
Forest Fire Prediction Using
Heterogeneous Data Sources and

Machine Learning Methods

by

Parveen Kaur

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2023

© Parveen Kaur 2023



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Forest fires pose a significant and urgent threat to ecosystems and human lives, neces-
sitating accurate prediction for effective mitigation strategies. Predicting forest fires has
been a longstanding challenge due to the complex and dynamic nature of fire behavior.
Traditional approaches to forest fire prediction, dating back to the 1950s, relied on sim-
plistic statistical models and manual observations to identify fire-prone areas. However,
these classical solutions were limited in their ability to capture the intricate interplay of
various environmental factors that influence fire ignition. Since then, the field of forest fire
prediction has undergone remarkable advancements, driven by the availability of hetero-
geneous data sources, advancements in computing power, and the emergence of machine
learning techniques. The advent of remote sensing technologies, weather stations, and
geospatial data has provided rich and diverse datasets for analyzing fire-related variables
such as weather conditions, vegetation indices, topography, and historical fire records. Fur-
thermore, the rapid progress in machine learning algorithms has enabled the development
of sophisticated models capable of extracting meaningful patterns and relationships from
these large-scale and complex datasets. These advancements have revolutionized forest fire
prediction by improving the performance and reliability of predictive models, facilitating
proactive decision-making, and enhancing the effectiveness of mitigation strategies.

Our study employs a comprehensive data collection framework to enhance forest fire
prediction capabilities. The framework integrates data from remote sensing satellites,
ground-based weather stations, and other relevant sources, facilitating the capture of cru-
cial meteorological, biophysical, and topographical attributes. By leveraging these het-
erogeneous data sources, we create a unified database that spans a substantial 18-year
period and offers a high temporal resolution for detailed analysis. However, one of the pri-
mary challenges encountered in forest fire prediction is the issue of data imbalance, where
the number of non-fire instances significantly surpasses fire instances in the dataset. To
address this challenge, advanced spatial subsampling, and downsampling techniques are
employed, effectively mitigating the data imbalance issue and ensuring a more balanced
representation of fire and non-fire instances for model training. Leveraging machine learn-
ing methods such as Random Forest, XGBoost, and MultiLayer Perceptron, our study
evaluates the performance of these models in forest fire prediction. The results reveal the
impressive performance of XGBoost, achieving an impressive ROC-AUC score of 87.2%
and a sensitivity of 75%. This study highlights the importance of incorporating meteoro-
logical data and fire history to improve prediction performance and showcases the potential
of machine learning techniques in addressing forest fire prediction challenges. The find-
ings contribute to proactive risk assessment, robust mitigation strategies, and preserving
ecosystems and human lives.
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Chapter 1

Introduction

1.1 Motivation

Forest fires are a natural part of many ecosystems, but they can also have significant
impacts on the environment. There are a few long-term benefits of wildfires, like nutrient
cycling and disease control, but these are outweighed by the negative impacts of wildfires
that are significant in the short term. The trends of wildfires show a significant rise over the
decades. In April 2020, the number of fire alerts across the globe was up by 13% compared
to the previous year[24]. A greater number of more intense fires will release millions of
extra tonnes of carbon, decimate biodiversity, destroy vital ecosystems, impact economies,
and people, threaten property and livelihoods, and cause severe long-term health problems
for millions around the world[24]. Copernicus Atmosphere Monitoring Service reported
that global wildfires and vegetation fires in 2022 generated 1,455 mega-tonnes of carbon
emissions[4]. The higher carbon emissions lead to high temperatures and climate change,
which results in more frequent fires in drier conditions, as explained by Climate Feedback
Loop Fueling US Fires[4]. Conference Board of Canada [19] estimates that wildfires cost the
Canadian economy an average of $1 billion per year. In 2016 in Alberta, an uncontrolled
wildfire in the Fort McMurray region led to the evacuation of over 88,000 residents and
cost $456 million or 0.1 percent off of real GDP in Alberta[19].

The apocalyptic prospect makes it essential for the researchers, planners, and agencies
responsible for fire management and mitigation to have practices for better forest fire
warning and prediction systems. There are broadly two actions that are carried out to
reduce the risk and mitigate wildfires[8]: (a) prediction of wildfire occurrence, detection
of wildfire, predicting the spread of wildfire, identifying the potential danger areas for
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wildfire; and (b) decide development, deployment, and financing of wildfire mitigation
and elimination resources. Innovative wildfire warning tools and prediction models are
required in order to improve wildfire management, moderation, and evacuation practices.
Particularly, predicting the fire ignition - the potential that a wildfire may break out in a
certain area before its actual ignition would offer useful mitigation and disaster planning
capabilities. Prediction of forest fires is essential, in order to allocate resources efficiently,
respond quickly to prevent fire activity and its spread, and have better wildfire emergency
response. The identification of high fire risk regions can help us prevent wildfires by
shutting down the electricity line in that region and introducing forest fire vegetation
breaks in such regions to limit the spread of fires.

Wildfire ignition prediction can be done by modeling the relationship between the iden-
tified influential factors and fire danger. However, as pointed out by [9], forest fire ignition
and behavior is a complicated process; it is the result of nonlinear and complex relations
between various factors, such as ignition source, fuel content, climate, and topography. The
complex nature of the problem makes it difficult for the predictive models to accurately
predict the future occurrence of wildfire and help planners with reliable models to use
when making crucial mitigation decisions[8]. The selection of appropriate factors involved
in the wildfire occurrence and deciding the method to model the forest fire occurrence is
important because these can have a big impact on the prediction performance[8].

The advent of various remote sensing technologies and machine learning approaches
provides enormous opportunities to build models to predict wildfires. Therefore, we inves-
tigate the potential of data combined from various heterogeneous data sources and machine
learning for forest fire prediction.
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1.2 Objective

The objective of this work is to develop a model to predict forest fire ignition. Prediction
of forest fire ignition is formulated here as a classification problem, given the data features
model classifies it into forest fire ignition (1) and non-ignition (0). The objective of this
thesis is represented in Fig. 1.1. We assume the availability of historical data from vari-
ous sources such as weather stations, remote satellites, and other sources. We develop a
framework to combine these datasets into a single database. These data variables come
from different sources of data such as weather stations, and remote satellites, and different
formats of data such as CSV files, GeoTIFF images, and shape files. These datasets from
different sources usually have different spatial and temporal resolutions. To combine such
datasets to generate a single database various spatial and temporal factors are considered.

Figure 1.1: Research Objective

The Forest Fire dataset is highly imbalanced which means that the number of fire
events is very less than the number of non-fire events. The issue with the highly im-
balanced dataset is that model trained on such data tends to favor the majority class
and totally ignore the minority class which is fire events in our scenario. So we need a
methodology to deal with the imbalance in the Forest Fire Data. Prediction using ma-
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chine learning techniques depends on various Forest Fire Danger Conditions (FFDC). The
FFDC considered four different types of data: Meteorological variable (MV), Biophysical
variable(BV), Topographical variable (TV), and Other variable (OV) as shown in Fig. 1.2.
A high-level model of systems for the prediction of forest fire ignitions using FFDCs is
denoted by MFFDC as given in Equ. 1.1.

MFFDC = f(MV,BV, TV,OV ) (1.1)

The output of the prediction model is Ignition (1) or Non-Ignition (0) given the input
vector which has all the MV, BV, TV, and OV data variables. The Visual representation
of the overall work of the study is summarised in 1.1. We investigate the potential in data
combined from various resources for forest fire prediction using two tree-based ensemble
models and one neural network-based model. For this purpose, we propose, a ”Wildfire
ignition prediction dataset” that combined various meteorological, topographical, and bio-
physical features. In addition, we address the crucial problem of imbalance in the data on
forest fires.

Figure 1.2: Data features
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This study presents a novel framework aimed at integrating data from diverse sources
into a consolidated database that encompasses various Forest Fire Danger Conditions
(FFDC). The objective is to establish a comprehensive and unified repository of features
collected from different sources, thereby facilitating in-depth research within the domain
of forest fires. Meteorological data, derived from weather stations distributed across the
Alberta region, is incorporated. Biophysical data, obtained through remote sensing tech-
nology, and topographical data, acquired from remote sensing satellites, are also included.
This framework enables the seamless integration of data from multiple sources into a co-
hesive data file.

The ignition of forest fires is a multifaceted process involving numerous contributing
factors. To capture the complexity of the phenomenon, this research integrates factors from
different sources that describe various aspects of the prevailing conditions. By leveraging
machine learning techniques, it becomes possible to discern intricate relationships between
the FFDC and wildfires, thereby enabling the prediction of forest fire occurrences.

In addition to the existing features of Meteorological variables (MV), Topographical
Variables (TV), and Biophysical Variables (BV), three additional FFDCs are incorporated
into the dataset. The significance of their inclusion is analyzed to ascertain their contri-
bution to the overall predictive capabilities. The location serves as a crucial factor, as
certain regions may exhibit a higher risk of forest fires compared to others. Furthermore,
considering the influence of seasonal variations, the month of occurrence is incorporated
as an FFDC. The combination of month and location aims to enhance the model’s perfor-
mance by capturing inherent features that may not be explicitly represented in the dataset.
Moreover, the study investigates the potential impact of incorporating historical fire data
for a specific region on the model’s ability to predict forest fires. This exploration rec-
ognizes the importance of wildfire frequency in a given region as an additional predictive
factor. Finally, the research examines how weather trends in preceding days contribute to
the occurrence of wildfires, further enhancing the predictive capabilities of the model.
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1.2.1 Research Questions

RQ1. What are the underlying factors contributing to the ignition of forest fires?

RQ2. What methods can be employed to effectively integrate data from diverse formats
and heterogenous data sources into a unified database?

RQ3. How does the combination of meteorological, biophysical, and topographical data
enhance the predictive capabilities of the model for forest fire ignition?

RQ4. What are the major challenges associated with wildfire data and what strategies can
be employed to address them?

RQ5. How to deal with the high imbalance in the forest fire data?

RQ6. What machine learning methods can effectively predict forest fire ignitions?

RQ7. How do various factors related to wildfires contribute to the prediction of forest fire
ignitions?

RQ8. To what extent does the inclusion of fire history information, temporal information
(e.g., month) and spatial information (e.g., grid location) improve the performance
of forest fire ignition prediction?

1.2.2 Contributions

As highlighted earlier, this thesis makes significant contributions in three key areas pertain-
ing to forest fire prediction: dataset aggregation, handling imbalanced data, and creation
of a machine learning prediction model.

C1. Creation of a data collection framework for collecting data of different types and
resolutions from various sources such as remote satellites and weather stations and
aggregating it into a single database. Instantiate this framework by creating a wildfire
prediction database with a total of 18 features, which is a combination of Meteorolog-
ical, Biophysical, Topographical, and Other attributes captured daily over 18 years,
with a spatial spanning across 661,848 km2 at the spatial resolution of 10 km by 10
km, presented in CSV format with each row representing a unique day and location.
Thus framework can help us to create a single database from any number of sources.
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C2. Proposed data imbalance handling technique for wildfire ignition prediction. The
dataset generated from contribution C1 is highly imbalanced (observed imbalance
ratio is 84000 non-fire is to 1 fire event), so we addressed the data imbalance using
change of spatial resolution, spatio-subsampling, different downsampling techniques,
and downsampling ratios. Handling the imbalanced nature of data leads to improved
wildfire ignition predictability of the model.

C3. Creation of machine learning model for wildfire ignition prediction. We use three
approaches (i) Random Forest (RF), (ii) eXtreme Gradient Boosting (XGB), and
Multi-Layer Perceptron (MLP) neural network to check the reliability of machine
learning models for wildfire ignition predictability. An ablation study showing the
importance of each feature present in the data is explored.

The experimental results show that the ROC-AUC score of ensemble model XGBoost is
the highest scoring at 87.2% among the three models compared. The best undersampling
technique chosen for our dataset was the Near Miss 3 undersampling technique which gave
out these best results at the downsampling ratio of 0.05. While comparing the contribution
of each attribute to the correct prediction of fire and non-fire classes, meteorological data
and fire history data show a big impact on the performance of the model.

Tab. 1.1 provides an overview of the research questions addressed by each contribution
in the thesis. The table showcases how the three contributions correspond to different
research questions discussed in various chapters. Contribution 1 (C1) addresses research
questions RQ1, RQ2, providing insights and solutions related to this Data Collection do-
main. Contribution 2 (C2) focuses on RQ4 and RQ5, contributing valuable strategies to
deal with dataset imbalance issues. Lastly, Contribution 3 (C3) encompasses RQ3, RQ6,
RQ7, and RQ8, offering comprehensive analysis and outcomes in relation to these research
questions about the predictive ability of the model and feature importance. Through these
contributions, the thesis covers a wide range of research questions, providing a holistic
understanding of the forest fire prediction domain.

Contribution Research Question
C1 RQ1, RQ2
C2 RQ4, RQ5
C3 RQ3, RQ6, RQ7, RQ8

Table 1.1: Contributions and addressed Research Questions
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1.3 Outline of Thesis

The remaining chapters of this thesis are structured as follows:

Chapter 2 provides a comprehensive overview of the background information related
to machine learning and its application in the context of forest fire prediction. It explores
relevant literature and introduces key concepts, terminologies, and techniques associated
with machine learning models and classifiers employed in this research work.

Chapter 3 presents the framework developed for data collection from diverse sources
and the subsequent aggregation of the collected data into a unified database. This chapter
details the methodology used to integrate data from various heterogeneous sources, such
as remote satellites and weather stations, into a single cohesive dataset for forest fire
prediction.

Chapter 4 focuses on the data analysis and preparation phase, highlighting the signifi-
cant changes made to the dataset. It also elucidates the architectural design of the machine
learning classifier employed in this study, providing insights into the model’s structure and
configuration.

In Chapter 5, the results of the experimental evaluations are presented. This includes
an examination of different machine learning models, downsampling techniques, and down-
sampling ratios on the dataset. Additionally, an ablation study is conducted to assess the
influence of the inclusion of various columns of data on the performance of the predictive
models.

Lastly, Chapter 6 serves as the conclusion of this research work, summarizing the key
findings, contributions, and implications. Furthermore, future directions and potential
areas for improvement and expansion of this research are discussed, highlighting avenues
for further exploration and development in the field of forest fire prediction.
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Chapter 2

Background and Literature Review

This chapter explores the fundamental aspects and literature review underlying our re-
search on forest fire prediction using machine learning methodologies. The escalating
threat posed by forest fires necessitates the development of accurate and timely prediction
models to support proactive fire management and prevention strategies. To accomplish
this objective, a comprehensive understanding of the existing body of knowledge in forest
fire prediction and machine learning is essential. This chapter presents a systematic review
of pertinent literature, examining the latest advancements and methodologies employed
in forest fire prediction. Furthermore, it provides a detailed exposition of fundamental
concepts and techniques in machine learning that will be pivotal in the development and
optimization of our predictive models. By establishing a robust theoretical framework, we
aim to facilitate the effective application of machine learning algorithms within the context
of forest fire prediction. This research endeavor aims to contribute to the advancement of
wildfire management and the preservation of our precious natural ecosystems.

2.1 Forest fires and Machine Learning

In recent years, the advent of machine learning techniques has shown great promise in
revolutionizing the field of forest fire prediction. This literature review aims to critically
examine the existing body of research on the application of machine learning algorithms
for forest fire prediction, highlighting the Forest Fire Database, Machine Learning Algo-
rithms, Imbalanced data issues, and Evaluation Metrics employed by different studies, and
identifying key challenges and opportunities in this rapidly evolving domain.
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2.1.1 Forest Fire Database

Extensive research efforts have been dedicated to identifying the primary drivers of forest
fires, yielding valuable insights. As reviewed by [6], forest fire ignition emerges from a com-
plex interaction among multiple factors, including meteorological conditions, topography,
human activities, vegetation, and fuel types. Notably, meteorological features have been
established as pivotal elements in forest fire prediction, particularly when integrated with
a diverse array of variables, as demonstrated by [6] and [12].

Within the realm of meteorological features, Temperature, and Relative Humidity have
been singled out as particularly influential in neural network-based wildfire prediction
models [10]. Furthermore, researchers such as [6] and [20] have highlighted the significant
role of topographical attributes, such as slope and aspect, in assessing wildfire risk. The
Normalized Difference Vegetation Index (NDVI) has emerged as a critical factor for spatial
forest fire prediction, employing artificial neural network-based models [1].

In our research, we extend beyond the dataset employed by [6] by incorporating ad-
ditional dimensions, including topographical, temporal, and weather trends, to enhance
our model’s learning capabilities. The importance of these features has motivated us to
integrate a diverse range of variables, spanning meteorological, topographical, biophysical,
and fire history aspects, specifically tailored to the Alberta region. Moreover, our research
incorporates fire history and weather trends to further enrich our dataset. The recogni-
tion of the need for high-quality datasets and a comprehensive data collection framework,
encompassing various features, underscores our commitment to developing robust wildfire
risk prediction models.

2.1.2 Machine Learning Algorithms

In recent years, machine learning techniques have gained significant attention in assessing
the forest fire domain, as highlighted in the comprehensive review by [9]. Researchers have
explored a range of models, including Multilayer Perceptron, Support Vector Machine,
Backpropagation Neural Network, Logistic Regression, Random Forest, and XGBoost, to
tackle this complex problem. Studies conducted by [12], [6], and [21] have demonstrated
the superiority of neural network-based models over support vector machines for wildfire
prediction. Notably, the Multilayer Perceptron model outperformed Logistic Regression
when employed for forest fire prediction [6], prompting us to incorporate it into our research
to assess its predictive reliability for our specific dataset.
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Author Summary/Learning

[6], [21], [12] The neural network-based model performs better than the support vector
machine for wildfire prediction.

[6] The multi-layer perceptron model performed best for forest fire prediction
when compared to Logistic Regression.

[8] The prediction capability of RF is better than SVM, so we include Random
Forest as a model for the forest fire prediction

[7] While predicting the forest fires in Turkey using the random forest, xgb
regressor, Decision Tree, and Linear Regression showed that the Random
forest gave the best results.

[25] For forest fire risk prediction employed XGBoost, SVM, and Logistic Regres-
sion based solely on the meteorological data and concluded that XGBoost
had the best predictive abilities.

Table 2.1: Machine Learning Model Literature

In one study, [21] employed a neural network with a backpropagation algorithm on
meteorological and weather index features to classify fire and non-fire cells. While our
dataset is considerably larger compared to that of [21], enabling the development of more
generalized models applicable to other regions as well, we recognize the importance of their
approach and findings.

Furthermore, [8] demonstrated the superior prediction capabilities of Random Forest
over Support Vector Machines, leading us to include Random Forest as one of the models
for forest fire prediction. Similarly, [23] compared Random Forest, XGBoost, and Balanced
Random Forest for wildfire risk prediction and found promising results. In the context of
forest fire detection and prediction, [22] successfully employed Random Forest. However,
our dataset is substantially larger, and we address the challenge of imbalanced forest fire
data, enhancing the applicability of our results.

Moreover, [7] examined forest fire prediction in Turkey using various models such as
Random Forest, XGBoost Regressor, Decision Tree, and Linear Regression, with Random
Forest yielding the best performance in terms of metrics such as Mean Absolute Error
(MAE), Mean Squared Error (MSE), and Accuracy. Drawing inspiration from these find-
ings, we incorporate Multi-Layer Perceptron, Random Forest, and XGBoost into our work,
leveraging their demonstrated effectiveness in forest fire prediction tasks.

Additionally, for forest fire risk prediction, [25] explored XGBoost, SVM, and Logistic
Regression solely based on meteorological data, concluding that XGBoost exhibited the
highest predictive abilities. In our research, we extend beyond this approach by incorpo-
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rating a broader range of data factors, augmenting the predictive power of XGBoost. The
collective insights and outcomes of these notable studies as shown in Tab. 2.1, provide the
foundation and motivation for our selection of Multi-Layer Perceptron, Random Forest,
and XGBoost as integral components of our research methodology.

2.1.3 Imbalanced Data

During the analysis of research papers focused on machine learning for forest fire prediction,
a significant research gap has been identified regarding the recognition of imbalanced data
as a fundamental issue within this domain. The prevailing approach to data collection often
neglects the inherent data imbalance associated with forest fire occurrences. Several studies
[12, 1, 8] have been observed to adopt a methodology in which an equal number of non-
fire points are randomly selected alongside fire points, resulting in a dataset composition
characterized by a 1:1 ratio. However, it is crucial to address the imbalanced nature of
forest fire data in this research context. The composition of the dataset has a substantial
impact on the performance of predictive models, making the obtained results unsuitable for
practical deployment scenarios where the imbalance ratio between non-fire and fire points
is substantially higher. The comprehensive overview of the studies regarding the imbalance
issue is depicted in Tab. 2.2. Refer to Section 2.3 for more understanding of Imbalanced
data and the Imbalance ratio is defined in Eq. 2.1

In the realm of wildfire prediction, a study conducted by [11] identifies the challenge of
data imbalance, particularly concerning wildfire occurrences. They employ a deep learning-
based model to forecast the extent of wildfire areas, focusing on the disparity between
large-scale and small-scale forest fires. Conversely, in [6], a different forest fire prediction
model is constructed, but with a predefined imbalance ratio of 1.4:1. Non-fire points are
randomly selected without adequately addressing the underlying data imbalance. Similarly,
researchers in [23] and [26] acknowledge the issue of dataset imbalance, yet employ relatively
low predefined imbalance ratios of 10:1 and 3:1, respectively.

In contrast, our approach entails comprehensive data collection spanning 18 years,
allowing experimentation across various imbalance ratios to select non-fire points that yield
optimal results. As outlined in our Methodology section, the observed imbalance ratio
in real-world scenarios is notably high. Furthermore, while [5] addresses the imbalance
issue using random oversampling techniques for the most represented class, our analysis
focuses on undersampling techniques, specifically exploring three versions of the Near Miss
undersampling technique.
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Paper Imbalance ad-
dressed

Imbalance ra-
tio

Time Range Geographical
area

Performance
Metric

[26] No 3:1 1 year Indonesia AUC

[23] No 10:1 20 years Heilongjiang accuracy, pre-
cision, recall,
auc, fscore

[6] No 1.4:1 4 years Jiangxi
Province

Accuracy,AUC

[12] No 1:1 8 years Guangxi
Zhuang

accuracy, pre-
cision, recall,
and f1 value

[10] No 1:1 1 year North
Lebanon

precision,
sensitivity,
specificity,
accuracy, ROC
AUC

[20] No - 5 years Kuala Selan-
gor

Accuracy

[8] No - 6 years Dayu County,
China

ROC AUC

Table 2.2: Literature Overview Regarding Imbalanced Data

Compared to these studies, we collect all the data and compare different data sampling
techniques, choosing the imbalance ratio that gives us the best predictive ability for our
model. The tests are performed on the original unsampled data, which gives stakeholders
confidence in the model’s prediction ability. This is very important from the stakeholders’
point of view, as the models needed by planners and agencies should be able to predict
wildfire occurrence on the original data, which usually has high imbalance. In such cases,
randomly selecting the non-fire data points may not accurately represent the original data,
and therefore, the models may not provide an accurate representation of the problem.

2.1.4 Evaluation Metrics for Imbalanced Data

Performance metrics play a crucial role in evaluating the effectiveness of machine learning
models on imbalanced data, as demonstrated in studies by [26], [5], and [23]. In the context
of forest fire prediction, specific performance metrics hold significant importance, such as
sensitivity. This metric measures the accurate classification of fire events by the model,
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relative to the total number of fire events. A high sensitivity score is valuable for planners
as it helps determine the necessary budget and resource allocation for mitigation purposes.
Additionally, identifying areas where fires are unlikely to occur is equally important.

Performance
Metric

Paper Significance/Limitation

Accuracy [26], [23],
[6], [12],
[10], [20],
[1], [11]

Overall correctness measure, but will mislead in case of im-
balanced data; may appear high even with low minority class
detection.

Precision [23], [12],
[10]

Measures accuracy of fire predictions in imbalanced data; in-
dicates the proportion of correctly predicted fire instances.

Sensitivity [23], [12],
[10]

Measures correct prediction of fire instances; essential for de-
tecting actual fire occurrences.

Specificity [10] Measures correct prediction of non-fire instances; crucial for
identifying areas without fire.

ROC AUC [23], [8],
[10], [26],
[5], [11]

Measures the model’s ability to distinguish fire and non-
fire classes; evaluates the overall performance across different
thresholds.

F-score [12], [23] Harmonic mean of precision and recall; but may incline to-
wards majority class

Table 2.3: Performance Metrics Literature Review

Increasing the sensitivity of the model may lead to an increase in false positive rates,
thereby potentially decreasing the model’s specificity. Our objective is to achieve a high
sensitivity while maintaining a reasonable level of specificity. Studies conducted by [26]
and [5], which address the issue of imbalanced data, utilize the Area Under the Curve
(AUC) as a performance metric. In our research, in addition to AUC, we employ other
metrics such as sensitivity and specificity to provide a clearer representation of the model’s
performance for both fire and non-fire classes.

In contrast, [23] adopts a combination of various performance metrics including accu-
racy, precision, recall, AUC, and F-score. However, we refrain from using accuracy as it
does not accurately reflect the predictive ability of the model, particularly for the minority
class, which corresponds to fire cells in our case. By employing a comprehensive set of per-
formance metrics tailored to the imbalanced nature of the data, our evaluation framework
ensures a more accurate assessment of the model’s predictive capabilities. Tab. 2.3 shows
the importance of each performance metrics in case of imbalanced data and the research
works that used them.
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2.2 Notions

This section provides an essential foundation for understanding the machine learning tech-
niques and concepts employed in this research. This section introduces and describes key
components, including Random Forest (RF) and XGBoost (XGB), Multilayer Perceptron
which are popular and effective algorithms for predictive modeling. Moreover, it explores
the challenge of imbalanced data and the implications it poses for model performance. To
address this issue, undersampling techniques such as Random Undersampling and Near
Miss Undersampling are introduced as effective approaches for balancing the dataset. Ad-
ditionally, performance metrics are discussed, highlighting their significance in evaluating
the performance and effectiveness of the developed models. Through a comprehensive ex-
ploration of these notions, this section establishes a solid understanding of the fundamental
components and methodologies utilized in the subsequent analysis and experimentation.

2.2.1 Machine Learning

Machine learning refers to the ability of a machine to learn from data and make decisions
or predictions without explicit programming. It involves the development of statistical
methods and algorithms that enable computers to improve their performance on specific
tasks by identifying patterns in data.

There are three main categories of machine learning algorithms: supervised, unsuper-
vised, and reinforcement learning. These categories differ based on the availability of the
output variable during the training process. The distinctions can be understood as follows:

• In supervised learning, the training dataset contains the output feature that the
model needs to learn. The model learns to map input variables to the provided
output.

• Unsupervised learning involves datasets where no output feature is available. Instead,
the model learns patterns and structures inherent in the data.

• Reinforcement learning is based on actions and rewards. The model learns by per-
forming actions and receiving feedback or rewards, aiming to maximize cumulative
rewards.

This research focuses on the supervised learning technique, which can be further cat-
egorized into classification and regression. The main difference lies in the type of output
variable the model predicts.
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• Classification models learn to predict categorical variables based on input features.
For example, an image classification model could classify whether an image depicts
a dog or a cat.

• Regression models, on the other hand, learn to predict continuous variables based on
input features. For instance, a regression model might predict the stock price for the
next day.

2.2.2 Classification Problem

The research problem we are addressing involves the prediction of forest fires, which is
classified as a classification problem. Our objective is to predict whether a given location on
a specific day will experience a fire based on input features. This classification task involves
categorizing input features into two classes: ”fire” and ”non-fire” cells. The classification
task can be further categorized as follows:

• Binary Classification: This task aims to assign data points to one of two potential
classes.

• Multi-class Classification: In this task, data points are assigned to one of more than
two potential classes, with multiple classes serving as the output feature for model
training.

• Multi-label Classification: The objective of multi-label classification is to assign data
points to one or more classes. The output feature contains multiple classes, and the
model assigns two or more class labels to input data points.

• Imbalanced Classification: This type of classification problem deals with imbalanced
data, where the samples of one class are significantly fewer (referred to as the minority
class) than the samples of another class (referred to as the majority class). Most
imbalanced classification tasks are binary classifications.

Specifically, our research focuses on the problem of imbalanced binary classification,
which is further explained in section 2.3 of this chapter. In previous studies, several
classification techniques have shown promising results for forest fire prediction, and we
concentrate on three techniques that have achieved good performance in this context.
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2.2.3 Decision Trees

A ”decision tree” is a tree-like structure that represents a series of decisions based on certain
features. The data is recursively split at decision nodes, creating multiple branches. The
tree consists of two types of nodes: decision nodes and leaf nodes. Decision nodes are
where the data is divided into sub-nodes, while leaf nodes represent the final outcomes or
decisions.

The structure of a decision tree shown in Fig. 2.1 includes various components, such
as the root node, decision nodes, leaf nodes, subtrees, and branches. The root node is
the starting point of the decision tree and represents the entire dataset. It is recursively
divided into nodes that represent different partitions of the dataset. Decision nodes are the
points where decisions are made and further divided into sub-nodes. Leaf nodes cannot be
further divided and provide the final results of the decision tree.

Figure 2.1: Decision Tree Components

The process of splitting involves dividing a node into sub-nodes based on specific condi-
tions of selected features, effectively partitioning the data. Each resulting partition forms
a branch or subtree of the decision tree. Pruning is a technique used to determine the
optimal length of the decision tree, addressing the problem of overfitting. It involves re-
moving or collapsing branches or nodes that do not significantly contribute to improving
the predictive ability of the model.

Construction of Decision Tree

When constructing a decision tree, the selection of the splitting feature at each node is
a crucial step. An attribute selection method is utilized to determine the most appropriate
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feature. This process is carried out recursively until certain stopping criteria are met to
form the complete tree. The choice of attribute selection method depends on whether the
target variable is categorical or continuous. In the case of categorical classification, the
Gini Index or Information methods are commonly used to identify the optimal feature for
splitting at each node.

At each node, the feature that yields the highest value of the selected metric is chosen
to perform the split. The objective is to minimize randomness within the resulting subsets
and create more homogeneous subsets. In our implementation, the Gini Index is employed
to split each node. This index quantifies the likelihood that a randomly selected sample
would be misclassified if its label were assigned randomly based on the class distribution
within the subset. The Gini Index ranges from 0 to 1, where a value of 0 represents
a perfectly pure dataset (all data points belong to the same category) and a value of 1
denotes a perfectly impure dataset (data points are evenly distributed across all categories).

Gini index = 1 - (sum of squares of probabilities of each class in the subset)

To determine the best splitting feature at each node, the Gini Index is calculated for all
available features. The feature that results in the greatest reduction in the Gini Index is
selected for the node split. The calculation of the Gini Index involves summing the squares
of the probabilities of each class in the subset. These probabilities are calculated as the
ratios of the number of samples in each class to the total number of samples in the subset.

Problem with Decision Trees

When decision trees are allowed to grow without any limitations, they often encounter a
common issue known as overfitting. This occurs when the decision tree creates a leaf node
for each individual row of the training data, resulting in the model achieving 100% accuracy
on the training set. However, such a model tends to learn not only the relevant patterns
but also the noise and irrelevant information present in the data. As a consequence, the
model performs poorly when applied to unseen test data, indicating a lack of generalization
ability.

To address the problem of overfitting in decision trees, various techniques have been
developed. One approach we are particularly interested in is ensemble learning methods.
These methods involve combining multiple decision trees to create a more robust and
accurate model. The subsequent section delves into the discussion of the Random Forest
Classifier, which is motivated by the need to mitigate overfitting issues associated with
individual decision trees.
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Ensemble Learning Methods

A single model may not yield satisfactory results due to its limited predictive power. To
overcome this limitation, Ensemble Learning methods have emerged as effective techniques
in machine learning. These methods involve the combination of multiple weak models to
create a single strong model with enhanced predictive capabilities and improved generaliza-
tion performance on unseen data. The fundamental concept underlying Ensemble Learning
is the amalgamation of diverse models to leverage their collective intelligence.

There are several approaches to combining models within the Ensemble Learning frame-
work. One such approach is Bagging, which entails training multiple instances of the same
model in parallel on different partitions of the data. In the context of classification, the
final prediction is determined through majority voting based on the individual model out-
puts. This method is particularly effective when combining weak models characterized by
low bias but high variance. By aggregating their predictions, a single model with reduced
bias and variance can be obtained.

Another prominent Ensemble Learning method is Boosting. In contrast to Bagging,
Boosting involves sequential training of multiple instances of the same model. Each sub-
sequent model focuses on learning from the mistakes of its predecessors, placing a higher
emphasis on correcting the errors made by the previous models. The iterative nature of
Boosting aims to create a collective model that progressively reduces bias. By assigning
greater weightage to the incorrect predictions of the preceding models, the subsequent
models strive to rectify and improve upon those errors.

Through these Ensemble Learning techniques, we can harness the diversity and com-
plementary strengths of multiple models to enhance the overall predictive performance and
robustness of the resulting ensemble model.
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2.2.4 Random Forest

The Random Forest algorithm serves as an extension of ensemble methods for decision
trees, aiming to enhance their predictive capabilities. It consists of a collection of uncor-
related decision trees created on subsets of the data. In the context of classification tasks,
the final prediction is determined through majority voting on the class labels generated
by individual trees. The underlying principle behind Random Forest is the notion of ”the
wisdom of crowds,” where the collective decision-making of multiple trees outperforms the
performance of individual trees. Even if certain trees within the forest are incorrect, the
consensus of the ensemble leads to accurate overall predictions.

Figure 2.2: Random Forest Classifier

The structure of the Random forest is depicted in Fig. 2.2. The superior performance of
Random Forest compared to individual decision trees can be attributed to two key factors:
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• Each individual tree contains valuable information: If each individual tree within
the Random Forest is a strong classifier, the ensemble model will exhibit lower error
rates and better overall performance.

• Reduced correlation among the trees: The success of Random Forest hinges on min-
imizing the correlation between the trees in the ensemble. As correlation decreases,
the error of the Random Forest decreases, leading to higher performance. This is
achieved through two key techniques: bagging and feature randomness

Bagging is employed to create multiple subsets of the data, ensuring diversity within
the ensemble. By randomly sampling the data with replacement, subsets of the same size
are generated. For example, if the training data is 10, 20, 30, 40, 50, one of the subsets
could be 10, 10, 30, 50, 50. Training individual trees on different subsets decreases the
correlation among the trees, enhancing the overall performance of the Random Forest.

Feature randomness is another crucial aspect of Random Forest. It involves selecting a
subset of features for each decision tree. If the original data contains F features, a feature
subset of size f (where f < F) is chosen for each tree. Importantly, this feature subset
remains constant throughout the construction of the Random Forest. By training each
tree on a different subset of features, the algorithm ensures greater diversity and reduced
correlation among the trees.

The size of the feature sample, denoted by f, plays a significant role in the model’s
performance. Decreasing f reduces both the correlation and strength of the trees while
increasing f increases both the correlation and strength. Hence, finding an optimal value
of f is crucial, striking a balance between uncorrelated trees and strong classifiers.

Once the Random Forest is built, the model is trained on the data, and predictions
are made using majority voting based on the class labels generated by the ensemble. No-
tably, there are several hyperparameters that can be fine-tuned to improve the model’s
performance, including the node size, the number of trees in the forest, and the number of
features sampled.
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2.2.5 XGBoost

XGBoost, also known as eXtreme Gradient Boosting, is a powerful machine learning algo-
rithm widely used for classification and regression tasks. The structure of the XGBoost is
shown in Fig. 2.3. It builds a predictive model by combining multiple weak learners, such
as decision trees, in a sequential manner. The key idea behind XGBoost is to iteratively
train these weak learners and improve their performance over time.

Figure 2.3: eXtreme Gradient Boosting Classifier

The construction of an XGBoost model involves several steps. It starts with an initial
prediction, typically the mean value of the target variable. Then, the algorithm calculates
the residuals, which are the differences between the actual and predicted values. It trains
a weak learner, such as a decision tree, to predict these residuals. The process is repeated
iteratively, with each new weak learner aiming to minimize the error between the predicted
and actual values.

To enhance its performance, XGBoost incorporates regularization techniques. These
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techniques prevent overfitting by reducing the impact of each individual learner and intro-
ducing diversity through the subsampling of features. XGBoost also utilizes gradient-based
optimization, adjusting the parameters of each weak learner to minimize the loss function.
Additionally, it employs an efficient data structure called the weighted quantile sketch to
speed up the computation of splitting points during tree construction.

One of the notable features of XGBoost is its ability to handle missing values in the
input data. It automatically learns the best direction to assign missing values during the
model construction process, making it robust in the presence of incomplete data.

Overall, XGBoost is a powerful algorithm that combines the strengths of multiple weak
learners to create a strong predictive model. Its regularization techniques, gradient-based
optimization, efficient data structures, and handling of missing values contribute to its
accuracy and versatility.

2.2.6 Multilayer Perceptron

The Multi-Layer Perceptron (MLP) is a popular and widely used neural network architec-
ture for supervised learning tasks. It consists of multiple layers of interconnected artificial
neurons, mimicking the structure and functionality of the human brain.

Figure 2.4: Multilayer Perceptron

The MLP is composed of an input layer, one or more hidden layers, and an output
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layer as depicted in Fig. 2.4. Each neuron in a layer is connected to all the neurons in the
adjacent layers. The input layer receives the features of the input data, and the output
layer produces the predicted output or classification.

The key idea behind the MLP is to learn complex patterns and relationships in the data
by adjusting the weights and biases of the neurons through a process called backpropa-
gation. During training, the network is presented with labeled examples, and it makes
predictions based on the current weights and biases. The prediction error is then calcu-
lated, and the weights and biases are adjusted in a way that minimizes the error. This
iterative process continues until the network reaches a satisfactory level of accuracy.

One of the strengths of MLP is its ability to learn non-linear relationships between
the input and output. The hidden layers, with their activation functions, introduce non-
linear transformations that enable the network to capture intricate patterns in the data.
This flexibility makes MLP suitable for a wide range of complex tasks, including image
recognition, natural language processing, and time series analysis.

To train an MLP effectively, it requires a large amount of labeled training data. Ad-
ditionally, careful considerations must be given to the architecture design, such as the
number of hidden layers, the number of neurons in each layer, and the choice of activation
functions. These design choices can greatly impact the learning capacity and performance
of the MLP.

In conclusion, the Multi-Layer Perceptron is a versatile neural network architecture
that excels at learning complex patterns and relationships in data. Its layered structure,
backpropagation algorithm, and non-linear activation functions enable it to handle various
challenging tasks. With appropriate design and sufficient training data, MLP can achieve
high accuracy and generalization capabilities.
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2.3 Imbalanced Data

Imbalanced data refers to a dataset where one class label is significantly more prevalent than
the other, resulting in an imbalanced classification problem. The majority class represents
the class with a higher number of instances, while the minority class corresponds to the
class with a lower number of instances. The ratio between the number of instances in the
minority class and the majority class is defined as the imbalance ratio.

Imbalance ratio =
number of non-fire points

number of fire points
(2.1)

Equ. 2.1 quantifies the imbalance ratio, which is calculated as the number of non-fire
data points divided by the number of fire data points. This ratio provides a measure of
the class imbalance in our forest fire ignition prediction problem, where fire occurrences
are rare events compared to non-fire instances.

Figure 2.5: Imbalanced Data for Forest Fire Event

Fig. 2.5 provides a visual representation of highly imbalanced data, showcasing the
unequal distribution of class labels. It serves as an illustration to highlight the challenge
posed by imbalanced data in traditional classification models. By visually depicting the
disparity between the majority and minority classes, the figure emphasizes the imbalance
issue and its impact on classification performance, particularly for the minority class.
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When training traditional classification models on imbalanced data, it is assumed that
the class distribution is unbiased. However, these models tend to favor the majority class,
leading to suboptimal classification performance for the minority class. This presents a
challenge in forest fire ignition prediction, as accurately predicting the minority class (fire
ignitions) is of utmost importance.

In our research, we encounter the imbalance issue as the number of fire ignitions is
much lower than the number of non-ignition instances. Consequently, the minority class
consists of fire ignitions, while the majority class comprises non-ignition cases. Our pri-
mary objective is to develop machine learning models capable of accurately predicting the
minority class despite the class imbalance.

To mitigate this issue, various resampling techniques are employed to adjust the class
distribution in the training data, aiming for a more balanced representation. Two com-
monly used resampling methods are oversampling and undersampling.

Oversampling: As the name suggests, oversampling involves increasing the number
of samples in the minority class while keeping the majority class samples the same. This
approach aims to create a new dataset with a higher number of minority samples, thus
addressing the class imbalance.

Undersampling: On the other hand, undersampling reduces the number of samples
in the majority class, giving the minority class a higher representation. There are several
techniques for undersampling, such as random undersampling and near miss undersam-
pling, which are further explained in Sections 2.3.1 and 2.3.2 of this thesis.

Downsampling ratio =
num of fire points

num of non-fire points
(2.2)

The downsampling ratio, denoted in Eq. 2.2, is a predetermined value that is specified
prior to the application of the undersampling technique. It serves as a crucial parameter for
the undersampling method, providing guidance on the proportion of non-fire data points
to be retained. The downsampling ratio is calculated as the ratio of the number of fire data
points to the number of non-fire data points, representing the inverse of the imbalance ratio.
By controlling the downsampling ratio, we can effectively adjust the class distribution and
create a more balanced representation of the data for training our predictive models. It
should be noted that it is the inverse of the Imbalance ratio which is given in Eq. 2.1.
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2.3.1 Random Undersampling technique

Random Undersampling, as its name implies, reduces the samples of the majority class
by randomly removing instances. The samples in the minority class remain unchanged.
This technique allows us to achieve a target imbalance ratio by determining the desired
proportion of the minority class and subsequently dropping a corresponding number of
samples from the majority class.

Figure 2.6: Random Undersampling Method

To illustrate the process of Random Undersampling and its impact on the dataset, Fig.
2.6 provides a visual representation. The figure consists of three subfigures, each depicting
a different stage of the undersampling technique.

The first subfigure represents the original dataset, where both fire and non-fire samples
are present. The majority class (non-fire) is visually more prominent due to its higher
number of instances, while the minority class (fire) is represented by a smaller number of
points.

In the second subfigure, random samples from the majority class are selected to be
retained, while the minority class remains unchanged. This represents the application of
Random Undersampling, where a portion of the majority class is preserved to create a
more balanced dataset. The imbalance ratio is adjusted by selectively keeping samples
from the majority class.

Finally, the third subfigure displays the resulting dataset after the removal of non-fire
samples. Here, the majority class has been reduced to achieve the desired imbalance ratio,
resulting in a more balanced representation of fire and non-fire instances.

27



By visually depicting the impact of Random Undersampling, this figure provides a
clearer understanding of how the technique modifies the class distribution in the dataset.
It demonstrates the reduction in the number of non-fire samples while retaining the original
distribution of the fire instances.

Random Undersampling offers several advantages, including computational efficiency
due to its straightforward implementation. By randomly selecting samples for removal, it
avoids the need for complex computations or expensive algorithms. However, it is impor-
tant to note that this method also has limitations. The main drawback is the potential
loss of valuable information about the problem domain. Since the samples are removed
randomly, there is a possibility of discarding instances that may contain crucial insights
or important patterns relevant to forest fire prediction. Therefore, careful consideration
should be given to the potential trade-off between computational efficiency and the risk of
losing informative data when employing Random Undersampling.
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2.3.2 Near Miss Undersampling technique

Near Miss undersampling is another valuable technique for addressing the class imbalance
in datasets. Unlike Random Undersampling, which randomly removes samples from the
majority class, Near Miss undersampling focuses on selecting a subset of majority class
samples based on their proximity to the minority class instances in the feature space. The
underlying idea is to retain the most informative majority class samples that are close to
the minority class, as they are likely to contain valuable insights for classification.

Figure 2.7: Near Miss Undersampling

Fig. 2.7 showcases the application of Near Miss undersampling in the context of forest
fire prediction. The figure consists of three subfigures, each representing a different step in
the Near Miss undersampling process.

In the first subfigure, we have the original dataset, which contains both fire and non-fire
samples. This dataset exhibits a severe class imbalance, with the majority class (non-fire)
overwhelming the minority class (fire).

The second subfigure demonstrates the outcome of the Near Miss undersampling tech-
nique. Here, the focus is on selecting samples from the majority class that are in close
proximity to the fire samples. These selected samples, highlighted in the figure, aim to
capture the crucial information and characteristics related to fire occurrences. By retaining
only the samples near the fire instances, we aim to create a subset that is more represen-
tative of the minority class, enhancing the model’s ability to learn from the informative
majority class samples.

Finally, the third subfigure displays the result of further refinement in the Near Miss
undersampling process. In this step, only the nearest non-fire samples to the fire instances
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are kept. By narrowing down the selection to the nearest non-fire samples, we ensure that
the retained majority class samples are the most relevant and influential for predicting fire
events.

This figure visually demonstrates how Near Miss undersampling selectively retains ma-
jority class samples based on their proximity to the minority class, enabling the creation
of a more balanced and informative dataset for forest fire prediction.

The Near Miss algorithm encompasses three different versions, each employing a distinct
method for selecting the subset of majority class samples. In the subsequent sections, we
will explore the details of the three versions of the Near Miss algorithm and discuss their
individual merits and considerations.
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Near Miss 1

The Near Miss 1 technique focuses on selecting samples from the majority class based on
their average distance from the N minority samples in the feature space. This approach
aims to retain the majority class instances that are closest to the minority class instances,
thereby training the model to differentiate between these samples. The parameter N can be
chosen based on the specific requirements of the use case, allowing flexibility in determining
the number of minority class samples to consider in the distance calculation.

Figure 2.8: Near Miss version 1 Undersampling

In Fig. 2.8, the figure showcases the application of Near Miss 1 for forest fire prediction.
The minority class, represented by fire instances, is distinguished from the majority class,
represented by non-fire instances. The diagram demonstrates the process of selecting the
non-fire samples with the smallest average distance from N fire samples. In the figure, it
shows that the value of N taken here is three, and the distance is being calculated from the
three nearest fire samples, and those non-fire samples are selected whose average distance
to the three nearest fire samples is minimum.
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The Near Miss 1 technique offers several benefits. Focusing on the non-fire samples that
are closest to the fire instances, allows for a more targeted and informative representation
of the majority class. This approach helps address the issue of class imbalance and provides
a more balanced dataset for training the fire prediction model. Additionally, by considering
the average distance, the technique takes into account the overall proximity between the
two classes, enhancing the model’s ability to capture the subtle patterns and characteris-
tics associated with fire events. However, it may discard potentially informative non-fire
samples farther from the fire instances and assumes that proximity reflects relevance. We
will experiment and see how this performs for our case of forest fire prediction.
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Near Miss 2

The Near Miss 2 technique focuses on selecting samples from the majority class based
on their average distance from the N farthest minority samples in the feature space. This
approach aims to retain the majority class instances that are closest to the farthest minority
class instances, capturing the samples that are more representative of the minority class.
The parameter N determines the number of farthest minority class samples to consider in
the distance calculation.

Figure 2.9: Near Miss version 2 Undersampling

In Fig. 2.9, the figure showcases the application of Near Miss 2 for forest fire prediction.
The minority class, represented by fire instances, is distinguished from the majority class,
represented by non-fire instances. The diagram demonstrates the process of selecting the
non-fire samples with the smallest average distance from the N farthest fire samples. In
this illustration, the parameter N is set to three, indicating that the distance is calculated
from the three farthest fire samples, and the non-fire samples with the minimum average
distance are selected.

The Near Miss 2 technique offers several benefits. Focusing on the non-fire samples
that are closest to the farthest fire instances, helps address the class imbalance issue and
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ensures a more balanced representation of the majority class. This approach considers the
proximity between the two classes, allowing the model to capture the relevant patterns
and characteristics associated with fire events. However, it may discard non-fire samples
that are farther from the farthest fire instances, potentially losing some valuable informa-
tion. The experiments will show it this undersampling technique behave on our forest fire
imbalanced data.
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Near Miss 3

The Near Miss 3 undersampling technique follows a two-step process that involves two
parameters, M and N . In the first step, for each minority sample, we select the M nearest
neighbors from the majority class in the feature space. In the second step, we further filter
the selected majority samples by considering their average distance from the N nearest
negative samples.

Figure 2.10: Near Miss version 3 Undersampling

As depicted in Fig. 2.10, the application of Near Miss 3 for forest fire prediction involves
the following steps. In the first step, the M nearest non-fire samples are chosen (shown as
circles non-fire samples) for each fire sample. Then, in the second step, only those non-fire
samples with the largest average distance to the N nearest fire samples are retained.

The Near Miss 3 technique offers a unique approach to undersampling by considering
the proximity between the minority (fire) and majority (non-fire) class samples in a two-
step process. Selecting the non-fire samples that are nearest to the fire samples and then
retaining only those with the largest average distance to the nearest fire samples, aims to
improve the balance and informativeness of the dataset for forest fire prediction.
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In our research, we will explore the application of the Near Miss 3 undersampling tech-
nique to our forest fire prediction problem. By examining its performance and considering
its advantages and limitations, we aim to determine its suitability and effectiveness for our
specific scenario.

2.4 Performance Metric

Performance Metrics play a crucial role in evaluating the effectiveness and reliability of
machine learning models. They provide objective measures to assess the model’s perfor-
mance and guide decision-making processes. In the context of imbalanced data, where
one class is significantly underrepresented compared to the other, selecting appropriate
performance metrics becomes even more critical. In this section, we will describe and an-
alyze various performance metrics in the context of forest fire prediction with imbalanced
data. We will highlight the importance of choosing suitable metrics that account for the
imbalanced nature of the data and effectively evaluate the model’s ability to predict fire
occurrences. By understanding and utilizing the appropriate performance metrics, we can
assess the model’s performance accurately, focusing on its ability to identify the minority
class, which is crucial for effective fire management and prevention.

2.4.1 Issue with Prediction Accuracy as Performance Metric

During the evaluation of machine learning models, accuracy is commonly used as a per-
formance metric. However, this approach may not always be suitable or appropriate,
particularly when dealing with imbalanced datasets. The choice of performance metric
should be carefully considered, taking into account the specific use case and characteristics
of the dataset. In this section, we will examine the limitations of using accuracy as a
performance metric for machine learning models trained on imbalanced datasets.

Let us consider a scenario where we have a dataset with binary class labels: True and
False. The imbalance ratio between these classes is 100:1, meaning that for every True class
sample, there are 100 False class samples. Now, suppose we develop a machine learning
model that simply outputs ”False” for all predictions. When we evaluate this model on
a test dataset, we would achieve an accuracy of 99%. However, this high accuracy is
misleading because the model has not learned anything meaningful from the minority
class (True). In this case, accuracy fails to reflect the model’s performance in correctly
identifying the True class samples.
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In our specific use case, where the objective is to predict the occurrence of forest fires,
the desired output is ”True” for fire samples and ”False” for non-fire samples. It is crucial
for our model to learn the distinguishing characteristics of fire instances and accurately
predict their presence. However, if we solely rely on accuracy as the performance metric,
the model may simply predict the majority class (Non-Fire) for all samples, resulting in
high accuracy without effectively capturing the minority class (Fire). This highlights the
need for alternative performance metrics that can better assess the model’s ability to learn
and predict the minority class, enabling more meaningful training and evaluation processes.

2.4.2 Performance Metric for Imbalanced data

When evaluating the performance of machine learning models on imbalanced data, it is
important to use appropriate performance metrics that consider the imbalanced nature of
the dataset. In our study, we have selected the following performance metrics to assess the
effectiveness of our models:

Confusion Matrix: The confusion matrix is a commonly used performance metric
for classification problems. It provides a tabular representation of the predicted and actual
values. Fig. 2.11 visually illustrates a confusion matrix. For our case, the confusion matrix
consists of four terms:

• True Ignition/True Positive (TP): The number of actual Ignition samples that are
correctly classified as Ignition by the model.

• False Ignition/False Positive (FP): The number of actual Non-Ignition samples that
are incorrectly classified as Ignition by the model.

• True Non-Ignition/True Negative (TN): The number of actual Non-Ignition samples
that are correctly classified as Non-Ignition by the model.

• False Non-Ignition/False Negative (FN): The number of actual Ignition samples that
are incorrectly classified as Non-Ignition by the model.
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Figure 2.11: Confusion Matrix

The confusion matrix helps us derive several other performance metrics, including recall,
sensitivity, specificity, and accuracy. It provides insights into the model’s performance
by indicating where the model might be making mistakes. In the context of imbalanced
datasets, the confusion matrix is particularly valuable in understanding how well the model
is able to learn and classify the minority class.

By analyzing the values in the confusion matrix, we can calculate performance metrics
that are specifically designed for imbalanced datasets. These metrics allow us to assess the
model’s ability to correctly identify the minority class and account for the class imbalance.

Sensitivity (Recall): Sensitivity, also known as the true ignitions rate or recall of the
ignitions class, is a significant performance metric derived from the confusion matrix. It
quantifies the ability of the model to correctly identify ignition samples out of the total
actual ignition samples.

The formula for sensitivity is given by Equation 2.3:

Sensitivity =
TP

TP + FN
(2.3)
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In the context of forest fire prediction, sensitivity plays a crucial role in evaluating
how effectively the model can identify and predict forest fires among all the actual fire
occurrences. A high sensitivity score indicates that the model is successful in detecting the
majority of forest fires. This performance metric is particularly important as it focuses on
the minority class, which is the occurrence of fire, allowing us to assess the model’s ability
to accurately predict fire events.

By measuring sensitivity, we can gain insights into the model’s capability to capture
the characteristics and patterns associated with forest fires. It helps us understand how
well the model is performing in terms of identifying the rare and critical fire events, which
is the main objective of our research.

Specificity: Specificity, also known as the true non-ignitions rate or recall of the non-
ignition class, measures the ability of a classification model to correctly identify non-ignition
samples out of the total actual non-ignition samples.

The formula for specificity is given by Equation 2.4:

Specificity =
TN

TN + FP
(2.4)

In the context of forest fire prediction, it is crucial to evaluate specificity as it quantifies
the model’s accuracy in classifying non-fire events correctly among all the non-fire instances.
A high specificity score indicates that the model is effective in identifying and predicting the
absence of fire accurately. This information is valuable for planners and decision-makers
as it helps in resource allocation and planning for mitigation purposes. Knowing where a
fire is not likely to happen enables better utilization of budget and resources.

It is important to note that there can be a trade-off between sensitivity and specificity.
When the true positive rate (sensitivity) of the model increases, it is possible for the false
positive rate to also increase, potentially leading to a decrease in specificity. However, our
goal is to achieve a balance between sensitivity and specificity, aiming for a model with
good sensitivity while maintaining a decent level of specificity.
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ROC AUC: The Receiver Operating Characteristic Area Under the Curve (ROC AUC)
is a performance metric commonly used in binary classification tasks. It measures the over-
all discriminative ability of the model by plotting the true ignition rate (sensitivity) against
the false ignition rate (1-specificity) at various classification thresholds.

Figure 2.12: Receiver Operating Curve

As shown in Fig. 2.12, the 0.5 ROC AUC score denotes the performance of the Random
Classifier. A higher ROC AUC score indicates a better ability of the model to distinguish
between the two classes and a lower score denotes a worse ability to distinguish between
two classes.

ROC AUC is particularly valuable for forest fire prediction as it allows us to optimize
the model based on both sensitivity (ability to correctly identify fire instances) and speci-
ficity (ability to correctly identify non-fire instances). By considering the entire range of
classification thresholds, ROC AUC provides a comprehensive evaluation of the model’s
ability to handle the imbalanced nature of the data and make accurate predictions for both
fire and non-fire instances.
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Chapter 3

Data Collection Framework and
Application

This section provides a comprehensive and in-depth examination of our data acquisition
framework, which plays a crucial role in integrating diverse types of features encompassing
meteorological variables, biophysical variables, and topographical variables. The successful
handling of such heterogeneous data necessitates the adoption of a systematic approach,
wherein data originating from various sources undergo a standardized conversion process,
enabling subsequent consolidation into a unified dataset through the utilization of our
well-established framework.

Our Data Collection Framework is meticulously applied within the context of the
province of Alberta, located in Canada. This particular region proves to be highly con-
ducive to our research objectives, primarily due to its extensive historical record of forest
fires spanning multiple decades, as well as the availability of comprehensive topographical
data that encompasses the region’s diverse landscape. Covering a total area of 661,848
km2, Alberta boasts a substantial proportion of land dedicated to forested areas, account-
ing for approximately 61% of its overall land area. These factors underline the significance
and relevance of analyzing the patterns and dynamics of forest fires within this region.

The comprehensive analysis of forest fire trends in Alberta is founded upon the in-
valuable dataset provided by Alberta.ca[18]. This dataset offers a wealth of information
regarding the occurrence and characteristics of wildfires in the region, allowing for a de-
tailed examination of the patterns and dynamics associated with forest fire occurrences.
The consistent and recurring nature of these wildfires year after year underscores the ur-
gent need for a thorough understanding of the factors contributing to their ignition and
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spread. Specifically, this section of the thesis addresses the research questions RQ1 and
RQ2, which pertain to the identification of underlying factors contributing to forest fire
ignition and the development of a comprehensive data collection framework, respectively.

3.1 Framework for Data Collection

Our primary objective, following the processing of various features, is to establish a stan-
dardized tabular format that ensures consistent spatial and temporal resolutions. This
standardization allows for the seamless integration of data tables using a unique identifier
of Grid id and date shared among them, as depicted in Fig. 3.1. The details of the process
is described in the coming subsections.

Figure 3.1: Data Collection Framework
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3.1.1 Grid Cells

The datasets considered for the analysis of forest fires fall under the category of geo-
databases, which are databases that incorporate location references on Earth. These
datasets consist of various features that exhibit varying values depending on their geo-
graphical coordinates, namely latitude and longitude. Each feature is collected by different
authorities, leading to variations in formats and resolutions. To standardize the datasets
and ensure uniformity, a grid-based approach was employed, dividing the entire region into
grid cells using a spatial resolution of 10 km by 10 km.

By utilizing this grid system, each grid cell is assigned a single value for each data
feature. In cases where a feature exhibits variability within a grid cell, the values are
aggregated and assigned to that specific grid cell. To facilitate the integration of diverse
datasets with a shared location, a unique Grid id is assigned to each grid cell. This Grid id
serves as a representation of the cell’s location and will be utilized in joining various datasets
that correspond to the same location.

This approach enables the consolidation of disparate data sources into a standardized
format, providing a foundation for comprehensive analysis and modeling of forest fires
within the region of interest.

Spatial Resolution

The selection of a spatial resolution is an essential consideration for our dataset. After
careful evaluation, a spatial resolution of 10 km by 10 km was chosen. This resolution
provides a sufficiently large area that can effectively capture fire ignition points within the
forested regions.

When determining the spatial resolution of the combined data, it is crucial to consider
the resolution of each individual dataset that contributes to the combination. The approach
is to identify the dataset with the lowest resolution and use that as the basis for the
combined data.

In our case, the meteorological data exhibits the lowest resolution, approximately 10
km by 10 km. By adopting this resolution for the entire Alberta region, we are able to
acquire adequate data for understanding feature trends and wildfire patterns.

It is worth noting that employing a higher resolution of 1 km by 1 km would introduce
challenges, such as a higher class imbalance within the combined dataset. Conversely, uti-
lizing a lower resolution of 100 km by 100 km would encompass larger regions, potentially
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resulting in multiple fire ignition points falling within the same grid cell and exacerbat-
ing the class imbalance issue. Therefore, the chosen 10 km by 10 km spatial resolution
strikes a balance between capturing meaningful information and managing class imbalances
effectively.

Temporal Resolution

In order to align with the specific research objective of analyzing wildfire ignitions, a tem-
poral resolution of one day was selected. This resolution is deemed adequate for capturing
the onset of fires accurately.

Taking into account the examination of fire data spanning 18 years, sourced from [18],
it was observed that the majority of fires occurred during the period between April and
October. Consequently, the temporal dimension of the data encompasses each day from
April 1st to October 31st for the years 2000 to 2018. This temporal range effectively covers
the critical months associated with wildfire incidents, facilitating a comprehensive analysis
of fire patterns and trends over the specified time span.

3.1.2 Data Conversions

The dataset comprises diverse data formats, including raster files and CSV files, each
with distinct spatial and temporal resolutions. To address these variations, we employ
an analytical approach to define a desired format for two distinct categories of variables
within the geodatabase.

The data encompass two distinct categories of features:

• Location-dependent features: The first category of features in our dataset com-
prises location-dependent variables. These features are solely influenced by geo-
graphical location and remain constant over time, specifically within a short-term
timeframe of a few decades. Examples of such features include Slope, Aspect, and
Elevation, which are topographical characteristics. The desired tabular format for
these location-dependent features is illustrated in Tab. 3.1. To achieve a standardized
format for these features, we assign a Unique Id to represent each location, denoted
by the Grid id.

• Location and time-dependent features: The second category of features in our
dataset encompasses variables that are influenced by both time and location. These
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Grid id Feature name

Table 3.1: Location-dependent features goal format

features exhibit variations in value based on specific dates and geographical loca-
tions. An example of such a feature is temperature, which can differ across different
locations and also vary for a particular location on different days. The meteorological
and biophysical features included in our data fall under this category. To achieve a
standardized format for these time and location-dependent features, we establish a
Unique Id by combining the Grid id and date, representing each specific combination
of location and time. The desired tabular format for these features is demonstrated
in Tab. 3.2.

Grid id date Feature name

Table 3.2: Location and time-dependent features goal format

The data transformation process to achieve the desired tabular format involves lever-
aging the capabilities of QGIS and Python. The specific steps undertaken for each dataset
may vary depending on its original format, which can include raster, shape, or CSV files.
These steps are designed to address the unique characteristics of each dataset and ensure
consistency in the final format.

The goal is to convert each dataset into the appropriate format based on its location
dependency or location and time dependency. Fig. 3.1 shows the details of the framework
of data collection. For location-dependent features, such as topographical variables (e.g.,
Slope, Aspect, Elevation), the data is organized into a tabular format where each location
is assigned a unique identifier, represented by the Grid id. This allows for a standardized
representation of the location-dependent features across the dataset.

For location and time-dependent features, such as meteorological and biophysical vari-
ables, the data is structured in a tabular format that incorporates both the Grid id and
the corresponding date. This combination of location and time creates a unique identifier
for each specific combination, enabling the integration of time-dependent information with
spatial context.

The combined datasets, now in a standardized tabular format, can be merged based on
the unique identifiers. This data integration process ensures that the location and time-
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dependent features are properly aligned, providing a comprehensive dataset for further
analysis and modeling.

The data collection framework presented in Fig. 3.1 provides a visual representation of
the overall process, highlighting the sequence of steps involved in converting and combining
the diverse data sources. It serves as a blueprint for reproducing the data collection pro-
cess for other regions of interest, allowing researchers to apply the framework to different
geographical areas and extend the analysis beyond the scope of the Alberta region.
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Figure 3.2: Data Collection Framework for Alberta
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Key Value
bound Boundary Data
met Meteorological Data
ndvi NDVI Data
topo Topography Data
fire Fire Data
cmet Copernicus Meteorological Data
Grid id Grid id
date Date of ignition
Prcp Precipitation
MaxT Maximum Temperature
RelHum Relative Humidity
Ws Average 10 meter wind speed
T Temperature at 2 meter
NDVI Normalized Difference Vegetation In-

dex
slope Slope
elev Elevation
asp Aspect
ignition Ignition
twpid Township id
DEM Digital Elevation Model

Table 3.3: Abbreviations

Name Meaning
x src Source of data of type x, x ∈ bound, met, cmet,

ndvi, topo, fire
x in Inputs from data source x
x inj Multiple inputs from data source x, j ∈ 1,2
x outj Intermediate outputs after processing of x type of

data, j ∈ 1,2, 3,4
x of Final output after processing of x type of data

Table 3.4: Nomenclature of the input and output of data

3.2 Data Collection Framework for Alberta

The creation of a comprehensive dataset for the province of Alberta is a fundamental aspect
of our research, as it forms the foundation for analyzing and modeling forest fire dynamics
in the region. Leveraging the data collection framework, we have systematically integrated
various types of features to construct a unified dataset that encompasses meteorological
variables, biophysical variables, and topographical variables. This dataset serves as a vital
resource for examining the relationships between these diverse factors and their impact
on wildfire occurrences. By applying the framework to the specific context of Alberta,
we have successfully combined data from different sources, standardized their formats, and
ensured consistent spatial and temporal resolutions. The Fig. 3.2 shows the data collection
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Name Type Features
bound in Shape file Alberta Boundary shape file
grid Shape file 10 × 10 grid layer
centroid Shape file Centroids layer of 10 × 10 grid layer
met in csv twpid, date, Prcp, MaxT, RelHum, Ws, Prcp f, MaxT f, RelHum f, Ws f
met in2 csv twpid, latitude, longitude
met out1 csv twpid, date, Prcp, MaxT, RelHum, Ws, latitude, longitude
met of csv Grid id, date, Prcp, MaxT, RelHum, Ws
cmet in raster 365 bands col1, . . . , col365, temp of each day of year
cmet out1 csv Grid id, col1, . . . , col365, temp of each day of year
cmet of csv Grid id, date, T
ndvi in raster 26 bands 1 band for each week from April to October
ndvi out1 csv Grid id, col1 mean,... , col26 mean NDVI mean for each week
ndvi of csv Grid id, date, NDVI
topo in raster 3 Digital Elevation models
topo out1 raster 1 DEM for complete region of Alberta
topo out2 csv Grid id, slope
topo out3 csv Grid id, asp
topo out4 csv Grid id, elev
topo of csv Grid id, slope, asp, elev
fire in csv fire id, year, date, assessment date, latitude, longitude
fire out1 csv Date, assessment date, latitude, longitude
fire out2 csv Grid id, date, assessment date, latitude, longitude
fire of csv Grid id, date, ignition
data x csv Grid id, date, Prcp, MaxT, RelHum, Ws, T, NDVI, slope, elev, asp
data fire csv Grid id, date, Prcp, MaxT, RelHum, Ws, T, NDVI, slope, elev, asp, ignition

Table 3.5: Data Features

Name Type Features
bound src shape file https://open.alberta.ca/opendata/gda-4d939041-851b-4848-

bd30-44dbf129e16c
met src csv https://acis.alberta.ca/acis/township-data-viewer.jsp
cmet src shape file https://cds.climate.copernicus.eu/cdsapp!/dataset/reanalysis-

era5-complete?tab=overview
ndvi src raster https://open.canada.ca/data/en/dataset/44ced2fa-afcc-47bd-

b46e-8596a25e446e
topo src raster https://earthexplorer.usgs.gov/
fire src csv https://www.alberta.ca/wildfire-maps-and-data.aspx

Table 3.6: Data Sources

framework applied for Alberta. Tables 3.3, 3.4, 3.5, and 3.6 show the description of various
aspects of the framework. This meticulously crafted dataset not only captures the unique
characteristics of the Alberta region but also provides a solid basis for conducting in-depth
analyses and developing accurate predictive models to enhance our understanding of forest
fire behavior in this area.
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3.2.1 Provincial Boundary

The determination of Alberta’s provincial boundary relied on the utilization of the Alberta
Census Boundaries - Current (2021) dataset, obtained from Open Government Data - Al-
berta [17]. Among the shape files available within the Alberta Census Boundaries dataset,
specifically, Alberta Census Division 2021 was selected for our analysis. The data required
no additional processing and was utilized in its original form. According to Statistics
Canada, the linear resolution of this dataset is reported to be 1 meter. Given that our grid
cells have a resolution of 10 km by 10 km, no further validation or adjustment was deemed
necessary, and the data was directly incorporated into our research framework.

Figure 3.3: Alberta 10 km by 10 km Grid Layer

3.2.2 Alberta Grid cells

In order to achieve data standardization, a grid-based approach was employed to harmonize
the various datasets. The entire region of Alberta was subdivided into grid cells using a
spatial resolution of 10 km by 10 km. Each grid cell represents a distinct geographic unit
within the region. For each data feature, a single value was assigned to every grid cell. In
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cases where the feature exhibited variability within a grid cell, an aggregation of values
was assigned. This grid system, depicted in Fig. 3.3, was established using QGIS. Each
grid cell was assigned a unique identifier, known as the Grid id, which serves as a reference
to its specific location. This Grid id plays a crucial role in joining disparate datasets that
share the same geographic location. Additionally, centroids were generated for each grid
cell using QGIS, as illustrated in Fig. 3.4.

Figure 3.4: Alberta 10 km by 10 km Centroid Layer
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3.2.3 Meteorological Data

The meteorological data utilized in this study were sourced from Alberta Agriculture,
Forestry and Rural Economic Development [2], specifically from the Alberta Climate In-
formation Service (ACIS) dataset, as indicated in Fig. 3.2 under the label met src. The
ACIS dataset comprises weather data collected from various meteorological stations op-
erated by government agencies. While our analysis covers the entire region of Alberta,
it is important to note that weather stations are situated at limited locations across the
province. To obtain data for the entire region, we relied on ACIS’s interpolated histori-
cal climate data for Alberta townships. This dataset considers the subdivision of Alberta
into townships, each measuring approximately 9.65 km by 9.65 km. Daily gridded data
is provided for each township, aligning with our desired spatial resolution of 10 km by 10
km.

In our study, our focus was on analyzing four key variables within the meteorological
dataset: Maximum Temperature, Precipitation, Wind Speed, and Relative Humidity. To
obtain the necessary data, we utilized the meteorological source (met src), which consisted
of two distinct inputs: met in1 and met in2.

(a) Weather data features (met in1) (b) Township metadata (met in2)

Figure 3.5: Meteorological data input

met in1, as shown in Fig. 3.5a, is a comprehensive CSV file containing climate data
for all years. It includes columns such as Township ID (twpid), Date (date), Precipitation
(Prcp), Maximum Temperature (MaxT), Relative Humidity (RelHum), and Wind speed
(Ws). On the other hand, met in2, represented in Fig. 3.5b, is another CSV file that
includes township IDs (twpid) along with their corresponding latitude (Lat) and longitude
(Long).

To streamline the data processing, we first filtered the information within met in1 for
each year, resulting in a separate CSV file named met out1. This step allowed us to isolate
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Figure 3.6: Township ID joined with grid id (met out2)

the climate data for individual years and facilitate further analysis.

Next, leveraging the geographical information provided in met in2, we conducted a
spatial join using the software QGIS. This spatial join involved combining the grid layer
with met in2, enabling the creation of a CSV file that establishes an association between
each Grid id and its corresponding Township ID. This association between grid cells and
township IDs is depicted in Fig. 3.6, providing a visual representation of the joined data.

Figure 3.7: Goal format of Meteorological data (met of)

To get the goal format of these location and time-dependent features, we performed a
join operation between met out1 and met out2 based on the shared township ID. This join
operation resulted in the generation of a tabular format known as met of, as shown in Fig.
3.7. The met of format includes columns such as Grid id, date, precipitation, Maximum
Temperature, Relative Humidity, and wind speed. The overall process, as described, is
illustrated in Fig. 3.2, providing a comprehensive overview of the meteorological data
collection and transformation steps.
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3.2.4 Copernicus Meteorological Data

The daily temperature records at 12 noon were obtained from ERA5-Land[13], a com-
prehensive meteorological dataset. To specifically capture the meteorological conditions
within the region of Alberta, the data collection was confined to a defined geographical
extent, with North = 60, South = 48, East = -109, and West = -121 serving as the bound-
aries. The temperature data was initially available in the form of a raster file (cmet in),
where each of the 365 bands(columns) represented the temperature data for a specific day.

Algorithm 1 QGIS Steps Copernicus Data

1: Download data from CDS website.
2: Create a new project
3: Add boundary layer.
4: Add data as a raster layer.
5: Reproject data using wrap (reproject).
6: Clip the layer by the extent of the boundary.
7: Import centroids shape file.
8: Perform Point Sampling analysis.
9: Select the days and grid id column.
10: Export the data in csv format (cmet out1).

To extract the temperature values at specific locations, we performed a point sampling
analysis using the Geographic Information System (GIS) software QGIS. This analysis in-
volved overlaying the cmet in raster file with a shapefile containing the centroid locations
of interest. The resulting output was a CSV file (cmet out1), which captured the associ-
ation between the Grid id (representing the location) and the corresponding temperature
data for each day of the year. The detailed steps of this process are outlined in Alg. 1.

Figure 3.8: Copernicus Meteorological Data for each grid cell (cmet out1)

To further refine the temperature data, we utilized Python scripting to transform
cmet out1 into the desired tabular format, known as cmet of (Fig. 3.9). This involved

54



restructuring the data by converting the days into columns and the dates into rows. The
resulting format enabled a more convenient and structured representation of the tempera-
ture data for analysis.

Figure 3.9: Final Copernicus Meteorological Data (cmet of)

As part of our data filtering process, we retained temperature data from 1st April to
31st October, omitting the remaining time periods. This selection was based on the focus
of our study, which centered around the period when forest fire incidents are more likely
to occur in Alberta. By narrowing down the temporal scope, we obtained a subset of data
that was specifically relevant to our research objectives.

Through the rigorous implementation of these steps, we successfully acquired, pro-
cessed, and standardized the meteorological data, enabling a comprehensive analysis of
temperature patterns and their relationship to forest fire occurrences.
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3.2.5 Biophysical Data

The research incorporates the utilization of biophysical data, specifically focusing on the
Normalized Difference Vegetation Index (NDVI). The NDVI provides valuable insights into
vegetation dynamics, and for this study, historical AVHRR satellite images with a spatial
resolution of 1 km [3] were employed to derive an accurate representation of the NDVI.
These satellite images cover a substantial time span from 1987 to 2021 and are available
as raster files, with each year represented by a separate file.

Figure 3.10: Normalized Difference Vegetation Index Data for Alberta (ndvi in)

The NDVI dataset, known as ndvi in, encompasses crucial variables such as latitude,
longitude, and 26 bands of NDVI values. Each band corresponds to a specific Julian week,
ranging from the 15th to the 41st week, spanning the period from April 6th to October
11th. This raster format of the NDVI dataset is visually depicted in Fig. 3.10. To optimize
storage efficiency and facilitate streamlined processing, the NDVI values have been rescaled
from the original range of [-1; 1] to the rescaled range of [0; 20,000].

To extract meaningful insights from the NDVI data, an essential step involved the
application of the mean Multiband Zonal statistics function within the QGIS software. This
statistical analysis enabled the calculation of the average NDVI value for each individual
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Algorithm 2 QGIS Workflow for NDVI Data Extraction

1: Create a new project in QGIS.
2: Import the boundary layer and the NDVI data.
3: Reproject the data using wrap reproject to ensure spatial consistency.
4: Clip the data to the Alberta region of interest.
5: Generate a grid layer to define the spatial units for analysis.
6: Apply the Multiband Zonal Statistics function, calculating the mean values for the

clipped NDVI data within each grid cell.
7: Export the resulting data as a CSV file.

grid cell. The comprehensive steps involved in this data processing stage are outlined in
Alg. 2. As a result of this analysis, a resulting output in the form of a CSV file, named
ndvi out1, was obtained, as illustrated in Fig. 3.11. This output comprises the Grid id
column, as well as 26 additional columns, representing the average NDVI value for each
Julian week. The ndvi out1 dataset serves as an intermediary step in the overall data
processing pipeline.

Figure 3.11: Mean NDVI Values per Grid Cell (ndvi out1).

Subsequently, in the Python, further refinement of the ndvi out1 dataset was conducted
to obtain the NDVI data at a daily level, spanning from April 1st to October 31st. This
involved a straightforward approach of copying the NDVI values from the corresponding
Julian week and assigning them to the respective day. Notably, specific adjustments were
made to ensure the availability of complete daily NDVI data. For instance, data from
April 6th was replicated for the days from April 1st to April 5th, while data from October
11th was extended to cover the remaining days in October. The detailed steps of this
data transformation process are outlined in Alg. 3. These adjustments were crucial to
maintaining the temporal continuity and completeness of the NDVI dataset throughout
the desired time range.

The final output, represented as ndvi of and illustrated in Fig. 3.12, showcases the
goal format of the NDVI data. This standardized format facilitates further analysis and
examination of the relationship between vegetation dynamics and forest fire occurrences
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Algorithm 3 Python Algorithm for NDVI Data Processing

1: Import the NDVI data from ndvi out1.
2: Copy the data of the first band into the data for the period from 1st April to 5th April.
3: Copy the weekly data into the daily data for the period from 6th April to 11th October.
4: Copy the data of the last band into the data for the period from 12th October to 31st

October.
5: Combine the above data to create a complete dataset for one year.
6: Save the dataset as a CSV file.

Figure 3.12: Final NDVI data (ndvi of)

within the study region. The availability of this processed and standardized NDVI dataset
enhances our ability to explore and interpret the dynamic nature of vegetation patterns
and their potential influence on forest fire dynamics.
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3.2.6 Topographical Data

The topographical data utilized in this research is derived from Digital Elevation Mod-
els (DEMs) obtained from Earth Explorer [15], specifically represented as topo src in
Fig. 3.2. For our study, we searched the Shuttle Radar Topography Mission (SRTM)
1 Arc-Second Global dataset [16] and Global Multi-resolution Terrain Elevation Data 2010
(GMTED2010) with a time range from 2000 to 2020 for Alberta region. These DEMs
provide valuable information about the elevation and surface characteristics of the study
area.

Figure 3.13: Digital Elevation Model of Alberta (topo out1)

To acquire comprehensive topographical data specifically for Alberta, we downloaded
products: GMTED2010N30W120, GMTED2010N50W120, GMTED2010N50W150. These
DEMs, referred to as topo in, were chosen based on their coverage and suitability for our
analysis. Within the QGIS software, we combined these DEMs using the steps outlined
in Alg. 4. This process involved reprojecting the data, merging the DEMs, and clipping
the resulting dataset to the extent of Alberta. The resulting Digital Elevation Model for
Alberta provides a detailed representation of the topography within the study area, as
visually depicted in Fig. 3.13.
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Algorithm 4 QGIS Steps for combining Alberta DEMs

1: Download the DEMs. (three TIFF files for this case)
2: Merge the DEMs.
3: Reproject the merged file into the common projection.
4: Clip the reprojected DEM to obtain the final Alberta DEM.

(a) Slope data (b) Elevation data (c) Aspect data

Figure 3.14: Topographical data (topo out2, topo out3, topo out4)

With the acquired Alberta DEM, we proceeded to extract the necessary topographical
features for our analysis. Leveraging the extensive capabilities of QGIS, we employed
various features and tools to calculate essential parameters such as slope and aspect from
the DEMs. By following the steps outlined in Alg. 5, we derived separate datasets for
slope, aspect, and elevation. The slope dataset quantifies the steepness of the land surface,
while the aspect dataset indicates the orientation or direction of the slope. The elevation
dataset provides information about the vertical height of the terrain. These datasets were
then merged based on the common Grid id, resulting in a consolidated CSV file that
encompasses the topographical features of slope, elevation, and aspect. This consolidated
dataset, referred to as topo of, represents the desired goal format for topographical data,
as depicted in Fig. 3.15.

Algorithm 5 QGIS Steps for getting Slope, Elevation and Aspect for each Grid cell.

1: Create new project
2: Import Grid Layer, boundary layer
3: Calculate Slope and Aspect.
4: Save the csv files
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Figure 3.15: Final Topographical data (topo of)

The availability of this standardized topographical dataset enables comprehensive ex-
ploration and analysis of the terrain characteristics within the study region of Alberta.
It provides valuable insights into the landscape features, which play a crucial role in un-
derstanding the dynamics of forest fires. By incorporating topographical data into our
analysis, we can better assess the influence of terrain on fire behavior, identify vulnerable
areas, and develop effective strategies for fire management and prevention.
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3.2.7 Fire Data

Data pertaining to the locations of forest fires was acquired from the Alberta wildfire
records, maintained by the Alberta Forest Service since 1931 [18]. Over the years, the
method of record keeping has evolved, with the current system being the Fire Information
Resource Evaluation System (FIRES), which serves as a centralized database. The data
is available in the CSV (Comma Separated Values) format, encompassing various features
related to forest fires, such as fire location latitude, fire location longitude, fire start date,
assessment datetime, and fire year.

Figure 3.16: Fires in Alberta in last 18 years

The fire start date represents the date when a fire actually initiated, and its determina-
tion depends on various factors related to the cause of the fire. Meanwhile, the assessment
datetime field in the dataset refers to the date and time when the wildfire was evaluated
by the employees of the Wildfire Management Division, providing a level of confidence in
the data’s accuracy. In cases where the fire start date was null, indicating that the actual
start date was unknown, the assessment datetime was utilized as a substitute. The dataset
can be visualized in QGIS, as depicted in Fig. 3.16, where it is evident that there are no
fires outside the designated boundary, indicating the absence of errors in the dataset.
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Figure 3.17: Fire data (fire out1)

Fire Data Analysis: A visual analysis of the data reveals that there are relatively
few wildfires in the Southwest Region of Alberta (Fig. 3.16). The majority of Alberta’s
land area can be categorized into two regions: the Green Area, which constitutes the
forested portion and is characterized by a relatively low population density, and the White
Area, which is more densely populated and encompasses central and southern Alberta. As
observed in Fig. 3.16, the majority of wildfires occur in the Green Area, while the White
Area records significantly fewer incidents. This disparity can be attributed to the fact that
approximately 75% of the White Area is privately owned, resulting in limited public fire
records for this region. Statistical analysis of the data reveals that, on average, there are
approximately 1256 wildfires per year.

Algorithm 6 QGIS Steps for assiging Grid ids to fires

1: Create new project
2: Import Grid Layer
3: Add fire data csv as delimited text layer
4: Perform Spatial Join with base layer as grid layer and other layer as fire data layer

(one to one intersection).
5: Export joined csv file.
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Fire Data Preparation : Fire Data Preparation is a crucial step in the analysis of
the wildfire dataset. To begin, the fire data for each year was filtered to include only
the necessary features, such as the date, assessment date, latitude, and longitude. This
filtering process resulted in a refined CSV file that captures the relevant information for
further analysis and visualization (Fig. 3.17). Next, in order to facilitate the integration
of fire data with other datasets, a series of processing steps were performed in QGIS. The
algorithm outlined in Alg. 6 was followed to assign Grid ids to the fire records based on
their corresponding geographic locations. This process involved spatially joining the fire
data with the grid layer, resulting in a new CSV file that includes the assigned Grid id for
each fire record (Fig. 3.18).

Figure 3.18: Grid id assigned fire data (fire out2)

Throughout the fire data preparation phase, special attention was given to handling
null values in the dates. In cases where the fire start date was missing, the assessment date
was used as a substitute. This ensures that each fire event has a valid date associated with
it, maintaining the integrity of the dataset.

Figure 3.19: Final fire data (fire of)

Furthermore, to provide additional context and facilitate further analysis, a new col-
umn named ”ignition” was introduced in the fire dataset. This column was initialized with
a value of 1 for all fire records, indicating the occurrence of a fire event. By including this
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column, the fire dataset becomes more informative, allowing for the distinction between fire
events and non-fire events when merged with other datasets. The resulting processed fire
dataset, as depicted in Fig. 3.19, represents a comprehensive and standardized represen-
tation of the fire data. It incorporates the necessary information for spatial and temporal
analysis, enabling a deeper understanding of the patterns and dynamics of wildfires in
Alberta.

In summary, the fire data preparation process involved filtering the dataset, assigning
Grid ids based on geographic locations, handling null values in the dates, and introducing
an ”ignition” column. These steps ensure the reliability and compatibility of the fire data,
setting the stage for meaningful analysis and interpretation in the context of the broader
research objectives.
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3.2.8 Data Integration and Combination

In the process of combining and creating our required database for Alberta, all the pro-
cessed data features are merged based on their unique identifiers. The location-dependent
features are associated with the unique identifier Grid id, while the location and time-
dependent features are identified by a combination of Grid id and date. This ensures that
each record in the combined dataset can be uniquely identified and linked to its corre-
sponding location and time information.

Algorithm 7 Data Integration and Combination

1: Import all the datasets for one year.
2: Inner join Meteorological and Remote data based on (Grid id and date).
3: Inner Join the above data Temp data from csv based on (Grid id and date).
4: Inner join the above Topographical Data with the above data based on (Grid id).
5: Merge (Joined data, Fires data) left join based on (Grid id and date)
6: Set the Null values in the ignition column in the joined data to 0 (no fire ignition).
7: Save the data fire for that year.

To achieve the integration of the different data features, a series of join operations are
performed. The algorithm outlined in Alg. 7 provides a comprehensive guide for joining
the datasets. Initially, an inner join is performed between the meteorological data (met of)
and the corrected meteorological data (cmet of) based on the common Grid id and date.
The resulting dataset is then further joined with the NDVI data (ndvi of), again using
the Grid id and date as the joining criteria. This step ensures that the meteorological and
NDVI data are aligned and associated with the appropriate locations and time periods.

Figure 3.20: Raw Data

Subsequently, the combined dataset is joined with the topographical data (topo of)
based on the shared Grid id. This integration allows for the incorporation of topographical
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features into the dataset, providing additional insights into the relationship between terrain
characteristics and the occurrence of wildfires.

Finally, the resulting dataset, denoted as data x, is left joined with the fire data (fire of),
linking the fire occurrences to their respective locations and time periods. To handle cases
where there are no fire events, the null values in the ignition column are replaced with
0, indicating a non-fire event. This comprehensive integration of fire data completes the
creation of the raw data, which represents a combined dataset for one year in Alberta,
encompassing all three types of variables (Fig. 3.20).

To obtain a comprehensive database for Alberta, these steps are performed iteratively
for each year of the available data, spanning a total of 18 years. The iterative process
ensures the inclusion of historical information and enables the analysis of long-term trends
and patterns in the dataset.

By combining and organizing the diverse datasets, our database provides a holistic
and comprehensive representation of the various factors influencing wildfires in Alberta.
This integrated dataset serves as a valuable resource for further analysis and exploration,
enabling a deeper understanding of the dynamics, relationships, and trends related to
wildfires in the region.
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Chapter 4

Methodology of Handling Data
Imbalance and Prediction Model

This section outlines the methodology utilized to develop a forest fire prediction model
based on imbalanced data, encompassing contributions C2 and C3. This chapter presents
the methodology employed for handling data imbalance in the context of forest fire predic-
tion and outlines the workflow for creating a robust prediction model as represented in Fig.
4.1. Dealing with imbalanced data poses a significant challenge in developing accurate and
reliable prediction models, as forest fire incidents are relatively rare compared to non-fire
instances in the dataset. To address this issue, various techniques have been proposed in
the literature, and this chapter extensively explores and evaluates these approaches. More-
over, this chapter provides a detailed description of the step-by-step workflow involved in
constructing a forest fire prediction model, encompassing data preprocessing, algorithm
selection, model training, and evaluation. By implementing an effective methodology for
handling data imbalance and developing a robust prediction model, we aim to enhance
the performance and effectiveness of forest fire prediction, ultimately contributing to the
advancement of fire management strategies and the protection of our natural ecosystems.

4.1 Data Imbalance Handling

The dataset obtained from the data collection process encompasses a comprehensive 18-year
timeframe, incorporating data from multiple reliable sources. Upon conducting a thorough
analysis, a pronounced class imbalance became evident, as there exists a significantly larger

68



Figure 4.1: Modelling workflow
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number of non-fire cells compared to fire cells within the dataset. Such a severe data
imbalance can adversely impact the performance of machine learning models when directly
employed for training. Consequently, addressing this issue necessitates a comprehensive
approach with three steps: Changes in spatial resolution, data spatio-subsampling, and
implementation of undersampling techniques to rebalance the dataset. However, even after
undertaking undersampling, it was observed that the resulting machine learning model
exhibited unsatisfactory performance. To overcome this limitation, it became apparent
that additional features must be incorporated into the dataset to enhance the model’s
ability to effectively classify fire and non-fire cells. By incorporating these supplementary
features, we aim to improve the predictive capabilities of the model, leading to more
accurate forest fire predictions and bolstering the efficacy of fire management strategies.

4.1.1 Changes in Spatial Resolution

Initially, a spatial resolution of 1 km by 1 km was chosen for the data collection process.
Consequently, all the collected data was converted to this resolution and combined, re-
sulting in a substantial dataset of approximately 288 GB. However, the imbalance ratio
of the data was found to be extremely high at 84,000:1, posing a significant challenge for
subsequent analysis.

Imbalance ratio = 84, 000 : 1

Increasing the resolution would result in a decrease in the imbalance between fire and
non-fire samples. Since fire occurrences are rare events, the number of fires within a cell
remains the same regardless of the cell size, whether it is 1 km by 1 km or increased to 10
km by 10 km. However, decreasing the resolution from 1km by 1km to 10 km by 10km
would reduce the number of non-fire cells, thereby reducing the class imbalance. It is crucial
to strike a balance when increasing the resolution to avoid situations where multiple fire
events fall within the same cell, as this would decrease the overall number of fire cells and
complicate the imbalance ratio. More details on the challenges encountered with spatial
resolution are given in section 4.1.1. After doing changes in the spatial resolution the
imbalance ratio of the data was reduced to 995:1.

4.1.2 Data Spatio-subsampling

This study introduces a novel technique known as spatio-subsampling, which offers a
solution to the data imbalance issue encountered in forest fire prediction. The spatio-
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subsampling technique referred as box 1 in Fig. 4.1 aims to mitigate data imbalance by
selectively removing data chunks from regions where no fire events have been observed
over the past decades. Through a comprehensive analysis of the Fire Data, specific regions
characterized by prevalent non-fire instances were identified, namely the Southeastern parts
and sub-region of northern parts of Alberta. Leveraging the Grid ids associated with these
regions, we executed the spatio-subsampling approach by eliminating samples from our
dataset that corresponded to these areas. By strategically removing non-fire cells, a sub-
stantial reduction in the imbalance ratio from 995:1 to 806:1 was achieved. Consequently,
the non-fire cells were reduced by one-fourth, resulting in a significant improvement in the
overall balance of the dataset.

The proposed spatio-subsampling technique offers a valuable approach that can be
adopted by researchers across various regions to effectively address data imbalance chal-
lenges in their respective studies. By employing this technique, researchers can enhance
the quality and reliability of their forest fire prediction models, ultimately contributing to
more accurate fire management strategies.

4.1.3 Data Augmentation

The term ”data augmentation” mentioned in this study refers to the process of enhancing
the dataset by adding new columns that contain previously unavailable information. By
incorporating additional relevant features, we aim to improve the overall performance of the
prediction model. The objective is to expand the dataset with valuable data attributes that
were not initially included, enabling the model to gain a more comprehensive understanding
of the underlying patterns and relationships. The process is denoted by box 2 in Fig. 4.1.
Through data augmentation, we can equip the model with a richer set of information,
allowing it to make more accurate and reliable predictions for forest fire occurrences. This
approach contributes to the refinement of fire management strategies and aids in mitigating
potential risks associated with forest fires.

1. Addition of month column: Certain seasons exhibit higher fire probabilities, and
specific regions experience elevated temperatures during particular times. To incor-
porate this temporal aspect, we added a ”month of date” column to the dataset. This
addition aims to enhance the model’s classification of fire and non-fire cells by con-
sidering the impact of seasons and time on climatic and fire conditions. We encoded
the month column using a label encoder, treating it as a categorical variable. This
enables the model to better capture the influence of time-related factors, contributing
to improved fire prediction capabilities.
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2. Addition of Grid location: The variation in the risk of fires across different regions
is widely acknowledged. Recognizing this, we sought to incorporate the location
of each cell as a parameter in our data analysis. To achieve this, we introduced
a categorical column called Grid id into the dataset. The purpose of adding this
column was to account for additional, yet unidentified, factors that are specific to
certain regions and were not originally represented in our dataset. By including the
Grid id, we aimed to capture the influence of these region-specific factors, thereby
enhancing the comprehensiveness of our data and enabling a more accurate analysis
of fire occurrences.

3. Addition of Fire History: The presence of a significant number of historical fires in
a specific region indicates a heightened risk of fire. Therefore, it is crucial to include
the Fire History variable in the dataset. The decision to incorporate Fire History into
the analysis was influenced by the study conducted by [14], where they utilized the
average fire count as a baseline risk factor to predict forest fires, considering various
values of other variables. Fire History is quantified as the average daily count of
fires within a designated grid cell. This count is calculated by dividing the total
number of fires that occurred in the grid cell by the total number of days considered
in the dataset’s timeframe. The numerical representation given in Eq. 4.1 provides
valuable insights into the fire history, reflecting the average occurrence of fires within
the specified grid cell.

Fire History =
Total num of fires in a grid cell

Total num of days in time period
(4.1)

4. Addition of trend of climatic data: The occurrence of fire can also be influenced
by the weather conditions in preceding days. The trend of climatic data is captured by
aggregating the weather information from previous days. The climatic variables, such
as Temperature, Precipitation, and Humidity, serve as indicators of these weather
conditions. To represent the trend of climatic data in our dataset, we aggregate these
variables over a specific number of previous days, denoted as n, and the current day is
denoted by d. In our case, the climatic trend of the previous three days is aggregated
for experiment purposes.
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Hence, in Eq. 4.2, 4.3, 4.4, we utilize the Average Maximum Temperature (AMT),
Total Precipitation (TP), and Average Wind Speed (AWS) from the previous three
days as the data column values for the current day.

AMT (d) =

∑n
i=1 MaxTd−i

n
(4.2)

TP (d) =
n∑

i=1

Prcpd−i (4.3)

AWS(d) =

∑n
i=1Wsd−i

n
(4.4)

Figure 4.2: Data
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4.1.4 Impact of Spatio-subsampling and Data Augmentation

The impact of the Spatio-subsampling and Data Augmentation techniques on the dataset
can be observed in the comprehensive overview provided in Fig. 4.3. In the context
of the dataset, let the number of rows and columns in the Raw Data be denoted as M
and N , respectively. After applying the Spatio-subsampling technique, the number of
rows in the resulting Data denoted as M ′, decreased compared to the original dataset.
Additionally, through the process of Data Augmentation, the number of columns in the
augmented dataset, denoted asN ′, expanded in comparison to the initial dataset. This dual
transformation seeks to optimize the dataset’s predictive capabilities for the subsequent
modeling stages. The effects of these transformations and their implications will be further
explored and analyzed in the forthcoming Experimentation and Result section, providing
valuable insights into the performance of the model.

Figure 4.3: Spatio-subsampling and Data Augmentation

Tab. 4.1 provides a visual representation of the data that is the result of the combined
processes of Data Spatio subsampling and Augmentation. This curated dataset snippet
serves as the input for the subsequent stages of the modeling workflow, specifically the
Preprocessing stage. Fig. 4.2 shows the snippet of the result dataset.

Grid id date Prcp MaxT RelHum Ws T NDVI slope

elev asp ignition month loc AMT TP AWS fireHis

Table 4.1: Data
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4.2 Forest Fire Prediction Modelling

The prediction modeling section encompasses a series of essential steps and techniques
aimed at developing accurate and reliable prediction models for forest fire incidents. This
section covers various subsections, including data preprocessing, train-test splitting, pipeline
construction, normalization, undersampling, classifier selection, and grid search optimiza-
tion as given in Alg. 8. The data preprocessing stage involves cleaning and transforming
the dataset to ensure its quality and suitability for analysis. The train-test split is per-
formed to evaluate the model’s performance on unseen data, while the pipeline construction
facilitates the seamless integration of preprocessing and modeling steps. Normalization
techniques are applied to standardize the data and improve model convergence. Under-
sampling is employed to address data imbalance issues and enhance the model’s ability to
learn from rare fire events. Classifier selection involves choosing an appropriate algorithm
that best suits the prediction task, considering factors such as interpretability and perfor-
mance. Grid search optimization is conducted to fine-tune hyperparameters and optimize
the model’s performance. By following this comprehensive approach, we aim to develop
robust prediction models that contribute to effective forest fire management and mitigation
strategies.

4.2.1 Preprocessing

A comprehensive preprocessing procedure was carried out to meticulously prepare the
dataset for modeling purposes, as depicted in box 3 of Fig. 4.1. During this preprocessing
stage, special attention was given to addressing the presence of NULL values in certain
rows pertaining to the topographical features. To ensure the completeness and consistency
of the data, these NULL values were replaced with zero, a commonly employed approach
that signifies the absence of a value for those specific features. This step is crucial as it
ensures that the dataset remains intact and free from missing values, enabling accurate
and reliable analyses in subsequent modeling stages.

To ensure the quality and integrity of the dataset, a thorough examination was con-
ducted using boxplot visualizations. This analysis aimed to identify and address potential
outliers, which are data points that deviate significantly from the expected distribution.
Remarkably, no outliers were detected within the dataset, indicating that the data adheres
closely to the expected range and distribution.

Furthermore, the categorical variable in the dataset underwent a transformation using
the Label Encoder technique. This transformation is necessary to convert categorical
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Algorithm 8 Prediction Modeling (bold steps refer to boxes in Fig. 4.1)

Require: Input Dataset D containing predictor variables and target variable
Ensure: Output Trained prediction model
1: Preprocessing:
2: - Perform data cleaning to handle missing values
3: - Encode categorical variables using label encoding
4: Train-Test Split:
5: - Split D into training set Dtrain and test set Dtest

6: Pipeline Construction:
7: - Define a pipeline that encompasses the following steps:
8: - Normalize the numerical features in Dtrain and Dval

9: - Perform undersampling on Dtrain to address data imbalance
10: - Define Classifier
11: Grid Search:
12: - Define a grid of hyperparameters to search for the chosen classifier.
13: - Perform grid search with cross-validation to find the best hyperparameters for the

classifier
14: Model Training:
15: - Fit the pipeline to Dtrain using the selected classifier and optimized hyperparameters
16: Model Evaluation:
17: - Evaluate the trained model on Dtest using appropriate metrics

return Trained prediction model
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data into a numerical format that can be effectively utilized in various machine learning
algorithms. The Label Encoder assigns a unique numerical label to each category, thereby
facilitating the analysis and processing of categorical features.

By undertaking these meticulous preprocessing steps, the dataset is carefully refined,
ensuring its suitability for subsequent modeling analyses. These steps enhance the overall
quality and reliability of the dataset, setting a solid foundation for accurate and robust
modeling outcomes.

4.2.2 Train Test Splitting

The dataset was subject to a partitioning process, resulting in the creation of two distinct
subsets: the training data and the testing data, as visually depicted in box 4 of Fig. 4.1.
This partitioning scheme plays a vital role in ensuring the accurate and reliable evaluation
of the trained model’s performance.

During the training phase, the training subset exclusively served as the target for all
subsequent data processing and model training operations. This approach ensures that
the model learns and adapts to the patterns and characteristics present in the training
data, enabling it to make informed predictions and classifications. Importantly, the testing
subset was kept separate and untouched during the training phase, preserving its integrity
and allowing for an unbiased assessment of the trained model’s performance.

To achieve a well-balanced representation of class labels in both the training and testing
subsets, a train-test split ratio of 0.8 was adopted. This ratio designates that 80% of the
dataset was allocated to the training data, while the remaining 20% was allocated to
the testing data. This partitioning strategy strikes a balance between providing sufficient
training data for the model to learn from and ensuring an adequate amount of independent
data for unbiased evaluation.

To facilitate the equitable allocation of samples from each class during the partitioning
process, the sklearn train-test stratified split method was employed. This method ensures
that the distribution of class labels remains preserved in both the training and testing
subsets. By maintaining the proportionate representation of different classes in each subset,
the partitioning process minimizes the risk of introducing bias and enhances the overall
reliability of the subsequent model evaluation.

By adhering to these partitioning procedures, the dataset is effectively divided into
training and testing subsets, enabling a comprehensive assessment of the trained model’s
performance.
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4.2.3 Pipeline

Pipelines are essential in machine learning model training, particularly when dealing with
imbalanced data. They provide a structured and systematic approach, minimizing manual
interventions and ensuring consistent handling of imbalances throughout the preprocess-
ing and modeling stages. In our study, we acknowledge the significance of pipelines in
addressing the imbalanced nature of the data, as depicted in box 5 of Fig. 4.1. Within the
pipeline framework, we adopt a distance-based undersampling technique to mitigate the
class imbalance. This technique selectively reduces the number of majority class samples
exclusively in the training data, preserving the integrity of the validation data. By doing
so, pipelines prevent data leakage and enable an unbiased evaluation of the model’s perfor-
mance on unseen data. Undersampling, also known as downsampling, allows us to create
a more balanced representation of the dataset, diminishing the dominance of the majority
class while retaining the inherent patterns and relationships in the imbalanced data.

One of the advantages of utilizing pipelines in the context of imbalanced data is their
ability to facilitate effective hyperparameter tuning. By encapsulating the undersampling
step within the pipeline, we can systematically fine-tune the parameters and configurations
specific to the undersampling technique. This streamlined approach enables efficient explo-
ration of various imbalance handling techniques and hyperparameter settings, aiding in the
identification of the optimal configuration for our model. With the use of pipelines, we can
enhance the reliability and performance of our prediction models on imbalanced datasets,
ensuring that the imbalances are properly addressed while maintaining the integrity of the
validation data.

1. Normalization: The data underwent normalization using the standard scalar from
the sklearn library. The inclusion of normalization within the pipeline is essential as
it ensures that the normalization process is applied solely to the training data while
keeping the validation data separate. By performing normalization in this manner,
we maintain the integrity of the validation data and prevent any information leakage
between the training and validation subsets.

z =
x− µ

σ
(4.5)

In Eq. 4.5, x is our data variable to be normalized, µ denotes the mean of the training
data and σ is the standard deviation of training data, and z is the normalized value
of x.
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2. Undersampling: Our approach involves applying undersampling techniques, namely
Random undersampling and three versions of Near miss undersampling, to tackle the
class imbalance prevalent in the training data. The effectiveness of these techniques
lies in their ability to reduce the dominance of the majority class, allowing for a
more balanced representation of the data. To control the extent of downsampling,
we employed a hyperparameter known as the downsampling ratio, denoted as r. This
parameter played a crucial role in shaping the composition of the training data and
ultimately influenced the performance of our model.

Choosing an appropriate value for the downsampling ratio, r is a critical step in our
modeling process. The selection process involved experimentation and evaluation to
assess the impact of different values of r on the model’s performance. By system-
atically varying the downsampling ratio and analyzing the corresponding outcomes,
we aimed to identify the optimal configuration that strikes a balance between reduc-
ing class imbalance and preserving the essential patterns and information within the
data.

Given the significance of the downsampling ratio in shaping our training data, care-
ful consideration and thorough experimentation were conducted to determine the
most effective value for r. Through this iterative process, we aimed to achieve an
optimal downsampling strategy that effectively addresses the class imbalance while
maximizing the predictive power and generalizability of our model.

3. Classifier: Within our pipeline, the classification machine learning model plays a
central role in our study. The choice of classifier, denoted as C, significantly impacts
the model’s predictive capabilities and overall performance. To facilitate a com-
prehensive comparative analysis, we have carefully selected three distinct classifiers:
Random Forest classifier, XGBoost Classifier, and Multi-layer Perceptron classifier.

By utilizing these three classifiers, we aim to comprehensively assess their perfor-
mance and determine the most suitable model for our forest fire prediction task.
Through rigorous experimentation and evaluation, we will examine various per-
formance metrics, ROC AUC, sensitivity, and specificity, to gain insights into the
strengths and limitations of each classifier. This comparative analysis will enable us
to make informed decisions regarding the selection of the most effective classifier that
yields optimal results in predicting forest fire occurrences.
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4.2.4 Cross Validation Folds

The performance evaluation of our model on the validation data involves utilizing the Cross
Validation technique, as depicted in box 6 of Fig. 4.1. In this study, we employ a 10-fold
cross-validation approach to assess the effectiveness of our model.

To ensure a fair and reliable evaluation, the data is divided into ten equally sized
subsets, or ”folds.” Each fold is stratified to maintain a balanced representation of fire
and non-fire samples, addressing the data’s inherent class imbalance. This stratification
ensures that each fold contains a similar ratio of fire to non-fire instances, enabling a robust
assessment of the model’s performance.

During the cross-validation process, the model is trained on nine folds while the re-
maining fold is used for validation. This procedure is repeated ten times, with each fold
serving as the validation set once. By aggregating the results from the ten iterations, we
obtain a comprehensive evaluation of the model’s performance across different subsets of
the data. By employing the 10-fold stratified cross-validation technique, we aim to obtain
accurate and reliable performance estimates for our forest fire prediction model. This ap-
proach allows us to assess the model’s ability to generalize to unseen data and provides
valuable insights into its overall effectiveness.

4.2.5 Parameter Grid

The Grid Search method is a powerful technique employed in our study to identify the
optimal parameters for our model. By defining a parameter grid, we can systematically
explore various combinations of hyperparameters and fine-tune our model for optimal per-
formance. In our case, the undersampling ratio stands as a critical hyperparameter that
addresses the class imbalance challenge.

Within the parameter grid, we include a range of undersampling ratios to be evaluated.
This allows us to assess the impact of different downsampling ratios on the performance
of our model. Through an extensive search over the parameter grid, we can identify the
undersampling ratio that yields the best results, effectively mitigating the effects of class
imbalance on our forest fire prediction model.

To evaluate the performance of our model under different undersampling ratios, we
conducted experiments specifically with the Random Forest Classifier. The selected un-
dersampling ratio was iteratively tuned and evaluated to determine its impact on the
model’s performance. Once the optimal downsampling ratio was determined for the Ran-
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Figure 4.4: Parameter Grid

dom Forest Classifier, we proceeded to compare the performances of the XGBoost and
Multilayer Perceptron Classifiers using the same undersampling ratio.

To visualize the search space and the values explored for the Random Forest Classifier
with Near Miss version 3 undersampling, we present Fig. 4.4. This figure illustrates the
range of undersampling ratios considered during the grid search, highlighting the values
examined to identify the best-performing configuration for our forest fire prediction model.

By employing the Grid Search method and evaluating different undersampling ratios,
we aim to fine-tune our model and select the most effective configuration for accurate forest
fire prediction. This systematic approach allows us to make informed decisions regarding
the choice of undersampling ratio, optimizing the performance of our model in handling
imbalanced data.

4.2.6 Fitting model in Grid Search

The training process involves training the classifier on the grid of parameters. Each possible
value within the parameter grid is used to train the classifier. This training procedure is
conducted on the training set, and the performance of the classifier is evaluated on the
validation set. The output of this process is the identification of the best performance
achieved along with its corresponding parameters. This allows us to determine the optimal
combination of parameter values that yield the highest performance for the model.

The model’s performance is analyzed across different parameter values. If satisfactory,
we proceed; otherwise, we adjust the parameters and evaluate performance. A major focus
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is on the downsampling ratio. Upon achieving good performance at a specific ratio (r),
nearby values are explored for further analysis. Once optimal performance is attained, the
model is trained on the complete dataset using best-performing parameters, as represented
by box 9 in Fig. 4.1.

The outcome of this process is the trained model, which incorporates the best possible
parameters identified through training on the training data. Subsequently, the model
is subjected to testing on the test data, and its performance is carefully evaluated and
analyzed.

This model can be tested on the test data and performance can be analyzed. Various
results can be analyzed and conclusions can be drawn from this performance. The results
and observations from the modeling are discussed in Chapter 5.

4.3 Comprehensive Approach for Imbalance Handling

The table presented in Tab. 4.2 showcases the results of applying various techniques
to address data imbalance in forest fire data. The table provides information on the
effectiveness of each step in reducing the data imbalance and achieving a more balanced
dataset. Let’s examine the table and draw insights from the data:

Step 1. Change Spatial Resolution: Before implementing this technique, the data
imbalance ratio was 84,000:1, indicating a significant imbalance between the majority and
minority classes. However, after changing the spatial resolution from 1km by 1km to 10 km
by 10 km, the data imbalance ratio improved to 995:1, representing a substantial decline
of approximately 98%. This suggests that modifying the spatial resolution significantly
contributed to reducing the data imbalance.

Handling Data Imbalance Before After Effectiveness

Step 1: Change Spatial Resolution 84,000:1 995:1 98% decline

Step 2: Data Spatio-subsampling 995:1 806:1 19% decline

Step 3: Near Miss 3 Undersampling 806:1 20:1 97% decline

Table 4.2: Steps to Deal with Imbalance in Forest Fire Data
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Step 2. Data Spatio-subsampling: The second step involved data spatio-subsampling,
which further reduced the data imbalance. The initial imbalance ratio of 995:1 decreased
to 806:1, resulting in a decline of approximately 19%. This indicates that the chosen subset
of spatially balanced data contributed to a more equitable representation of the majority
and minority classes.

Step 3. Near Miss 3 Undersampling: The final step utilized the Near Miss 3 undersam-
pling technique, resulting in a remarkable decline in the data imbalance. The imbalance
ratio decreased from 806:1 to 20:1, representing a significant decline of approximately 97%.
This indicates that the Near Miss 3 undersampling technique effectively addressed the data
imbalance issue.

Overall, the table highlights the effectiveness of the applied techniques in reducing data
imbalance in forest fire data. The progressive steps of changing spatial resolution, data
spatio-subsampling, and Near Miss 3 undersampling r esulted in substantial declines in the
data imbalance ratio. By achieving a more balanced dataset, these techniques contribute
to improving the reliability and performance of predictive models for forest fire prediction.

It is important to note that the presented effectiveness percentages reflect the relative
decline in data imbalance for each specific technique after the previous technique is already
applied. The results demonstrate the importance of carefully handling data imbalance to
enhance the performance and generalizability of machine learning models used in forest
fire prediction.
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Chapter 5

Experiments and Results

The Experiments and Results chapter presents a comprehensive analysis of the performance
and outcomes of the developed forest fire prediction models. This chapter encompasses var-
ious aspects, including a comparative evaluation of different models, an assessment of per-
formance using different downsampling techniques and ratios, an ablation study to identify
the significance of individual components and a discussion on the challenges encountered
during the development process. Through a systematic and rigorous experimentation ap-
proach, this chapter sheds light on the strengths, weaknesses, and overall effectiveness of
the models, providing valuable insights into their capabilities and limitations. The findings
and outcomes presented in this chapter contribute to a deeper understanding of forest fire
prediction methodologies and lay the groundwork for future advancements in this field.

5.1 Comparison of various models performance

Three distinct machine learning models were trained and evaluated for their performance,
namely Random Forest, XGBoost, and Multilayer Perceptron models. This section cov-
ers the research question RQ6 of contribution C3. The ROC Curves of the classifiers are
shown in three classifiers represented in fig. 5.1a, 5.1b, and 5.1c. The results of the com-
parative analysis, as presented in Tab. 5.1, highlight the varying performance of these
models. Notably, XGBoost demonstrated the highest performance with a ROC-AUC score
of 0.872. This indicates that XGBoost outperformed both the Random Forest and Mul-
tilayer Perceptron models in effectively distinguishing between ignition and non-ignition
samples. The favorable scores in terms of sensitivity and specificity further emphasize the
performance of the XGBoost model in representing both ignition and non-ignition data. It

84



achieved the highest number of accurate predictions for fire ignition and the lowest number
of missed ignition predictions.

On the other hand, the performance of Random Forest exhibited a slightly lower ROC-
AUC score compared to XGBoost. While the sensitivity of Random Forest, representing
the rate of correctly predicted fire ignitions, was lower than that of XGBoost, the model
showed the highest specificity among the three models. This indicates its ability to predict
a significant proportion (89%) of the non-fire cells correctly. Given the focus on improving
the prediction of fire cells, XGBoost emerges as the preferred model over Random Forest.

Model
Name

ROC AUC Sensitivity Specificity Correct
Ignitions

Missed
Ignitions

Random
Forest

0.869 0.66 0.89 2077 1043

XGBoost 0.872 0.75 0.83 2325 795

Multilayer
Perceptron

0.769 0.04 1 129 2991

Table 5.1: Comparison of performance of different classifiers

In contrast, the Multilayer Perceptron model displayed limitations in effectively classi-
fying fire and non-fire samples, as evidenced by its lowest ROC-AUC score among the three
models. The classifier only managed to predict a small percentage (4%) of the total ignition
cells, which is crucial for the specific use case. However, the model exhibited nearly 100%
specificity, reflecting its ability to accurately represent non-ignition cells while disregard-
ing fire ignition cells. The performance in correctly predicting non-ignitions and missed
ignitions further supports this observation. The suboptimal performance of the Multilayer
Perceptron model may be attributed to the high data imbalance and the limited capability
of a three-layered network to effectively represent imbalanced data.

These findings highlight the varying performance and capabilities of the different mod-
els in the context of forest fire prediction. The superior performance of XGBoost, followed
by Random Forest, suggests the importance of utilizing advanced ensemble learning tech-
niques in handling imbalanced datasets and achieving accurate predictions. The limitations
observed in the Multilayer Perceptron model underscore the need for further exploration
and experimentation to improve its effectiveness in imbalanced data scenarios.
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(a) Random Forest ROC Curve

(b) XGBoost ROC Curve

(c) Multilayer Perceptron ROC Curve

Figure 5.1: ROC Curve of Classifiers
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5.2 Methodological Considerations

During the training of a machine learning model, numerous methodological considerations
come into play. Particularly in the case of imbalanced data, thoughtful decisions must be
made regarding the selection of an appropriate undersampling technique and the optimal
undersampling ratio for our specific dataset. These choices carry substantial weight in in-
fluencing the overall performance and effectiveness of our model. Furthermore, performing
feature selection and evaluating feature importance allows us to discern which attributes
contribute most significantly to the model’s classification performance. Within the realm
of our analysis, it is imperative to prioritize the prediction of forest fires, specifically the ac-
curate classification of ignition samples, over the prediction of non-ignition cells. To ensure
well-informed decisions, we undertook a comprehensive comparative analysis encompass-
ing a diverse range of parameter options, carefully assessing their impact and ultimately
selecting the most suitable choices for our final model. This section covers the research
questions RQ4, RQ5 of contribution C2.

5.2.1 Decide downsampling technique

In order to address the issue of imbalanced data, we employed downsampling techniques to
reduce the number of non-ignition samples in our dataset. The selection of an appropriate
downsampling technique is of utmost importance, as different methods can significantly
impact the performance of our classifier. To conduct this analysis, we utilized the Random
Forest model, applying four downsampling techniques as Random Undersampling, Near
Miss 1, Near Miss 2, and Near Miss 3 undersampling techniques to our training data and
evaluating the model’s prediction performance on the test data.

Down
sampling

ROC AUC Sensitivity Specificity Correct
Ignitions

Missed
Ignitions

Random 0.90 0.33 1.00 1019 9095

Near Miss 1 0.549 0.89 0.05 2792 328

Near Miss 2 0.371 0.31 0.47 961 2159

Near Miss 3 0.869 0.66 0.89 2077 1043

Table 5.2: Different downsampling techniques on Random Forest
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• The analysis of downsampling techniques using Tab. 5.2 revealed distinct perfor-
mance variations among the methods. Notably, the Near Miss version 3 technique
emerged as the most effective approach, achieving a high ROC-AUC score of approx-
imately 87%. This signifies the model’s ability to accurately represent both ignition
and non-ignition samples, demonstrating its robustness in capturing the underlying
patterns and characteristics of forest fire occurrences.

• In contrast, the Near Miss version 2 technique exhibited the poorest performance
among the examined downsampling methods, with a significantly low ROC-AUC
score of 37%. This result indicates that the model’s ability to distinguish between
ignition and non-ignition samples was severely compromised. The model’s classifica-
tion decisions were less reliable and deviated from the desired performance, rendering
it less suitable for forest fire prediction.

• The Near Miss version 1 technique demonstrated high sensitivity score. While it
exhibited a high sensitivity score of 89%, indicating its proficiency in accurately clas-
sifying ignition samples, its specificity score was extremely low at 5%. This suggests
that the model predominantly classified a substantial portion of cells as ignition
samples, regardless of their true class, leading to a high number of false positives.
Consequently, this technique may not provide a well-balanced representation of both
ignition and non-ignition samples.

• The Random Undersampling technique, despite displaying a high specificity score
of 1.00, showed limited effectiveness in predicting fire occurrences. Its performance
was primarily focused on accurately classifying non-fire cells while exhibiting reduced
sensitivity and overall performance in capturing ignition samples. As a result, this
technique may not be suitable for achieving a balanced and comprehensive represen-
tation of both classes in the dataset.

The observed disparities in performance among the downsampling techniques highlight
the critical importance of selecting an appropriate method for handling imbalanced data
in forest fire prediction. The Near Miss version 3 technique, with its superior perfor-
mance, offers promising potential for enhancing the performance and reliability of forest
fire prediction models. The results emphasize the significance of carefully considering the
downsampling approach and its impact on the model’s ability to accurately classify and
predict fire occurrences.

88



5.2.2 Decide downsampling ratio

The composition of the training dataset is significantly influenced by the chosen downsam-
pling ratio (2.2). As the composition of the dataset directly impacts the model’s classifica-
tion capabilities, the selection of an appropriate downsampling ratio becomes crucial when
dealing with imbalanced data. In order to determine the optimal downsampling ratio, we
conducted a comparative analysis of the random forest model’s performance on Near Miss
3 downsampled data using different downsampling ratios, as depicted in Fig. 5.2 and 5.3.

Figure 5.2: Performance vs Downsampling ratio from 0 to 1

Initially, we selected 20 downsampling ratios at equal intervals between 0 and 1. We
evaluated the corresponding ROC-AUC scores and aimed to identify the downsampling
ratio that yielded the highest performance. Interestingly, we observed a decreasing trend
in the random forest model’s classification score as the downsampling ratio increased to
1. When the downsampling ratio was set to achieve an equal number of fire and non-fire
samples (i.e., r = 1), the ROC-AUC score was approximately 0.76. Higher ROC-AUC
scores were observed on the lower values of the downsampling ratio of 0.01 to 0.1 as shown
in Fig. 5.2. Therefore, we experimented with a downsampling ratio of 0.01 to 0.1 to find
the best value of the downsampling ratio as shown in Fig. 5.3.
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Figure 5.3: Performance vs Downsampling ratio from 0.01 to 0.1

Fig. 5.3 presents the detailed classification score report for downsampling ratios ranging
from 0.01 to 0.1. It is important to note that different downsampling ratios yield varying
results in terms of sensitivity, specificity, and ROC-AUC scores. While a downsampling
ratio of 0.01 achieves the highest ROC-AUC score of 0.89, a closer analysis reveals that
it fails to effectively represent the ignition cells, with only 27% of the fire samples being
classified correctly. Although the model performs well in classifying non-fire samples (99%
specificity), the low sensitivity suggests a limitation in identifying fire samples. As the
downsampling ratio increases from 0.01 to 0.1, the ROC-AUC score declines slightly. Con-
sidering the trade-off between sensitivity and specificity, the downsampling ratios of 0.05
and 0.07 provide comparable ROC-AUC scores with reasonably acceptable values of sen-
sitivity and specificity. Ultimately, the selection of the best downsampling ratio depends
on expert opinion and the specific use case. In our case, we have chosen a downsampling
ratio of 0.05, which allows the model to classify 75% of fire samples and 83% of non-fire
samples effectively.
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5.2.3 Importance of Downsampling

The initial analysis of the model’s performance on the original data reveals that it is
unable to effectively represent the fire samples, with only 14% and 6% of fire samples
being correctly predicted for Random Forest and XGBoost, respectively (see Tab. 5.3 and
5.4). This poor performance can be attributed to the high-class imbalance in the original
data. However, by applying undersampling techniques to decrease the imbalance in the
training data, we observe significant improvement in the model’s predictive capability, as
demonstrated in the aforementioned tables. Undersampling the training data proves to
be an effective approach to enhance the model’s ability to accurately classify both the
majority and minority classes.

Down
sampling

Imbalance
ratio

ROC
AUC

Sensitivity Specificity Correct
Ignitions

Missed
Ignitions

Before 806:1 0.77 0.14 1.00 440 2680

After 20:1 0.869 0.66 0.89 2077 1043

Table 5.3: Effect of undersampling on Random Forest prediction performance

Down
sampling

Imbalance
ratio

ROC
AUC

Sensitivity Specificity Correct
Ignitions

Missed
Ignitions

Before 806:1 0.91 0.06 1.00 184 2936

After 20:1 0.872 0.75 0.83 2325 795

Table 5.4: Effect of undersampling on XGBoost prediction performance
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5.3 Ablation Study: Importance of each feature

An ablation study assesses the influence of removing individual data features on the per-
formance of Random Forest and XGBoost models. Fig. 5.4 and Fig. 5.5 present the
results, where each label represents the model’s performance after excluding a specific fea-
ture (e.g., month) from the dataset and the data label represents the performance on the
complete dataset. Refer to Tab. 5.5 for the abbreviations of the labels. In terms of overall
performance on the complete dataset, XGBoost outperforms Random Forest in all perfor-
mance metrics. The ROC-AUC scores of both models exhibit similar behavior. However,
the contribution of each model in predicting fire and non-fire cells varies when different
variables are removed from the data. This section covers the research questions RQ7 and
RQ8 under contribution C3 and RQ3 of contribution C1.

For XGBoost, the sensitivity is generally better than the Random Forest model for
all variables except for meteorological data (Met). On the other hand, Random Forest
shows higher specificity than XGBoost for all variables except for Met. The removal of
meteorological data results in a decrease in ROC-AUC for both models. However, for
Random Forest, meteorological data contributes more to the prediction of non-fire cells
compared to XGBoost.

The best performance for the Random Forest model is achieved when the avgFeat
variables are removed. The variables that show a significant dip in ROC-AUC are fireHis
and loc. Without fireHis, the model’s ability to predict fire cells decreases from 66% to
56%, highlighting the contribution of fireHis data to fire ignition prediction. Without
loc, the model’s ability to predict fire cells slightly increases from 66% to 68%, but there
is a substantial decrease of 25% in the ability to predict non-fire cells. This demonstrates
that the grid cell location helps the model better classify non-fire cells.

For XGBoost, the best performance is achieved when using the complete data. The
variables that lead to a major dip in ROC-AUC are fireHis and loc. Without fireHis, the
model’s ability to predict fire cells decreases from 75% to 67%, indicating the contribution
of fireHis data to fire ignition prediction. The specificity of the model also decreases by
2%. Without loc, the model’s ability to predict fire cells increases from 75% to 81%, but
there is a 21% dip in the ability to predict non-fire cells. This underscores the importance of
the grid cell location in the model’s classification of non-fire cells. Without meteorological
data (Met), the overall ROC-AUC is lower, but the sensitivity of the model is higher and
the specificity is lower. This indicates that meteorological data contributes more to the
prediction of non-fire cells.
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Figure 5.4: Ablation Study for Random Forest.

Figure 5.5: Ablation Study for XGBoost.

The presented tables in 5.6 and 5.7 showcase the results of an ablation study conducted
on forest fire data using Random Forest (RF) and XGBoost (XGB) models. Each table rep-
resents the performance metrics for the models when different attributes are removed from
the dataset. The tables provide insights into the importance of individual attributes and
their impact on the models’ prediction capabilities. By examining the changes in metrics
such as ROC AUC, sensitivity, specificity, correct ignitions, and missed ignitions, we can
gain valuable insights into the significance of each attribute and the overall performance
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Key Value
data complete dataset
fireHis Fire History
AMT Average Maximium Temperature
AWS Average Wind Speed
TP Total Precipitation
avgFeat AMT, TP, AWS
loc location (Grid id)
month month
topo slope, elev, asp
NDVI Normalized Difference Vegetation Index
T Temperature at 2m
Met MaxT, Ws, Prcp

Table 5.5: Abbreviations

Data ROC AUC Sensitivity Specificity Correct
Ignitions

Missed
Ignitions

data 0.869 0.66 0.89 2077 1043

fireHis 0.824 0.56 0.90 1736 1384

avgFeat 0.875 0.68 0.88 2136 984

loc 0.809 0.74 0.73 2308 812

month 0.859 0.68 0.86 2122 998

topo 0.878 0.64 0.91 2005 1115

NDVI 0.872 0.67 0.89 2086 1034

T 0.871 0.67 0.89 2100 1020

Met 0.845 0.89 0.60 2774 346

Table 5.6: Random Forest Feature Importance

of RF and XGB models in predicting forest fire occurrences.

1. Significance of fireHis attribute: - After removing the fireHis feature, both RF
and XGB models show comparable ROC AUC scores. However, XGB demonstrates better
sensitivity by correctly predicting more fire ignitions and having fewer missed ignitions
compared to RF. This indicates that XGB is more effective in capturing the patterns and
characteristics of fire events, making it a preferable choice for forest fire prediction.

2. Significance of avgFeat attribute: - For RF, the removal of the avgFeat feature leads
to significant improvements across all performance metrics. The ROC AUC score increases,
indicating better overall model performance. Moreover, sensitivity improves, resulting in
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Data ROC AUC Sensitivity Specificity Correct
Ignitions

Missed
Ignitions

data 0.872 0.75 0.83 2325 795

fireHis 0.823 0.67 0.81 2096 1024

avgFeat 0.872 0.73 0.83 2283 837

loc 0.796 0.81 0.62 2518 602

month 0.859 0.74 0.80 2295 825

topo 0.875 0.73 0.85 2263 857

NDVI 0.870 0.74 0.82 2312 808

T 0.872 0.74 0.83 2319 801

Met 0.850 0.78 0.75 2432 688

Table 5.7: XGBoost Feature Importance

more accurate fire ignition predictions and fewer missed ignitions. This highlights that
avgFeat does not help RF to make better predictions. Conversely, the removal of avgFeat
has minimal impact on XGB, suggesting that average features have a relatively better
influence on XGB’s performance compared to RF.

3. Significance of loc attribute: - The loc attribute plays a crucial role in both RF
and XGB models. Removing this attribute significantly decreases the ROC AUC score for
both models, indicating a substantial drop in overall predictive performance. Additionally,
the removal of loc leads to increased sensitivity. However, this increase in sensitivity
comes at the expense of very low specificity, suggesting that the loc attribute is essential
for distinguishing non-fire instances. Therefore, retaining the loc attribute is crucial for
accurate forest fire prediction.

4. Significance of month attribute: - Removing the month attribute has a minimal
effect on RF’s ROC AUC score, indicating that the model’s overall performance remains
relatively stable. However, it slightly improves the number of correct ignition predictions
and decreases the number of missed ignitions, suggesting that the month attribute may
have limited influence on RF’s fire prediction capabilities. On the other hand, the removal
of month in XGB results in a slight decrease in all performance metrics, indicating that
the month attribute plays a more significant role in the XGB model’s ability to accurately
predict forest fires.

5. Significance of topo attribute: - The topo attribute demonstrates its importance in
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both RF and XGB models. In RF, removing the topo attribute leads to a decrease in
correct ignition predictions, despite a slight improvement in the ROC AUC score. This
implies that topographical data contribute to RF’s ability to accurately classify fire events.
Similarly, in XGB, the removal of topo results in a decrease in correct ignition predic-
tions, suggesting that topographical information aids XGB in making more accurate fire
predictions. Therefore, retaining the topo attribute is beneficial for both models.

6. Significance of NDV I attribute: - Removing the NDV I attribute shows varying ef-
fects on RF and XGB models. For RF, the removal of NDV I yields the best performance,
as indicated by an improved ROC AUC score. This suggests that the NDV I data has
limited contribution to RF’s predictive capabilities and may even introduce noise into the
model. In contrast, for XGB, the removal of NDV I leads to a slight decrease in all perfor-
mance metrics, indicating that the NDV I attribute aids XGB in making more accurate
fire classifications. Therefore, the impact of NDV I differs between the two models, with
RF benefiting from its removal and XGB relying on it for improved performance.

7. Significance of T attribute: - The impact of the T attribute varies between RF
and XGB models. Removing the T attribute improves the overall performance of the
RF model, suggesting that this attribute does not contribute significantly to RF’s fire
prediction capabilities. On the contrary, for XGB, the presence of the T attribute maintains
the same ROC AUC and specificity as the baseline model. However, there is a slight drop
in sensitivity and correct ignition predictions when T is removed, indicating that the T
attribute assists XGB in accurately predicting fire ignitions. Therefore, the influence of T
differs between the two models, with RF showing no significant impact and XGB benefiting
from its inclusion.

8. Significance of Met attribute: - The Met attribute plays a critical role in both RF
and XGB models. Removing the Met attribute reduces the ROC AUC score for both
models, indicating a decrease in overall predictive performance. Although the removal
leads to more correct ignition predictions and higher sensitivity, it also results in very
low specificity, implying a high false positive rate. This highlights the importance of
meteorological data in accurately identifying non-fire instances. Therefore, retaining the
Met attribute is crucial for achieving reliable forest fire prediction.

In summary, the ablation study provides valuable insights into the impact of different
features on the performance of RF and XGB models for forest fire prediction. These obser-
vations demonstrate the varying importance of each feature and their effects on different
performance metrics. The results highlight the significance of the location, average fea-
tures, topography, month, NDVI, temperature, and meteorological data in improving the
models’ fire prediction capabilities.
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5.4 Computation time analysis

In the comparison of CPU time between Random Forest (RF) and XGBoost (XGB) for
different ablation datasets as represented in Tab. 5.8, it was observed that the CPU time
for RF was generally lower than that of XGB, except for the Temperature row. This
discrepancy in CPU time can be attributed to several factors related to the algorithms
and their implementation. The CPU time was measured for the training of the model was
measured using the Python time command.

RF is an ensemble-based algorithm that builds multiple decision trees in parallel, uti-
lizing features randomly sampled at each node. This parallel nature allows RF to take
advantage of multi-core processing and distribute the workload efficiently, resulting in
faster computation and lower CPU time. While it is generally believed that XGB is faster
due to its optimization techniques and parallelization, our observations indicate otherwise.

Data RF CPU Time XGB CPU Time

data 43.8 s 1min 21s

fireHis 38.7 s 1min 21s

avgFeat 34.3 s 1min 20s

loc 36.1 s 1min 28s

month 41.8 s 1min 23s

topo 38.7 s 1min 21s

NDVI 35.5 s 1min 12s

T 56.2 s 38 s

Met 13.6 s 38.8 s

Table 5.8: CPU time for Random Forest and XGBoost

One potential explanation for the lower CPU time of RF could be the inherent paral-
lelization of RF, which allows it to take advantage of multiple CPU cores more efficiently.
On the other hand, XGB is a gradient-boosting algorithm that builds decision trees se-
quentially, where each tree learns from the mistakes of the previous tree. This sequential
nature limits the inherent parallelism of XGB during the training process, making it rela-
tively slower than RF in terms of CPU time. Additionally, RF may benefit from optimized
implementation in software libraries, resulting in faster computations.
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It is worth noting that the exception observed in the Temperature row, where XGB
had lower CPU time than RF, could be attributed to the characteristics of the specific
dataset or the complexity of the feature being ablated. XGB might have been able to
exploit certain patterns or optimize its computations more effectively in that particular
scenario, resulting in faster CPU time.

Further analysis is required to fully comprehend the factors influencing the relative
computational efficiency of RF and XGB. Nonetheless, these findings challenge the common
assumption that XGB is consistently faster and emphasize the importance of considering
various factors that can impact CPU time in different scenarios.

5.5 Challenges encountered during development

In this section, we discuss the various challenges encountered during the development
process of our wildfire prediction model. These challenges encompassed multiple aspects,
including spatial resolution alignment, dataset availability, imbalance ratio of the data,
and the management of a large volume of data. We delve into each of these challenges,
providing insights into the complexities faced and the strategies employed to overcome
them. By addressing these challenges, we aimed to ensure the reliability and effectiveness
of our model, laying the foundation for robust experimentation and reliable results.

5.5.1 Spatial Resolution Changes

This section focuses on the issues related to spatial resolution encountered during the data
collection phase and its impact on the imbalance ratio of the dataset. Initially, a spatial
resolution of 1 km by 1 km was chosen for the data collection process. Consequently, all
the collected data was converted to this resolution and combined, resulting in a substantial
dataset of approximately 288 GB. However, the imbalance ratio of the data was found to
be extremely high at 84,000:1, posing a significant challenge for subsequent analysis.

Attempts were made to address the class imbalance by applying undersampling tech-
niques; however, due to the large volume of data, the computation required for under-
sampling was time-consuming. Moreover, the results obtained after undersampling were
unsatisfactory, as existing downsampling techniques were not specifically designed to han-
dle such high levels of imbalance. To explore alternative solutions, a thorough analysis of
the data was conducted, leading to the realization that increasing the spatial resolution
could offer potential benefits.
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Increasing the resolution would result in a decrease in the imbalance between fire and
non-fire samples. Since fire occurrences are rare events, the number of fires within a cell
remains the same regardless of the cell size, whether it is 1 km by 1 km or increased to
10 km by 10 km. However, increasing the resolution would reduce the number of non-fire
cells, thereby reducing the class imbalance. It is crucial to strike a balance when increasing
the resolution to avoid situations where multiple fire events fall within the same cell, as
this would decrease the overall number of fire cells and complicate the imbalance ratio.

Considering the geographical context of the Alberta region and the forested areas, a
resolution of 10 km by 10 km was deemed reasonable. This resolution accounts for the
area considered while maintaining an appropriate level of detail for the forested regions.
Additionally, it was observed that the decided resolution of the final data should not exceed
the resolution of any individual dataset being combined. For instance, the meteorological
data available had an approximate resolution of 10 km by 10 km. Setting the final resolution
at 1 km by 1 km would involve duplicating values from a 10 km by 10 km cell into 100 1 km
by 1 km cells. This would diminish the quality of the dataset, as multiple cells would share
the same values for meteorological features, posing challenges for the model in accurately
classifying fire and non-fire cells. This insight highlighted the importance of ensuring that
the final resolution of the data does not fall below the resolution of any individual dataset
present.

5.5.2 Imbalance Ratio of Data

It is essential to address the significant class imbalance observed in the forest fire predic-
tion dataset. The occurrence of wildfire is inherently rare, while the collection of climatic
and other factors is conducted regularly throughout the year for various locations. Con-
sequently, this leads to an imbalanced dataset where the number of non-fire instances
significantly outweighs the number of fire instances. The presence of such a substantial
class imbalance poses a critical challenge in developing accurate forest fire prediction sys-
tems. The available balancing techniques are often insufficient to effectively handle such
a vast disparity in class distribution. Even after employing undersampling techniques, the
resulting model struggles to achieve satisfactory recall for both fire and non-fire classes.
The extent of this imbalance is so pronounced that it almost resembles an anomalous
behavior within the dataset.
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5.5.3 Large Volume of Data

During the course of our work with the dataset encompassing the entire region of Alberta,
we initially encountered a substantial volume of data of approximately 288 GB, character-
ized by a spatial resolution of 1 km by 1 km. However, conducting undersampling tech-
niques and implementing various machine learning methods on this dataset proved to be
resource-intensive, demanding computational capabilities beyond our available resources.
Subsequently, we devised a solution to address the issue of data volume by increasing the
spatial resolution to 10 km by 10 km. This adjustment resulted in a significant reduction
in the number of rows per year, by a factor of 100. As a result, we obtained a more man-
ageable dataset size of 2.46 GB comprising samples collected over a span of 18 years. Due
to the immense size of the 1 km by 1 km resolution dataset, certain distance-based under-
sampling techniques, such as centroid undersampling, could not be effectively analyzed as
they strained the computational limitations of our system.

5.5.4 Availability of data

The availability of meteorological data posed a significant challenge during the modeling
process. The data we obtained was sourced from weather stations located throughout
the Alberta region. However, the distribution of these weather stations varied across
different subregions, resulting in varying densities of stations. Some areas had a higher
concentration of weather stations, while others had larger distances between them. To
predict forest fires accurately, we required comprehensive data coverage for the entire
region at a specific spatial resolution. Since weather stations were not evenly distributed,
it necessitated the interpolation of data for locations where no weather station was present.
This interpolation process involved both spatial and temporal aspects, wherein data had
to be interpolated from the nearest weather stations for each day. Identifying the most
appropriate interpolation method for this task presented an additional research challenge.
We are grateful to Alberta ACIS [2] for providing us with interpolated weather data, which
enabled us to mitigate this challenge to some extent. However, it is important to note that
relying solely on interpolated values for forest fire predictions may not capture the true
climatic conditions accurately. To achieve more precise predictions, a greater number of
weather stations recording actual climatic conditions would be desirable.
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Chapter 6

Conclusion & Future Work

This chapter marks the culmination of our study on forest fire prediction using heteroge-
neous data sources and machine learning. In this chapter, we summarize the key findings
and contributions of our research, discuss the implications of our results, and provide
insights into potential avenues for future exploration. Additionally, we reflect on the im-
portance of our work in addressing the challenges of forest fire prediction and discuss its
potential impact on wildfire management strategies. This chapter serves as a comprehen-
sive conclusion to our study, while also setting the stage for further advancements in the
field of forest fire prediction.

6.1 Future Work

In terms of future research directions, there are several promising avenues to explore based
on the findings of this study. Firstly, the dataset used in this study holds potential for the
development of models capable of predicting future climatic conditions and their impact
on forest fire ignition. By integrating advanced forecasting techniques with the dataset,
we can gain valuable insights into the relationships between weather patterns and fire
occurrence, enabling more accurate predictions.

Furthermore, there is scope to expand the dataset by incorporating additional types
of data sources. For instance, considering the potential impact of anthropogenic factors
such as electric wire spread in forests can provide valuable information for enhancing the
prediction of human-caused forest fires. Incorporating such data sources can enrich the
model’s understanding of the various factors contributing to forest fire ignitions, leading
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to more robust and comprehensive predictions. Also, the data collection framework used
for Alberta can be scaled to collect data for the whole country using a similar approach.

In addition, deep learning models present a promising avenue for future investigation.
By leveraging the dataset’s time-series nature, models such as Long Short-Term Memory
(LSTM) can be employed to capture and analyze temporal patterns in the data. LSTM
models have shown success in capturing long-term dependencies, making them well-suited
for predicting forest fires based on historical weather conditions. Exploring the potential
of LSTM models and other deep-learning approaches can further enhance the performance
of fire ignition predictions.

Moreover, it is worth exploring alternative data balancing techniques to better un-
derstand the behavior of wildfire data and improve wildfire prediction models. Different
undersampling and oversampling methods can be applied to assess their impact on model
performance and identify the most effective approach for addressing the imbalanced na-
ture of the dataset. Such investigations can provide valuable insights into the optimal data
balancing strategies for forest fire prediction.

Furthermore, the availability of data at higher resolutions can significantly enhance
the predictive capabilities of the models. By incorporating data from a greater number of
weather stations or other relevant sources, we can capture more fine-grained and localized
information, allowing for more accurate predictions of fire occurrences in specific regions.
This would enable planners and stakeholders to make proactive decisions and allocate
mitigation resources effectively.

Finally, An intriguing avenue to explore is the application of federated learning tech-
niques for forest fire prediction. By adopting federated learning, forest fire prediction mod-
els can benefit from the diverse and heterogeneous data collected by various stakeholders.
Each participating entity can contribute its local data, encompassing meteorological mea-
surements, topographical features, historical fire records, and other relevant variables. The
federated learning framework enables the aggregation of these distributed datasets to build
a robust and accurate prediction model.

Overall, these future research directions have the potential to advance the field of forest
fire prediction, enhancing our ability to forecast fire occurrences, mitigate their impact, and
ultimately safeguard ecosystems and human lives.
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6.2 Conclusion

In this thesis, we have delved into the challenging problem domain of forest fire predic-
tion, aiming to develop accurate and reliable models using heterogeneous data sources and
machine learning methods. Forest fires pose a significant threat to ecosystems, human
lives, and the economy, necessitating proactive measures for effective firefighting, resource
allocation, and risk assessment. However, the complexity and dynamic nature of forest
fires, coupled with the challenges associated with data collection, imbalance in the dataset,
and the scarcity of high-resolution weather data for specific regions, have hindered the
development of robust prediction models. Through a comprehensive investigation guided
by research questions, valuable insights have been gained, significant challenges have been
addressed, and substantial contributions have been made to the field.

The exploration began by delving into the underlying factors contributing to forest fire
ignition, as highlighted in research question RQ1. Through an extensive literature review
and analysis, we identified key factors such as meteorological conditions, biophysical char-
acteristics, topographical attributes, and fire history. This comprehensive understanding
served as the foundation for our subsequent research endeavors and played a pivotal role
in the development of a robust data collection framework. This framework integrated
data from diverse sources, including remote satellites and weather stations, into a unified
database. By capturing essential attributes at a high temporal and spatial resolution, we
created a comprehensive dataset spanning 18 years and covering a vast region of 661,848
km2 at the spatial resolution of 10 km by 10 km in Alberta. The successful implemen-
tation of this data collection framework effectively addresses research question RQ2 and
constitutes a significant contribution C1 to this thesis.

One of the major challenges encountered in forest fire prediction is the imbalanced dis-
tribution of fire and non-fire samples in the dataset. Research question RQ4 focused on
understanding the challenges associated with wildfire data and devising strategies to ad-
dress them. To tackle the imbalance issue, we devised a comprehensive approach consisting
of three steps: spatial resolution modification, data spatio-subsampling, and the implemen-
tation of the Near Miss-3 undersampling technique. These techniques effectively mitigated
the imbalance and improved the performance of our predictive models. Through thorough
experimentation and evaluation, we demonstrated the effectiveness of our approach in han-
dling the high imbalance inherent in forest fire prediction data. By successfully addressing
research questions RQ4 and RQ5, we have contributed a valuable solution to the field of
imbalanced dataset handling, evidenced by contribution C2.
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Machine learning models play a crucial role in predicting forest fire ignitions, and re-
search question RQ6 aimed to identify the most suitable methods for this task. We evalu-
ated various machine learning algorithms, with a particular focus on ensemble models such
as XGBoost and Random Forest. The performance evaluation yielded impressive results,
with XGBoost emerging as the top-performing model, achieving a ROC-AUC score of 87%
and a sensitivity of 75%. These findings effectively answer research question RQ6, showcas-
ing the efficacy of ensemble models in addressing the challenges posed by imbalanced data
in forest fire prediction. Furthermore, our ablation study provided valuable insights into
the contribution of different attributes, revealing the significance of fire history, grid cell lo-
cation, and meteorological data in enhancing the models’ predictive capabilities. Thus, our
research contributions C3 shed light on the importance of attributes selected for accurate
forest fire prediction, addressing research questions RQ3, RQ7, and RQ8.

The composition of the dataset and the spatial resolution of the data play pivotal roles
in determining the performance and reliability of forest fire prediction models. Our study
has demonstrated the substantial impact of modifying the dataset’s composition and im-
balance ratio on classification performance. However, the limited availability of data at an
appropriate resolution for the target region presents a significant challenge. In addressing
this, we have utilized interpolated data from nearby weather stations to supplement our
dataset, although further advancements can be made. Hence, we emphasize the importance
of expanding the network of weather stations within the desired area to enhance data qual-
ity and strengthen the predictive capabilities of the models. This development will pave
the way for more accurate and reliable forest fire predictions, empowering decision-making
processes and facilitating proactive measures for effective fire prevention and management.

In summary, this thesis has made substantial contributions to the field of forest fire
prediction by addressing research questions, overcoming challenges, and leveraging hetero-
geneous data sources and machine learning methods. The comprehensive understanding
of underlying factors, the development of a robust data collection framework, the effective
handling of imbalanced data, and the selection of appropriate machine learning models
have significantly advanced the performance and reliability of forest fire prediction. Our
research findings provide valuable insights for proactive risk assessment, robust mitigation
strategies, and the preservation of ecosystems. Continued research efforts, focusing on
dataset refinement, data resolution enhancement, and the exploration of emerging tech-
nologies, will further enhance our ability to forecast and prevent forest fires, ultimately
leading to improved safety, resource allocation, and environmental conservation.
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