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Abstract

A physical theory of everything is supposed to tell us: (1) The dynamical laws for matter and
gravity; (2) The boundary condition of the universe; (3) The relation between the theory and
experience. I present a personal assessment for different possibilities in addressing these tasks,
which leads to the following picture for the most likely case.

The dynamical laws for matter and gravity are captured by a joint matter-gravity path integral.
The boundary condition is such that all configurations are summed over indifferently. The interior
condition selects for individual experiences and nothing else.

A human life is characterized by a sequence of experiences. Probabilistic predictions for each
individual experience can be found in path integrals of the above form, but no collective account
for joint experiences can be given. Individual experiences are related by their enabling conditions,
which encode memories. Comprehension of objects are constructions, derived from regularities
and repetitive patterns among the experiences.
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Chapter 1

Introduction

1.1 Objectives

This thesis is an attempt toward a physical theory of everything. In this thesis, a physical theory
of everything is taken to tell us:

1. The dynamical laws for matter and gravity.

2. The boundary condition of the universe.

3. The relation between the theory and experience.

None of these is a solved problem, and the objective of the thesis is to work toward the true
answers.

1.2 Strategic discussion

For each topic listed above, there are different possibilities for the true answer. It is stupid to pick
an answer and hope it is true. It is wiser to look for the true answer.

One way to find out the true answer is to collect a list of possibilities, estimate their chances,
and constantly update the list and credence upon new inputs. In this section I offer my list, and
explain the reasons behind the credence assignments.

1.2.1 Matter

For the dynamical law of matter, the Standard Model of particle physics provides the current best
candidate theory. Due to issues such as dark matter, there remains the question what theory
captures the full truth of Nature. My guess for the possibilities are:

1. Standard Model as it stands, or a straightforward extension

Credence: > 70%.
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A straightforward extension means an alternative theory with a modified set of matter
species or/and a modified Lagrangian (e.g., adding dark matter to the Standard Model),
but still within the functional integral framework.

My confidence in this possibility is high, because of the empirical success of the Standard
Model and the functional integral framework.

2. Something else

Credence: < 30%.

1.2.2 Gravity

The dynamical law for gravity may be captured by a theory of quantum gravity, or something
else. My guess for the possibilities are:

1. Geometric-variable path integrals

Credence: ∼ 50%.

In General Relativity, gravity is captured by spacetime geometry. Straightforwardly, path
integrating over spacetime geometries yield quantum theories of gravity. Examples include
versions of simplicial quantum gravity (quantum Regge calculus) and dynamical triangula-
tion.

I assign the highest credence to this possibility, because it is hardest to argue against. In con-
trast to most other theories discussed below, I do not know any way to rule out Lorentzian
simplicial quantum gravity (Chapter 2) by comparing with known facts. To know if the
extant theories in this category are true, the challenge is to develop techniques to evaluate
the path integrals efficiently, draw predictions, gather data, and test against yet unknown
facts.

2. Gauge-variable path integrals

Credence: ∼ 20%.

General relativity can be reformulated in terms of frame fields. This leads to alternative
gravitational path integrals based on gauge variables. Examples include Ponzano-Regge
models, and various spin foam models.

For geometric variables, the path integral sum is constrained by inequalities to Lorentzian
or Euclidean geometries. For gauge variables, it is far less clear which configurations should
be included in the path integral. The many different answers give rise to a large variety of
gauge-variable path integrals, of which only a small portion have been studied in detail.
The pool is large enough for one to be optimistic that at least one member could be true,
but due to limited understanding of the models, there lacks sufficient reason to single out
any candidate as particularly promising. Therefore I assign a modest credence.

3. Causal set path integrals

Credence: ∼ 3%.

The causal set approach captures gravity by fundamentally discrete sets, and provides ex-
amples for gravitational path integrals based on neither geometric nor gauge variables.
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Causal set path integrals face some long-standing issues. A causal set does not carry a
spacetime dimension, nor a tangent space structure to couple to fermions. Consequently,
no extant causal set path integral can be viewed as a viable candidate for the true theory of
quantum gravity, and the faint hope has to be set on future inventions.

4. Holography

Credence: ∼ 5%.

As far as our universe goes, AdS/CFT correspondence seems to only supply false theories,
because our universe is not AdS.

There is the hope that some dS holography theory applicable to our universe will be in-
vented in the future. So far so bad, after many years, so my credence is low.

5. Wheeler-DeWitt equation

Credence: ∼ 1%.

Defining a theory of quantum gravity (e.g., Canonical loop quantum gravity; quantum ge-
ometrodynamics) by the Wheeler-DeWitt equation Hψ = 0 seems to me to be misguided
from the beginning, due to its focus on ψ, instead of empirical predictions. Unlike in un-
dergraduate quantum mechanics, where p = |ψ|2, there is no clear way to reach empirical
probabilistic predictions p from ψ in the present context.

To derive empirical probabilities, one could adopt a functional integral approach (Chap-
ter 6). If one insists on a differential equation approach, one could parameterize the family
of mathematical quantities which do yield empirical probabilities, and try to derive an equa-
tion of how these quantities change as the parameters vary. This equation may have little to
do with the Wheeler-DeWitt equation, which means one should not focus on the Wheeler-
DeWitt equation in the first place.

6. Other known approaches

Credence: ∼ 5%.

The other extant approaches I am know of are all quite premature. For instance, functional
renormalization group asymptotic safety, developed in the Euclidean setting, is inapplicable
in the Lorentzian setting. Perturbative approaches, limited to the perturbative setting, are
capable of neither offering a full theory of quantum gravity, nor addressing questions about
black hole interior and quantum cosmology, where quantum gravity is actually in need.
String theory turns to holography or the distant dream of M-theory to address the challenge
for a non-perturbative formulation. The former case does not seem promising, as discussed
above, while the latter dream seems to remain distant.

Since these are all long-standing issues, unsolved not due to the lack of trying, my credence
is low.

7. Something else

Credence: ?

It could be that the true theory is not a quantum theory, or a quantum theory in some
brand new approach. I find it difficult to estimate the chance for this possibility, so leave it
unspecified.
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1.2.3 Boundary condition

The task of determining the boundary condition of the universe is mostly actively studied in
quantum cosmology. I will discuss the possibilities in detail in Chapter 7. Very briefly, my guess
for the possibilities are:

1. No-boundary proposal

Credence: < 1%.

Issues: Euclidean path integral diverges; no first-principle justification for complex con-
tours; ambiguity in the choice of contours.

2. Tunnelling proposal

Credence: < 10%.

Issues: Ambiguity beyond simple models; lack of first-principle justification.

3. Indifference proposal (Chapter 7)

Credence: < 20%.

Issues: Ambiguities in the boundary condition; How does time asymmetry arise?

4. New no-boundary proposal

Credence: < 1%.

Issues: The Wheeler-DeWitt equation framework is misguided to start with (Section 1.2.2).

5. Other proposals for quasi-Lorentzian path integrals

Credence: < 10%.

Issues: Ambiguity beyond simple models; lack of first-principle justification.

6. Something else

Credence: ?

1.2.4 Experience

The task of relating theory to experience is mostly actively considered in quantum foundations.
Specifically, candidate interpretations can usually be recast as possibilities to relate theory to
experience. I will discuss the possibilities in detail in Chapter 6. Very briefly, my guess for the
possibilities are:

1. Decoherent histories

Credence: < 3%.

Issues: How to select histories to embed experiences? Why embed experiences in histories
at all?
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2. Everettian interpretations

Credence: < 3%.

Issues: How to justify the Schrödinger equation in quantum gravity? How does time-
oriented branching structure arise from no time-orientation? Are the reasons given for
the emergence of probability in a deterministic setting really valid?

3. Copenhagenish interpretations (including QBism and relational quantum mechanics)

Credence: ∼ 5%.

Issues: How to phrase the interpretations in terms of the physical theories (e.g., Standard
Model) at all? In terms of the physical theories, what are agents, interaction, ψ, observer,
and/or fact? Once formulated in terms of the physical theories, what non-superfluous
element do the interpretations add at all?

4. Minimal prescription (Chapter 6)

Credence: ∼ 40%.

Issues: Can the theory of experience invoked to determine selection rules ever be found?

5. Collapse models and Bohmian mechanics

Credence: < 5%.

Issues: extant model are already falsified by empirical data from particle physics.

6. Something else

Credence: ∼ 50%.

1.3 The big picture

Combining the most likely cases from the above assessment yields the following picture for a
theory of everything.

The dynamical laws for matter and gravity are captured by a joint matter-gravity path integral
(Chapter 2, Chapter 6). The boundary condition is such that all configurations are summed over
indifferently (Chapter 7). The interior condition selects for individual experiences and nothing
else (Chapter 6).

A human life is characterized by a sequence of experiences. Probabilistic predictions for
each individual experience can be found in path integrals of the above form, but no collective
account for joint experiences can be given (Chapter 6). Individual experiences are related by
their enabling conditions, which encode memories (Chapter 6). Comprehension of objects are
constructions, derived from regularities and repetitive patterns among the experiences.

1.4 Outline and references

Here is a broad outline of the rest of the thesis, which exposes the above big picture in more
detail:
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• Chapter 2 based on [2] introduces Lorentzian simplicial quantum gravity.

• Chapter 3 based on [3] and Chapter 4 based on [4] present some modest attempts toward
meeting the challenge mentioned in Section 1.2.2, namely, to develop techniques to evalu-
ate the path integral efficiently, draw predictions, gather data, and test against yet unknown
facts.

Some additional relevant works (left out of the thesis for brevity) can be found in [5, 6].
In [7], it is shown that Lorentzian simplicial quantum gravity realizes superposition of time
order.

• Chapter 5 based on [8] explains how singularities are avoided in Lorentzian simplicial
quantum gravity. The idea has wider implications, since it applies to all gravitational path
integrals that exclude singular spacetimes by definition.

• Chapter 6 based on [9] presents a prescription to extract empirical predictions from path
integral theories of everything. There one could also find criticisms against several popular
quantum interpretations in the context of theory of everything.

Some additional relevant works (left out of the thesis for brevity) can be found in [10, 11].

• Chapter 7 based on a paper to appear develops a proposal for the boundary condition of
the universe. The idea is to sum over all path integral configurations indifferently. An appli-
cation to de Sitter minisuperspace model illustrates how the expected empirical predictions
could be obtained.

• Chapter 8 based on [1] presents a proposal to understand the Standard Model for particle
physics as a theory of particles and strings, as opposed to fields, in exchange for a better
conceptual understanding of gauge theories.

An additional relevant work (left out of the thesis for brevity) is [12].
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Part I

Gravity
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Chapter 2

Complex, Lorentzian, and Euclidean
simplicial quantum gravity: numerical
methods and physical prospects

Evaluating gravitational path integrals in the Lorentzian has been a long-standing
challenge due to the numerical sign problem. We show that this challenge can be
overcome in simplicial quantum gravity. By deforming the integration contour into the
complex, the sign fluctuations can be suppressed, for instance using the holomorphic
gradient flow algorithm. Working through simple models, we show that this algorithm
enables efficient Monte Carlo simulations for Lorentzian simplicial quantum gravity.

In order to allow complex deformations of the integration contour, we provide a man-
ifestly holomorphic formula for Lorentzian simplicial gravity. This leads to a complex
version of simplicial gravity that generalizes the Euclidean and Lorentzian cases. Out-
side the context of numerical computation, complex simplicial gravity is also relevant
to studies of singularity resolving processes with complex semi-classical solutions.
Along the way, we prove a complex version of the Gauss-Bonnet theorem, which may
be of independent interest.

2.1 Introduction

To define a path integral, one needs to specify a way to enumerate the configurations to be
summed over. For a non-relativistic particle, it is common is to introduce a lattice of discrete time
steps, sum over piecewise linear paths across these steps, and take the continuum limit of lattice
spaces going to zero [13].

For gravity, one could similarly introduce a simplicial lattice, sum over piecewise flat geome-
tries on the lattice characterized by the edge lengths, and take the limit of lattice refinement
(Fig. 2.1). Historically, this method follows from Regge’s insight [14] to use piecewise flat ge-
ometries to approximate curved space(times) at the classiccal level. Regge’s classical approach
is usually referred to as Regge calculus, or simplicial gravity, while the quantum path integral
based on it is usually referred to as quantum Regge calculus, or simplicial quantum gravity
[15, 16, 17, 18, 19].
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Figure 2.1: Simplicial lattice refinement.

As a non-perturbative path integral approach, simplicial quantum gravity has a clear merit.
It is known how to couple to the matter species of the Standard Model (see e.g., Chapter 6 of
Hamber’s textbook [18] and references therein).

On the other hand, Euclidean quantum gravity faces the conformal instability problem [20].
This is manifested as the problem of the spikes for Euclidean simplicial quantum gravity. In
concrete 2D models, it is shown that configurations with diverging edge lengths dominate the
path integral, even when the total spacetime area is bounded [21]. One view is that only the
weak coupling phase is rendered ill by the spiky configurations, but the strong coupling phase
stays healthy [22]. A more pessimistic view is that conformal instability poses a lethal threat to
Euclidean simplicial quantum gravity.

Whatever conformal instability actually implies about Euclidean quantum gravity, the case
is different for the Lorentzian. For 2D simplicial quantum gravity it can be shown that the
Lorentzian and Euclidean theories are inequivalent, and that spikes are absent in the Lorentzian
where spacetime configurations are equipped with causal structures [23, 5]. 1 The question
about higher dimensions is open, but the prospect that spikes are absent in the Lorentzian in
general, and the fact that spacetime is Lorentzian in Nature form motivations to study Lorentzian
simplicial quantum gravity.

Apart from a few works [23, 24, 25, 26, 27, 5], the path integrals of Lorentzian simplicial
quantum gravity have not been studied much in the past.2 Because of the numerical sign problem,
naive Monte Carlo simulations do not work efficiently in the Lorentzian as in the Euclidean. This
has remained a major obstacle for quantitative studies of Lorentzian simplicial quantum gravity.

In this work we propose to generalize simplicial quantum gravity to the complex domain.
This allows us to apply the techniques of complex contour deformation developed in recent years
to alleviate the sign problem [30, 31]. By a higher dimensional version of Cauchy’s integration
theorem, a path integral with a real integration contour can equally be evaluated along a complex
contour if the two contours are related across a region where the integrand is holomorphic. The
sign problem could be milder on the deformed contour. As reviewed in [31], this idea has been
successfully applied to various lattice field theories of matter. It has also been applied to analyze
gravitational propagators for spin-foam models in the large spin limit [32].

1The proof of the absence of spikes in [23] assumes that the causal signature of simplicial lattice edges are fixed
under the path integral. In [5] this assumption is dropped. It is shown that spikes are still absent, provided that
causally irregular points with no lightcones attached are prohibited.

2In this statement we mean by simplicial quantum gravity the formalism with dynamical lengths. The variation of
simplicial quantum gravity with fixed lengths but dynamical lattice graphs has been extensively studied in the form of
causal dynamical triangulation [28, 29].
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Here we show that the complex contour deformation method also works for Lorentzian simpli-
cial quantum gravity. Monte Carlo simulations are performed to compute the expectation value of
spacetime lengths in 1+1D using the holomorphic gradient flow algorithm (also called the gener-
alized thimble algorithm) [33, 34, 31]. It is found that the sign fluctuations are largely suppressed
on suitable complex contours. As far as we know, this constitutes the first non-perturbative com-
putation of Lorentzian simplicial gravitational path integrals. It opens the possibility to inves-
tigate questions about quantum gravity non-perturbatively and quantitatively using Lorentzian
simplicial quantum gravity.

Notably, the expectation values computed on the complex contours are directly the results
of interest. There is no analytic continuation to Euclidean spacetime like in causal dynamical
triangulation [28], nor analytic continuation of parameters in the action like in causal sets [35].
These procedures face the open problem of inverse analytic continuation, which does not arise in
the method used here.

Besides overcoming the sign problem, another reason to consider complex simplicial quantum
gravity is to study singularity resolving processes. Quantum theory assigns non-zero probabilities
to certain processes characterized by boundary conditions admitting not real, but complex semi-
classical solutions. A standard example is particle tunneling [36, 37, 38]. It is conceivable that
cosmological and black hole singularity resolving processes (see e.g., [39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55]) fall into the same category [56, 57, 58, 59, 60, 61, 62, 27].
Lorentzian simplicial quantum gravity provides a formalism to compute the probabilities for such
processes. To analyze the semi-classical solutions, the formalism needs to be generalized to the
complex domain.

Although simplicial quantum gravity in the complex domain has been studied before [56, 63,
64, 65, 66, 67, 68, 69, 70], the complex theory is reached by analytically continuing the Euclidean
theory. In addition, these works concentrated on symmetry-reduced models.

In this work we specify Lorentzian simplicial gravity in arbitrary dimensions and without sym-
metry reduction with manifestly holomorphic expressions. Upon analytic continuation, the holo-
morphic expressions define simplicial gravity in the complex domain. The path integrals based
on this complex action encompass both Lorentzian and Euclidean simplicial quantum gravity as
special cases with different integration contours.

Along the way, we show that the celebrated Gauss-Bonnet theorem admits a complex gener-
alization. This mathematical results may be of independent interest.

The paper is organized as follows. In Section 2.2 and Section 2.3, we review the geometric
quantities of length, volume, and areas of Euclidean simplicial gravity, and generalize the quanti-
ties to the Lorentzian and complex domains. In Section 2.4 we define simplicial gravitational path
integrals in the Lorentzian and complex domains in terms of manifestly holomorphic expressions.
In Section 2.5 we review the holomorphic gradient flow algorithm for numerical computations
of path integrals with complex actions. Starting in Section 2.6 we specialize to 2D simplicial
quantum gravity and present the formulas needed for applying the holomorphic gradient flow al-
gorithm. Along the way we prove a complex version of the Gauss-Bonnet theorem. In Section 2.7
we present numerical results that overcome the sign problem. In Section 2.8 we finish with a
discussion.

10



Figure 2.2: A simplex with labelled vertices i and edge vectors ei.

2.2 Lengths and volumes

In simplicial gravity, the basic variable is the squared length, and the Einstein-Hilbert action is
written in terms of volume and angles. (See Hamber’s textbook [18] for a comprehensive and
lucid introduction to Euclidean simplicial quantum gravity.) In this section and next, we start by
presenting length, volume and angles for simplicial geometry in the Euclidean domain, and then
generalize these quantities to the Lorentzian and complex domains.

2.2.1 Squared length as the basic variable

Given a metric field gab on a manifold, the squared length σ of a line γ segment is given by

σ =

∫
γ
ds2, (2.1)

where ds2 = gabdx
adxb is the line element.

In simplicial gravity each lattice edge e has a squared lengths σe with γ taken along the edge.
In the Euclidean domain, σ ≥ 0. In the Lorentzian domain, we choose the signature convention
that σ > 0 for spacelike intervals, σ < 0 for timelike intervals, and σ = 0 for lightlike intervals.

In a continuum field theory, the basic gravitational variable is usually taken to be the metric
field gab, and the squared length is derived from gab using (2.1). In contrast, in simplicial gravity
the basic variable is usually taken to be the squared lengths σ on the lattice edges. A gravitational
configuration is given in terms of the squared length on the edges, from which the metric can be
derived as follows.

Let a d-simplex be given and label the vertices by 0, 1, · · · , d (Fig. 2.2). Within the simplex we
set up a coordinate system whose basis vectors ei for i = 1, · · · , d point from vertex 0 to vertex i.
Define a dot product · by

ei · ej =
1

2
(σ0i + σ0j − σij), (2.2)

where σij for i, j = 0, 1, · · · , d are the squared lengths of the edges connecting vertices i and j.
Using the metric

gij =
1

2
(σ0i + σ0j − σij), (2.3)
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the dot product of any pair of vectors u = uiei and v = viei can be computed as u · v = giju
ivj ,

where the Einstein summation convention is used.

The metric (2.3) is the simplicial analog of the continuum metric. In the continuum, squared
lengths are computed through ds2 = gabdx

adxb. On a simplicial lattice, edge squared lengths are
computed through

σ = v · v = gijv
ivj , (2.4)

where v is the edge vector. For edges containing vertex 0, v = ei, and v · v = gii = σ0i. For other
edges, v = ei − ej , and v · v = gii − gij − gji + gjj = σij .

The simplex is understood to have a homogeneous interior. For a line segment within the
simplex, the square length is computed by the same formula (2.4) where v is the vector for the
line segment.

2.2.2 Complexifying strategy

In complexifying simplicial geometry, we adopt a “squared length based” methodology. After
identifying a quantity of interest, such as volumes and angles, we express it as a function of
the squared lengths. The function is chosen to agree with known expressions in the Lorentzian
and/or Euclidean domains,where the squared lengths take real values. In addition, the function
should be holomorphic if possible to facilitate the deformations of integration contours when we
study of the quantum theory.

Suppose the above two requirements can be met. Then we can analytically continue the
domain of the function to complex squared lengths. When multi-valued functions such as the
square root and the log are present, we will extend the domain to be the corresponding Riemann
surfaces.

As an example, consider the (linear) length defined by l =
√
σ. This function is holomorphic

away from the branch point σ = 0. In the Euclidean domain l > 0. In the Lorentzian domain
l > 0 for spacelike edges, and l is positive imaginary for timelike edges in the current choice of
the positive branch for the square root.

2.2.3 Volumes

The squared length and length given above are special cases of squared volumes and volumes.

In the continuum, let s be a simplex defined by some unit vectors. Suppose the metric
is constant in the region of the simplex. Then the squared volume for the simplex is V =∫
s det gab(x) d

Dx = 1
d! det gab, where 1

d! arises because this is for a simplex rather than a hy-
percube.

On a simplicial complex, define the squared volume of a d-simplex by

V =
1

(d!)2
det gij , (2.5)
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where gij as defined in (2.3) is a function of the edge squared lengths. An equivalent expression
that is manifestly symmetric in the squared lengths is the Cayley-Menger determinant

V =
(−1)d+1

2d(d!)2

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 . . . 1
1 0 σ01 σ02 . . . σ0d
1 σ01 0 σ12 . . . σ1d
1 σ02 σ12 0 . . . σ2d
...

...
...

...
. . .

...
1 σ0d σ1d σ2d . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.6)

The volume V of a d-simplex is defined by

V =
√

V. (2.7)

Both V and V are defined for complex squared lengths. In (2.7) the squared volume is taken to
live on the Riemann surface of the square root function. V is holomorphic as a function of the
squared lengths away from the branch points where V = 0.

In the Euclidean domain, V > 0. In the Lorentzian domain, V ≤ 0. The positive branch for the
square root is chosen so that V is positive imaginary or zero for Lorentzian simplices.

Example 1. In lower dimensions some familiar expressions are recovered. In 1D the volumes derived
from (2.6) and (2.7) are

V =σ01, (2.8)

V =
√
σ01, (2.9)

which reproduce the length formulas. In 2D the volumes for a triangle t derived from (2.6) and (2.7)
are

V =
1

16

(
−σ201 − σ202 − σ212 + 2σ01σ02 + 2σ01σ12 + 2σ02σ12

)
, (2.10)

V =
1

4

√
−σ201 − σ202 − σ212 + 2σ01σ02 + 2σ01σ12 + 2σ02σ12, (2.11)

which reproduce Heron’s formula for triangle areas.

2.2.4 Generalized triangle inequalities

The squared distances must obey certain generalized triangle inequalities to describe Euclidean
and Lorentzian simplices.

In the Euclidean domain, a simplex s obeys

V > 0 for all subsimplices of s including s itself. (2.12)

For example, for a triangle this means the squared area and the squared lengths are positive:

V =
1

16

(
−σ201 − σ202 − σ212 + 2σ01σ02 + 2σ01σ12 + 2σ02σ12

)
> 0, (2.13)

σ01, σ02, σ03 > 0. (2.14)
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Figure 2.3: A 3D timelike simplex can have a spacelike subsimplex 012 in addition to timelike
subsimplices such as 013.

In the Lorentzian domain, a simplex s obeys [24, 26]

Vs < 0; and Vr < 0 =⇒ Vt <= 0 for all t ⊃ r. (2.15)

A simplex is timelike if V < 0, and spacelike if V > 0. In contrast to the Euclidean domain
where all simplices and subsimplices have the same causal signature (spacelike), in the Lorentzian
domain the subsimplices are allowed to be both timelike and spacelike Figure 2.3. The Lorentzian
generalized inequalities (2.15) first say that the simplex s itself needs to be timelike. Furthermore,
if any subsimplex r is timelike, then all subsimplices t containing r cannot be spacelike. This is
because a timelike subsimplex cannot be embedded in a spacelike subsimplex. For instance in
Figure 2.3, if the edge subsimplex 03 is timelike, then the triangle subsimplices 013 and 023
containing the timelike edge 03 must not be spacelike, which is a reasonable condition.

2.3 Angles

2.3.1 Euclidean angles

In Euclidean space, what is the angle θ bounded by two vectors a and b? Since

a · b = |a||b| cos θ, |x| :=
√
x · x, (2.16)

one answer is that θ = cos−1 a·b
|a||b| . Another answer is in terms of the scalar wedge product defined

by

a ∧ b =
√
(a · b)2 − (a · a)(b · b). (2.17)

Using sin2 θ + cos2 θ = 1, it is easy to see that for θ > 0,

a ∧ b = i|a||b| sin θ. (2.18)

Therefore θ = sin−1 a∧b
i|a||b| .
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The answer (2.16) or (2.18) in isolation has ambiguities, because different angles can have
the same cos or sin values. Within a 2π period, angles are uniquely determined when the in-
formation of cos−1 and sin−1 are combined. From (2.16) and (2.18), we derive that eiθ =
1

|a||b|(a · b+ a ∧ b), so3

θ =− i logα, (2.19)

α =
1

|a||b|
(a · b+ a ∧ b). (2.20)

This determines θ uniquely within a 2π period depending on the choice of the branch for the log
function.

2.3.2 Complex angles

In the general complex domain, we take

θ =− i logα, (2.21)

α =
a · b+ a ∧ b
√
a · a

√
b · b

=
a · b+

√
(a · b)2 − (a · a)(b · b)
√
a · a

√
b · b

, (2.22)

as the definition of complex angles. Equation (2.22) is one of the expressions in Sorkin’s defini-
tion of Lorentzian angles in the Minkowski plane [71].4 Here we recognize that more generally,
(2.21) and (2.22) offer a unified definition for Euclidean, Lorentzian, and complex angles in all
cases.5

In terms of the edge squared lengths (Fig. 2.4),

a · b =1

2
(σa + σb − σc), (2.23)

a · a =σa, b · b = σb, (2.24)

a ∧ b =1

2

√
σ2a + σ2b + σ2c − 2σaσb − 2σbσc − 2σcσa. (2.25)

Therefore

θ =− i logα,

α =
σa + σb − σc +

√
σ2a + σ2b + σ2c − 2σaσb − 2σbσc − 2σcσa

2
√
σa

√
σb

. (2.26)

We take (2.26) as the definition of complex angles in terms of complex squared lengths. This
function is holomorphic away from the log and square root branch points. At the square root
branch point of a = 0 or b = 0, the denominator becomes 0. We will comment more on the
(ir)relevance of this case in the end of Section 2.3.3 and in Section 2.7.3.

3This formula is related to the so-called “geometric product” a⃗ · b⃗ + a⃗ ∧ b⃗, which offers a way to encode rotations.
The difference is that here a⃗ ∧ b⃗ is a bivector instead of a scalar.

4In Sorkin’s definition of Lorentzian triangles [71], (2.22) is used for angles bounded by two spacelike vectors in
the same quadrant, and angles bounded by a spacelike vector and a timelike vector. A different expression is used for
angles bounded by two timelike vectors in the same quadrant.

5For the formula to apply to the Euclidean case, the −i factor in (2.21) is necessary. In comparing with other works
based on Sorkin’s definition one should keep in mind that the −i factor is absent there. In addition, for Lorentzian
angles (2.28) defined below differs in the choice of square root branches from Sorkin’s formula.
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Figure 2.4: A triangle with squared lengths σa, σb, σc.

Note from (2.10) that the input A to the numerator square root equals −16V, where V is the
squared volume for the triangle in Fig. 2.4. By the triangle inequalities of Section 2.2.4, A > 0
for a Lorentzian triangle and A < 0 for an Euclidean triangle.

For Euclidean angles the principal branches of the log and square root functions are chosen.
The complex angles then reduce to the correct Euclidean angles, since the former are obtained
by generalizing the latter. The choices of branches for Lorentzian angles are specified below.

Sum of complex angles in a triangle

The angles of an Euclidean triangle sum to π. In the complex domain, this generalizes to (2n+1)π
with n ∈ Z.

Proposition 2. The complex angles sum to (2n+ 1)π with n ∈ Z for a triangle of complex squared
edge lengths.

Proof. Consider a triangle with complex squared lengths σa, σb, σc (Figure 2.4), and complex
angles θ = −i logα, θ1 = −i logα1, θ2 = −i logα2. A straightforward calculation using (2.26)
yields

α1α2 =
−σa − σb + σc +

√
σ2a + σ2b + σ2c − 2σaσb − 2σbσc − 2σcσa

2
√
σa

√
σb

. (2.27)

A similar calculation yields αα1α2 = −1. For the complex log function, log(z1z2) = log z1 + log z2
up to multiples of 2πi. Therefore θ + θ1 + θ2 = −i log(−1) + 2πn = (2n + 1)π, where n is an
integer.

2.3.3 Lorentzian angles

In this section, we consider angles for Lorentzian simplicial geometries that obey the Lorentzian
generalized triangle inequalities (2.15). In previous works [71, 23, 26], not one, but multiple ex-
pressions for Lorentzian angles in terms of log and trigonometric functions were used depending
on where the edges lie in the Minkowski plane. A merit of the complex angle defined above is
that it unifies these multiple cases (as well as the Euclidean case) in one formula.
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Here we focus on convex angles, because in simplicial gravity only these arise from individual
simplices. Non-convex angles arise from summing the convex angles of individual simplices. Here
we consider the branch choice

θ =− iLogα,

α =
a · b+

√
(a · b)2 − (a · a)(b · b)√

a · a− 0i
√
b · b− 0i

, (2.28)

for Lorentzian angles. In terms of the squared lengths,

α =
σa + σb − σc +

√
σ2a + σ2b + σ2c − 2σaσb − 2σbσc − 2σcσa

2
√
σa − 0i

√
σb − 0i

. (2.29)

Here

Log z = log r + iϕ, z = reiϕ with ϕ ∈ (−π, π] (2.30)
√
z =

√
reiϕ/2, z = reiϕ with ϕ ∈ (−π, π], (2.31)

√
z − 0i =

√
reiϕ/2, z = reiϕ with ϕ ∈ [−π, π). (2.32)

The first two are just the principal branches of log and square root. The third one
√
z − 0i is

negative imaginary for z < 0. The symbol −0i is a reminder that z < 0 is continuously connected
to z > 0 through the lower complex plane instead of the upper one.

The following properties hold for Lorentzian angles.

Proposition 3. The Lorentzian convex angles θ defined by formula (2.28) are additive.

Proposition 4. The complex Lorentzian angle θ is related to the Lorentz boost angle θboost by

θ = −iθboost. (2.33)

Here the convention is that θboost > 0 for a boost angle relating spacelike vectors, and θboost < 0 for
a boost angle relating timelike vectors.

Proposition 5. Between two edges related by the reflection across a light ray, the angle θ equals

θ = π/2, (2.34)

whose imaginary part vanishes.

Proposition 6. In the flat Minkowski plane, the angles around a point sum to 2π.

Proposition 7. For a convex Lorentzian angle θ,

Re θ = Nπ/2, (2.35)

where N = 0, 1, 2 is the number of light rays enclosed within the angle.

Proposition 8. The angles of a Lorentzian triangle sum to 2π.
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Figure 2.5: The Minkowski plane with four quadrants bounded by dashed light rays. The edges
a to f are distributed in different quadrants.

These results are easier to derive after working through some examples. These also serve to
help readers unfamiliar with Lorentzian angles [71] to build some intuitions.

In the Minkowski plane, a convex angle can bound N = 0, 1, or 2 light rays (Fig. 2.5). Accord-
ing to whether the vectors bounding the angle are timelike or spacelike (for reasons mentioned
below all the examples, we do not consider lightlike edges here), there are five cases in total. We
consider them in turn.

Example 9 (Spacelike edges within the same quadrant). Consider spacelike edges a and b forming
a triangle with squared lengths σa = 1, σb = 3/4, σab = −1/4, where σab is the squared length for
the third edge (Figure 2.5). The complex angle θ bounded by a and b can be calculated using (2.23)
to (2.25) as follows.

a · b =1

2
(σa + σb − σab) = 1, (2.36)

a · a =σa = 1, b · b = σb = 3/4, (2.37)

a ∧ b =
√
(a · b)2 − (a · a)(b · b) = 1/2, (2.38)

θ =− i log

(
a · b+ a ∧ b√

a · a− 0i
√
b · b− 0i

)
=− i log

√
3. (2.39)

The above calculation is based on the invariant quantity of the squared length and does not
invoke any coordinate system. Alternatively, one could introduce a coordinate system in the
Minkowski plane, represent a and b as vectors there, and use the Minkowski inner product for
· to calculate θ. For instance, one could choose a = (1, 0) and b = (1, 1/2) in the coordinate
convention (x, t). Then again a · b = 12 − 0 = 1, a · a = 12 − 02 = 1, and b · b = 12 − (1/2)2 = 3/4,
so one will get the same result for θ.
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The complex angle θ is related to the boost angle of Lorentz transformations. The boost angle
from a to b is, up to a choice of sign,

θboost = cosh−1(â · b̂). (2.40)

Here x̂ := x/
√
|x · x| denotes the normalized vector for x. For the vectors a = (1, 0) and b =

(1, 1/2), â = (1, 0) and b̂ = (2/
√
3, 1/

√
3). Therefore θboost = cosh−1(2/

√
3) = log

√
3, where we

used the elementary identity

cosh−1 z = log
(
z +

√
z2 − 1

)
. (2.41)

In this case for two spacelike edges, upon choosing the boost angle to be positive, we see that
θ = −iθboost. Using (2.40) and (2.41), it is easy to check that this relation holds for all pairs of
spacelike edges in the same quadrant in the Minkowski plane. We will see next that this relation
also holds for timelike edges.

Example 10 (Timelike edges within the same quadrant). Consider timelike edges c and d forming
a triangle with squared lengths σc = −3/4, σd = −1, σcd = 1/4, where σcd is the squared length for
the third edge (Figure 2.5). The complex angle θ bounded by c and d can be calculated using (2.23)
to (2.25) as follows.

c · d =
1

2
(σc + σd − σcd) = −1, (2.42)

c · c =σc = −3/4, d · d = σb = −1, (2.43)

c ∧ d =
√

(c · d)2 − (c · c)(d · d) = 1/2, (2.44)

θ =− i log

(
c · d+ c ∧ d√

c · c− 0i
√
d · d− 0i

)
=− i log

−1 + 1/2

(−i
√
3/4)(−i

√
1)

= −i log
(
1/
√
3
)
. (2.45)

Alternatively, setting c = (1/2, 1) and d = (0, 1) in a coordinate system (x, t) and performing
the calculation there leads to the same θ.

Note that c and b, as well as d and a are related by reflection with respect to the light ray
separating quadrant I and II. The same Lorentz boost transformation that maps a to b will map d
to c. The boost angle from a to b is anti-clockwise, while that from d to c is clockwise. Since we
chose the boost angle from a to b to be positive, it is reasonable to choose the boost angle from d
to c to be negative. In this case we have

θboost = − cosh−1(|ĉ · d̂|) = − cosh−1(−ĉ · d̂), (2.46)

since for timelike vectors in the same quadrant ĉ · d̂ < 0, and the normalized vectors take the
form x̂ := x/

√
|x · x| = x/

√
−x · x. From this we obtain ĉ = (1/

√
3, 2/

√
3) and d̂ = (0, 1), so

θboost = − cosh−1(2/
√
3) = log

(
1/
√
3
)
.

Again, θ = −iθboost. Using (2.46) and (2.41), it is not hard to check that actually this relation
holds for all pairs of timelike edges in the same quadrant in the Minkowski plane. Since boost
angles exist only between two spacelike vectors in the same quadrant and two timelike vectors in
the same quadrant, we have proved Theorem 4.
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Example 11 (A spacelike edge and a time like edge). Consider the spacelike edge a and timelike
edge c forming a triangle with squared lengths σa = 1, σc = −3/4, σac = −3/4, where σac is the
squared length for the third edge (Figure 2.5). The complex angle θ bounded by a and c can be
calculated using (2.23) to (2.25) as follows.

a · c =1

2
(σa + σc − σac) = 1/2, (2.47)

a · a =σa = 1, c · c = σc = −3/4, (2.48)

a ∧ c =
√

(a · c)2 − (a · a)(c · c) = 1, (2.49)

θ =− i log

(
a · c+ a ∧ c√

a · a− 0i
√
c · c− 0i

)
=− i log

1/2 + 1

(
√
1)(−i

√
3/4)

= −i log
(
i
√
3
)
= −i log

√
3 + π/2. (2.50)

Alternatively, setting a = (1, 0) and c = (1/2, 1) in a coordinate system (x, t) and performing
the calculation there leads to the same θ.

Note the relevance of the choice of branch for the square root. Had we chosen the branch
without −0i, the denominator would be i

√
3/4 instead, and the real part of θ would be −π/2. In

the choice with −0i, we have:

Lemma 12. The angle θ between a spacelike edge and a timelike edge obeys

Re θ = π/2. (2.51)

Proof. Without loss of generality let σa > 0 and σc < 0. Then (a · a)(c · c) < 0, so a ∧ c =√
(a · c)2 − (a · a)(c · c) > |a · c|. Therefore the numerator of α, a · c + a ∧ c, is positive. The

denominator
√
a · a− 0i

√
c · c− 0i is negative imaginary. Therefore α is positive imaginary. It

follows that θ = −i log(ir) = −i log r + π/2 for some r > 0.

For the special case of two edges a and c related by a reflection across a light ray as the
reflection axis, the angle bounded by them equals θ = π/2. This is the content of Theorem 5,
which is proved by noting that σa = −σc and σac = 0. From these we derive that a · c = 0,
a ∧ c =

√
σ2a, whence α =

√
σ2a/(

√
σa − 0i

√
−σa − 0i) = i. Therefore θ = −i logα = π/2.

This should be expected. The boost angles from a and c to the light ray are equal in magnitude
and opposite in sign. When added up to obtain Im θ according to Theorem 4, they cancel. By
Theorem 7, Re θ = π/2 because travelling from a to c crosses one light ray.

Theorem 5 implies that the in the flat Minkowski plane the angles around around a point sum
to 2π, which is the content of Theorem 6. Consider four edges right in the middle of the four
quadrants. According to Theorem 5, the four angles formed by them all equal π/2, so they sum
to 2π.

Example 13 (Spacelike edges in different quadrants). Consider two spacelike edges a and e in
different quadrants forming a triangle with squared lengths σa = 1, σe = 3/4, σae = 15/4, where
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σae is the squared length for the third edge (Figure 2.5). The complex angle θ bounded by a and e
can be calculated using (2.23) to (2.25) as follows.

a · e =1

2
(σa + σe − σae) = −1, (2.52)

a · a =σa = 1, e · e = σe = 3/4, (2.53)

a ∧ e =
√

(a · e)2 − (a · a)(e · e) = 1/2, (2.54)

θ =− i log

(
a · e+ a ∧ e√

a · a− 0i
√
e · e− 0i

)
=− i log

(
−1/

√
3
)
= −i log

(
1/
√
3
)
+ π. (2.55)

Again, the readers can check that the vectors a = (1, 0) and e = (−1, 1/2) leads to the same θ.

Note the relevance of the choice of branch for the log function. The principal branch which we
chose yields Re θ = π for α < 0. A different choice could result in Re θ = −π. Given the branch
choices for the square roots, only for the principal branch can the angles possibly be additive. To
see this, note that by Theorem 12, each light ray crossing accrues π/2 for Re θ. Since from a to e
there are two light rays crossed, Re θ needs to be π if the angles are additive.

Example 14 (Timelike edges in different quadrants). Consider two timelike edges d and f in
different quadrants forming a triangle with squared lengths σd = −1, σf = −3/4, σdf = −15/4,
where σdf is the squared length for the third edge (Figure 2.5). The complex angle θ bounded by d
and f can be calculated using (2.23) to (2.25) as follows.

d · f =
1

2
(σd + σf − σdf ) = 1, (2.56)

d · d =σd = −1, f · f = σf = −3/4, (2.57)

d ∧ f =
√

(d · f)2 − (d · d)(f · f) = 1/2, (2.58)

θ =− i log

(
d · f + d ∧ f√

d · d− 0i
√
f · f − 0i

)
=− i log

1 + 1/2

(−i)(−i
√
3/4)

= −i log
(
−
√
3
)
= −i log

(√
3
)
+ π. (2.59)

Alternatively, setting d = (0, 1) and f = (−1/2,−1) in a coordinate system (x, t) and perform-
ing the calculation there leads to the same θ.

In the above two cases Re θ = π. It actually holds in general that crossing two light rays
makes the angle accrue a real part of π. The reason is that the log argument is negative for two
light ray crossings, which yields Re θ = π. To see that the log argument is negative, note that for
two spacelike vectors a and e in different quadrants, a ·e = 1

2(σa+σe−σae) < 0 as a consequence
of the Lorentzian triangle inequality (2.15). Therefore the log argument a·e+a∧e√

a·a−0i
√
e·e−0i

< 0. For

two timelike vectors d and f in different quadrants, d ·f = 1
2(σd+σf −σdf ) > 0 as a consequence

of the Lorentzian triangle inequality (2.15). In addition, d ∧ f =
√
(d · f)2(d · d)(f · f) < |d · f |.

Therefore the log argument d·f+d∧f√
d·d−0i

√
f ·f−0i

< 0.
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Since a convex angle in the Minkowski plane can only enclose 0, 1 or 2 light rays, we have
proved Theorem 7. For any triangle in the Minkowski plane, the three angles enclose two light
rays in total. Therefore the sum of the three angles have π as the real part. By Theorem 2, the
imaginary part vanishes. This proves Theorem 8.

Finally, we want to prove Theorem 3, i.e.,

θ(a, c) = θ(a, b) + θ(b, c), (2.60)

where b lies between a and c in the Minkowski plane, and θ(x, y) = −i logα(x, y) denotes the
convex angle defined by some vectors x and y according to (2.28). The first part of the proof is
the same as Sorkin’s proof for his equation (3) in [71]. Explicitly, since the angles are convex and
b lies in between a and c, one could write b = αa+ βc with α, β ≥ 0. This can be plugged in

(
a · b+ a ∧ b
√
a · a

√
b · b

)(
b · c+ b ∧ c√
b · b

√
c · c

) =
a · c+ a ∧ c√
a · a

√
c · c

, (2.61)

i.e., α(a, b)α(b, c) = α(a, c), to eliminate b and establish the identity.

For the complex log function, θ(a, b)+θ(b, c) = −i logα(a, b)−i logα(b, c) = −i log(α(a, b)α(b, c)) =
−i logα(a, c) = θ(a, c) up to an integer multiple of 2π. However, by Theorem 7 and the assump-
tion that all three angles are convex, the real part of the left hand side can only be 0, π/2, or
π. The same holds for the right hand side. Therefore the multiple of 2π has to be zero, and we
established θ(a, b) + θ(b, c) = θ(a, c).

Lightlike edges

When one or two of the edges that bound the angle are lightlike, the Lorentzian angle defined in
(2.28) could diverge. In [71], special care is taken to redefine such angles.

We will not perform any redefinition for angles with lightlike edges in this work, because the
main focus is on the quantum theory. In the path integral, squared lengths is integrated over
for each edge. Zero (lightlike) squared length is of measure zero, and a special redefinition just
on this measure zero set is not necessary. See Section 2.7.3 for additional discussions on the
(ir)relevance of lightlike edges for the gravitational path integral.

2.3.4 Dihedral angles

In simplicial gravity, curvature is captured by deficit angles, which is in turn defined in terms of
dihedral angles.

A dihedral angles is formed by two codimension-1 faces at a hinge, which is a codimension-2
simplex. For instance in 2D, the dihedral angle θs,h in triangle s at vertex h is the angle formed
by the two edges sharing h. In 3D the dihedral angle θs,h in tetrahedron s at edge h is the angle
formed by the two triangles sharing h. In 4D the dihedral angle θs,h in 4-simplex s at triangle h
is the angle formed by the two tetrahedrons sharing h etc.

As illustrated in Figure 2.6, dihedral angles can be obtained by projecting s to the triangle
orthogonal to h, and extracting the triangle angle at the vertex that h projects to. Using (2.22),
namely

θ =− i logα, α =
a · b+

√
(a · b)2 − (a · a)(b · b)
√
a · a

√
b · b

, (2.62)
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Figure 2.6: In 3D, the tetrahedron simplex s projects into the shaded triangle orthogonal to the
hinge edge h. The dihedral angle θs,h projects to the triangle angle θ. The faces bounding the
dihedral angle project to the edges a and b of the triangle.

the dihedral angle can be computed from a · b, a ·a, and b · b of the projected triangle. However, in
simplicial gravity the input data are the squared distances σe on the simplicial edges e. We need
to express a · b, a · a, and b · b in terms σe.

Volume forms

To express a · b, a · a, and b · b in terms σe, it is useful to introduce a volume form representation
of the (sub)simplices [72]. An n-simplex has n + 1 vertices. With one of the vertices labelled as
0, the n vectors ei, i = 1, . . . , n starting from 0 and pointing to the other n vertices characterize
the simplex (Fig. 2.2).

In Section 2.2.3 we treated ei as the basis vectors in defining the metric gij which equals ei ·ej .
Let ei be the dual vectors so that ei(ej) = δij . A d-simplex s can represented by the d-form

ωs = e1 ∧ · · · ∧ ed. (2.63)

Then an n-dimensional subsimplex r with edge vectors er1 , . . . , ern can be represented by the
n-form

ωr = er1 ∧ · · · ∧ ern . (2.64)

The ordering of the indices ri decides an orientations for the (sub)simplex.

The dot product of two n-forms is given by

ωr · ωt = (
1

n!
)2 det

(
eri · etj

)
. (2.65)

Eq. (2.65) conforms to the standard definition of inner products for n-forms. One can check that
if eri = erj for any i ̸= j, or if eti = etj for any i ̸= j, then ωr · ωt = 0, which should hold for
forms. By the definition (2.5) of the squared volume,

ωr · ωr = (
1

n!
)2 det

(
eri · erj

)
= Vr. (2.66)
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Vector dot products

The form representation can be used to express a · b, a · a, and b · b for the dihedral angle in terms
σe. Let ωh be the d− 2-form of the hinge h, and let

ωa = ωh ∧ e, ωb = ωh ∧ e′ (2.67)

be the d − 1-forms of the faces of a and b (one might change the order between ωh and e (e′) if
a different orientation is suitable). The edge vector e can be written as e = a + e∥, where a is
orthogonal to h and e∥ is parallel to h. Similarly e′ = b + e′∥. Since e∥ and e′∥ are parallel to h, it
follows from the properties of forms that ωa = ωh ∧ a and ωb = ωh ∧ b. Therefore

ωa · ωb =(ωh ∧ a) · (ωh ∧ b) (2.68)

=
ωh · ωh

(d− 1)2
a · b. (2.69)

In the second line we used the definition (2.65) and noted that since a and b are orthogonal to h,
a · e = b · e = 0 for any e of h.

Therefore

a · b = (d− 1)2
ωa · ωb

ωh · ωh
. (2.70)

The other terms a · a and b · b can be obtained by setting a = b. The numerator of (2.70) can be
expressed in squared lengths using

ωa · ωb =
1

(d− 1)!2
det
(
eai · ebj

)
(2.71)

=
1

(d− 1)!2
det

(
1

2
(σ0ai + σ0bj − σaibj )

)
, (2.72)

where (2.65) and (2.2) are used. Here ai is the i-th vertex of the subsimplex a, and bj is the
j-th vertex of the subsimplex b. The vertex 0 is the one fixed when specifying the d-simplex
s, and the squared lengths σ0ai , σ0bj , σaibj are inputs to simplicial gravity. According to (2.66),
the denominator ωh · ωh of (2.70) simply equals Vh, which is a function of squared lengths by
definition (2.5) or (2.6). These formulas can then be used to express the dihedral angles in terms
of squared lengths.

Incidentally, there is an alternative useful expression

ωa · ωb = d2
∂V
∂σe

, (2.73)

where e is the edge whose vertices are outside the hinge h common to subsimplices a and b. This
expression can be derived using (2.5), (2.71), (2.2) and (2.3).

2.3.5 Deficit angles

In simplicial gravity, curvature is captured by deficit angles. The deficit angle at a hinge is the
difference between the flat space(time) value and the actual value for the sum of dihedral angles
around the hinge.
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At a hinge h in the interior of a region (instead of on the boundary), the deficit angle is defined
as

δh =2π −
∑
s∋h

θs,h, (2.74)

where the sum is over all simplices s containing h.

Here 2π is the flat space(time) value. The dihedral angles around h can be obtained by
projecting the simplices to the plane orthogonal to h and summing the angles around the point
h projects to (Section 2.3.4). In flat Euclidean space, the angles obviously sum to 2π. In flat
Lorentzian spacetime, they also sum to 2π according to Theorem 6. In the complex domain it
is taken as an assumption that the flat value is 2π, so that (2.74) constitutes a definition of the
complex deficit angle in general.

If the hinge h lies on the boundary of a region, the dihedral angles around it within that
region can sum to less than 2π for the flat case. Suppose there are Qh regions sharing the hinge
h. Then one way to define the deficit angle is

δh =
2π

Qh
−
∑
s∋h

θs,h. (2.75)

This ensures additivity, i.e., once all the deficit angles in all regions are summed over (2.74) is
recovered. Equation (2.75) is taken as the general definition of the complex deficit angle, with
Qh = 1 if h lies in the interior of the region.

2.4 Quantum gravity

Formally, gravitational path integrals take the form

Z =

∫
Dg ei

∫
ddx

√
−g(−λ+kR+··· ) (2.76)

in the Lorentzian, and

Z =

∫
Dg e

∫
ddx

√
g(−λ+kR+··· ) (2.77)

in the Euclidean. The dots stand for higher order terms that may be present. Here the Riemann
tensor convention is

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ, (2.78)

so that as usual λ > 0 leads to a De Sitter spacetime in cosmology.

To give an exact meaning to these formal expressions non-perturbatively, one needs to specify
a way to enumerate gravitational configurations to be summed over.
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2.4.1 Simplicial quantum gravity

In simplicial quantum gravity,

Z =

∫
C
Dσ eE[σ], (2.79)

where the exponent E is given below. The gravitational configurations are specified by the
squared lengths σ on edges of simplicial lattices, and the path integral measure takes the form∫

C
Dσ = (

∑
τ

) lim
Γ

∏
e∈Γ

∫ ∞

−∞
dσe µ[σ]C[σ]. (2.80)

The meaning of the new symbols are explained in the next several paragraphs.

The integration measure factor µ[σ] is not known a priori. Suppose one wants to define the
path integral so that even on a finite lattice (without taking the lattice refinement limit) the result
is exact result. Then one idea for fixing the measure is to demand discretization independence
[73]. This would lead to a non-local measure in 4D [74]. Alternatively, one could adopt simpler
local measures and demand that the exact result be obtained only after taking the lattice refine-
ment limit. In this case different measures could belong to a same universality class and lead to
the same result in the lattice refinement limit [18]. However, there seems to be no consensus
exactly which measures are correct to be used. In analogy to the continuum measures factors
(det g)m, a commonly used family of simplicial measures is the product of powers of simplicial
squared volumes

µ[σ] =
∏
s

Vm
s (2.81)

parametrized bym. For the Lorentzian case one could use µ[σ] =
∏

s(−Vs)
m to make the measure

positive definite, in analogy to
∏

x(−det g(x))m. When the lattice has fixed size this makes no
essential difference from (2.80) since the two measures only differ by an overall constant. This
can be included as a term in the integrand exponent

Em = m
∑
s

logVs. (2.82)

Any measure factor can be similarly be incorporated by setting µ[σ] = 1 and introducing an
additional term in the integrand exponent. We will adopt this formulation and fix the measure to
be ∫

C
Dσ = (

∑
τ

) lim
Γ

∏
e∈Γ

∫ ∞

−∞
dσe C[σ]. (2.83)

The constraint C[σ] specifies the integration contour and determines if the theory is for the
Euclidean or Lorentzian. It equals 1 when the Euclidean/Lorentzian generalized triangle inequal-
ities (2.12)/(2.15) are matched and vanishes otherwise. In the Lorentzian case, an additional
constraint may be imposed so that each point of a simplicial manifold has two lightcones. This is
explained in more detail in Section 2.4.4.

On a fixed lattice graph Γ, the gravitational configurations are summed over by integrating
the squared lengths σe on edges e. The continuum limit limΓ is taken by going to ever finer lattice
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graphs (Fig. 2.1). In practice, the lattice field theory strategy is usually adopted. Instead of taking
the limit, one evaluates the path integral on a fixed graph and look for the continuum limit by
searching for universality classes.

Whether topologies should be summed over in the gravitational path integral is an open
question [75]. In (2.83) the sum over topologies

∑
τ is included as an option enclosed in brackets.

In (2.79) the path integral is expressed in terms of the path exponent E instead of the action
S to retain unified formula for the Euclidean, Lorentzian, and general complex cases. E is related
to the actions by

E =

{
−SE , in Euclidean space,
iSL, in Lorentzian spacetime.

(2.84)

Explicitly, E equals

E =−λV︸ ︷︷ ︸
ECC

+(−k)
∑
h

δh
√

Vh − 0i︸ ︷︷ ︸
EEH

+ · · ·︸︷︷︸
EO

. (2.85)

EO stands for “other terms” in addition to the cosmological constant term ECC and the Einstein-
Hilbert term EEH . The measure factor (2.82) is an example. An R2 term as another example is
considered in Section 2.6. The terms ECC and EEH are discussed below.

2.4.2 Cosmological constant term

The cosmological constant term equals

ECC =− λV = −λ
∑
s

Vs. (2.86)

Here λ is the cosmological constant, and the sum is over all simplicial volumes Vs =
√

Vs as
defined in (2.7).

In Euclidean space Vs > 0, so Vs > 0. Therefore large volumes are suppressed by the exponent
ECC . This agrees with ordinary Euclidean quantum gravity. In Lorentzian spacetime Vs < 0, so
Vs =

√
Vh as defined in (2.7) are positive imaginary. This agrees with the usual convention for

Lorentzian quantum gravity in which ECC = −iλV L with a positive Lorentzian volume V L =∑
s |Vs|.

2.4.3 Einstein-Hilbert term

The Einstein-Hilbert term equals

EEH =− k
∑
h

δh
√

Vh − 0i. (2.87)

Here k > 0 is the gravitational coupling constant, the sum is over all hinges h, Vh is the squared
volume of the hinge h, and δh is its deficit angle. The notation

√
z − 0i is as defined in (2.32):

√
z − 0i =

√
reiϕ/2, z = reiϕ with ϕ ∈ [−π, π). (2.88)
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The point is that
√
z − 0i is negative imaginary for z < 0.

In the Euclidean domain Vh > 0, so
√

Vh − 0i =
√

Vh > 0. In addition, (2.28) agrees with
(2.19). Then EEH = −k

∑
h δhVh is minus the Einstein-Hilbert term of Euclidean simplicial

quantum gravity in the convention of [18]. This in turn yields in the continuum limit

Z =

∫
Dg e

∫
ddx

√
g(−kR) (2.89)

for the pure gravity path integral. Note the extra minus sign in contrast to (2.77). Since the
Einstein-Hilbert term is unbounded from below, it is unclear if this sign choice is a bad one. In a
follow up work, we will point out a different branch choice for the angle formula (2.28) which
reproduces the the Einstein-Hilbert term with the conventional sign in the Euclidean.6

For a Lorentzian path integral, (2.28) is used to define the deficit angle δh according to (2.75).
We have

EEH =ik
∑

h timelike

δh|Vh| − k
∑

h spacelike

δh|Vh|, (2.90)

where
∑

h is expanded into a sum over timelike and spacelike hinges (lightlike hinges do not
contribute to the exponent since Vh = 0), and |Vh| is the modulus of Vh =

√
Vh.

Sorkin showed that

ik
∑

h timelike

δh|Vh|+ k
∑

h spacelike

δ̃h|Vh|, (2.91)

reproduces ik
∫
ddx

√
−gR in the continuum limit when δ̃h is positive for a spacelike Lorentz boost

deficit angle [76].7 By Theorem 4, in the convention of the present work a spacelike Lorentz boost
deficit angle δh is negative imaginary. Therefore (2.90) also reproduces the commonly used path
integral exponent EEH = iSEH = ik

∫
ddx

√
−gR of (2.76).

2.4.4 Lightcone structures

In ordinary classical space-time, each point has two lightcones attached to it. In simplicial gravity,
a point can have more or fewer than two light cones (Fig. 2.7).

It is an open question whether such spacetime configurations with irregular lightcone struc-
tures should be included in the gravitational path integral. When they are included the exponent
becomes complex rather than staying imaginary. This is because the constant 2π in the exponents
are cancelled exactly when the angles enclose four light rays, as in ordinary flat spacetime (The-
orem 7). Depending on the sign choice for the exponent, a space-time configurations with the
irregular lightcone structures is either suppressed or enhanced by the additional non-vanishing
real part of the exponent.

6I am very grateful to Bianca Dittrich and José Padua-Argüelles for discussions that clarified the sign conventions of
the Einstein-Hilbert term and the mistakes I made regarding the alternatives for the Einstein-Hilbert term in a previous
version of the manuscript. The discussions also clarified how one should interpret Sorkin’s Lorentzian Regge action
[71] so that it is holomorphic. The details of this interpretation will be reported elsewhere.

7In this statement R is as defined from (2.78). Note that Sorkin used an opposite sign convention for R in the
original paper [76].
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Figure 2.7: Irregular lightcone structure in 2D. The point at the center has six light rays (dashed
lines) and three lightcones, if spacelike (s) and timelike (t) edges are as assigned.

In [77], reasons are offered to prefer the enhancement (suppression) of configurations with
fewer (more) than four light rays. The exponent (2.90) with the extra minus sign conforms
with the opposite choice. As will be reported in details elsewhere, a different branch choice for
the angle formula (2.28) reverses the enhancement/suppression. If irregular light structures are
allowed in Nature, observing the enhancement/suppression effects could in principle help us to
determine the branch choice.

2.5 Holomorphic flow

Analytic calculations for the non-perturbatively defined gravitational path integral is hard. In
the Euclidean, one usually proceeds numerically with Markov Chain Monte Carlo simulations.
The efficiency of this method relies on positivity of the path integrand in the Euclidean. In the
Lorentzian, however, the path integrand is complex. The leads to the sign problem. The phase of
the complex numbers summed over can fluctuate wildly to cancel each other off, which reduces
the efficiency of Markov Chain Monte Carlo simulations.

The sign problem is not restricted to quantum gravity, but is also encountered in quantum
theories of matter. Several methods have been developed to overcome the sign problem (see
e.g., [31, 78, 79] and references therein). The basic idea of the complex path methods is to
deform the integration contour to the complex to reduce the phase fluctuations. This idea is
demonstrated to work for several models, including low dimension Thirring models, real time
scalar field theories, and Hubbard models [31]. It has also been applied to analyze gravitational
propagators for spin-foam models in the large spin limit [32].

As reviewed in [31] there are several different ways to implement the general idea of complex
path deformation to overcome the sign problem. In later sections we apply the “holomorphic
gradient flow” algorithm, also called the “generalized thimble” algorithm, [33, 34] to Lorentzian
simplicial quantum gravity. This section summarizes the algorithm.
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Figure 2.8: Schematic illustration of the flow region and its boundary. The original contour at
the bottom is deformed into the contour at the top. The integral along these contours plus on
the dashed boundaries is zero, if the function being integrated over is holomorphic inside. If the
integral on the dashed boundaries are negligibly small, then the integrals on the two contours
are equal up to a sign.

2.5.1 Flow equations

The celebrated Cauchy integration theorem indicates that up to a sign the integral of a complex
function f(z) does not change value if the integration contour is deformed through a region
where f(z) is holomorphic.

Cauchy’s theorem admits a multi-dimensional generalization [31] which applies to path in-
tegrals of multiple variables. The holomorphic gradient flow algorithm exploits this to find de-
formed contours where the sign problem is mitigated. Consider a path integral with a holomor-
phic integrand of the form

Z =

∫
Dσ eE[σ], (2.92)

where in Dσ multiple configurations σe labelled by the lattice edges e are integrated over. The
flow equations are

dσe
dt

=− ∂eE ∀e, (2.93)

where ∂e is a shorthand for ∂
∂σe

, and the overline stands for complex conjugation. For any point ζ
in the original integration contour, the solution to (2.93) as a function of the flow time t defines
the holomorphic gradient flow (or holomorphic flow in short) for ζ. Solving (2.93) for the
whole original integration contour yields a deformation of the integration contour as a function
t.

If the integral along the boundary of the flowed region is negligible, then up to a sign (2.92)
can be evaluated on the flowed contour (Fig. 2.8). This could reduce the phase fluctuations
for the complex numbers integrated over, because only a smaller region on the flowed contour
contribute significantly to the integral, and the phase fluctuations could be small in this smaller
region.
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To see this, we look at the real part ER and the imaginary part EI of E. By (2.93),

dER

dt
=
1

2
(
dE

dt
+

dE

dt
) =

1

2

∑
e

(∂eE
dσe
dt

+ ∂eE
dσe
dt

) = −
∑
e

|∂eE|2 ≤ 0, (2.94)

dEI

dt
=

1

2i
(
dE

dt
− dE

dt
) =

1

2i

∑
e

(∂eE
dσe
dt

− ∂eE
dσe
dt

) = 0. (2.95)

Therefore the real part of the exponent decreases monotonically through the flow, while the
imaginary part stays constant. For sufficiently long flow time, the magnitude of the integrand
is exponentially suppressed for most points on the deformed contour. Only points close to the
critical points of the flow obeying

∂eE = 0 ∀e (2.96)

contribute significantly.

If the phase fluctuations for such points that contribute significantly is small enough, Markov
Chain Monte Carlo simulation can be efficiently performed.

2.5.2 Numerical algorithm

As a summary of Section 2.5.1, suppose:

• The holomorphic flow transverse a region where the path integrand is holomorphic;

• The boundary of the flow region have negligible contribution to the path integral.

Then the original path integral can be equally evaluated along the contour at any flow time t = T .

To compute the path integral on the flowed contour, one could use the holomorphic gradient
flow algorithm [33, 34]. The idea is to parametrize the flowed contour by its preimage in the
original contour, and perform Markov Chain Monte Carlo simulation using weights on the flowed
contour. Specifically, the algorithm goes as:

1. Start with a configuration ζ in the original contour. Evolve it under the holomorphic flow
by time T to obtain ϕ = ϕ(ζ).

2. Draw a new configuration ζ ′ = ζ + δζ on the original contour, where δζ is a random vector
drawn from a symmetric distribution. Again evolve ζ ′ under the flow by time T to obtain
ϕ′ = ϕ′(ζ ′).

3. Accept ζ ′ with probability P = min{1, eReEeff(ϕ
′)−ReEeff(ϕ)}, where Eeff is defined in (2.98).

4. Repeat steps 2 and 3 until a sufficient ensemble of configurations is generated.

5. Compute the expectation values using

⟨O⟩ =

〈
Oeiφ(ζ)

〉
ReEeff〈

eiφ(ζ)
〉
ReEeff

, (2.97)

where ⟨·⟩ReEeff
stands for the average using the ensemble just generated, and φ is defined

in (2.103).
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In steps 1 and 2, the evolution can be conducted through numerically integrating the ODEs
(2.93). If the complexified theory has is domain on Riemann surfaces, as is the case for simplicial
quantum gravity, branches need to be recorded as part of the numerical integration algorithm to
make sure the system flows continuously on the Riemann surfaces. In Step 3,

Eeff(ϕ) =E(ϕ(ζ)) + log det J(ζ), Jee′ =
∂ϕe
∂ζe′

, (2.98)

where ϕe and ζe are the values ϕ and ζ take on the edge e. The Jacobian can be obtained (see
Appendix A of [31]) by integrating

dJee′

dt
=
∑
e′′

Hee′′Je′′e′ , Hee′ := −∂e′∂eE, Jee′(0) = δee′ . (2.99)

The function eEeff is the integrand of the final integral to be computed, since

Z =

∫
M0

eE(ζ)dζ (2.100)

=

∫
MT

eE(ϕ)dϕ (2.101)

=

∫
M0

eE(ϕ(ζ)) det J dζ, (2.102)

where we reparametrized the flowed manifold MT by points ζ of the original manifold M0 in the
last step. Now the integrand equals eEeff for Eeff defined in (2.98). Expanding Eeff in real and
imaginary parts yields eEeff = eReEeff+iφ, where

φ = ImEeff = ImE + arg det(J). (2.103)

This explains steps 3 and 5, in which we sample (2.102) according to the magnitude eReEeff of
the integrand, and treat the phase eiφ as part of the observable in (2.97).

This algorithm can alleviate the sign problem because as T → ∞, the flowed manifold ap-
proaches a combination of steepest descent contours (Lefschetz thimbles) on each of which φ is
constant [31].

However, the usefulness of the algorithm is not guaranteed because of “trapping” for the
Monte Carlo sampling. As noted below (2.94) ReE decreases monotonically under the holo-
morphic flow, so ReEeff also tends to decrease. As T is increased, the probability weight eReEeff

develop peaks around the stationary points where ∂eE = 0, separated by valleys where eReEeff is
exponentially suppressed. Consequently it can be hard for the Markov chain to travel across the
peak regions to generate a sufficient sample.

In practice, we need to find a flow time T large enough so that the phase fluctuation in φ is
sufficiently suppressed to tame the sign problem, and small enough so that the trapping of the
Markov chain is sufficiently weak. More sophisticated algorithms such as the tempering algo-
rithms [80, 81] involving multiple flow times/chains have been developed to avoid the trapping
issue. In principle general Markov Chain Monte Carlo algorithms for multimodal distributions
can also be applied.
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2.6 2D simplicial quantum gravity

We apply the holomorphic gradient flow method to overcome the sign problem for Lorentzian
simplicial gravitational path integrals. We focus on the 2D case for this initial study on the topic.
The relevant expressions for the holomorphic flow equation and the Jacobian equation are given
in this section. Along the way we prove a complex version of the Gauss-Bonnet theorem, which
may be of independent interest. The numerical results are presented in the next section.

In 2D, we consider the path integral

Z =

∫
Dσ eE , (2.104)

E =− λV − k
∑
v

δv + a
∑
v

δ2v
Av

+m
∑
t

logVt. (2.105)

The first (cosmological constant) and second (Einstein-Hilbert) terms are as is (2.85) specialized
to 2D. The fourth term is the measure factor term of (2.82). The third term a

∑
v δ

2
v/Av is the R2

term [82]. Here a is the coupling constant, and Av is the area share of vertex v:

Av =
1

3

∑
t∋v

Vt =
1

3

∑
t∋v

√
Vt, (2.106)

where the sum is over triangles t containing vertex v, and Vt is the squared volume for triangle
t calculated according to (2.5) or (2.6). The letter A instead of V is used for Av to distinguish
from the hinge (vertex in 2D) volume Vh = Vv, which is usually set to 1 in 2D.

2.6.1 Complex Gauss-Bonnet theorem

The Einstein-Hilbert term EEH = −k
∑

v δv can actually be left out of the path integration be-
cause it is topological.

In the Euclidean domain, the celebrated Gauss-Bonnet theorem says that EEH = k2πχ, where
χ is a topological invariant that is fixed by the simplicial complex, and does not depend on the
particular length assignments. The same holds in the Lorentzian domain. A nice prove can be
found in [71], and a slight generalization that accounts for multiple boundary components can
be found in [5].

That a version of the Gauss-Bonnet theorem exists in the complex domain was suggested by
Louko and Sorkin [77], but they left it as an open question to investigate.

Here we prove a complex version of the Gauss-Bonnet theorem, which generalizes the Eu-
clidean and Lorentzian versions. It implies that on a fixed simplicial lattice, EEH is constant
when the Lorentzian or Euclidean contour is continuously deformed into the complex domain.
Therefore EEH can be taken out of the path integral in the holomorphic gradient flow algorithm.

Theorem 15 (Complex Gauss-Bonnet). On a fixed simplicial lattice, any continuous deformation of
the path integration contour in the complex domain will not change the value of the Einstein-Hiblert
term EEH .

If the deformation is continuously connected to the Lorentzian or the Euclidean contour,

EEH/(−k) = 2πχ, χ = V − E + T, (2.107)
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where V,E, T are the vertex, edge, and triangle numbers of the simplicial lattice, and χ is Euler
number. This simple result assumes that each boundary vertex is shared by two regions.

More generally, when the numbers of regions sharing the vertices v is Qv,

EEH/(−k) = 2πχ, χ = V o +
1

2
V ∂ − E + T +

∑
v∈∂

1

Qv
, (2.108)

where the bulk and boundary elements are labelled by superscripts o and ∂, and the sum
∑

v∈∂ is
over all boundary vertices.

Proof. In 2D, the Einstein-Hilbert equals

EEH/(−k) =
∑
v

δv =(
∑
v

2π/Qv −
∑
a

θa) (2.109)

=(
∑
v

2π/Qv − πN). (2.110)

In the first line we used the definition (2.75) of the deficit angle. In δv for each vertex v, there is
a sum over angles θ around that vertex. After

∑
v, we obtain a sum

∑
a θa is over all triangular

angles of the 2D simplicial complex. In the second line we grouped the angles into triangles and
applied Theorem 2. Here N is some integer. This shows that the EEH can only take values from
a discrete set labelled by N .

Under a continuous deformation of the contour, a holomorphic function such as EEH can
only change value continuously. Yet we just showed that the codomain of EEH is a discrete set.
Therefore EEH cannot change value under a continuous deformation of the contour.

The claims (2.107) and (2.108) can be proved by the same argument in [71] and [5]. In the
Lorentzian and Euclidean domains,

EEH/(−kπ) =2V o +
∑
v∈∂

2

nv
− T, (2.111)

0 =− 2Eo − E∂ + 3T, (2.112)

0 =V ∂ − E∂ . (2.113)

Equation (2.111) uses the fact that in the interior of the region, Qv = 1, and that in the Lorentzian
and Euclidean domains the angles of a triangle sum to π (Theorem 8), whence N = T . Equations
(2.112) and (2.113) are simple facts about the simplicial lattice. Each bulk edge is shared by
two faces, each boundary edge is shared by one face, and each face has three edges so (2.112)
follows. The boundary is formed by a vertex-edge-vertex-edge... chain so (2.113) follows. Adding
up (2.111) to (2.113) yields (2.108). Specializing to Qv = 2 for all v yields (2.107).

2.6.2 Flow equations

Because of Theorem 15, ∂eEEH = 0, so the flow equations (2.93) become

dσe
dt

=− ∂eE = −∂eECC − ∂eER2 − ∂eEm. (2.114)
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For the cosmological constant term ECC ,

∂eECC =− λ∂eV (2.115)

=− λ
∑
t

∂eVt. (2.116)

For the R2 term ER2 ,

∂eER2 =a
∑
v

∂e(
δ2v
Av

) (2.117)

=a
∑
v

[
2δv∂eδv
Av

− δ2v∂eAv

A2
v

]. (2.118)

For the measure term Em,

∂eEm =m
∑
t

∂e logVt (2.119)

=m
∑
t

V−1
t ∂eVt. (2.120)

Therefore
dσe
dt

=− ∂eECC − ∂eER2 − ∂eEm (2.121)

=λ
∑
t

∂eVt − a
∑
v

(
2δv∂eδv
Av

− δ2v∂eAv

A2
v

)−m
∑
t

V−1
t ∂eVt. (2.122)

This formula needs to be expressed in terms of the squared lengths to be applied. While δv, Av,
and Vt in terms of the squared lengths are known from the definitions, the derivative terms in
terms of the squared lengths are given below.

Volume terms

For ∂eVt and ∂eAv, a straightforward calculation using the definitions yields

∂eVt =
∂eVt

2
√

Vt
=
∂eVt

2Vt
, (2.123)

∂eVt =
1

8
(−σe + σe1 + σe2) , (2.124)

∂eAv =
1

3

∑
t∋v

∂eVt =
1

3

∑
t∋v,e

∂eVt, (2.125)

where e1, e2 are the other two edges of the triangle t.

Angle terms

For ∂eδv,

δv =2π/Qv −
∑
t∋v

θt,v, (2.126)

∂eδv =−
∑
t∋v

∂eθt,v = −
∑
t∋v,e

∂eθt,v. (2.127)
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For a and b in triangle t meeting at vertex v, (2.26) implies

∂θt,v
∂σa

=
σa − σb + σc
4iσa(a ∧ b)

=
σa − σb + σc

8σaVt
, (2.128)

∂θt,v
∂σb

=
−σa + σb + σc
4iσb(a ∧ b)

=
−σa + σb + σc

8σbVt
, (2.129)

∂θt,v
∂σv

=
i

2a ∧ b
=

−1

4Vt
. (2.130)

Here we noted that

a ∧ b =− 2iVt, (2.131)

where Vt in terms of squared lengths is given in (2.11). These can be used to express (2.127)
fully in the squared lengths.

2.6.3 Jacobian

The Jacobian flow equation is given in (2.99) as

dJee′

dt
=
∑
e′′

Hee′′Je′′e′ , Hee′ := −∂e′∂eE, Jee′(0) = δee′ . (2.132)

Specialized to simplicial quantum gravity in 2D,

Hee′ =− ∂e′∂eE = −∂e′∂eECC − ∂e′∂eER2 − ∂e′∂eEm, (2.133)

where the Einstein-Hilbert term drop out by Theorem 15.

The cosmological constant term

The cosmological constant term is

∂e′∂eECC =− λ
∑
t

∂e′∂eVt (2.134)

=− λ
∑
t∋e,e′

∂e′∂eVt, (2.135)

where it was noted that ∂e′∂eVt = 0 if the triangle t does not contain both e and e′. By (2.123)
and (2.124),

∂e′∂eVt =
1

2
√

Vt
(
−1

2Vt
∂eVt∂e′Vt + ∂e′∂eVt). (2.136)

∂eVt =
1

8
(−σe + σe1 + σe2) , (2.137)

∂e′∂eVt =

{
−1
8 , e = e′,
1
8 , e ̸= e′.

(2.138)

Plugging these in (2.135) yields an expression in terms of squared lengths.

Regarding computational complexity it is relevant to note that ∂e′∂eECC is quasi-local. Be-
cause the sum

∑
t∋e,e′ in (2.135) is over triangles t that contain both e and e′, if e and e′ are not

identical or adjacent then ∂e′∂eECC = 0.
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Figure 2.9: The edges that Av and δv depend on are thickened. They are all within one edge
away from v, and are all within two edges away from each other. A pair of edges (e.g., e and
e′′′) more than two edges away will not find any vertex v whose Av and δv depend on them both.
Even a pair of edges (e.g., e and e′′) two edges away may not find any vertex v whose Av and δv
depend on them both.

The R2 term

For the R2 term,

∂e∂e′ER2 =
∑
v

a

A3
v

[2δvAv

(
−δ(0,1)v A(1,0)

v − δ(1,0)v A(0,1)
v + δ(1,1)v Av

)
+ δ2v

(
2A(0,1)

v A(1,0)
v −AvA

(1,1)
v

)
+ 2δ(0,1)v δ(1,0)v A2

v], (2.139)

where f (i,j) is the shorthand for ∂ie∂
j
e′f .

We see that ∂e∂e′ER2 is quasi-local, in the sense that ∂e∂e′ER2 = 0 when e and e′ are more
than two edges away (meaning the shortest lattice graph path touching both e and e′ has more
than two edges) (Fig. 2.9). This is because ∂eδv = ∂eAv = 0 if e is more than one edge away from
v. If e and e′ are more than two edges away, then at least one of them is more than one edge
away from v for any v, whence all terms on the right hand side of (2.139) vanish.

Volume terms

By the definition of Av,

A(1,0)
v =∂eVv =

1

3

∑
t∋v

∂eVt =
1

3

∑
t∋v,e,e′

∂eVt, (2.140)

A(1,0)
v =∂e′Vv =

1

3

∑
t∋v

∂e′Vt =
1

3

∑
t∋v,e,e′

∂e′Vt, (2.141)

A(1,1)
v =∂e∂e′Vv =

1

3

∑
t∋v

∂e∂e′Vt =
1

3

∑
t∋v,e,e′

∂e∂e′Vt. (2.142)
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Figure 2.10: Triangle t with edges ea, eb, ec whose squared lengths are σa, σb, σc. Edges ea and eb
bound the angle θt,v.

These can be expressed in terms of squared lengths using (2.123), (2.124), (2.136), and (2.138):

∂eVt =
∂eVt

2
√

Vt
, (2.143)

∂eVt =
1

8
(−σe + σe1 + σe2) , (2.144)

∂e′∂eVt =
1

2
√

Vt
(
−1

2Vt
∂eVt∂e′Vt + ∂e′∂eVt), (2.145)

∂e′∂eVt =

{
−1
8 , e = e′,
1
8 , e ̸= e′.

(2.146)

Angle terms

The terms δ(1,0)v and δ
(0,1)
v can be expressed in squared lengths using (2.127) - (2.130) (with

labels specified in Fig. 2.10):

∂eδv =−
∑
t∋v

∂eθt,v = −
∑
t∋v,e

∂eθt,v. (2.147)

∂θt,v
∂σa

=
σa − σb + σc
4iσa(a ∧ b)

=
σa − σb + σc

8σaVt
, (2.148)

∂θt,v
∂σb

=
−σa + σb + σc
4iσb(a ∧ b)

=
−σa + σb + σc

8σbVt
, (2.149)

∂θt,v
∂σv

=
i

2a ∧ b
=

−1

4Vt
. (2.150)

For the second derivative,

δ(1,1)v = ∂e∂e′δv =−
∑

t∋v,e,e′
∂e∂e′θt,v. (2.151)

For e, e′ ordered as ea, eb, ec (Fig. 2.10), the Hessian matrix is

∂e∂e′θt,v =
1

32V 3
t


X
4σ2

a
−σc (−σa+σb+σc)

2

−σc Y
4σ2

b

(σa−σb+σc)
2

(−σa+σb+σc)
2

(σa−σb+σc)
2

(σa+σb−σc)
2

 , (2.152)
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where

X =σ3a + σ2a (σc − 3σb) + 3σa
(
σ2b − σ2c

)
− (σb − σc)

3, (2.153)

Y = X(σa ↔ σb) =σ
3
b + σ2b (σc − 3σa) + 3σb

(
σ2a − σ2c

)
− (σa − σc)

3. (2.154)

The above volume and angular terms of derivatives can be plugged into (2.139) to express it in
terms of squared lengths.

The measure term

By the definition of Em,

∂e′∂eEm =m
∑
t∋e,e′

∂e′∂e logVt (2.155)

=m
∑
t∋e,e′

1

V2
t

(Vt∂e′∂eVt − ∂eVt∂e′Vt). (2.156)

The previous formulas (2.124) and (2.138) can then be used to express this in terms of squared
length.

2.7 Numerical results

In this section we present results of numerical simulation for the path integral

Z =

∫
Dσ eE , E = −λV + a

∑
v

δ2v
Av

+m
∑
t

logVt, (2.157)

parameterized by p = (λ, a,m). These constants and the squared lengths are set unitless in this
section for simplicity.

We compute the expectation value for the squared length ⟨σe⟩ =
∫
Dσ σeeE . According to

(2.97),

⟨σe⟩ =

〈
σee

iφ
〉
ReEeff

⟨eiφ⟩ReEeff

, (2.158)

where ⟨·⟩ReEeff
is the average using the ensemble just generated, and the phase φ is the imaginary

part of Eeff.

When φ fluctuates wildly, the sign problem is bad. The task is to choose T so that on the
flowed contour the phase fluctuation is reduced. We can quantify the performance of the algo-
rithm in alleviating the sign problem by the average phase

Φ =
∣∣∣〈eiφ〉ReEeff

∣∣∣ = ∣∣∣∣∫ Dσ eiφ+ReEeff∫
Dσ eReEeff

∣∣∣∣. (2.159)

The closer Φ is to 1, the less the sign fluctuation, and hence the better the performance.

In the cases considered below complex contours are found where Φ > 0.9.
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Figure 2.11: The symmetry-reduced box model with boundary squared lengths σt, σs fixed, and
interior squared length σ dynamical.

2.7.1 Numerical setup

The numerical simulation is performed on a simple box model in a symmetry-reduced setting
(Fig. 2.11). The boundary squared lengths are fixed at

σs = 1.0, σt = −1.0. (2.160)

The four remaining edges are dynamical, and they take the same σ. In the definition of the deficit
angle (2.75) we take Q = 1 for the interior vertex and Q = 4 for the boundary vertices so that
the deficit angle vanishes for a box with flat geometry. At the boundary vertices Av of (2.106)
contains a sum of two triangle areas. In a different setting where the box has neighbor regions,
the neighbor triangle areas would be included in the sum for Av.

The numerical algorithm is as presented in Section 2.5.2. For any fixed flow time T , we
apply the adaptive Markov Chain Monte Carlo algorithm of [83] to generate an ensemble of
configurations according to the probability weight eReEeff . In each step we randomly pick an
edge e, and propose a shift of σe according to a Gaussian probability distribution. The variance of
the distribution is dynamical in the adaptive MCMC algorithm employed here. In this algorithm,
the acceptance rate is checked every N (N = 50 here) steps. If the acceptance rate is below or
above the target rate r = 0.44, the jump size is decreased or increased by

δ(n) = min(0.01, n−1/2), (2.161)

where n is the step number. That δ(n) → 0 as n→ ∞ ensures the asymptotic convergence of the
chain.

A proposal is rejected if the Lorentzian triangle inequality is violated. In another model, one
may also choose to reject a proposal if the number of light rays at a vertex is different from that
of the flat configuration. However, in the symmetry-reduced box model the triangle inequality
automatically implies the light ray number matching, so only the triangle inequality needs to be
imposed. With this constraint, the dynamical edges can still be either timelike or spacelike.

A lower bound Emin = −10.0 is imposed on ReEeff in the numerical integration for the
holomorphic flow from t = 0 to the designated flow time t = T . If ReEeff is too small the
proposal will not be accepted. It improves the efficiency of the algorithm to simply truncate the
integrator at the lower bound to move on to the next proposal.
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Figure 2.12: The starting case with p = (1.0, 1.0,−0.25). With T = 0.0 the phase fluctuation is
quite large.

2.7.2 Results

We consider five sets of coupling constants p. The numerical simulations are performed using the
Julia programming language [84] on a personal computer. All Markov chains are obtained within
about an hour. In all cases, we are able to identify a flow time T for which the sign problem is
significantly ameliorated so that Φ > 0.9.

Starting case

For p = (1.0, 1.0,−0.25) where m = −0.25 for the DeWitt measure in 2D [18]), we consider
T = 0.0, T = 0.0005 and T = 0.001 (Figure 2.12 to Figure 2.14). As the flow time T is increased
from 0.0 to 0.001, the average phase Φ increases from about 0.143 to 0.929, which is close to 1
and indicates that the phase fluctuation becomes much suppressed.

Note that ⟨σ⟩ ≈ 0, which is not a coincidence since the model admits a Z2 symmetry. One
can check that the transformation σ 7→ −σ on the interior squared length preserves the path
integral amplitude. Therefore for any σ configuration there is the −σ configuration with opposite
contribution to ⟨σ⟩ to make ⟨σ⟩ = 0 as an exact result.

On the other hand, even though the numerical estimation of
〈
σ2
〉

is close to zero, its value is
not expected to vanish. That σ2 is small is simply because it is the square of σ which is close to
zero. The third row in the figure with T = 0.001 shows the histograms for the real and imaginary
parts of σ evaluated at the flow time T . The finite width of the distribution indicates the presence
of fluctuations for the magnitude of σ.

In the following, we will change the parameters one by one to see how this influences the
fluctuations reflected in the histograms and the estimated values of

〈
σ2
〉
.

Changing m

Given a new problem with a new set of parameters p, at present we do not know how to determine
beforehand a suitable value of T with small enough phase fluctuation. Therefore we simply find
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Figure 2.13: The starting case with p = (1.0, 1.0,−0.25). With T = 0.0005 the phase fluctuation
is moderately suppressed.

Figure 2.14: The starting case with p = (1.0, 1.0,−0.25). With T = 0.001 the phase fluctuation is
moderately suppressed.
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Figure 2.15: Increasing m to 0.0 does not influence the fluctuation in σ much.

a suitable value of T with Φ > 0.9 by trial and error. Here and below, we directly show the results
for the suitable T .

The result for m increased to 0.0 is shown in Figure 2.15. No significant difference is seen in
the histogram or in

〈
σ2
〉

in comparison to the original case of m = −0.25.

Changing λ

The results for λ changed to 100 and 10000 are shown in Figure 2.16 and Figure 2.17. Although it
may not be so apparent from just the cases of λ = 1 and λ = 100, including the case of λ = 10000
makes it clear that the fluctuation in σ in reduced, as indicated by the decreased width of the
histogram distribution and the decreased magnitude of

〈
σ2
〉
.

Changing a

The results for a changed to 100 is shown in Figure 2.18. In comparison to the cases of a = 1, it
is quite clear that increasing a reduces the fluctuation in σ.

2.7.3 Contour boundaries

As mentioned in Section 2.5.2, to apply the holomorphic gradient flow algorithm we need that:
1) The holomorphic flow transverse a region where the path integrand is holomorphic; 2) The
boundary of the flow region have negligible contribution to the path integral.
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Figure 2.16: Changing λ to 100.0 slightly reduces the fluctuation in σ.

Figure 2.17: Changing λ to 10000.0 largely reduces the fluctuation in σ.
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Figure 2.18: Changing a to 100.0 largely reduces the fluctuation in σ.

For simplicial quantum gravity, the boundaries are set by the branch point singularities of the
path integrand, the generalized triangle inequalities, and additional constraints such as the light
ray number constraint mentioned above. Within the region bounded by these boundaries, the
path integrand is holomorphic, so the first requirement is met.

We now check the second requirement that the boundary of the flow region make negligible
contribution to the path integral. We noted above that for the symmetry-reduced box model, the
generalized triangle inequalities imply the light ray number constraint. In addition, the bound-
aries of the generalized triangle inequalities are set where the Lorentzian volumes vanish, i.e.,
Vt = 0. Yet this coincides with one of the square root branch points singularities (see (2.11)
and (2.26)). Therefore altogether we only need to consider the boundaries of the branch point
singularities of the path integrand.

Along such boundaries the contribution to the path integral is infinitely suppressed. To see
this, note from (2.94) that dER

dt = −
∑

e |∂eE|2 ≤ 0, i.e., the real part of the path exponent E de-
cays monotonically at a rate determined by |∂eE| along the holomorphic flow. Using the formulas
of Section 2.6, one can check that |∂eE| → ∞ at the branch point singularities. Therefore at the
boundaries set by these branch points, the path integrand is infinitely exponentially suppressed.
They make negligible contributions to the path integral.

2.8 Discussion

We have provided a definition of complex simplicial gravity, which reduces to Euclidean and
Lorentzian simplicial gravity in special cases.

The complex formalism enabled us to perform Monte Carlo simulations for Lorentzian sim-
plicial quantum gravity. The numerical sign problem is overcome by deforming the integration
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contour into the complex.

The complex formalism also sets the path for further studies of singularity resolving processes
with complex semi-classical solutions, generalizing previous studies in the symmetry-reduced
setting [56, 63, 64, 65, 66, 67, 68, 69, 70, 27], and making a clear connection to the Lorentzian
theory.

The numerical simulations for Lorentzian simplicial quantum gravity performed here are in a
very simple setting. They are on a simple box lattice, in 1+1D, with symmetry reduction, and for
pure gravity. Future works should extend to larger lattices, higher dimensions, without symmetry
reduction, and with matter coupling.

The physics theory side of these generalizations is understood. From the present work it is
clear how to define complex simplicial quantum gravity on larger lattices in higher dimensions
without symmetry reduction. From previous works it is clear how to couple to the matter species
of the Standard Model (see e.g., Chapter 6 of Hamber’s textbook [18] and references therein).

The numerics side of these generalizations still needs to be understood better. It is unclear to
what extent the holomorphic gradient flow algorithm adopted here will remain efficient. Some
other techniques may be needed, such as the tempered thimbles, the learnifolds, and the path
optimization algorithms reviewed in [31] and further developed in, e.g., [85, 86, 87, 88].

Using the numerical tools, one could study the refinement (continuum) limit of the theory.
One could investigate questions about the fate of black hole and cosmological singularities (see
the Introduction section for a list of references on this topic). From a path integral perspective,
if a process can be characterized by a set of path integral configurations, the formalism assigns
a probability to it (which may or may not have meaning to cognitive beings such as us). Sim-
plicial quantum gravity provides a formalism to compute and compare the probabilities for such
processes.
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Chapter 3

Light ray fluctuations in simplicial
quantum gravity

A non-perturbative study on the quantum fluctuations of light ray propagation through
a quantum region of spacetime is long overdue. Within the theory of Lorentzian sim-
plicial quantum gravity, we compute the probabilities for a test light ray to land at
different locations after travelling through a symmetry-reduced box region in 2,3 and
4 spacetime dimensions. It is found that for fixed boundary conditions, light ray
fluctuations are generically large when all coupling constants are relatively small in
absolute value. For fixed coupling constants, as the boundary size is decreased light
ray fluctuations first increase and then decrease in a 2D theory with the cosmological
constant, Einstein-Hilbert and R-squared terms. While in 3D and 4D theories with the
cosmological constant and Einstein-Hilbert terms, as the boundary size is decreased
light ray fluctuations just increase. Incidentally, when studying 2D quantum grav-
ity we show that the global time-space duality with the cosmological constant and
Einstein-Hilbert terms noted previously also holds when arbitrary even powers of the
Ricci scalar are added. We close by discussing how light ray fluctuations can be used
in obtaining the continuum limit of non-perturbative Lorentzian quantum gravity.

3.1 Introduction

The topic of light ray fluctuations is relevant to some core themes of quantum gravity.

Figure 3.1: Light ray propagations affected by quantum gravitational (QG) regions.
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Figure 3.2: In a quantum region with superposed spacetime configurations, light rays starting at
the same location on the boundary end at different locations on the other side of the boundary.

Consider the bounce scenario for quantum cosmology and quantum black holes [89] illus-
trated in Figure 3.1 part (a). Suppose the cosmological and/or black hole singularities in classical
gravity are replaced by bouncing processes in quantum gravity. A natural question is how light
rays propagate through the shaded bouncing region where quantum gravitational effects are sig-
nificant. After going through the quantum gravitational region, will a light ray become quantum
dispersed as in the left picture, or stay focused as in the right picture? The answer influences
not just our theoretical understanding of information propagation in black hole and cosmological
physics, but also experimental searches of pre-bounce relics to test the bounce scenario.

As another example consider the propagation of light rays in cosmology illustrated in Fig-
ure 3.1 part (b). Two light rays that were never in causal contact if spacetime was treated
classically (they trace out the solid lines in the figure) could actually have been in causal contact
if spacetime is treated quantumly to allow quantum fluctuations of the light ray paths (dashed
lines). This difference could affect our qualitative and quantitative understanding on early uni-
verse cosmology [90], in particular on the horizon problem and the inflation hypothesis.

In general, we are interested in the propagation of light rays across of a region of quantum
spacetime where different spacetime configurations are in superposition, yielding different paths
of light ray propagation (Figure 3.2). Since strong gravity is involved in the cosmology and
black hole scenarios mentioned above, we are interested in a non-perturbative treatment of the
problem.

Conceptually, it is very clear how to study the problem in non-perturbative Lorentzian grav-
itational path integrals. Let there be a region of quantum spacetime with fixed boundary con-
figurations. Different spacetime configurations compatible with the boundary configuration are
summed over, yielding amplitudes for the light ray to land at different locations.

Practically, how smoothly the study would proceed depends very much on which non-perturbative
Lorentzian gravitational path integral is used. In spin-foam models, before proceeding it needs
to be clarified whether the spin-foams represent continuum spacetime configurations or some
fundamentally discrete structure. This choice affects where light rays and causal paths [91] can
travel on a spin-foam (see [92] for a related discussion). In quantum causal set path integrals,
it needs to be decided if the path integral should be restricted to configurations corresponding
to a particular spacetime dimension, and if so how (see Section 6.4 of [35] for a discussion). In
causal dynamical triangulation, the topic is more accessible since the light ray path on a piece-
wise flat spacetime configuration is obtainable and the path integral is well specified in different
dimensions [28, 29]. While we think it is possible to study the topic under discussion in causal
dynamical triangulation, to our knowledge such studies have not been carried out before.
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In this work we study light ray fluctuations across a quantum region of spacetime in Lorentzian
simplicial quantum gravity [2]. The study of gravitational path integrals defined in terms of sim-
plicial spacetime configurations á la Regge [14] has a long history [15, 16, 17, 18, 19]. While pre-
vious works focused on the Euclidean theory, there has been a growing interest in the Lorentzian
theory in recent years [23, 24, 26, 27, 5, 2, 93]. As in causal dynamical triangulation, the light
ray paths on a piecewise flat simplicial spacetime configuration is obtainable, in particular using
Lorentzian trigonometry which we illustrate in Section 3.3.1. From there one could integrate
over spacetime configurations corresponding to different light ray landing locations to obtain the
quantum amplitudes and the probabilities.

The non-perturbative Lorentzian path integral is not easy to compute due to the complex
phase of the integrand. To facilitate the study we make two simplifications. First, we consider the
fluctuation of test light rays. In other words we consider models of pure quantum gravity to infer
the light paths from the gravitational configurations alone, without introducing matter degrees
of freedom. This means the backreaction of light on gravity is not taken into account in this
simplified study. Second, we focus on a symmetry-reduced “box model” with simple boundary
conditions and only one dynamical degree of freedom. This allows us to evaluate the Lorentzian
path integral through direct numerical integration.

In this simplified model, we ask how light ray fluctuations are affected by the coupling con-
stants and the size of the region determined by the boundary conditions in 2,3 and 4 spacetime
dimensions. For fixed boundary conditions, we find that light ray fluctuations are generically
large when all coupling constants are relatively small in absolute value in all dimensions. For
fixed coupling constants, we find that as the boundary size is decreased, light ray fluctuations
first increase and then decrease in a 2D theory with the cosmological constant, Einstein-Hilbert
and R2 terms. On the other hand, as the boundary size is decreased light ray fluctuations just
increase in 3D and 4D theories with the cosmological constant and Einstein-Hilbert terms. As a
side result, when studying 2D quantum gravity we show that the global time-space duality with
the cosmological constant and Einstein-Hilbert terms noted previously [5] also applies when ar-
bitrary even powers of the Ricci scalar are added.

These results point to light ray fluctuations as potentially useful in the study of the renor-
malization group and the continuum limit of non-perturbative Lorentzian quantum gravity. In
performing renormalization group type analysis by refining the lattices to approach the contin-
uum limit, it is important to find physical quantities to compare across different lattices. The
present study reveals the light ray amplitudes and light ray probabilities as candidate physical
quantities to compare across lattices. These quantities which are not accessible in the Euclidean
offer some new opportunities to be explored in future works.

The paper is organized as follows. The formalism of Lorentzian simplicial quantum gravity
is introduced in Section 3.2. The symmetry-reduced box model and the formulas for light ray
locations across the box region are presented in Section 3.3. The results in 2,3 and 4D are
presented in Section 3.4 to Section 3.6. The important quantity of the light ray amplitude and
its relevance to the continuum limit of Lorentzian quantum gravity is discussed in Section 3.7. A
brief summary including discussions on future prospects is given in Section 3.8.
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Figure 3.3: Describing curved space/spacetime by gluing flat simplicies.

3.2 Lorentzian simplicial quantum gravity

Formally, gravitational path integrals take the form

Z =

∫
Dg A[g] (3.1)

of a sum over gravitational configurations g weighted by amplitudes A[g]. To fully define the
path integral, we need specify a way to enumerate the gravitational configurations to perform the
sum. In simplicial quantum gravity [14, 15, 16, 17, 18, 19], the sum is over simplicial spacetime
configuration which describe curved spacetime by combining flat simplicies (Figure 3.3). While
extensive works have been carried out in the past in the Euclidean signature, the present study
of light ray fluctuations is based on a Lorentzian version of the theory [2] that sums Lorentzian
simplicial spacetime configurations [94, 71].

In classical General Relativity a spacetime configuration is characterized by the metric field
gab. Its physical meaning is that the line element ds2 = gabdx

adxb indicates the squared length
between infinitesimally separated points. In simplicial gravity a spacetime configuration is char-
acterized by the squared lengths

σe =

∫
e
ds2 (3.2)

integrated along the simplicial edges e. As such, σe is the finite version of the line element ds2.
In the metric signature

(−,+, · · · ,+) (3.3)

used here, σe can be smaller than, equal to, or greater than zero, corresponding to the edge being
timelike, lightlike, and spacelike. The spacetime within a simplex is taken to be flat, and the
simplicial configuration is fully characterized by σ on all the edges.

The gravitational path integral is then a sum over simplicial spacetime configurations specified
by the edge squared lengths on simplicial lattice graphs Γ:

Z =

∫
Dσ eE[σ], (3.4)∫

Dσ = lim
Γ

∏
e∈Γ

∫ ∞

−∞
dσe µ[σ]L[σ]C[σ]. (3.5)
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On a finite lattice Γ the integral gives an approximate result. The exact result is approached
in the limit limΓ of infinitely refining the lattice.1 The symbols L[σ], C[σ], µ[σ], E[σ] stand for
the Lorentzian constraint, the lightcone constraint, the integration measure factor, and the path
integral exponent. Their forms are specified below.

3.2.1 Path integral exponent

The formal continuum path integral exponent takes the form

E =i

∫
dDx

√
−g(−λ+ kR+ aR2 + · · · ), (3.6)

where λ, k, a are coupling constants and · · · signifies the possibility of including additional terms.
We want to find the simplicial versions of the exponent.

2D

In 2 spacetime dimensions the simplicial path integral exponent takes the form

E =− λ
∑
t

At − k
∑
v

δv + a
∑
v

δ2v
Av

+ · · · . (3.7)

The first term is the cosmological constant term. For a triangle t with squared edge lengths
σ01, σ02, σ12, the squared area formula

At =
1

16

(
−σ201 − σ202 − σ212 + 2σ01σ02 + 2σ01σ12 + 2σ02σ12

)
(3.8)

generalizes Heron’s formula to apply to both Euclidean and Lorentzian cases. At is positive in
the Euclidean and negative in the Lorentzian, just like the squared area factor g = det gab. The
Lorentzian triangle area

At =
√

At (3.9)

is positive imaginary and forms the analogue of
√
g = i

√
−g. This explains why −λ

∑
tAt is the

simplicial version of −iλ
∫
dDx

√
−g.

The second term is the Einstein-Hilbert term. Simplicial gravity is based on the idea that
composing flat simplicies can describe curved spacetime configurations. This is possible because
the sum of angles around a vertex can differ from the flat spacetime value. The difference is
encoded in the deficit angle

δv =Fv −
∑
t∋v

θt,v. (3.10)

In this formula,
∑

t∋v θt,v is the sum of triangle angles θt,v around a vertex v, while Fv is flat
spacetime value. If v lies in the interior of a region, then as explained below Fv = 2π. If v lies

1It is possible to include an additional sum over spacetime topologies by summing over lattices with different
topologies in (3.5). Yet in the simple box models studied below we will focus on spacetime configurations with the
trivial topology.
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Figure 3.4: Angle of a Lorentzian triangle.

on the boundary of a region, then Fv depends on how many pieces of spacetime regions share
the vertex v, and can only be fixed on a case by case basis. To obtain a lattice version of the Ricci
scalar R we even out δv to unit areas through −δv/Av where

Av =
1

3

∑
t∋v

At. (3.11)

is the vertex share of the Lorentzian area. A triangle t contains three vertices v, so a vertex shares
1/3 of the triangle’s area At. In the continuum limit −δv/Av approaches R for θ defined in (3.12)
[94, 2].2 This explains why −k

∑
v Av

δv
Av

= −kδv forms the lattice version of the Einstein-Hilbert
term ik

∫
dDx

√
−gR. In 2D a Lorentzian version of the Gauss-Bonnet theorem [71] indicates that

the Einstein-Hilbert term is a topological invariant. Therefore it can usually be taken out of the
path integration to simplify the study.

The third term a
∑

v
δ2v
Av

= aAv(−
∑

v
δv
Av

)2 is the lattice version of a
∫
dDx i

√
−gR2, given that

−δv/Av is the lattice analogue of R. This term is not a topological invariant and allows non-trivial
stationary points for the action. In this work, we focus on these first three terms in the exponent
for the studies.

Since the integration variable is the squared length, we need to express the deficit angle δv
and hence the triangle angles θt,v in squared length. For a Lorentzian or Euclidean triangle with
squared lengths as shown in Figure 3.4 [2],

θ =− iLogα, (3.12)

α =
σa + σb − σc +

√
σ2a + σ2b + σ2c − 2σaσb − 2σbσc − 2σcσa

−2
√
−σa

√
−σb

, (3.13)

where Log stands for the principle branch of the log function (ImLogα = π for α < 0). To under-
stand this formula, consider for a moment an Euclidean triangle with squared lengths σa, σb, σc.
In this case the first part of α, σa+σb−σc

−2
√
−σa

√
−σb

, is simply cos θ according to the law of cosines. The

second part,
√

σ2
a+σ2

b+σ2
c−2σaσb−2σbσc−2σcσa

−2
√
−σa

√
−σb

, is simply i sin θ by recognising the numerator as 4i

times the triangle area according to Heron’s formula. Therefore θ = −iLogα holds for an Eu-
clidean triangle. By allowing the squared lengths to be negative we arrive at the angle formula
(3.12) which applies in both the Lorentzian and the Euclidean.

It can be check that in flat spacetime the angles around a vertex sum to 2π [2], which confirms
the claim above about Fv.

2Here the sign convention for the curvature is set by Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ.
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Higher dimensions

In higher dimensions, we consider the simplicial path integral exponent

E =− λ
∑
s

√
Vs + ik

∑
h

δh
√

−Vh + · · · . (3.14)

The first term is the cosmological constant term. For a D-simplex s with squared edge lengths
σ01, σ02, · · · , the Cayley-Menger determinant

Vs =
(−1)D+1

2D(D!)2

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 . . . 1
1 0 σ01 σ02 . . . σ0d
1 σ01 0 σ12 . . . σ1d
1 σ02 σ12 0 . . . σ2d
...

...
...

...
. . .

...
1 σ0d σ1d σ2d . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.15)

yields its squared volume, which generalizes (3.8) to D dimensions. Vs is the analogue of g and
both are positive in the Euclidean and negative in the Lorentzian. This explains why −λ

∑
s

√
Vs

is the simplicial version of −iλ
∫
dDx

√
−g.

The second term is the Einstein-Hilbert term. Imagine we generate a D-dimensional simplicial
configurations by extending a 2D Lorentzian configuration uniformly in D-2 additional spatial
dimensions. The Einstein-Hilbert term would be −k

∑
v δvV , which is the 2D term −k

∑
v δv

times V > 0, the spatial volume extended in the D-2 additional dimensions. Given a general
D-dimensional Lorentzian simplicial configuration, we could imagine that this is arrived at by
non-uniformly extending a 2D configuration. The Einstein-Hilbert term would be

ik
∑
h

δh
√

−Vh. (3.16)

Here the sum is over codimension 2 subsimplices (edges in 3D, triangles in 4D etc.) referred to
as hinges and labelled by h. At each hinge the deficit angle δh is obtained by projecting the D-
simplices containing the hinge to the 2D plane orthogonal to the hinge and computing the deficit
angle at the vertex where the hinge projects to in this plane (see [2] for the formula of the deficit
angle in terms of squared lengths). The plane can be Euclidean or Lorentzian, and (3.10), (3.12),
(3.13) apply equally well given the squared lengths. As suggested above by the multiplication
by V , the hinges are extended non-uniformly in D-2 dimensions so we multiply hingewise by
the volumes −i

√
−Vh, where Vh is the squared volume defined by (3.15) which applies to both

Euclidean and Lorentzian hinges. This explains ik
∑

h δh
√
−Vh as the Einstein-Hilbert term for

the extended configuration, which has the correct continuum limit [94, 2].

In contrast to 2D, in higher dimensions the Einstein-Hilbert term is not a topological invariant,
so we will ignore higher order terms in the following given that the first two terms already yields
a non-trivial theory.

3.2.2 Measure factor

For the integration measure factor µ[σ], a commonly used family of local measures is the product
of powers of the simplicial (square) volumes

µ[σ] =
∏
s

Vm
s (3.17)
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Figure 3.5: With s representing spacelike edges and t representing timelike edges, the vertex at
the center of the figure has six light rays (dashed lines) and three lightcones.

parametrized by m ∈ R [18].3 In this work we adopt (3.17) as the measure factor. The constant
m, like the coupling constants λ, k and a, is treated as a parameter of the theory.

3.2.3 Lorentzian and lightcone constraints

Without the Lorentzian constraint L[σ], the integral (3.5) also includes non-Lorentzian configura-
tions such as Euclidean ones where all edges have positive square lengths and all simplices have
positive squared volumes. The Lorentzian constraint L[σ] serves to ensure that only Lorentzian
spacetime configurations are included in (3.5).

A simplex s is Lorentzian, i.e., embedable in 2D Minkowski spacetime, if and only if [24, 26]

Vs < 0; and Vr < 0 =⇒ Vt ≤ 0 for all t ⊃ r. (3.18)

This says that: 1) The simplex s itself has negative squared volume, and 2) if a subsimplex r of
s has negative squared volume, then all higher-dimensional subsimplices t that contain r have
non-negative squared volumes.

The first condition is easy to digest since we know that the metric determinant g as the in-
finitesimal squared volume is negative in the Lorentzian and positive in the Euclidean. The second
condition is there because a timelike subsimplex cannot be embedded in a higher dimensional
spacelike subsimplex (e.g., for a 4-simplex s, a timelike triangle subsimplex r cannot be embed-
ded in a spacelike tetrahedron subsimplex t), and the first condition is not enough to ensure this.
The Lorentzian constraint is then

L[σ] =

{
1, if (3.18) holds for all simplices s,
0, otherwise.

(3.19)

The Lorentzian constraint is not enough to ensure the path integral includes only ordinary
spacetime configurations. In an ordinary spacetime configuration, each point has two lightcones
attached to it. Without the lightcone constraint C[σ], the integral (3.5) can include configurations
where a vertex can have fewer or more than two lightcones, with the latter case illustrated in the

3Since Vs is negative in the Lorentzian, one could use µ[σ] =
∏

s(−Vs)
m instead to make the measure positive.

However, this makes no essential difference on a fixed lattice because the two measures differ at most by an overall
constant.
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2D configuration of Fig. 3.5. The lightcone constraint

C[σ] =

{
1, all interior points have two lightcones attached,
0, otherwise

(3.20)

ensures that all points in the interior region of the path integral configurations have two light-
cones attached.

Since each simplex is just a portion of Minkowski spacetime, the lightcone number is always
2 in the interior of the simplices. On a boundary point of a simplex where multiple simplices
meet, we need to count lightcones for each simplex and add up the number to check the lightcone
constraint. For instance the center vertex in the 2D configuration of Fig. 3.5 is met by six triangles
each coming with a light ray. Hence there are 3 lightcones, violating the lightcone constraint.

3.2.4 Scaling identity

Later we will study the dependence of the path integral on the boundary edge squared lengths.
For this purpose it is useful to derive a scaling identity that relates a scaling of the boundary
condition to a scaling of the coupling constants. Consider the path integral on a fixed lattice
graph4 Γ with fixed boundary squared lengths σB

Z[σB, ci,m] =
∏
e∈Γ

∫
σB

dσe L[σ]C[σ] (
∏
s

Vm
s )e

∑
i ciEi , (3.21)

where the exponent is expressed with the coupling constants ci of length dimension di. Rewriting
σ on all edges as l2σ′ where l is an arbitrary constant number yields

Z[σB, ci,m] =
∏
e∈Γ

∫
l2σ′

B

d(l2σ′e) L[l
2σ′]C[l2σ′] (

∏
s

(l2DV′
s)

m)e
∑

i cil
−diE′

i (3.22)

=l2Ne+2mDNs
∏
e∈Γ

∫
σ′
B

dσ′e L
′C ′ (

∏
s

(V′
s)

m)e
∑

i cil
−diE′

i (3.23)

=l2Ne+2mDNs Z[l−2σB, cil
−di ,m]. (3.24)

Here D is the spacetime dimension, Ne is the number of non-boundary edges in Γ, Ns is the
number of simplices, and f ′ is the shorthand for f [σ′] for a function f [σ]. In the second line we
noted that the constraints L and C take the same values for σ and σ′.

Setting l2σB in place of σB for (3.24), we get that

Z[l2σB, ci,m] =l2Ne+2mDNs Z[σB, cil
−di ,m]. (3.25)

This says that changing the boundary condition by an arbitrary factor l2 (LHS) can equivalently
be achieved by scaling the coupling constants while keeping the boundary condition fixed (RHS).
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Figure 3.6: Symmetry-reduced box models in 2,3 and 4 spacetime dimensions. The diagonal 2D
plane where the light ray travels is shaded and its boundary and interior squared lengths are
labelled.

3.3 Symmetry-reduced box model

A box model is a hypercube with an interior vertex connected to each of the boundary vertices by
an edge. The hypercube is thus divided into flat hyperpyramids formed by the interior vertex as
the tip and a face of the hypercube as the base. Here we focus on symmetry-reduced box models
in 2,3 and 4 spacetime dimensions illustrated in Figure 3.6. The boundary condition is that:

All boundary spacelike edges have squared length σs > 0;

All boundary timelike edges have squared length σt < 0. (3.26)

In a path integral configuration all the interior squared lengths take the same value σ and in this
sense the model is symmetry-reduced.

In computing the path integral exponent, we assume the box to be a standalone region with-
out neighbors. Therefore in 2D the vertex area Av of (3.11) is the sum of two triangles. In
addition, Fv in the definition of the deficit angle (3.10) is fixed to take the value for a flat hyper-
cube in general dimensions. For example in 2D Fv = π/2 as a quarter of the full angle 2π.

Given that the hyperpyramids are not simplices, they need to be divided into simplices before
applying the formulas of Section 3.2.1. Alternatively the flat hyperpyramids could be treated
as the elementary building blocks that describe curved spacetime configurations by having non-
vanishing deficit angles where they are glued together. Since the hyperpyramids are flat, in the
simplex description their interior deficit angles vanish. Hence the simplex description agrees
with the pyramid description on the Einstein-Hilbert term. Since non-squared Lorentzian and
Euclidean volumes are both additive, the two descriptions also agree on the cosmological constant
term. The only difference lies in the measure term, which in the simplex description is given by
Equation (3.17) as µ[σ] =

∏
s Vm

s . In the pyramid description this is replaced by

µ[σ] =
∏
p

Vm
p , (3.27)

where the sum is over hyperpyramids p, and the hyperpyramid squared volume Vp is negative
for Lorentzian hyperpyramids. Vp equals −(

∑
s∈p

√
−Vs)

2 in terms of the simplex decomposi-
tion of the hyperpyramid. Below we conform with the pyramid description for the integration

4If one considers lattice refinement to take the continuum limit, then the scaling identity (3.24) may receive
modifications for anomalous scaling dimensions. Although a brief schematic discussion on the continuum limit is
given in Section 3.7, the computations performed in this work are based on fixed lattices so we will not consider
anomalous dimensions in the scaling identity.
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Figure 3.7: Situations for the light ray (dashed lines) emanating from vertex 1 in the symmetry-
reduced box model when the interior edge is timelike (t), spacelike (s), and lightlike (l).

measure term, because the integrated variables are the squared edges on the boundaries of the
hyperpyamid instead of the simplices.

3.3.1 Light ray locations

In all dimensions, we consider a light ray travelling through the quantum spacetime region within
the diagonal 2D planes shaded in Figure 3.6, again starting from vertex 1. In 2D, the spacelike
edges of the plane have squared length σs. In 3D, the spacelike edges of the plane have squared
length 2σs because they are the diagonal edges of the 2D base squares. In 4D, the spacelike edges
of the plane have squared length 3σs because they are the diagonal edges of the 3D base cubes.

Therefore in all dimensions, the light ray travels through a 2D simplicial configuration con-
sisting 4 triangles as illustrated in Figure 3.7. Depending on whether the interior edge is timelike
or spacelike, the light ray will land on either edge 24 or edge 34. If the interior edge is lightlike,
the light ray will land right on the vertex 4.

To find the precise light ray landing location we apply Lorentzian trigonometry to triangles
with one lightlike edge. Consider a triangle with squared lengths σa, σb and σc where edge c is
lightlike. For the angle bounded by the edges a and b, setting σc = 0 in (3.13) yields

α2 =(
σa + σb +

√
σ2a + σ2b − 2σaσb

−2
√
−σa

√
−σb

)2 = (
σa + σb + |σa − σb|
−2

√
−σa

√
−σb

)2 =
σ+
σ−

, (3.28)

where σ+ is the larger real number between σa and σb, while σ− is the smaller one (σa = σb is
impossible because At would be zero which violates the Lorentzian constraint of Section 3.2.3).

For a box with timelike interior edges illustrated in the left of Figure 3.7, σ27 < σ26 < 0 < σ12.
The first inequality holds because the future-pointing light ray 67 is moving “upwards” such that
edge 27 has a larger timelike length than edge 26, which implies σ27 < σ26 for the negatively
signed squared lengths. Applying (3.28) to triangles 126 and 267 yields σ26 = σ12/α

2
126 =

σ12/α
2
125 and σ27 = σ26/α

2
627 = σ26/α

2
425, where

αijk refers to α of (3.13) for the angle bounded by edges ij and kj. (3.29)

Both α125 and α425 can be determined using (3.13) in terms of the triangle squared lengths σt, σs
on the boundary and σ in the interior. Therefore

σ27 =
σ12

α2
125α

2
425

(3.30)
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determines the light ray location in terms of σt, σs and σ < 0.

Similarly for a box with spacelike interior edges as in the middle of Figure 3.7,

σ37 = σ13α
2
135α

2
435 (3.31)

determines the light ray location in terms of σt, σs and σ > 0.

It is convenient to represent the light ray location using a dimensionless variable that grows
linear with respect to length instead of squared length. We define the dimensionless light ray
location as a function of the interior squared length σ by

r(σ) =


−

√
σ47√
σ34

=
√
σ37√
σ34

− 1 =

√
σ13α2

135α
2
435√

σ34
− 1, spacelike interior edge σ > 0,

0 lightlike interior edge σ = 0,
√
σ47√
σ24

= 1−
√
σ27√
σ24

= 1−
√

σ12α
−2
125α

−2
425√

σ24
, timelike interior edge σ < 0.

(3.32)

As the light ray location moves continuously from vertex 3 to 4 to 2, the value of r grows from
−1 to 0 to 1 linearly so that, for instance, r = −0.5 when the light ray lands right in the middle
between vertices 3 and 4.

3.3.2 Light ray fluctuations

Formula (3.32) allows one to compute the light ray location for a given configuration. When
different configurations are summed over in a path integral, there are quantum fluctuations in
the light ray location.

To characterize the quantum fluctuation of light ray location, we partition the possible values
of r into N many equal size intervals Ii, i = 1, 2, · · · , N . Path integrating over the spacetime
configurations compatible with the set of light ray locations Ii yields the amplitude

Ai =

∫
σ:r(σ)∈Ii

dσ L[σ]C[σ]µ[σ]eE[σ]. (3.33)

Given r(σ), the values of σ corresponding to Ii can be solved numerically so that the integration
domain is determined. From these amplitude, one could compute the relative probability for the
light ray to land in the i-th interval (Figure 3.8)

pi =
|Ai|2∑
i |Ai|2

, (3.34)

The probability distribution over i informs us how much light ray fluctuation there is.

3.4 Light ray fluctuations in 2D

3.4.1 Fixed boundary size, varying coupling constants

In this section we fix the boundary squared lengths to σs = 1, σt = −1 and study the light ray
fluctuation for different sets of coupling constants in 2D. Varying boundary squared lengths will
be considered in the next section.
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Figure 3.8: Partitioning the possible light ray locations into intervals and assigning relative prob-
abilities according to the gravitational path integral.

Figure 3.9: The light ray location r(σ) in 2D as a function of the interior edge squared length σ
when σs = 1, σt = −1.
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The Lorentzian and lightcone constraints of Section 3.2.3 limit the interior edge squared
length to σ ∈ (σt/4, σs/4) = (−0.25, 0.25). Since the boundary values σ = −0.25, 0.25 are the
branch point singularities for the path integral exponent, we take the integration domain for σ to
be [−b, b] where

b = 0.25− ϵ. (3.35)

The choice of the cutoff value ϵ does not influence the probability distributions to be computed
in any significant way, as long as it is kept small. Here we take ϵ = 10−8.

The light ray location r(σ) as a function of the interior edge squared length is plotted in
Figure 3.9 according to (3.32). Clearly the range of r is a proper subset of [−1, 1], so not all
locations on the boundary edges 34 and 24 are reachable by light rays emanating from vertex 1
in the current setting. We partition the reachable light ray locations into

N = 16 (3.36)

equal size intervals, which are denoted Ii for i = 1, 2, · · · , 16.

In the following, we compute the light location probabilities pi for i = 1, 2, · · · , 16 defined in
(3.34) through numerical integration in the Julia programming language [84] using the QuadGK
package based on the adaptive Gauss-Kronrod quadrature method.

The results are presented below in figure Figure 3.10 and onward. In all the figures, the
coupling constants are displayed to 2 significant digits which explains the ≈ sign in the titles.
Each bar chart shows a probability distribution of pi kept to 4 decimal places with some fixed set
of parameters. The path integral amplitudes as functions of σ are plotted below the bar charts.
The measure factor µ[σ] is counted as a factor within the amplitude so that the integral is with
respect to the plain Lebesgue measure in σ. From Figure 3.9 the light ray location is a decreasing
function of σ, so the bar charts pi are shown for i = 16, · · · , 1 from left to right in order to match
the increasing values of σ for the amplitude plots. This eases the comparison between the bar
charts and the amplitude plots, and one observes that the places where the amplitude varies
slowly corresponds well with the peaks of the probability distribution.

One non-vanishing parameter

As noted in Section 3.2.1, the Gauss-Bonnet theorem implies that the Einstein-Hilbert term is a
constant in the present model with fixed topology. This constant term drops out as a common
factor for the numerator and denominator in the definition (3.34) for pi. Therefore there are only
three non-trivial free parameters m,λ, a. We first consider the cases where only one of the three
parameters is non-zero.

When a parameter x = λ or a is non-vanishing, it can be both positive and negative. However,
pi for x equals pi for −x, because for the amplitudes are complex conjugates for all configurations.
For this reason we only display the data for positive λ and a in Figure 3.10 and Figure 3.11.

When only λ > 0 the results are shown in Figure 3.10. For large λ ≳ 1000 light ray fluctuation
is small as pi is sharply peaked. As λ gets smaller the amount of fluctuation gets larger. A similar
conclusion holds when only a > 0 (Figure 3.11), namely light ray fluctuation is small and large
respectively when a is large and small. The reason is clear from the amplitude plots below the
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Figure 3.10: Probability and amplitude distributions for a family of λ with m = 0, a = 0. By
Figure 3.9 the light ray location is a decreasing function of σ. Therefore in this and the following
figures of 2D, the probabilities pi of (3.34) are plotted for i = 16, · · · , 1 from left to right in order
to match the increasing values of σ for the amplitude plots.

Figure 3.11: Probability and amplitude distributions for a family of a with m = 0, λ = 0.
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Figure 3.12: Probability and amplitude distributions for a family of m with λ = 0, a = 0.

probabilities. A large parameter makes the phase of the integral amplitude change faster so that
probabilities are suppressed except for special regions where the phase is nearly stationary.

These fit the common intuition that as ℏ gets smaller quantum fluctuations become smaller.
The path integral exponent E of (3.6) is related to the action S by E = i

ℏS, so the coupling con-
stants λ and a scale inverse-proportionally with ℏ. Therefore a smaller ℏ means a large absolute
value for λ and a, and we saw that these yield smaller light ray fluctuations.

Next we consider m < 0 with the results shown in Figure 3.12. The pi values start distributed
evenly for m = 0, and gets pushed towards the two sides as m decreases. This trend is easy un-
derstand. In the definition (3.17) Vs is always negative so for the probabilities only |Vs| matters.
The smaller the negative exponent m is, the more it favours configurations with small |Vs|, which
in the current model means larger values of |σ| according to (3.8). Therefore for a very small
negative m the light ray location is concentrated around the two sides of the plots.

In summary if x is the only non-vanishing parameter among the three parameters, large |x|
suppresses light ray fluctuations while small |x| enhances light ray fluctuations.

Multiple non-vanishing parameters

When multiple parameters are non-vanishing, one could expect that the qualitative features of
the probability distribution follows that of the dominating parameter. This indeed holds in the
cases studied below.

For reasons that will become clear in Section 3.4.2, we organize the set of parameters accord-
ing to the product λa. We consider m = 0 and m = −0.25 (the value for the Dewitt measure
[18]) but not smaller values as they only serve to push the probability distribution towards the
two sides like in Figure 3.12.

The results for λa = 104 are shown in Figure 3.13 and Figure 3.14. Light ray fluctuation is
small for all the 6 families of parameters shown. Here with λa = 104, there is always at least one
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Figure 3.13: Probability and amplitude distributions for a family of (λ, a) with λa = 104,m = 0.

Figure 3.14: Probability and amplitude distributions for a family of (λ, a) with λa = 104,m =
−0.25.
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Figure 3.15: Probability and amplitude distributions for a family of (λ, a) with λa = 1,m = 0.

Figure 3.16: Probability and amplitude distributions for a family of (λ, a) with λa = 1,m = −0.25.

of λ and a that is large to yield fast oscillation of the phase and suppress the probabilities away
from the center region.

The results for λa = 1 is shown in Figure 3.15 and Figure 3.16. For this smaller value of λa as
well, the probabilities are concentrated around the center when λ ≳ 1000 or a ≳ 100. Different
from the case of λa = 104, there are now families of parameters in which both λ and a are small
(e.g., λ = 1, a = 1) so that light ray fluctuation is larger.

As shown in Figure 3.17 and Figure 3.18, the results for a yet smaller positive value λa = 10−6

exhibits the same qualitative features, which we expect to hold generically for small positive
values of λa.

With two or more non-vanishing parameters it makes a difference to allow for negative values
of λa. The results for λa = −104 is shown in Figure 3.19 and Figure 3.20. In comparison with
λa = 104, the only major difference is that for λ = 1000, light ray fluctuation is less suppressed.
A comparison of the amplitude plots show that the negative a = −10 induces a wider region of
slowly changing phases, which explains the difference in probabilities.

We also studied other negative values of λa opposite to the positive ones studied above. The
plots turned out to be similar to the corresponding positive values so are not shown.

In summary, when λ, a ̸= 0, the presence of a large |λ| or |a| suppresses light ray fluctuations
while their absence enhances light ray fluctuations. In special cases, changing a parameter with
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Figure 3.17: Probability and amplitude distributions for a family of (λ, a) with λa = 10−6,m = 0.

Figure 3.18: Probability and amplitude distributions for a family of (λ, a) with λa = 10−6,m =
−0.25.

Figure 3.19: Probability and amplitude distributions for a family of (λ, a) with λa = −104,m = 0.
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Figure 3.20: Probability and amplitude distributions for a family of (λ, a) with λa = −104,m =
−0.25.

smaller magnitude (e.g., λ = 1000, a = 10 to λ = 1000, a = −10) can mildly affect the amount of
light ray fluctuation due to cancellations between terms in the exponent.

3.4.2 Fixed coupling constants, varying boundary sizes

To study how light ray fluctuations are affected by the size of the region specified by the boundary
edge lengths, we can exploit the scaling identity of Section 3.2.4. In 2D (3.25) implies that

Z[l2σB, λ, k, a,m] =l2Ne+4mNt Z[σB, l
2λ, k, l−2a,m]. (3.37)

Since the light ray location r is a dimensionless quantity, one could easily check that the equation
holds when Z is replaced by Ai of (3.33). Consequently

pi[l
2σB, λ, k, a,m] = pi[σB, l

2λ, k, l−2a,m]. (3.38)

This says that rescaling the boundary condition (LHS) is equiavlent to rescaling the parame-
ters λ and a while keeping λa fixed. Therefore the previous results for fixed λa also inform us
about how light ray fluctuations depend on the size of the region. For instance, suppose we fix
the parameters to be λ = 104, a = 1,m = 0. Then for σs = −σt = 1, pi are as in the first plot in
Figure 3.13. The next plots are for the boundary squared lengths shrinked by factors of l2 = 0.1.

All the previous figures for fixed λa can then be read from left to right as a progressive
shrinking of the size of the boundary for fixed parameters. We see that light ray fluctuation is
suppressed for both large and small sized boundaries.

3.4.3 Time-space duality

A notable feature of the data for pi is that the values of pi are completely symmetrical in the sense
that pi = pN−i for i = 1, 2, · · · , N/2. This is not a coincidence but follows from some symmetry
considerations.

Given a path integral configuration σ, consider the map σ 7→ −σ that negates all the squared
lengths including the boundary ones. Physically, this map exchanges spacelike intervals and

66



Figure 3.21: Applying σ 7→ −σ followed by a π/4 rotation to a box configuration obeying σt =
−σs yields a box configuration obeying the same boundary condition. The light ray location r at
6 is changed to 7, which by the symmetry of the model is located at −r.

timelike intervals. It was noted that this map is a symmetry for 2D Lorentzian quantum gravity
with the cosmological constant term and the Einstein-Hilbert term [5].

Here we note that the symmetry holds more generally for any theory with additional even
powers of the Ricci scalar R in the action. According to Section 3.2.1, the simplicial analogue
of R is −δv/Av. From the definitions of δv and Av, σ 7→ −σ maps δv to −δv and Av to Av.
Hence −δv/Av is mapped to δv/Av, and any even power of −δv/Av is left invariant. Since the
map g 7→ −g on the metric field g also takes R to −R, the symmetry is also expected to hold for
additional theories of 2D quantum gravity beyond simplicial quantum gravity.

While the map σ 7→ −σ exchanges timelike and spacelike intervals, it preserves lightlike
intervals. Applied to a box model configuration it turns the timelike boundaries to spacelike ones
and vice versa, while preserving all light ray paths. For the models studied the boundary condition
obeys σt = −σs, so a rotation of the box by π/4 in either direction yields back a configuration
obeying the same boundary condition. On the other hand the light ray location is changed from
r to −r Figure 3.21. Since the map σ 7→ −σ preserves path integral amplitudes, we see that
each box configuration with light ray location r corresponds to another configuration of the same
amplitude with light ray location −r. In the 2D symmetry-reduced model r ∈ Ii if and only if
−r ∈ IN−i, so Ai = AN−i and pi = pN−i.

3.5 Light ray fluctuations in 3D

3.5.1 Fixed boundary size, varying coupling constants

The study in 3D is parallel to the case of 2D. As illustrated in Figure 3.6, the light ray travels in the
diagonal plane. Again we fix the boundary squared lengths to σs = 1, σt = −1. The Lorentzian
and lightcone constraints limit the interior edge squared length to σ ∈ ((σs + σt)/4, σs/2) =
(0.0, 0.5). In particular, four light rays emanate from the interior vertex in the diagonal plane if
and only if two lightcones are attached to the interior vertex in the 3D box, so this condition is
enough to ensure the lightcone constraint is obeyed. Like in 2D, the integration domain is cutoff
with ϵ = 10−8 at

(ϵ, 0.5− ϵ) (3.39)
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Figure 3.22: The light ray location r(σ) in 3D as a function of the interior edge squared length σ
when σs = 1, σt = −1.

to avoid branch point singularities in the domain. The choice of the cutoff value ϵ does not
influence the probability distributions to be computed in any significant way.

In computing the probabilities through numerical integration we need to impose an additional
cutoff around σ = σs/4. At this point some angles evaluated according to (3.12) diverge, but the
results should be finite since the divergences of different angles cancel in path integral exponent.
However to avoid numerical inaccuracies due to the difference of large numbers, a cutoff is
imposed. Where |σ − σs/4| < ϵ′ = 10−7 in the integration domain, the integrand is evaluated at
σ = σs/4± ϵ′ for σ >,< σs/4. This value of ϵ′ is picked to be small without leading to numerical
infinities.

The light ray location r(σ) as a function of the interior edge squared length is plotted in
Figure 3.22 according to (3.32) when σ12 = σ34 = 2σs = 2 as illustrated in Figure 3.6. The
reachable light ray locations are again partitioned into

N = 16 (3.40)

equal size intervals, which are denoted Ii for i = 1, 2, · · · , 16.

In 3D the parameters are λ, k,m for the cosmological constant term, the Einstein-Hilbert
term, and the measure term. In figures such as Figure 3.23 the probability distributions of pi to
4 decimal places are plotted in the bar charts for i = 16, · · · , 1 from left to right to match the
increasing values of σ for the amplitude plots. The range of probability plots is limited to [0.0, 0.5]
to make the low probability bars more visible.

One non-vanishing parameter

We first consider the cases where only one of the three parameters is non-zero. We only display
the results for positive λ and k in Figure 3.23 and Figure 3.24, because as in the 2D case pi for
the positive and negative parameters are equal.

For large λ ≳ 1000 or k ≳ 1000, pi is sharply peaked indicating small light ray fluctuations.
As λ or k gets smaller the fluctuation gets larger. The reason is clear from the amplitude plots
below the probabilities. As in the 2D case, the large parameter makes the phase of the integral
amplitude change faster so that probabilities are suppressed except for special regions where
the phase is nearly stationary. As in the 2D case, these fit the common intuition that as ℏ gets
smaller quantum fluctuations become smaller. The path integral exponent E of (3.14) is related
to the action S by E = i

ℏS, so the coupling constants λ and k scale inverse-proportionally with
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Figure 3.23: Probability and amplitude distributions for a family of λ with m = 0, k = 0. By
Figure 3.22 the light ray location is a decreasing function of σ. Therefore in this and the following
figures of 3D, the probabilities pi of (3.34) are plotted for i = 16, · · · , 1 from left to right in order
to match the increasing values of σ for the amplitude plots.

Figure 3.24: Probability and amplitude distributions for a family of a with m = 0, λ = 0.
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Figure 3.25: Probability and amplitude distributions for a family of m with λ = 0, k = 0.

ℏ. Therefore a smaller ℏ means a larger absolute value for λ and a, and we see that these yield
smaller light ray fluctuations.

The results for m < 0 are shown in Figure 3.25. The pi values start distributed evenly for
m = 0, and gets pushed towards the left side as m decreases. Like in 2D, the smaller the negative
parameter m is, the more it favours configurations with small |Vs|. In 3D this favours smaller
values of σ according to (3.15) and explains why the light ray location is concentrated around
the left side of the plots.

In summary if x is the only non-vanishing parameter among the three parameters, large |x|
suppresses light ray fluctuations while small |x| enhances light ray fluctuations.

Multiple non-vanishing parameters

In 3D the scaling analysis requires fixing k3/λ (Section 3.5.2), so the parameters are organized
according to the value of k3/λ. We consider m = 0 and m = −1/12 (the value for the Dewitt
measure [18]) but not smaller values as they only serve to push the probability distribution
towards the side like in Figure 3.25.

The results for k3/λ = 106 are shown in Figure 3.26 and Figure 3.27. For fixed k3/λ > 0, λ is
large when k is large. The plots show that light ray fluctuation is large for large values of λ and
k, and small for small values of λ and k. This is due to larger values of the parameters inducing
fast oscillations for the phase away from the nearly stationary phase region. The results for other
values of k3/λ including negative ones are shown in Figure 3.28 to Figure 3.33 and exhibit no
qualitative difference.

The situation is contrasted with 2D where as λ or a is decreased the light ray fluctuation
starts large and ends large. Clearly this is because in 2D λa is dimensionless and fixed so λ and
a are inversely proportional, whereas in 3D k3/λ > 0 is dimensionless and fixed so λ and k3 are
proportional.
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Figure 3.26: Probability and amplitude distributions for a family of (λ, k) with k3/λ = 106,m = 0.

Figure 3.27: Probability and amplitude distributions for a family of (λ, k) with k3/λ = 106,m ≈
−1/12.
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Figure 3.28: Probability and amplitude distributions for a family of (λ, k) with k3/λ = 1,m = 0.

Figure 3.29: Probability and amplitude distributions for a family of (λ, k) with k3/λ = 1,m ≈
−1/12.
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Figure 3.30: Probability and amplitude distributions for a family of (λ, k) with k3/λ = −106,m =
0.

Figure 3.31: Probability and amplitude distributions for a family of (λ, k) with k3/λ = −106,m ≈
−1/12.
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Figure 3.32: Probability and amplitude distributions for a family of (λ, k) with k3/λ = −1,m = 0.

Figure 3.33: Probability and amplitude distributions for a family of (λ, k) with k3/λ = −1,m ≈
−1/12.
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Figure 3.34: The light ray location r(σ) in 4D as a function of the interior edge squared length σ
when σs = 1, σt = −1.

3.5.2 Fixed coupling constants, varying boundary sizes

In 3D the scaling identity (3.25) implies that

Z[l2σB, λ, k,m] =l2Ne+4mNt Z[σB, l
3λ, lk,m], (3.41)

pi[l
2σB, λ, k, a,m] =pi[σB, l

3λ, lk,m]. (3.42)

Therefore all the previous figures for fixed k3/λ can then be read from left to right as a progressive
shrinking of the size of the boundary for fixed parameters. We see that light ray fluctuation
increases as the boundary shrinks.

3.6 Light ray fluctuations in 4D

3.6.1 Fixed boundary size, varying coupling constants

The setting of 4D is similar to the previous ones. Again we fix the boundary squared lengths
to σs = 1, σt = −1 and the light ray travels in the diagonal plane as illustrated in Figure 3.6.
The Lorentzian and lightcone constraints limit the interior edge squared length to σ ∈ (σs/2 +
σt/4, 3σs/4 = (0.25, 0.75), and the integration domain is cutoff with ϵ = 10−8 at

(0.25 + ϵ, 0.75− ϵ). (3.43)

In numerical integration, an additional cutoff is imposed to evaluate the integrand at σ = σs/2±ϵ′
for σ >,< σs/2 when |σ − σs/4| < ϵ′ = 10−7. The light ray location r(σ) as a function of the
interior edge squared length is plotted in Figure 3.34 according to (3.32) when σ12 = σ34 = 3σs =
3. The reachable light ray locations are again partitioned into N = 16 equal size intervals, which
are denoted Ii for i = 1, 2, · · · , 16. The parameters are λ, k,m for the cosmological constant term,
the Einstein-Hilbert term, and the measure term.

The probabilities and amplitudes are plotted in figures Figure 3.35 to Figure 3.40. Again, the
probabilities pi are kept to 4 decimal places, plotted in bars with the sequence i = 16, · · · , 1 to
match the increasing values of σ for the amplitude plots, and the plot range is limited to [0.0, 0.5]
to make the low probability bars more visible. The results are very similar to 3D, so we just briefly
summarize them.
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Figure 3.35: Probability and amplitude distributions for a family of λ with m = 0, a = 0. By
Figure 3.34 the light ray location is a decreasing function of σ. Therefore in this and the following
figures of 4D, the probabilities pi of (3.34) are plotted for i = 16, · · · , 1 from left to right in order
to match the increasing values of σ for the amplitude plots.

Figure 3.36: Probability and amplitude distributions for a family of a with m = 0, λ = 0.
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Figure 3.37: Probability and amplitude distributions for a family of m with λ = 0, a = 0.

One non-vanishing parameter

The results when only one parameter x of the three parameters is non-zero are plotted in Fig-
ure 3.35 to Figure 3.37. Similar to the 3D cases, large |x| suppresses light ray fluctuations while
small |x| enhances light ray fluctuations. These fit the common intuition that as ℏ gets smaller
quantum fluctuations become smaller, since according to (3.14) and E = i

ℏS, |x| scale inverse-
proportionally with ℏ, and we see that larger |x| yield smaller light ray fluctuations.

Multiple non-vanishing parameters

The results for some families of non-vanishing (λ, k) are shown in Figure 3.38 to Figure 3.41. The
parameters are organized according to the value of k2/λ, which is fixed in the scaling analysis
in 4D (Section 3.6.2). We consider m = 0, the value for the Dewitt measure [18], when smaller
values only serve to push the probability distribution towards the side like in Figure 3.37. As in
3D light ray fluctuation is large for large values of λ and k, and small for small values of λ and k.

3.6.2 Fixed coupling constants, varying boundary sizes

In 4D the scaling identity (3.25) implies that

Z[l2σB, λ, k,m] =l2Ne+4mNt Z[σB, l
4λ, l2k,m], (3.44)

pi[l
2σB, λ, k, a,m] =pi[σB, l

4λ, l2k,m]. (3.45)

Therefore all the previous figures for fixed k2/λ can then be read from left to right as a progressive
shrinking of the size of the boundary for fixed parameters. As in 3D, light ray fluctuation increases
as the boundary shrinks.
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Figure 3.38: Probability and amplitude distributions for a family of (λ, k) with k2/λ = 106,m = 0.

Figure 3.39: Probability and amplitude distributions for a family of (λ, k) with k2/λ = 1,m = 0.
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Figure 3.40: Probability and amplitude distributions for a family of (λ, k) with k2/λ = −106,m =
0.

Figure 3.41: Probability and amplitude distributions for a family of (λ, k) with k2/λ = −1,m = 0.
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3.7 Light amplitudes and the continuum limit

The previous results are approximations based on a coarse simplicial lattice. To improve the
approximation the lattice needs to be refined as the exact result is defined in the lattice refine-
ment limit of (3.4). However, our current understanding on how to take the continuum limit in
Lorentzian quantum gravity is incomplete (see [95] and [96] for related discussions on causal
dynamical triangulation and spin-foams, respectively).

Therefore for further studies of light ray fluctuations we are faced with two tasks. The first is
to understand light ray propagation in quantum spacetime with improved quantitative accuracy.
The second is to understand the continuum limit of non-perturbative Lorentzian quantum gravity.
It would be nice if the two tasks could be tackled together. In this section we discuss some
thoughts along this line. The main idea is to treat light ray probabilities as the physical quantity
to compare across different lattices in performing renormalization group type analysis.

3.7.1 Light amplitudes

Consider a bounded region of quantum spacetime crossed by a test light ray. Denote by b the
gravitational boundary condition for the region, and by r the locations and directions of the light
ray when it crosses the boundary. Note that a test light ray usually crosses the boundary more
than once, so r contains a list of variables. The light amplitude

A[b, r] =

∫
b,r

Dg A[g] (3.46)

is defined as the path integral over all gravitational configurations g compatible with the bound-
ary conditions r and b.

From the light amplitudes one could derive light ray probabilities by taking the modulus
square of the amplitudes, possibly after some coarse-grainings of the light ray variables r. This
procedure is exemplified on a simple box lattice Γ in previous sections, where we computed the
coarse-grained amplitudes

AΓ[b, rin, i] =

∫
rout∈Ii

dr AΓ[b, r] (3.47)

for different outgoing light location intervals Ii under fixed incoming light location rin, took the
modulus square, and obtained the light ray probabilities.

3.7.2 Renormalization group

The next task is to push the study to finer lattices. In lattice field theories this is usually tackled
in a renormalization group analysis.

As discussed in Section 1.7 of Montvay and Münster [97], there are two commonly adopted
alternatives in lattice refinement for quantum lattice field theories. One could either fix the
bare coupling constants and consider how the physical quantities such as the renormalized mass
change as the lattice is refined, or fix the physical quantities and consider how the bare coupling
constants change as the lattice is refined. In either case, the goal is to identify fixed points
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as special places in the space of the couplings where both the bare coupling constants and the
physical quantities remain unchanged as the lattice is refined. In principle, the theory space
comes with infinitely many coupling constants, but in practice, one often works on a subspace
with a finite number of couplings. For theories exhibiting asymptotic safety, fixed points that
capture the essential aspects of the full theory can be identified in the finite-dimensional subspace.

For example in scalar field theory, one works in a two-dimensional theory space of the bare
mass and the bare quartic couplings [97]. The renormalized mass and the renormalized quartic
coupling relate more directly to laboratory observations and are picked as the physical quantities
to compare across different lattices. Lattice refinement is carried out by decreasing the lattice
spacing. In 4D one identifies the free theory fixed point but no interacting fixed points, which
could be read as an indication that before reaching the zero lattice spacing limit some new ingre-
dients such as additional degrees of freedom or a fundamental cutoff must come in to rescue the
existence of an interacting quantum scalar field theory [98].

For simplicial quantum gravity one could attempt a similar study. Start with an ansatz for
a finite-dimensional theory space. Refine the lattice by enlarging the lattice graph, which at
the expectation value level decreases the simplicial volumes ⟨|Vs|⟩ when of the total spacetime
volume ⟨

∑
s |Vs|⟩ is bounded.

The important question is what to pick as the physical quantities to compare across lattices.
Lorentzian quantum gravity reveals light ray probability as a candidate. In previous sections we
computed the coarse-grained light amplitudes and probabilities

AΓ,α[b, r ∈ Ii], pΓ,α[b, r ∈ Ii] (3.48)

for different bare couplings α on a simple lattice Γ under symmetry-reduction. To proceed, one
should try to identify fixed points in the α theory space where pΓ,α remains unchanged as the
lattice Γ is refined. If successful, the constant physics trajectories approaching the fixed points in
the theory space indicate how the continuum limit can be taken.

In this program it is crucial to find an efficient method of computation. In addition to nu-
merical methods such as the one in [2], analytical insights including ideas on how to simplify
the theory without sacrificing key aspects could be helpful. Note also that the light amplitude is
composable in the sense that the light amplitude on the union of multiple quantum spacetime
regions can be derived from summing the products of light amplitudes for the individual regions.
Combined with the scaling identities of Section 3.2.4, it may be possible to find some shortcuts in
computing light amplitudes on refined lattices by iteratively composing light ray amplitudes on
coarser lattices.

3.7.3 Elementary light ray fluctuations?

In considering the strict infinite lattice limit a question arises on light ray fluctuations in the ele-
mentary simplicies. Should we regard an elementary simplex as a flat region of spacetime where
light ray fluctuations are absent, or should we regard it as representing a family of spacetime
configurations in superposition where light ray fluctuations are present?

In order to satisfy quantum uncertainty relations path integrals are dominated by non-differentiable
configurations (see Section 7.3 of Feynman and Hibbs [13]). For example, take the path integral
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Figure 3.42: The path integral measure factor µ relates one linear path segment amplitude to the
sum of amplitudes over a family of paths.

of a non-relativistic quantum particle and suppose to the contrary that the paths are all differen-
tiable. Then for a fixed path at a time t the position x(t) and momentum p(t) are well-defined
real numbers so that x(t)p(t)− p(t)x(t) = 0 for this path. Since this holds for all paths,

⟨x(t)p(t)− p(t)x(t)⟩ = 0 (3.49)

as computed from the path integral. Quantum uncertainty relations would be violated, and one
concludes that the assumption that the paths are differentiable cannot hold. On the other hand,
we standardly enumerate the paths in terms of piecewise linear paths [13]. Along the interior of
each linear piece of path, both the position and the momentum are well-defined real numbers. Is
there not a contradiction?

One resolution is to interpret a piecewise linear path as representing a family of paths includ-
ing non-differentiable ones (Figure 3.42). In the in the continuum (infinitely many time steps)
limit the path integral measure factor serves to correct the difference between the amplitude of
a piecewise linear path and the amplitude of family of paths including non-differentiable ones.
Namely as the time interval between two steps ∆t→ 0,

µ(∆t)A[γ0] =
∑
γ

A[γ] (3.50)

as illustrated in Figure 3.42 for one linear piece of path. Here A[γ0] is the amplitude for the
linear path γ0 connecting the starting and ending points, µ is the measure factor, and the RHS
sums over paths γ including non-differentiable ones.

For example for a free particle with mass m, the transition amplitude from X1 to X2 in time
T is √

m

2πiT
eim(X2−X1)2/2T , (3.51)

which can be obtained for instance from solving the Schrödinger equation. Had we approxi-
mated the transition amplitude by the amplitude of the linear path from X1 to X2, it would
be eim(X2−X1)2/2T , which equals the second factor of (3.51). This approximation misses all the
other paths connecting X1 to X2, including the non-differentiable ones. Therefore the first fac-
tor of (3.51) can be understood as correcting the differences in the time interval T . Now if we
evaluate the same transition amplitude over time T using the standard path integral prescrip-
tion over piecewise linear paths, during a time interval ∆t a linear piece of path has amplitude
A[γ0] = eim(x2−x1)2/2∆t between some positions x1 and x2. This would eventually lead to the
wrong result in the ∆t → 0 limit because we missed all the other paths connecting x1 to x2,
including the non-differentiable ones. Since (3.51) applies to all time durations, correcting the
difference requires the multiplication of

√
m

2πi∆t , equals the standard path integral measure factor
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µ(∆t). Hence the correct result is obtained by interpreting a piecewise linear path as represent-
ing a superposition over a family of paths whose amplitude sum differs from amplitude of the
piecewise linear path by the measure factors.

A similar story can be told about simplicial gravitational path integrals which generalize the
one-dimensional piecewise linear paths to higher dimensional piecewise flat simplicies. In anal-
ogy with the particle case, an elementary simplex of a simplicial spacetime configuration multi-
plied by the measure factor can be thought of as representing the sum over a family of configu-
rations dominated by non-differentiable ones.

Therefore in computing light amplitudes on a finite lattice, it is reasonable to assume the
presence of “elementary light ray fluctuations”. Namely, even on an elementary simplex the light
ray locations should not be sharply peaked as on a piece of Minkowski spacetime, but should
exhibit quantum fluctuations due to the sum over a family of configurations. This means the
light amplitudes for the elementary simplices should be non-vanishing for a range of light ray
locations.

On the other hand, it is not clear to what extent this point is practically relevant in studying
the continuum limit. It could be that once the lattice is taken large enough so that the elementary
simplicies are taken small enough (in the sense of having small expectation value for the volume),
introducing elementary light ray fluctuations or not does not affect the results. Further studies
are needed to see if this is the case.

3.8 Discussion

In this work we studied light ray fluctuations in a simple model in Lorentzian simplicial quantum
gravity. The overall question is how a quantum region of spacetime affects the propagation of
light rays crossing it. We computed the probabilities for test light rays to land at different locations
across a symmetry-reduced box model with simple boundary conditions in 2,3 and 4 spacetime
dimensions.

For fixed boundary conditions light ray fluctuations are generically large when all coupling
constants are relatively small in absolute value in all dimensions. In contrast, for fixed coupling
constants light ray fluctuations show different trends in different dimensions when the boundary
size is decreased. While in 2D light ray fluctuations first increase and then decrease, in 3D and
4D light ray fluctuations just increase without decreasing. The difference can be understood by
noting that the coupling constants of the cosmological constant, Einstein-Hilbert, and R2-terms
have different length dimensions in different spacetime dimensions, so behave differently as the
boundary length is scaled as in Section 3.2.4.

The symmetry-reduced box models with simple boundary conditions can be generalized in
two directions. Firstly we could allow more dynamical degrees of freedom by relaxing the
symmetry-reduction assumption and/or introducing larger simplicial lattices. This generalization
is a necessity if we are to investigate the continuum limit of the theory as discussed in Section 3.7
where we propose to explore the use light amplitudes in renormalization group type analysis for
Lorentzian quantum gravity. The continuum limit in turn would allow us to fix the coupling con-
stants by comparing with empirical data (see [22] for a related discussion in Euclidean simplicial
quantum gravity) in order to turn the qualitative conclusions about the amount of light ray fluctu-
ation into quantitative predictions. Secondly we could consider additional boundary conditions.
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Of particular interest are tunneling boundary conditions that admit complex, non-Lorentzian sta-
tionary points which are of interest to singularity resolution (see [2] and references therein).
Because the path integrals are not dominated by particular Lorentzian configurations, light ray
fluctuations could be generically large for singularity resolving tunneling processes.
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Chapter 4

Truly Lorentzian quantum cosmology

Quantum cosmology based on Lorentzian path integrals is a promising avenue. How-
ever, many previous works allow non-Lorentzian configurations by integrating the
squared scale factor over the whole real line. Here we show that restricting the min-
isuperspace path integral to Lorentzian configurations with positive squared scale fac-
tor can significantly change the expectation values. In addition, this enables the study
of causal horizons and their quantum fluctuations, and achieves singularity avoidance
trivially by excluding singular minisuperspace geometries as non-Lorentzian. The re-
sults indicate that semiclassical saddle point approximation is not always valid in truly
Lorentzian quantum cosmology. As a consequence, related works on the tunnelling
and no-boundary proposals, bouncing cosmology, and the quantum origin of inflation
etc. need to be reexamined.

4.1 Introduction

Transitioning to the Lorentzian signature has been a recurring theme in quantum gravity. Histor-
ically, approaches such as simplicial quantum gravity [18], dynamical triangulation [99], spin-
foam and related gauge theories [100] started in the Euclidean. Subsequent works eventually
encompassed the Lorentzian setting to counter issues such as spikes [23, 5], degenerate ge-
ometries [101, 102], conformal instabilities [103], or to simply engage with spacetime which is
Lorentzian.

In quantum cosmology one studies simplified models of quantum gravity such as the homo-
geneous and isotropic minisuperspace model with the metric

ds2 = −N2dτ2 + a(τ)2dΩ2, (4.1)

where dΩ2 is the metric of a closed spatial 3-sphere. Since Euclidean gravitational path integrals
suffer from the conformal instability issue [20], old works explored different complex integration
contours [72, 104, 56, 105, 106, 107, 108, 109, 110, 111]. There have been various discussions
about fixing the integration contour to be over Lorentzian spacetimes in the past (e.g., [112,
113, 114, 115]). More recently, Feldbrugge et al. proposed [60] to define the gravitational path
integrals by the Lorentzian contour, and use Picard-Lefschetz theory to study complex contour
deformations only as a computational trick for the fundamentally Lorentzian theory (see Sorkin
[116] for a closely related discussion).
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This has led to renewed interest in investigating old topics with new methods [60, 61, 117,
118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135,
136, 137, 138]. In these works of “Lorentzian quantum cosmology ”, it is common to adopt the
minisuperspace metric

ds2 = − N2

q(t)
dt2 + q(t)dΩ2, (4.2)

and treat the squared scale factor q as a path integral variable. The action in q is quadratic and a
Gaussian integration yields nice closed-form results [139, 105].

However, the Gaussian integration over all real values of q is questionable step. For the metric
to stay in the Lorentzian signature, q should only assume positive values. A path integral over also
negative q cannot be said to be truly Lorentzian. In the seminal paper [139] that adopted q as a
path integration variable, Halliwell gave ample discussions about potential issues for integrating
the squared scale factor over all real values. Yet these warnings are largely left aside in subsequent
works.

In this work we consider quantum cosmology in a truly Lorentzian setting, where the path
integral is only over strictly Lorentzian configurations. In particular, we study minisuperspace
quantum cosmology based on the metric (4.2), and distinguish the real q scheme, where q is
integrated over the whole real line, from the positive q scheme, where q is integrated over
positive values.

We find that the two schemes differ in at least three important aspects. First, the expectation
values for the squared scale factor can differ much in the two schemes, when q gets close to or
below zero for a relevant saddle point of the path integral. This affects the studies of tunnelling
and no-boundary proposals, bouncing cosmology, and the quantum origin of inflation. Second,
it is only possible to study the causal horizons and their quantum fluctuations in the positive q
scheme. In the real q scheme the path integral includes non-Lorentzian geometries, where causal
horizon is not defined. Third, restricting the path integral to the Lorentzian implies singularity
avoidance. This is because singular minisuperspace geometries are non-Lorentzian and hence
are automatically excluded from the path integral. In this sense, singularity avoidance is trivially
achieved [8] in the truly Lorentzian minisuperspace path integral.

The results challenge the universal validity of semiclassical saddle point approximation. In
particular, for negative spatial curvature bouncing cosmology, our numerical results based on
the generalized thimble method [33] show that the saddle point which dominates the real q
scheme path integral completely fails to capture the quantum expectation values of the truly
Lorentzian positive q scheme. The true expectation values rather resembles that of the zero spatial
curvature case in their real parts, in addition to possessing a large imaginary part. Here neither
real nor complex (tunnelling) solutions to Einstein’s equations characterize the path integral at
leading order, because neither does the saddle point belong to the Lorentzian integration contour,
nor does it connect to any configuration of the Lorentzian contour through the Picard-Lefschetz
holomorphic gradient flow. As a consequence, semiclassical saddle point approximation should
only be applied when its validity can be ascertained.

The paper is organized as follows. In Section 4.2 we review recent works on Lorentzian quan-
tum cosmology. In Section 4.3 we point out the limitations of the real q scheme. In Section 4.4 we
review the generalized thimble method which we use for numerical computation. In Section 4.5
we define the quantities of lightcone location and its fluctuations to be computed. In Section 4.6
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we put the pieces together to study bouncing cosmology for positive, zero, and negative spatial
curvatures, and compare results from the positive and real q schemes. In Section 4.7 we discuss
singularity avoidance. In Section 4.8 we conclude with a discussion of some topics for further
study.

In the following, we set c = ℏ = 8πG = 1.

4.2 Previous works

Following [60, 139, 105] we consider the minisuperspace metric

ds2 = − N2

q(t)
dt2 + q(t)

(
1

1− kr2
dr2 + r2

(
dθ2 + sin2 θdϕ2

))
, (4.3)

with squared scale factor q(t), lapse N , and spatial curvature k = 1, 0 or −1.1 The dN/dt = 0
gauge is used so N does not depend on t.

Plugging (4.3) in the Einstein-Hilbert action with the Gibbons-Hawking-York boundary term
[140, 141] S = 1

2

∫
d4x

√
−g(R− 2Λ) +

∫
B d3y

√
hK, one obtains

S[q,N ] = 2π2
∫ 1

0
dtN

(
− 3q̇2

4N2
− Λq + 3k

)
. (4.4)

The dot denotes derivative with respect to the coordinate time t, which is taken to run from 0
to 1. This is without loss of generality, since the physical proper time derived from (4.3) is still
arbitrary due to N and q.

For the boundary condition q(0) = q0, q(1) = q1 the path integral takes the form

Z[q0, q1] =

∫
DN

∫
q0,q1

Dq eiS[q,N ]. (4.5)

We omit the subscript q0, q1 below when no ambiguity arises.

The metric (4.3) is written in terms of the squared scale factor rather than the scale factor
a(t). This produces the action (4.4) which is quadratic in q. In many previous works, such as
[60, 61, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133,
134, 135, 136, 137, 138], the integration range of the squared scale factor is taken to be over the
whole real line. Then the path integral in q with the quadratic action can be evaluated analytically,
just like the path integral of a free quantum particle [13].

Explicitly, a Gaussian functional integration with respect to q yields

G[q0, q1;N ] :=

∫
Dq eiS[q,N ] =

√
3πi

2N
ei2π

2
∫ 1
0 dt(− 3

4N
˙̄q2+N(3k−Λq̄)), (4.6)

q̄(t) =
Λ

3
N2t2 +

(
−Λ

3
N2 + q1 − q0

)
t+ q0. (4.7)

1For the flat (k = 0) and hyperbolic (k = −1) cases, we assume that the spatial geometry is compactified as in
[107] so that the action (4.4) is finite.
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Here q̄(t) obeys the boundary condition q(0) = q0, q(1) = q1 and solves

q̈ =
2Λ

3
N2, (4.8)

which is the equation of motion obtained from δS/δq = 0.

To obtain the final result Z[q0, q1] =
∫
DN G[q0, q1;N ] from (4.6), one still needs to analyze

the N integral. In previous works this one-dimensional integral is commonly studied through a
saddle point approximation. The saddle point can be obtained directly by demanding stationary
phase for G[q0, q1;N ]. Since the phase 2π2

∫ 1
0 dt(− 3

4N
˙̄q2 + N(3k − Λq̄)) equals S[q̄, N ], we have

∂NS[q̄, N ] = 0. Equivalently, we could look at the original path integral (4.5) and demand
δS[q,N ]/δN = 0 to obtain the equation of motion∫ 1

0
dt

(
3

4N2
q̇2 + 3k − Λq

)
= 0. (4.9)

Equation (4.9) and (4.8) form the complete set of equations of motion for the variables q and N .
In the joint solution, q is given by (4.7), and N is given by

N̄ = c1
3

Λ

(
(
Λ

3
q0 − k)1/2 + c2(

Λ

3
q1 − k)1/2

)
, (4.10)

where c1, c2 ∈ {−1, 1}.

This offers four possible saddle points. However, not all of them will make contributions to the
Lorentzian path integral, and Picard-Lefschetz theory can be employed to determine the actually
relevant saddle points [60]. Previous works show that the relevancy of the saddle points depends
on whether the N -integral is defined as

∫∞
0 dN or

∫∞
−∞ dN . There has been no consensus in the

literature on which measure to use [60, 61, 117, 118, 119, 120].

4.3 Limitations of the real q scheme

4.3.1 Cases with limitations

In the procedure reviewed above, integrating q(t) over the whole real line is crucial. It enables
Gaussian integration to obtain the analytic result (4.6).

However, in the context of Lorentzian quantum cosmology there is an unsettling issue. For the
metric (4.3) to stay in the Lorentzian signature (−,+,+,+), it must be that q(t) > 0. Therefore
q should only be integrated over positive values in a strictly Lorentzian path integral.

In practice, integrating q over the real line could still be employed as a useful trick if the result
agrees well with integrating over positive q. For instance, if the saddle point q̄ of (4.7) stays far
above zero for the whole time t ∈ [0, 1], then the integrals in both positive and real q schemes are
dominated by paths which stay positive.
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Figure 4.1: Plotting q̄(t) with Λ = 3, q0 = 0, q1 = 2 for on-shell N with c1 = 1. In the first two
cases Re q̄ overlap for c2 = 1 and c2 = −1.

Figure 4.2: Plotting q̄(t) with Λ = 3, q0 = 1.9, q1 = 2 for on-shell N with c1 = 1.

Yet in some cases q̄ does not stay far above zero:

• When a boundary value q0 or q1 is close to zero, then (4.7) clearly does not stay far away
from zero for all time (Figure 4.1). This happens for Lorentzian versions (e.g. [60, 61, 121,
125, 126]) of the tunnelling [43, 142, 143] and no-boundary [44] boundary conditions
where q0 is sent to zero.

• When N is on-shell at (4.10), the saddle point q̄ can reach 3k/Λ (e.g., at the minimum
value for the c2 = 1 cases in Figure 4.2). This minimum value can get close to or below
zero. For example, this happens in the k = 0 case relevant to inflation [123].

• When N is allowed off-shell, there are more cases where q̄(t) gets close to or below zero.
For example, when Λ > 0 the bouncing saddle point q̄ always dives into negative values for
sufficiently large N .2

The first two cases are especially troublesome. Here the relevant saddle points with both q and N
set on-shell get close to or below zero. Paths at and around these saddle points make significant
contributions to the path integral in the real q scheme, but are excluded in the positive q scheme.
Therefore the real q scheme result may deviate much from the truly Lorentzian positive q scheme
result.

2The general solution (4.7) is a parabola with axis of symmetry at ta = 1/2 + 3(q0 − q1)/(2N
2Λ). When Λ > 0, q̄

assumes its minimum value

q̄(ta) =
1

12

(
−ΛN2 − 9(q0 − q1)

2

ΛN2
+ 6(q0 + q1)

)
, (4.11)

which is always negative for large enough N . Moreover, ta approaches 1/2 for large N , so it always fall within the
relevant range t ∈ [0, 1].
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Figure 4.3: Plotting q̄(t) with Λ = 3, k = 1, q0 = 1, q1 = 2 for a list of N values.

• In addition, for any values of q0, q1,Λ, k, path integral configurations with zero or negative
q at some time are not Lorentzian so do not possess a causal structure.

This poses a difficulty in studying topics related to causal structures, for example, on the topics of
how quantum fluctuations of spacetime affects the horizon problem [3] and light/gravitational
wave propagations for bouncing cosmology [144].

4.3.2 A toy model example

To illustrate how the positive and real q schemes can produce quantitatively very different results,
we look at a simple toy model just for the q path integral. The results of the later sections, which
demand more efforts to obtain, will show that the same happens for the joint q−N path integral.
The q path integral can be approximated by

G[q0, q1;N ] ≈
∫
Dq ei

∑n
i=0 Si , (4.12)∫

Dq =

∫ ∞

0
dq(t1) · · ·

∫ ∞

0
dq(tn) µ (q(t1), · · · , q(tn), N) , (4.13)

Si =2π2

(
−3 (q(ti+1)− q(ti))

2

4N∆t
+N∆t

(
3k − 1

2
Λ (q(ti) + q(ti+1))

))
, (4.14)

where the time domain t ∈ [0, 1] is broken into n + 1 intervals of size ∆t = 1/(n + 1) with the
actions Si. The exact result is approached as n→ ∞.

Here µ is the measure factor for the integrals. The result (4.6) is obtained with

µ =

(
3πi

2N∆t

)n+1
2

, (4.15)

which takes the same form of the measure factor for a quantum particle [13]. We will use this
measure to make the comparison between the positive and real q schemes.

Figure 4.3 plots the on-shell q̄(t) of (4.7) for Λ = 3, k = 1, q0 = 1, q1 = 2 for a list of N
values, including some for which q̄(t) gets close to zero or reach negative values. In the simplest
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Figure 4.4: Numerical integration results for the n = 1 approximation. The first row shows results
of the positive q scheme, the second row shows results of the real q scheme, and the third row
shows their relative differences.

approximation n = 1, there is only one dynamical variable q := q(t1), and (4.12) can be computed
by direct numerical integration. The results obtained using Mathematica for the positive and real
q schemes are shown in Figure 4.4. Clearly as N increases and q̄(t) approaches zero or negative
values, the difference becomes quite significant. Already at N = 2.4 where q̄(t) still stays positive,
the difference reaches as high as 39%.

4.4 Generalized thimble method

In order to investigate the differences between the truly Lorentzian positive q scheme and the real
q scheme further, we need a method to evaluate the truly Lorentzian path integrals. The problem
is quite non-trivial because analytically, not much is known for path integral computations beyond
Gaussian integration. Even numerically, the complex Lorentzian path integral has an oscillating
phase that gives rise to the numerical sign problem.

4.4.1 Review of the method

Fortunately, the generalized thimble numerical method [33, 34] offers a way to overcome the
sign problem. This is a Monte Carlo sampling method that exploits Picard-Lefschetz theory to
deform the integration contour to reduce the complex phase fluctuations. It can be viewed as a
generalization of the Lefschetz thimble method [30] to other than the steepest descent contours
[31], which makes the method more adaptable to attack problems such as multimodal problems
[81, 80, 85, 145].

Given a multidimensional integral ∫ ∏
i

dvi e
E[v1,v2,··· ], (4.16)

the holomorphic gradient flow equations

dvi
dt

=− ∂E

∂vi
∀i (4.17)

generates an integral curve for each point ζ = (v1, v2, · · · , vn) in the original integration contour.
Subjecting the whole integration contour to this flow generates a contour deformation C(t) as
a function of the flow time t, with C(0) as the original contour. If the integrand is holomorphic
everywhere the flow transverses, Cauchy’s integration theorem guarantees that the integral along
C(t) differs from the original one only along the boundaries of the flowed region (Figure 4.5). If
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Figure 4.5: If the integrand is holomorphic in the region enclosed by the curves shown, the
integral along the boundary will vanish by Cauchy’s integration theorem. As a consequence,
the integrals along the contours C(0) and C(t) differ only by the integrals along the dashed
boundaries.

the boundary contributions are negligible, we could use the integral along C(t) to approximate
the original integral.

Evaluating the integral along C(t) could ameliorate the sign problem. To see this, note that
by (4.17) the real part ER of E obeys

dER

dt
=
1

2
(
dE

dt
+

dE

dt
) =

1

2

∑
i

(
∂E

∂vi

dvi
dt

+
∂E

∂vi

dvi
dt

) = −
∑
i

∣∣∣∣∂E∂vi
∣∣∣∣2 ≤ 0. (4.18)

Therefore the magnitude of the integrand is exponentially suppressed along the flow, except
for regions close to the stationary points where ∂E/∂vi = 0, ∀i. For sufficiently large t, only
this region contributes significantly to the integral along C(t), and we can hope that the phase
fluctuation of the integrand is milder than over the original contour.

The generalized thimble method of [33, 34] exploits the deformed contour to perform Markov
Chain Monte Carlo sampling based on the following algorithm:

1. Fix some flow time t = T . Start with a configuration ζ = {vi}i in the original contour. Use
numerical integration to evolve it under (4.17) by T to obtain ϕ = ϕ(ζ).

2. Sample a new configuration ζ ′ = ζ + δζ on the original contour and evolve ζ ′ under (4.17)
again by T to obtain ϕ′ = ϕ′(ζ ′).

3. Accept ζ ′ as the new ζ with probability P = min{1, eReEeff(ϕ
′)−ReEeff(ϕ)}, where Eeff is de-

fined below in (4.22).

4. Repeat steps 2 and 3 until a sufficient ensemble of configurations is generated.

5. Compute the expectation values using the formula

⟨O⟩ =

〈
Oeiφ(ζ)

〉
ReEeff〈

eiφ(ζ)
〉
ReEeff

, (4.19)

where φ is defined in (4.23) and ⟨·⟩ReEeff
denotes averaging over the ensemble just gener-

ated.
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To define Eeff, we note that∫
C(0)

eE(ζ)dζ =

∫
C(T )

eE(ϕ)dϕ =

∫
C(0)

eE(ϕ(ζ)) det J dζ. (4.20)

In the second expression, the contour C(T ) is parametrized by the flowed coordinates ϕ. In the
last expression the contour C(T ) is reparametrized by the original coordinates ζ. This induces
the Jacobian Jij =

∂ϕi

∂ζj
which can be computed by integrating to t = T

dJij(t)

dt
=
∑
k

HikJkj , Hij = − ∂2E

∂vi∂vj
, Jij(0) = δij . (4.21)

The integrand exponent of the last integral of (4.20) is given a special name

Eeff = E(ϕ(ζ)) + log det J(ζ) (4.22)

Expanding Eeff in real and imaginary parts yields eEeff = eReEeff+iφ, where

φ = ImEeff = ImE + arg det(J). (4.23)

This explains steps 3 and 5, in which we sample (4.20) according to the magnitude eReEeff of the
integrand, and multiply O with the phase eiφ in (4.19).

4.4.2 Integration range and measure factors

We want to apply the generalized thimble method to the path integral (4.5)

Z[q0, q1] =

∫
DN

∫
Dq eiS[q,N ] =

∫
DN G[q0, q1;N ] (4.24)

with G[q0, q1;N ] given in (4.12). For this we need to specify the integration range and measure
factors.

Since the metric (4.3) is of the Lorentzian signature (−,+,+,+) only when q is positive, we
integrate q over positive values as in (4.13).

For the q measure factor µ of (4.13), previous results in the real q scheme employed (4.15).
Since

∫∞
−∞ e−ax2

dx =
√
π/a = 2

∫∞
0 e−ax2

dx for Re a > 0, it seems reasonable to modify (4.15)
by a constant factor in the positive q scheme. Since constant multiplicative factors cancel out in
(4.19), for simplicity we will directly employ µ = ( 1

N )
n+1
2 . This factor µ can be incorporated as

an additional term

Eµ =
n+ 1

2
logN (4.25)

in the path integral exponent E of (4.16).

As mentioned at the end of Section 4.2, there is more than one choice for the N integration
range. Here we take ∫

DN =

∫ ∞

0
dN (4.26)
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as in [60] for concreteness. The disagreement between real and positive q schemes should also
be present for the alternative measure

∫∞
−∞ dN . Although we have not performed the study, it

seems the generalized thimble method can be applied to this case as well.

An additional measure factor is included for the following reason. The q and N integration
ranges are both bounded by 0. As explained around Figure 4.5, the integrals along the flowed
contour and the original contour agree well if contributions are small along the “side contours”
(dashed part of Figure 4.5) traced by the boundaries of the original contour under the holomor-
phic gradient flow. For the particular case at hand, the boundaries of the original lie at N = 0 and
q(ti) = 0, ∀i. According to (4.25), the N = 0 boundary is a log singularity. Since the exponent
E is not holomorphic there, the N = 0 boundary of the original contour lies outside the domain
of the holomorphic gradient flow, and is unchanged under the flow. Therefore this “side contour”
has no extension, and offers no contribution to the integral.

To ensure the same at the q(ti) = 0 boundaries, we employ the trick of introducing the
measure factor

∏
i q(ti)

m for some m < 0. For |m| ≪ 1 such as m = −0.001 used here, qm stays
fairly close to one for practical ranges of q. For instance from q = 10−8 to q = 102, qm decreases
monotonically from 1.0186 to 0.9954 to four digits after the decimal place. Yet as in the N case,
it generates a log singularity for the exponent, which puts the q(ti) = 0 boundaries outside the
domain of the holomorphic gradient flow. Consequently, the q(ti) = 0 boundaries are unchanged
under the flow, such that the “side contour” has no extension, and offers no contribution to the
integral. This ensures that the integrals agree along the flowed contour and the original contour.

In summary, we will apply the generalized thimble method to the path integral

Z[q0, q1] =

∫ ∞

0
dN

∫ ∞

0
dq(t1) · · ·

∫ ∞

0
dq(tn) e

i
∑n

i=0 S̃i−n+1
2

logN , (4.27)

S̃i =2π2
(
−3(q(ti+1)− q(ti))

2

4N∆t
+N

(
3k − 1

2
Λ(q(ti) + q(ti+1))

)
∆t

)
− im

2
(log q(ti) + log q(ti+1)) , (4.28)

where the measure factor for q is absorbed in S̃i, and that for N is added to the exponent of
the integrand. For convenience of writing, we separated a single factor q(ti)m into two places in
S̃i and S̃i−1. This introduces constant factors for the unintegrated boundary q values, but these
constants drop out eventually when taking ratios as in (4.19). The integrals in (4.27) are now
for the Borel measure without additional factors, so (4.17) is directly applicable.

4.4.3 Notes on implementing the algorithm

The generalized thimble method requires the integrand to be holomorphic everywhere the holo-
morphic gradient flow transverses. Since log functions show up in the integrand (4.27), the
integration domain is now taken on the Riemann surfaces of the q’s and N . This means in step
1 of the generalized thimble algorithm, one needs to keep track of the log branches for q and N
during the flow. In the Julia programming language [84] that we use, this is implemented by
the “callback functions” of the package “DifferentialEquations.jl” [146], as is done in simplicial
quantum gravity which refers to both log and square root branches [2].

For step 2 of the generalized thimble algorithm, again as in [2] we apply the adaptive Monte
Carlo sampler reviewed in [83]. The rest of the steps are then implemented as stated in Sec-
tion 4.4.1.
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4.5 Lightcone fluctuations

The results of the generalized thimble method are in terms of the expectation values (4.19). We
are interested in ⟨q(t)⟩ and ⟨N⟩ for the squared scale factor and the lapse.

In addition, we will compute the expectation values for the lightcone location and their fluc-
tuations. For the metric (4.3), the equation for radial lightlike geodesic is

0 = − N2

q(t)
dt2 +

q(t)

1− kr2
dr2. (4.29)

With dχ2 = 1
1−kr2

dr2, (4.29) implies Ndt
q(t) = dχ. Integrating both sides yields

N

∫
1

q(t)
dt = ∆χ. (4.30)

During a time interval ∆t, the zigzagging path of (4.12) obeys q(t) = q(ti+1)−q(ti)
∆t t + q(ti).

Plugging this in (4.30) for yields

∆χi =
N∆t(log q(ti)− log q(ti+1))

q(ti)− q(ti+1)
, ∆χ =

n∑
i=0

∆χi. (4.31)

For a radial geodesic ds2 = − N2

q(t)dt
2 + q(t)dχ2, so ∆χ gives the spatial comoving distance that a

radial light ray covers from t = 0 to t = 1 and quantifies the size of the causal horizon for events
at t = 0. Below we will use (4.31) in (4.19) to compute the expectation value ⟨∆χ⟩ and the
standard deviation

σ =

√
⟨∆χ2⟩ − ⟨∆χ⟩2 (4.32)

to quantify horizon fluctuations.

4.6 Case study: bouncing cosmology

In Figure 4.2 the bouncing saddle points q̄(t) are for c2 = 1. When k = 1, q̄(t) stays above 0.
When k = 0, q̄(t) reaches 0 at its minimum. When k = −1, q̄(t) drops below 0. In the last two
cases, the saddle point q̄(t) does not stay positive for all time, so q̄(t) is not included in the truly
Lorentzian path integral sum. Therefore results from the real q scheme run the risk of deviating
much from the positive q scheme. In this section we apply the method of Section 4.4 to make a
quantitative comparison between the positive and real q schemes.

4.6.1 Focusing on the bouncing saddle point

As shown in [60], both saddle points with c2 = 1 and c2 = −1 in Figure 4.2 are relevant for the
real q scheme path integrals. An otherwise unconstrained path integral will exhibit interference
effects for the two saddle points.

In comparing the positive and real q schemes, we want to focus on the c2 = 1 bouncing saddle
point since the c2 = −1 saddle point stay high above 0 for all time. One way to achieve this is to
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Figure 4.6: Comparing quantum expectation values ⟨q(t)⟩ of Table 4.1 from the positive q scheme
with the saddle point values q̄(t).

modify the boundary condition. The c2 = 1 and c2 = −1 saddle points have different momentum
at the boundaries. By employing a coherent state type boundary condition that centers around
the momentum of c2 = 1, one obtains a path integral without the interference of the other saddle
point [123].

The generalized thimble method offers a practical alternative. In a Monte Carlo simulation
with multiple saddle points, the sampler needs to overcome the low integrand weight barrier
at intermediate regions to move from around one saddle point to around another. Usually one
wants to sample efficiently across different saddle points, and some advanced variations of the
original generalized thimble method have been developed to achieve this [80, 81, 85, 145]. Here
we want to avoid travelling across saddle points, which does not require any advanced method.
Because of (4.18), a larger flow time T increases the integrand weight barrier. Therefore we can
simply adopt a large T to restrict the Monte Carlo sampler to around the bouncing saddle point.
The results presented next show the appropriate T to achieve this.

4.6.2 Results

In Figure 4.2 we took q0 = 1.9, q1 = 2.0 and Λ = 3. For the same parameters, Figure 4.6 and
Table 4.1 summarize the numerical results based on (4.27) with n = 5.

For k = 1 and k = 0, the expectation values ⟨q(t)⟩ and ⟨N⟩ from the positive and real q
schemes are close, as seen in Table 4.1. The expectation values ⟨q(t)⟩ are in turn close to the
saddle point values q̄(t), as seen from Figure 4.6. In particular, the imaginary part of the saddle
points vanish, and the imaginary part of the expectation values are also close to zero. In contrast:

• For k = −1, the expectation values ⟨q(t)⟩ and ⟨N⟩ from the positive and real q schemes
differ much. In the positive q scheme, Re ⟨q(t)⟩ deviate much from q̄ which is real, and
Im ⟨q(t)⟩ deviate much from zero.

Besides, there is a fundamental difference that applies to all values of k. In the positive
q scheme all path integral configurations are Lorentzian, so we can compute expectation values
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k 1 1 0 0 -1 -1
scheme positive real positive real positive real
m -0.001 0 -0.001 0 -0.001 0
T 0.025 0.025 0.03 0.03 0.027 0.03〈
eiφ
〉

1 1 0.98 0.98 0.94 0.96
⟨q(t1)⟩ 1.38 + 0.01im 1.41 - 0.01im 0.84 + 0.04im 0.86 + 0.02im 0.97 + 0.38im 0.22 - 0.01im
⟨q(t2)⟩ 1.08 + 0.01im 1.1 + 0.0im 0.22 + 0.05im 0.24 + 0.03im 0.35 + 0.59im -0.77 - 0.02im
⟨q(t3)⟩ 1.0 + 0.0im 1.0 + 0.02im 0.04 + 0.04im 0.03 + 0.04im 0.15 + 0.65im -1.1 - 0.02im
⟨q(t4)⟩ 1.12 - 0.0im 1.1 + 0.03im 0.28 + 0.03im 0.25 + 0.05im 0.39 + 0.58im -0.74 - 0.01im
⟨q(t5)⟩ 1.46 - 0.0im 1.44 + 0.03im 0.94 + 0.02im 0.91 + 0.04im 1.04 + 0.37im 0.29 - 0.01im
⟨N⟩ 1.96 - 0.03im 1.92 - 0.03im 2.7 - 0.11im 2.71 - 0.1im 1.73 - 0.81im 3.5 + 0.03im
⟨∆χ⟩ 18.93 - 0.47im N/A 97.96 - 37.04im N/A 5.6 - 28.43im N/A
σ 1.08 - 0.08im N/A 11.84 + 18.21im N/A 1.07 - 1.9im N/A
|σ| 1.08 N/A 21.72 N/A 2.18 N/A

Table 4.1: Results for q0 = 1.9, q1 = 2.0,Λ = 3. Data for each of the six columns is produced from
a Monte Carlo chain of length 10 million.

Figure 4.7: Holomorphic gradient flow for the one-variable model for N = 3. The steepest
descent contour is labelled by the thickened line.

⟨∆χ⟩ for the comoving horizon (4.31) and its fluctuations σ as defined in Section 4.5. In contrast,
in the real q scheme there are path integral configurations which are not Lorentzian, so the
expectation value for the comoving horizon is undefined. The results for ⟨∆χ⟩ , σ, |σ| for the real
q scheme are shown in the last three columns of Table 4.1. To the extent that |σ| offers an indirect
indicator of the amount of fluctuation:

• In the positive q scheme, the amount of lightcone fluctuation as indicated by |σ| is much
larger for k = 0 than for k = 1 and k = −1.

4.6.3 Understanding the expectation values

In the first bullet point of Section 4.6.2, we noted that the real q scheme expectation values for
q differ much from the saddle point values in the negative spatial curvature k = −1 case. To un-
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derstand this, it helps to consider again the one-variable toy model of Section 4.3.2. According to
Picard-Lefschetz theory [60], the real line approaches the steepest descent contour asymptotically
under the holomorphic gradient flow defined by (4.16) and plotted in Figure 4.7.

In the real q scheme, the integration contour is the real line. Since this contour is deformed
into the steepest descent contour under the flow, and the integral can be equivalently performed
there. As shown in Figure 4.7, the saddle point is at −0.75. Points around the saddle point along
the steepest descent contour all have negative real parts around −0.75, but some have positive
and some have negative imaginary parts. Therefore we expect ⟨q(t)⟩ to have a negative real part
around the saddle point, and an almost vanishing or exactly vanishing imaginary part due to the
cancellation from positive and negative contributions.

In the positive q scheme, the integration contour is the positive halfline. As shown in Fig-
ure 4.7, this contour only approaches a portion of the steepest descent contour quite far from
the saddle point. In particular, all points of the original contour flow towards the directions of
positive real values and negative imaginary values. Therefore we expect ⟨q(t)⟩ to have a much
larger real part than the saddle point, and a much smaller imaginary part than zero.

The actual model for k = −1 we considered has more dynamical variables than one. However,
similarly the real parts of ⟨q(t)⟩ deviate much from the negative saddle point values, and the
imaginary parts of ⟨q(t)⟩ deviate much from zero (Figure 4.8). Presumably this is for the same
reason that under the holomorphic gradient flow, the original positive q contour approaches only
a portion of the steepest descent contour which does not cover the saddle point.

4.6.4 Understanding the fluctuations

Consider three Gaussian distributions with standard deviation 1, but centered around different
locations µ = −2, 0 and 2. Assume that only the portion along the positive real halfline R+ is
relevant, and rescale the distributions so that they are normalize on R+. As shown in Figure 4.10,
the smaller µ is, the more sharply the distribution is peaked. As a consequence, the standard
deviation σ computed on R+ is smaller for smaller µ (Figure 4.10).

In the case of quantum cosmology, the real vs. positive q schemes of k = −1 is like µ = 2
vs. µ = −2. In the real q scheme, the original contour covers the whole steepest descent contour
under the holomorphic gradient flow, and the magnitude of the integrand varies slowly around
the saddle point to yield relatively large fluctuations. In the positive q scheme, the original
contour only covers a portion of the steepest descent contour under the holomorphic gradient
flow. This portion does not contain the saddle point, and the magnitude of the integrand varies
much faster around the peak that is covered. Therefore the fluctuations in ⟨q(t)⟩ and ⟨N⟩ are
smaller in comparison to the real q scheme (Figure 4.8 vs. Figure 4.9).

The positive q scheme of k = −1 vs. k = 0 is like µ = −2 vs. µ = 0. For k = 0, the saddle
point is on the boundary of the original contour, just like the µ = 0 case. Here we expect more
fluctuation than k = −1 which is analogous to the µ = −2 case. This explains why there is more
fluctuation for k = 0 than for k = −1 measured by |σ|, as noted in the second bullet point of
Section 4.6.2.

Finally, there is also less fluctuation for k = 1 than for k = 0 as measured by |σ|. This is
presumably because of the form ∆χi ∝ log q−log q′

q−q′ of the comoving distance function (4.31). As
q approaches zero, ∆χi becomes very large and very sensitive to the precise value of q. Since in
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Figure 4.8: Histograms for the Monte Carlo sampling data for k = −1 in the positive q scheme.
To reduce complexity the length of the samples is reduced from 1000 million to 1 million by
sequentially picking the first element from every 1000 samples.
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Figure 4.9: Histograms for the Monte Carlo sampling data for k = −1 in the real q scheme.
To reduce complexity the length of the samples is reduced from 1000 million to 1 million by
sequentially picking the first element from every 1000 samples.
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Figure 4.10: Sections of Gaussian distributions centered around µ and normalized over R+. The
standard deviation σ is smaller for smaller µ.

the k = 0 case the saddle point value q does get very close to zero, while in the k = 1 case it does
not, larger fluctuations in ∆χ is expected.

4.6.5 Breakdown of saddle point approximation

In previous works of quantum cosmology, it is common to apply saddle point approximation to
the path integrals. Here in the k = −1 example the saddle point failed at capturing the quantum
expectation values of the truly Lorentzian path integral. This shows that the technique of sad-
dle point semiclassical approximation does not enjoy universal validity for Lorentzian quantum
cosmology, and must be used with caution.3

4.7 Singularity avoidance

4.7.1 Is singularity avoidance trivial?

Even when the expectation values are close (as in the k = 0 case), the positive and real q schemes
still differ on the critical issue of singularity avoidance. There are many non-trivial ideas of sin-
gularities avoidance in quantum gravity. For example, through discreteness, nonlocality, higher-
order terms in the action, final boundary condition choices etc. However, there is a trivial al-
ternative. A gravitational path integral may simply not include singular spacetimes in its sum
[8].

For the minisuperspace model studied here, this indeed follows from including only Lorentzian
configurations in the path integral. At the q = 0 singularity, the metric (4.3) is of signature
(∞, 0, 0, 0). This is not of the Lorentzian signature, so it is automatically avoided in the truly
Lorentzian path integral. In this sense, singularity avoidance is trivially achieved.

3When naive saddle point approximation on unrestricted domain does break down, it may be interesting to develop
new saddle point approximation method on bounded domains along the line of, e.g., [147].
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4.7.2 Tunnelling and no-boundary proposals

Interestingly, insisting on a strictly Lorentzian path integral for all time including t = 0 invalidates
from the outset Lorentzian variants of the tunnelling/no-boundary proposals that set q(0) = 0.
Therefore one must choose from: (1) allowing non-Lorentzian configurations in the path integral;
or (2) rejecting boundary conditions that set q to zero.

Choice (1) calls for some additional specifications. Suppose quantum cosmology is governed
by some fundamental theory of quantum gravity. Then how exactly are non-Lorentzian config-
urations included in the path integral for this fundamental theory? Is non-Lorentzianess only
allowed at certain places of quantum spacetime but not others? If so, at exactly which kind of
places, and why not at other places? One possibility is to consider non-Lorentzian pieces at the
boundary of superspace, and allow this kind of non-Lorentzianness in the path integral [148].
However, this proposal needed to divide the boundary of superspace into regular and singular
parts, and append additional rules associated with probability fluxes to these two parts. How-
ever, as far as we know the exact definition of the regular and singular parts of the boundary has
never been written down in general [149], and this proposal still remains as an incomplete idea.

Choice (2) is dynamically less ambiguous since no additional rule is needed on how to include
non-Lorentzian configurations. However, it leaves open the question of boundary conditions
which can only be determined by other means. One possibility is to impose an ordinary Lorentzian
boundary condition concentrated around small positive values of q. Another possibility is to give
up on boundary conditions at small sizes of the universe and investigate boundary conditions for
bouncing cosmology [150].

4.8 Discussions

Quantum cosmology based on Lorentzian path integrals is a promising avenue. However, many
previous studies integrate the squared scale factor over the whole real line. This step introduces
non-Lorentzian configurations into the path integral. Instead, a truly Lorentzian path integral
should only include positive squared scale factor.

Here we studied and compared minisuperspace path integrals with real and positive squared
scale factors. By restricting to Lorentzian configurations, the truly Lorentzian case enables the
study of causal horizons and their quantum fluctuations, and achieves singularity avoidance by
excluding singular minisuperspace geometries as non-Lorentzian. In addition, we find that the
expectation values can differ much between the two cases. This happens in particular when the
saddle point configuration does not belong to the strictly Lorentzian integration contour and is
not connected to the strictly Lorentzian integration contour by the holomorphic gradient flow.

These results challenge the universal validity of saddle point approximation widely used in
quantum cosmology. In particular this affects topics such as Lorentzian variations of tunnelling/no-
boundary proposals, and the quantum completeness of inflation [123]. In these cases, the saddle
point gets close to or below zero, so that it does not belong to the strictly Lorentzian integration
contour. Instead of using saddle point approximation, a safer option is to compute the path in-
tegral directly. This can be done, for example, using the generalized thimble method adopted
here.

We finish by a discussion on some topics to be understood better.
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4.8.1 Negative q

Although the metric (4.3) has the (−,+,+,+) signature only when q > 0, it has the (+,−,−,−)
signature when q < 0. One may wonder whether this rescues the real q scheme for a Lorentzian
path integral, since the (+,−,−,−) signature might also be considered Lorentzian.

However, an attempt at rescue face some outstanding issues, because the real q scheme path
integral includes configurations where q < 0 at certain times and q > 0 at other times.

First, such a configuration involves signature change. It does not qualify as a Lorentzian space-
time in the usual sense such that the spacetime stays within the (−,+,+,+) or the (+,−,−,−)
signature.

Second, in connecting the q < 0 and q > 0 parts of the configuration q has to cross 0. Here
the metric has signature (∞, 0, 0, 0). This is not Lorentzian.

Third, when q crosses 0, it is not a priori clear what the causal structure is for that spacetime.
Some additional rules are required to tell how causal paths travel across the singularity at q = 0.
Without such a rule, the causal relation between two events from the q < 0 and q > 0 parts of
spacetime remains unclear.

4.8.2 Inhomogeneity, anisotropy, and matter coupling

The present study is restricted to minisuperspace models. For further research it is certainly
interesting to accommodate inhomogeneity and/or anisotropy in the truly Lorentzian setting.
For example, the Bianchi types I and III, and Kantowski-Sachs models studied in [107], and
the biaxial Bianchi IX model studied in [119, 120] may be simple enough as starting points
to incorporate anisotropy. In a general non-perturbative setting, simplicial manifold models
provide a systematic way to incorporate inhomogeneity and anisotropy in quantum cosmology
[72, 104, 56, 63, 64, 65, 66, 67, 68, 69, 70]. Traditionally, simplicial quantum gravity is studied
with respect to an Euclidean contour or an ad hoc complex contour, but there has been growing
attention towards the Lorentzian case [23, 24, 5, 2, 3, 6, 8, 27, 93, 151]. In particular, the gener-
alized thimble method employed here and in [2] may be applicable in studies of inhomogeneity
and anisotropy.

Certainly one should also consider matter coupling in further works. In addition to coupling
to scalar fields and investigate the inflation scenario, we also find alternative scenarios without
inflation worth investigating [58, 152, 153, 154].

4.8.3 Lightcone topics

Another topic about simplicial models of direct relevance is irregular lightcone structures. In
simplicial models, there is the question whether the path integral should include simplicial ge-
ometries with interior points attached to more or fewer than two lightcones. In [93, 27] this
question is studied based on a comparison with the continuum minisuperspace model in the real
q scheme. It is worth revisiting this topic given that the positive q scheme may yield a different
result.

In Section 4.6, we noted that the k = 0 case exhibit larger causal horizon fluctuations than the
k = 1 and k = −1 cases. For the k = −1 case, that the fluctuations are smaller is related to the
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breakdown of saddle point approximation based on Einstein’s equations. Whether this and other
effects of lightcone fluctuations lead to any observable signatures is worth investigating further.

4.8.4 Singularity

Much of quantum cosmology is driven by the hope to understand singularities. In the recent wave
of interest for Lorentzian quantum cosmology, the question has been raised whether singular
geometries with q = 0 should be avoided in the path integral [126], as such geometries enter
critical discussions about boundary conditions [118, 122, 125, 126, 135] and inflation [127]. In
Section 4.7 we showed that in a strictly Lorentzian path integral, singularities are automatically
excluded as non-Lorentzian. How this affects the above topics is an open question.

There are many attempts to find effective regular spacetimes that replace spacetimes with
cosmological and black hole singularities. Some of these derive regular solutions from equa-
tions of motion of modified actions. The k = −1 example studied here shows that an effective
singularity-free geometry that characterizes the quantum theory at leading order (e.g., gives the
correct expectation values) need not obey the equation of motion from an action principle. It
remains to be clarified how such alternative views on singularity avoidance stand to each other.

4.8.5 Analytic insights

In computing the oscillating complex path integrals, we applied the generalized thimble method
[33] to overcome the numerical sign problem. This method would not have been available a
decade ago. However, new methods for evaluating complex path integrals are being developed
at a promising pace in the recent decade (see e.g., [31, 78, 79, 155] and references therein). We
expect such technical tools to boost the study beyond semiclassical analysis for the Lorentzian
path integrals.

That said, it is still beneficial to find analytic methods to complement the numerical methods.
One idea is to identify the value of N so that the N -dependent saddle point q̄ of (4.7) just falls
within the Lorentzian domain. Flowing this pair of N -q̄ values under the holomorphic gradient
flow to the steepest descent contour may yield a close guess at the expectation values.
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Chapter 5

Is singularity avoidance trivial?

Many non-trivial ideas have been proposed to avoid singularities in quantum gravity.
In this short note I argue that singularity avoidance can be trivial in gravitational
path integrals, because geodesically incomplete singular spacetimes are usually not
included in the sum. For theories where this holds, there is no need to develop non-
trivial ideas on singularity avoidance. Instead, efforts should better be directed to
understand tunneling processes and complex-valued spacetimes.

5.1 Is singularity avoidance non-trivial?

Spacetime singularities mark the breakdown of General Relativity and form a major motivation
for quantum gravity. Many ingenious ideas have been considered before to resolve singularities
in quantum gravity. In some proposals it is important to make a judicious choice of variable,
e.g., using loop variables as opposed to the metric variable [156, 157]. In some proposals it is
important to choose the right action, e.g., add higher order terms to the Einstein-Hilbert action
[158]. In some proposals it is important to pick the right boundary condition, e.g., impose a
special final boundary condition at the singularities [159]. In some proposals it is important to
understand singular solutions at a detailed level, e.g., quantize starting from BKL type solutions
[160]. In some proposals it is important to note some nonlocal property of quantum gravity, e.g.,
in the collapsing shell models of [161, 162, 163]. These and other proposals leave the impression
that singularity avoidance in quantum gravity is non-trivial and requires some ingenious input.

As a counterpoint this short note presents a trivial idea on singularity avoidance. I argue
that generically spacetime configurations singular in the sense of geodesic incompleteness simply
do not belong to gravitational path integrals. For theories where this holds, singularities are
avoided trivially, and ingenious endeavours can be saved. Instead, efforts should be directed to
understanding tunneling processes and complex solutions, as I shall explain below.

5.2 Singular configurations fall out

In a matter path integral on a classical spacetime, we sum only over matter configurations which
assumes values everywhere in the region that the path integral refers to (Figure 5.1). It is natu-
ral to expect that the same holds for gravitational path integrals. Yet a geodesically incomplete
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Figure 5.1: Matter configurations F2 and F3 do not assume values in the interior or on the
boundary of the region R, so only F1, which assumes value everywhere, belongs to the matter
path integral on that region.

singular configuration does not meet this requirement. For such a configuration we could follow
a causal curve for some finite affine parameter and find out that the gravitational variable stops
possessing values. If gravitational path integrals are similar to the matter ones in this respect,
singular configurations do not belong to the sum. Consequently the singular spacetimes rele-
vant to the classical theory according to the singularity theorems [164] become irrelevant to the
quantum theories defined by path integrals.

This plausibility argument may not hold for every theory of quantum gravity, but can be
checked to hold in some explicitly defined gravitational path integrals. For example, causal dy-
namical triangulation [28], locally causal dynamical triangulation [165, 166] and Lorentzian
simplicial quantum gravity [2] with a lightcone constraint [3] are defined by path integrals over
piecewise flat spacetime configurations. In all these theories, any point in the interior of a con-
figuration has two lightcones attached to it. A causal path reaching an interior point from one
lightcone can always be extended away through the other lightcone. Therefore a causal path
either extends indefinitely, or terminates when it reaches the boundary of the simplicial manifold
if there is one.1 To the extent that singular configurations are characterized by the inextendability
of causal paths, they are simply not included in the path integrals.23 Note that introducing matter
to these theories does not change the conclusion, since the set of gravitational configurations of
the path integral stays the same. In considering mixed boundary conditions, one needs to turn the
path integral for amplitudes into “double path integrals” for probability weights [172, 173, 174].
Doubling up the path integral still does not change the conclusion about the absence of singular
configurations in these theories, since the set of gravitational configurations in each individual
copy of the path integral stays the same.

1In the latter case the gravitational variables (edge squared lengths) assume values on the boundary, so the bound-
ary cannot be interpreted as a singularity.

2In variants of the above theories, a point of a spacetime configuration is allowed to have more or fewer than two
lightcones [167, 168, 71]. If a point has just one lightcone, a causal path may not be extendable beyond it. This is
usually interpreted as due to topology change rather than singularities to be avoided.

3In recent years, there has been an interest in incorporating topology changes in gravitational path integrals to
match Bekenstein-Hawking black hole entropy (see [169] and references therein). In my view, one should stay
cautious about these works, because they typically assume that all stationary points contribute to the path integral at
the semiclassical level, and there is no fundamental justification to it. If one takes the view that the stationary points
contribute because they lie on the original or deformed integration contour, then one should expect that only a subset
of stationary points contribute [60]. Moreover, the central motivation for these works is the “central dogma” [170],
which a non-dogmatic person may reasonably not subscribe to [171]. In fact, another way to read these works is
that the potential falsity of the “central dogma” goes hand-in-hand with the potential falsity of uncontrolled topology
changes.
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Similar checks can be performed on other explicitly defined gravitational path integrals. While
it is possible to encounter peculiar cases where singular configurations are included4, the opposite
is expected generically for a simple reason. We usually define

Z =

∫
DgA[g] (5.1)

and the matter-gravity coupled integral Z =
∫
DgDϕA[g, ϕ] by specifying how to sum over the

values of a gravitational variable g on a lattice or some other structures. The case that g does not
assume any value somewhere is excluded in this step.

5.3 Minisuperspace models

Besides fully general gravitational path integrals, minisuperspace path integrals offer a simpli-
fied setting for investigating singularity avoidance. In Suen and Young’s proposal for quantum
cosmology, the wave function for the universe is given by

ψ(hij , ϕ) =

∫
L
DgDϕ eiS[g,ϕ], (5.2)

where “the set L includes all nonsingular Lorentzian four-geometries which induce [spatial geom-
etry] hij on one of their boundaries, together with all [matter] fields ϕ regular on them” [114].
In de Sitter minisuperspace for pure gravity, it is found that the wave function tends to zero as
the scale factor tends to zero [114].

Singularity avoidance of Lorentzian minisuperspace path integrals have also been investigated
recently by the current author in [4]. The study emphasizes that the metric signature changes
where the squared scale factor reaches zero for cosmological singularities, leading to the direct
exclusion of spacetimes with such singularities in a strictly Lorentzian path integral. As a result,
lightlike geodesics always extend from the past boundary to the future boundary without termi-
nation in all path integral configurations. As an application, for lightlike geodesics emanating
from a fixed starting point on the past boundary, the quantum fluctuations of the exiting location
on the future boundary is computed through the path integral. This provides a quantification of
causal horizon fluctuations driven by quantum gravity.

In the above models, the strictly Lorentzian path integral sum exclude singular geometries by
definition, and singularity avoidance is achieved trivially. The situation is more subtle in the path
integrals for the no-boundary [44, 177] and tunnelling proposals [142] for quantum cosmology.

The no-boundary proposal is directly motivated by singularity avoidance. As presented by
Hawking [178]: “Once one allows that singular histories could take part in the path integral, they
could occur anywhere and predictability would disappear completely. [...] To implement the idea
that the laws of physics hold everywhere, one should take the path integral only over nonsingular
metrics.” According to the no-boundary proposal, “the path integral for quantum gravity should
be taken over all compact Euclidean metrics” [178] to achieve singularity avoidance: While in a
Lorentzian metric, a singularity occurs when the spatial metric determinant h vanishes, this is not

4One example is Witten’s original Chern-Simons formulation 2+1D quantum gravity, which includes non-invertible
spacetimes where the vierbein variable is allowed to vanish [175]. Interestingly, in a more recent study Witten changed
his mind to advance the view that such non-invertible spacetimes should be excluded [176].
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necessarily the case in Euclidean geometry, where a vanishing 3-sphere can result from slicing a
regular 4-geometry. However, the Euclidean gravitational path integral diverges due to conformal
instability [20], and complex contours proposed to sidestep the issue not only lack justification
from fundamental theories, but also face ambiguities in the choice of contour [109]. One may
therefore reasonably refrain from regarding the no-boundary path integral as a realization of
trivial singularity avoidance.

Vilenkin’s tunnelling proposal posits that the universe spontaneously emerges through quan-
tum tunnelling from “nothing” [43]. In minisuperspace path integral realizations of the idea, the
initial scale factor is set to zero [142], resulting in a cosmological singularity. Sometimes this is
characterized as a “nonsingular boundary condition”, because in the terminology of [148], the
boundary of superspace is divided into two parts: the “nonsingular boundary”, encompassing
singular 3-geometries resulting from slicing regular 4-geometries, and the “singular boundary”,
containing the remaining 3-geometries. Although a vanishing scale factor belongs to the non-
singular boundary of homogeneous and isotropic minisuperspace in this specific terminology, it
realizes a cosmological singularity in the usual sense. Therefore the tunnelling path integral
should count as a counterexample rather than an example for trivial singularity avoidance.

5.4 Classical approximations

If singular spacetimes do not even arise in a generic gravitational path integral, how come that
they are essential in studies of black hole and cosmology in classical gravity?

In a classical theory, what we care about is a differential equation – the classical equation
of motion. Singular spacetimes solve the differential equation for certain initial conditions, so
are relevant. This is to be contrasted with quantum theory, where the path integral we care
about is an integral. Instead of solving any differential equation, the relevant configurations are
enumerated according to the values the gravitational variables take as explained above. This
difference makes singular spacetimes irrelevant.

On the other hand, the path integral usually receives dominating contributions from its sta-
tionary points, which are solutions to the Euler-Lagrange equation. Will singular spacetimes not
become relevant in the leading-order approximation in light of this, even for the quantum theory?

The answer is no. What singular spacetimes solve are initial value problems. Yet the station-
ary points need to solve boundary value problems [36]. Therefore singular spacetimes are still
irrelevant for the leading approximation of the quantum theory.

To see this in more details, consider a path integral of the form

Z[h] =

∫
h
DgA[g], (5.3)

where the sum obeys the condition h on the boundary B of the region. A special case of common
interest is when Z[h] gives the transition amplitude between h1 and h2, the two parts of h on the
two components B1 and B2 of B. In general, the stationary points g for (5.3) need to solve the
equation of motion for the boundary condition h, i.e., g|B = h. This condition cannot be met
by singular spacetimes, because they cannot take the value h on its total boundary. For instance,
suppose h decomposes into h1 and h2, where h1 coincides with the initial boundary geometry for
a portion of a Schwarzchild black hole. A singular spacetime may solve the equation of motion
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Figure 5.2: (a) A singular configuration with initial condition h1 cannot match any final condi-
tion h2. To also match some h2, the configuration needs either to be truncated to remove the
singularity, as in (b), or replaced by an entirely new configuration that shares h1, as in (c).

under the initial condition h1 alone, but it can never match h2 on the other part of the boundary
(Figure 5.2).

We may be interested in path integrals of a more general form

Z[ψ] =

∫
Dh

∫
h
DgA[g]ψ[h]. (5.4)

A special case of interest is when h decomposes into h1 and h2 as above, and we consider

Z[ψ] =

∫
Dh2 ϕ[h2] =

∫
Dh2

∫
Dh1

∫
h1∪h2

DgA[g]ψ[h1], (5.5)

where the complex function ψ[h1 ∪ h2] = ψ[h1] depends only on h1. Here ϕ[h2] is analogous
to the wave function ϕ(x2) =

∫
Dx1

∫ x(t2)=x2

x(t1)=x1
Dx A[x]ψ(x1) of a non-relativistic particle at time

t2 given its wave function ψ(x1) at time t1. Another special case of interest is when ψ(h) = 1
identically which yields Z as the full partition function. In general, the stationary points g for
(5.4) are obtained by first solving δh(A[g]ψ[h]) = 0 for the stationary points hS on the boundary,
and then solving δg(A[g]ψ[h]) = 0 for g under each boundary condition hS . In cases such as
ψ[h1 ∪ h2] = ψ[h1] when the boundary equation δh(A[g]ψ[h]) = 0 is not very constraining, there
could by many stationary points hS . Yet g are obtained case by case, and in any case we solve
δg(A[g]ψ[h]) = 0 under a fixed boundary condition hS . As explained in the last paragraph,
singular spacetimes cannot be solutions.

Finally, coupling matter yields path integrals of the form

Z[ψ] =

∫
DhDχ

∫
h,χ

DgDϕA[g, ϕ]ψ[h, χ], (5.6)

where χ are the boundary matter configurations. For the same reasons as in the pure gravity
case, geodesically incomplete singular configurations do not solve the Euler-Lagrange equation
to form stationary points.

5.5 Tunneling and complex spacetimes

Singular solutions are essential in classical gravity for understanding black holes and cosmology.
If singular spacetimes become irrelevant in the quantum theory and in its classical approximation,
what replaces them for understanding black holes and cosmology?
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A short answer is that they are replaced by tunneling processes whose stationary points are
complex-valued spacetimes that satisfy the boundary conditions [60, 59, 179, 62]. These space-
times solve the classical equation of motion without being singular, as the singularity theorems
are evaded by allowing the spacetimes to be complex-valued.

The situation is quite similar to particle tunneling. In the classical theory energy conservation
prevents the particle trajectory from extending beyond a potential barrier. However, in the quan-
tum path integral the boundary conditions for detecting the particle beyond the potential barrier
yield positive probabilities, accompanied by complex-valued solutions to the classical equation
of motion [36, 37, 38]. The ban of energy conservation is evaded, because complex trajectories
come with complex momentum so that the kinetic energy can be negative under the potential
barrier.

While the basic scheme of this tunneling picture for singularity avoidance is clear, some open
problems remain to be clarified. Firstly, how should we understand the complex spacetimes that
arise in the classical approximations to singularity-resolving processes, when the original path in-
tegral includes only real-valued spacetimes in the sum? Mathematically, the complex stationary
points can be understood through Picard-Lefschetz theory as belonging to the deformed integra-
tion contours in the complexified domain [60]. Yet physically, an intuitive understanding of the
complex spacetimes seems to be missing. In particular, does a complex spacetime come with a
causal structure? Are there lightcones on it? How do matter and information propagate in it?
Secondly, the above qualitative picture holds for generic boundary conditions. Yet which spe-
cific boundary conditions should we use for the black holes and the cosmos of our world? Is
this purely an empirical question, or are there principles that guide the choices? Thirdly, naive
saddle point approximations valid for path integrals on unbounded domains may not be valid
on bounded Lorentzian domains [4], and new techniques are needed for direct evaluation [4]
or saddle points approximation [147] for the latter path integrals on bounded domains. In a
theory where the trivial idea of singularity avoidance applies, these constitute some interesting
questions to be investigated further.

5.6 Comments on some alternative views

I have presented a view that singularity avoidance is trivial in gravitational path integrals because
singular spacetime configurations are generically absent in the sum. Given an explicitly defined
gravitational path integral one could check if this view applies. When it does, the interesting
tasks are to understand gravitational tunneling processes and their boundary conditions, as well
as the physical meaning of the corresponding stationary points which are complex-valued.

From this perspective, current attempts at using real-valued regular spacetimes to give effec-
tive descriptions of singularity-resolving processes along the lines of [49] could be misguided.
Should an individual spacetime be chosen to capture the essence of the quantum processes, a
complex-valued spacetime is more appropriate than a real-valued one. The phenomenological
consequences of complex-valued spacetimes for gravitational waves and black hole images are
certainly also worth studying.

The trivial idea of singularity avoidance is also worth discussing in view of some contrary
statements present in the literature. For example, in a relatively recent work [158] it is stated
that in a gravitational path integral based on the metric variable gab,
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all possible metric configurations (modulo diffeomorphisms) are being summed over.
Thus, the singular spacetime metrics that constitute solutions of the field equations in
GR are included in the path integral.

The problem with metric-variable gravitational path integral is that it is unclear how to define it
in a non-perturbative and Lorentzian setting. In quantum field theories, the standard way to spec-
ify a path integral non-perturbatively is through lattices [180]. This route leads back to theories
such as those discussed in Section 5.2. For the theories considered there singular configurations
are seen to not belong to the path integral. Alternatively one might consider functional renormal-
ization group for an in-principle non-perturbative specification of an Euclidean gravitational path
integral. However it is unclear how to take this approach over to the Lorentzian setting [181]
which is suitable for discussing spacetime singularities.5 Without being referred to a Lorentzian
path integral with an explicitly defined measure, it is difficult to be convinced of the claim that
singular spacetime configurations are included in the path integral.

As another example from recent works, in [184] it is stated as an “essential condition” for a
solution to the “information loss paradox” that for an Euclidean gravitational path integral (EPI):

There exist at least two histories, say h1 and h2, that contribute to EPI, where h1 is an
information-losing history while h2 is an information-preserving history.

Here “information-losing history” means “the semi-classical history of an evaporating black hole
in which the unitary evolution would be lost when the black hole has completely evaporated”
[184], and from Figure 1 of that paper one might infer that an “information-losing history” is
geodesically incomplete. The main idea of [184] is to understand information propagation of
quantum black holes as tunneling processes in gravitational path integrals. It seems the main
points of [184] depends on the presence of an information-preserving history h2 rather than an
information-losing history h1, and for reasons discussed in Section 5.5 I remain hopeful that the
program of [184] to understand black hole information topics through gravitational tunneling
will succeed.

The present trivial idea also differs from non-trivial ideas such as those listed in Section 5.1.
What accounts for the differences? Firstly, the trivial idea is based on gravitational path inte-
grals, whereas ideas such as [156, 157, 160, 161, 162, 163] are based on Wheeler-DeWitt or
Schrödinger equation type models. Secondly, the trivial idea refers to explicitly defined path
integrals, whereas ideas such as [158, 159] refer only to formal expressions of path integrals.
Without an explicitly specified measure it is impossible to check if singular configurations belong
to the path integral sum. In view of the present work, this could be an important missing step
that changes the conclusion on how singularities are avoided in quantum gravity.

5This should not come as a surprise. There are cases where we know that the Euclidean and Lorentzian gravitational
path integrals are inequivalent, and hence cannot be related by something like a simple Wick rotation. Historically,
the raison d’etre for considering the Lorentzian causal dynamical triangulation in the dynamical triangulation program
is to cure the issue of degenerate geometries of the Euclidean theory – and indeed the Lorentzian theory turned out
to be different [102]. In simplicial quantum gravity, the same conclusion is reach. See the discussion around equation
(3.17) of [23]. References [182, 116, 183] contain additional reasons in broader contexts to not equate Euclidean
and Lorentzian gravitational path integrals.
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Part II

Experience

112



Chapter 6

Experience in quantum physics

A theory of everything should not only tell us the laws for matter, gravity, and pos-
sibly boundary condition for the universe. In addition, it should specify the relation
between theory and experience. Here I argue for a minimal prescription in extracting
empirical predictions from path integrals by showing that alternative prescriptions
are unjustifiable. In this minimal prescription, the relative probability for one experi-
ence is obtained by summing over all configurations compatible with that experience,
without any further restriction associated with other experiences of the same or other
experiential beings. An application to Wigner’s friend settings shows that quantum
theory admits objective predictions for subjective experiences. Still, quantum theory
differs from classical theory in offering individualized as opposed to collective ac-
counts of experiences. This consideration of experience in fundamental theories issues
several challenges to popular quantum interpretations, and points to the outstanding
need for a theory of experience in understanding physical theories of everything.

6.1 Introduction

A physical theory of everything is supposed to tell us [185]:

1. The dynamical laws for matter and gravity.

2. The laws for the boundary condition of the universe, if there are such laws.

3. The relation between the theory and experience.

Task 1 is the focus of particle physics and quantum gravity. Task 2 is a main topic of quantum
cosmology. Task 3 is, well, a big embarrassment of quantum physics.

Task 1 is fulfilled most straightforwardly by starting with our best theory for matter, the
Standard Model, and extending its path integral to sum also over gravity (Figure 6.1). As a
result, we get partition functions of the form

Z =

∫
Dq e

i
ℏS[q], (6.1)
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Figure 6.1: The path integral sum over everything
∫
Dq =

∫
Dg
∫
Dϕ contains gravity part

∫
Dg

and a matter part
∫
Dϕ (for simplicity, illustrated in the figure by particle configurations, instead

of more realistic field or particle-string [1] configurations for the Standard Model).

where q contains both matter and gravity variables and S[q] is the action. The matter part may
be extended, e.g. to incorporate dark matter. The gravity part has more than one possible
realization. See [186] for a survey of some popular approaches.

Task 2 invokes double path integrals of the form (see equation (4.8) of [187])

D[ρ] =

∫
Dq′

∫
Dq e

i
ℏ (S[q]−S[q′])ρ(qb, q

′
b), (6.2)

where the path integral is doubled to account for the possible mixedness of the boundary condi-
tion ρ, which as an analog of the density operator takes as inputs the boundary configurations qb
and q′b in the double copies. In case no law exists to fix the boundary condition, ρ is treated as an
unknown parameter to be inferred empirically.

Task 3 is the focus of this work. This task is a big embarrassment, because we do not know
exactly how the theory relates to experience quantum physics. From textbooks such as [13] we
gather that in the path integral formalism, probabilities should be obtained through selecting a
subset of configurations to integrate. However, there is no instruction on how to select in a theory
of everything where all matter and gravity variables are subject to path integration. In particular,
to predict Alice’s experience at one moment, do we just select according to that experience alone?
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Do we select on Alice’s past and/or future experiences as well? Do we also select on Bob’s and
others’ experiences, etc.?

These questions are important for cosmology, for instance in understanding how empirical
probabilities are obtained in cosmology [188] and in resolving the issue of Boltzmann brain
[189]. The questions are important for foundations of quantum field theory, for instance in
understanding signalling constraints of measurements in QFT [190, 191, 192]. The questions
are important for foundations of quantum physics, for instance in understanding Wigner’s friend
settings [193].

In this paper, I argue for a “minimal prescription” for extracting empirical predictions in the-
ories of everything. The prescription is “minimal”, because in predicting the probability for an
experience, the path integral selects only for that experience. Alternative prescriptions which
select for other experiences are systematically discussed, and are shown to be unjustifiable.

To illustrate the minimal prescription, I apply it to Wigner’s friend [193] type thought ex-
periments and show how touching base with fundamental theories fixes a unique and general
prescription that accounts for the experiences of Wigner, Friend, and any other experiential be-
ings. I explain why no commitment to any quantum interpretation is needed to arrive at the
prescription, and why the recent Wigner’s friend no-go theorems [194, 195, 196, 197, 198, 199]
cannot help in arriving at the prescription.

Quantum theory with the minimal prescription gives an objective account for experiences,
since everyone applies the same formula to account for anyone’s experiences. The account is
individualized, in the sense that a different formula is needed for each different experience. This
is in contrast to classical theory, where a collective account of multiple experiences with the same
formula is possible. In the world picture that emerges from the quantum theory of everything,
matter and gravity path integral configurations coexist in superposition, whereas experience in-
duces selection. Quantum states have no fundamental status, since the theory contains only
boundary condition and experience selections, but not states that evolve and get updated in
time. To the extent that experience is part of “reality”, both boundary condition and experience
selection describe “reality”.

Based on these observations, I discuss some shortcomings of pilot-wave theories, collapse
models, as well as Everttian, decoherent histories, relational, QBism, and neo-Copenhagen in-
terpretations. Judged in the context of theory of everything, these approaches are in danger of
being wrong, redundant, vague, and/or even superfluous. It remains to be seen if they offer any
help in completing the remaining parts of three tasks for a theory of everything mentioned at the
beginning.

As a note of scope, the discussion of theory of everything in this work is based in the path
integral formalism.1 Readers interested in canonical/algebraic formulations may find Don Page’s
“Sensible Quantum Mechanics” [200, 201, 202] relevant in accounting for experiences. Page’s
formalism is closely related to this paper in attributing quantum probabilities to individual experi-
ences. However, it gives an essentially different prescription for making predictions in cosmology,
where ambiguities associated with Boltzmann brain constitute a genuine problem [203, 204]. In
contrast, the treatment presented here holds Boltzmann brain problem as a fake problem, as I
will elaborate on elsewhere.

An outline of the paper can be found in the table of contents at the beginning.
1In my view, the most promising candidate theories of quantum gravity, e.g., Lorentzian simplicial quantum gravity

[2], locally causal dynamical triangulation [165] etc., come from the path integral formalism.
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Figure 6.2: From the set of all particle paths (left), select those paths compatible with observa-
tional locations (right) to derive observational probabilities.

6.2 Experience in quantum physics

6.2.1 From particle to everything

How should we extract empirical predictions from a path integral? In chapters 1 and 2 of [13],
Feynman and Hibbs offer a textbook treatment for a non-relativistic particle. To compute the
probability for emitting and detecting a particle at a certain locations, one sums the amplitude
over all paths originating and ending at these locations, and square it to obtain the probability
(Figure 6.2). In other words, we select from all particle paths those compatible with the observa-
tional locations to obtain the probability for the observation.

In accounting for experiences in a theory of everything of the form (6.2), it is natural to also
select the physical configurations compatible with the experience under consideration to derive
its probability. However, as soon as we attempt to formalize this idea, questions arise (Figure 6.3).
There are many experiential beings in the world, each going through many experiences. When
extracting the probability for one experience of one being, should we select according to the
experiences of all experiential beings, or just that one being? For that particular being, should we
select according to multiple experiences, or just that one experience under consideration?

The answer is hard to find in previous works, even those that pay special attention to foun-
dational questions of path integrals. The decoherent histories understanding of matter-gravity
path integrals [187] suffers ambiguities in history selection, which makes it unclear how to ex-
tract empirical predictions [205]. The general boundary formalism [206] does not clearly fix a
prescription on how many boundary conditions to impose, even when supplied with a relational
interpretation [207] (In a universe containing many experiences and experiential beings, should
we apply boundary condition to one experience? Some experiences? All experiences?). No other
work I know of addresses the questions either. To proceed, we must find our own way.
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Figure 6.3: Different possibilities of selection for experiences.

6.2.2 General formula for experience

I argue below that to extract the relative probability for some experience, we should apply selec-
tion for just that one experience. Consider the empirical probabilistic predictions in the form of
conditional probabilities

p(ei|c). (6.3)

Here c stands for a physical condition that enables a set of possible experiences {ei}i. For exam-
ple, c could label the momentary (which may extend in time) physical configuration of a human
being, incorporating all matters relevant for what he/she experiences next. In principle, this
should fix the set {ei}i of all possible next experiences.

In the minimal prescription, we select for a single experience for a single experiential being
in the path integral. This corresponds to following the scenario of the first and third pictures of
Figure 6.3. The probability for ei to actualize under condition c is

p(ei|c) = N

∫
ei,c

Dq′
∫
ei,c

Dq e
i
ℏ (S[q]−S[q′])ρ(qb, q

′
b). (6.4)

The subscripts ei, c indicate that in both branches of the double path integral, we select physical
configurations compatible with the condition c and the experience ei. The normalization constant
N is fixed by requiring

∑
i p(ei|c) = 1.

There are several open questions on how to implement the selection exactly. For instance, it
is unclear what physical conditions enable experiences, what physical configurations correspond
to experiences (this would constitute a definition of experience in terms of physics), what the list
of all possible experiences exactly is under a given condition [208, 209]. It is unclear if human
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experience supervenes on just the brain physical configurations, or if some part of the bodily
configurations are also relevant [210]. It is unclear how much the physics of experience varies
from species to species [211]. It is unclear at the mathematical level if the selections should
always be sharp (a configuration is either included or excluded in the path integral), or can be
unsharp (multiply the configurations by a weighting function taking non-binary values). ...

These are important scientific questions needing multidisciplinary inputs (see Section 6.6 for
some further discussions). On the other hand, even without addressing these questions, just the
form of the formula (6.4) without the details already has rich implications in physics. Specifi-
cally, (6.3) stands on three assumptions about experiences: (1) experiences are enumerable and
distinguishable, i.e., it is meaningful to talk about ei and ej with i ̸= j as two different experi-
ences; (2) experiences are enabled by some conditions, i.e., it is meaningful to talk about c as
a condition that enables ei; (3) experiences and their conditions have a physical basis, i.e., it is
meaningful to relate p(ei|c) to a physical theory of everything. It is not impossible for one or more
of these assumptions to fail, but they are quite reasonable to make to start with in understanding
empirical predictions in physical theories of everything. Once these assumptions are made, we
can accept that (6.3) can be related to physical theories of everything. Then Section 6.2.3 below
offers an argument to accept (6.4), whose implications in physics will be explored in the rest of
the work. Importantly, none of the steps require answers to the open questions about experience
listed above.

6.2.3 Why select just one experience?

Before moving on to the implications, I should explain why we should select according to just
one experience in the probability formula (6.4). To start with, note that:

Joint experience is not experience

Consider the combination of some experience of Alice with some experience of Bob, or with some
other experience of Alice herself. The result is not an experience experienced by any being. There-
fore to make probabilistic predictions for one experience, it is reasonable to consider selecting on
that experience and that experience only.

In contrast, alternative selection scenarios can be shown to be quite unreasonable (Fig-
ure 6.4). If we were to select just for n = 1 experience, it is certainly reasonable to select
according to one under consideration as in (6.4), instead of a different experience. If we were
to select for n > 1 experiences, there is no n that is preferred for any reason. Therefore any
particular choice of n lacks a good justification.

One might ask, why do we not select according to the number of experiences, or the number
of experiential beings, that exist in the universe? The problem is that there is no fixed number
of experiences or experiential beings in the path integral over everything (6.2). In any quantum
region [206], the path integral sums over gravity and matter configurations with zero, one, two
... experiences, so it is meaningless to talk about a definite number of experiences or experiential
beings that exist in the universe.2

2The boundary condition cannot help in selecting some particular n value or some set of n values of experiences that
exist in the path integral configurations, because it only refers to the boundary part of the path integral configurations,
but not the interior part where paths with different numbers of experiences are summed over.
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Figure 6.4: Structure of argument for picking the selection prescription for p(ei|c). Here n is the
number of experiences to be selected for.

The above analysis indicates that n = 1 is the only reasonable option, if a single number of
experiences is to be selected. An alternative is to select for a range of n values. In this case, the
first option is to sum over all n ≥ 1. Here n = 0 gets excluded since we want to make sure that
the experience under consideration is selected. The sum could be performed either coherently
or incoherently. A coherent sum over amplitudes for all numbers n, keeping the selection for
the experience under consideration fixed in all the terms of the sum, actually gives back (6.4).
On the other hand, an incoherent sum over probabilities for all numbers n is not a reasonable
choice. This is because all quantum regions contain experiential configurations, so the result will
exhibits a drastically different interference structure whose predictions will differ from empirical
evidence. The second option is to sum over a different set of multiple n values. The problem, like
in the case of selecting for a single n > 1, is that within quantum theory there is no particular set
of n that is preferred for any reason. Therefore any choice lacks a good justification.

If one is willing to go beyond quantum theory, there could be mechanisms that fix one or a
set of n values. For instance, the modified dynamics of consciousness collapse models [212, 213,
214, 215, 216] may fix some n value(s) through its stochastic reduction. In this paper, I focus
on accounting for experience within quantum theory, so will not discuss such possibilities further
(however, see Section 6.5 for some critical remarks on collapse models).

6.2.4 A toy model

Formula (6.4) is rather general and abstract. It helps to illustrate it in a concrete setting with
three simplifying assumptions. (1) Consider a simplified setting where spacetime is reduced
to classical. For instance, consider a saddle approximation to the gravitational path integral,
where one classical solution to the gravitational boundary value problem dominates the path
integral. (2) Moreover, assume that the matter degrees of freedom obey a unitary time evolution
for some time foliation of the classical spacetime. (3) Assume further that the spacetime is
sufficiently non-degenerate, so that we can locate experiences sequentially in time by selecting
on the gravitational configurations.

Now consider a set of experiences {ei}i possible under the condition c. Assume the latter to be
implemented by the projector P at time t′1, and the former to be implemented by the projectors
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Figure 6.5: Different projections are activated for different experiences.

Qi at time t1 > t′1 (Figure 6.5). Then

p(ei|c) =N Tr
[
ρFU(tF , t1)QiU(t1, t

′
1)PU(t′1, tI)ρIU

†(t′1, tI)PU
†(t1, t

′
1)QiU

†(tF , t1)
]
, (6.5)

where N is fixed by setting
∑

i p(ei|c) = 1, and as a further simplifying assumption, the boundary
condition factorizes into ρI and ρF on the initial and final boundary of the universe. The unitaries
U(tb, ta) between times ta and tb is to be derived from the path integral propagators. In the
Heisenberg picture where the operators

O(t) = U †(t, t0)OU(t, t0) (6.6)

are time-dependent (t0 is some reference time), the formula becomes

p(ei|c) =N Tr
[
ρF (tF )Qi(t1)P (t

′
1)ρI(tI)P (t

′
1)Qi(t1)

]
, (6.7)

where the initial and final boundary conditions lie at times tI and tF .

Suppose we want to model the experience of the same being with memory, at a later time
t2 > t1 (Figure 6.5). Then we only impose selection for that experience to obtain

p(e′i|c′) =N ′Tr
[
ρF (tF )Q

′
i(t2)P

′(t′2)ρI(tI)P
′(t′2)Q

′
i(t2)

]
, (6.8)

where c′ is a different condition with projector P ′ at t′2 ≤ t2, and {e′i}i is a different set of
experiences with projectors Q′ at t2.

The memory is encoded in P ′. For instance, when the initial boundary condition is pure, i.e.,
when ρI(tI) = |ψ⟩⟨ψ|, the memory of experience ej at t1 and condition c at t′1 can be incorporated
by setting P ′(t′2) = |ψj⟩⟨ψj | in the Heisenberg picture. Here

|ψj⟩ = P ′′(t′2)Qj(t1)P (t
′
1) |ψ⟩ , (6.9)

where P ′′(t′2) implements further conditioning not already implemented byQj(t1)P (t
′
1). Plugging

it in (6.8) yields

p(e′i|c′) ∝ Tr
[
ρF (tF )Q

′
i(t2)P

′′(t′2)Qj(t1)P (t
′
1)ρI(tI)P (t

′
1)Qj(t1)P

′′(t′2)Q
′
i(t2)

]
. (6.10)
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Figure 6.6: Wigner’s friend setting. Left: Inside a lab, Friend (F ) interacts with a system (S)
through unitary evolution U . Right: Afterwards, Wigner (W ) outside the lab interacts with
system-Friend through unitary evolution V . Middle: circuit diagram for the interactions.

Even when selections are made only at t′2 and t2, the influence of previous events are reflected in
the current condition c′ because of the “memories” encoded in P ′(t′2).

This toy model only gives a rough account for the experiences of experiential beings with
memory. In a more realistic account, the condition encoding memory, P ′, should refer to the
particular local bodily physical configurations of the experiential being, so will take a different
from than that given by (6.9). This unrealistic aspect should be kept in mind when using the toy
model.

6.3 Wigner’s friend

Wigner’s friend thought experiment [193] (Figure 6.6) poses the question whether in describing
the experience of one being, other beings could be in superposition of physical configurations
corresponding to different experiences. This setting provides an ideal ground to illustrate the
prescription of the previous section, which answers the question with a resounding yes.

6.3.1 Setting

Consider the Wigner’s friend setting of Figure 6.6 with the global unitary evolution

|ψ(0)⟩ = 1√
2
(|0⟩S + |1⟩S) |f⟩F |w⟩W (6.11)

U−→ |ψ(1)⟩ = 1√
2
(|00⟩SF + |11⟩SF ) |w⟩W (6.12)

V−→ |ψ(2)⟩ = 1√
2
(|00⟩SF + |11⟩SF ) |0⟩W . (6.13)

At time t = 0, the system, describing for instance the spin of a particle, is initialized in the state
1√
2
(|0⟩S + |1⟩S). Friend’s and Wigner’s physical configurations are initialized in some states |f⟩F

and |w⟩W .

At time t = 1, the global state evolves to |ψ(1)⟩ under U , which couples Friend to the system.
This constitutes the premeasurement unitary interaction for Friend to measure the system with
the projections {|0⟩⟨0| , |1⟩⟨1|}.
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At time t = 2, the global state evolves to |ψ(2)⟩ under V , which couples Wigner to system-
Friend. This constitutes the premeasurement unitary interaction for Wigner to measure system-
Friend with the projections {|Φ⟩⟨Φ| , 11 − |Φ⟩⟨Φ|}, where

|Φ⟩ = 1√
2
(|00⟩SF + |11⟩SF ). (6.14)

Without any experiential selections, the unitary evolution does not yield probabilities for any
experience. The question is to decide on the projections to imply in accounting for the experiences
of Wigner and Friend.

6.3.2 Wigner’s experiences

Suppose in a simplified setting all assumptions leading to the toy model of Section 6.2.4 hold,
so we can employ the model there. Let us suppose further that Wigner’s experiences are char-
acterized by projectors Qi, and the condition only retains the most recent memory by applying
the projection at the closest previous time (this amounts to implementing the condition by P ′

of (6.9) and setting the Heisenberg picture projectors P ′′ and P to identity in (6.9)). Suppose
further that

ρF = I, (6.15)

i.e., the final boundary condition is the identity in (6.5).

Then (6.7) yields, in the Schrödinger picture,

p(j|i) =N Tr
[
QjUQi |ψ(0)⟩⟨ψ(0)|QiU

†Qj

]
, t = 1, (6.16)

p(j|i) =N Tr
[
QjV Qi |ψ(1)⟩⟨ψ(1)|QiV

†Qj

]
, t = 2. (6.17)

for experience j conditioned on memory for the previous experience i. For example, when there
are only two possible experiences with projectors

{Q0 = 11SF ⊗ |0⟩⟨0|W , Q1 = 11SF ⊗ |1⟩⟨1|W }, (6.18)

plugging in (6.16) yields that at time t = 1, p(j|i) = δi,j , where the normalization factor N
is fixed to be | ⟨i|w⟩ |2 = 1. This indicates that at t = 1 the experience must stay the same as
previously.

At t = 2, the explicit form of V is needed to compute the result for (6.17). As an example, let
W ’s state space be spanned by {|w⟩ , |w⊥⟩} with

|i⟩ = αi |w⟩+ βi |w⊥⟩ , k = 0, 1, (6.19)

and F ’s state space be spanned by {|Φ⟩ , |Φ1⟩ , |Φ2⟩ , |Φ3⟩} with |Φ⟩ given in (6.14). Suppose

V : |Φw⟩ 7→ |Φ0⟩ , |Φkw⟩ 7→ |Φk1⟩ ,
|Φw⊥⟩ 7→ |Φ1⟩ , |Φkw⊥⟩ 7→ |Φk0⟩ , k = 1, 2, 3. (6.20)
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Then indeed V is compatible with (6.13). Plugging in (6.17) yields

p(j|i) =N∥⟨j|V (|w⟩⟨w|+ |w⊥⟩⟨w⊥|) |Φi⟩ ⟨i|w⟩∥2 (6.21)

=N |δj,0αiα
∗
i + δj,1βiα

∗
i |
2 (6.22)

=|δj,0αi + δj,1βi|2, (6.23)

where the normalization factor N has been fixed to be |αi|2. This indicates that the probabilities
for experience j at t = 2 are |αi|2 for j = 0 and |βi|2 for j = 1.

6.3.3 Friend’s experiences

The formulas for Friend’s experiences are entirely analogous. Suppose Friend’s experiences are
characterized by projectors Ri (e.g., {R0 = 11SW ⊗ |0⟩⟨0|F , R1 = 11SW ⊗ |1⟩⟨1|F }). Then the
probabilities take the same form as Wigner’s (6.16) and (6.17):

p(j|i) =N Tr
[
RjURi |ψ(0)⟩⟨ψ(0)|RiU

†Rj

]
, t = 1, (6.24)

p(j|i) =N Tr
[
RjV Ri |ψ(1)⟩⟨ψ(1)|RiV

†Rj

]
, t = 2. (6.25)

Once explicit forms of U and V like (6.20) above are given, the probabilities can be computed
explicitly.

More generally, there can be alternative settings with possibly more experiential beings in-
teracting in arbitrarily complicated ways. In all these cases, the probability formulas would take
the same form as (6.16), (6.17), (6.24) and (6.25). The prescription of Section 6.2 applies in
generality.

6.3.4 Contrasting with previous treatments

The present treatment of the Wigner’s friend setting within quantum theory contains some differ-
ences from some previous treatments.

In [217], DeBrota, Fuchs, and Schack give an analysis of Wigner’s friend settings from a
QBism perspective. On page 1869 of [217], one finds the statement: “the friend [...] amounts
to assigning a quantum state to herself, which violates the QBist tenet that there must be a
clear separation between agent and measured system”. In contrast, the formulas in the present
section do not forbid someone from assigning a state to herself. For example, when Friend
makes a prediction for Wigner’s experiences, like everyone else she should use the formulas of
Section 6.3.2 which assign a state to herself. Conceptually, this highlights the objective nature of
the quantum empirical predictions, which is easily forgotten in emphasizing the subjective nature
of experiences [217].

In some treatments of Wigner’s friend settings (e.g., [196, 218]), the humans of Wigner and
Friend are replaceable by computers/automatic machines without making a difference. This is
in contrast with the experiential treatment given here where experiential beings are special. In a
world without experiential beings, there is no empirical prediction to make, and no selections
to be applied to the path integral (and no projections to be applied to the state in the toy model).
Therefore computers/machines without experience do not induce definite values for variables,
and must be treated differently from humans with experience.
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In [218], Baumann and Brukner imagines a “textbook treatment” of a Wigner’s friend set-
ting. In this treatment, even when predicting Wigner’s observational outcomes, Friend applies
projective state-updates for her own measurements. Baumann and Brukner point out that the
“textbook treatment” differs from treatments by QBism, neo-Copenhagen, and relational inter-
pretations within quantum theory, which leaves the impression that these interpretations make
a genuine difference. In contrast, according to the analysis given here which touches base with
fundamental theories with specified dynamical laws (encoded in the action for the path inte-
gral), no such interpretations are required to differ from the “textbook treatment”. As argued in
Section 6.2, formula (6.4) is the only reasonable prescription for extracting empirical predictions
in the fundamental quantum theories considered here. This leads to the formulas of Section 6.3.2,
which, in contrast to the “textbook treatment”, apply projections only to Wigner when accounting
for Wigner’s experiences (by Friend, Wigner, or whoever else).

Finally, readers who know of the recent Wigner’s friend no-go theorems [194, 195, 196,
197, 198, 199] may ask if these inform us anything on how to account for experiences within
quantum theory. In particular, can the no-go theorems offer alternative arguments to rule out
any prescription discussed in Section 6.2.3? The answer is no. The structure of argument in
[194, 195, 197, 198, 199] is that quantum predictions violate certain Bell-type inequalities, so
the assumptions leading to the inequalities cannot coexist if quantum theory is right. For this type
of argument to take off, one must already know how to draw the correct quantum empirical pre-
dictions. However, knowing this would have fixed the prescription already, without considering
any inequalities. Therefore the no-go theorems of [194, 195, 197, 198, 199] cannot help in pick-
ing out the correct prescription for quantum empirical predictions. The structure of argument in
[196] is that certain assumptions put together yield a contradiction. If any prescription discussed
in Section 6.2.3 obeys the assumptions, that would be ruled out by [196]. However, none of
the assumptions applies, since the prescriptions only assign definite values to a physical variable
when there is empirical selection (without selection, all values are summed over in the path in-
tegral), whereas the assumptions of [196] assume it is meaningful to talk about definite values
of physical variable in themselves without regards to experience. Therefore the no-go theorem of
[196] cannot help in picking out the correct prescription for quantum empirical predictions.3

This comparison with previous treatments reveals several conceptual questions that deserve
to be clarified further. In which sense is the minimal prescription of Section 6.2 objective? In
which is it not? What picture of Nature does quantum theory offer in the absence of experiential
beings like us, as some “realists” tend to ask? In what ways do “fundamental” quantum theories
differ from “non-fundamental” quantum theories? What is the role of quantum interpretations in
accounting for experiences? I will address these questions in the rest of the paper.

6.4 Conceptual reflections

6.4.1 Objective vs. subjective

The empirical probabilities derived from (6.4) are objective, in the sense that everyone uses this
same formula to account for anyone’s experiences. For example, in the Wigner’s friend setting,

3One may be tempted to ask, if the no-go theorems cannot rule out any prescription for quantum empirical pre-
diction, what do they rule out at all? The one-paragraph discussion offered here does not address this question, but
only explains why the no-go theorems cannot be used to rule out prescriptions discussed in Section 6.2.3. For in-depth
critical discussions that do address the question, see, for instance, [219, 220] and references therein.
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Wigner, Friend, and everyone else should use the formulas of Section 6.3.2 to account for Wigner’s
experiences.

Certainly the experiences themselves are subjective, in the sense that Wigner does not expe-
rience Friend’s experience and vice versa. However, this does not change the objective nature of
(6.4) in drawing empirical predictions.

An important consequence is that the quantum empirical probabilities admit an objective
propensity interpretation (although this does not rule out other interpretations for the quan-
tum empirical probabilities). Quantum interpretations such as QBism [221, 222, 223] hold that
quantum probabilities are Bayesian probabilities for agents’ beliefs. Here it is shown that even in
view of extreme settings such as Wigner’s friend, a Bayesian interpretation of quantum empirical
probability is not a necessity.

6.4.2 Individualized vs. collective

There is a sense in which “objectivity” is weakened in (6.4) in comparison to classical theory.
In classical theory, a collective account for multiple experiences is available. For instance, in
a classical field theory, a field configuration throughout the spacetime is supposed to account
for all experiences throughout this universe. In contrast, the quantum formula (6.4) offers only
an individualized account, in the sense that a particular selection is used for each particular
experience.

This individualized vs. collective dichotomy also distinguishes quantum theory based on
(6.4) and collapse models. The distinction leads to falsifiable predictions. In the setting of Sec-
tion 6.3.1, quantum theory based on (6.4) predicts that Wigner’s experience is compatible with
the measurement outcome of |Φ⟩⟨Φ| with (6.14), while collapse models rule out such coherent
macroscopic superposition of Friend in accounting for Wigner’s experience.

To people who object (6.4) on philosophical grounds for failing to give a collective account, or
for being “soliptic”, the response is that these objections are insignificant. A theory can be true or
false (e.g., passing or failing the kind of empirical test discussed above) independent of whether
or not it gives a collective account, and whether or not it is “soliptic”.

6.4.3 Presence vs. absence

Some “realists” aspire to understand stable set of properties of matter in and of itself, without
regard to human perceptions [224]. A path integral like (6.2) does suggest a very simple picture
of what Nature is like, when no experiential beings are present. Without experiential beings,
there is no experience selection. All path integral configurations for matter and gravity coexist in
superposition.

The problem is that this picture, or any picture without experiential beings, is not empiri-
cally verifiable. It is not empirically verifiable because there is no experience without experiential
beings. If someone gives a different picture in which the universe becomes a banana whenever
experiential beings are absent, we cannot give empirical evidence to rule out the case. In Sec-
tion 6.6 an alternative world picture is offered, which takes as a starting point the presence of
experiential beings.
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Wrong Redundant Vague Superfluous
Pilot-wave theories ✓
Collapse models ✓
Everettian ✓ ✓
Decoherent histories ✓ ✓
Relational ✓ ✓
QBism ✓ ✓
Neo-Copenhagen ✓ ✓

Table 6.1: Dangers faced by interpretations, judged in the context of theory of everything

As an alternative, a “realist” may ascertain the presence of experiential beings, and aspire for
a world picture that admits a collective account of experiences in the sense of Section 6.4.2. As
explained there, quantum theory does not meet this hope. Whether this is good or bad should
be decided by empirical tests, such as the kind mentioned in Section 6.4.2, which distinguish
theories that come with collective accounts and theories that do not.

6.4.4 Boundary condition and experience selection vs. state

The account of Wigner’s friend setting of Section 6.3 touches base with fundamental theories
with specified dynamical laws encoded in the path integral action. In Section 6.2.4 an explicit
explanation is given on how to start from formula (6.4) for the fundamental path integral to
arrive at the formulas of Section 6.3 for the toy models. This explanation clarifies that quantum
states evolving in time have no status in the fundamental path integral (6.4),4 which only refers
to the boundary condition of the universe and experience selections. States evolving in time arise
only after imposing simplifying assumptions.

What is the nature of the quantum state? Does it describe our knowledge of reality, or reality
itself? Much discussion in the literature treat these as essential questions for understanding
quantum theory. Yet from the perspective of the fundamental path integral they are not essential
questions, because the state is a dispensable concept.

What about the nature of the boundary condition and the experience selections? Do they
describe our knowledge of reality, or reality itself? In (6.4), the boundary condition is kept fixed
for all experiences, while the experience selection varies for different experiences. To the extent
that experience is part of “reality”, both are used in describing “reality”. Neither describes our
knowledge per se, although knowledge can be formed about the boundary condition and the
experience selections.

6.5 On quantum interpretations

What does the analysis of experience in theories of everything inform us about quantum inter-
pretations? In this section I explain why judged in this context of theory of everything, all the
interpretations listed in Table 6.1 face major issues.

4See, e.g., [187, 225, 206] for related discussions.
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6.5.1 Wrong?

To fulfill the first task for a theory of everything (Section 6.1), a putative theory should offer the
correct laws for matter and gravity. The high danger in pilot-wave theories [226] and collapse
models [227] is that they supply the wrong laws for matter. The high danger in Everettian
interpretations is that they supply the wrong laws for gravity.

Pilot-wave theories and collapse models

For laws of matter, the best theory we have is the Standard Model, which passes stringent tests
from particle physics experiments. The currently available pilot-wave theories and collapse mod-
els cannot correctly reproduce the Standard Model predictions [228, 229]. Future will tell if
further developments can overcome this challenge.5

Everettian interpretations

The goal of Everett’s original paper [230] was to present “a reformulation of quantum theory in
a form believed suitable for application to general relativity”. Back in 1957, far less is known
about quantum gravity, and Everett chose to base his interpretation on the Schrödinger equation
(instead of path integral or the Wheeler-DeWitt equation, which is only available later in his-
tory). Nowadays we understand much better that unless Nature very unexpectedly singles out
some time parameter in quantum gravity, a theory based on Schrödinger equation will be wrong
[186, 231]. Therefore the Everettian view that a wave function evolving under the Schrödinger
equation is all there is [232] is quite likely wrong for the laws of gravity.

One possible rescue is to resort to decoherent histories, which does not rely on the Schrödinger
equation [187], to formulate some alternative “Everettian interpretation” [233] in variation
from Everett’s original one. However, decoherent histories also face issues, as discussed in Sec-
tion 6.5.2. In addition, present accounts of the Everettian interpretation in decoherent histories
[233] are unjustified in imposing the branching structure, due to its time-oriented nature [11].
Additional issues are discussed and debated in [232].

6.5.2 Redundant?

Decoherent histories [187, 234] and Relational quantum mechanics [235, 207] have no trouble
accommodating the Standard Model or modern theories of quantum gravity (see [187] for deco-
herent histories; Chapter 2 of [236] and Section 43.9 of [207] for Relational quantum mechanics)
However, they face the danger of redundancy.

Decoherent histories

Gell-Mann and Hartle hold that: “The most general objective of quantum theory is the prediction
of the probabilities of individual members of sets of alternative coarse-grained time histories of

5See recent works of Tejinder for some preliminary attempts to incorporate the content of the Standard Model into
collapse models.
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the closed system” [234]. In their decoherent histories interpretation [187, 234], probabilities
are assigned to sets of histories obeying the decoherence condition, which ensures the usual
probability sum rules under coarse-graining. The histories do not have to refer to experiences, but
could, for instance, refer to properties of matter in the early universe before any experiential being
came into being. As it currently stands, the decoherent histories interpretation is unable to offer
unambiguous predictions. This is due to the lack of a history selection criteria [205]: generically a
given history can be embedded in many decoherent sets of histories, and the interpretation offers
no rule for selecting among the possibilities. Without a fixed way to extend histories, probabilistic
predictions cannot be made unambiguously even for the simple question of what happens next.

The analysis of the previous sections show that as far as empirical predictions are concerned,
probability assignment can be restricted to individual experiences instead of histories. There
is still the open question to determine the set of possible experiences under a given condition
(Section 6.2.2). It is reasonable to hope that a theory of experience can address this question,
because if there is going to be a scientific theory of experience at all, as a basic requirement it
should tell us what experiences are possible under a given condition.

In contrast, a theory of experience will not reduce the ambiguities associated with decoherent
histories. Firstly, as a defining feature, the decoherent histories interpretation encompasses both
experiential and non-experiential histories. A theory of experience will not help to reduce the
ambiguities associated with non-experiential histories. Secondly, even if one restricts attentions
to experiential histories, they will generically refer to multiple experiences. As noted in Sec-
tion 6.2.3, “joint experience is not experience”. It is unclear how a theory of experience can fix
ambiguities associated with histories of such non-experiences.

In particular, the ambiguities raised in Section 6.2 appear here as well for experiential histo-
ries. Should one assign probability to the histories of multiple experiences (which could be for
one being or for multiple beings)? Which set of histories should one use, if one just wants to
predict Alice’s next experience? One possible way out is to follow the logic of Section 6.2 and
assign probabilities only to individual experiences, but not histories. This would suffice to con-
nect theory with experience to meet Task 3 of Section 6.1. In this case, assigning probabilities
to histories would be fundamentally redundant. This is not to say that history considerations
should be forbidden. Instead, they can still be of practical utility, for as noted by Hartle [237]:
“In principle the same prediction could be made from the present data themselves [...] However,
it is evidently much easier to start from the event in the past. The reason is that present data
contain much information that is irrelevant for this particular future prediction.”

Relational Quantum Mechanics

Relational quantum mechanics (RQM) [235, 207] considers “facts” (physical variable taking def-
inite value), which take place whenever two systems interact. Here the systems do not have to be
experiential beings, but can be any physical system. Facts are relative to the systems that interact,
and are labelled by the interacting systems.

We saw from Section 6.4.1 that with the minimal prescription, quantum theory allows ob-
jective empirical predictions: Everyone uses a common formula to predict anyone’s experiences.
An experience is labelled by the experience itself (ei, c of (6.4)), and nothing else. In particular,
there is no need to refer to systems and their interactions. From this view, RQM is redundant in
introducing relative labels where no relative label is needed.
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One might argue that there is a gain in the RQM move, because by assigning definite values
to variables whenever systems interact, it treats empirical facts and non-empirical facts on equal
footing, so that it avoids singling out empirical facts as special. However, in RQM this move only
undermined the interpretation itself. For theories of the kind of Section 6.1, RQM holds that
“variables actualize at three-dimensional boundaries, with respect to (arbitrary) spacetime parti-
tions” (Section 43.9 of [207]). Here an arbitrary spacetime partition single out two systems, and
the interaction at the three-dimensional boundary is supposed to trigger variable actualization at
the boundary. Indeed, this does not draw a distinction between empirical facts and non-empirical
facts, but it begs the question of whether there are empirical facts at all. Why should one believe
that experiences correspond to variables taking definite values on 3D surfaces around 4D regions?
Why do experiences not correspond to variables taking definite values, for instance, within 4D
regions themselves? Do experiences correspond to variables taking definite values throughout
the 3D surfaces? Why not on part of the surfaces? How many 3D surfaces should one consider,
for one experience of Alice? ... Without addressing these concerns, RQM’s move of treating em-
pirical and non-empirical facts on equal footing obscures how variable actualization relates to
experience, and obstructs empirical predictions from the interpretation.

Another side effect of the move is that RQM has to face the preferred basis problem [238,
239]: An interaction does not in general single out a basis for physical variables to take definite
values, so with respect to which basis do variables take definite values? Curiously, partially
in response to this problem, Adlam and Rovelli now considers a new version of RQM which
contains special suppositions for conscious observers [240]: “Therefore in this version of RQM
it is now feasible to suppose that the perspective of a conscious observer simply emerges from
the collection of the perspectives of all the particles in their brain - roughly speaking, a variable
V of a system S will have a definite value v relative to me if variable V has the definite value v
relative to most of the particles in my brain (or perhaps just in some particularly relevant section
of my brain - we would have to turn to neuroscience to determine how much of the brain should
be included).” On the preferred basis problem, Adlam and Rovelli remark that: “RQM need
only show that in the limit as one of the systems involved becomes macroscopic, then there is a
unique choice of variable which takes definite values in the interaction, in order that macroscopic
conscious beings like ourselves can have definite experiences.” Decoherence is supposed to pick
out the basis, even if “the decoherence process is not perfectly well-defined - there is no exact
line between ‘decohered’ and ‘non-decohered”’, because “consciousness also does not seem to be
perfectly well-defined: to our best current understanding it appears to be some kind of emergent
high-level feature of reality, so we are certainly entitled to suppose that consciousness can emerge
only when enough decoherence has occurred to single out a well-defined preferred basis.” In this
new version of RQM to address the preferred basis problem, empirical and non-empirical facts
are clearly not on equal footing, so there is no longer any gain in this aspect, in comparison to the
minimal prescription of Section 6.4.1. One wonders if there is any gain at all in the RQM move
to compensate the redundancy of introducing relative labels discussed above.

6.5.3 Vague?

QBism [221, 223] and neo-Copenhagen [194] interpretations do not assign probabilities to non-
empirical histories or facts, so avoids the issue of redundancy. However, they are formulated in
vague terms that hinder a direct application to fundamental theories like those in Section 6.1.
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QBism

QBism [221, 222, 223] holds that quantum measurement outcomes are just personal experiences
for the agents, and quantum probabilities are subjective personal degrees of belief for agents.

QBism has been criticized for being vague and ambiguous (see [241] and references therein).
For example, the central concept of agent is loosely characterized as “entities that can take actions
freely on parts of the world external to themselves, so that the consequences of their actions
matter for them” [217]. This engenders some ambiguities. What counts as “take actions freely”?
Does a cell count as an agent? A robot? Alice’s brain? Alice’s brain in conjunction with Bob’s legs?
On what basis? One possible way out is to identify individual agents with individual experiential
beings. Yet given that joint experience is not experience (Section 6.2.3), this would contradict
some previous QBism understandings, e.g., a collection of scientists can act as a single agent
(p.1872 of [217]). Ambiguities like this associated with basic notions leave one in wonder what
QBism really is saying.

In the context of this paper, another critical issue is whether QBists’ focus on the quantum
state ψ is misguided. In the understanding of Section 6.4.1, although experiences themselves are
subjective, empirical predictions based on (6.4) are objective, in the sense that everyone should
use the same formula to predict anyone’s experiences. This point is made clear by analyzing the
path integral formula (6.4), which refers directly to the fundamental gravity and matter variables.
In contrast, QBism focuses on quantum states ψ, which have no fundamental status in the sense
explained in Section 6.4.4. If one is free to pick one’s favourite ψ to bet on future experiences,
certainly some choices will help one gain money, while some will not. It is not false to say that ψ
and probabilities derived from it are subjective, but this observation is quite unimportant, if there
is formula which always gives the correct empirical predictions to win the bets. Equation (6.4) is
supposed to be such a formula, which also makes objective predictions, in apparent tension with
QBism.

Neo-Copenhagen interpretation

Brukner’s neo-Copenhagen interpretation [194] ascertains the object-subject cut of the tradi-
tional Copenhagen interpretation by taking measurement instruments to “lie outside the domain
of the theory”, and holds that “the quantum state is a representation of knowledge of a (real
or hypothetical) observer relative to her experimental capabilities [...] The available experimen-
tal precision will in every particular arrangement determine to which objects the observer can
meaningfully assign quantum states.”

It is not clear how this interpretation applies to theories like those in Section 6.1. What
constitutes an “observer” in terms of the fundamental matter and gravity variables? What about
an “experiment”? Is there a distinction between experiment and everyday experiences? Does
the interpretation accept (6.4) for empirical prediction? If not, what formula does it give? In
the brief reference to quantum cosmology in [194], it is mentioned that the observer “is always
considered to be external to the universe”, since “the ‘wave function of the universe’ that would
include the observer is a problematic concept, as it negates the necessity of the object–subject
cut”. Does (6.4) with its empirical selection count as treating the observer (or experiential being)
external or internal to the universe? It is difficult to infer a definitive answer from [194].

The key notion of “fact” especially deserves a clarification in the neo-Copenhagen interpre-
tation. In the discussion of Wigner’s friend settings [195], “facts” which are assigned quantum
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probabilities can refer to both “measurement records” and “immediate experiences of observers”,
and in some statements, “facts” is used interchangeably with “measurement records” and “expe-
riences” [194]: “I will show that any attempt to assume that the measurement records (or “facts”
or experiences) that coexist for both Wigner and his friend will run into the problems of the
hidden variable program...” However, there is a big difference between record and experience.
While joint records is still a record, joint experiences is no longer an experience (Section 6.2). If
probabilities are assigned also to measurement records even when no experience refers to them,
one is left in wonder what count as records for theories like those in Section 6.1.

Like QBism, the neo-Copenhagen interpretation focuses on quantum states ψ, which have no
fundamental status in the sense explained in Section 6.4.4. This is another gap to be filled before
one could apply the interpretation to the fundamental theories with specified dynamical laws, if
it can be applied to fundamental theories with specified dynamical laws at all.

6.5.4 Superfluous?

The above dangers of being wrong, redundant, or vague are possibly avoided with additional
inputs. Yet a much more important issue needs to be tackled first. Are these interpretations
worth developing further at all? If the goal is to find a satisfactory physical theory of everything,
what difference do the above interpretations make toward this goal?

Alternative theories such as pilot-wave theories and collapse models make different empirical
predictions from quantum theory. They also allow for a collective account of experiences in the
sense of Section 6.4.2, such that if they succeed, we gain a totally different worldview from
quantum theory. These differences they make make them worth developing.

The situation is far less clearer for the other interpretations discussed above. Consider the
three tasks given in Section 6.1 for a theory of everything. The interpretations do not tell us the
correct dynamical laws for matter and gravity, nor the correct laws for the boundary condition
of the universe. The analysis of Section 6.2 gives formula (6.4) to relate theory with experience,
without subscribing to any of these interpretations. The outstanding problem is to find a theory
of experience which can address the open questions listed in Section 6.2.2. In their current form,
these interpretations seem to make no contribution to this task, either. Without contributing
anything to the physical theory of everything, these interpretations face the real danger of being
superfluous.

6.6 Discussion

Theories of physics are often derived and tested in controlled laboratory settings. This does not
mean that the theories only apply to controlled laboratory events. We have learned that physical
laws of gravity govern not only Galilei’s wood and iron balls, but also birds in free flight. We have
learned that physical laws of electromagnetism govern not only Faraday’s coils of wire, but also
lightnings in thunderstorms.

In this paper, I considered the case that quantum theory applies not only to microscopic
phenomena in controlled laboratory settings, but also to everyday experiences. It is assumed that
experiences take place probabilistically, i.e., an experience-enabling physical condition c makes
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possible a set of experiences {ei}i to take place with certain probabilities. In path integral theories
of everything, the probabilities are given by formula (6.4), reproduced here as

p(ei|c) = N

∫
ei,c

Dq′
∫
ei,c

Dq e
i
ℏ (S[q]−S[q′])ρ(qb, q

′
b).

The path integral is doubled to incorporate possibly mixed boundary conditions ρ. The sums
include all gravity and matter configurations constrained by the condition c and the experience
ei it enables.6

The world picture that emerges from formula (6.4) can be counter-intuitive to some. In
accounting for one experience ei with condition c, we must take it that everywhere else all matter
and gravity path integral configurations coexist in superposition. For instance, in the Wigner’s
friend setting, all other beings must be put in superposition when accounting for one being’s
experience. This world picture is forced upon us, since by the analysis of Section 6.2.3, the other
prescriptions which select path integral configurations differently are not justifiable.

How are different experiences related, if each use of (6.4) only refers to one experience? For
the sequential experiences of one being, suppose that previously the experience ei took place
under condition c. This gives rise to another condition c′ that enables another set of experiences
{e′j}j , whose probabilities are given by (6.4) for p(e′j |c′). The pair (e′i, c

′) in turn gives rise to an-
other condition with another set of experiences, etc. Considerations of other beings’ experiences
are motivated by the content of the experiences of the first being. If in the experience of one
being, it perceives the presence of other experiential beings, then it can guess at the conditions d
and experiences {fi}i of the other beings and draw probabilistic predictions for the other beings’
experiences using (6.4).

Strictly speaking, no consideration of other beings is needed to account for the experiences of
one being. This is implied by (6.4) which holds that all experiences are accounted for by selecting
just for that experience. However, in practice we often apply multiple selections in a third-person
view (e.g., we apply measurement projections to multiple parties for a Bell experiment) and
this often yields valid empirical predictions. How come? The answer is the same as why we
often apply non-relativistic analysis which often yield valid empirical predictions. Often a non-
relativistic analysis already yields results that meet the desired accuracy. A more consuming
relativistic analysis would be an overkill. Likewise, often a third-person view quantum analysis
already yields results that meet the desired accuracy. In this case a more consuming first-person
analysis based on (6.4) could be saved.

On the other hand, Relativity does not always agree with non-relativistic physics, and it is
important to figure out when this happens. Likewise, quantum theory according to (6.4) does
not always agree with naive prescriptions, and it is important to figure out when this happens
as well. Wigner’s friend setting of Section 6.3 is one prominent example. There should be more
examples waiting to be explored. For instance, in cosmology, taking (6.4) as the basic formula
for empirical predictions will provide a basis to examine how inhomogeneities and anisotropies
arise [188], as well as to resolve the Boltzmann brain problem [189]. Specifically, since an
experience is characterized completely by the local selection ei, c of (6.4), the assumption of

6The constraint may take the form of a characteristic function, so that gravity and matter configurations compatible
with c and ei are included, while other configurations are excluded. The constraint may also take the form of a function
which assigns complex weights to the gravity and matter configurations according to c and ei, e.g., in implementing
“unsharp measurements” induced by the experience. As discussed in Section 6.2.2, the precise form of the constraint
hinges on some yet unavailable scientific knowledge about the relationship between physics and experiences.
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distinguishability between ordinary and Boltzmann brain experiences based on gravity configu-
rations outside the brains cannot be retained. In another realm, for measurements in QFT, (6.4)
enforces a first-person description, which can clarify the issue of superluminal signalling faced
by naive measurements prescriptions in a third-person description [190, 191, 192]. Specifically,
we must wait for the other agents to send back signals to the agent whose experience is under
consideration to distinguish superluminal and non-superluminal cases.

In this paper, I considered (6.4) for arbitrary selections c and ei. As noted in Section 6.2.2
there are open questions to address if one wants to be more explicit about what ei and c cor-
respond to actual experiences and conditions. What physical conditions c enable experience?
What determines the set of possible experiences {ei}i given c? What determines the next con-
dition c′ given the previous experience ei and condition c? Are there lawlike features yet to be
uncovered about experience? What is the status of “Free Will” in this context? ... Addressing
these questions will most require interdisciplinary efforts that push further the boundaries of
physics [242, 243, 244, 245, 246, 10]. Intriguingly, a connection appears to have arisen between
experience considered here, and Maturana’s and Varela’s perspectives on cognition [242], stem-
ming from biological studies. Both “experience” and “cognition” stand apart from “observation”
or “measurement”. The act of observation and measurement inherently assumes the presence
of an external entity to be scrutinized, whereas in the realm of experience and cognition, this
precondition is absent. Rather than engaging in the quantification or observation of external
phenomena, they pertain to a process of self-creation (autopoiesis), perpetuating and nurturing
an autonomous living system.
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Chapter 7

Indifference boundary condition for the
universe

Path integral models for quantum cosmology need boundary condition. An old pro-
posal due to Suen and Young posits that all possible initial boundary configurations
should be summed over indifferently. Here we extend the idea in three ways to facili-
tate the design of empirical tests. Firstly, future boundary conditions are incorporated
alongside past conditions, eliminating an inherent past-future asymmetry. Secondly, a
mixed-state sum is considered besides the original pure-state sum, leading to a range
of candidate boundary conditions for the universe. Lastly, a minimal prescription is
employed to exemplify how empirical predictions can be extracted from these bound-
ary conditions. In an application to the de Sitter minisuperspace model, it is shown
how the most probable outcome for an observation of the squared scale factor aligns
with the saddle points that solve the classical equation of motion. In the picture
emerging from the indifference boundary conditions, Big Bang and Big Bounce are
not exclusive alternatives. Instead, the path integral includes geometries realizing
both possibilities.

7.1 Introduction

If our physical universe is characterized by a path integral, what should be its boundary condi-
tion?

This topic has attracted significant research efforts in quantum cosmology [45, 247], including
the prominent ideas of the no-boundary proposal and the tunnelling proposal. The no-boundary
proposal posits that the universe originates from a non-singular Euclidean geometry at its in-
ception, but faces challenges due to the divergence of the Euclidean gravitational path integral
caused by conformal instability, and ambiguities in contour selection when adopting alternative
complex contours [109]. The tunnelling proposal posits that the universe is created through a
process of quantum tunnelling from a “nothing”, but the corresponding path integral is clearly
specified only in minisuperspace models with a limited number of degrees of freedom [107, 149],
leaving uncertainty on how to apply the proposal to fully general path integrals. Further issues
discussed in Section 7.2 surrounding these proposals leads to the prevailing view that the correct
boundary condition remains a widely open problem [45, 247].
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An alternative proposal due to Suen and Young [114] posits to base quantum cosmology on a
path integral over non-singular Lorentzian geometries. The initial boundary condition is such that
all possible initial boundary configurations are summed over indifferently. Consequently, this pro-
posal shares with the no-boundary proposal (see Section 7.2.1) the feature that the path integral
only includes non-singular spacetimes, thereby achieving singularity avoidance by definition [8].
Additionally, it aligns with the tunneling proposal by utilizing a Lorentzian path integral, thereby
circumventing ambiguities associated with the integration contour. In their seminal work, Suen
and Young computed the wave function for the universe in the de Sitter minisuperspace model.
Interestingly, they found that the wave function approaches zero as the scale factor of the universe
diminishes.

Despite the promising characteristics and intriguing results of the original proposal, there
has been a surprising lack of subsequent work aimed at testing this proposal for the universe’s
boundary condition. In this paper, extend the original proposal in three aspects to pave way for
deriving empirical predictions which can ultimately be compared against empirical data.

Firstly, we incorporate considerations of the future boundary condition, in addition to the past
boundary condition considered originally. This eliminates an apparent past-future asymmetry in
the formalism, which seems to lack a fundamental justification.

Secondly, we note that the idea of summing over all possible boundary configurations in-
differently can be realized by a mixed-state sum, in addition to the pure-state sum considered
originally. By combining both the mixed and pure versions with the past and future boundaries,
we derive several distinct boundary conditions, which are collectively referred to as “indifference
boundary conditions”. Each of these offers a potential candidate for the true boundary condi-
tions of our universe, which enriches the original proposal for a pure-state past condition plus an
unspecified future condition.

Among these indifference boundary conditions, the “mixed-mixed condition” realizes a uni-
form summation over all possible past-future boundary conditions. This can be interpreted as
a reasonable prior when approaching the universe’s boundary condition as a Bayesian inference
problem. Therefore, even if the actual boundary condition of the universe is ultimately different,
the indifference boundary condition still provides a credible starting point to discern the true
boundary condition via iterative Bayesian updates.

Thirdly, to illustrate a systematic way to extract empirical predictions from the indifference
boundary conditions, we utilize the minimal prescription introduce recently [9]. Traditional
works of quantum cosmology often stops at computation of the wave function from the past
boundary condition, without specifying an explicit prescription for empirical predictions [45,
247]. Employing the minimal prescription exemplifies one way to cover the gap.

In an application to the de Sitter minisuperspace model, it is found that, as expected, the most
likely outcome for an observation of the squared scale factor can be inferred from the saddle
points that solve the classical equation of motion. Albeit based in a fairly simplified setting,
this demonstrates concretely how empirical predictions could be extracted from the supposed
boundary condition, and paves the way for further studies in more realistic settings.

In the conventional narrative for cosmology, the Big Bang and the Big Bounce are presented as
mutually exclusive alternatives. The indifference boundary conditions suggest that our universe
may exist in a superposition of these and other possibilities, all of which are realized by the path
integral sum. We take this new vintage point as the most significant conceptual lesson from the
study.
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The rest of the paper is organized as follows. In Section 7.2, we give a conceptual review
of several previous proposals for the boundary condition for the universe. In Section 7.3, we
present the indifference boundary conditions in more detail, highlighting how they avoid several
shortcomings of alternative proposals. In Section 7.4, we review the minimal prescription for
empirical predictions. In Section 7.5, we apply the indifference boundary conditions to the de
Sitter minisuperspace model, and show how the most likely outcome for an observation of the
squared scale factor can be inferred from the saddle points that solve the classical equation of
motion. In Section 7.6, we discuss some outlooks for further research.

7.2 Background

7.2.1 No-boundary proposal

“Once one allows that singular histories could take part in the path integral, they could
occur anywhere and predictability would disappear completely. [...] To implement the
idea that the laws of physics hold everywhere, one should take the path integral only
over non-singular metrics.”

“The path integral for quantum gravity should be taken over all compact Euclidean
metrics.”

–Stephen Hawking [178]

Hartle and Hawking’s no-boundary proposal is based on Euclidean path integrals [44, 177].
Part of the motivation is singularity avoidance [178, 177]. In a Lorentzian metric,

√
h = 0 at

some spatial section with spatial metric determinant h implies a singularity. However, the same
implication does not hold in the Euclidean case. Consider a 4-sphere of radius R embedded in flat
5-dimensional space, and a 4D slice intersecting the 4-sphere in a 3-sphere of non-zero radius.
As the slice shifts towards the boundary, the 3-sphere shrinks to zero volume. Nevertheless, the
4-geometry itself is totally regular there.

This led to the no-boundary proposal that the path integral for quantum gravity should be
taken over all compact Euclidean metrics, which are free of singularities. Since the compact
Euclidean metrics are also free of boundaries, the boundary condition for the universe is that it
has no boundary.

The no-boundary proposal suffers from the conformal instability problem: Since the Euclidean
gravitational action is unbounded from below, the path integral does not converge [20]. In
practice, one has to consider complex contour inequivalent to the Euclidean one to avoid this
divergence issue. As a downside, the above explanation of singularity avoidance in the Euclidean
geometric picture becomes inapplicable for a general complex contour. In addition, among the
many possible complex contours, the no-boundary proposal fails to single out a unique choice as
the boundary condition for the universe [109].

7.2.2 Tunnelling proposal

“In the sum over histories [...] one has to allow four-geometries with integrable sin-
gularities (and finite action), since non-singular compact Lorentzian manifolds do not
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exist. [...] Alternatively, one can assume that space-time ceases to be a Lorentzian
manifold on scales smaller than G1/2.”

“ψ(h, ϕ) should be obtained by integrating over Lorentzian histories interpolating be-
tween a vanishing 3-geometry ∅ and (h, ϕ) and lying to the past of (h, ϕ) [...]”

“In addition to these path-integral no-boundary proposals, one candidate law of bound-
ary conditions has been formulated directly as a boundary condition in superspace.
This is the so-called tunneling boundary condition which requires that ψ should in-
clude only outgoing waves at boundaries of superspace. The main weakness of this
proposal is that ‘outgoing waves’ and the ‘boundary of superspace’ have not been rig-
orously defined. The Lorentzian path-integral proposal [...] was originally suggested
as a path integral version of the tunneling boundary condition, and indeed the two
proposals give the same wave function in the simplest minisuperspace model. In the
general case, the equivalence of the two proposals is far from being obvious.”

–Alexander Vilenkin [142, 248]

Vilenkin’s tunnelling proposal originates from the intuitive idea that the universe is sponta-
neously created at zero or small size by quantum tunnelling from nothing [43]. In the path
integral realization of the proposal, the initial size of the universe is set to zero [142]. As spec-
ified by the quotation above, the metric changes signature to become singular or to become
non-Lorentzian at the initial boundary. In this sense the path integral is only pseudo-Lorentzian,
even though it is defined in real time instead of imaginary time.

In the tunneling boundary condition realization of the proposal [148], the boundary of su-
perspace is taken to consist of singular configurations, and is partitioned into two parts. One part
includes singular 3-geometries which arise from slicing regular 4-geometries, and is called the
“non-singular boundary of superspace”. The other part consists of the rest 3-geometries, and is
called the “singular boundary of superspace”. The tunneling boundary condition requires that at
the singular boundary of superspace the wave function includes only outgoing modes.

The tunnelling proposal suffers from several ambiguities. First, the path integral realization of
the proposal is not in general equivalent to tunneling boundary condition realization of the pro-
posal [107], which raises the question of which one to choose when they differ. Second, although
in simple minisuperspace models with just one scale factor, the path integral realization unam-
biguously sets the initial scale factor to zero, it is not clear what happens in more general models
with multiple scale factors. In models with two scale factors, proposals have been made to set
only one scale factor to zero [107, 149]. The situation in more general cases is not clear. Third,
as acknowledged in the above quotation, in the tunneling boundary condition realization it is un-
clear how to define ‘outgoing waves’ and ‘boundary of superspace’ precisely beyond the simplest
minisuperspace models. For these reasons, it seems appropriate to view the tunnelling proposal
as a set of ideas in development instead of a definitive proposal for the boundary condition of the
universe.

7.2.3 Indifference proposal

“[The set of path integral configurations] includes all non-singular Lorentzian four-
geometries which induce hij on one of their boundaries, together with all fields ϕ
regular on them.”
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“The boundary condition is taken to be that ‘all possible boundaries are included.’ ”

–Wai-Mo Suen and Kenneth Young [114]

Suen and Young’s proposal [114] is built on two key ideas. The first idea is to base quantum
cosmology on strictly Lorentzian path integrals where the metric is non-singular and Lorentzian
everywhere, including on the boundaries. The second idea is to make no selection on the initial
condition, so as to sum over all regular Lorentzian boundary configurations indifferently. To give
it a concise name, we will refer to Suen and Young’s proposal as the indifference proposal in the
following.

Because the indifference proposal is defined through Lorentzian path integrals, it does not
suffer the ambiguities of the no-boundary proposal based on complex contours. Because the in-
difference proposal sums over all regular Lorentzian boundaries, it does not suffer the ambiguities
of the tunnelling proposal about selecting pseudo-Lorentzian boundary conditions.

On the other hand, the indifference proposal has been much less investigated in comparison
to the no-boundary and tunnelling proposals. Beyond the homogeneous and isotropic de Sitter
minisuperspace setting studied in the original paper [114], much remains to be investigated
about the proposal.

7.2.4 New no-boundary proposal

“Any normalizable wave function (3.1) that satisfies the [Wheeler-DeWitt] constraints
is a possible candidate for the quantum state of our Universe from which the prob-
abilities for various types of Lorentzian 4-geometries describing our Universe can be
derived.”

“A semiclassical no-boundary wave function is defined by a weighted collection of
saddle points (extrema) of the action I[g, ϕ] on a 4-disk that match (hij , χ) on its only
boundary and are otherwise regular inside.”

–Jonathan Halliwell, James Hartle, and Thomas Hertog [249]

Halliwell, Hartle, and Hertog’s recent reworking of the no-boundary proposal [249] marks
a fundamental departure from the old no-boundary proposal by renouncing any connection to
functional integrals. Instead, the wave function of the universe is defined directly as a solution
to the Wheeler-DeWitt equation of canonical quantum gravity. At the semiclassical level, the no-
boundary wave function is approximated by a weighted sum over saddle points on a 4-disk that
match the wave function argument on its only boundary and are otherwise regular inside.

The new no-boundary proposal has the potential of overcoming some shortcomings of the old
no-boundary proposal, if one subscribes to canonical quantum gravity. On the other hand, if the
goal is to identify suitable boundary condition for the universe in the path integral formalism,
then the new no-boundary proposal offers no help.

7.2.5 Other path integral proposals

“Originally, it [the no-boundary proposal] was formulated as a sum over compact
and regular geometries. Here the sum is redefined to be over geometries with an
approximately zero initial size and approximately Euclidean initial momentum.”
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–Alice Di Tucci and Jean-Luc Lehners [125]

“[...] off shell these new definitions all involve sums over universes of various initial
sizes, thereby offering the prospect that the physical interpretation of the no-boundary
wave function may require further exploration and may end up being even richer than
currently assumed.”

–Alice Di Tucci, Jean-Luc Lehners, and Laura Sberna [126]

In minisuperspace model path integrals, the original no-boundary proposal is realized by
fixing the initial (squared) scale factor to zero. Motivated by considerations of stability issues, Di
Tucci, Lehners and Sberna [125, 126] propose to fix the initial momentum instead. According to
[125, 126], the no-boundary saddle point can be preserved and the stability issues avoided if the
derivative of the squared scale factor is fixed to be Euclidean.

Like the pseudo-Lorentzian path integrals discussed in Section 7.2.2, this alternative path
integral implementation of the no-boundary proposal face ambiguities. Firstly, it is yet unclear
what the boundary condition should be beyond simple minisuperspace models [250]. Second,
already for simple minisuperspace models one needs to consider ad hoc integration contours
which are neither Euclidean nor Lorentzian to avoid singularities [126]. It remains to be seen
how one should select among the abundance of contours in the general case [250]. Finally, a
technical concern can be raised about the analysis of the new path integral, which sums the
squared scaled factor over the whole real line. It seems reasonable to only allow positive values
(or non-negative values if one allows the scale factor to be zero) for the squared scaled factor
[4], and it remains to be checked if any conclusion is affected if this change is made.

7.3 Indifference boundary conditions

7.3.1 Motivations

As summarized in Section 7.2.3, the indifference proposal is characterized by two basic ideas.
The first is to base quantum cosmology on strictly Lorentzian path integrals where the metric is
non-singular and Lorentzian in the bulk and on the boundaries. The second is to sum over all
regular Lorentzian boundary configurations indifferently.

As a candidate proposal for the boundary condition of the universe, the indifference proposal
is appealing for several reasons. First, there is no ambiguity in the integration contour which is
fixed to be Lorentzian. This is in contrast to the original no-boundary proposal, whose complex
contour is not uniquely fixed.

Second, although the original article [114] focused on minisuperspace models, the two ideas
summarized above can be applied directly in fully general gravitational path integrals, such as the
Lorentzian simplicial quantum gravity [2], which accommodate inhomogeneity and anisotropy
beyond minisuperspace models [72], and readily implements the idea of summing over non-
singular spacetime geometries [8]. This is in contrast to the tunnelling proposal, whose formula-
tion beyond minisuperspace is unclear.

Third, summing over all allowed boundary configurations avoids the need to pick a particular
configuration. The no-boundary and tunnelling path integrals invokes a vanishing boundary size
for the path integral. However, since with a vanishing size the metric changes signature, this
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Figure 7.1: A set of outcomes represented by projectors {Pj} inside a universe with past boundary
condition ρ, future boundary condition σ, and unitary evolution U, V .

option is unavailable in a strictly Lorentzian path integral. Yet any other choice for the boundary
size, such as fixing the boundary size of the universe to be 42, appears ad hoc. Summing over all
boundary configurations has the merit of avoiding such a choice.

In the remainder of this paper, we focus on the indifference proposal. We will engage in some
groundwork, aimed in particular at providing a prescription for empirical predictions, which can
be ultimately applied to test the proposal against data.

7.3.2 The need for future boundary condition

Quantum theory allows the imposition of both past and future boundary conditions [251, 252,
253]. For example, consider the situation illustrated in Figure 7.1. In the interior of the universe
a set of alternative outcomes occur with quantum probabilities

pj =N Tr
[
σV PjUρ U

†PjV
†
]
, (7.1)

where ρ, σ are the density operators for the past and future boundary conditions, U, V are the
unitary evolution operators, {Pj} are the projection operators for the outcomes, and N is a
normalization constant.

However, textbook applications of quantum mechanics often ignore future boundary condi-
tions and use

pj =N Tr
[
PjUρ U

†Pj

]
(7.2)

for the probabilities. If applied to quantum cosmology, (7.2) would assume from the outset that
there is a past boundary condition, but not a future boundary condition for the universe. This
presumes a special form of time asymmetry, which may not hold in Nature. One possibility to
reconcile (7.1) and (7.2) is to take the future condition

σ ∝ I (7.3)
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to be proportional to the identity [253]. Then (7.1) reduces to (7.2) using cyclicity of the trace.
Since (7.1) includes (7.2) as a special case with σ ∝ I, we adopt the more general formula of
(7.1) with both past and future boundary conditions in the following study. In this context, to
discover the boundary condition for the universe means to discover both ρ and σ.

7.3.3 Versions of indifference boundary condition

In a framework that allows for both past and future conditions, as well as both pure and mixed
boundary conditions, there are multiple ways to implement the indifference sum over boundary
configurations.

If we take the past or future boundary condition to be pure, then the idea of including all
possible boundaries indifferently can be realized by |ϕ⟩ =

∑
k |k⟩, which sums over all vectors of

an orthonormal basis indifferently. The corresponding (unnormalized) density operator is

ϕ = |ϕ⟩⟨ϕ| =
∑
k,l

|k⟩⟨l| . (7.4)

If we take the past or future boundary condition to be mixed, then the idea of including all
possible boundaries indifferently can be realized by the (unnormalized) density operator

ω =
∑
k

|k⟩⟨k| , (7.5)

which sums over all states of an orthonormal basis incoherently and indifferently. In quantum
cosmology, this boundary condition has been discussed by Gell-Mann and Hartle as the “condition
of indifference” [253].

In their original study for the de Sitter minisuperspace model [114], Suen and Young consid-
ered path integrals of the form

ψ(a0) =

∫
dai

∫
DN

∫ a0

ai

Da eiS[a,N ] (7.6)

for the wave function evaluated at scale factor a0. Here the functional integral
∫ a0
ai
Da sums over

scale factor histories beginning at ai and ending at a0. The path integral for the lapse
∫
DN sums

over different proper times for the histories. The integral
∫
dai sums all non-singular beginning

scale factors ai over (0,∞). This last step implements the pure state sum (7.4) for the past
boundary.

When both future boundary and mixed conditions are incorporated, the path integral should
be updated into a “double path integral” with the partition function (see e.g., equation (4.8) of
[187])

Z[ρ, σ] =N
∫
Dx′

∫
Dx σ(xf , x

′
f )e

i(S[x]−S[x′])ρ(xp, x
′
p). (7.7)

This path integral for general physical variables x may be viewed as the path integral version of
(7.1) without the projection. As illustrated in Figure 7.2, histories between the past and future
boundaries are integrated twice, once in

∫
Dx weighted by eiS[x], and once

∫
Dx′ weighted by

e−iS[x′]. In
∫
Dx and

∫
Dx′, all past and future configurations are summed over with complex

weights assigned by the past and future boundary conditions ρ and σ.
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Figure 7.2: In a double path integral, the path q with past boundary xp and future boundary xf
is integrated on the front sheet, while the path q′ with past boundary x′p and future boundary x′f
is integrated on the back sheet. The two sheets interact through the past and future boundary
conditions ρ(xp, x′p), σ(xf , x

′
f ).

As functional versions of (7.4) and (7.5), we have

ϕ(xb, x
′
b) = 1, ∀xb, x′b, (7.8)

ω(xb, x
′
b) = δ(xb, x

′
b), (7.9)

where xb = x|B and x′b = x′|B are values of x and x′ at the past or future boundary B. Depending
on the choice of pure or mixed sum, we have the following versions of the indifference proposal
for the boundary condition of the universe:

Pure-pure condition: ρ = ϕ, σ = ϕ, (7.10)

Mixed-mixed condition: ρ = ω, σ = ω, (7.11)

Pure-mixed condition: ρ = ϕ, σ = ω, (7.12)

Mixed-pure condition: ρ = ω, σ = ϕ. (7.13)

Although we focus on the above four cases below, it is in principle possible to choose some
other condition for one of ρ and σ to implement the indifferent proposal only on the past of
future boundary. Moreover, if the boundary of the universe has timelike components [206], it
is possible to introduce pure or mixed sum over timelike configurations on these components.
In general, the boundary of the universe may have one or multiple components, with or without
designated causal signatures, and there would be indifference boundary conditions that sum over
pure or mixed configurations on these components, with or without designated causal signatures
accordingly.

7.3.4 Inferential perspective

The above indifference boundary conditions can be viewed as candidates for the true boundary
condition for the universe. However, there is an alternative inferential perspective, which moti-
vates the consideration of a particular indifference boundary condition, even if the true boundary
condition for the universe is something else.

The question of the boundary condition for the universe can be approached from an infer-
ential perspective, much akin to examining the properties of a coin. In the absence of any prior
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knowledge, one can postulate a prior probability distribution, which in this case would be a uni-
form distribution analogous to considering a fair coin where the chances of landing on either side
are equal. In case the coin is not actually fair, this initial distribution is subject to updates as new
information is accumulated in the manner of Bayesian inference.

In a similar vein, the mixed-mixed condition (7.11) may be viewed as a uniform distribution
over all possible boundary conditions for the universe. This distribution serves as an appropriate
prior to commence the inference of the unknown boundary condition of the universe. Predictions
can be drawn from this prior to compared with new information and data. If other boundary
conditions turns out to fit better, the prior can be updated in the manner of Bayesian inference. In
this perspective, the mixed-mixed indifference boundary condition serves as a reasonable starting
point for systematic inference of the universe’s boundary condition.

7.4 Empirical predictions

7.4.1 The need for interior condition

“In practice, one is normally interested in the probability, not of the entire 4-metric,
but of a more restricted set of observables. Such a probability can be derived from the
basic probability (2.1) by integrating over the unobserved quantities. In cosmology,
one is concerned with observables, not at infinity, but in some finite region in the
interior of the 4-geometry.”

–Stephen Hawking [177]

All of (7.10) to (7.13) constitute candidates for the boundary condition of the universe. In
addition, the mixed-mixed condition (7.11) can be viewed as a prior for inferring the boundary
condition of the universe. To test these conditions against data, we must give a prescription to
extract empirical predictions from them.

In quantum cosmology, the whole universe is treated as a quantum system, and observations
are made in the interior of this quantum system. This is in contrast to particle physics, where ob-
servations associated with the S-matrix are located on the outer-boundary of the quantum system
under study. Therefore in quantum cosmological path integrals such as (7.7), interior conditions
need to be supplied in addition to boundary conditions to derive probabilistic predictions.

By interior condition, we mean to introduce an additional complex-valued weight function
w into the path integral to obtain

Z[ρ, σ, w] =N
∫
Dx′

∫
Dx σ(xf , x

′
f )e

i(S[x]−S[x′])w[q, q′]ρ(xp, x
′
p). (7.14)

The form of w depends on the specific event under consideration. For instance, to imitate (7.1) for
a sharp measurement, we should exclude paths incompatible with a measurement outcome from
the path integral when deriving probability for that outcome. In this case w is a characteristic
function that assigns 0 to paths to be excluded, and 1 to paths to be included. More generally,
unsharp measurements will invoke w with a continuous range. For situations involving multiple
events/measurements, it is not a priori clear how w should be chosen. Below we will review two
general schemes to systematically incorporate interior conditions.
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7.4.2 Decoherent histories

“The most general objective of quantum theory is the prediction of the probabilities of
individual members of sets of alternative coarse-grained time histories of the closed
system.”

–Murray Gell-Mann and James Hartle [234]

One example for a framework that incorporates interior conditions is the decoherent histories
framework. In this formalism, probabilities are assigned to alternative histories obeying the
so-called decoherence condition, which ensures the usual probability sum rules under coarse-
graining [254, 253, 187] (see also [252, 255]).

To illustrate the idea, a sequence of n quantum measurements, where a particular history of
outcomes α = α1, · · · , αn occurs with probability

p(α) =N Tr[σPαn(tn) · · ·Pα1(t1)ρPα1(t1) · · ·Pαn(tn)]. (7.15)

This is just a multiple measurement generalization of (7.1), with P as the projection operators for
the outcomes. For simplicity of notation we adopted the Heisenberg picture, where an operator
O(t) at time t is related to the Schrödinger picture operator O by O(t) = U †(t, t0)OU(t, t0) for the
unitary evolution U(t, t0) from reference time t0 to t. To simplify the notation further one defines
the operators

Cα = Pαn(tn) · · ·Pα1(t1). (7.16)

Then we have p(α) = D(α, α) in terms of the decoherence functional

D(α, β) =N Tr
[
σCαρC

†
β

]
. (7.17)

For path integrals, the decoherence functional can be defined as [187]

D(α, α′) =N
∫
α′
Dx′

∫
α
Dx σ(xf , x

′
f )e

i(S[x]−S[x′])ρ(xp, x
′
p). (7.18)

Here the set of paths are classified into subsets labelled by α. The first integral sums over paths
in α′, and the second integral sums over paths compatible with α.

In the decoherent histories framework, one focuses on sets of histories {α} that obey the
additional decoherence condition

D(α, β) =0, α ̸= β, (7.19)

which ensures the additivity property for probabilities under coarse-graining of histories. The
additivity property for a set of probabilities {p(α)} says that p(α) + p(α′) = p(α ∨ α′) for α ̸= α′.
One can check that (7.19) is sufficient to imply that the above property holds with p(α ∨ α′) =

N Tr
[
σCα∨α′ρC†

α∨α′)
]

for Cα∨α′ = Cα + Cα′ .

Gell-Mann and Hartle’s decoherent histories framework originates from considerations of
quantum cosmology [254], and there has been attempts to apply the formalism to extract proba-
bilistic predictions for quantum cosmology (e.g. [256, 257, 258, 259]). However, the formalism
suffers some long-standing issues [205]. In particular, a given event can belong to many differ-
ent histories, and a given history can belong to many different decoherent sets of histories, but
the formalism does not offer a rule to select the set of histories to arrive at definite probabilistic
predictions for the event. This motivates us to consider an alternative formalism next.
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7.4.3 Minimal prescription

The minimal prescription [9] provides an alternative to incorporate interior conditions in path
integrals to arrive at empirical predictions. Unlike the decoherent histories formalism, whose
histories do not have to refer to experiences, the minimal prescription focuses on the experiences
of experiential beings, i.e., beings with experience, such as human beings.

In a world where experiences unfold deterministically, making empirical predictions amounts
to determining which experience will occur under a given condition. More generally, if more
than one experience is possible to occur under a given condition, we need to consider conditional
probabilities

p(ei|c), (7.20)

where c stands for the condition, and {ei}i stands for the set of possible experiences. When a
unique experience is possible, the set is a singleton as a special case.

In a comprehensive enough physical theory, p(ei|c) should be derived as empirical predictions
of the theory. The minimal prescription for path integrals assumes

p(ei|c) =N
∫
Dx′

∫
Dx σ(xf , x

′
f )e

i(S[x]−S[x′])wei,c[q, q
′]ρ(xp, x

′
p) (7.21)

for the form of p(ei|c). This is just (7.14), with the weight function determined and labelled by
the condition c as well as experiences ei.

The minimal prescription is “minimal”, because the path integral for p(ei|c) is weighted only
by wei,c and nothing else. An experiential being such as a human being can have many expe-
riences before and after ei. These experiences have other weight functions. According to the
minimal prescription, none of them show up in the path integral for p(ei|c). If a previous experi-
ence influences the probability for ei, it can only be through c. For example, the condition c could
refer to the brain physical configuration of a human being, specifying the memory of previous
experiences. Such memories can influence ei, in the sense that a different memory with c′ could
change the probability, i.e.,

p(ei|c) ̸= p(ei|c′). (7.22)

Conversely, if a previous experience is completely forgotten and leaves no trace in c, then it cannot
influence the future experiences, i.e.,

p(ei|c, f) = p(ei|c, f ′) (7.23)

for previous experiences f ̸= f ′. This minimal aspect contrasts sharply with the decoherent
histories whose weight functions depend on previous and later events, and thus avoids the issue
of the lack of selection criterion for embedding events in histories.

An outstanding task for the minimal prescription program is to determine the form of wei,c for
all experiences and condition. This task is hard because it touches on the question of translating
between physical configurations and conscious experience. Our current scientific understanding
is unable to specify the precise set of experiences {ei}i possible under a given physical condition
c. For the present study of quantum cosmology, we shall assume a very high level understanding
of w. For a sharp measurement, wei,c → {0, 1} is a characteristic function, assigning 1 to all
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matter and spacetime configurations where the physical configurations for the condition c and
experience ei of seeing the sharp measurement outcome are fulfilled somewhere. Otherwise
wei,c = 0. For an unsharp measurement, w ∈ C take more general values, but peak around
the experience of seeing the unsharp measurement outcome. Although the details are missing
for what ei and c concretely are, this structural-level understanding suffices for the study below,
which establishes a connection between saddle point(s) and leading order empirical prediction
in a toy models universe.

7.5 Example: de Sitter minisuperspace

7.5.1 De Sitter minisuperspace

In this section we apply the indifference boundary condition in the de Sitter minisuperspace
model to derive empirical predictions using the minimal prescription. We will see that the most
likely outcome for an observation of the squared scale factor can be inferred from the saddle
points that solve the classical equation of motion. We will go through the steps meticulously even
though this makes the derivation quite lengthy for some easily expected results, since it is worth
illustrating how the results emerges systematically from the prescription rather than from loose
intuitions.

The de Sitter minisuperspace model is described by the spatially closed minisuperspace metric
[139, 105, 60]

ds2 = − N2

q(t)
dt2 + q(t)

(
1

1− r2
dr2 + r2

(
dθ2 + sin2 θdϕ2

))
(7.24)

with squared scale factor q(t), lapse N , and positive spatial curvature k.

The action for the cosmological constant dominated universe without matter is given by
the Einstein-Hilbert action plus the Gibbons-Hawking-York boundary term [140, 141]: S =
1
2

∫
d4x

√
−g(R− 2Λ) +

∫
B d3y

√
hK, where Λ > 0. Plugging (7.24) in this action yields

S[q,N ] = 2π2
∫ 1

0
dtN

(
− 3

4N2

(
dq

dt

)2

− Λq + 3k

)
. (7.25)

Here we have taken the dN/dt = 0 gauge for N [139, 105]. In term of the physical proper time
τ = Nt,

S[q,N ] = 2π2
∫ N

0
dτ

(
−3

4
q̇2 − Λq + 3k

)
, (7.26)

where dot denotes derivative with respect to τ . This form of the action allows us to see straight-
forwardly the physical meaning of N as the proper time separation between the past and future
boundaries.

At the classical level, the model is solved by the quadratic function

q(τ) =
1

3
Λτ2 + c2τ + c1, (7.27)

where c1, c2 are constants to be fixed by boundary conditions. For a positive cosmological constant
Λ, the universe expands with positive acceleration. If we start at a large q and trace backwards
in time, the universe shrinks to a small size and then bounces. At the quantum level, we adopt
the minimal prescription to derive empirical predictions next.
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7.5.2 Weight function

Imagine an experience of seeing the squared scale factor to be peaked around q2, conditioning
on seeing it peaked around q1 a proper time ∆τ earlier. We want to derive probabilities for such
experiences of different q2 in the minisuperspace model.

In the language of Section 7.4.3, we are considering

c = q1,∆τ, {ei} = {q2}, (7.28)

where q1,∆τ are fixed, while different experiences are parametrized by different q2 values. To
describe q peaking around a certain value q0 at time τ0, we introduce the normalized Gaussian
distribution

χ[q; τ0, q0, u] =

√
π

u
e
− (2π2)

2

(
q(τ0)−q0

u

)2

. (7.29)

This suppresses a path q(τ) if at τ0 the value of q is away from q0, and enhances it if q is close to
q0. The weight functions are given by

wc,q2 [q, q
′] =vc,q2 [q]v

∗
c,q2 [q

′], (7.30)

vc,q2 [q] =

∫ N−∆τ

0
χ[q; τ1, q1, u1] χ[q; τ1 +∆τ, q2, u2] dτ1, (7.31)

Here w factorizes into the components v for paths q, q′ on the first and second sheets of the double
path integral. The two χ check the requirements at τ1 and ∆τ later, and suppresses or enhances
q accordingly. Since no observation is made of time, the requirements can be fulfilled at any
τ1, τ1 + ∆τ ∈ (0, N). Therefore τ1 is integrated over, and the upper limit N − ∆τ ensures that
τ1 + ∆τ < N . For simplicity, in the following we suppress the subscript c, q2 when there is no
ambiguity.

The probabilities are derived by plugging (7.30) in (7.21). For further analysis, it is conve-
nient to separate out the boundary value integrals of (7.21) to re-express it as

p(q2|q1,∆τ) =N
∫
Dx′fDx

′
pDxfDxp τ(xf , x

′
f )ρ(xp, x

′
p) Z[xp, xf , x

′
p, x

′
f , w], (7.32)

where we defined

Z[xp, xf , x
′
p, x

′
f , w] =

∫ x′
f

x′
p

Dx′
∫ xf

xp

Dx ei(S[x]−S[x′])w[q, q′]. (7.33)

Since w of (7.30) factorizes, Z[xp, xf , x′p, x
′
f , w] in turn factorizes as

Z[xp, xf , x
′
p, x

′
f , w] =Z[xp, xf , v]Z

∗[x′p, x
′
f , v], (7.34)

Z[xp, xf , v] =

∫ xf

xp

Dx eiS[x]v[q]. (7.35)

Plugging in (7.31) for v, we can express Z[xp, xf , v] in terms of the new “action” R as

Z[qp, qf , v] =
π

u1u2

∫
DN

∫ N−∆τ

0
dτ1

∫ qf

qp

Dq eiR[q,N,τ1], (7.36)

R[q,N, τ1] =2π2

(∫ N

0
dτ

(
−3

4
q̇2 − Λq + 3k

)
+
i

2

(
q(τ1)− q1

u1

)2

+
i

2

(
q(τ1 +∆τ)− q2

u2

)2
)
.

(7.37)
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Equation (7.36) assumes a functional integral form for variablesN, τ1, q. We can perform a saddle
point analysis to identify the leading contribution to the integral.

7.5.3 Saddle points

Variation of Z[xp, xf , v] with respect to q yields(
3

2
q̈ − Λ

)
δq +

3

2
q̇δq|τ=N

τ=0 + i

(
q − q1
u21

δq|τ1 +
q − q2
u22

δq|τ1+∆τ

)
= 0 (7.38)

For the Dirichlet boundary condition q(0) = qp, q(N) = qf of (7.36), this is solved by

q(τ) =
Λ

3
τ2 +

(
−Λ

3
N2 + qf − qp

)
τ

N
+ qp, (7.39)

q(τ1) = q1, q(τ1 +∆τ) = q2. (7.40)

Variation with respect to N yields [139, 105, 60]

3

4
q̇2 + 3k − Λq = 0. (7.41)

Given (7.39), this is solved by

N± =
3

Λ

(
(
Λ

3
qp − k)1/2 ± (

Λ

3
qf − k)1/2

)
. (7.42)

Negative (7.42) also solves the equation. However, this leads to the same metric in (7.24), so we
only consider (7.42). Plugging N± in (7.39) yields

q±(τ) =
Λτ2

3
∓ 2

3

√
3Λqp − 9k τ + qp. (7.43)

One can check that when τ = N±, q± = qf .

When qp, qf > 3k/Λ, N± are real. The quadratic functions (7.43) are portions of parabo-
las with longer and shorter proper times (Figure 7.3). This reflects the fact that the U -shaped
parabola can meet the same boundary condition twice before and after the turning point. There-
fore in (7.43), q− can actually be viewed as a monotonic portion of q+: When qp > qf , q− covers
the decreasing portion toward the beginning of q+; When qp < qf , q− covers the increasing por-
tion towards the ending of q+; When qp = qf , q− has zero extension in proper time since N− = 0.
Note also from (7.43) that for the longer path, the minimum of q is always at 3k/Λ.

When either qp < 3k/Λ or qf < 3k/Λ, N± becomes imaginary, leading to complex saddle
points. These classically forbidden paths are meaningful in characterizing quantum tunnelling
events where q reaches classically forbidden small values. However, they cannot satisfy (7.40)
for q1, q2 ∈ R. Therefore we focus on the case of qp, qf > 3k/Λ below.
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Figure 7.3: q±(τ) for k = 1,Λ = 3, qp = 9, qf = 10

7.5.4 Most likely experience

The weight functions of Section 7.5.2 yield probabilities

p(q2|q1,∆τ) (7.44)

through (7.32) for the experience of observing the squared scale factor q2 when at proper time
∆τ earlier the squared scale factor was observed to be q1. We apply the saddle point analysis of
Section 7.5.3 to identify the value of q2 with the largest probability, i.e.,

q∗2 = argmax
q2

p(q2|q1,∆τ). (7.45)

For given q1,∆τ , this is the value(s) of q2 obeying (7.40), because it lies on saddle points which
dominate the path integral [60, 4].

As noted above, q− can be viewed as a monotonic portion of q+. Therefore for given q1, q2,∆τ
values, whether some saddle point p− obeys (7.40) can be inferred by looking at the correspond-
ing portions of q+. Hence without loss of generality we will focus on q+ in identifying values of
q2 meeting (7.40).

Consider the first condition of (7.40), which allows us to identify saddle point paths crossing
q1. Solving q+(τ) = q1 for τ1, we obtain two candidate solutions

τa =

√
3
(√

Λqp − 3k −
√
Λq1 − 3k

)
Λ

, (7.46)

τb =

√
3
(√

Λq1 − 3k +
√
Λqp − 3k

)
Λ

, (7.47)

which may or may not belong to the domain [0, N ]. The U -shaped quadratic function q+(τ) has
maximum at its side at qp or qf , and minimum at 3k/Λ, as noted above. Therefore when qp ≤ qf ,

τ1 =


N/A, qf < q1,

τb, qp < q1 ≤ qf ,

τa or τb, 3k/Λ ≤ q1 ≤ qp,

N/A, q1 < 3k/Λ.

(7.48)
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Figure 7.4: q+(τ1 +∆τ) for k = 1,Λ = 3, q1 = 2

When qp > qf ,

τ1 =


N/A, qp < q1,

τa, qf < q1 ≤ qp,

τa or τb, 3k/Λ ≤ q1 ≤ qf ,

N/A, q1 < 3k/Λ.

(7.49)

For q1 values leading to N/A, there will not be a saddle point crossing q1 to meet (7.40). In other
cases, the first condition of (7.40) is met at some τ1 = τa or τb. To check the second requirement
of (7.40) at proper time ∆τ later, consider

q+(τ1 +∆τ) =

{
q1 +

1
3∆τ

(
∆τΛ− 2

√
3Λq1 − 9k

)
, if τ1 = τa,

q1 +
1
3∆τ

(
∆τΛ + 2

√
3Λq1 − 9k

)
, if τ1 = τb.

(7.50)

This single out the values of q2 meeting (7.40). A sample of these functions is plotted in Fig-
ure 7.4. Since τa is prior to the turning point, the value decreases first before it increases, and
since τb is after the turning point, the value directly increases.

Now let us put all the pieces together and summarize the physical meaning of the above
considerations. The probabilities p(q2|q1,∆τ) are derived from a strictly Lorentzian path integral
(7.32) over non-singular geometries with q(τ) > 0 [4], as advocated in Suen and Young’s original
proposal [114]. Under any version from (7.10) to (7.13) of the indifference boundary conditions,
the path integral sum over all boundary values qp, qf > 0 with non-vanishing support. Hence the
saddle points of Z[qp, qf , v] of (7.36) for any choice of qp, qf > 0 are relevant. From (7.48) and
(7.49), we see that no saddle point covers q1 when q1 < 3k/Λ. If the previous observation yielded
such a highly unlikely outcome for an extremely small universe, the saddle-point analysis would
not be able to inform us the most likely outcome for the next measurement. However, as long as

q1 ≥ 3k/Λ, (7.51)

there are always large enough qp, qf such that q1 belongs to some saddle point according to
(7.40). In this case, the most likely outcome(s) q∗2 for the next observation is determined by
(7.50), where whether τ1 equals τa, τb or both is determined by (7.48) and (7.49).
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This most likely experience for the value q2 at τ +∆τ agrees with the value one would infer
from solving the classical equation of motion, given the value of q1 at τ . Note that (7.50) is
independent of qp and qf , so q2 that peaks p(q2|q1,∆τ) in fact lies on infinitely many saddle
points with different boundary values qp and qf .

Note also that the same result holds to all versions of indifference boundary conditions. As
far as the most likely observation for q2 goes, these boundary conditions yield indistinguishable
empirical predictions in the de Sitter minisuperspace model.

The whole setup may also be viewed as a measurement to determine the value of the cos-
mological constant Λ. If we observed the squared scale factor to be q1 first, and at proper time
∆τ the data for the observational data for the squared scale factor is peaked around the value
q2. Then from these three numbers we can solve for Λ using (7.50). This view also helps us un-
derstand why in the present model it is difficult to distinguish versions of indifference boundary
conditions from each other: these candidate boundary conditions share the same Λ.

7.6 Discussion

Path integrals for quantum cosmology and quantum gravity need boundary conditions. The
much-studied no-boundary and tunnelling boundary conditions are beset with persistent issues
reviewed in Section 7.2. For instance, the no-boundary proposal faces ambiguities in the choice
of integration contour, while the tunnelling proposal remains unspecified beyond simple minisu-
perspace settings.

In the alternative proposal put forth by Suen and Young [114], all initial boundary configu-
rations are summed over indiscriminately in a path integral over non-singular Lorentzian geome-
tries. The present work builds on this original proposal and extends it in three aspects. Firstly, the
concept of summing over all configurations is now applied to the future boundary, in addition to
the past boundary. Secondly, an alternative mixed-state sum over all configurations is introduced,
in addition to the original pure-state sum. Combining the mixed and pure versions with the past
and future boundaries leads to several different boundary conditions as enumerated in (7.10) -
(7.13). These are collectively referred to as “indifference boundary conditions”. Thirdly, the min-
imal prescription [9] is employed to illustrate a method for deriving empirical predictions from
the indifference boundary conditions. This extends beyond merely computation of the wave func-
tion from the past boundary condition [114], which left the derivation of empirical predictions as
an open question. Based on the minimal prescription, the indifference boundary conditions are
applied to de Sitter minisuperspace model for pure gravity. It is found that, as expected, the most
likely experience for observations of the squared scale factor can be inferred using the classical
solution.

These results illustrate how empirical predictions can be obtained from cosmological bound-
ary condition proposals including the indifference boundary conditions. In addition, they show
how the indifference boundary conditions passes the test for producing an expected empirical
prediction in de Sitter minisuperspace model. However, the results from the fairly simple min-
isuperspace model are not enough to distinguish versions of indifference boundary conditions
from each other. Future research should naturally pivot towards exploring further tests for the
indifference boundary conditions that preferably distinguish them among themselves, and from
other boundary condition proposals.
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As an example, one immediate topic of interest concerns the arrow of time. Traditional ap-
proaches, such as the past hypothesis [260, 261], attempt to explain the thermodynamic arrow
of time by positing a low-entropy initial boundary condition. However, this avenue certainly
becomes inaccessible for the mixed-mixed indifference boundary condition: Not only does the
initial boundary condition have maximum instead of low entropy, but the past and future bound-
ary conditions are also identical, eliminating any inherent asymmetry at the level of the boundary
condition. If we assume that the fundamental dynamics are also time-symmetric, the only possi-
bility to explain the traces of time asymmetry in experiences lies in the interior condition of (7.21)
for empirical predictions. In previous studies, the idea has been discussed that the psychological
arrow of time does not require the past hypothesis to be explained, but actually explains the
thermodynamic arrow of time [262] (see also [263, 264]). Evaluating this possibility within the
framework of the indifference boundary conditions presents an intriguing and significant avenue
for future research.
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Chapter 8

What should be the ontology for the
Standard Model?

Although the Standard Model of particle physics is usually formulated in terms of
fields, it can be equivalently formulated in terms of particles and strings. In this
picture particles and open strings are always coupled. This offers an intuitive and
graphical explanation for the otherwise mysterious gauge symmetry. In addition, the
particle-string formulation avoids introducing redundant path integral configurations
that are present in the field formulation. For its explanatory power and economy,
the particle-string ontology may be preferred over the field ontology for the Standard
Model.

8.1 Introduction

The Standard Model (of particle physics) is usually formulated as a quantum field theory. A
simple-minded understanding of its ontology is in terms of fields. What exists in the Standard
Model are field configurations put in superposition under the path integral (Fig. 8.1).

Figure 8.1: The field picture of the Standard Model: What exists are field configurations.
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Figure 8.2: The particle-string picture of the Standard Model: What exists are particles and
strings, which are generically non-smooth in path integral configurations. In spacetime (left
figure), particles trace out 1D lines (thick black lines), while strings trace out 2D surfaces (green
crumpled surfaces). In a hypersurface cross section (right figure), particle lines form points (black
points), while string surfaces form lines (blue lines). Crucially, due to gauge symmetry, particles
are always attached to strings, and strings are always either closed, or attached to particles.

However, there exists an equivalent reformulation of the Standard Model in terms of particles
and strings.1 In the particle-string formulation2, what exists are particles and strings bounding
each other and put in superposition under a path integral (Fig. 8.2).

The two equivalent formulations pose a question. Is there a preferred ontological picture
between the two? Should we think of fields or particles and strings as the basic entities for the
Standard Model?

The main point of this work is to point out a conceptual reason to prefer the particle-string
picture: It explains gauge symmetries. Suppose the particles are always attached to strings, and
suppose the strings are either closed, or have their open ends attached to particles. Then gauge
symmetry automatically holds, in the sense that a field reformulation of the particle-string theory
automatically obeys gauge symmetries. In short, the reason for gauge symmetry is that particles
and open strings are always coupled.

In comparison, the field picture leaves gauge symmetries mysterious. There are certainly
quantum field theories that are not gauge theories. Why gauge theories then? In the words of
Rovelli [278]:

1This particle-string formulation not directly related to Superstring theory. Neither extra spacetime dimensions nor
supersymmetry is assumed.

2Although it is known by many that quantum field theories can generically be re-expressed as theories of particles,
strings, and higher-dimensional extended objects at perturbative and non-perturbative levels (see [265, 267, 268,
269, 270, 271, 272, 79, 273] and references therein), this piece of knowledge is not shared by the majority of the
physicists. I will follow the works of Gattringer and collaborators [274, 275, 79, 276, 277] to give a review of the
particle-string reformulations at the non-perturbative level below. Such reformulations are originally proposed for
technical motivations such as more efficient numerical computations. To my knowledge the conceptual implications
have not been much investigated. This work is an attempt in this direction.
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Gauge theories are characterized by a local invariance, which is often described as
mathematical redundancy. According to this interpretation, physics is coded into the
gauge-invariant aspects of the mathematics. ... But things are not so clear. If gauge
is only mathematical redundancy, why the common emphasis on the importance of
gauge symmetry? Why the idea that this is a major discovery and guiding principle
for understanding particle physics?

... Gauge theories are sometime introduced mentioning the historical idea of promot-
ing a global symmetry to a local one. The purpose of the field would be to realize the
local symmetry. This idea, however, leaves the question ... open: why do we need
to describe the world with local symmetries if we then interpret these symmetries as
mathematical redundancy?

The lack of a convincing explanation for gauge symmetry in the field picture constitutes a reason
to prefer the particle-string picture for the ontology of the Standard Model.

The particle-string picture is also more economic than the field picture. For theories with cer-
tain global or local symmetries, the field formulation sums over more path integral configurations
than the particle-string formulation. These additional configurations cancel among themselves
in the end in a field path integral. Avoiding this field redundancy from the outset leads to the
particle-string formulation.

An additional motivation to consider the particle-string ontology comes from constructing
new theories. For instance in discussions of quantum foundations, Wallace [228] criticizes dy-
namical collapse models and Bohmian mechanics on the basis that it is much harder than is
generally recognised to construct quantum field theory versions of them in order to incorporate
the physical contents of the Standard Model. Part of the difficulty is that the dynamical collapse
models and Bohmian mechanics studied in the context of non-relativistic quantum physics refer
to particles but not fields. One might hope that the particle-string ontology for the Standard
Model suggest ways to develop relativistic versions of dynamical collapse models and Bohmian
mechanics without the need to migrate to a field ontology.

The above points are elaborated on below. In Section 8.2, I review the particle reformulations
of quantum field theories for matter fields. That Z2 or U(1) global symmetry holds is another way
to say that particle lines must keep extending. In Section 8.3, I review the string reformulations
of quantum field theories for gauge fields. That SU(N) local symmetry holds is another way
to say that strings surfaces must keep extending. In Section 8.4, I review the particle-string
reformulation of quantum field theories for matter-gauge coupled systems. That SU(N) local
symmetry holds is another way to say that particles and open strings are always coupled. In
Section 8.5, I note that quantum field path integrals contain redundant configurations in the
presence of the symmetries considered. The redundant configurations are avoided in the particle-
string formalism. In Section 8.6, I close with a discussion.

8.2 Matter fields and particles

8.2.1 Real scalar field and unoriented particles

Consider a real scalar field theory in Minkowski spacetime with the Lagrangian density

L = −1

2
∂νϕ∂νϕ− 1

2
m2ϕ2(x)− V (ϕ) (8.1)
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with a general potential V . To define the path integral non-perturbatively, a D-dimensional
hypercubic lattice with spacing a in both time and space directions is introduced. The lattice
action reads

S =aD
∑
x

[−1

2

D∑
ν=1

gνν(
ϕx+ν − ϕx

a
)2 − 1

2
m2ϕ2x − V (ϕx)] (8.2)

=
∑
x

[

D∑
ν=1

gνν ϕ̃x+ν ϕ̃x − ηϕ̃2x − Ṽ (ϕ̃x)], (8.3)

where gνν is the Minkowski metric, x refers to lattice vertex, and x + ν refers to the vertex one
unit in the ν direction away from x. In the last line, ϕ̃x := a

D−2
2 ϕx, η := a2m2/2 + D − 2, and

Ṽ (ϕ̃x) = aDV (ϕx). The tilde symbols are omitted in the following for simplicity.

Particle configurations arise from series expansion

So far there are only field configurations. Particle configurations appear when the path integrand
eiS is expressed in its series form. Let S1 be the first term of (8.3),

∏
x,ν :=

∏
x

∏D
ν=1, and∑

n :=
∏

x,ν

∑∞
nx,ν=0. Then

eiS1 =
∏
x,ν

exp{igννϕx+νϕx} =
∑
n

∏
x,ν

(igννϕx+νϕx)
nx,ν

nx,ν !
(8.4)

=
∑
n

(
∏
x,ν

(igνν)nx,ν

nx,ν !
)(
∏
x

ϕ
∑D

ν=1(nx,ν+nx−ν,ν)
x ), (8.5)

Z =

∫
Dϕ eiS =

∑
n

(
∏
x,ν

(igνν)nx,ν

nx,ν !
)(
∏
x

∫ ∞

−∞
dϕx ϕ

nx
x e−iηϕ2

x−iV (ϕx)) (8.6)

=
∑
n

(
∏
x,ν

(igνν)nx,ν

nx,ν !
)(
∏
x

f(nx)), (8.7)

where f stands for the integral and nx :=
∑±D

ν=±1 nx,ν .

These mathematically trivial steps are far from conceptually trivial. The basic entity of the
theory has just changed from fields to particles in the following sense. We started with a path
integral sum over field values ϕ, but ended with a path integral sum over n in (8.7). Here n
assigns a non-negative integer nx,ν to each lattice edge x, ν connecting x and x + ν. Such an
n-configuration admits an interpretation as a particle configuration, with nx,ν as the number of
particles passing the edge x, ν, and nx as the total number of particle line segments passing x
(Fig. 8.3). The path integral of (8.7) is then understood as a sum over particle configurations.

Symmetry and extended particle lines

From (8.6),

Z =
∑
n

(
∏
x,ν

(igνν)nx,ν

nx,ν !
)(
∏
x

∫ ∞

0
drx r

nx
x e−iηr2x [e−iV (rx) + (−1)nxe−iV (−rx)]), (8.8)
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Figure 8.3: Left: lattice and continuum irregular configurations where particle lines do not need
to extend (non-zero numbers of particle line segments are labelled on the lattice). Right: lattice
and continuum regular configurations where particle lines keep extending.

where ϕx is expressed in terms of its magnitude rx := |ϕx|. When the theory obeys global Z2

symmetry so that V (r) = V (−r),

Z =
∑
n

(
∏
x,ν

(igνν)nx,ν

nx,ν !
)(
∏
x

∫ ∞

0
drx r

nx
x e−iηr2x [(1 + (−1)nx)e−iV (rx)]) (8.9)

=
∑
n

(
∏
x,ν

(igνν)nx,ν

nx,ν !
)(
∏
x

2δ2(nx)

∫ ∞

0
drx r

nx
x e−iηr2x−iV (rx)), (8.10)

where δ2(x) is the mod 2 Kronecker delta function.

In symmetry considerations it is relevant to draw a distinction between regular and irregular
configurations (Fig. 8.3). A regular configuration is such that all the particle lines keep extending
until they close on themselves or hit the boundary of the region of spacetime. This requires that
in the interior of the region, each particle line segment that enters a vertex is paired with another
particle line segment that exits the vertex. In terms of the particle numbers, this is ensured by
requiring that at each vertex in the interior of the region, the integers at all the neighboring edges
sum to an even value, i.e., by requiring δ2(nx) = 1 at all interior vertices x. On the other hand, a
configuration that does not obey this requirement is considered irregular, and it contains particle
lines that stop extending within the interior of the region.

Before any integration, the path integral (8.6) and equivalently (8.8) include both irregular
and regular configurations under

∑
n.

For a theory with global Z2 symmetry, integrating the phase of ϕ (which is ±1 for a real
scalar field) results in δ2(nx). All the irregular configurations cancel out among themselves in the
phase sum to leave only the regular configurations where particle lines keep extending. In the
particle formulation of the theory, we can declare that the path integral includes only the regular
configurations from the outset.

For a theory without global Z2 symmetry (e.g., with potential V = λ3ϕ
3+λ4ϕ

4), the irregular
configurations are left over. Particle lines can pop up and disappear anywhere in spacetime.
Therefore global Z2 symmetry from the field perspective corresponds to the extendedness of
particle lines from the particle perspective.
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Figure 8.4: Left: lattice and continuum irregular configurations where oriented particle lines do
not need to extend (non-zero numbers of particle line segments are labelled on the lattice). Right:
lattice and continuum regular configurations where oriented particle lines keep extending.

8.2.2 Complex scalar field and oriented particles

Consider complex scalar field theories in Minkowski spacetime with the Lagrangian density

L = −∂νϕ∂νϕ∗ −m2|ϕ|2 − V (ϕ). (8.11)

The same steps of “non-perturbative definition on lattice-series expansion-imposing symmetry”
leads to the following results which are straightforward to derive.

The lattice action reads

S =
∑
x

[

D∑
ν=1

gνν(ϕ̃xϕ̃
∗
x+ν + ϕ̃x+ν ϕ̃

∗
x)− η

∣∣∣ϕ̃x∣∣∣2 − Ṽ (ϕ̃x)], (8.12)

where ϕ̃x := a
D−2
2 ϕx, η := a2m2+2(D−2), and Ṽ (ϕ̃x) = aDV (ϕx). The tilde symbols are omitted

in the following for simplicity.

Let S1 be the first term in (8.12),
∏

x,ν :=
∏

x

∏D
ν=1, and

∑
n :=

∏
x,ν

∑∞
nx,ν=0

∑∞
nx+ν,−ν=0.

Like in the real scalar case, a series expansion leads to [274, 79]

eiS1 =
∑
n

(
∏
x,ν

(igνν)nx,ν+nx+ν,−ν

nx,ν !nx+ν,−ν !
)(
∏
x

ϕ
∗
∑

ν(nx,ν+nx,−ν)
x ϕ

∑
ν(nx+ν,−ν+nx−ν,ν)

x ), (8.13)

Z =
∑
n

(
∏
x,ν

(igνν)nx,ν+nx+ν,−ν

nx,ν !nx+ν,−ν !
)(
∏
x

∫ π

−π

dθx
2π

eiθxnx

∫ ∞

0
drx r

n̄x+1
x e−iηr2x−iV (rxeiθx )), (8.14)

where ϕ ∈ C is expressed in polar form, and

nx :=

±D∑
ν=±1

(nx+ν,−ν − nx,ν), n̄x :=

±D∑
ν=±1

(nx+ν,−ν + nx,ν). (8.15)

A lattice edge x, ν is associated with two particle numbers nx,ν and nx+ν,−ν (Fig. 8.4). In
the case of real scalar field, we interpreted the one integer on an edge as the unoriented particle
number. Here we interpret the two integers as the numbers of oriented particles travelling the
edge in different directions. In particular, nx,ν represents the number of particles travelling from
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x in the positive ν direction, while nx+ν,−ν represents the number of particles travelling from
x + ν in the negative ν direction. Then nx represents the difference between the numbers of
particle line segments entering and exiting x, and n̄x represents the total number of particle line
segments crossing x.

Again, in symmetry considerations it is relevant to draw a distinction between regular and
irregular configurations (Fig. 8.4). A regular configuration is such that all the oriented particle
lines keep extending until they close on themselves or hit the boundary of the region of spacetime.
This requires that in the interior of the region, each particle line segment that enters a vertex is
paired with another particle line segment that exits the vertex. Since nx represents the difference
between the numbers of particle line segments entering and exiting x, this is ensured by requiring
δ(nx) = 1 at all interior vertices x. On the other hand, a configuration that does not obey this
requirement is considered irregular, and it contains particle lines that stop extending within the
interior of the region.

Before any integration, the path integral (8.14) includes both irregular and regular configu-
rations under

∑
n.

For a theory with global U(1) symmetry so that V (reiθ) = V (r),

Z =
∑
n

(
∏
x,ν

(igνν)nx,ν+nx+ν,−ν

nx,ν !nx+ν,−ν !
)(
∏
x

δ(nx)

∫ ∞

0
drx r

n̄x+1
x e−iηr2x−iV (rx)). (8.16)

Integrating the phase of ϕ results in δ(nx), which implies that the number of incoming and out-
going line segments are equal at all vertices. All the irregular configurations cancel out among
themselves in the phase integral to leave only the regular configurations where particle lines
keep extending (Fig. 8.4). In the particle formulation of the theory, we can declare that the path
integral includes only the regular configurations from the outset.

For a theory without global U(1) symmetry (e.g., with potential V = λ3ϕ
3+λ4|ϕ|4), the irreg-

ular configurations are left over. Particle lines can pop up and disappear anywhere in spacetime.
Therefore global U(1) symmetry from the field perspective corresponds to the extendedness of
oriented particle lines from the particle perspective.

8.2.3 Fermion field and oriented particles

For a fermionic theory in Minkowski spacetime with the Lagrangian density

L = ψ(iγµ∂µ −m)ψ, (8.17)

the lattice action reads (after redefinitions to absorb constants)3

S =
∑
x

[

D∑
µ=1

(ψxiγ
µψx+µ − ψx+µiγ

µψx)−mψxψx]. (8.18)

With
∏

x and
∏

x,µ as defined previously, a series expansion yields

eiS =[
∏
x

∑
sx

(−imψxψx)
sx ]
∏
x,µ

[
∑
nx,µ

(−ψxγ
µψx+µ)

nx,µ
∑

nx+µ,−µ

(ψx+µγ
µψx)

nx+µ,−µ ], (8.19)

3In practical studies of lattice field theory one can adopt alternative actions such as with staggered fermions [276,
277] to ameliorate the fermion doubling problem. From a fundamental perspective perhaps it is more satisfactory to
stick to the less ad hoc naive fermion action and subject lattice lengths to path integration in quantum gravity [18].
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where s, n = 0, 1 because Grassmann variables are nilpotent. For the partition function, Grass-
mann integration yields

Z =

∫
D[ψ,ψ][

∏
x

∑
sx

(−imψxψx)
sx ]
∏
x,µ

[
∑
nx,µ

(−ψxγ
µψx+µ)

nx,µ
∑

nx+µ,−µ

(ψx+µγ
µψx)

nx+µ,−µ ] (8.20)

=
∑
s,n

(−im)sx(−γµ)nx,µ(γµ)nx+µ,−µ
∏
x

δ(ux)δ(vx) (8.21)

=C
∑
n

(
γµ

im
)nx,µ(− γµ

im
)nx+µ,−µ

∏
x

Cx(n). (8.22)

In the second line, ux := sx +
∑D

µ=±1 nx,µ − 1, vx := sx +
∑D

µ=±1 nx+µ,−µ − 1, and the delta
functions are induced by Grassmann integration. Pictorially, in each configuration a lattice site is
either filled by a mass “monomer” counted by s, or is crossed by exactly one outgoing and exactly
one incoming fermion line segment counted by n.

In the third line a factor −im is extracted from each site to form C = (−im)N where N is the
number of sites. For sites occupied by a monomer, this comes from the monomer factor. For sites
on a fermion line, this induces a division by −im, which can be attributed to the γµ factors, since
the number of sites on a fermion line equals the number of line segments on it (away from the
boundary of the region). After the s-sum, the constraint Cx(n) enforces that a site x is crossed by
either 0 or 1 fermion line. Explicitly

Cx(n) = δ(nx)[δ(n̄x) + δ(n̄x − 2)], (8.23)

where nx and n̄x are as defined in (8.15). They represent the difference in number for incoming
and outgoing line segments, and the total number of line segments crossing x.

This picture of the extending oriented fermion particles is the same as that of the complex
scalar field with U(1) symmetry, except that no identical fermion line segments can overlap which
enforces Pauli’s exclusion principle. For fermions we do not consider theories with non-extending
particle lines (irregular configurations) because any Lagrangian density where ψ and ψ show up
in pairs automatically enforces global U(1) symmetry.

8.3 Gauge fields and strings

Quantum field theory presentations of gauge theories sometimes leave the impression that gauge
matter is not much different from scalar and fermion matter. Gauge field, like scalar and fermion
fields, is just another field, with perhaps more components.

In contrast, the particle-string formulation makes it clear that gauge matter is a totally differ-
ent species. While the scalar and spin-1/2 fermion matter are particles tracing out 1D lines in
spacetime, gauge matter are strings tracing out 2D surfaces in spacetime.

8.3.1 Abelian gauge field and oriented surfaces

The standard way to define quantum gauge theories is through Wilson’s lattice gauge theory
formalism [267]. For a U(1) gauge field with the Lagrangian density L = β

2F
2
µν , the lattice action
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in terms of group variables Ux,µ ∈ U(1) on edges is

S =
β

2

∑
x,µ<ν

gµµgνν(Ux,µUx+µ,νU
∗
x+ν,µU

∗
x,ν + U∗

x,µU
∗
x+µ,νUx+ν,µUx,ν), (8.24)

where
∏

x,µ<ν :=
∏

x

∏D
ν=2

∏ν−1
µ=1., which is a sum over all plaquettes (elementary surfaces) of

the lattice.

String configurations arise from series expansion

Let In be the modified Bessel function defined by e
z
2
(t+t−1) =

∑
n∈Z In(z)t

n for z, t ∈ C, t ̸= 0.
Then [79]

Z =

∫
D[U ]e

iβ
2

∑
x,µ<ν gµµgνν(Ux,µUx+µ,νU∗

x+ν,µU
∗
x,ν+U∗

x,µU
∗
x+µ,νUx+ν,µUx,ν) (8.25)

=

∫
D[U ]

∏
x,µ<ν

∑
px,µν∈Z

Ipx,µν [iβg
µµgνν ](Ux,µUx+µ,νU

∗
x+ν,µU

∗
x,ν)

px,µν (8.26)

=
∑
p

(
∏

x,µ<ν

Ipx,µν [iβg
µµgνν ])

∏
x,µ

∫
dUx,µU

px,µ
x,µ (8.27)

=
∑
p

(
∏

x,µ<ν

Ipx,µν [iβg
µµgνν ])

∏
x,µ

δ(px,µ), (8.28)

where
∑

p :=
∏

x,µ<ν

∑
px,µν∈Z,

∏
x,µ :=

∏
x

∏D
µ=1, and

px,µ :=
∑
ρ:ρ<µ

(px,ρµ − px−ρ,ρµ)−
∑
ρ:ρ>µ

(px,µρ − px−ρ,µρ). (8.29)

We started with a path integral sum over field values U , but ended with a path integral sum
over p in (8.28). Here p assigns an integer px,µν ∈ Z to each lattice plaquette x, µν starting at
vertex x and extending in directions µ and ν. Such a p-configuration admits an interpretation
as a string configuration, with px,µν as the number of elementary surface segments at the lattice
plaquette x, µν, positively or negatively orientated depending on the sign of px,µν ∈ Z. The path
integral of (8.28) is then understood as a sum over string configurations.

Symmetry and extended string surfaces

There is again a distinction between regular and irregular configurations (Fig. 8.5). A regular
configuration is such that all the oriented surfaces keep extending until they close on themselves
or hit the boundary of the region of spacetime. According to (8.29), the net number (positive
minus negative oriented) of surface segments crossing the edge x, µ is px,µ. Requiring that the
oriented surfaces always extend across the edge amounts to demanding δ(px,µ) = 0 at all interior
edges, because this means all elementary surfaces touching this edge can be glued each other in
a consistent orientation. On the other hand, a configuration that does not obey this requirement
is considered irregular, and it contains string surfaces that stop extending within the interior of
the region.

162



Figure 8.5: Left: an irregular surface configuration where positively and negatively oriented
surface numbers do not match on some edges. Right: a regular surface configuration where
positively and negatively oriented surface numbers match on all edges (in the interior of the
region under consideration).

Before any integration, the path integral (8.27) include both irregular and regular configura-
tions under

∑
p.

Integrating over U in (8.28) gives rise to the delta function δ(px,µ), which ensure that the
irregular configurations cancel out, and that only regular string configurations appear in the sum∑

p. More generally, when a theory obeys gauge symmetry, the action contains only terms such
as Ux,µUx+µ,νU

∗
x+ν,µU

∗
x,ν where the edge variables U form closed loops. A series expansion leads

to a polynomial in the loops, which upon integration by
∫
D[U ] generates the delta function. In

the surface picture, this implies that the oriented surfaces keep extending.

In contrast, suppose we start with a more general action S =
∫
d4x[−β

2F
2
µν + V (Aµ)], such as

the Proca action with V (Aµ) = m2AµA
µ. Then the non-perturbative theory has to resort from

Ux,µ = eiaAx,µ to Ax,µ as the basic variable in order to accommodate the additional term V (Aµ)
in the action. The same procedure as in (8.25) to (8.27) yields

Z =

∫
D[A]e

iβ
2

∑
x,µ<ν gµµgνν(Ux,µUx+µ,νU∗

x+ν,µU
∗
x,ν+U∗

x,µU
∗
x+µ,νUx+ν,µUx,ν)ei

∑
x V (Ax,µ) (8.30)

=
∑
p

(
∏

x,µ<ν

Ipx,µν [iβg
µµgνν ])

∫
(
∏
x,µ

DAx,µ) e
ia

∑
x,µ Ax,µpx,µ+i

∑
x V (Ax,µ). (8.31)

For a general V (Ax,µ) the constraint δ(px,µ) can no longer be derived. The surface picture where∑
p represents a sum over string configurations still holds, but the surfaces no longer need to

keep extending.

8.3.2 Non-Abelian gauge field and colored oriented surfaces

As an example of a non-Abelian gauge theory, consider SU(3) gauge theory with the lattice action

S =
β

6

∑
x,µ<ν

3∑
a,b,c,d=1

gµµgνν(Uab
x,µU

bc
x+µ,νU

dc ∗
x+ν,µU

ad ∗
x,ν + Uab ∗

x,µ U bc ∗
x+µ,νU

dc
x+ν,µU

ad
x,ν), (8.32)

where Uab is the matrix representation of the SU(3) group element in some basis. Similar to the
U(1) case, expanding the path integrand as a series in Uab and performing the group integration
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Figure 8.6: Left: an irregular surface configuration where either color or positively and negatively
oriented surface numbers do not match on some edges. Middle: a regular surface configuration
where both color and positively and negatively oriented surface numbers match on all edges (in
the interior of the region under consideration). Right: a regular surface configuration closed by
color combination.

in terms of the various matrix components Uab yields delta function constraints. The explicit
formulas which can be found in [276, 277] will not be shown here, because they are a bit lengthy
and are not used below.

Again, a picture of extended string surfaces (Fig. 8.6) arises that captures the essence of the
result. On each edge the 3 × 3 matrix elements Uab

x,µ introduces 3 × 3 color combinations, e.g.,
red into yellow, red into blue etc. A lattice plaquette then has four color slots to support 34 color
combinations for a surface element.

The constraints arising from group integration indicate that only regular configurations where
surfaces keep extending stay (Fig. 8.6). Here a surface element extends by matching in color and
cancelling in orientation (positive orientation cancels with negative orientation) on the common
edge(s) with an adjacent surface element. This part is a straightforward generalization of the
U(1) case with one color.

Interestingly, in SU(3) surfaces can also close through color combination. Suppose three
surface elements overlap in the same direction on an edge. At one of the two slots, if all three
colors are present they combine into white. If the color is white at both slots of the edge, the
three surfaces are considered to have no boundary at this edge. Through color combination, new
closed surfaces can form, such as the totally white surface on the right of Fig. 8.6.

Again, the constraints are generated out of group integration. If we start with a theory with-
out non-Abelian gauge symmetry, the constraints can no longer be derived. Pictorially, colored
oriented surfaces no longer need to keep extending.

8.4 Particle-string coupling

Consider a theory with both particles and strings. Suppose the theory obeys gauge symmetry (in
the field reformulation). Then as demonstrated below, the particles are always attached to the
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strings, and the strings are either closed, or have their open ends attached to the particles. This
need not hold if the theory does not obey gauge symmetry.

If one adopts the particle-string ontology, then an intuitive explanation for gauge symmetry
is available. Suppose the particles and open strings are always coupled. Then the field reformu-
lation for the theory automatically obeys gauge symmetry. In this view, gauge symmetry is no
longer a guiding principle, but only a derived property.

8.4.1 Particles and uncolored strings

Consider a U(1)-locally symmetric scalar-gauge coupled theory with the Lagrangian density

L = −|Dµϕ|2 −m2|ϕ|2 + V (ϕx) +
β

2
F 2
µν . (8.33)

where Dµ = ∂µ+igAµ and V is a U(1)-locally symmetric potential. Non-perturbatively, the scalar
part action changes to

SP =
∑
x

[

D∑
ν=1

gνν(ϕxU
∗
x,νϕ

∗
x+ν + ϕx+νUx,νϕ

∗
x)− η|ϕx|2 − V (ϕx)], (8.34)

where suitable redefinitions are performed as in Section 8.2.2. In comparison to (8.12), the only
difference is that every near neighbor coupling ϕxϕ

∗
x+ν is now dressed with U∗

x,ν . After the ϕ
integration, the same steps as in Section 8.2.2 leads to

ZP =
∑
n

(
∏
x,ν

(igννUx,ν)
nx,ν (igννU∗

x,ν)
nx+ν,−ν

nx,ν !nx+ν,−ν !
)(
∏
x

δ(nx)

∫ ∞

0
drx r

n̄x+1
x e−iηr2x−iV (rx)) (8.35)

for the particle part. As in Section 8.2.2, we interpret the n-configurations as oriented particle
configurations. Due to the delta function, the extended particle lines picture persists for the
particle part of this U(1)-locally symmetric theory.

The gauge part of the theory is the same as in Section 8.3.1, except for the U factors coming
from the dresses on the particle lines. Therefore after the U integration, (8.28) is replaced by∑

p

(
∏

x,µ<ν

Ipx,µν [iβg
µµgνν ])

∏
x,µ

δ(px,µ + nx,µ). (8.36)

All together,

Z =
∑
p

∑
n

(
∏
x,ν

(igνν)nx,ν+nx+ν,−ν

nx,ν !nx+ν,−ν !
)(
∏
x

δ(nx)

∫ ∞

0
drx r

n̄x+1
x e−iηr2x−iV (rx))+

(
∏

x,µ<ν

Ipx,µν [iβg
µµgνν ])

∏
x,µ

δ(px,µ + nx,µ). (8.37)

As in Section 8.3.1, we interpret the p-configurations as oriented string configurations, with
px,µν ∈ Z as the number of elementary surface segments at the lattice plaquette x, µν, positively
or negatively orientated depending on the sign of px,µν .

The delta function δ(px,µ+nx,µ) of (8.37) indicates that the number of positively or negatively
oriented elementary particle lines matches with the number of negatively or positively oriented
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Figure 8.7: Left: an irregular line-surface configuration where positively and negatively oriented
line and surface numbers do not match on some edges. Right: regular surface configurations
where positively and negatively oriented line and surface numbers match on all edges (in the
interior of the region under consideration).

elementary surfaces at the edges x, µ. Pictorially, this admits the interpretation that particle lines
are always attached to string surfaces, and the open boundaries of string surfaces are always
bounded by particle lines. In addition, the orientations are always matched (Fig. 8.7). Referring
to configurations obeying these conditions as regular configurations and those that do not as
irregular configurations, we can declare that in the particle-string formulation of the theory, the
path integral defined by (8.37) includes only the regular configurations from the outset.

If we started with a theory without gauge symmetry, this picture no longer holds. For instance,
suppose

V (ϕx) =
D∑

ν=1

gνν(ϕxϕ
∗
x+ν + ϕx+νϕ

∗
x) (8.38)

is as in a bare scalar action without gauge coupling. Then in place of (8.34) and (8.35) we would
get

SP =
∑
x

[

D∑
ν=1

gνν [ϕx(U
∗
x,ν + 1)ϕ∗x+ν + ϕx+ν(Ux,ν + 1)ϕ∗x]− η|ϕx|2], (8.39)

ZP =
∑
n

(
∏
x,ν

[igνν(Ux,ν + 1)]nx,ν [igνν(U∗
x,ν + 1)]nx+ν,−ν

nx,ν !nx+ν,−ν !
)(
∏
x

δ(nx)

∫ ∞

0
drx r

n̄x+1
x e−iηr2x). (8.40)

Since U now shows up as (U∗
x,ν + 1) and (U∗

x,ν + 1),the integrals over U on the edges would no
longer yield delta functions δ(px,µ+nx,µ) on the edges. This non-gauge invariant theory therefore
include irregular configurations where particle lines and open string surfaces are not attached to
each other. This example shows why the gauge-invariant coupling

gνν(ϕxU
∗
x,νϕ

∗
x+ν + ϕx+νUx,νϕ

∗
x) (8.41)

for ϕ on adjacent vertices is crucial for generating the delta functions δ(px,µ + nx,µ) on the edges
to exclude irregular configurations.

For fermion particles coupled to strings, apart from the fact that identical fermionic lines
segments cannot overlap (Pauli’s exclusion principle), the picture is the same.
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8.4.2 Particles and colored strings

For a non-Abelian locally symmetric scalar-gauge coupled theory, the gauge part of the action is
as (8.32), and the scalar part of the action is

SP =
∑
x

[
D∑

ν=1

∑
a,b

gνν(ϕaxU
ab ∗
x,ν ϕb ∗

x+ν + ϕax+νU
ab
x,νϕ

b ∗
x )− η|ϕax|

2 − V (ϕax)], (8.42)

where the sum
∑

a is over colors.

The same steps as in the last example leads to a picture of colored particles coupled to colored
strings. Since a particle line segment is now dressed with Uab, it also carries two colors. Group
integration implies that the colors of the particle lines and of the string surfaces must cancel. In
addition to the closed string surfaces shown in Section 8.3.2, there are now open string surfaces
bounded by particle lines, whose colors and orientations match.

Again, the picture of the fermion particles [276, 277] is quite the same apart from the fact
that identical fermionic lines cannot overlap (Pauli’s exclusion principle).

8.5 Field redundancy and partial local symmetry

8.5.1 Field redundancy

In the previous examples, quantum field theories with symmetries exhibit a redundancy. The
irregular configurations cancel out among all themselves in the path integral sum. Only the
regular configurations need to be included from the very beginning.

In terms of particles and strings, the path integral can be defined to include only regular
configurations. The redundancy is avoided.

In contrast, in terms of fields the irregular configurations seems unavoidable because the
form of quantum field theories is tightly constrained [279]. The particle-string formalism is more
economic than the field formalism in this regard.

Because this form of redundancy is attached to the field formalism and can be avoided in
the particle-string formalism, I call it field redundancy. Field redundancy is distinct from the
gauge redundancy that relates gauge equivalent configurations. In the previous examples, field
redundancy is seen for a broader class of symmetries including discrete, continuous, local, global,
Abelian, and non-Abelian symmetries.

Field redundancy is also a quantum property foreign to classical theory, because the cancella-
tion is among configurations in superposition under a path integral.

8.5.2 Partial local symmetries

As an aside question, is there a more precise way to capture the relation of field redundancy to
symmetry?

It is tempting to understand the cancellation in terms of Noether’s theorem that relates charge
conservation to symmetry, because particles and strings that keep extending seem to suggest some
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form of conservation law. However, Noether’s theorem cannot be the answer. Firstly, Noether’s
theorem does not cover discrete symmetries such as the Z2 symmetry of the real scalar field. Sec-
ondly, non-Abelian gauge theories do not have gauge-invariant Noether currents [280], whereas
the regular particle-string configurations here are gauge invariant configurations.

The true answer seems to be given by what I call partial local symmetry. Consider path
integrals that can be re-expressed as follows.

Z =

∫
D[Y ] A(Y )

=

∫
D[R](

∏
x

D[Gx]) A(R, {Gx})

=

∫
D[R] A0(R)

∏
x

(

∫
D[Gx] Px(R,Gx))︸ ︷︷ ︸

Cx

.

In the second line, the original variable Y is decomposed into group variables {Gx} and residue
variable(s)R, and the amplitudeA(Y ) is re-expressed in these new variables asA(R, {Gx}). Here
the group variables Gx are located to places x, which can be lattice points, edges, plaquettes etc.

In the third line, A(R, {Gx}) = A0(R)(
∏

xAx(R,Gx)) decomposes into two parts. The A0(R)
part is independent of the group variables so can be taken out of the group integrals. This part is
invariant under the local group actions by Gx at any location x. Therefore the theory exhibits a
form of local symmetry. Since A0(R) is only part of the whole amplitude A(Y ), the symmetry is
dubbed “partial local symmetry”.

The other part Px(R,Gx) are polynomials in the group variables Gx. Group integration∫
D[Gx] Ax(R,Gx) generates local constraints Cx for the residue variables R.

For example, for the Z2-symmetric real scalar field theory (8.9), Cx =
∑

z=±1 z
nx = δ2(nx)

with Gx ∈ Z2, R = nx, and Px = Gnx
x . As another example, for the U(1)-symmetric complex

scalar field theory (8.16), Cx =
∫ π
−π

dθx
2π e

iθxnx = δ(nx) with Gx ∈ U(1), R = nx, and Px = Gnx
x .

The other examples in the previous sections also follow the same pattern.

Although these theories do not necessarily exhibit local gauge symmetry, they do exhibit par-
tial local symmetry. The constraints that arise result in cancellations among field configurations,
and hence imply field redundancy.

8.6 Discussion

Because the Standard Model is commonly formulated as a quantum field theory, it is tempting
to consider fields as its basic entity, i.e., its ontology. In light of the particle-string reformula-
tion reviewed here4, the question about the ontology of the Standard Model deserves a deeper
thought.

In the particle-string formulation, particles and open strings are always coupled. This prop-
erty gives an intuitive explanation for the otherwise mysterious gauge symmetry of the field
formulation. In addition, the field formulation includes redundant configurations that eventually

4To be precise, the particle-string formulation of the full Standard Model is not explicitly given, but it can be
straightforwardly obtained by generalizing the particle-string formulation of the matter-gauge coupled theories.
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cancel out among themselves. These redundant configurations are avoided from the outset in
the particle-string formulation. For its explanatory power and its economy, the particle-string
ontology may be preferred over the field ontology for the Standard Model.

One could question if the particle-string formulation really explains gauge symmetry better.
After all, a priori particles and open strings need not always be coupled, and one still needs to
assume that they are in order to explain gauge symmetry. If it costs an extra assumption anyways,
why could we not simply assume that the gauge fields obey a local symmetry to explain gauge
symmetry?

I believe the particle-string explanation is still preferable. Imagine we are to explain the fun-
damental properties of matter to school students or laypeople eager for the scientific knowledge.
The gauge symmetry principle is such an profound property that we do not want to miss. One
way to explain it is: “Matter are made of fields. The fields can be transformed according to local
group actions. In our universe, the dynamical laws for matter are unchanged under such trans-
formations.” Another way is: “Matter are made of particles and strings. In our universe, particles
and open strings are always coupled.” Which one do you prefer? An explanation is supposed to
build intuition. The former “explanation” hardly builds any intuition at all, and should perhaps
better be characterized as a “description” instead of an “explanation” for gauge symmetry. The
latter explanation reduces the complicated mathematical concept of gauge symmetry to an easily
visualizable picture of coupled particle lines and string surfaces. It does help build intuition, and
is in this sense preferable.

These in no way implies that we should abandon the field formulation. A calculation that is
hard in one formulation can be easier in another. For practical uses it is better to have more for-
mulations in our toolbox than fewer, even though for conceptual understandings one formulation
may be preferred.

In addition to these, reformulating a known theory in another picture can suggest different
ideas towards discovering the unknowns. It is worth exploring ideas of beyond the Standard
Model coming from the particle-string picture. For instance, a 4D space time has room to support
higher dimensional objects in addition to 1D particle lines and 2D string surfaces. Could dark
matter be such higher dimensional objects?
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