
Variability-aware Neo4j for
Analyzing a Graphical Model of a

Software Product Line

by

Xiang Chen

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2023

© Xiang Chen 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

A Software product line (SPLs) eases the development of families of related products by
managing and integrating a collection of mandatory and optional features (units of func-
tionality). Individual products can be derived from the product line by selecting among
the optional features. Companies that successfully employ SPLs report dramatic improve-
ments in rapid product development, software quality, labour needs, support for mass
customization, and time to market.

In a product line of reasonable size, it is impractical to verify every product because
the number of possible feature combinations is exponential in the number of features. As
a result, developers might verify a small fraction of products and limit the choices offered
to consumers, thereby foregoing one of the greatest promises of product lines — mass
customization.

To improve the efficiency of analyzing SPLs, (1) we analyze a model of an SPL rather
than its code and (2) we analyze the SPL model itself rather than models of its products.
We extract a model comprising facts (e.g., functions, variables, assignments) from an SPL’s
source-code artifacts. The facts from different software components are linked together
into a lightweight model of the code, called a factbase. The resulting factbase is a typed
graphical model that can be analyzed using the Neo4j graph database.

In this thesis, we lift the Neo4j query engine to reason over a factbase of an entire SPL.
By lifting the Neo4j query engine, we enable any analysis that can be expressed in the
query language to be applicable to an SPL model. The lifted analyses return variability-
aware results, in which each result is annotated with a feature expression denoting the
products to which the result applies.

We evaluated lifted N̂eo4j on five real-world open-source SPLs, with respect to ten
commonly used analyses of interest. The first evaluation aims at comparing the perfor-
mance of a post-processing approach versus an on-the-fly approach computing the feature

expressions that annotate to variability-aware results of N̂eo4j. In general, the on-the-fly
approach has a smaller runtime compared to the post-processing approach. The second
evaluation aims at assessing the overhead of analyzing a model of an SPL versus a model of
a single product, which ranges from 1.88% to 456%. In the third evaluation, we compare the

outputs and performance of N̂eo4j to a related work that employs the variability-aware

V-Soufflé Datalog engine. We found that N̂eo4j is usually more efficient than V-Soufflé

when returning the same results (i.e., the end points of path results). When N̂eo4j returns

complete path results, it is generally slower than V-Soufflé, although N̂eo4j can outperform
V-Soufflé on analyses that return short fixed-length paths.

iii

Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Joanne M. Atlee, for
accepting me as a master student in her research group. I am truly thankful for her
exceptional mentorship, expertise, and invaluable insights that have guided me throughout
my study. Her support, encouragement, and constructive feedback have been instrumental
in shaping this work. I will always be grateful to Jo for her patience and help.

I am also grateful for being part of such a warm and welcoming research group, and I
would like to express my appreciation to my colleagues for their continuous willingness to
provide help and support.

I also want to thank my mom and dad. Without their unwavering love and support,
I would not have been able to complete this work. They have been my guiding light,
encouraging me to persevere and believe in myself throughout this journey.

Special thanks to Professor Nancy A. Day and Professor Michael W. Godfrey for their
invaluable constructive feedback as my thesis readers.

Last but not least, I also want to thank my adorable cats, Lion and Momo, and my
beloved dog Anthony for being my constant companions. I am grateful for their silent
support, which reminded me to take breaks and cherish the simple joys of life.

iv

Dedication

To my family. I will always be grateful for your love and support.

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Thesis Statement . 5

1.2 Thesis Contributions . 6

1.3 Thesis Organization . 6

2 Background 8

2.1 Software Product Lines . 8

2.2 Software Factbases and ̂factbase . 9

2.3 Neo4j and Graph Database . 12

2.4 Variability-aware V-Soufflé . 16

2.5 Summary . 18

vi

3 Variability-Aware N̂eo4j 20

3.1 Traversal Framework . 21

3.2 Lifted ̂Factbase . 22

3.3 Lifted Traversal Algorithm . 23

3.4 Soundness . 28

3.5 Summary . 29

4 Analyses of interest 30

4.1 Direct and Indirect Inter-Component-Based Communication 31

4.2 Loop Detection . 32

4.3 Behaviour Alternation . 33

4.4 Multiple Callers . 33

4.5 Race Condition . 34

4.6 Direct and Indirect Recursion . 35

4.7 Call Graph Analysis . 36

4.8 Triangle-Shaped Communication Patterns 36

4.9 Summary . 37

5 Evaluation 38

5.1 Experimental Setup . 38

5.2 Post-processing Versus On-the-fly Approach 41

5.3 Scalability of N̂eo4j . 44

5.4 N̂eo4j versus V-Soufflé . 47

5.5 Implications and lessons learned . 51

5.6 Threats to validity . 51

5.7 Summary . 52

6 Related Work 54

vii

7 Conclusion 56

7.1 Limitations . 56

7.2 Future Work . 57

References 59

viii

List of Figures

1.1 Product-based analysis toolchain . 2

1.2 Difference of applying varAssign to configuration FA ∧ FB and ̂varAssign
to the example SPL . 5

2.1 ̂factbase for the SPL in Listing 1.1 . 11

2.2 Neo4j Browser interface . 14

2.3 Enhancements to visualize variability-aware analysis results of ̂varAssign on
Listing 1.1 . 15

2.4 Analysis pipeline using V-Soufflé [59] . 16

3.1 Structure of Our Toolchain . 20

3.2 N̂eo4j : Modifications and Additions to Neo4j 21

3.3 A traversal example . 25

4.1 Direct inter-component-based communication pattern 31

4.2 Indirect inter-component-based communication pattern 31

4.3 Loop detection pattern . 32

4.4 Behaviour alternation pattern . 33

4.5 Multiple callers pattern . 34

4.6 Race condition pattern . 34

4.7 Direct recursion pattern . 35

4.8 Indirect recursion pattern . 35

ix

4.9 Call graph analysis pattern . 36

4.10 Triangle-shaped communication patterns 36

5.1 Original macro definition and modifications 39

5.2 Evaluation 1 . 41

5.3 Triangle-shaped communication patterns of AxTLS 50

x

List of Tables

2.1 Entities and relationships of interests . 10

3.1 Iterations of Algorithm 1, performing the second subquery from Listing 3.1
on the ̂factbase from Fig. 2.1 . 27

5.1 SPLs used in our evaluation . 40

5.2 Comparison of on-the-fly vs. post-processing of PCs on N̂eo4j 42

5.3 Evaluation 1: Average number of results and average runtime per analysis
query . 43

5.4 Evaluation 1: Average number of results and average runtime per program 43

5.5 N̂eo4j variability-aware analysis vs. Neo4j product-based analysis 44

5.6 Evaluation 2: Average number of results and average runtime per analysis
query . 45

5.7 Evaluation 2: Average number of results and average runtime per program 46

5.8 Performance of N̂eo4j vs. V-Soufflé . 48

5.9 Evaluation 3: Average number of results and average runtime per analysis
query . 49

5.10 Evaluation 3: Average number of results and average runtime per program 50

xi

Chapter 1

Introduction

Software variants have become increasingly prevalent in numerous industries, including
healthcare, telecommunications, and automotive manufacturing. Imagine, for instance, an
automobile manufacturer that produces a variety of vehicle models, each with its own set of
features and configurations. These vehicle models can vary in terms of engine specifications,
entertainment systems, and safety features. Developing separate software solutions for
every model would be inefficient and result in redundant work. To address this challenge,
software product lines (SPLs) are utilized to manage the variations across these variants
effectively. Developers can identify commonalities and variabilities across the variants and
then create software solutions as a set of common artifacts.

Companies that successfully employ SPLs report dramatic improvements in rapid prod-
uct development, software quality, labour needs, support for mass customization, and time
to market [67]. Successful stories include an SPL of operational flight programs from Boe-
ing [5], an SPL of engine-control software for gasoline systems from Bosch [5], and the
control software for the powertrains from General Motors [5]. These success cases demon-
strate that SPL software development has realized the potential to support the efficient
development of product variants and mass customization in software engineering.

A software product line (SPL) refers to a collection of software systems, known as
products, that share a common set of required and optional features and are developed using
a shared set of artifacts [19]. The central concept within an SPL is the feature. Each feature
represents a distinct unit of functionality or behaviour that contributes to the overall
capabilities of the software. Features serve as the primary source of variability within
the product line, allowing different products to be customized by including or excluding
specific features according to user requirements. The presence or absence of these features

1

in a particular product is what distinguishes one product from another, forming its unique
feature configuration.

This thesis focuses mainly on annotative product lines, which use annotative methods
to associate source code fragments with features. Typically, these feature annotations take
the form of either C preprocessor (CPP) directives that protect feature code or feature
variables (implemented as global constants) that are used in conditional statements that
guard feature code. A condition over feature variables is known as a presence condition
(PC), which identifies a product or set of products defined by the presence and absence of
the PC’s corresponding features. Developers use PCs to guard code associated with the
PCs’ products.

In a product line of reasonable size, it is impractical to verify every derivable product
individually (called product-based analysis) because the number of possible feature com-
binations is exponential in the number of features. As a result, developers might verify
only a small fraction of products and limit the choices of products offered to consumers,
thereby foregoing one of the greatest assets of product lines — the promise of mass cus-
tomization [66].

Figure 1.1: Product-based analysis toolchain

In contrast, a variability-aware analysis evaluates the whole SPL as a single artifact,
ideally leveraging the commonalities across products [62]. Specifically, a variability-aware
analysis applies to multiple product variants simultaneously, maximizing the utilization
of computed intermediate results. When a product-based analysis is adopted to be a
variability-aware analysis, we say it is lifted to apply to SPLs. Several product-based
analysis techniques have been lifted to corresponding variability-aware analyses, such as
program analyses [11, 43, 56], parsing [36], model checking [18, 8], and type checking [35].
In this thesis, lifted analyses and lifted artifacts (like SPL models, or the inputs and outputs

2

1 bool FA; // Feature variable

2 bool FB; // Feature variable

3 ...

4 class Example {
5 int a, b, c, d, e, f;

6 ...

7 void changeValue() {
8 if (FA) {

9 d++; // FA

10 } else {

11 e = d - 1; // !FA

12 a++; // !FA

13 }

14

15 if (FB) {

16 b = a + 1; // FB

17 c = b + 1; // FB

18 } else {

19 e++; // !FB

20 }

21

22 if (c >= 0) { assignC(); }
23 if (e >= 0) { assignE(); }
24 }
25

26 void assignC() { c = f; }
27 void assignE() { e = f; }
28 };

Listing 1.1: An SPL containing two features: FA and FB

of lifted analyses) are annotated with a wide hat (e.g., ̂factbase) to distinguish them from
the original program-based artifacts or analyses.

Fig. 1.1 shows the toolchain for a product-based analysis of a model of a software
program [45]. The software source code is input to Rex and Rex extracts facts and generates
a factbase. Rex [45] is a C/C++ fact extractor developed by our research team. Example
facts of interest include program entities (e.g., variables and functions), relations between
entities (e.g., function calls), and attributes on entities or relationships (e.g., whether a
function is a callback function). The collection of these pertinent facts is called a factbase,
which constitutes a graphical model of the software program. We input the factbase to a
graph database Neo4j [46] along with user queries for analysis. The results returned by

3

Neo4j can be as simple as nodes or may be paths or subgraphs.

This thesis adapts this toolchain to apply to models of software product lines. Consider
a simple example of an SPL written in the C language, as shown in Listing 1.1. This
SPL contains two features, FA and FB, which are represented as global Boolean feature
variables. The feature variables are used in conditions that guard code fragments associated
with their respective features. For example, the lines of code highlighted in red represent
an example product with the configuration that includes the presence condition of both
features FA and FB.

Extracting a ̂factbase for this SPL means that each fact in the ̂factbase is annotated
with its presence condition, which indicates the collection of products in which the fact
holds. Variability-aware Rex is capable of extracting facts of an SPL and generating

a ̂factbase. The main contribution of this thesis is to lift the N̂eo4j engine to enable

querying and reasoning over a ̂factbase and generating variability-aware results, which
could be nodes, paths, or subgraphs. Each analysis result is annotated with a PC, which
is the conjunction of the PCs annotating the result’s constituent nodes and edges. If a
result’s PC is unsatisfiable, then the result does not hold in any of the SPL’s products and
the result is discarded.

Assume that we want to detect the dataflow of a variable assignment to subsequent
assignments, identifying variables whose values are impacted by the initial assignment; let
varAssign be that analysis that accepts as input a simple program model and returns this
dataflow result. This analysis can be applied directly to a product to produce the expected
dataflow results. However, when presented with an SPL, the analysis would ideally return
the dataflow results for all product variants in an efficient manner.

A lifted version of algorithm ̂varAssign would return a collection of dataflow results,
where each result is annotated with a PC representing the products for which the result
holds. Fig. 1.2a shows the result of applying varAssign to the product whose configuration

is FA ∧ FB, and Fig. 1.2b shows the result of applying ̂varAssign to the entire example
SPL. In Fig. 1.2b, results are annotated with the presence condition FB, !FA, or an empty
PC. A result annotated with an empty PC means that the result holds in all the products.
Similarly, a result annotated with FB means the result holds only in products that include
feature FB, and a result annotated with !FA means the result holds only in the products
that exclude feature FA.

Shahin et al. [59] assembled a comprehensive toolchain that extracts an SPL model
from an SPL code base, analyzes the model, and visualizes the results. First, variability-

aware R̂ex is applied to an SPL’s source code for fact extraction, generating a ̂factbase.

4

a bvarWrite cvarWrite

f

varWrite

e varWrite

(a) Applying varAssign to configuration FA ∧ FB

a bvarWrite cvarWrite

f

varWrite

e varWrited varWrite

FB FB

!FA

(b) Applying ̂varAssign to the example SPL

Figure 1.2: Difference of applying varAssign to configuration FA ∧ FB and ̂varAssign to
the example SPL

They lifted a Datalog engine [32] to reason over an SPL ̂factbase, which is then imported
to the V-Soufflé Datalog engine along with a set of Datalog rules (i.e., analyses of interest)
to perform variability-aware analysis. The analysis results are then input into the Neo4j
database for visualization. One of the weaknesses of Datalog analysis on a graphical model
is that the Datalog engine cannot return path results. Instead, the start and end nodes of
paths are reported.

1.1 Thesis Statement

This thesis streamlines this toolchain by lifting the Neo4j reasoning engine to enable queries

over an SPL ̂factbase. By lifting the Neo4j query engine, we improved the efficiency of the

lifted N̂eo4j applied to an SPL model versus applying Neo4j on all of the SPL’s product
models. Moreover, compared to Shahin et al.’s work, our work has the added benefit of
returning richer query results (i.e., paths rather than just endpoints of path results) and

5

is generally more efficient.

1.2 Thesis Contributions

The following are the contributions made in this thesis:

• We present N̂eo4j , which is a lifted version of the Neo4j query engine that processes

queries over the ̂factbase of an SPL and returns variability-aware results.

• We compare the performances of two approaches to variability-aware N̂eo4j queries:
a post-processing approach and an on-the-fly approach. The post-processing ap-

proach uses Neo4j as-is to find all query results in the ̂factbase, ignoring the PCs
on facts, and subsequently computes the PCs for all results and filters out results
whose PCs are unsatisfiable. The on-the-fly approach computes each result’s PC as
the result is being constructed.

• We evaluate the efficiency of N̂eo4j and show that a lifted analysis, which returns
results for all of an SPL’s products, is more efficient than product-based analysis
using Neo4j. Specifically, this evaluation compares the performance of variability-
aware analyses with that of product-based analyses on a single product (the maximal
product, comprising all optional features).

• We also compare the performance of the N̂eo4j query engine with its closest related

work: the V-Soufflé lifted Datalog engine [59]. Our studies show that N̂eo4j is usually
more efficient than V-Soufflé when returning the same results (i.e., the end points of
path results), and has the potential to return richer results (i.e., full path results)
and to visualize variability-aware results.

1.3 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2 provides background on SPLs, extracted factbase models, Neo4j, and
V-Soufflé.

6

• Chapter 3 details our approach to lifting the Neo4j query engine to operate on an

SPL ̂factbase model and return variability-aware query results.

• Chapter 4 explains details of the ten analyses we conducted to evaluate the efficacy
and efficiency of our variability-aware analysis.

• Chapter 5 discuss three separate evaluations that we conducted to assess our work:

(1) on-the-fly approach versus post-processing approach, (2) scalability of N̂eo4j,

and (3) N̂eo4j versus V-Soufflé.

• Chapter 6 provides an overview of the related works in graphical models, graph
databases, and lifting product-based analysis to the whole SPL.

• Chapter 7 summarizes the work conducted in this thesis and outlines the limitations,
and proposes potential future research that can expand upon the results of this thesis.

7

Chapter 2

Background

In this chapter, we overview fundamental concepts of software product lines (SPLs), fact
extractors for creating models of SPLs, the Neo4j graph database for querying such models,
and related work V-Soufflé [59].

2.1 Software Product Lines

A software product line (SPL) is a family of software systems (called products) that share
a set of required and optional features and that are developed from a common set of
artifacts [19]. A feature is the central unit of variability in an SPL, such that each product
of an SPL is distinguished by which features are present or absent. The set of features
that define a product is commonly referred to as the feature configuration of the product.

There are three main categories for engineering SPLs: annotative product lines, com-
positional product lines, and delta-oriented product lines. In compositional product lines,
each feature is designed and implemented separately; and in delta-oriented product lines,
a core module represents the fully defined base product and the deltas (the variants) are
created based on their deviations from the core product. This thesis focuses mainly on
annotative product lines. In annotative approaches to SPL engineering, the code that
implements a specific feature is annotated as being associated with that feature. Such
feature annotations generally take the form of either C preprocessor (CPP) directives [34]
that guard feature code or feature variables used in conditional statements that guard fea-
ture code [62]. In the latter approach, a feature variable is a global variable1 whose value

1A feature variable is normally a global constant of type Boolean but can be an enumerated or integer

8

indicates whether the corresponding feature is present or absent in a particular product.
A condition over feature variables is called a presence condition (PC), which designates a
product or set of products defined by the presence and absence of the PCs corresponding
features; PC’s are used in the program conditions to guard code associated with the PCs’
product(s). Our work is restricted to PC-annotative static SPLs, in which feature selec-
tion (i.e., feature variable values) is determined at build time and does not change during
execution.

Example. Listing 1.1 presents an SPL that has two features, FA and FB, represented
by global Boolean feature variables. The feature variables are used in program conditions
that guard code fragments associated with their respective features. For example, line 9
occurs in products containing feature FA and lines 11 and 12 occur in products in which
feature FA is absent. The lines of code highlighted in red represent an example product
with the configuration FA ∧ FB, and the lines of code in black are not included in this
product.

The number of products in an SPL can be exponential in the number of its features.
Thus, separately analyzing every derived product (called product-based analysis) may be
infeasible [62]. In contrast, a variability-aware analysis evaluates the whole SPL as a single
artifact, ideally leveraging the commonalities across products [62]. A number of product-
based analysis techniques have been lifted to corresponding variability-aware analyses that
apply to an entire SPL, including program analyses [11, 43, 56], parsing [36], model check-
ing [18, 8], and type checking [35]. In this paper, lifted artifacts and analyses are annotated

with a wide hat (e.g., ̂factbase) to distinguish them from the original program-based arti-
facts or analyses.

2.2 Software Factbases and ̂factbase

Program analyses can be highly complex and may not be feasible on a large software system
or when the source code is distributed or heterogeneous. In such cases, researchers seek to
analyze a model of the software.

Fact extractors (e.g., ASX [22], CPPX [21], Doop [13], Rex [45]) are analyzers that
extract program facts from software artifacts, resulting in a collection of pertinent data
called a factbase. Example facts of interest include program entities (e.g., variables, func-
tions, components), relations between entities (e.g., function calls, variable assignments),
and attributes on entities or relationships (e.g., whether a function is a callback function).

type.

9

Facts can be extracted from source-code artifacts (in different languages or language vari-
ants) [45], software design models [29], configuration or build code [39], etc., and combined
into a single factbase model of a software system.

In particular, Rex [45] is a C/C++ fact extractor, modified from Clang++2, that was
developed by our research team and that parses code into an Abstract Syntax Tree (AST)
and then walks the AST extracting facts of interest. Which facts are “of interest” depends
on the subsequent analyses. Table 2.1 shows a list of entities and relationships that are “of
interest” in our research.

Entity Description

cClass Class entity

cVariable Variable entity

cFunction Function entity

(a) Entities of interests

Relationship Description

<function1> call <function2> <function1> calls <function2>

<function> write <variable> assignment to <variable> appears in <function>

<function> read <variable> value of <variable> is read in an expression in <function>

<entity1> contain <entity2>
<entity1> contains <entity2> in some form;
for instance, a class contains a function

<variable1> varWrite <variable2> <variable1> is used in an assignment to <variable2>

<variable1> parWrite <variable2>
<variable1> is used in an expression that is passed
to parameter <variable2>

<variable> varInfFunc <function>
<variable> is used in a condition struture
that decides whether or not <function> is called

(b) Relationships of interests

Table 2.1: Entities and relationships of interests

Variability-aware R̂ex [59] is capable of parsing a C/C++ annotative SPL code base
that employs feature variables and extracting program facts annotated with their presence
conditions. In order to facilitate variability-aware extraction with R̂ex, users are required
to provide an additional argument identifying the feature variables. A fact annotated with
a PC holds in the subset of SPL products represented by that PC. We denote the factbase

of an SPL, where some facts are annotated with PCs, as a ̂factbase.
2https://clang.llvm.org

10

https://clang.llvm.org

callchangeValue() assignC() callchangeValue() assignE()

containExample a containExample b containExample c

containExample d containExample e containExample f

containExample assignC() containExample assignE()

containExample changeValue()

assignC()varInfFuncc e assignE()varInfFunc

a bvarWrite

FB

b cvarWrite

FB

d evarWrite

!FA

f cvarWrite f evarWrite

writeassignC() c writeassignE() e

writechangeValue() a writechangeValue() b writechangeValue() c

writechangeValue() d writechangeValue() e

!FA FB FB

FA !FA || !FB

Figure 2.1: ̂factbase for the SPL in Listing 1.1

Example. Fig. 2.1 shows the ̂factbase extracted from Listing 1.1 by R̂ex. Variable
entities appear as light-coloured circles, function entities appear as dark-coloured rounded
rectangles, and class entities appear as ellipses. The relationship type call denotes a
function call relation. The write relationship denotes a containment relationship - relating
a function to a variable that is assigned a value in that function. The relationship type
contain describes an entity that contains another entity in some form. For example, a
class contains a function. The relationship type varWrite denotes a variable assignment -
it relates a variable used in the right-hand side expression of an assignment to the variable

11

being assigned on the left-hand side of the assignment. The relationship type varInfFunc
denotes an influence relationship - relating a variable to a function if a call to the function is
conditioned on the variable. Each fact is annotated with a PC, where an empty PC denotes
the true proposition indicating that the fact holds in every product. For example, in Fig.
2.1 none of the graph nodes have PCs because all the function and variable declarations
in Listing 1.1 hold in all products.

2.3 Neo4j and Graph Database

A factbase for a software system or SPL constitutes a graphical model, where nodes rep-
resent software entities, edges represent relations between entities, and attributes record
information about entities or relationships [3, 64]. Large factbases can be managed us-
ing a graph database, which is optimized for graphical data models. Many interesting
software analyses can be formulated as queries on graphical software models, including
reachability analyses [49], vulnerability detection [68], the management of multiple source
code revisions [26], and software structure and dependency analyses [48].

1 <config > ::= { <relationship -filter > }? { <label -filter > }? { <min -level >

}? { <max -level > }?

2 <relationship -filter > ::= "relationshipFilter :" (<relationship -list > | <

empty -string >)

3 <relationship -list > ::= <relationship > { "," <relationship > }*

4 <relationship > ::= <relationship -id > { "|" <relationship -id > }*

5 <relationship -id > ::= <string > | <string > ">" | "<" <string > | ">" | "<"

6 <label -filter > ::= "labelFilter :" (<label -list > | <empty -string >)

7 <label -list > ::= <label > { "," <label > }*

8 <label > ::= <label -id > { "|" <label -id > }*

9 <label -id > ::= <string > | "+" <string > | "-" <string > |"/" <string > | ">"

<string >

10 <min -level > ::= "minLevel :" <integer >

11 <max -level > ::= "maxLevel :" <integer >

12 <empty -string > ::= ""

Listing 2.1: BNF for config parameters of APOC path expander procedures

Neo4j [46] is a graph database that has a declarative query language Cypher for cre-
ating, manipulating, and querying graphs [48, 64]. Fundamentally, Cypher queries are
patterns among graph elements. Thus users specify a graph query as a pattern of nodes,
relationships and their properties. Query results can be as simple as nodes or may be

12

1 MATCH (srcFunc:cFunction)

2 CALL apoc.path.expandConfig(srcFunc , {

3 relationshipFilter: ’write >’,

4 labelFilter: ’cVariable ’,

5 minLevel: 1,

6 maxLevel :1

7 })

8 YIELD path WITH path AS initialWrite , last(nodes(path))

9 AS srcVar

10

11 CALL apoc.path.expandConfig(srcVar , {

12 relationshipFilter: ’varWrite >’,

13 labelFilter: ’cVariable ’,

14 minLevel: 1

15 })

16 YIELD path WITH path AS varWritePath , last(nodes(path))

17 AS dstVar , initialWrite

18

19 CALL apoc.path.expandConfig(dstVar , {

20 relationshipFilter: ’varInfFunc >’,

21 labelFilter: ’cFunction ’,

22 minLevel: 1,

23 maxLevel :1

24 })

25 YIELD path WITH path AS finalInfluence , initialWrite , varWritePath

26

27 WITH initialWrite , [varWritePath , finalInfluence] AS paths

28

29 WITH reduce(acc = initialWrite , x IN paths |

30 apoc.path.combine(acc , x)) AS path

31

32 RETURN path

Listing 2.2: A simple query in APOC path expander procedures

paths or subgraphs. Neo4j has an extension library APOC 3 comprising about 450 cus-
tom procedures and functions that implement functionality not easily expressed in Cypher
itself. Any query that contains both fixed- and variable-length subpatterns needs to be
decomposed into subqueries (a subquery for each fixed subpattern and a subquery for each
repeating subpattern). Listing 2.1 lists the Backus normal form (BNF) for configuration
parameters (i.e., relationshipFilter, labelFilter, minLevel, and maxLevel) of APOC path

3https://neo4j.com/labs/apoc/4.3/

13

https://neo4j.com/labs/apoc/4.3/

expander procedures that are frequently used in our examples and experimental queries.
In Neo4j queries, “label” refers to the type of a node, “type” refers to the type of an edge,
and “direction” refers to the direction of an edge. The relationshipFilter determines the
relationship types and directions to traverse, the labelFilter determines the node labels to
traverse, and minLevel and maxLevel determines the minimum and maximum number of
hops in the traversal. In relationshipFilter, the type is represented by the string itself, and
the direction is represented by “<” (incoming) or “>” (outgoing). In labelFilter, the label
is represented by the string itself, and the filter is represented by “-” (blacklist filter), “+”
(whitelist filter), “/” (termination filter), or “>” (end node filter). Syntax and examples
of these four parameters can be found in the APOC documentation4.

Figure 2.2: Neo4j Browser interface

Example. Listing 2.2 shows a query in APOC. This example query is a simplified ver-
sion of the behaviour alternation pattern (i.e., a data-flow component interaction pattern)
that is discussed in Chapter 4. The query is decomposed into three subqueries where the
first and third subqueries define fixed subpatterns, whereas the second subquery specifies a
repeating subpattern of arbitrary length. Each subquery expands the path result obtained
from the preceding subquery, based on the provided query parameters. The first subquery
(lines 2 to 9 in Listing 2.2) finds instances of the query’s initiating condition: any node of
label function whose body writes to a node of label variable. The second subquery (lines 11
to 17) finds dataflows from this variable assignment to subsequent assignments, identify-
ing variables whose values are impacted by the initial assignment. The third subquery

4https://neo4j.com/labs/apoc/4.3/graph-querying/expand-paths-config/

14

https://neo4j.com/labs/apoc/4.3/graph-querying/expand-paths-config/

(lines 19 to 25) matches the query’s terminating condition: a function call conditioned on
one of the impacted variables. The APOC function apoc.path.expandConfig5 (lines 2, 11,
19) expresses a path query. The full APOC query in Listing 2.2 matches the following
Cypher pattern:

(:cFunction)-[:write]->(:cVariable)-[:varWrite*1..]->(:cVariable)-[:varInfFunc]->(:cFunction)

where :varWrite*1.. describes a relationship pattern of relationship type varWrite of length
1 or more. The Cypher query looks simpler, but the APOC query is more expressive,
supporting more constraints such as whitelistNodes and blacklistNodes, which specify lists
of nodes to be included or excluded, respectively, in the final result.

Figure 2.3: Enhancements to visualize variability-aware analysis results of ̂varAssign on
Listing 1.1

Neo4j offers a built-in graph visualization tool called Neo4j Browser that allows users to
visualize their data in a graphical format, facilitating the understanding of the relationships
between different entities. The visualization tool in Neo4j Browser represents nodes as
circles and relationships as lines or arrows connecting the nodes. Users can personalize
the visual representation of nodes and relationships according to their preferences. By
clicking on the nodes and relationships in the visualization, users can explore the database

5https://neo4j.com/labs/apoc/4.3/graph-querying/expand-paths-config/

15

https://neo4j.com/labs/apoc/4.3/graph-querying/expand-paths-config/

and view the details of the selected entity. Fig. 2.2 depicts the Neo4j Browser interface
visualizing the factbase in Fig. 2.1.

Toledo, one of the authors of [59], extended the Neo4j visualizer to allow the user to
apply coloured filters to variability-aware results, enabling the highlighting of facts and
results from the same product or set of products. Fig. 2.3 shows an example of this

enhancement to visualize variability-aware analysis results of ̂varAssign on Listing 1.1.
When applying the filter FA∧ FB, the paths that are coloured blue are the subset of the
̂varAssign analysis results that hold in configuration FA ∧ FB.

2.4 Variability-aware V-Soufflé

C source
files

Rex

factbase Datalog
factbase

Datalog
rules

Soufflé
Feature-
Model
Filter

Feature
Model

ta2tsv

Neo4j Visualized
output facts

Output facts

Figure 2.4: Analysis pipeline using V-Soufflé [59]

Shahin et al. [59] assembled a comprehensive toolchain (shown in Fig. 2.4) that (1)
extracts an SPL model from an SPL’s code base written in a C/C++, (2) analyzes the

model, and (3) visualizes the results. First, variability-aware R̂ex is applied to source code

of an SPL for fact extraction, generating a ̂factbase. Then using a Python script ta2tsv,

the ̂factbase output by R̂ex is converted into a Datalog ̂factbase, which is then imported
to the V-Soufflé6 Datalog engine [57] along with a set of Datalog rules (i.e., analyses of
interest) to perform variability-aware analysis. The analysis results from V-Soufflé can
be optionally filtered using a Feature Model [33] (i.e., a representation of the set of valid
feature combinations) to exclude any analysis results that do not belong to any of the valid

6V-Soufflé is an earlier name of Ŝoufflé [59]. In this thesis we use V-Soufflé to refer to the same tool.

16

1 .symbol_type id

2

3 // relationships

4 .decl cVariable (var: id)

5 .input cVariable

6

7 .decl cFunction (func: id)

8 .input cFunction

9

10 .decl write (src: id, dst: id)

11 .input write

12

13 .decl varWrite (src: id, dst: id)

14 .input varWrite

15

16 .decl varInfFunc (src: id, dst: id)

17 .input varInfFunc

18

19 // rules

20 .decl varWrite_closure(v1: id, v2: id)

21 varWrite_closure(v1 , v2) :- varWrite(v1 , v2), cVariable(v1),

22 cVariable(v2).

23 varWrite_closure(v1 , vn) :- varWrite(v1 , v2), varWrite_closure(v2 , vn),

24 cVariable(v1), cVariable(v2), cVariable(vn).

25

26 .decl behav_alt(src: id, dst: id)

27 behav_alt(srcFunc , dstFunc) :- write (srcFunc , srcVar),

28 varWrite_closure(srcVar , dstVar),

29 varInfFunc(dstVar , dstFunc),

30 cFunction(srcFunc), cVariable(srcVar),

31 cVariable(dstVar),cFunction(dstFunc).

32 .output behav_alt

Listing 2.3: Equivalent Datalog program in Listing 2.2

SPL products. The filtered results are converted into the input format accepted by the
Neo4j database for visualization.

Example. Listing 2.3 presents the equivalent Datalog program to the APOC query
shown in Listing 2.2. It begins by defining the type of the id symbol utilized throughout the
program. The Datalog rules employ the keywords .decl and .input to define a set of input
relations in lines 4 to 17. The transitive closure rule for varWrite is defined on lines 20 to 24.
Finally, lines 26 to 31 define the same example query as the Cypher/APOC query shown

17

1 "path"

2 "[{""id"":9,""labels"":[""cFunction""],""properties"":{""condition"":""""

,""filename"":""Example.c"",""id"":""changeValue ()""}},{""id"":19,""

type"":""write"",""start"":9,""end"":2,""properties"":{""condition"":

""FB"",""__csv_type"":""write""}},{""id"":2,""labels"":[""cVariable""

],""properties"":{""condition"":"""",""filename"":""Example.c"",""id"

":""b""}},{""id"":14,""type"":""varWrite"",""start"":2,""end"":3,""

properties"":{""condition"":""FB"",""__csv_type"":""varWrite""}},{""

id"":3,""labels"":[""cVariable""],""properties"":{""condition"":"""",

""filename"":""Example.c"",""id"":""c""}},{""id"":11,""type"":""

varInfFunc"",""start"":3,""end"":7,""properties"":{""condition"":""""

,""__csv_type"":""varInfFunc""}},{""id"":7,""labels"":[""cFunction""

],""properties"":{""condition"":"""",""filename"":""Example.c"",""id"

":""assignC ()""}}]"

Listing 2.4: Results of running the query in Listing 2.2 on the maximal product of the
SPL in Listing 1.1

1 changeValue () assignC () @ FB

Listing 2.5: Results of running the query in Listing 2.3 on the maximal product of the
SPL in Listing 1.1

in Listing 2.2. Line 32 outputs the query results using the .output keyword. Listings 2.4
and 2.5 are the results of running the APOC query in Listing 2.2 and the Datalog program
in Listing 2.3 on the maximal product of the SPL in Listing 1.1, respectively.

By lifting the Neo4j reasoning engine to enable queries over an SPL ̂factbase, we stream-
line the toolchain in Fig. 2.4. Expected benefits are 1) a smaller toolchain, which reduces
dependencies on third-party tools like the Datalog engine, 2) richer analysis results (be-
cause Neo4j can report and visualize path results rather than just the end points of paths),
and 3) better performance.

2.5 Summary

In this chapter, we introduce several concepts that are related to this thesis, including
software product lines (SPLs) and annotative approaches to SPL engineering. Additionally,

we present software factbases and ̂factbases, and we describe fact extractors, especially
variability-aware R̂ex, which is used in our toolchain for fact extraction. We also offer an

18

overview of Neo4j and graph databases, with Neo4j serving as the reasoning engine for this
thesis. Lastly, we introduce variability-aware V-Soufflé, which is the closest work related
to our work.

19

Chapter 3

Variability-Aware N̂eo4j

In this chapter, we detail our approach to lifting the Neo4j query engine to operate on an

SPL ̂factbase model and return variability-aware query results.

Software
Artifacts

Rex

Factbase Neo4j

Results

User query

Figure 3.1: Structure of Our Toolchain

The overall toolchain for analyzing an SPL model is shown in Fig. 3.1, An SPL’s

source code artifacts are input to R̂ex for fact extraction, producing a ̂factbase model of

the SPL (in the format of a CSV file). N̂eo4j accepts a ̂factbase along with a user query
and generates a set of results: results can be nodes, edges, attributes (text), paths, or
subgraphs in the graphical software model, each annotated with a PC representing the set
of product variants for which the result applies.

20

3.1 Traversal Framework

RelationshipSequenceExpander

Traverser

Traversal
Description

applies

Order UniquenessEvaluator PathExpander

Start
node(s)

LabelSequenceEvaluator

implement

BddMapper

PcParser BddBuilder

Use Use

Traversal
Framework

APOC
Procedures

Use Use

Antlr 4 Use CUDDUse

Modified Added Third Party

implement

Figure 3.2: N̂eo4j : Modifications and Additions to Neo4j

The lifting of the Neo4j query engine focuses on the traversal framework 1, which tra-
verses the graph data model and incrementally constructs the results to a graph query.
The key classes of the traversal framework are depicted in the top part of Fig. 3.2. Specif-
ically, starting from a set of start nodes, the traversal framework repeatedly expands some
partially traversed path that begins at one of the start nodes and that matches the current
state of the query, until the partially traversed paths cannot be further expanded.

1https://neo4j.com/docs/java-reference/current/traversal-framework/

21

https://neo4j.com/docs/java-reference/current/traversal-framework/

A graph traversal is specified by rules encoded in the TraversalDescription class and
its component classes Order, Evaluator, PathExpander, and Uniqueness.

• The Order class decides the basic traversal algorithm (i.e., breadth-first search versus
depth-first search) and the branching strategy (i.e., pre-order traversal versus post-
order traversal).

• The Evaluator class determines whether the traversal should continue from the cur-
rent position (i.e., the end of the current path being traversed), and whether the
current path should be included in the final result.

• The PathExpander class selects which edges incident on the current node should be
visited, primarily based on each edge’s type and direction.

• The Uniqueness class defines the rules for revisiting nodes and edges. By default, a
node is traversed at most once.

• The Traverser class represents the current traversal of the graph data model in
response to a query.

3.2 Lifted ̂Factbase

Lifted N̂eo4j needs to be able to query and reason over a lifted ̂factbase, whose facts are
conditionally true (i.e., are true in some product variants and false in others). Each fact

in a ̂factbase is annotated with a presence condition (PC), which indicates the collection
of products in which the fact holds.

We use Ordered Binary Decision Diagrams (OBDDs) [14] to represent, manipulate,
and evaluate PCs. Every Boolean expression has a unique canonical OBDD representation,
which means that satisfiability checking of an OBDD is a constant-time operation (because
the canonical OBDD for an unsatisfied expression is the trivial OBDD for false) [14].

PC annotations on facts in a ̂factbase are input to N̂eo4j as string representations of
boolean expressions. We use the Antlr4 tool2 to parse the string expressions and build the

corresponding OBDDs. Each node and edge in N̂eo4j has a PC attribute pointing to the
OBDD of its PC. We use the CUDD OBDD library [2] to create and cache OBDDs as they
are computed. The same cache stores the OBDD PCs that are computed and associated
with each partial and final query result.

2https://www.antlr.org/

22

https://www.antlr.org/

3.3 Lifted Traversal Algorithm

Variability-aware queries over a ̂factbase generate query results that are conditionally true
and that are annotated with PCs. If a variability-aware query result is a set of paths, the
PC of each path result is the conjunction of the PCs annotating the path’s constituent
nodes and edges. If a result’s PC is unsatisfiable, then the result does not apply to any of
the SPL’s products; such results are not reported.

A brute-force method to lift Neo4j queries to be variability-aware would be to execute
Neo4j’s native traversal algorithm and then filter out those results whose PCs are unsatis-
fiable. However, this approach is inefficient because the native traversal algorithm would
extend partial results even when their PCs are unsatisfiable. Instead, we augment the
traversal algorithm to test the satisfiability of a partial result’s PC on-the-fly as each new
node and edge is added to a result path.

The result is our lifted traversal algorithm, which is a modified version of Neo4j’s
native traversal algorithm, shown in Algorithm 1. Our modifications marked in red mainly
focus on caching and computing the OBDD values of the PCs. Each time the algorithm
tries to expand a path result, we take the PC into account and continue to process only
those paths that have a satisfiable PC, and safely remove those intermediate paths with
unsatisfiable PCs because they do not apply to any of the SPL’s products. It starts
from a collection of start paths in the SPL model (rather than start nodes) and returns
extended paths in the model, where the path extensions match the query pattern. The
algorithm maintains a pathWaitList[] that stores the collection of partial results (paths) to
be further expanded and a finalResult[] list of final query results. The query’s pattern is
expressed as sequences of node labels and relationship types and directions that are stored
in queryLb and queryRel, respectively. Each extension’s start node (i.e., the end node of
the current result path) must match the query’s next node label and the extension’s type
and direction must match the query’s next relationship, indicated by the label index li
and relationship index ri, respectively. If the query expresses a repeated pattern, then
lines 16-17 use the modulo operator to update the indices li and ri so that they circle
through the pattern3. The curPath.PC is the conjunction of the PCs of the nodes and
edges along the current path. When Algorithm 1 considers a possible extension to the
current path (line 23), it checks the extension’s PC and it keeps the extension only if its
PC is satisfiable. Thus, Algorithm 1 guarantees that the PC of each partial path added to
pathWaitList[] is satisfiable.

3Index ri is always one step ahead of index li (lines 16-17) because no query-label-matching test is
performed on the start node of curPath (line 18).

23

Algorithm 1: Lifted Traversal Algorithm
Input : a fact base, a set of start paths, a user query
Output: a set of paths that match the query

1 startPaths[] = the set of start paths
2 pathWaitList[] = empty set of paths
3 finalResult[] = empty set of paths
4 queryLb[] = the sequence of label filters in the query in order
5 queryRel[] = the sequence of relationship filters in the query in order
6

7 while !startPaths.isEmpty do
8 choose Path in startPaths and remove it
9 prefix = Path

10 curPath = prefix.endNode
11 curPath.PC = prefix.PC
12 visitedNodes[] = empty set of nodes
13 while curPath != null do
14 endNode = curPath.endNode
15 visitedNodes.add(endNode)
16 li = (curPath.length - 1) % queryLb.length //label index
17 ri = curPath.length % queryRel.length //rel index
18 if curPath.length = 0 ∨ match(endNode.label, queryLb[li]) then
19 if curPath.length() < query.maxLevel then
20 reList[] = endNode.relationships()
21 matchR[] = empty set of relationships
22 for j ← 0 to reList.length() - 1 do
23 if !visitedNodes.contain(reList[j].endNode) ∧ matchType(reList[j].type,

queryRel[ri].type) ∧ matchDir(reList[j].dir, queryRel[ri].dir) ∧
sat(curPath.PC ∧ reList[j].PC ∧ reList[j].endNode.PC) then

24 matchR.add(reList[j])
25 end
26 end
27 if !matchR.isEmpty then
28 for j ← 0 to matchR.length() - 1 do
29 extension = curPath.extend(matchR[j], matchR[j].endNode)
30 extension.PC = curPath.PC ∧ matchR[j].PC ∧ matchR[j].endNode.PC
31 pathWaitList.add(extension)
32 end
33 end
34 end
35 if curPath.length() >= query.minLevel then
36 finalResult.add(prefix.extend(curPath))
37 end
38 end
39 //BFS, DFS may choose different Path
40 choose Path in pathWaitList and remove it
41 curPath = Path // null if pathWaitList is empty
42 curPath.PC = prefix.PC ∧ Path.PC // null if curPath is null
43 end
44 end
45 return finalResult

24

During each iteration of the outer while loop, a start path is selected from startPaths[]
and the inner while loop examines extensions to the end node of that path. Line 18
compares the label of the current path’s end node to the next label in the query, and if
the two labels do not match then the algorithm skips lines 18 to 38, chooses a new path
from pathWaitList[], and starts a new inner-loop iteration. If the labels do match, line 20
populates reList[] with all the relationships that are connected to the current path’s end
node. Lines 22 to 26 iterate through reList[] and add to matchR[] those relationships
whose destination node has not yet been visited, whose type and direction match the
query’s next relationship and whose PC passes the satisfiability check. Lines 27 to 33
update pathWaitList[] with paths that extend the current path with each relationship in
matchR[] and its destination node, and the extended paths’ PCs (i.e., the length of the
current path is extended by 1). Line 19 ensures that the lengths of all paths added to
pathWaitList[] are at most query.maxLevel, where maxLevel is a constraint in the query
indicating the maximum length of paths in the final result. Lines 35 to 37 ensure that any
current path whose length is at least query.minLevel is added to finalResult[].

Fig. 3.2 illustrates the key modifications and additions we made to Neo4j to imple-

ment variability-aware N̂eo4j: (1) We mainly modified two APOC classes LabelSequenceE-
valuator and RelationshipSequenceExpander, which implement the traversal framework’s
Evaluator and PathExpander interfaces, respectively. (2) To implement PCs, we added
class PcParser, which parses the input PC string expressions, and added class BddBuilder,
which uses the CUDD library to construct and cache the corresponding OBDD PCs. After
BddMapper maps each graph node and relationship to its OBDD, the classes LabelSe-
quenceEvaluator and RelationshipSequenceExpander use the information in BddMapper to
execute satisfiability checking on each partial result of the traversal algorithm, filtering out
results that are unsatisfiable.

changeValue()
awrite

d
write

e

bvarWrite

varWrite

assignC()varInfFunc

assignE()varInfFunc

!FA

FA

r1

r2

r3

r4

r7

r6

cvarWrite

FB r5FB

!FA

Figure 3.3: A traversal example

Example. Consider the query shown in Listing 3.1. As mentioned before, this query
includes both fixed- and variable-length subpatterns, which need to be posed as distinct
subqueries. The first subquery finds instances of the query’s initiating condition: any

25

1 MATCH (srcFunction:function)

2 CALL apoc.aware.path.expandConfig(srcFunction, {
3 relationshipFilter: ’write >’,

4 labelFilter: ’variable ’,

5 minLevel: 1,

6 maxLevel :1

7 })

8 YIELD path WITH path AS initialWrite

9

10 CALL apoc.aware.path.extend(initialWrite, {
11 relationshipFilter: ’varWrite >’,

12 labelFilter: ’variable ’,

13 minLevel: 1

14 })

15 YIELD path WITH path AS varWritePath

16

17 CALL apoc.aware.path.extend(varWritePath, {
18 relationshipFilter: ’varInfFunc >’,

19 labelFilter: ’function ’,

20 minLevel: 1,

21 maxLevel :1

22 })

23 YIELD path RETURN path

Listing 3.1: Query of the traversal example

function whose body writes to a variable. The second subquery finds dataflows from
this variable assignment to subsequent assignments, identifying variables whose values are
impacted by the initial assignment. The third subquery matches the query’s terminating
condition: a function call conditioned on one of the impacted variables. Each subquery
invokes a separate call of the traversal algorithm and passes to the startPaths parameter
the partial results from the previous subquery. Table 3.1 shows the computation of the

lifted traversal algorithm performing the second subquery from Listing 3.1 on the ̂factbase,
and shows the values of key variables as processing of the second subquery progresses.
Fig. 3.3 shows the affected paths in the SPL model.

Initially, startPaths[] holds two paths computed by the first subquery: (changeValue())-
[:write]->(a) and (changeValue())-[:write]->(d). Suppose the algorithm in line 8 chooses
to extend path (changeValue())-[:write]->(a), assigning it to prefix ; then curPath and
endNode are both initialized to variable node a and curPath.PC is !FA. Line 18 evaluates
to true because curPath.length is 0 (the short-circuit evaluation skips the label check). In

26

Table 3.1: Iterations of Algorithm 1, performing the second subquery from Listing 3.1 on

the ̂factbase from Fig. 2.1

First iteration
startPaths[]: {(changeValue())-[:write]->(a),

(changeValue())-[:write]->(d)}
prefix: (changeValue())-[:write]->(a)
curPath: a
curPath.PC: !FA
endNode: a
reList[]: {r3}
matchR[]: {r3}
pathWaitList[]: {(a)-[:varWrite]->(b)}
finalResult[]: {}
choose path: (a)-[:varWrite]->(b)
Second iteration
startPaths[]: {(changeValue())-[:write]->(d)}
prefix: (changeValue())-[:write]->(a)
curPath: (a)-[:varWrite]->(b)
curPath.PC: !FA && FB
endNode: b
reList[]: {r5}
matchR[]: {r5}
pathWaitList[]: {(a)-[:varWrite]->(b)-[:varWrite]->(c)}
finalResult[]: {(changeValue())-[:write]->(a)-[:varWrite]->(b)}
choose path: (a)-[:varWrite]->(b)-[:varWrite]->(c)
Third iteration
startPaths[]: {(changeValue())-[:write]->(d)}
prefix: (changeValue())-[:write]->(a)
curPath: (a)-[:varWrite]->(b)-[:varWrite]->(c)
curPath.PC: !FA && FB
endNode: c
reList[]: {r7}
matchR[]: {}
pathWaitList[]: {}
finalResult[]: {(changeValue())-[:write]->(a)-[:varWrite]->(b),
(changeValue())-[:write]->(a)-[:varWrite]->(b)-[:varWrite]->(c)}
choose path: null
Fourth iteration
startPaths[]: {(changeValue())-[:write]->(d)}
prefix:(changeValue())-[:write]->(d)
curPath: d
curPath.PC: FA
endNode: d
reList[]: {r4}
matchR[]: {}
pathWaitList[]: {}
finalResult[]: {(changeValue())-[:write]->(a)-[:varWrite]->(b),
(changeValue())-[:write]->(a)-[:varWrite]->(b)-[:varWrite]->(c)}
choose path: null

27

lines 22 to 26, edge r3 is added tomatchR[] because it matches the query’s next relationship
type and direction (varWrite>) and because !FA∧FB is satisfiable. Therefore, in lines 27
to 33, (a)-[:varWrite]->(b) is added to pathWaitList[], and finalResult[] remains empty
because curPath.length() is less than query.minLevel. Suppose in line 40 the algorithm
chooses next to extend path (a)-[:varWrite]->(b); then curPath is set to this path and
curPath.PC is !FA ∧ FB, and execution progresses to the next iteration.

In the second iteration of the inner while loop, the endNode is b. Line 18 evalu-
ates to true because b matches the query’s next label. In lines 22 to 26, edge r5 is
added to matchR[], because it matches the query’s next relationship type and direction
(varWrite>) and because !FA ∧ FB ∧ FB is satisfiable. Therefore, in lines 27 to 33,
(a)-[:varWrite]->(b)-[:varWrite]->(c) is added to pathWaitList[], and (changeValue())-
[:write]->(a)-[:varWrite]->(b) is added to finalResult[]. Suppose the algorithm next chooses
(a)-[:varWrite]->(b)-[:varWrite]->(c) to expand (line 40); then curPath is set to this path,
curPath.PC is !FA ∧ FB, and execution progresses to the next iteration.

In the third iteration, the algorithm remains in the inner while loop and the endNode
is c. However, none of c’s relationships match the type and direction of the query’s next
relationship (varWrite>), so matchR[] will be empty. Thus, pathWaitList[] will also be
empty and the next curPath will be null. Before that happens, (changeValue())-[:write]-
>(a)-[:varWrite]->(b)-[:varWrite]->(c) is added to finalResult[].

In the fourth iteration, the algorithm exits the inner while loop because curPath is null.
Therefore, the algorithm chooses the remaining start path (changeValue())-[:write]->(d)
as prefix, curPath and endNode are both initialized to the variable node d, and curPath.PC
is FA. In subsequent lines 22 to 26, r4 is not added to matchR[] because the PC of such a
path extension FA ∧ !FA is unsatisfiable, and finalResult[] remains unchanged. Therefore
Algorithm 1 terminates exploration of this path and excludes this curPath from the set of
finalResult.

3.4 Soundness

We did not assess the accuracy of the N̂eo4j search results in terms of precision, recall,
and F-measure because we do not know the ground truths of such analysis results for the
large open-source systems used in our evaluation (i.e., whether a result is actually true,
false, or conditionally true in a subset of products). Instead, we used V-Soufflé as an oracle

to test the implementation of our N̂eo4j engine because V-Soufflé is a well-established and
respected Datalog engine.

28

Shahin [54] provides correctness criteria and proofs that the variability-aware reasoning
in V-Soufflé is exactly the union of the results of the corresponding product-based reason-
ing applied individually to each product model. Moreover, Shahin also proves that each
variability-aware result’s presence condition represents exactly the set of products having
this result in their un-lifted analysis results.

3.5 Summary

In this chapter, we introduce the traversal framework of Neo4j, and describe the imple-

mentation of N̂eo4j . We present the lifted traversal algorithm, which tests the satisfiability
of a partial result’s PC on-the-fly as each new node and edge is added to a result path.
In addition, we introduce the modifications and additions we made to Neo4j to implement

variability-aware N̂eo4j. In order to execute satisfiability checking on each partial result
of the traversal algorithm, filtering out results that are unsatisfiable, we use the Antlr4
tool to parse the input PC string expressions, and use the CUDD library to construct and
cache the corresponding OBDD PCs.

29

Chapter 4

Analyses of interest

To evaluate the efficacy of N̂eo4j variability-aware analyses, we identified several com-
monly used analyses of interest. These analyses discover potential feature interactions
or conventional dataflow and control-flow patterns across multiple components in a pro-
gram [45, 59, 48].

The list of analyses is presented below, and detailed information on each of them is
provided in the subsequent sections.

• Inter-component-based communication (ICBC) [45] identifiesDirect and Indirect inter-
component communications between different components.

• Loop detection (LD) [45] is a special case of ICBC that detects whether a component
communicates with itself directly or indirectly (through a cycle of communications).

• Behaviour alternation (BA) [45, 59] is a type of dataflow component interaction
where one component assigns a new value to a variable, and this variable assignment
indirectly causes another component to change its behaviour.

• Multiple callers (MC) [45] detects if multiple components can communicate with the
same callee component.

• Race condition (RC) [45] detects if multiple components that communicate with the
same component can lead to assignments to the same variable.

• Direct recursion (DR) [59] identifies functions that directly call themselves, and In-
direct recursion (IDR) detects functions that call themselves indirectly (through a
cycle of function calls).

30

• Call graph analysis (CG) [48] identifies for each function its outgoing calls and the
target of those calls. The result is a graph of function calls between functions.

• Triangle-shaped communication patterns (TSCP) [17] identifies pattern instances in
which a specific type of relationship (e.g., variable assignments or function calls)
repeats three times and loops back to the starting node.

The remainder of this chapter introduces each analysis with a detailed definition. The
entities, relationships, and attributes utilized in these analyses are detailed in Table 2.1.

4.1 Direct and Indirect Inter-Component-Based Com-

munication

Component 1 Component 2

Component 2

parWrite

parWrite

varWrite|parWrite*

Component N-1

varWrite|parWrite*... Component N

parWrite

Direct ICBC

Indirect ICBC

a b

Component 1

a b

c

d

e f

Figure 4.1: Direct inter-component-based communication pattern

Component 1 Component 2

Component 2

parWrite

parWrite

varWrite|parWrite*

Component N-1

varWrite|parWrite*... Component N

parWrite

Direct ICBC

Indirect ICBC

a b

Component 1

a b

c

d

e f

parWrite

Figure 4.2: Indirect inter-component-based communication pattern

Inter-component-based communication (ICBC) is a dataflow analysis that detects a
pattern of direct or indirect inter-component communications. It includes a sequence of
parameter-passing function calls and/or variable assignments from the source component
to the target component.

Fig. 4.1 shows the pattern of direct ICBC, which captures inter-component communi-
cations between two components, and Fig. 4.2 shows the pattern of indirect ICBC, which

31

captures inter-component communications between three or more components. The direct
case represents a single communication via a parameter-passing function call (represented
by the parWrite relationship) from one component to another. The indirect case refers to
a dataflow scenario that involves three or more components. It begins with a parameter-
passing call between components, continues within a component through variable assign-
ments and parameter passing, and then proceeds to other components via parameter-
passing function calls. Finally, it ends with an inter-component parameter-passing call.

This pattern requires that the ̂factbase include the following facts: (1) variable entities,
(2) parWrite relationships, (3) varWrite relationships, and (4) the component information
of each entity to distinguish communications between different components.

4.2 Loop Detection

Component 2

parWrite

varWrite|parWrite*

Component N-1

varWrite|parWrite*...

parWrite

Component 1

a b

c

d

e

Figure 4.3: Loop detection pattern

Loop detection (LD) is a special case of inter-component-based communication in which
a component communicates with itself directly or indirectly (through a cycle of commu-
nications). Fig. 4.3 shows the pattern of loop detection. It shares similarities with inter-
component-based communication in terms of the communication sequence, but differs in
that it involves the loopback of communication back to the source component.

This pattern requires that the ̂factbase include the following facts: (1) variable entities,
(2) parWrite relationships, (3)varWrite relationships, and (4) the component information
of each entity to distinguish communications between different components.

32

4.3 Behaviour Alternation

Component 1

varWrite|parWrite*

varWrite

Component 2

varWrite|parWrite*

parWrite

Component N-1

varWrite|parWrite*...

Component N

varinffunc

varWrite|parWrite*

parWrite

a

b

c

d

e

f

g

h

i

j

Figure 4.4: Behaviour alternation pattern

Behaviour alternation (BA) is a type of dataflow component interaction where one
component assigns a new value to a variable, and this variable assignment indirectly causes
another component to change its behaviour. The initial variable assignment is usually
considered the trigger of the behaviour alternation pattern.

Fig. 4.4 shows the pattern of behaviour alternation. It starts with a variable assign-
ment (represented as varWrite relationship) in a component, continues within a component
through variable assignments and parameter passing, and then proceeds to other compo-
nents via parameter-passing function calls. The pattern ends with an intra-component
dataflow in the destination component (component N) to a control structure whose deci-
sion condition includes modified data and whose body includes a function call (represented
as the varInfFunc relationship from the variable in the decision condition to the function
being called in the control structure’s body).

This pattern requires that the ̂factbase include the following facts: (1) variable entities,
(2) function entities, (3) parWrite relationships, (4) varWrite relationships, (5) varInfFunc
relationships, and (6) the component information of each entity to distinguish communi-
cations between different components.

4.4 Multiple Callers

Multiple callers (MC) analysis identifies scenarios in which multiple components can com-
municate with the same callee component. Fig. 4.5 shows the pattern of multiple callers.

33

Component 1

a

Component 2

b

Component 3

c

parWrite

parWrite

Figure 4.5: Multiple callers pattern

MC is a form of race condition in which a component (component 3 in Fig 4.5) can be
called from multiple calling components simultaneously (components 1 and 2).

This pattern requires that the ̂factbase include the following facts: (1) variable entities,
(2) parWrite relationships, and (3) the component information of each entity to distinguish
communications between different components.

4.5 Race Condition

Component 1

Component 2

Component 3

raceVar

parWrite

parWrite

varWrite

varWrite

a

b

c

d

Figure 4.6: Race condition pattern

Race condition (RC) detects if multiple components that communicate with the same

34

component can lead to assignments to the same variable. This variable is usually called
the race variable. Fig. 4.6 shows the pattern of a race condition. RC is an extension
to the Multiple callers pattern in which two calls (from different caller components) have
dataflows to the same variable (the race variable).

This pattern requires that the ̂factbase include the following facts: (1) variable entities,
(2) parWrite relationships, (3) varWrite relationships, and (4) the component information
of each entity to distinguish communications between different components.

4.6 Direct and Indirect Recursion

call

Direct Recursion

Indirect Recursion

a a

calla b ...

call

c

Figure 4.7: Direct recursion pattern

call

Direct Recursion

Indirect Recursion

a a

calla b ...

call

c

Figure 4.8: Indirect recursion pattern

Direct recursion (DR) and indirect recursion (IDR) both involve the repetitive execution
of a function call. Direct recursion (please see Fig. 4.7) identifies functions that directly
call themselves, and indirect recursion (please see Fig. 4.8) detects functions that call
themselves indirectly (through a cycle of function calls).

Direct and indirect recursions are important subjects of study in program analysis
as they can be prone to errors like stack overflows and infinite loops, which can impact
program performance. Analyzing these recursion patterns provides valuable insights into
the flow of program execution, enabling opportunities for improvement and optimization.

Direct and indirect recursion require that the ̂factbase include the following facts: (1)
function entities and (2) call relationships.

35

4.7 Call Graph Analysis

Component 2

call*

Component N-1

call*...

Component N

call

c

d

e

f

g

Component 1

call*

a

b

call

h

call*

Figure 4.9: Call graph analysis pattern

Call graph analysis (CG) identifies for each function its outgoing calls and the target
functions of those calls. The result is a graph of function calls between functions. By
analyzing the call graph, developers and researchers can gain insights into the software
system, including the program’s structure. Fig. 4.9 shows the pattern of call graph analysis.

This analysis requires that the ̂factbase include the following facts: (1) function entities
and (2) call relationships.

4.8 Triangle-Shaped Communication Patterns

a

varWrite|parWrite

varWrite|parWrite

varWrite|parWrite

bc

Figure 4.10: Triangle-shaped communication patterns

Triangle-shaped communication patterns (TSCP) identify pattern instances in which a
specific type of relationship (e.g., variable assignments or function calls) repeats itself three

36

times and loops back to the starting node. Fig. 4.10 shows a triangle-shaped communi-
cation pattern of assignments (represented as varWrite or parWrite relationships among
three variables).

Triangle-shaped communication analysis requires that the ̂factbase include the following
facts: (1) variable entities, (2) parWrite relationships, and (3) varWrite relationships.

4.9 Summary

In this chapter, we provide a comprehensive summary of the ten analyses used in our
evaluations. We define each analysis and outline the specific patterns it captures within
the software system. Additionally, we present the necessary facts (entities, relationships,

and attributes) that have to be extracted from the software and linked into the ̂factbase
model in order to conduct these analyses.

37

Chapter 5

Evaluation

In this chapter, we discuss three separate evaluations that we conducted to assess our work.
The first evaluation aims at comparing the performance of a post-processing approach

versus an on-the-fly approach to variability-aware analysis in N̂eo4j. The second evaluation
aims at assessing the overhead of analyzing a model of an SPL versus a model of a single

product. In the third evaluation, we compare the outputs and performance of N̂eo4j to a
related work that employs the variability-aware V-Soufflé Datalog engine [59].

5.1 Experimental Setup

All three evaluations assess N̂eo4j on five real-world open-source SPLs that have been used
in previous variability-aware analyses projects [37, 41, 44, 50] and from an investigation
conducted by Liebig et al. [40] of the variability in forty preprocessor-based SPLs. All of
the subject systems use preprocessor conditional-compilation macros (#ifdef) to guard the

feature code, whereas our model extractor R̂ex expects SPL source code that uses feature
variables to guard feature code. We used SugarC [47] to desugar these programs and
convert the preprocessor directives into normal conditional statements (i.e., if statements).

Listing 5.1 shows an example of original source code and desugared code that results
from using SugarC 1. SugarC automatically replaces each macro-protected code block with
a condition-guarded code block, where the condition is based on the macro’s definition.
SugarC also renames the conditions, in order to boost the readability of the desugared

1The renaming function and condition name in Fig. 5.1 are simplified for presentation purposes.

38

1 #define A 1

2 #define B 2

3

4 #define G(A, B) A+B

5

6 #ifdef FA

7 #define FB

8 #endif

9

10 #ifdef FB

11 #define F(A, B) G(A, B)

12 #endif

13 ...

14 // source code snippet

15 int main() {

16 #ifdef FB

17 return F(A, B);

18 #endif

19 }

(a) Original source file

1 ...

2 condition_renaming("condition_1", "!FA && FB || FA");

3 ...

4 int main() {

5 if (condition_1) {

6 return 1 + 2;

7 }

8 }

(b) Desugared file

1 ...

2 int main() {

3 if (!FA && FB || FA) {

4 return 1 + 2;

5 }

6 }

(c) Reverting the renaming convention

Figure 5.1: Original macro definition and modifications

39

code. This renaming complicates our ability to relate feature variables to conditions, to
compute meaningful PCs, and to reason about PCs. Therefore, we constructed a simple
script to restore the SugarC-generated condition expressions based on their #define macro
definitions.

Three systems (axTLS [7], ToyBox [63], and BusyBox [15]) had already been desugared
by the SugarC development team; thus, we included the desugared versions of these systems
in our evaluation. Of the 40 potential subject systems from [40], we excluded 7 SPLs
that are no longer being maintained or are mostly written in languages other than C.
We excluded another 14 systems that were smaller than BusyBox (i.e., had fewer lines of
code or fewer numbers of features). From the remaining 19 subject systems, we randomly
selected SPLs to include in our evaluation and excluded any of these that could not be
successfully desugared. In the end, we selected five nontrivial SPL subject systems for our
evaluation.

Table 5.1: SPLs used in our evaluation

SPL axTLS ToyBox BusyBox BerkeleyDB Subversion

LOC(.h) 2,875 10,852 35,986 33,063 110,952
LOC(.c) 23,832 56,770 253,942 258,777 1,195,953
Components(#) 5 7 25 25 31
Features(#) 40 225 847 264 652
Facts (#) 12,972 47,849 146,441 129,009 449,189
VFacts(#) 7,308 12,025 37,027 20,442 9,252
VFacts(%) 56.34% 25.13% 25.28% 15.85% 2.06%

After desugaring the source code and restoring the SugarC condition expressions, we

used R̂ex to extract each SPL’s ̂factbase. Table 5.1 shows the size and factbase metrics of
the subject systems. Each compilation unit represents a distinct component in a system.
The count of features is determined by (1) computing the number of variables that appear in
some conditional-compilation macro and (2) excluding system macros and guard macros.
To get a sense of the degree of variability in the subject SPLs, we report not only the
number of Facts extracted from each SPL but also the number of variable facts (VFacts)
- that is, facts that are guarded by PCs.

Most analyses were executed as singleton queries. Exceptions to this were the indirect
ICBC, LD, BA and CG queries, which were processed in stages to improve performance.
First, we posed subqueries about potential communications within each component, and
then used results about intracomponent control flows and dataflows in a full-system query.

40

We ran our experiments on a server with an Intel Xeon E5-2603 v4 processor (1.70GHz,
12 cores), 32GB memory, running the Ubuntu 18.04 operating system. In both evaluations,
we used Neo4j Community Edition 4.3.11 and we set the heap size and page size to 30G.
We ran each query five times and report the average runtime of the five executions.

5.2 Post-processing Versus On-the-fly Approach

User Query on-the-fly

post processing

Software
Artifacts

Rex Factbase Neo4j Results

User Query

Software
Artifacts

Rex Factbase Neo4j Results Java
App Results

Phase 1 Phase 2

Figure 5.2: Evaluation 1

In the first evaluation, we compare the performance of two approaches to variability-

aware N̂eo4j queries: a post-processing approach and an on-the-fly approach (shown in
Figure 5.2).

The post-processing approach uses Neo4j’s native traversal algorithm as-is to find all

query results in the ̂factbase, ignoring the PCs on facts, and subsequently filters out the
results whose PCs are unsatisfiable. The output of phase 1 will include all results, even the
results with unsatisfiable PCs, and these results will be filtered out in phase 2. Specifically,
each query result is a path of nodes and edges, each of which is annotated with a PC; and
the PC of a result path is the conjunction of the PCs of all the nodes and edges in the path.
If the PC of a path is not satisfiable, then the path is removed from the set of reported
results.

The on-the-fly approach applies Algorithm 1 to compute each result’s PC as the result
is being constructed. This approach has the potential to be faster because unsatisfiable
partial results are filtered out early, thereby avoiding further exploration of the path’s

41

Table 5.2: Comparison of on-the-fly vs. post-processing of PCs on N̂eo4j

(a) Direct inter-component-based
communication (Direct ICBC)

axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 462 1,466 6,378 1,151 45,888

N̂eo4j(ms) 31 65 188 106 786
phase 1(#) 462 1,466 6,391 1,151 45,888
phase 2(#) 462 1,466 6,378 1,151 45,888
filtered(#) 0 0 13 0 0
overhead(ms) -92.79% -87.03% -78.09% -72.11% -60.82%

(b) Indirect inter-component-based
communication (Indirect ICBC)

axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 518 39 405 0 37,321

N̂eo4j(ms) 708 52 201 122 1,895
phase 1(#) 774 39 405 0 37,321
phase 2(#) 518 39 405 0 37,321
filtered(#) 256 0 0 0 0
overhead(ms) -27.83% -79.61% -58.64% -48.31% -25.28%

(c) Loop detection (LD)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 0 0 264 0 30,860

N̂eo4j(ms) 374 105 170 102 1,944
phase 1(#) 0 0 282 0 30,860
phase 2(#) 0 0 264 0 30,860
filtered(#) 0 0 18 0 0
overhead(ms) -23.98% -37.87% -62.22% -52.11% -13.06%

(d) Behaviour alternation (BA)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 4,602 0 161 0 33,886

N̂eo4j(ms) 1,596 99 391 184 2,293
phase 1(#) 7,688 0 161 0 33,886
phase 2(#) 4,602 0 161 0 33,886
filtered(#) 3,086 0 0 0 0
overhead(ms) -10.44% -67.22% -51.25% -34.75% -13.18%

(e) Multiple callers (MC)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 246 11,302 128,458 1,058 2,893,290

N̂eo4j(ms) 96 412 2,657 202 57,577
phase 1(#) 248 11,304 129,140 1,058 2,893,290
phase 2(#) 246 11,302 128,458 1,058 2,893,290
filtered(#) 2 2 682 0 0
overhead(ms) -69.13% -53.55% -52.54% -62.38% -49.89%

(f) Race condition (RC)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 0 2 0 0 336

N̂eo4j(ms) 48 118 363 151 1,016
phase 1(#) 0 2 0 0 336
phase 2(#) 0 2 0 0 336
filtered(#) 0 0 0 0 0
overhead(ms) -68.42% -59.45% -11.25% -41.92% -8.63%

(g) Direct recursion (DR)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 5 6 51 29 144

N̂eo4j(ms) 12 11 76 41 116
phase 1(#) 5 6 51 29 144
phase 2(#) 5 6 51 29 144
filtered(#) 0 0 0 0 0
overhead(ms) -94.55% -94.79% -79.12% -83.06% -69.31%

(h) Indirect recursion (IDR)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 9 0 212 561 86

N̂eo4j(ms) 132 37 790 16,223 9,017
phase 1(#) 9 0 212 561 86
phase 2(#) 9 0 212 561 86
filtered(#) 0 0 0 0 0
overhead(ms) -51.11% -76.43% 12.86% 75.42% 71.17%

(i) Call graph analysis (CG)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 45,921 3,138 11,556 90,784 472,923

N̂eo4j(ms) 6,810 70 589 3,197 21,659
phase 1(#) 94,814 3,138 11,556 90,933 472,923
phase 2(#) 45,921 3,138 11,556 90,784 472,923
filtered(#) 48,893 0 0 149 0
overhead(ms) -26.54% -86.77% -50.83% -44.48% -29.58%

(j) Triangle-shaped communication (TSCP)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 156 168 708 480 441

N̂eo4j(ms) 113 568 641 390 1,733
phase 1(#) 156 168 738 480 441
phase 2(#) 156 168 708 480 441
filtered(#) 0 0 30 0 0
overhead(ms) -61.30% -26.52% -31.22% -28.70% -10.25%

possible suffixes. However, this approach could also lead to multiple satisfiability tests on
an evolving PC as the PC for every partial result is tested, and these repetitive tests may
be less efficient than simply testing results’ PCs only at the end.

Tables 5.2a to 5.2j display the evaluation results for each query. The first section of
each table shows the number of results and runtime of the on-the-fly approach employing

N̂eo4j . The second section reports the number of results of phase 1 and phase 2. The third
section reports the number of filtered results and the performance overhead of perform-
ing the on-the-fly approach (versus the post-processing approach). A negative overhead
value indicates that the on-the-fly approach is more efficient. A -89.66% overhead, for

42

Table 5.3: Evaluation 1: Average number of results and average runtime per analysis
query

Direct ICBC Indirect ICBC LD BA MC

N̂eo4j (#) 55,345 38,283 31,124 38,649 3,034,354

N̂eo4j (ms) 235 596 539 913 12,189
filtered(#) 13 256 18 3,086 686
overhead(#) -0.02% -0.66% -0.06% -7.39% -0.02%
overhead(ms) -71.83% -33.73% -24.30% -21.45% -50.14%

RC DR IDR CG TSCP

N̂eo4j (#) 338 235 868 624,322 1,953

N̂eo4j (ms) 339 51 5,240 6,465 689
filtered(#) 0 0 0 49,042 30
overhead(#) 0.00% 0.00% 0.00% -7.28% -1.51%
overhead(ms) -23.74% -81.91% 67.48% -31.97% -23.02%

Table 5.4: Evaluation 1: Average number of results and average runtime per program

axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j (#) 51,919 16,121 148,193 94,063 3,515,175

N̂eo4j (ms) 992 154 607 2,072 9,804
filtered(#) 52,237 2 743 149 0
overhead(#) -50.15% -0.01% -0.50% -0.16% 0.00%
overhead(ms) -30.14% -62.28% -48.58% 17.03% -40.14%

example, indicates that the on-the-fly method is 89.66% faster than the post-processing
method. Tables 5.3 and 5.4 display the aggregated results per analysis and per subject
SPL, respectively.

In general, the on-the-fly approach has a faster runtime compared to the post-processing
approach, and this is dependent on the number of filtered facts and the percentage of
VFacts. As the number of filtered facts and percentage of VFacts increases, there is a
greater likelihood that an on-the-fly analysis will be able to terminate invalid paths early,
thereby improving its performance. As an example, the analysis of axTLS reveals that
approximately 52,237 paths are filtered. As a result, the runtime of the on-the-fly approach
is approximately 30.14% faster than the post-processing approach.

43

Notably, the runtime of the on-the-fly approach may be longer than the post-processing
approach when the number of facts being filtered is minimal or even zero, as is the case with
the indirect recursion (IDR) analysis applied to BusyBox, BerkeleyDB, and Subversion.
IDR analysis returns a variable-length path, which means that the on-the-fly method is
repeatedly performing satisfiability testing on the path conditions of partial results; and
in the case of these programs, the partial results are never filtered out. As the path length
grows, the overhead can become increasingly significant, resulting in a slower runtime for
the on-the-fly approach in these situations. The path lengths of IDR results for BusyBox
(range from 2 to 12), for Berkeley DB path lengths of results range from 2 to 21, and for
Subversion path lengths of results range from 2 to 8.

5.3 Scalability of N̂eo4j

Table 5.5: N̂eo4j variability-aware analysis vs. Neo4j product-based analysis

(a) Direct inter-component-based
communication (Direct ICBC)

axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 462 1,466 6,378 1,151 45,888

N̂eo4j(ms) 31 65 188 106 786
product-based(#) 421 922 6,105 1,140 45,802
overhead(ms) 47.62% 38.30% 6.82% 17.78% 2.48%

(b) Indirect inter-component-based
communication (Indirect ICBC)

axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 518 39 405 0 37,321

N̂eo4j(ms) 708 52 201 122 1,895
product-based(#) 330 0 348 0 37,290
overhead(ms) 161.25% 62.50% 55.81% 71.83% 22.42%

(c) Loop detection (LD)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 0 0 264 0 30,860

N̂eo4j(ms) 374 105 170 102 1,944
product-based(#) 0 0 234 0 30,773
overhead(ms) 144.44% 101.92% 26.87% 37.84% 37.77%

(d) Behaviour alternation (BA)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 4,602 0 161 0 33,886

N̂eo4j(ms) 1,596 99 391 184 2,293
product-based(#) 75 0 161 0 33,854
overhead(ms) 456.10% 39.44% 68.53% 30.50% 33.70%

(e) Multiple callers (MC)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 246 11,302 128,458 1,058 2,893,290

N̂eo4j(ms) 96 412 2,657 202 57,577
product-based(#) 216 5,454 120,268 1,036 2,882,290
overhead(ms) 81.13% 83.93% 12.49% 30.32% 1.88%

(f) Race condition (RC)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 0 2 0 0 336

N̂eo4j(ms) 48 118 363 151 1,016
product-based(#) 0 0 0 0 320
overhead(ms) 45.45% 90.32% 12.38% 12.69% 8.66%

(g) Direct recursion (DR)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 5 6 51 29 144

N̂eo4j(ms) 12 11 76 41 116
product-based(#) 3 5 50 29 144
overhead(ms) 71.43% 10.00% 94.87% 5.13% 18.37%

(h) Indirect recursion (IDR)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 9 0 212 561 86

N̂eo4j(ms) 132 37 790 16,223 9,017
product-based(#) 9 0 210 550 86
overhead(ms) 116.39% 42.31% 34.13% 63.98% 42.29%

(i) Call graph analysis (CG)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 45,921 3,138 11,556 90,784 472,923

N̂eo4j(ms) 6,810 70 589 3,197 21,659
product-based(#) 3,572 2,377 8,786 88,194 472,046
overhead(ms) 423.04% 25.00% 34.47% 10.97% 26.59%

(j) Triangle-shaped communication (TSCP)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 156 168 708 480 441

N̂eo4j(ms) 113 568 641 390 1,733
product-based(#) 156 75 597 471 414
overhead(ms) 63.77% 264.10% 6.48% 34.02% 4.27%

44

Our second evaluation study compares (to the extent possible) the runtimes of analyzing
a model of an SPL versus separately analyzing the models of the SPL’s products. Other
works on SPL analysis compare the runtime of a variability-aware analysis applied to an
SPL model versus the runtime of the corresponding product-based analysis applied to
all of the SPL’s valid products. However, our subject SPLs do not have feature models
that specify their respective sets of valid products; and comparing against the sum of the
runtimes of product-based analyses applied to all 2n feature combinations in each SPL
model would bias the experiment in favour of our work.

Instead, we compare N̂eo4j queries against their corresponding product-based Neo4j
queries on a single product: the maximal product, comprising all the features. The factbase
for the maximal product includes all facts where feature variables are true and excludes
all facts where any feature variable is false. This may result in a smaller factbase (because
those facts with false feature variables are excluded in the factbase) and, as a result, fewer
results than reported by the variability-aware query.

Table 5.6: Evaluation 2: Average number of results and average runtime per analysis
query

Direct ICBC Indirect ICBC LD BA MC

N̂eo4j (#) 55,345 38,283 31,124 38,649 3,034,354

N̂eo4j (ms) 235 596 539 913 12,189
product-based(#) 54,390 37,968 31,007 34,090 3,009,264
overhead(#) 1.76% 0.83% 0.38% 13.37% 0.83%
overhead(ms) 6.81% 45.20% 47.75% 86.55% 2.76%

RC DR IDR CG TSCP

N̂eo4j (#) 338 235 868 624,322 1,953

N̂eo4j (ms) 339 51 5,240 6,465 689
product-based(#) 320 231 855 574,975 1,713
overhead(#) 5.63% 1.73% 1.52% 8.58% 14.01%
overhead(ms) 14.06% 32.64% 54.97% 48.37% 23.92%

Tables 5.5a to 5.5j show the experiment results for each analysis. The first section of
each table shows the number of results and runtime of the variability-aware analysis em-

ploying N̂eo4j . The second section reports the number of results returned by the product-
based Neo4j query applied to the maximal product factbase, and the runtime overhead of
performing variability-aware queries. A 40.00% overhead, for example, indicates that the

45

Table 5.7: Evaluation 2: Average number of results and average runtime per program

axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j (#) 51,919 16,121 148,193 94,063 3,515,175

N̂eo4j (ms) 992 154 607 2,072 9,804
product-based(#) 4,782 8,833 136,759 91,420 3,503,019
overhead(#) 985.72% 82.51% 8.36% 2.89% 0.35%
overhead(ms) 339.52% 108.83% 20.74% 50.47% 11.28%

N̂eo4j query applied to the ̂factbase for an SPL is 40.00% slower than the product-based
query. However, this is still an improvement given the number of products to be analyzed.
Tables 5.6 and 5.7 display the aggregated results per analysis query and per subject SPL,
respectively.

The sources of overhead include the construction of OBDDs, the computation of PCs,
satisfiability testing for partial results, and the exploration of product-specific results for
multiple configurations. Although satisfiability checking for OBDDs is a constant-time
operation, the construction of OBDDs can have exponential time complexity in the worst
case, depending on the size and complexity of the Boolean formula being represented.
Each query result’s PC is constructed incrementally as the result is being constructed.
This approach has the potential to be faster because the analysis of infeasible results
can be terminated early (as soon as the PC of a partial result becomes unsatisfiable),
thereby avoiding further exploration of the partial result’s possible extensions. However,
this approach could also lead to multiple satisfiability tests on an evolving PC as the PC
for every partial-result increment is tested.

The overhead ranges from 1.88% to 456%, in which the largest overhead appears in
the behaviour alternation analysis of axTLS. Averaging over all the queries performed on

all the subject ̂factbase models, the variability-aware analysis produces around 1.16 times
more results than the maximal product analysis and has an average overhead of 106%. In

general, ̂factbase models with greater degrees of variability (like axTLS, where more than

half of the facts in the ̂factbase are variable facts) have higher overhead - because there are
more product-specific results to compute and report.

46

5.4 N̂eo4j versus V-Soufflé

Our third evaluation study compares the analysis results and performance of our variability-

aware N̂eo4j to variability-aware V-Soufflé [59] (described in Chapter 2.4). V-Soufflé is the

most closely related work to our work, in that it analyzes a similar ̂factbase model and
reports variability-aware results. However, V-Soufflé cannot report path results. Therefore,

in order to fairly compare the tools’ performances, we also ran N̂eo4j on versions of the
analyses that report endpoints of path results.

Tables 5.8a to 5.8j show the experiment results for each analysis. The first section
of each table shows the number of results and runtime of the variability-aware analysis

employing N̂eo4j . The second section reports the number of the end points of path results

and runtime employing N̂eo4j . The last section displays the number of results and runtime
of the variability-aware analysis employing V-Soufflé.

V-Soufflé and N̂eo4j agree on all analyses except for three TSCP results. Specifically,

V-Soufflé and N̂eo4j report different PCs for these three results. To determine which
analyzer is right, we used Neo4j (without the SPL analysis) to find all paths involving the
nodes in the three inconsistent results and we manually computed their PCs and found

them all to be unsatisfiable. Based on this, we believe that the N̂eo4j results are correct,
but it is possible that V-Soufflé is somehow finding other paths with different, satisfiable
PCs. Definitive resolution of this inconsistency would require further investigation into
how V-Soufflé computes paths.

With respect to performance, N̂eo4j is usually more efficient than V-Soufflé when re-
turning the same results (i.e., the end points of path results), with the exceptions of IDR

and CG analyses applied to the BerkeleyDB and Subversion ̂factbase. Both of these anal-

yses explore the call paths in large models. We hypothesize that N̂eo4j needs to find the

path results in order to return the endpoints, and the performance of N̂eo4j may suffer a
combinatorial explosion when queries return long paths or when the ratio of the number
of path results to the number of endpoint results is high.

Table 5.9 presents the aggregate results per analysis and Table 5.10 presents the aggre-
gate results per subject SPL. Rows 7 to 10 in Tables 5.9 and 5.10 report the “overhead” of

N̂eo4j results compared to V-Soufflé results. Rows 7 and 8 of both tables present the in-

creases in the number of results and average runtimes when N̂eo4j reports complete paths.
Rows 9 to 10 of both tables present the increases in the number of results and average

runtimes when N̂eo4j reports endpoint results. A negative runtime overhead means that

47

Table 5.8: Performance of N̂eo4j vs. V-Soufflé

(a) Direct inter-component-based
communication (Direct ICBC)

axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 462 1,466 6,378 1,151 45,888

N̂eo4j(ms) 31 65 188 106 786

N̂eo4j -endpt(#) 462 1,466 6,378 1,151 45,888

N̂eo4j -endpt(ms) 24 43 75 41 363
V-Soufflé(#) 462 1,466 6,378 1,151 45,888
V-Soufflé(ms) 82 170 443 145 458

(b) Indirect inter-component-based
communication (Indirect ICBC)

axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 518 39 405 0 37,321

N̂eo4j(ms) 708 52 201 122 1,895

N̂eo4j -endpt(#) 369 23 328 0 18,493

N̂eo4j -endpt(ms) 241 108 260 15 475
V-Soufflé(#) 369 23 328 0 18,493
V-Soufflé(ms) 516 104 133 108 558

(c) Loop detection (LD)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 0 0 264 0 30,860

N̂eo4j(ms) 374 105 170 102 1,944

N̂eo4j -endpt(#) 0 0 157 0 14,316

N̂eo4j -endpt(ms) 33 17 42 21 403
V-Soufflé(#) 0 0 157 0 14,316
V-Soufflé(ms) 294 98 151 113 528

(d) Behaviour alternation (BA)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 4,602 0 161 0 33,886

N̂eo4j(ms) 1,596 99 391 184 2,293

N̂eo4j -endpt(#) 442 0 98 0 1,910

N̂eo4j -endpt(ms) 224 43 46 24 460
V-Soufflé(#) 442 0 98 0 1,910
V-Soufflé(ms) 383 113 310 192 653

(e) Multiple callers (MC)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 246 11,302 128,458 1,058 2,893,290

N̂eo4j(ms) 96 412 2,657 202 57,577

N̂eo4j -endpt(#) 210 10,582 126,070 1,052 2,790,036

N̂eo4j -endpt(ms) 26 89 742 95 12,076
V-Soufflé(#) 210 10,582 126,070 1,052 2,790,036
V-Soufflé(ms) 94 216 728 186 12,398

(f) Race condition (RC)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 0 2 0 0 336

N̂eo4j(ms) 48 118 363 151 1,016

N̂eo4j -endpt(#) 0 2 0 0 328

N̂eo4j -endpt(ms) 35 52 183 62 336
V-Soufflé(#) 0 2 0 0 328
V-Soufflé(ms) 92 104 328 160 661

(g) Direct recursion (DR)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 5 6 51 29 144

N̂eo4j(ms) 12 11 76 41 116

N̂eo4j -endpt(#) 5 6 51 29 144

N̂eo4j -endpt(ms) 7 8 20 19 26
V-Soufflé(#) 5 6 51 29 144
V-Soufflé(ms) 74 124 438 119 202

(h) Indirect recursion (IDR)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 9 0 212 561 86

N̂eo4j(ms) 132 37 790 16,223 9,017

N̂eo4j -endpt(#) 8 0 133 257 79

N̂eo4j -endpt(ms) 109 35 703 11,592 6,690
V-Soufflé(#) 8 0 133 257 79
V-Soufflé(ms) 128 134 714 2,672 2,150

(i) Call graph analysis (CG)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 45,921 3,138 11,556 90,784 472,923

N̂eo4j(ms) 6,810 70 589 3,197 21,659

N̂eo4j -endpt(#) 264 2,058 2,796 24,813 37,899

N̂eo4j -endpt(ms) 225 54 315 2,489 3,975
V-Soufflé(#) 264 2,058 2,796 24,813 37,899
V-Soufflé(ms) 397 129 547 365 731

(j) Triangle-shaped communication (TSCP)
axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j(#) 156 168 708 480 441

N̂eo4j(ms) 113 568 641 390 1,733

N̂eo4j -endpt(#) 65 115 468 266 380

N̂eo4j -endpt(ms) 26 143 194 94 521
V-Soufflé(#) 65 115 471 266 380
V-Soufflé(ms) 94 229 628 191 586

the N̂eo4j average runtime was faster. Rows 7 and 8 in Table 5.9 suggest that N̂eo4j is

generally slower than V-Soufflé when it returns complete path results, although N̂eo4j can
outperform V-Soufflé on analyses that return short fixed-length paths. Rows 9 and 10 in

Table 5.9 suggest that N̂eo4j is generally faster than V-Soufflé when it returns endpoint
results, although it can be slower if the analysis explores lots of long paths. Table 5.10
suggests that in general, the runtime overhead is influenced by the size of the program’s

code base and the difference in the number of results returned by N̂eo4j and V-Soufflé,
respectively. For instance, the difference in the number of results from queries on ToyBox

48

Table 5.9: Evaluation 3: Average number of results and average runtime per analysis
query

Direct ICBC Indirect ICBC LD BA MC

N̂eo4j (#) 55,345 38,283 31,124 38,649 3,034,354

N̂eo4j (ms) 235 596 539 913 12,189

N̂eo4j -endpt(#) 55,345 19,213 14,473 2,450 2,927,950

N̂eo4j -endpt(ms) 109 220 103 159 2,606
V-Soufflé(#) 55,345 19,213 14,473 2,450 2,927,950
V-Soufflé(ms) 260 284 237 330 2,724
overhead(#) 0.00% 99.26% 115.05% 1477.51% 3.63%
overhead(ms) -9.40% 109.87% 127.62% 176.38% 347.39%
overhead-endpt(#) 0.00% 0.00% 0.00% 0.00% 0.00%
overhead-endpt(ms) -57.94% -22.55% -56.42% -51.73% -4.36%

RC DR IDR CG TSCP

N̂eo4j (#) 338 235 868 624,322 1,953

N̂eo4j (ms) 339 51 5,240 6,465 689

N̂eo4j -endpt(#) 330 235 477 67,830 1,294

N̂eo4j -endpt(ms) 134 16 3,826 1,412 196
V-Soufflé(#) 330 235 477 67,830 1,297
V-Soufflé(ms) 269 191 1,160 434 346
overhead(#) 2.42% 0.00% 81.97% 820.42% 50.58%
overhead(ms) 26.10% -73.25% 351.86% 1390.32% 99.36%
overhead-endpt(#) 0.00% 0.00% 0.00% 0.00% -0.23%
overhead-endpt(ms) -50.33% -91.64% 229.92% 225.40% -43.40%

is considerably less than the difference in the number of results from queries on axTLS,

resulting in a smaller runtime overhead for N̂eo4j ’s analysis of ToyBox.

The advantage of exposing the complete path of query results is that the engineer can
examine the constituent nodes and edges of a dataflow or control-flow path result. When
there are multiple path results associated with the same pair of endpoints, the engineer may
gain a more comprehensive understanding of the results and their properties, and would
have the ability to select the most relevant or significant path for further examination or
analysis. More importantly, they can examine the PCs of the constituent nodes and edges,

49

Table 5.10: Evaluation 3: Average number of results and average runtime per program

axTLS ToyBox BusyBox BerkeleyDB Subversion

N̂eo4j (#) 51,919 16,121 148,193 94,063 3,515,175

N̂eo4j (ms) 992 154 607 2,072 9,804

N̂eo4j -endpt(#) 1,825 14,252 136,479 27,568 2,909,473

N̂eo4j -endpt(ms) 95 59 258 1,445 2,533
V-Soufflé(#) 1,825 14,252 136,482 27,568 2,909,473
V-Soufflé(ms) 215 142 442 425 1,893
overhead(#) 2744.88% 13.11% 8.58% 241.20% 20.82%
overhead(ms) 360.54% 8.16% 37.24% 387.37% 418.02%
overhead-endpt(#) 0.00% 0.00% 0.00% 0.00% 0.00%
overhead-endpt(ms) -55.90% -58.34% -41.63% 239.97% 33.82%

Figure 5.3: Triangle-shaped communication patterns of AxTLS

allowing the engineer to see which products contribute the entities and relationships of each
path result, as shown in Fig. 5.3. This screenshot shows the extended Neo4j visualizer

50

[59] displaying a subset of the results of TSCP analysis applied to AxTLS. Users can use
filters to highlight results that apply to specific products and can highlight the results of
multiple products.

5.5 Implications and lessons learned

In general, larger ̂factbases lead to larger overheads for N̂eo4j SPL analyses. More sur-

prisingly, systems with similar-sized ̂factbases but with fewer variable facts also typically
have larger overheads for SPL analyses, because when fewer facts are variable, more facts
have a true PC, which means that these facts hold in all the products and therefore are

included in more final results. It is also the case that ̂factbases with a larger percentage of
variable facts produce a larger percentage of variable results; this is as expected.

Despite the savings achieved by lifting the Neo4j engine, variability-aware queries can
still be expensive, which necessitates further performance optimizations. One possible ap-
proach would be more aggressive staging of queries (described in Chapter 4), which breaks
a query down into multiple steps or subqueries. Another approach worth investigating is
whether backward vs. forward traversals of the software model have a substantial impact
on the runtimes of analyses.

Additionally, when developers pose queries that can potentially produce long path

results (such as IDR), N̂eo4j will generally have a longer runtime than V-Soufflé even

when both analyzers report only the endpoints of path results. We hypothesize that N̂eo4j
needs to find the path results in order to return the endpoints. In such a case, the developer

might want to use V-Soufflé first to report results and then use N̂eo4j to investigate the
paths associated with those results.

5.6 Threats to validity

There are several threats to the validity of our results. Most notably, our evaluation is
limited to ten analysis queries made to five SPLs. We have tried to mitigate against this
threat by employing a variety of analyses from different sources and selecting nontrivial
open-source SPL systems to analyze, but it is possible that our approach may not generalize

to other systems and analyses. Further evaluation of N̂eo4j on larger systems and a wider
range of analyses are necessary to fully understand its potential.

51

In our second evaluation study, our choice of using only the maximal product to ap-
proximate product performance may introduce a threat to the validity of our results. As
the maximal product is likely to be the most complex and time-consuming to analyze,
our evaluation of the overhead of variability-aware analyses may be biased in our favour.
However, given that the measured overhead ranges from 1.88% to 456%, while the number
of features in the subject SPLs ranges from 40 to 847, it is clear that the variability-aware
analyses would have been found to be more efficient no matter which product was cho-
sen for comparison. At the least, the maximal product provides a concrete baseline for
comparison.

Finally, we note that the R̂ex fact extractor has some limitations. It cannot extract
facts about pointer addresses, function pointers, or templates due to aliasing. Moreover,
because the fact extraction is based on a static analysis, certain code behaviours like
threads or statement execution order may not be accurately modelled, resulting in possible

false positives or negatives. However, because our evaluation studies execute N̂eo4j and

V-Soufflé on the same extracted ̂factbase, the results of the performance evaluations remain
unaffected.

5.7 Summary

In this chapter, we conducted three separate experiments to evaluate variability-aware

N̂eo4j .

In the first experiment, we compare the performances of two approaches to variability-

aware N̂eo4j queries: a post-processing approach and an on-the-fly approach and show
that, in general, the on-the-fly approach has a faster runtime compared to the post-
processing approach.

In the second experiment, we measure (to the extent possible) the overhead of analyz-
ing a model of an SPL versus separately analyzing the models of the SPL’s products by

reporting the number of results and runtime overhead of N̂eo4j and the maximal product.
We show that the overhead ranges from 1.88% to 456%.

In the last experiment, we compare the analysis results and performance of our variability-

aware N̂eo4j to variability-aware V-Soufflé. We found that N̂eo4j is usually more efficient
than V-Soufflé when returning the same results (i.e., the end points of path results), with

the exceptions of IDR and CG analyses applied to the BerkeleyDB and Subversion ̂factbase.
We hypothesize that the performance of N̂eo4j may suffer a combinatorial explosion when

52

queries return long paths or when the ratio of the number of path results to the number of

endpoint results is high. When N̂eo4j returns complete path results, it is generally slower

than V-Soufflé, although N̂eo4j can outperform V-Soufflé on analyses that return short
fixed-length paths.

53

Chapter 6

Related Work

Several researchers have explored the use of graphical models of program facts for the
purpose of studying questions about the modelled programs. Ebert et al. [25] employ
TGraphs (i.e., directed graphs consisting of typed, attributed, and ordered nodes and
edges) to represent and model source code entities (e.g., classes, functions, variables) and
their relationships. They also use a graph query language called GReQL, to perform queries
on the model, such as computing all caller-callee pairs. Mens et al. [42] leverage type graph
and graph transformation techniques to analyze refactoring dependencies between software
components. Sahu et al. [52] introduce composed control flow graphs (CCFG) to carry out
dataflow testing on feature-oriented programs. However, these works have not been lifted
to work on SPL models.

The growing size and complexity of modern software systems have prompted researchers
to investigate the use of graph databases for storing and querying graphical models of
software. Graph databases and their associated query languages provide greater flexibility
and more robust querying capabilities for large graphical models compared to specific
analyses. Graph databases have been used for discovering vulnerabilities [68], querying
source code [64], and code comprehension [26]. Ramler et al. [48] conducted five case
studies and found that although graph databases offer versatility in the data model, they
do not support time series data. These works have also not been lifted to work on SPLs, but

because they employ graph databases they would benefit directly from our lifted N̂eo4j.

Several attempts have been made to lift code-based program analyses for SPLs. Brabrand
et al. [12] conduct feature-sensitive dataflow analysis on SPLs, and show that this approach
is on average 5.6 times faster than the brute force approach. Bodden et al. [11] introduce
SPLLIFT to analyze an entire SPL as a whole. However, it is a prototype restricted to Java

54

programs, limiting its practical application to real-world SPLs, especially those that uti-
lize the C preprocessor. Schubert et al. [53] present VARALYZER, a novel static analysis
approach that can perform inter-procedural, flow-, field-, and context-sensitive data-flow
analyses on SPLs. They show that VARALYZER produces results that are consistent with
the product-based approach and that it outperforms the latter in all cases. In all of these
cases, the analyses scale to only small SPLs and the works lift specific analyses, whereas
by lifting the Neo4j query engine we lift all analyses that can be expressed in the Neo4j
query language.

The work that is most closely related to our work is the lifted V-Soufflé Datalog engine

described in Chapter 2.4. Like our work, V-Soufflé queries an SPL ̂factbase, but it uses

Datalog as its query language whereas N̂eo4j uses Cypher and APOC. Importantly, N̂eo4j
reports full path results rather than the start and end nodes of paths. Moreover, the paths’
constituents are annotated by PCs, enabling the engineer to see how different products
contribute to each result.

55

Chapter 7

Conclusion

In this thesis, we present a novel approach to analyzing graphical models of software

product lines (SPLs) using a lifted N̂eo4j query engine that operates on SPL ̂factbases
and returns variability-aware query results. We conducted ten analyses on the models of
five nontrivial SPLs that identify possible feature interactions, dataflows, and control-flows
among program components. The overhead for obtaining analysis results for all of an SPL’s
products, compared to the maximum product varies from 1.88% to 456%, demonstrating

the efficiency of N̂eo4j ’s variability-aware analyses.

When compared to a competing variability-aware analyzer of SPL models, V-Soufflé,

N̂eo4j is usually more efficient when returning the same results (i.e., the endpoints of
path results) and has the potential to return richer results (i.e., full path results) and
to visualize variability-aware results. However, when queries that return large numbers of

lengthy results are applied to large-scale systems, N̂eo4j can be less efficient than V-Soufflé.
In this case, engineers might want to use V-Soufflé to return endpoint results and then use

N̂eo4j to retrieve full path results for specific endpoints of interest.

7.1 Limitations

While our toolchain including N̂eo4j demonstrates effectiveness in performing variability-
aware analyses on software product lines (SPLs) and retrieving complete path results, it
is essential to acknowledge that this methodology has certain limitations.

Static analysis, by its nature, involves examining code without executing it, which can
lead to limitations in accurately modelling certain code behaviours. For instance, static

56

analysis may struggle to capture dynamic aspects such as threads or the precise order of
statement execution. As a consequence, there is a possibility of generating false positives
or false negatives in the analysis results.

In addition, it is important to acknowledge that the R̂ex fact extractor, which is used to

build the ̂factbases to support MDE-based analysis of SPLs, has some limitations. These
limitations encompass the inability to extract facts pertaining to pointer addresses, function
pointers, or templates, primarily due to challenges associated with aliasing. As a result, the
fact extractor may not provide comprehensive insights into certain aspects of the analyzed
code that involve pointer addresses, function pointers, or templates.

Finally, our evaluation is limited in its scope, as it is based on ten specific analysis
queries conducted on five software product lines (SPLs), which necessitates caution when
attempting to generalize the results. Although our three separate experiments prove the

effectiveness of N̂eo4j within the specific context we have focused on, it is important
to acknowledge that these findings may not fully represent the diverse range of analysis
scenarios and software systems.

7.2 Future Work

There are several prospective avenues for future research that build on the findings and
contributions of this thesis: (1) discover more analyses of interest that can be effectively

expressed in the N̂eo4j query language, and apply them to larger-scale SPL systems, (2)
integrate the analysis with control flow graph (CFG) blocks to increase the precision of

analysis results, and (3) optimize the performance of N̂eo4j analyses.

With respect to the first future extension, our evaluation is limited in that it studies
only ten particular analysis queries conducted on five SPLs. We have attempted to mitigate
against this limitation by selecting a variety of analyses from various sources and analyzing
nontrivial open-source SPL systems. While these evaluations provide valuable insights and
demonstrate the effectiveness within the specific context of our study, it is important to
acknowledge that our approach may not generalize to other systems and analyses. Future

research should aim to extend the evaluation of N̂eo4j by identifying new analyses that

can be effectively expressed using the N̂eo4j query language and applying them to a larger
and more diverse set of SPLs to ensure broader applicability and validity of the findings

and to fully understand the potential of N̂eo4j .

Due to the limitations of static analysis, it is also important to consider how to reduce
the number of false positive and false negative results. One potential avenue for improving

57

the precision of our analyses is to integrate facts about an SPL’s control flow graph (CFG)
block and verify that analysis results correspond to actual control flows in the code.

Lastly, as the size and complexity of SPL systems increase, it becomes essential to

dive deeper into optimizing the performance of N̂eo4j analyses. One possible method
is to explore more systematically the effect of staging queries on performance. Another
approach worth investigating is the degree to which backward versus forward traversals
of the software model impact query runtimes. By analyzing the impact of these query-
processing strategies, we can better understand their advantages and trade-offs in analyses.
Such investigations would provide insights into how best to leverage the software model’s
structure and dependencies to optimize analyses. The goal would be to identify more
efficient query strategies and traversal techniques and produce more precise results while
minimizing computational overhead.

58

References

[1] Iago Abal, Jean Melo, Ştefan Stănciulescu, Claus Brabrand, Márcio Ribeiro, and
Andrzej Wasowski. Variability bugs in highly configurable systems: a qualitative
analysis. ACM Transactions on Software Engineering and Methodology (TOSEM’18),
26(3):1–34, 2018.

[2] ADD-Lib. The Java Library for Algebraic Decision Diagrams. Accessed: April 10,
2023.

[3] Renzo Angles and Claudio Gutierrez. Survey of Graph Database Models. ACM
Computing Surveys (CSUR’08), 40(1):1–39, 2008.

[4] antlersoft. Browse-by-query (bbq), 2005.

[5] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-oriented soft-
ware product lines. Springer, 2016.

[6] Sven Apel, Alexander Von Rhein, Philipp Wendler, Armin Größlinger, and Dirk Beyer.
Strategies for product-line verification: case studies and experiments. In 2013 35th
International Conference on Software Engineering (ICSE’13), pages 482–491. IEEE,
2013.

[7] axTLS. axTLS Embedded SSL. Accessed: April 10, 2023.

[8] Shoham Ben-David, Baruch Sterin, Joanne M Atlee, and Sandy Beidu. Symbolic
Model Checking of Product-Line Requirements Using SAT-Based Methods. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE’15),
volume 1, pages 189–199. IEEE, 2015.

[9] Danilo Beuche, Michael Schulze, and Maurice Duvigneau. When 150% is too much:
supporting product centric viewpoints in an industrial product line. In Proceedings of

59

the 20th International Systems and Software Product Line Conference, pages 262–269,
2016.

[10] Shuvra S Bhattacharyya, Ed F Deprettere, and Bart D Theelen. Dynamic dataflow
graphs. Handbook of Signal Processing Systems, pages 905–944, 2013.

[11] Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba, and Mira
Mezini. SPLLIFT: Statically Analyzing Software Product Lines In Minutes Instead
Of Years. ACM SIGPLAN Notices (SIGPLAN’13), 48(6):355–364, 06 2013.

[12] Claus Brabrand, Márcio Ribeiro, Társis Tolêdo, and Paulo Borba. Intraprocedural
Dataflow Analysis for Software Product Lines. In Proceedings of the 11th annual
international conference on Aspect-oriented Software Development (AOSD’12), pages
13–24, 2012.

[13] Martin Bravenboer and Yannis Smaragdakis. Strictly Declarative Specification of So-
phisticated Points-To Analyses. In Proceedings of the 24th ACM SIGPLAN conference
on Object oriented programming systems languages and applications (OOPSLA ’09),
pages 243–262, 2009.

[14] Randal E Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers (TC’86), C-35(8):677–691, 08 1986.

[15] BusyBox. BusyBox: The Swiss Army Knife of Embedded Linux. Accessed: April 10,
2023.

[16] Gerardo Canfora, Aniello Cimitile, and Ugo De Carlini. A logic-based approach to
reverse engineering tools production. IEEE Transactions on Software Engineering,
18(12):1053–1064, 1992.

[17] Vito Giovanni Castellana, Marco Minutoli, Shreyansh Bhatt, Khushbu Agarwal,
Arthur Bleeker, John Feo, Daniel Chavarŕıa-Miranda, and David Haglin. High-
Performance Data Analytics Beyond the Relational and Graph Data Models with
GEMS. In 2017 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW’17), pages 1029–1038. IEEE, 2017.

[18] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and Jean-
François Raskin. Model Checking Lots of Systems: Efficient Verification of Temporal
Properties in Software Product Lines. In Proceedings of the 32nd ACM/IEEE In-
ternational Conference on Software Engineering-Volume 1 (ICSE’10), pages 335–344,
2010.

60

[19] Paul Clements and Linda Northrop. Software Product Lines. Addison-Wesley Boston,
2002.

[20] Tal Cohen, Joseph Gil, and Itay Maman. Jtl: the java tools language. ACM SIGPLAN
Notices, 41(10):89–108, 2006.

[21] CPPX. CPPX - C++ Fact Extractor. Accessed: April 10, 2023.

[22] Ian J Davis and Michael W Godfrey. From Whence It Came: Detecting Source
Code Clones by Analyzing Assembler. In 2010 17th Working Conference on Reverse
Engineering (WCRE’10), pages 242–246. IEEE, 2010.

[23] Coen De Roover, Carlos Noguera, Andy Kellens, and Vivane Jonckers. The soul
tool suite for querying programs in symbiosis with eclipse. In Proceedings of the 9th
International Conference on Principles and Practice of Programming in Java, pages
71–80, 2011.

[24] Jürgen Ebert, Bernt Kullbach, and Andreas Winter. Grax-an interchange format for
reengineering tools. In Sixth Working Conference on Reverse Engineering (Cat. No.
PR00303), pages 89–98. IEEE, 1999.

[25] Jürgen Ebert, Volker Riediger, and Andreas Winter. Graph Technology in Reverse En-
gineering The TGraph Approach. 10th Workshop Software Reengineering (WSR’08),
P-126:67–81, 2008.

[26] Oshini Goonetilleke, David Meibusch, and Ben Barham. Graph Data Management
of Evolving Dependency Graphs for Multi-Versioned Codebases. In 2017 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME’17), pages
574–583. IEEE, 11 2017.

[27] Sergio Greco and Cristian Molinaro. Datalog and logic databases. Synthesis Lectures
on Data Management, 7(2):1–169, 2015.

[28] Soonhoi Ha and Hyunok Oh. Decidable dataflow models for signal processing: Syn-
chronous dataflow and its extensions. In Handbook of Signal Processing Systems, pages
1083–1109. Springer, 2013.

[29] Robert Hackman, Joanne M Atlee, Alistair Finn Hackett, and Michael W Godfrey.
mel-Model Extractor Language for Extracting Facts fromModels. In Proceedings of the
23rd ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems (MODELS’20), pages 200–210, 2020.

61

[30] CE Hrischuk. Principles for the automated construction of distributed application
software execution models.

[31] Doug Janzen and Kris De Volder. Navigating and querying code without getting
lost. In Proceedings of the 2nd international conference on Aspect-oriented software
development, pages 178–187, 2003.

[32] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. Soufflé: On Synthesis of Pro-
gram Analyzers. In Computer Aided Verification (CAV’16), pages 422–430. Springer,
07 2016.

[33] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer
Peterson. Feature-oriented domain analysis (foda) feasibility study. Technical report,
Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst, 1990.

[34] Christian Kästner and Sven Apel. Virtual Separation of Concerns - A Second Chance
For Preprocessors. Journal of Object Technology (JOT’09), 8(6):59–78, 09 2009.

[35] Christian Kästner, Sven Apel, Thomas Thüm, and Gunter Saake. Type Checking
Annotation-Based Product Lines. ACM Transactions on Software Engineering and
Methodology (TOSEM’12), 21(3):1–39, 2012.

[36] Christian Kästner, Paolo G Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus Os-
termann, and Thorsten Berger. Variability-Aware Parsing in the Presence of Lexical
Macros and Conditional Compilation. In Proceedings of the 2011 ACM international
conference on Object oriented programming systems languages and applications (OOP-
SLA’11), pages 805–824, 10 2011.

[37] Christian Kästner, Klaus Ostermann, and Sebastian Erdweg. A Variability-Aware
Module System. In Proceedings of the ACM international conference on Object ori-
ented programming systems languages and applications (OOPSLA’12), pages 773–792,
2012.

[38] Christian Kastner, Thomas Thum, Gunter Saake, Janet Feigenspan, Thomas Leich,
Fabian Wielgorz, and Sven Apel. Featureide: A tool framework for feature-oriented
software development. In 2009 IEEE 31st International Conference on Software En-
gineering, pages 611–614. IEEE, 2009.

[39] Jens Knodel and Martin Pinzger. Improving Fact Extraction of Framework-Based
Software Systems. In 10th Working Conference on Reverse Engineering (WCRE’03),
pages 186–186. IEEE Computer Society, 2003.

62

[40] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael
Schulze. An Analysis of the Variability in Forty Preprocessor-Based Software Product
Lines. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1 (ICSE’10), pages 105–114, 2010.

[41] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel. A
Comparison of 10 Sampling Algorithms for Configurable Systems. In 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE’16), pages 643–654.
IEEE, 2016.

[42] Tom Mens, Gabriele Taentzer, and Olga Runge. Analysing Refactoring Depen-
dencies Using Graph Transformation. Software & Systems Modeling (SoSyM’07),
6(3):269–285, 2007.

[43] Jan Midtgaard, Aleksandar S Dimovski, Claus Brabrand, and Andrzej Wasowski.
Systematic Derivation of Correct Variability-Aware Program Analyses. Science of
Computer Programming (SCP’15), 105:145–170, 07 2015.

[44] Austin Mordahl. Toward Detection and Characterization of Variability Bugs in Con-
figurable C Software: An Empirical Study. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion’19),
pages 153–155. IEEE, 2019.

[45] Bryan J Muscedere, Robert Hackman, Davood Anbarnam, Joanne M Atlee, Ian J
Davis, and Michael W Godfrey. Detecting Feature-Interaction Symptoms In Automo-
tive Software Using Lightweight Analysis. In 2019 IEEE 26th International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER’19), pages 175–185.
IEEE, 02 2019.

[46] Neo4j. Neo4j Graph Data Platform. Accessed: April 10, 2023.

[47] Zachary Patterson, Zenong Zhang, Brent Pappas, Shiyi Wei, and Paul Gazzillo. Sug-
arC: Scalable Desugaring of Real-World Preprocessor Usage into Pure C. In Proceed-
ings of the 44th International Conference on Software Engineering (ICSE’22), pages
2056–2067, 2022.

[48] Rudolf Ramler, Georg Buchgeher, Claus Klammer, Michael Pfeiffer, Christian Sa-
lomon, Hannes Thaller, and Lukas Linsbauer. Benefits and drawbacks of representing
and analyzing source code and software engineering artifacts with graph databases.
In Software Quality: The Complexity and Challenges of Software Engineering and
Software Quality in the Cloud (SWQD’2019), pages 125–148. Springer, 2019.

63

[49] Thomas Reps. Program Analysis via Graph Reachability. Information and software
technology (IST’98), 40(11-12):701–726, 1998.

[50] Alexander Von Rhein, Jörg Liebig, Andreas Janker, Christian Kästner, and Sven Apel.
Variability-Aware Static Analysis at Scale: An Empirical Study. ACM Transactions
on Software Engineering and Methodology (TOSEM’18), 27(4):1–33, 2018.

[51] Martin P Robillard and Gail C Murphy. Representing concerns in source code.
ACM Transactions on Software Engineering and Methodology (TOSEM’07), 16(1):3–
es, 2007.

[52] Madhusmita Sahu and Durga Prasad Mohapatra. Data Flow Testing of Feature-
Oriented Programs. International Journal of System Assurance Engineering and Man-
agement (IJSAEM’22), 13(5):2291–2306, 2022.

[53] Philipp Dominik Schubert, Paul Gazzillo, Zach Patterson, Julian Braha, Fabian
Schiebel, Ben Hermann, Shiyi Wei, and Eric Bodden. Static Data-Flow Analysis for
Software Product Lines in C: Revoking the Preprocessor’s Special Role. Automated
Software Engineering (ASE’22), 29(1):35, 2022.

[54] Ramy Shahin. Language-Based Lifting of Analyses to Software Product Lines. PhD
thesis, University of Toronto (Canada), 2021.

[55] Ramy Shahin, Murad Akhundov, and Marsha Chechik. Annotative Software Prod-
uct Line Analysis Using Variability-aware Datalog. IEEE Transactions on Software
Engineering (TSE’23), 49(3):1323–1341, 03 2023.

[56] Ramy Shahin and Marsha Chechik. Automatic and Efficient Variability-Aware Lift-
ing of Functional Programs. Proceedings of the ACM on Programming Languages
(PACMPL’20), 4(OOPSLA):1–27, 11 2020.

[57] Ramy Shahin and Marsha Chechik. Variability-aware datalog. In International Sym-
posium on Practical Aspects of Declarative Languages, pages 213–221. Springer, 2020.

[58] Ramy Shahin, Marsha Chechik, and Rick Salay. Lifting Datalog-Based Analyses to
Software Product Lines. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE’19), pages 39–49, 2019.

[59] Ramy Shahin, Rafael Toledo, Robert Hackman, Joanne M Atlee, and Marsha Chechik.
Applying Declarative Analysis to Industrial Automotive Software Product Line Mod-
els. Empirical Software Engineering (EMSE’23), 28(2):40, 2023.

64

[60] M-AD Storey, Kenny Wong, Philip Fong, D Hooper, Kory Hopkins, and Hausi A
Muller. On designing an experiment to evaluate a reverse engineering tool. In Pro-
ceedings of WCRE’96: 4rd Working Conference on Reverse Engineering, pages 31–40.
IEEE, 1996.

[61] Margaret-Anne D Storey, Kenny Wong, and Hausi A Müller. Rigi: A visualization en-
vironment for reverse engineering. In Proceedings of the 19th international conference
on Software engineering, pages 606–607, 1997.

[62] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake. A
Classification And Survey Of Analysis Strategies For Software Product Lines. ACM
Computing Surveys (CSUR’14), 47(1):1–45, 07 2014.

[63] ToyBox. Toybox: All-In-One Linux Command Line. Accessed: April 10, 2023.

[64] Raoul-Gabriel Urma and Alan Mycroft. Source-Code Queries with Graph Databases
- With Application to Programming Language Usage and Evolution. Science of Com-
puter Programming (SCP’15), 97:127–134, 2015.

[65] Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin Chen, and Dawn
Wilkins. A comparison of a graph database and a relational database: a data prove-
nance perspective. In Proceedings of the 48th annual Southeast regional conference,
pages 1–6, 2010.

[66] Alexander von Rhein, Sven Apel, Christian Kästner, Thomas Thüm, and Ina Schaefer.
The PLA Model: On the Combination of Product-Line Analyses. In International
Workshop on Variability Modelling of Software-intensive Systems (VaMoS’13), pages
1–8, 01 2013.

[67] David M Weiss and Chi Tau Robert Lai. Software Product-Line Engineering: A
Family-Based Software Development Process. Addison-Wesley Longman Publishing
Co., Inc., 1999.

[68] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Modeling and Dis-
covering Vulnerabilities with Code Property Graphs. In 2014 IEEE Symposium on
Security and Privacy (SP’14), pages 590–604. IEEE, 11 2014.

65

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Thesis Statement
	Thesis Contributions
	Thesis Organization

	Background
	Software Product Lines
	Software Factbases and factbase"0362factbase
	Neo4j and Graph Database
	Variability-aware V-Souffl
	Summary

	Variability-Aware Neo4j"0362Neo4j
	Traversal Framework
	Lifted Factbase"0362Factbase
	Lifted Traversal Algorithm
	Soundness
	Summary

	Analyses of interest
	Direct and Indirect Inter-Component-Based Communication
	Loop Detection
	Behaviour Alternation
	Multiple Callers
	Race Condition
	Direct and Indirect Recursion
	Call Graph Analysis
	Triangle-Shaped Communication Patterns
	Summary

	Evaluation
	Experimental Setup
	Post-processing Versus On-the-fly Approach
	Scalability of Neo4j"0362Neo4j
	Neo4j"0362Neo4j versus V-Souffl
	Implications and lessons learned
	Threats to validity
	Summary

	Related Work
	Conclusion
	Limitations
	Future Work

	References

