s able
to disambiguate the individual torque components of the Euler-Lagrange equation (i.e.,
inertial force, Coriolis and centrifugal forces, and gravitational force).

28

Inverted Pendulum - Driving Ankle Torque (5 rad/s)

35 4 —— RNN Predicted
— ADAMS
= 30 -
E
Z
w 25 7
=
g
2 20 -
o
=
< 15 -
=/
£
£ 10 1
o
5 -
0 20 40 B0 80 100

Stance Phase (%)

Figure 2.14: RNN’s Performance Against ADAMS.

Inverted Pendulum - Torque Testing Error (5 rad/s)

80 1 —— DelaN Testing Error

70 - ~— ANN Testing Error
—— RNN Testing Error

50.

40 -

Testing Error (N.m)

20

10 /\l —

2 4 6 8 10
Number of Training Samples (Distinct Stance Phase Cycles)

Figure 2.15: Deep Learning Model’s Performance Against ADAMS vs. Number of Training
Samples.

Trque (N.m)

1 —— DelaN Predicted

Inverted Pendulum - H(q)*q_dotdot (5 rad/s)

— Ground Truth

T T T

40 60 80
Stance Phase (%)

100

Figure 2.16: Mass Torque Components Predicted by DeLaN Against Ground Truth Values.

Torque (N.m)

-5 4

1le—g Inverted Pendulum - c(q,q_dot) (5 rad/s)
- DelaN Predicted
1 = Ground Truth
0 20 0 60 80 100

Stance Phase (%)

Figure 2.17: Coriolis/Centripetal Torque Components Predicted by DeLaN Against

Ground Truth Values.

30

Inverted Pendulum - g(qg) (5 rad/s)

—— DelaN Predicted
30 1 Ground Truth

Torque (N.m}
o

0 20 a0 60 80 100
Stance Phase (%)

Figure 2.18: Gravitational and Conservative Torque Components Predicted by DelaN
Against Ground Truth Values.

31

Chapter 3

Performance-Based Assistive Control

3.1 Introduction

In this chapter, a unified model of the rehab robot and human arm is designed to facilitate
a performance report for each patient. A cognitive (i.e., EMG-based) interaction model
between the human and the robot was not developed because EMG was not intended to
be used on post-stroke patients for the reasons described in subsection 2.3. In an effort to
make the robot’s performance-based control scheme subject-specific, the goal for this robot
will be to adjust its joint torque contribution in accordance with the user’s performance.
Performance metrics will include the sum of deviations from the desired trajectory to
measure the user’s positional accuracy, and the direction of the user’s force contribution
to measure the user’s directional accuracy.

3.2 Rehabilitation Robot

The rehabilitation robot studied in this thesis was developed by Quanser Inc., the Toronto
Rehabilitation Institute (TRI), and the Motion Research Group (MoRG) at the University
of Waterloo. The intent of developing this robot was to help in the expedition of upper
extremity motor recovery. The device is an end-effector-based robot and operates only in
the horizontal plane. A post-stroke patient who uses the robot does so by first grabbing
the end-effector, and then repetitively moving it in the desired direction. Through the
continued use of the device, the robot’s purpose is to help the patient by providing varying
levels of assistive/resistive forces on the user’s hand.

32

3.2.1 Hardware

The manipulator that defines this robot is a 2-degree-of-freedom (DOF) fully actuated
planar parallelogram mechanism, and consists of four Aluminum links (Fig. 3.1). It is
equipped with two DC motors and two optical encoders, which are both connected to
the actuated joints driving l; and [by disc-and-timing belt mechanisms. The robot is
also equipped with a six-axis force/torque sensor (ATI Industrial Automation F /T Sensor:
Nano25) on the end-effector. The specification of the motors, encoders, and force sensor is
shown below in Table 3.1.

Figure 3.1: Stroke rehabilitation robot (top view).

3.2.2 Software

Quanser’s QUARC real-time control software is used by this robot. Upon the building of a
Simulink model, Quarc generates real-time code and then runs this code on the Windows
target of the actual robot by sending the generated C code to the RAM for implementation
in the external mode. The software uses a Q8 Quanser Data Acquisition (DAQ) card. The
encoder data is read by a HIL Read block in the Simulink model. The force sensor data

33

Table 3.1: Stroke rehabilitation robot hardware specifications.

Motor Torque Constant Ky =0.115 N -m/Amp
Gear Ratio r=16: 307
Rated Motor Torque 115 mN-m
Motor Encoder Resolution 4000 count /revolution
Force Sensor Limit 250 N (Horizontal), 1000 N (Normal)
Force Sensor Resolution | 1/24 N (Horizontal), 1/48 N (Normal)

is read using a National Instruments (NI) card and a HIL Analog Read block. The motor
current is calculated by dividing the controller torque by the torque constant, which is
defined in Table 3.1. The HIL Write block is then utilized for sending the torque commands
to the physical motors. QUARC stream functions also enable the data transfer between
MATLARB scripts and Simulink models.

3.2.3 Kinematics

To derive the kinematics of this robot, the length of the links that comprise the planar
parallelogram mechanism first needs to be defined. Hence, the link lengths are visualized
in 3.1 and stated below in Table 3.3.

Table 3.2: Link lengths.

{;] 0.100 m
Iy] 0.310 m
ly | 0.375 m

Below in figure 3.2 is an augmentation of figure 3.1, where the origin of the coordinate
system and the end-effector position are symbolically displayed.

From figure 3.2, the robot joint angles representing the generalized coordinates of the
multibody dynamic system can be defined using inverse kinematics:

o [91-11} _ [t(ml (i)] (3.1)

Or2 tan™(2’1)

<

o~ o~
N =
< 8

—

34

Figure 3.2: Stroke rehabilitation robot (top view) with the coordinate system location and
end-effector position displayed.

Equation 3.2 below represents the forward kinematics of the robot, while equation 3.3
outlines the resulting robot’s geometric Jacobian.

lycos(Opa) + licos(Op1)

Te|
Pr = |:ye:| o |:l28'1:n(9R2) + l4sin(931)} (32)
_ OPr _ | —lpsin(Ora) —lasin(Or1)
Jr = 661% o |: lQCOS(QRQ) l4003(0R1) (33)

It is important to note that the forward kinematics of the robot transforms the robot
joint space into the end-effector workspace. Hence, Pg is the robot’s end-effector position in
the workspace. Using the geometric Jacobian defined in equation 3.3, the relation between
the velocity and acceleration levels in the joint space and workspace can be derived below
in equations 3.4 and 3.5:

Pr = Jrbg (3.4)

35

Pr = JpOg + Jrbg (3.5)

3.2.4 Dynamics

The robot’s mass, inertia, and center of gravity (CG) locations were required for modeling
and are shown below in Table 3.3:

Table 3.3: Link masses, moments of inertia, and centres of gravity (CG).

Link /; | Mass (kg) | Moment of Inertia (kg - m?) CG X CGY
1=1 | my =2.578 J1 =0.022 r1 = —0.005 y1 =20
1=3 | mg=0.062 J3 =0.001 rg = 0.158 ys =0
1=4 | my=1.083 Jy =0.01 ry = 0.274 | y4 = 0.008

The dynamic model of the robot, which was derived and used in all model-based con-
trollers by previous research [13, 19, 20], is as follows:

MgOg + Crbr + Kr(0r — Or,) + J rfrE + fro = TR (3.6)

where Mg is the inertia matrix, Cg is the Coriolis or centrifugal matrix, Kg is the 222
symmetric joint stiffness matrix (number of stiffness parameters is 3), g, is the equilibrium
position vector (number of equilibrium angle parameters is 2), frg is the end-effector
friction, fry is joint frictions, and 7 € R? is the applied robot motor torque. Note that
friction terms were modeled using a continuous-velocity friction model in previous research
[5]. The robot’s inertia matrix, Mg(fz), and Coriolis-centripetal matrix, Cr(fz, 0r), used
in 3.6 are defined from [13, 19, 20] as:

B oy Q2C12 + Q38712
Mp(0r) = {042012 + 3812 Qq] 37
. 0 (Oé2812 — @3612)‘9R2
Or,0r) = ;)
Cr(0r,0r) [(043612 — (3512)0p1 0 (38)

where

36

Cig = COS(QRl — 0R2) (39)

s12 = sin(Op; — Og2) (3.10)
o = ($12 + y12)m1 + m3l12 + (ZE42 + y42)m4 + i+ (3.11)
g = mzlirs + mulazy (3.12)
ag = maliys — malayy (3.13)
oy = (222 + y2H)mo + myls? + (z3% + ys?)yms + Jo + Js (3.14)

3.3 2D Human Arm Model

In order to develop an interaction model between the robot and the patient, a model of hu-
man arm first has to be derived. The user’s human arm was modelled as a two-dimensional
2-DOF linkage (figure 3.3); it includes one degree of freedom for elbow flexion/extension
and one degree of freedom for shoulder rotation.

3.3.1 Kinematics

From figure 3.3, the joint angles representing the generalized coordinates of the multibody
dynamic human arm model can be defined using inverse kinematics:

64— m (3.15)

Equation 3.16 below represents the forward kinematics of the human arm model, while
equation 3.17 outlines the resulting human arm’s geometric Jacobian.

37

(X5, Ys)

Assumed Fixed

Y

Figure 3.3: Planar human arm model (top view) with the coordinate system (shoulder
joint location), link lengths, joint angles, and hand position displayed.

R i e R 610

P4 {zusm(es) zfsz'n(ee)]

Ja ~ | —lycos(8,) —lscos(6,)

Similar to the planar model of the robot, the relationship between the human arm joint
and the hand position in the workspace can now be derived below:

Py = Js0,4 (3.18)
Py=Js04+ Jaby (3.19)

38

3.3.2 Dynamics

The dynamic equation of motion (EOM) of this mechanism is shown below in equation
3.20, of which the actual terms were derived from MapleSim.

MAéA—f—CAéA:TA (320)
where M, is the inertia matrix, C4 is the Coriolis or centrifugal matrix, and 74 ¢ R? is
the human arm’s motor torque.

The human arm’s inertia matrix, M 4(64), and Coriolis-centripetal matrix, C'4 (04, 0 4),
used in 3.20 are defined as:

Bi + 2By + 28Lm, 12 + l2mf b1+ 20
Ma(64) = 46875 u U 3.21
al04) [b1+ B2 B (3.21)
Ca(04,604) = 0 =s(0 +26.) (3.22)
B3 0
where
8047
b= 30000 Y F (3.23)
43
B = mlfmflucoswe) (3.24)
43 .
53 = mlfmfluSln(ee) (325)

The subscripts f and u for the arm masses (m) and lengths (/) refer to the human’s
forearm and upper arm, respectively. Hence, the upper arm and forearm are assumed to
be slender rods for computing the mass moments of inertia about the axis perpendicular
to the horizontal plane.

Note also the absence of a stiffness term in equation 3.20. In order to obtain the stiffness
parameters of specific patients, a biofidelic Muscle Torque Generator (MTG) [24] could be
used. However, this would require the use of equipment such as a Biodex, which is not
very portable and requires an extra time commitment from patients to acquire accurate
stiffness parameter values. Hence, 74 in equation 3.20 represents the net torque of the
human joints, including the passive torque contributions in the joints.

39

3.4 Physical Human-Robot Interaction Model (Con-
tact Force)

A post-stroke patient’s human arm interacts with the robot by manipulating the end-
effector, while the robot performs repetitive rehabilitation practices for the patient in the
horizontal plane. A passive revolute joint on the end-effector was utilized to integrate the
two systems by using the measured interaction contact force Fj between the rehab robot
and the patient’s human arm. Equations 3.26 and 3.27 below model this result of the
human-robot interaction model, which in turn, results in an extra term in equations 3.6
and 3.20, respectively:

MpgOg + Crlr + Kgr(0r — Or,) + Jr" fre + fro = 7o — Jr" Fr (3.26)

MAéA—FCAéA:TA-f-JATFI (327)

This interaction model also results in the following kinematic constraints, where the
position (equations 3.2 and 3.16), velocity (equations 3.4 and 3.18), and acceleration (equa-
tions 3.5 and 3.19) of both the end-effector and the patient’s hand in the workspace are
always equal. This is outlined below in equations 3.28-3.31:

[me} _ [ZQCos(HRz) +l4cos(9m)] _ [xh} _ [—luCOS(Qs) — lycos(0.) + Pg (3.28)

Ye| |l2sin(Ore) + lysin(Or1) —lysin(0s) — lysin(6.)

where

&:&} (3.20)

Since the shoulder joint location of the human is encouraged to be stationary by the
operating instructions in the GUI (Figure A.1), the following constraint equations can be
used:

JRéR:JAéA+Ps:JAéA (330)

40

JrOr + Jrbr = Ja04 + J404 (3.31)

To obtain the joint positions @4 of a subject’s planar right upper arm, there were
two avenues to achieve this objective. They were either pose estimation or regression
techniques. Pose estimation has already been explored in section 2.4, but the regression
technique relies on the assumption that the patient’s shoulder joint position is known and
does not move throughout the duration of the trial. Specifically, the regression technique
involves solving equation 3.28 for gz, and Ors, while x, and ys are known constants. Us-
ing the relations defined in equations 3.30 and 3.31, the joint velocity and desired joint
acceleration of the patient’s arm can then be analytically estimated. Namely,

04 = J; ' JrOg (3.32)

éA - JXI(jRéR + JRéR — jAéA) (3.33)

Singularities occur when the determinant of the human arm’s geometric Jacobian is
zero. This occurs either when 6, or 6, is zero (unlikely given the desired trajectory is set to
avoid this), or when s = 0, (i.e., straight arm). To avoid encountering singularities from
which the inverse of the human arm’s Jacobian matrix does not exist due to a subject’s
arm being straight, the Moore-Penrose pseudo-inverse of the Jacobian matrix is calculated
instead of the exact inverse, essentially treating singular values as zero.

This estimation scheme of the joint angles was validated against the gold standards of
a digital goniometer and a pre-trained pose estimation model [52], when performed on a
healthy male subject for a total of 10 frames/poses. Specifically, the healthy male subject
traversed the robot’s end-effector to 10 different locations within the bounds of the ideal
post-stroke patient workspace, from which an image of the pose was then taken by an
overhead camera, as shown from the perspective in figure 3.4. The results are summarized
below in table 3.4, along with an example video frame depicting pose estimation being
performed on the subject in figure 3.4. Note also that for each row, the first error column
is defined by subtracting the regression value from the measured goniometer value, and the
second error column is defined by subtracting the regression value from the value obtained
by the pre-trained pose estimation model.

Using the angular velocity and acceleration values computed from equations 3.32 and
3.33, equation 3.27 can then be used to calculate the human joint torque 74, in an effort
to obtain the amount of exertion that is being exhibited by the patient. This quantitative

41

Table 3.4: Human joint angle validation results.

Frame # | Joint | Regression | Goniometer | Error | Pose Estimator | Error
1 Shoulder 69.8° 69.3° 0.52° 69.1° 0.77°
1 Elbow 101° 101° —0.56° 99.7¢ 1.03°
2 Shoulder 76.4° 75.8° 0.56° 77.3° —0.94°
2 Elbow 92.6° 93.2¢ —0.65° 91.7° 0.89°
3 Shoulder 79.7° 78.9° 0.76° 80.5° —0.87°
3 Elbow 82.9¢ 83.5¢ —0.59° 82.0° 0.88°
4 Shoulder 74.6° 73.9° 0.69° 75.5° —0.95°
4 Elbow 78.3° 79.0° —0.74° 77.4° 0.88°
5 Shoulder 63.4° 62.6° 0.84° 64.4° —0.97°
5 Elbow 83.1° 82.3¢ 0.82° 82.4° 0.73°
6 Shoulder 57.6° 58.1°¢ —0.48° 56.8¢ 0.80°
6 Elbow 94.1° 93.7° 0.37° 93.4° 0.68°
7 Shoulder 60.8° 61.7° —0.95° 61.7° —0.90°
7 Elbow 106° 105° 0.60° 106° —0.86°
8 Shoulder 64.6° 65.3° —0.74° 63.8° 0.77°
8 Elbow 99.3° 98.7¢ 0.62° 100° —0.89°
9 Shoulder 70.7° 70.0° 0.72° 69.9° 0.82°
9 Elbow 88.0° 88.1¢ —0.12° 88.8° —0.77°
10 Shoulder 68.8° 69.6° —0.77° 69.7° —0.87°
10 Elbow 80.3° 79.7° 0.61° 80.6° —0.29°

| RMSE | - - - | 0.66° | - | 0.84° |

evaluation metric can then be used by the therapist as a reason to adjust the trajectory
parameters, such as the speed of the end-effector.

According to equation 3.27, the Mass matrix and Coriolis/Centripetal matrix are re-
quired for each specific patient, which in turn, depend on the subject’s mass and length
properties. These properties are needed to find the forearm and upper arm’s moment of
inertia and centre of mass. The means through which this is achieved is guided by Winter’s
regression equations, as shown below in figure 3.5 |

42

Figure 3.4: Pose estimate example.

3.5 Performance-Based Control Scheme

With the original intent to conduct trials on post-stroke patients who would use this planar
rehab robot, EMG was decided not to be used on post-stroke patients for the reasons
described in subsection 2.3. Hence, the interaction model to be used in making the robot
controller subject-specific was the pHRI described in the previous section for the purpose
of subject-specificity being performance-based.

Performance-based subject-specificity of the robot control was intended to be achieved
by means of the force sensor. That is, if the interaction force F; exerted on the end-
effector results in the patient’s hand following a direction that is within a small angular
tolerance value (e.g., 20°) of the desired trajectory, then the torque contribution of the
robot can be reduced in adaptation with the human user’s contribution. This, in turn,
promotes adaptive performance-based (i.e., reduced) assistance. As opposed to adjusting
the applied robot torque at every time instant relative to the direction of the subject’s
applied force, the reason for only adjusting the applied robot torque when the subject
is within a small angular tolerance value of the desired direction is because the robot’s
controller already applies an aggressive corrective torque when the end-effector deviates

43

TABLE 4.1 Anthropometric Data

Segment Center of Mass/ Radius of Gyration/
Wcighu’lhlal SCEI’I’[L‘I’II Lcnglh SE.‘gﬂ'l:‘.l'll Li.‘l'lgih
Segment Definition Body Weight Proximal Distal C of G Proximal Distal Density
Hand Wrist axis/knuckle II middle finger 0,006 M 0506 0494P 0297 0587 057T7TM 116
Forearm Elbow axis/ulnar styloid 0.016 M 0430 0570P 0303 0526 0647TM 113
Upper arm Glenohumeral axis/elbow axis 0.028 M 0436 0564P 0322 0542 0645M 1LO7

Figure 3.5: Snapshot of table 4.1 from Winter (2009) [50].

from the desired trajectory. It was determined from experiments on the robot that the
resulting behavior can lead to excessive torques in high position-error scenarios, which can
then lead to further discomfort for the post-stroke patient. Hence, only decreasing the
applied robot torque based on the subject’s performance was the adaptive control scheme
that was adopted. A flowchart of this control scheme is depicted below in figure 3.6.

| Force Sensor (Fy) }—»

Only if F; is within the direction of the desired

trajectory. This promotes performance-based (i.e.,
reduced) assistance, not just for every time instance.

+ Bra — Or
: A Robot .
[0r.a.6r.4.0r4 | Robot 60,0,

Used to

determine before

patient trial

Ta, s
L, 1 B4 F,
HR . - .
6. b O, Oz O |
Human Joint B4 Calculat(? 04 Calculatg Cﬂ]ﬂmﬂt&?
Angle Estimator Human Joint Human Joint " Human Joint —— T4
VE].OCit}-' Acceleration 9 Tgrque
/ A

l,,: Upper arm length
l¢: Forearm length

Figure 3.6: Subject-specific performance-based control scheme.

44

3.6 Experimental Results on a Healthy Subject

In the absence of post-stroke patients at Grand River Hospital, tests were performed on
a healthy male subject (age: 24 years old, forearm length: 12 in., upper arm length: 12
in., weight: 91 kg, height: 180 cm) for the purpose of showcasing the potential of this
subject-specific performance-based control scheme. The healthy subject was tasked with
keeping their shoulder as still as possible to circumvent any undesired movements and
allow for camera-less pose estimation when following a D-shaped reference trajectory. The
reason a D shape reference trajectory was chosen is that in consultation with therapists’
feedback, exercises that help to promote external rotation rather than internal rotation of
the shoulder joint are more useful in rehabilitating a post-stroke patient’s motor recovery.
Post-stroke patients have a tendency to drop their elbows toward their bodies because of
their lack of ability to lift their arms. The intention of the exercise is to promote more
muscle contribution in the upper arm. The D-shape trajectory helps to ensure the patient
is stretching their arm outwards to prevent the dropping of the arm.

The desired shoulder joint location was positioned at 0.12 m along the positive x-
direction and 0.73 m along the positive y-direction, both from the origin with reference to
the global frame coordinate system used in figure 3.2. The time to complete one full D
traversal was set to 4 seconds. The radius of the half-circle defining the D shape was set
to 0.1 m. The location of the centre of the left vertical line of the D shape was positioned
at 0.3 m along the negative x-direction and 0.3 m along the positive y-direction, both
from the origin with reference to figure 3.2. All of these parameter values were essentially
inputted into the parameters tab of the GUI, as shown in figure A.7. And lastly, the robot
itself was controlled by an SMC controller, which was experimentally proven to be the
best-performing controller in terms of accurately following a desired trajectory [19].

3.6.1 Subject-Specific Trajectory Performance Results

Subject-specificity within this adaptive control scheme is largely based on the subject’s
mid-trial performance. As explained in section A.7, the trajectory performance of the
subject is divided into two categories: positional performance and the subject’s directional
performance, which is a function of their force exertion on the robot’s end-effector where
the force sensor is located. The trajectory performance of the healthy subject described
previously is shown below in figure 3.7. Note that for visualization purposes for both the
post-stroke patient and the therapist, the positive axis directions shown in figure 3.7 are
opposite to the direction used by the local coordinate system of the robot and thus should
be taken into account for the discussion.

45

Instructions Registration Farameters Trajectory Performance End-Effector Force Human >

Positional Performance

End-Effector Trajectory x_RMSE (mm) 568

0.45 Experimental

Desired y_RMSE (mm) 7.02

RMSE - Root Mean Squared Error

Directional Performance

0.3 035 0.4
X (m) Accuracy (%) 78

Qutput Performance

Robot Functionality Buttons
Build Model Connect Model

Save Data Disconnect Model _

Figure 3.7: Trajectory performance of the healthy subject, including the 2D positional
performance and directional performance.

Figure 3.7 shows that the healthy subject was able to achieve an RMSE of 8.68 mm
against the desired trajectory in the x-direction and an RMSE of 7.02 mm against the
desired trajectory in the y-direction. The subject also achieved 78% accuracy in applying a
force on the end-effector that was within 20 degrees of the desired trajectory direction. This
essentially means that for 78% of the trial duration, the force applied by the subject was
within 20 degrees (arbitrarily chosen) of the desired trajectory direction. Note, however,
that this angular tolerance value can be arbitrarily chosen in agreement with both the
therapist and the patient, depending on how adaptive they want the robot controller to be
for the patient. In accordance with the control scheme shown in figure 3.6 and the right
side of equation 3.26, this translates into an adaptive robot controller (in this case, SMC)
decreasing its applied torque by an amount defined by

Tsubject = Jr' FI (3.34)

where F7 is the subject’s applied interaction force on the end-effector. Note that the force
sensor outputs the data in its local X'Y’Z’" frame. As a result, rotation transformation

46

was applied to acquire the global XY Z components (Figure 3.8):

F = [R(601)]F (3.35)

where ¢, = 0r;. Thus,

(3.36)

R(0)) = R(0p) = {008(%) —Sm(em)]

sin(0gr1) cos(Ory)

Figure 3.8: The local-global force relation [19].

To provide context to the healthy subject’s 78% directional performance, below in figure
3.9 shows the time series of the applied force by the user on the end-effector in both the
x- and y-directions, as well as the range of forces applied by the subject in both the x-
and y-directions. In particular, the subject’s range of force in the x-direction was 0.835 N
and the subject’s range of force in the y-direction was 2.528 N. Also note in figure 3.9 that
the highlighted red lines indicate the time periods during which the subject’s directional
performance is low (i.e., the subject’s hand is not following a direction that is within 20°
of the desired trajectory). Hence, blue indicates that the subject’s hand is following a
direction that is within 20° of the desired trajectory. Judging from the performance from

47

figure 3.7, these are at the time periods when the subject is traversing the corners of the
D shape since these are the only points when the force in the y-direction is expected to
change. The plots also indicate that the point at which the worst performance occurs is
the top point of the D shape in figure 3.7 because the longer red lines occur when the force
transitions from the negative y-direction to the positive y-direction. The plot of the force
in the x-direction also shows that the subject never applied a force on the end-effector
in the positive x-direction (i.e., negative x-direction in figure 3.7). This can either mean
that the robot controller may need to be improved for subsequent trials, such as increasing
the tracking gains to ensure that adequate assistance is provided to accurately follow the
desired trajectory, or the angular tolerance value may need to be increased, such that an
environment is created where the improvement in their performance using the robot is in
agreement with any improvement in their clinical performance metrics (e.g., Fugl-Meyer).
A consistent improvement in performance also serves to maintain a high level of motivation
in the post-stroke patient who would ideally be using the robot.

-

Instructions Registration FParameters Trajectory Performance End-Effector Force Human >

0 X-Force Y-Force
1
z z
%05 30
S S
[T [T
-1
-1
5 10 15 20 25 5 10 15 20 25
Time (s) Time (s)
Range of Force (N} 0.835 Range of Force (N} 2528

Plot Forces & Qutput Metrics

Robot Functionality Buttons
Build Model Connect Model Start

Save Data Disconnect Model _

Figure 3.9: Time series of the applied force by the user on the end-effector in both the x-
and y-directions.

Given a detailed muscle model, the force values of figure 3.9 may also then be correlated

48

against individual muscle activity levels since the dynamics of the human’s arm is governed
by equation 3.27. This potential capability is investigated in chapter 5.

3.6.2 Pose Estimation Results

As stated before, pose estimation is concerned with locating key points on a human’s body
in a video. Often, these key points represent the human body’s joint locations. These key
points can then be used to analytically determine the angles at these joint locations. In
the context of a human subject using this rehab robot, the only human joints of concern
are the subject’s right elbow and shoulder.

The means through which the subject’s elbow and shoulder joint angles are displayed
to the subject (and therapist) is by the human joint angles tab on the GUI (Figure A.4
in appendix A). However, in keeping with the standards of the International Society of
Biomechanics (ISB), the joint angles that are actually displayed by the GUI are depicted
below in figure 3.10, instead of the joint angles represented by figure 3.3. Hence,

0 disp = 90° — 0, (3.37)

ee,disp = ee - 95 (338)

where 0, 4isp is the ISB standard shoulder angle and 6, 4;5, is the ISB standard elbow angle.
As a result, figure 3.11 below shows the time series of the healthy subject’s shoulder joint
angle and elbow joint angle. In this tab, it shows that the healthy subject’s range of motion
in the shoulder joint was 42.17 degrees and the range of motion in the elbow joint was 30.65
degrees.

This type of information gives the therapist and post-stroke patient an indication of
the current mobility of the patient’s arm, in the absence of any pain or discomfort. If, for
example, the therapist wanted to increase the subject’s range of motion due to the subject’s
increased motor capability, the desired trajectory parameters can be adjusted accordingly
(e.g., location and radius of D shape) to allow for greater mobility in subsequent trials.
Thus, this is where the therapist could hypothetically use this provided information about
what the subject is doing and how comfortable the subject is at performing the exercises,
to ultimately tailor subsequent training exercises for each subject accordingly.

49

(X5, ¥s)

!rY

Figure 3.10: Planar human arm model (top view) with the ISB standard coordinate system
(shoulder joint location), link lengths, joint angles, and hand position displayed.

3.6.3 Human Joint Torque Results

The joint torque 74 (used in equation 3.27) that is experienced by a subject’s shoulder
and elbow joints can also be very indicative of a subject’s motor recovery because 7,4 is a
function of the subject’s muscle activation. If, for example, the robot requires the patient
to traverse the desired trajectory at a very high speed, discomfort is likely to occur if the
subject’s muscles are not able to endure such strenuous movements. Thus, in the presence
of a therapist, the subject’s ability to endure a certain amount of torque at their shoulder
and elbow joints might provide a reason for the therapist to recommend the patient traverse
the trajectory at a higher speed, and see if the patient can seamlessly endure the higher
experienced joint torques. This, again, highlights the use of the pHRI to tailor training
exercises for each individual subject.

In regards to the healthy subject experiment with the robot, below in figure 3.12 is
the human joint torques tab of the GUI displaying the raw joint torques exerted by the
healthy subject’s right shoulder and elbow. In this tab, it shows that the healthy subject’s

20

4 MATLAB App - O X

< ters Trajectory Performance End-Effector Force Human Joint Angles Human Joint Torques

Shoulder Joint Angle Elbow Joint Angle
50 30
=) =2
5’30 §20
QL QL
=20 =
z z 10
10
0 0
0 5 10 15 20 25 0 5 10 15 20 25
Time (s} Time (s)

Range of Motion (degrees) 4217 Range of Motion (degrees) 30.85

[Plot Joint Angles & Output Metrics |

Robot Functionality Buttons

| Build Model | | Connect Model | _
| SaveData | | Disconnect Model | _

Figure 3.11: Time series of the shoulder and elbow joint angles of the healthy subject.

range of torque by the shoulder joint was 4.79 N-m and the range of torque by the elbow
joint was 0.817 N-m. Based on the level of comfort of the subject and expert advice from a
therapist if the subject was a post-stroke patient, the goal may likely be to increase these
torque values in subsequent trials to achieve motor control recovery.

The high frequency of the joint torque signals in 3.12 is due to the fact that numerical
differentiation is used to obtain the robot’s joint velocities and joint accelerations. If the
signal were desired to be smoothened by the therapist/patient, options could include signal
filtering (e.g., Butterworth), using spline fitting, or using some other curve to fit the joint
torque data since smooth derivatives would likely remove the high-frequency.

3.7 Conclusion

In this chapter, we presented the rehabilitation robot being used in this study including
its hardware specifications, software details, kinematic constraints, and dynamic model.
We also presented the human dynamic model being used to model the subject who will

ol

4 MATLAB App - O X

< 3ters Trajectory Performance End-Effector Force Human Joint Angles Human Joint Torques
Shoulder Joint Torque Elbow Joint T,2, {7
. . _. 02
£y =
z z 0
Ea 0 ?-0.2
-1 04
-2 -0.6
0 5 10 15 25
Time (s) Tlme {SJ
Range of Torque (N.m) 4789 Range of Torque (N.m} 0.817

| Plot Joint Torques & Qutput Metrics |

Robot Functionality Buttons

[BuildModel | [Connect Mode! | _
| SaveData | | Disconnect Model | _

Figure 3.12: Time series of the shoulder and elbow joint torques of the healthy subject.

be interacting with the robot, including its kinematic constraints and dynamic model. We
then presented the physical interaction model (pHRI), which describes how the robot and
human user would physically interact with each other during a trial. A novel performance-
based control scheme was introduced, which leveraged a force sensor mounted on the
end-effector. The computer vision application of pose estimation was used as part of a
performance validation study when compared against a regression method and a digital
goniometer, such that real-time estimates of what the human was physically doing during
their interaction with the robot could be reliably conducted. And finally, an experiment
of this control scheme was conducted on a healthy human subject to show the potential of
applying it to post-stroke subjects in a clinical setting.

o2

Chapter 4

Using Machine Learning for
Computed-Torque PID Control

4.1 Chapter Overview

As stated in section 2.5, the effectiveness of model-based control of a dynamic multibody
system is reliant upon the accuracy of a model of the actual system. Computed-Torque PID
control, in particular, is only applicable when an accurate enough model of the dynamic
system is available. Otherwise, as the mismatch between the model of the system and the
real dynamics increases, the outer-loop feedback PID term becomes increasingly crucial
to correct for this increasing error. The derivation of computed-torque PID control on
multibody robots is presented in the next section.

In this chapter, different machine learning control strategies are also explored. Chapter
3 aimed to derive an accurate model of the physical rehab robot system. The purpose
of this chapter is to try to remove the requirement of deriving an accurate model of the
physical rehab robot system, given that the input (i.e., trajectory parameters) and output
(i.e., robot joint torque) data of the multibody system used to represent its interaction
dynamics with a human arm model, can be reliably measured from previous trial traversals
by its mounted sensors. Three machine learning architectures are explored in further detail
in the following sections below.

23

4.2 Computed-Torque PID Control

Computed-Torque PID (CT PID) control is a special application of the feedback lineariza-
tion of nonlinear systems; the nonlinear dynamics is cancelled by using its inverse dynamics
in the inner-loop; the outer-loop feedback PID term is then utilized to correct the errors
of the resulting decoupled linear system. The following steps derive the equation of the
computed-torque control law.

If the desired trajectory 4(t) is selected for the robot arm and the actual trajectory
is represented by 0(t), the tracking error is

e(t) = 04(t) — 0(t) (4.1)

By taking the first and second derivatives of the error, the following is obtained

é=04—6 (4.2)

E=0,—0 (4.3)

According to the feed-forward equations of 3.6 and 3.20, g can then be given by

6 =M(@O)(r—C(0,0)0 — f) (4.4)

where f can be friction or stiffness terms. Substituting equation 4.4 into equation 4.3
results in

é =264+ M()"(C(,0)0 + f — 1) (4.5)

From equation 4.5, the joint torque 7 can be given by

T =M(0)(0y— &) +C(6,0)0 + f (4.6)

Since the goal is to control and minimize €, the feedback control signal can be a PID term
as such

t
Uprp = —er — Kz/ e(t) dt — Kde (47)
0

o4

By substituting equation 4.7 into equation 4.6, the computed joint torque signal u becomes

u=T1=M()(0s+ Kye + K; /t e(t) dt + Kqé) +C(0,0)0 + f (4.8)

Figure 4.1 is a diagram of the outlined Computed-Torque PID control scheme, which
takes in the desired trajectory parameter Op, as input, features the feed-forward inverse
dynamics block to compute 7T or equivalently w0461, and features the feedback PID control
block to compute wprp, all eventually being super-imposed to compute the final control
signal u(t).

o[] | 3
: - I: &

Uy ()= M(8,)0, (1) +C(6,,0,)0, (1)
Uprodel

Inverse Dynamics
Model

Figure 4.1: Computed-Torque PID block diagram.

4.3 Training Data

Three experiments were conducted on the robot by one healthy subject, in which three
reference trajectories with different trajectory locations were set, and consequently tra-
versed by the robot, while controlled by an SMC controller [19]. Data acquired from each

95

experiment included the joint angles, joint velocities, desired joint accelerations, and total
applied joint torques (i.e., including the performance-based torque contribution from the
force sensor) by the robot’s SMC controller. The three reference trajectories, as well as the
positional and directional performance of the robot end-effector following these trajectories,
are shown in the trajectory performance tab of the GUI (Figures 4.2-4.4).

=

Instructions Registration Parameters Trajectory Performance End-Effector Force Human >

Positional Performance

End-Effector Trajectory x_RMSE (mm) 568

Experimental

Desired y_RMSE (mm) 7.02

RMSE - Root Mean Squared Error

Directional Performance

03 0.35 0.4
X (m) Accuracy (%) 78

Qutput Performance:

Robot Functionality Buttons
Build Model Connect Model

Save Data Disconnect Model _

Figure 4.2: First reference trajectory.

Testing the trained networks on newly implemented computed torque PID controllers
deployed on the physical robot could damage the physical system if the model represented
by the neural network is severely inaccurate. Thus, the goal is to use the data from one
of these three trajectory experiments as training data for each of the neural networks and
then test how the trained neural networks performed on the other two trajectory datasets.
The results of these simulations are described in the following section.

4.4 Simulations Results

The following subsections describe in detail the accuracy of the neural networks in mod-
elling the so-called “actual” dynamics of the multibody robot, by means of how accurate

o6

4 MATLAB App - O X

Instructions Registration Parameters Trajectory Performance End-Effector Force Human >

Positional Performance

End-Effector Trajectory % RMSE (mm)

Experimental

Desired y_RMSE (mm) 15.18

RMSE - Root Mean Squared Error

> 0.35

Directional Performance

035 0.4 0.45

| Cutput Performance |

Robot Functionality Buttons

| Build Model | | Connect Model | - S
| SaveData | | Disconnect Model | _

Figure 4.3: Second reference trajectory.

these controllers are in following the desired trajectories, and in the presence of a healthy
subject applying a 2D force on the end-effector.

4.4.1 Deep Lagrangian Network (DeLalN)

The implementation of a Del.aN on this robot proved to not be successful because the
joint torque signals applied to the robot joints were not super-imposed signals that were
functions of the joint angles, joint velocities, and desired joint accelerations, as outlined by
equation 3.26 (including the performance-based contribution of the force sensor). Thus,
the relationship between the joint angles, joint velocities, desired joint accelerations, and
joint torques is as follows:

MRéR,d + CrOr + Kr(0r — 0r,) + Jr fre + frs = TR (4.9)

To prove that the kinematic data measured by the robot’s motor encoders did not
satisfy this relationship, let us first assume that the Mass matrix and Coriolis matrix are

57

(4] MATLAB App - O X

Instructions Registration FParameters Trajectory Performance End-Effector Force Human >

Positional Performance

End-Effector Trajectory % RMSE (mm) 971

0.4 Experimental

Desired

0.35 = y_RMSE (mm) 2.58

= 03) RMSE - Root Mean Squared Error
= 025
0.2 d

0.15 = . .
Directional Performance

=

0.25 03 0.35
X (m) Accuracy (%) 74

Qutput Performance

Robot Functionality Buttons
Build Model Connect Model

Save Data Disconnect Model _

Figure 4.4: Third reference trajectory.

those stated in equations 3.7 and 3.8 since these were validated by previous researchers,
and the real/actual parameter values, are likely not very different. In doing so, the only
terms of equation 4.9 to be modelled are the last three on the left side of the equation,
namely, the robot stiffness, end-effector friction, and joint friction. Figures 4.5 and 4.6
show the contribution of the super-imposed Mass torque and Coriolis torque to the robot
joint torques for the first trajectory (Figure 4.2).

It is evident from figures 4.5 and 4.6 that if equation 4.9 does in fact describe the
dynamics of the actual rehab robot, it can be deduced that the majority of the torque
contribution is from the robot stiffness, end-effector friction, and joint friction. If the robot
stiffness, end-effector friction, and joint friction can be modelled as functions of the input
variables of the joint angles, joint velocities, and desired joint accelerations, then it can be
reliably concluded that a DeLaN should enable an accurate controller. This is tested by
training a simple feed-forward neural network on the first trajectory (Figure 4.2) with the
input variables being the joint angles, joint velocities, and desired joint accelerations, and
the output variable being the total applied robot joint torques minus the Mass and Coriolis
torque contributions. Below in figures 4.7-4.9 shows the accuracy of the feed-forward neural

o8

Contribution of Mass & Coriolis Torque (Joint 1)
T T

151 T T
Mass + Coriolis Torgue
Robot Torgue
1h 4
£
gav !ﬂ 1
s) V A iy r\
- , | i |
SRV TSR
SoAm Y Dy bt
T |
osr | | 4
i
-IICI.'I- ; 1ID II5 EJD ;5

Time(s)
Figure 4.5: Joint 1: Mass Torque + Coriolis Torque.

network on all three trajectories.

It is evident from figures 4.7-4.9 that the simple feed-forward neural network expectedly
performed really well on the first trajectory’s total applied robot torques minus the Mass
and Coriolis torques since it was trained on this data, but it performed really poorly on
the second and third trajectories’ total applied robot torques minus the Mass and Coriolis
torques. Therefore, the implementation of a Del.aN on the physical robot would not be
very successful because the dynamics governed by equation 4.9 are never learned.

4.4.2 Feed-forward Neural Network (FNN)

Similar to how an FNN could not provide a general model of the robot’s stiffness and friction
torque terms in the last subsection, an FNN also cannot provide a general dynamic model
of the actual robot. Another simple FNN is trained on the first trajectory (Figure 4.2) with
the input variables being the joint angles, joint velocities, and desired joint accelerations,
and the output variable is the total applied robot joint torques. Below in figures 4.10-4.12

29

Contribution of Mass & Coriolis Torque (Joint 2)
1ir T T T T

Mass + Cariolis Torgue

0.8F Robot Terque 1

Joint 2 Torgue (N'm)
[
T
—

Timeis)
Figure 4.6: Joint 2: Mass Torque + Coriolis Torque.

shows the prediction performance of the FNN on all three trajectories.

It is evident from figures 4.10-4.12 that the FNN performed well on the first trajectory
since it was trained on this data, but it performed poorly on the second and third trajecto-
ries. Hence, the training of an FNN on robot kinematic inputs to predict the torque applied
to this physical robot proved to be unsuccessful. For an FNN model to be generalizable
and thus be applied to all desired trajectory parameters, this would require the inclusion of
a data set that would ideally encompass the entire end-effector workspace being spanned
at multiple velocities and accelerations. However, this is infeasible due to the very high
number of combinations of desired trajectory parameters (i.e., different trajectories being
traversed at different speeds and accelerations) that would have to be traversed in order
to generate the necessary training data. It may be stated that the shape of the predicted
and actual torque signals are similar with only some scaling needed, but the inclusion of
more training data may help to incorporate this necessary scaling factor.

60

Joint 1 Robot Torque Joint 2 Robot Torque
T T T T

sl ir
Predicted Predicted
Actual 08 Actual 1

Joint 1 Torque (N-m)
j=1
w
Joint 2 Torque (N-m)
(=]
T

1. H] ;'1 |
AT :z:. My VMN\'

o
L
-
L

Figure 4.7: FNN performance on the first trajectory, when trained on the first trajectory
and the output set as the total applied robot torques minus the Mass and Coriolis torques.

4.4.3 Recurrent Neural Network (RNN)

An RNN may produce the same inaccuracies as a shallow FNN due to the fact that the
source of the problems encountered by the FNN in the previous subsection was the data
itself, and not the network architecture. But another problem with using an RNN was
encountered. A nonlinear autoregressive with external input (NARX) network in MATLAB
was used to train on the data of the first trajectory. Due to the fact that the robot’s control
algorithms are run on MATLAB/Simulink for Quarc, one of the requirements to use a
trained neural network in Simulink, including a simple shallow FNN| is that a Simulink
block with a sample time must be generated for the shallow neural network simulation.
This is achieved by MATLAB’s gensim command. The sample time for dynamic networks
such as a NARX is required by MATLAB to be 1 second or greater due to unknown reasons,
while the sample time of the robot is set to the recommended 0.002 seconds. Designing
an accurate trajectory controller with a minimum sample time of 1 second would likely
be difficult when the joint angles change considerably every 0.002 seconds, as shown by
simulations.

61

Joint 1 Robot Torque Joint 2 Robot Torque
1571 T T T T al B T T T T a]

o . =) 0o e
£ D "' | ¢ yMﬂ [N‘Q}\\ 2t | | | e
%-0.5- ‘ P;l [%:; *l ’ ff\» ‘ ﬂg MA r I"f\\/\ ﬁ 1 |
1 L B e | s
,«J AV AR AR RV A TN
=2 ‘j = \ |

L

o
-
L

Figure 4.8: FNN prediction performance on the second trajectory, when trained on the
first trajectory and the output set as the total applied robot torques minus the Mass and
Coriolis torques.

4.5 Conclusion

In this chapter, we presented the training data used for training the neural networks of a
DeLaN, FNN, and RNN, and then we presented the simulation results of these networks
when implemented on the data gathered from the actual rehabilitation robot. It was con-
cluded that none of these neural network architectures provided any reliable generalization
capability to be deployed on the actual rehabilitation robot since this would likely result
in spasmodic robot motions, robot motor damage, and potentially further injuries to the
post-stroke patient.

62

Joint 1 Robot Torque
T T T

T T T ul 2r T T T T T T al

F‘redlched. /‘VH,\J"/\J}" Predlcted.
Actue‘ll 1] | y a | . Y, Actual 1]
| | INVAY NS
. L b e Y UN N UN
Z , f T Z I | ;' |
g Ha\j |I;\ l‘.,|I Ir | 1 Tg 4 | | " 'I' |
=4 1)| | =4
- Irvl imw"'l jl E 6 ! \l :
— H \ - |
AN I : |
Al Al S -
Jﬁ"w,-’” Q/ \ °
\ “ 10 ‘
2(; :‘2 c; nla Elt 10 1‘2 1l¢ 1‘6 1I8 ;0 -125 rlz z: :3 é 10 1I2 1:1 116 1Ia ;0
Time(s) Time(s)

Figure 4.9: FNN prediction performance on the third trajectory, when trained on the
first trajectory and the output set as the total applied robot torques minus the Mass and
Coriolis torques.

Joint 2 Robot Torque
1.5 T ir T T T T al
Predicted

0.8+ Actual 1

1F 1 0.6 1

— — 04r 1
E E

Z ost i £zt 4
3 3

5 g of]
[[

_}é or 1 g 02+ 1
o] [v]

S “0at 1

051 1 06+ 4

0.8+ 1

-1 L L L 1 1 4 -1 L L L 1 1 -

5 10 15 20 25 0 5 10 15 20 25
Time(s) Time(s)

Figure 4.10: FNN performance on the first trajectory, when trained on the first trajectory
and the output set as the total applied robot torques.

63

Joint 1 Robot Torque Joint 2 Robot Torque

%z

Joint 1 Torgue {N'm}
| o I

a
e
EN

Joint 2 Torgue (N'm)
T

Figure 4.11: FNN prediction performance on the second trajectory, when trained on the
first trajectory and the output set as the total applied robot torques.

Joint 1 Robot Torque
Predicted
~— Actual
P1s]
151 1
1k] -
_ 1 [

os- ¥ l l ! .
\

0 2 4 6 g 10 12 1 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Time(s) Time(s)

Joint 2 Robot Torque

i)

T T
Predcted
— Actual

Joint 1 Torque (N'm)

LS. SR - i -
=
— §
-::t:i{ B
T S

Figure 4.12: FNN prediction performance on the third trajectory, when trained on the first
trajectory and the output set as the total applied robot torques.

64

Chapter 5

EMG-Based Assistive Control

5.1 Control Scheme Overview

In this chapter, experiments were conducted on four healthy subjects in an effort to deter-
mine whether Surface Electromyography (sSEMG) data can be used to predict the subject’s
joint torques at the elbow and shoulder. sEMG measures the electric potential difference
triggered by the human nervous system to command muscle contraction. In doing so, it has
demonstrated capability in illuminating human motion intention for controlling biomecha-
tronic devices as well as being used to identify aberrant neuromuscular functions [32]. One
or more probes, commonly known as electrodes, are initiated over the desired muscle. A
base recording unit is then used to display the electrical activity that the electrodes pick
up (a monitor that amplifies and displays electrical activity in the form of waves). The
electrical activity of muscles during rest, a light contraction, and a strong contraction can
all effectively be measured by EMG.

The subject-specific performance-based control scheme discussed in chapter 3 uses a
pHRI model (i.e., force sensor) to adjust the robot’s applied torque when the subject is
applying a force in a direction that is within a tolerance value of the desired direction
at a certain time instant. Research has already widely been conducted on EMG-based
assistive control when a subject is using a planar end-effector-based robot for the upper
extremity [0, 8, 17]. What hasn’t been widely explored, however, is predicting the applied
force direction on the robot end-effector using EMG. This prediction model, which defines
the newly formed cognitive Human-Robot Interaction (cHRI) model, can then be used to
adjust the robot’s applied joint torques (i.e., level of assistance) in accordance with the
subject-specific performance-based control scheme of chapter 3, but without a pHRI model.

65

It was mentioned in subsection 2.3 that EMG tends to not be as well-indicative of
post-stroke patients’ movement intentions as it can be for predicting healthy subjects’
intentions. This is due to the fact that improper placement of electrodes on post-stroke
patients who are often overweight is much more prevalent, post-stroke patients often have
higher movement variability when using a robotic device due to the inter-subject variability
in neuromuscular system damage, and there exists a higher intra-subject variability of
muscle activation patterns amongst post-stroke patients, all of which makes it more difficult
for robot controllers to accurately predict a post-stroke subject’s motion intention [0, &].
Hence, only healthy subjects were recruited for conducting experiments involving sEMG
and the rehab robot, whereas using the force sensor as part of a pHRI model would ideally
be designated for post-stroke patients.

The other reason for exploring this potential capability in predicting a subject’s direc-
tional performance via the force sensor is that most planar end-effector-based rehab robots
currently being used in clinical environments are not equipped with mounted force sensors
on the end-effector. As is the case with the planar end-effector-based rehab robot used
in this project, force sensors are often an augmentation to these types of robotic devices.
Given the already widespread use of EMG in laboratory settings and despite its minor
drawbacks, its ability to measure motion intent in healthy subjects [0, &, 17] is a motivat-
ing factor in predicting the subject’s joint torques, such that subject-specific active control
can be implemented without using a force sensor. In the following sections, details about
the experiments conducted as well as the results will be discussed.

5.2 Experiments

Equation 3.27 is repeated below as equation 5.1, but with the arm joint torque 74 term ex-
plicitly expressed as a function of muscle activation u,. This is because the torque exerted
by the subject’s right arm during their interaction with the rehab robot is hypothesized
to be a function of only the activation level exerted by the muscle groups that are respon-
sible for moving the subject’s right arm, and which was also used in simulations by [19].
The process that is often used to measure a muscle group’s activation level is by initially
measuring the subject’s raw EMG signal, and then normalizing this raw EMG signal by
the subject’s maximum voluntary contraction (MVC) of the desired muscle group. The
reason for normalizing the EMG data using the specific subject’s MVC is to be able to
reliably compare EMG activity in the same muscle group between different days, between
different individuals (e.g., healthy subject vs. post-stroke patient), and between different
muscle groups. The reliable comparison of EMG activity in the same muscle group between

66

different days also requires the collection of lots of data to address intra-subject variability.

MAéA+CAéA:TA(uA)+JATF] (51)

A traditional way to convert normalized EMG signals into the appropriate muscle joint
torques 74 is to use a biomechanical muscle model. The most commonly used model is
the three-component model, which takes inspiration from the lumped-parameter model
developed by Hill for active and passive muscle tension behavior [51]. However, including
a general muscle model within a multibody model introduces various drawbacks including
muscle redundancy, specified complex musculoskeletal geometry such as wrapping path-
ways, difficult-to-fit parameters for each muscle, and parameter sensitivity. One method
that may serve to alleviate the complex muscle geometry, redundancy, and interpretation
of EMG signals within a control framework could be a machine learning model (i.e., neural
network) trained by experimental data.

Therefore, the inputs of a neural network to predict the human joint torque as calculated
using equation 5.1, was only the normalized EMG signals (via dividing by the subject’s
isometric MVC) to account for the muscle activations (u4). The muscle groups of interest
that were selected to be measured during these experiments were the right arm’s biceps
brachii, triceps brachii, and deltoid. Hence, the neural network consists of three inputs
representing the three EMG signal variables; and two outputs representing the two human
joints of the elbow and shoulder.

The sample size determined to be sufficient to assess the accuracy of the human joint
torque predictability scheme using EMG data was set to four subjects. After analyzing
the normalized EMG data of these participants, this sample size was deemed sufficient to
assess whether a diverse range of normalized EMG data could accurately predict the joint
torque of a human subject using the rehab robot. The following subsections discuss the
procedure followed to conduct these experiments as well as the results obtained.

5.2.1 Procedure

The procedure encompassed two steps of data collection:

1. Pre-treatment assessments,

2. Robotic treatment assessments.

67

Pre-treatment Assessments

After receiving informed consent, the subject’s general health information was reviewed by
the researcher in a meeting with the subject. The collected data included:

e Mass

e Upper extremity anthropometric data: upper-arm and forearm lengths

Robotic Treatment Set-up and Assessment

The researcher attached the EMG probe (Trigno Wireless System, Delsys incorporated,
MA, USA) to the user’s right arm. Recording the participant’s motion and myoelectric
(majority of the study visit) would be done at a 3-meter distance from the researcher.
There was no overlap between participants (1 participant per day).

The skin overlying the participant’s target muscles was cleaned before the researcher
attached self-adhesive EMG electrodes over the muscles of interest. After the preparation,
the researcher attached the electrodes to the skin overlying each muscle of interest, which
were the right arm’s bicep brachii, tricep brachii, and deltoid.

Each of the four subjects performed two sessions of trials. Each subject’s isometric
maximum voluntary contraction (MVC) from a maximum root mean square (RMS) enve-
lope of the EMG signal using a moving window was recorded for each session. The MVC
value was then used to normalize the EMG signals collected during the session’s trials.
Note that for the normalization procedure, the RMS window length was set to 0.125 sec-
onds and the RMS window overlap was set to 0.0625 seconds. The output was displayed
as a percentage of the MVC value. For the first session, the participant moved the robot’s
end-effector along a desired D-shaped trajectory with no robot assistance or resistance for
two trials. For the second session, the participant moved the robot’s end-effector along the
same desired D-shaped trajectory with no robot assistance or resistance for only one trial.
Thus, there were 12 trials altogether.

5.2.2 Results
Once all of the necessary trial data was obtained from the subject experiments, only a

feed-forward neural network (FNN) was trained on the data due to the reasons described
in subsection 4.4.3 pertaining to using RNNs in MATLAB/Simulink. The data was split

68

such that the training set contained 11 trials and the testing set contained the fourth
subject’s trial during their second session.

Many feed-forward neural network architectures were not able to achieve acceptable
results on the testing data set when trained on the 11 trials that comprised the training
data set. Hence, an investigation into why the three muscle activation signals could not be
successfully mapped to the elbow and joint torques was conducted. Below in figures 5.1-
5.2 are six scatter plots that depict the relationship between each of the muscle activation

signals and the joint torques.

Activation vs Elbow Torque Deltoid Activation vs Elbow Torque Tricep Activation vs Elbow Torque
05 s 0.5 . i
o> ® Subject1
04 ' ® Subec2 04
Subject3 -

03 ® Subjectd 03 A
€ o2 -~ E g
z z .
o 7
g 0.4 ‘o?; 0.1
£ o 3
£ E
B 01 29
§ § ® Subject1
202 a0 ® Subject?
w w Subjectd

0.3 0.3 ® Subjectd

04 0.4

0.5 0.5

2 4 & 8 10 12 14 0 10 20 30 40 50 60 70 80 90 100 (] 10 20 £ a0 50 &0
Bicep Muscle Activation u,, Deloid Muscle Activation u,, Tricep Muscle Activation u,,

Figure 5.1: Elbow Torque vs. Muscle Activations.

Deltoid Activation vs Shoulder Torque

Tricep Activation vs Shoulder Torque

Bicep Activation vs Shoulder Torque

® Subject1 = ® Subject1
® Subject2 §

Subject 3
® Subjectd 08

=
m

&
m

Shoulder Joint Torque (N - m)
&
-

Shoulder Joint Torque (N - m)
5

&
@

&
@

] -1 -
8 10 12 14 0 10 20 30 40 s 6 70 8 % 10 0 10 20 3 4 0 60

Bicep Muscle Activation u, Deltoid Muscle Activation u, Tricep Muscle Activation u,,

Figure 5.2: Shoulder Torque vs. Muscle Activations.

It is clear from the vertical clusters in figures 5.1-5.2 that muscle activations of rela-
tively equal value correspond to elbow and shoulder joint torque values that can span the
entire spectrum range of all four subjects. This explains why different neural network ar-
chitectures are unable to accurately predict the joint torques given the muscle activations
as the sole input. This leads to the conclusion that for this particular application of the

69

rehab robot, experimental results show that using muscle activations as an indicator for
predicting the subject’s joint torques to eventually replace the force sensor, is not reliable.
A possible reason why there is not a specific 1-to-1 mapping from EMG to joint torque
might be the fact that not enough muscles were probed for electrical activity during the
exercises. For Nasr’s MuscleNet [32], surface EMG signals were measured from 11 sites over
muscles of the right upper limb: the Serratus Anterior (SERR), Middle Deltoid (MDEL),
Supraspinatus (SUPR), Infraspinatus (INFR), Posterior Deltoid (PDEL), Pectoralis Major
(PECC), Latissimus Dorsi (LATS), Anterior Deltoid (ADEL), Middle Trapezius (MTRA),
Upper Trapezius (UTRA), and Lower Trapezius (LTRA). Delsys Trigno’s EMG software
did not provide these specific muscle groups, but having the muscle activity of these specific
muscle groups might have produced a 1-to-1 mapping from EMG to joint torque.

One might also be curious about subject 2’s large range of muscle activation, especially
in their deltoid while even reaching up to about 90% muscle activation as subject 2 traversed
the desired D-shaped trajectory. This anomaly is most likely attributed to recording an
erroneous MVC for the subject at the beginning of the session, in which subject 2 likely
did not exert their full muscle contraction in their deltoid.

5.3 Conclusion

In this chapter, we presented a cognitive human-robot interaction model (cHRI), in which
measuring a subject’s muscle activation via sEMGs was hypothesized to predict the elbow
and shoulder joint torques exerted by the subject. This would then enable the prediction
of the subject’s contribution by using equation 5.1 to calculate the force on the end-effector
Fy, such that the novel performance-based control scheme introduced in chapter 3 could
then be used. Unfortunately, many neural network architectures were not able to achieve
acceptable results on the testing data trial when trained on the 11 trials that comprised
the training data set. Experimental results showed that using muscle activations as an
indicator for predicting the subject’s joint torques to eventually replace the force sensor,
was deemed not reliable.

70

Chapter 6

Conclusion and Future Work

6.1 Thesis Summary

This thesis introduced a novel control scheme for a stroke rehabilitation robot to enable
more subject-specific adaptability, examined the role of machine learning in identifying a
rehab robot’s unknown dynamic model for model-based control, and investigated whether
combining biomechanical data with EMG data could accurately predict a user’s applied
force on the robot’s end-effector since many rehab robots already on the market are not
equipped with a force sensor on the end-effector.

To make the control scheme subject-specific, the goal for this robot was to adjust its
joint torque contribution in accordance with the user’s force-directional performance. In
particular, two performance metrics were used: (1) the root mean squared error against the
desired trajectory in order to measure the user’s positional accuracy, and (2) the percentage
of the trial duration during which the user’s applied force on the robot’s end-effector stayed
within a small tolerance of the direction of the trajectory to measure directional perfor-
mance. These two performance metrics contribute to the subject-specificity that is used by
the robot controller to adapt its applied torque values in real-time. The potential of using
this control scheme was showcased on a healthy subject. The robot was initially intended
to be used on post-stroke patients, such that this novel subject-specific performance-based
control scheme could be tested over a longer duration of time to see if any correlations
between the performance metrics described and standard clinical metrics could be drawn.
But COVID and other reasons prevented us from testing on post-stroke patients.

Model-based control of a dynamic multibody system is reliant upon the accuracy of a
model of the physical system. Computed-Torque control, in particular, is only applicable

71

when a perfect (or accurate enough) model of the dynamic system is available. Otherwise,
as the mismatch between the model of the system and the real dynamics increases, the
outer-loop feedback (e.g., proportional-integral-derivative (PID) control) term becomes
increasingly crucial to correct for this increasing error. Different machine learning control
strategies were explored to try to remove the requirement of finding an accurate model of
a dynamic system, given that the input and output data of the multibody system used
to represent its dynamics, could reliably be measured from previous trials using sensors
on the robot. However, the results of simulating these machine-learning control strategies
(DeLaN, FNN, RNN) to this particular rehab robot were not promising.

A cognitive human-robot interaction model (cHRI) between the rehab robot and a
subject user was presented since it was hypothesized that a subject’s muscle activations
(bicep brachii, tricep brachii, and deltoid) measured via SEMGs could map to the elbow
and shoulder joint torques exerted by the subject. A traditional way to convert normalized
EMG signals into the appropriate muscle joint torques 7,4 is to use a biomechanical muscle
model, such as the three-component model by A.V. Hill. However, including a general
muscle model within a multibody model introduces various drawbacks including muscle
redundancy, complex musculoskeletal geometry such as wrapping pathways, difficult-to-
fit parameters for each muscle, and parameter sensitivity. One method to alleviate the
complex muscle geometry, redundancy, and interpretation of EMG signals within a control
framework was a machine learning model (i.e., neural network) trained by experimental
data. Reliant upon accurate predictions of the subject’s elbow and shoulder joint torques,
this would enable the prediction of the subject’s force contribution on the robot’s end-
effector, such that the novel subject-specific performance-based control scheme already
introduced could be used. However, many neural network architecture configurations were
not able to achieve acceptable results on the testing data trial when trained on the 11
trials that comprised the training data set. Experimental results showed that using muscle
activations as an indicator for predicting the subject’s joint torques to eventually replace
the force sensor, was deemed not reliable.

6.2 Recommendations and Future Work
The following topics are recommended for future research:

e There were some limitations encountered with using Quanser’s Quarc real-time con-
trol software, which is a MATLAB software that generates real-time code directly
from Simulink-designed controllers and runs it in real-time on the Windows target.

72

Using its library of function blocks, Quarc is able to capture video images from a
device, such as an iPhone camera. However, Quarc is unable to conduct real-time
pose estimation on these captured images because Simulink is unable to generate
stand-alone C/C++ code for pose estimator models written in both MATLAB and
Python. It is recommended that in future studies of post-stroke robot-assisted reha-
bilitation, research should be conducted in partnership with Quanser about designing
a new Simulink function block that performs pose estimation, such that a trained
and accurate pose estimation model is embedded into a new function block that is
part of Quarc’s overall block library.

The default sample time of the control structure in Quarc is 0.002 seconds. The
iPhone camera that was intended to be used as part of the stroke patient trials
limited the video frame rate to 30 frames per second. Due to these differences in
sample rates between the robot and the video capture, 1D interpolation would have
to be performed on the pose estimation estimates of the human joint angles, such
that the sample rate would match the rate of the robot. Other metrics such as
the patient’s exerted joint torques could also be calculated for each 0.002-second
time step. It is recommended that in future studies of post-stroke robot-assisted
rehabilitation, higher frame rate cameras should be used, such that the camera could
capture images at a frame rate of at least 500 frames per second (1/0.002 seconds).

The calculated torque values displayed in figure 3.12 are inherently estimates of the
subject’s joint torque when using the rehab robot. To ensure that the values dis-
played are accurate, it’s recommended that the protocols of potential future studies
with this rehab robot incorporate a requirement for the subject to wear an upper
limb exoskeleton that can measure torque via a torque sensor. This way, the mus-
cular torque of the subject can be estimated by first measuring the applied external
torque at each joint of the exoskeleton, and then removing the inertial, Coriolis, and
gravitational torque contributions from the subject’s upper limb.

73

References

1]

O.I. Abiodun, A. Jantan, A.E. Omolara, K.V. Dada, N.A. Mohamed, and H. Ar-
shad. State-of-the-art in artificial neural network applications: A survey. Heliyon,
4(11):200-230, 2018.

O.1. Abiodun, A. Jantan, A.E. Omolara, K.V. Dada, N.A. Mohamed, and H. Arshad.
Time series forecasting using artificial neural networks methodologies: A systematic
review. Future Computing and Informatics Journal, 3(2):334-340, 2018.

R. Bertani, C. Melegari, C. Maria, A. Bramanti, P. Bramanti, and R.S. Calabro.
Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic
review with meta-analysis. Neurological Sciences, 38(9):1561-1569, 2017.

L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human pose
annotations. 2009 IEEE 12th International Conference on Computer Vision, pages
1365-1372, 2009.

P. Brown and J. McPhee. A continuous velocity-based friction model for dynamics
and control with physically meaningful parameters. Journal of Computational and
Nonlinear Dynamics, 11(5):1-6, 2016.

B. Cesqui, P. Tropea, S. Micera, and H.I. Krebs. Emg-based pattern recognition
approach in post stroke robot-aided rehabilitation: a feasibility study. Journal of
NeuroEngineering and Rehabilitation, 10(75), 2013.

B.C. Cs&ji. Approximation with artificial neural networks. Master’s Thesis, page 11,
2001.

L. Dipietro, M. Ferraro, J.J. Palazzolo, H.I. Krebs, B.T. Volpe, and N. Hogan. Cus-
tomized interactive robotic treatment for stroke: Emg-triggered therapy. IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering, 13(3):325-334, 2005.

74

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[20]

[21]

S. Dupond. A thorough review on the current advance of neural network structures”.
annual reviews in control. Annual Reviews in Control, 14:200-230, 2019.

P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multi-
scale, deformable part model. 2008 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1-8, 2008.

V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive search space reduction
for human pose estimation. 2008 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1-8, 2008.

Centers for Disease Control and Prevention. About stroke, 2022.

B. Ghannadi. Model-based control of upper extremity human-robot rehabilitation
systems. UWSpace, 2017.

B. Ghannadi, R. Sharif Razavian, and J. McPhee. Upper extremity rehabilitation
robots: A survey. Handbook of Biomechatronics, page 319, 2018.

I. Goodfellow, Y. Bengio, and A. Courville. 6.5 back-propagation and other differen-
tiation algorithms. Deep Learning. MIT Press., page 200220, 2016.

C. Gowland, P. Stratford, M. Ward, J. Moreland, W. Torresin, S. Van Hullenaar,
J. Sanford, S. Barreca, B. Vanspall, and N. Plews. Measuring physical impairment
and disability with the chedoke-mcmaster stroke assessment. Stroke, 24:58-63, 1993.

CSA Group. http://shop.csa.ca/en/canada/applications-of-electricity-in-\
health-care/cancsa-iso-14971-07-r2012/invt/27016072007, 2023.

M.P. Gunasekara, R.C. Gopura, T.S.S. Jayawardane, and S.W.H.M.T.D.
Lalitharathne. Control methodologies for upper limb exoskeleton robot. IEEE/SICE
International Symposium on System Integration, pages 19-24, 2012.

A. Hashemi. Trajectory planning and subject-specific control of a stroke rehabilitation
robot using deep reinforcement learning. UWSpace, 2021.

E. Haug. Computer aided kinematics and dynamics of mechanical systems. Allyn and
Bacon Series in Engineering, 1:64—68, 1989.

Heart and Stroke Foundation of Canada. Arms and legs. https:
//www.heartandstroke.ca/stroke/recovery-and-support/physical-changes/
arms-and-legs, 2023.

75

http://shop.csa.ca/en/canada/applications-of-electricity-in- \ health-care/cancsa-iso-14971-07-r2012/invt/27016072007
http://shop.csa.ca/en/canada/applications-of-electricity-in- \ health-care/cancsa-iso-14971-07-r2012/invt/27016072007
https://www.heartandstroke.ca/stroke/recovery-and-support/physical-changes/arms-and-legs
https://www.heartandstroke.ca/stroke/recovery-and-support/physical-changes/arms-and-legs
https://www.heartandstroke.ca/stroke/recovery-and-support/physical-changes/arms-and-legs

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

7.-G. Hou. Passive and active control for rehabilitation robotics. https://ewh.iecee.
org/conf/wcci/2016/document/tutorials/ijcnné.pdf.

S. Huang, S. Cai, G. Li, Y. Chen, and L. Xie. Variable robot-resistance rehabilitation
for upper limb based on an semg-driven mode. IEEE/ASME International Conference
on Advanced Intelligent Mechatronics, pages 814-818, 2019.

K.A. Inkol, C. Brown, W. McNally, C. Jansen, and J. McPhee. Muscle torque gen-
erators in multibody dynamic simulations of optimal sports performance. Multibody
System Dynamics, page 435452, 2020.

S. Johnson and M. Everingham. Learning effective human pose estimation from inac-
curate annotation. C'VPR 2011, pages 14651472, 2011.

P. Khoshroo. Control system and graphical user interface design of an upper-extremity
rehabilitation robot. UWSpace, 2020.

H.I. Krebs. Twenty + years of robotics for upper-extremity rehabilitation following a
stroke. FElsevier Ltd., 2018.

M. Lutter, C. Ritter, and J. Peters. Deep lagrangian networks: Using physics as model
prior for deep learning. ICLR Conference, 2019.

L. Marchal-Crespo and D.J. Reinkensmeyer. Review of control strategies for robotic
movement training after neurologic injury. Journal of NeuroEngineering and Rehabil-
itation, 6(1):1-15, 2009.

W. McNally, K. Vats, A. Wong, and J. McPhee. Rethinking keypoint representations:
Modeling keypoints and poses as objects for multi-person human pose estimation,
2022.

L.M. Mooney, E.J. Rouse, and H.M. Herr. Autonomous exoskeleton reduces metabolic
cost of human walking during load carriage. Journal of NeuroEngineering and Reha-
bilitation, 11(1):1-11, 2014.

A. Nasr, S. Bell, J. He, R.L. Whittaker, C.R. Dickerson N. Jiang, and J. McPhee. Mus-
clenet: mapping electromyography to kinematic and dynamic biomechanical variables
by machine learning. 2021.

A. Nasr, B. Laschowski, and J. McPhee. Myoelectric control of robotic leg prostheses
and exoskeletons: A review. ASME 2021 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, 2021.

76

https://ewh.ieee.org/conf/wcci/2016/document/tutorials/ijcnn6.pdf
https://ewh.ieee.org/conf/wcci/2016/document/tutorials/ijcnn6.pdf

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose esti-
mation, 2016.

E. Odemakinde. Human pose estimation with deep learning — ultimate overview in
2023, 2023.

J.L. Patton. Robot-assisted adaptive training: Custom force fields for teaching move-
ment patterns. IEEE Transactions on Biomedical Engineering, 51(4):636-646, 2004.

J.L. Patton, M.E. Stoykov, M. Kovic, and F.A. Mussa-Ivaldi. Evaluation of robotic
training forces that either enhance or reduce error in chronic hemiparetic stroke sur-
vivors. Fxperimental Brain Research, pages 368-383, 2005.

D. Pinto-Fernandez, D. Torricelli, M. del Carmen Sanchez-Villamanan, F. Aller,
K. Mombaur, R. Conti, N. Vitiello, J.C. Moreno, and J.L.. Pons. Performance evalu-

ation of lower limb exoskeletons: a systematic review. IEEE Transactions on Neural
Systems and Rehabilitation Engineering, 28(7):1573-1583, 2020.

F. Pistoia, S. Sacco, C. Tiseo, D. Degan, R. Ornello, and A. Carolei. The epidemiology
of atrial fibrillation and stroke. Cardiology clinics, 34(2):255-268, 2016.

D. Ramanan. Learning to parse images of articulated bodies. Proceedings of the 19th
International Conference on Neural Information Processing Systems, NIPS’06, pages
1129-1136, 2006.

F. Rezazadegan, J. Gengb, M. Ghirardi, G. Menga, S. Mureb, G. Camuncolib, and
M. Demichela. Risked-based design for the physical human-robot interaction (pHRI):
an overview. Chemical Engineering Transactions, 43(1):1-6, 2015.

7. Song, J. Yi, D. Zhao, and X. Li. Multilayer feedforward networks are universal
approximators. Pergamon Press, 2:359-366, 1989.

7. Song, J. Yi, D. Zhao, and X. Li. A computed torque controller for uncertain robotic
manipulator systems: Fuzzy approach. Fuzzy Sets Syst., 154:208-226, 2005.

J. Tompson, A. Jain, Y. LeCun, and C. Bregle. Joint training of a convolutional
network and a graphical model for human pose estimation. 2014 IEEE Conference in
Computer Vision and Pattern Recognition (CVPR), 2014.

Engineering ToolBox. Friction and friction coefficients, 2004.

7

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

A. Toshev and C. Szegedy. Deeppose: Human pose estimation via deep neural net-
works. 2014 IEEE Conference on Computer Vision and Pattern Recognition, page
1653-1660, 2014.

E. Washabaugh, J. Guo, C. Chang, D. Remy, and C. Krishnan. A portable passive
rehabilitation robot for upper-extremity functional resistance training. IEEE Trans-
actions on Biomedical Engineering, 66(2):496-508, 2019.

L.M. Weber and J. Stein. The use of robots in stroke rehabilitation: A narrative
review. NeuroRehabilitation, 43(1):99-110, 2018.

B. Williams, M. Toussaint, and A.J. Storkey. Modelling motion primitives and their
timing in biologically executed movements. Advances in Neural Information Process-
ing Systems, 20:1609-1616, 2008.

D.A. Winter. Biomechanics of Motor Control of Human Movement. John Wiley and
Sons, Inc., 2009.

J.M. Winters. Hill-based muscle models: A systems engineering perspective. Multiple
Muscle Systems, pages 69-93, 1990.

B. Xiao, H. Wu, and Y. Wei. Simple baselines for human pose estimation and tracking.
Proceedings of the European Conference on Computer Vision (ECCV), 2018.

Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures of
parts. 2011 IEEE Conference on Computer Vision and Pattern Recognition, pages
1385-1392, 2011.

A. Zell. Simulation of neural networks. Addison-Wesley, (1):73, 1994.

78

APPENDICES

79

Appendix A

Graphical User Interface

The purpose of the graphical user interface (GUI) is to provide the therapist, patient, and
researcher, with a simple interactive tool to control the robot as they desire. The layout
of the GUI is described in the following sections.

A.1 Instructions Tab

Below in figure A.1 is the first tab of the GUI. These steps outlined are aimed to provide
the therapist and patient with enough information to undergo a patient trial.

A.2 Registration Tab

Below in figure A.2 is the second tab of the GUI. This is where the patient’s first and last
names are recorded, as well as the session and trial number. Note that a trial was defined
as the time between the pushing of the start button and the pushing of the stop button.
A session was defined to be a distinct sitting that could consist of multiple trials.

A.3 Robot Functionality Buttons

Below in figure A.3 is the group of push buttons that control the functionality of the robot
being driven by a Simulink control model. This button group is shown in every single tab

30

of the GUI, including the registration tab (figure A.2), such that if the patient or therapist
wants to stop the trial at any time, the delay in carrying out this desire is not due to a
tab that is currently being displayed not having this functionality.

The build model button generates the real-time C/C++ code for the Simulink model
to be automatically downloaded by the robot hardware. The connect button connects the
Simulink model to this real-time code on the robot via external mode. The disconnect
button disconnects the Simulink model from the real-time code on the robot. The start
button (in green) starts the Simulink in external mode. The stop button (in red) stops
the Simulink in external mode. And the save data button simply saves the real-time
recorded MATLAB data under the file name identified by the information provided in the
registration tab.

A.4 Human Joint Angles Tab

Below in figure A.4 is the sixth tab of the GUI. This tab depicts the range of motion of the
patient during their trial, as part of a post-trial report that can be seen by the therapist
and patient.

A.5 Parameters Tab

A.5.1 Pose Estimation Using Camera

In the scenario when a camera is selected to be used for pose estimation, the idea is that any
pre-trained computer vision pose estimator can be used on a video; once a video of a patient
trial is finished recording, the joint angle estimates can then be obtained by applying a
pre-trained pose estimator on that recorded video. The reason that pose estimation can
only be performed after the entire video is recorded is that Simulink is unable to generate
stand-alone C/C++ code for the pose estimator models (both MATLAB and Python) and
all of the MATLAB commands that would record a video in real-time with the robot.
Hence, another GUI is essentially used in parallel on a separate MATLAB session, in order
to start and stop the recording of a video. Below in figure A.5 is the video tab of this GUI,
which essentially shows the real-time frame of the camera video. In an effort to synchronize
the time instances of the robot data and video, the start and end time stamps are recorded
for both the robot data and video.

81

It is also important to note that the frame rate of the video is 30 frames per second,
and the sample rate of the data acquisition in Simulink is 0.002 seconds. Due to these
differences in sample rates between the robot and the video capture, 1D interpolation has
to be performed on the pose estimation estimates of the human joint angles, such that the
sample rate matches the rate of the robot. Other metrics such as the patient’s exerted
joint torques can also then be analytically calculated for each 0.002-second time step. In
the following subsection is the corresponding parameters tab.

Below in figure A.6 is the parameters tab, which is the third tab of the GUI. In this
tab, the user inputs the radius of the half-circle trajectory (or D trajectory), the time to
complete one half-circle, and the centre of the straight line of the half-circle. The human
parameter inputs are necessary inputs for the human joint velocity (equation 3.31), joint
acceleration (equation 3.32), and joint torque calculations (equation 3.20). These include
the mass of the patient, the length of their forearm, and the length of their upper arm.

A.5.2 Pose Estimation Without Camera

Sometimes the patient or therapist may be uncomfortable having a camera phone over the
patient’s head. Therefore, the option to have pose estimation be performed on a patient
without the use of a camera is presented. This requires the use of the regression technique.
The regression technique relies on the assumption that the patient’s shoulder joint position
is known and does not move throughout the duration of the trial. Specifically, the regression
technique involves solving equation 3.28 for €z, and 6z, while z, and y, are known. In
the following subsection is the corresponding parameters tab.

Below in figure A.7 is the parameters tab, which is the third tab of the GUIL. In this
tab, the user inputs the radius of the half-circle trajectory (or D trajectory), the time to
complete one half-circle, and the centre of the straight line of the half-circle. The human
parameter inputs are necessary inputs for the human joint velocity (equation 3.31), joint
acceleration (equation 3.32), and joint torque calculations (equation 3.20). These include
the mass of the patient, the length of their forearm, and the length of their upper arm.
The shoulder joint location inputs are required for the reasons outlined before.

A.6 Human Joint Torques Tab

Below in figure A.8 is the seventh tab of the GUI. This tab depicts the range of torques
exerted by the patient during their trial, as part of a post-trial report that can be seen by

82

the therapist and patient.

A.7 Trajectory Performance Tab

The performance of the patient is split into two categories: positional performance and
the subject’s directional performance, which is a function of their force exertion on the
robot’s end-effector where the force sensor is located. The reason to split a patient’s per-
formance into these categories is that there exists a scenario when the patient’s positional
performance is very good, but the magnitude level of force they exert on the end-effector
is very low; the patient is not contributing any effort, but rather essentially “just going
for the ride”. The reverse may also happen in which the patient’s positional performance
is very poor, but the magnitude level of force they exert on the end-effector can at times
be very high. This scenario may indicate that the patient is exhibiting more spasmodic
behaviour, given that the patient is attempting to follow the desired trajectory. Therefore,
splitting the performance report into these two complimentary categories should provide
a more comprehensive evaluation of the motor recovery of the patient.

Below in figure A.9 is the fourth tab of the GUI. This tab depicts the positional per-
formance of the patient’s hand in both the x and y directions of the planar surface, as well
as the patient’s directional performance, which is a function of their force exertion on the
robot’s end-effector where the force sensor is located, with respect to the desired trajectory
direction for each time instance. Also included in this tab is a graph that, at the end of
the trial, will show the trajectory performance of the patient with respect to the desired
trajectory (D shape/half circle).

A.8 End-Effector Force Tab

Below in figure A.10 is the fifth tab of the GUI. This tab depicts the range of forces exerted
by the patient on the end-effector in the x and y directions during their trial, as part of a
post-trial report that can be seen by both the patient and their therapist.

83

4| MATLAB App - | P

Instructions Registration Parameters Trajectory Performance End-Effector Force Human >

1.) Input Patient information under the "Registration” Tab.

Press the "Register" button.

2.) Input the Parameters under the "Parameters” Tab. Press the "Set" button.
3.) Press the "Build Model" button.

4.) Press the "Connect Model" button, and the trajectory window should pop up.

Be sure to keep your chest against the table to prevent shoulder movement.

5.) If you want to start, place your hand on the end-effector.

If not, press the "Disconnect Model” button.

6.) Press the "Start Model” button.

7.) To stop the robot, press the "Stop Model” button.

8.) Press the "Save Data" button.

Figure A.1: GUI tab showing the instructions for the patient and therapist to follow.

84

4 MATLAE App — | *

Instructions Fegistration Parameters Trajectory Performance End-Effector Force Human >

Patient Information

First Mame | |

Last Mame | |

Session # | |

Trial# | |

| Register | | Reset |

Fobot Functionality Buttons

[Build Model | | Connect Model | . Stat
| SaveData | | Disconnect Model | _

Figure A.2: GUI tab showing the registration fields to be filled out by the patient.

Robot Functionality Buttons

| Build Model | | Connect Model | o st
| SaveData | | Disconnect Model | _

Figure A.3: Push buttons that control the functionality of the robot being driven by a
Simulink control model.

85

- a X

Human Joint Torques

4 MATLAE App
« sters Trajectory Performance End-Effector Force Human Joint Angles
Shoulder Joint Angle Elbow Joint Angle
1 1
= =
(k] (k]
))
" 05 " 05
L=y] L=y]
£ £
D A A A A ' D A A A A '
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time (s) Time (s)
Range of Motion (degrees) | L‘I'| Range of Motion (degrees) | 0
| Plot Joint Angles & Output Merics |
Fobot Functionality Buttons
" Build Model | | Connect Model | . Stat

| Disconnect Model | _

. SaveData |

Figure A.4: Human joint angles tab, which shows the time series of the joint angles and

the corresponding range of motion.

86

[#] MATLAB App
Video

Figure A.5: Video Tab of the Recording GUI.

87

4 MATLAE App — O *
Instructions Fegistration Parameters Trajectory Performance End-Effector Force Human >

D Trajectory Parameters Human Parameters

Radius (m) | 0
Mass (Ibs.) | 0

Time for 1D (s) | 0
Forearm Length (in) | L‘I'|

xLeft(m) | 0
Upper Arm Length (in) | 0

y Centre (m) | {r|

(Set 1 | Clear

Fobot Functionality Buttons

[Build Model | | Connect Model | . Stat
| SaveData | | Disconnect Model | _

Figure A.6: Parameters tab using a camera.

88

4 MATLAE App — | *

Instructions Fegistration Parameters Trajectory Performance End-Effector Force Human >

D Trajectory Parameters Human Parameters

e
A —
Tmefor1D(s)[o xm [0

Forearm Length (in) Ijl

e E— N —
Upper AmLength(n) | 0]

y Centre (m) Ijl

Shoulder Joint Location

(Set 1 | Clear

Fobot Functionality Buttons

[Build Model | | Connect Model | . Stat
| SaveData | | Disconnect Model | _

Figure A.7: Parameters tab using no camera.

89

4 MATLAE App

— O *
« sters Trajectory Performance End-Effector Force Human Joint Angles Human Joint Torques
1 Shoulder Joint Torque 1 Elbow Joint T2 ™ @ Q) 5
E E
= =
" 05 " 05
L=y] L=y]
g g
D A A A A ' D A A A A '
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time (s) Time (s)
Range of Torque (N.m) | L‘I'| Range of Torque (M.m) | 0

| Plot Jeint Torgues & Output Metrics |

Fobot Functionality Buttons
| Build Model |

| Disconnect Model | _

| SaveData |

Figure A.8: Human joint torques tab, which shows the time series of the joint torques and
the corresponding range of torques exerted by the patient.

90

4 MATLAB App — O X

Instructions Registration Parameters Trajectory Performance End-Effector Force Human »

Positional Performance

End-Effector Trajectory

N —

08} y_RMSE (mm) Ijl
E 06} RMSE - Root Mean Squared Error
> 04

0.2

Directional Performance
0 \
0 02 0.4 0.6 0.3 1

| Qutput Performance |

Fobot Functionality Buttons

[Build Model | | Connect Model | . Stat
| SaveData | | Disconnect Model | _

Figure A.9: Trajectory performance tab, which shows both the positional and directional
performance of the user during their trial.

91

4 MATLAE App

Instructions

— O *
Fegistration Parameters Trajectory Performance End-Effector Force Human >
] X-Force : Y-Force
=3 =3
& 05 805
= =
L L
0 0
0 0.2 0.4 0.6 0.2 1 0 0.2 0.4 0.6 0.2 1
Time (s) Time (s)
Range of Force (M) | L‘I'| Range of Force (N) | 0

| Plot Forces & Output Metrics |

Fobot Functionality Buttons
| Build Model | | Connect Model |

| SaveData |

| Disconnect Model |

Figure A.10: Force performance tab, which shows the time series of the 2D force exerted
by the patient on the end-effector and the corresponding range of forces.

92

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Motivation and Thesis Goals
	Thesis Organization

	Background and Literature Review
	Overview
	Stroke Rehabilitation Robotics
	Planar Rehabilitation Robot Control
	Pose Estimation
	Traditional Pose Estimation Methods
	Deep Learning

	Machine Learning Control Strategies
	Feed-forward Neural Network (FNN)
	Recurrent Neural Network (RNN)
	Deep Lagrangian Network (DeLaN)

	Summary

	Performance-Based Assistive Control
	Introduction
	Rehabilitation Robot
	Hardware
	Software
	Kinematics
	Dynamics

	2D Human Arm Model
	Kinematics
	Dynamics

	Physical Human-Robot Interaction Model (Contact Force)
	Performance-Based Control Scheme
	Experimental Results on a Healthy Subject
	Subject-Specific Trajectory Performance Results
	Pose Estimation Results
	Human Joint Torque Results

	Conclusion

	Using Machine Learning for Computed-Torque PID Control
	Chapter Overview
	Computed-Torque PID Control
	Training Data
	Simulations Results
	Deep Lagrangian Network (DeLaN)
	Feed-forward Neural Network (FNN)
	Recurrent Neural Network (RNN)

	Conclusion

	EMG-Based Assistive Control
	Control Scheme Overview
	Experiments
	Procedure
	Results

	Conclusion

	Conclusion and Future Work
	Thesis Summary
	Recommendations and Future Work

	References
	APPENDICES
	Graphical User Interface
	Instructions Tab
	Registration Tab
	Robot Functionality Buttons
	Human Joint Angles Tab
	Parameters Tab
	Pose Estimation Using Camera
	Pose Estimation Without Camera

	Human Joint Torques Tab
	Trajectory Performance Tab
	End-Effector Force Tab

