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Abstract

Modern database systems that support ACID transactions, and applications built around
these databases, may choose to sacrifice transaction durability for performance when they
deem it necessary. While this approach may yield good performance, it has three major
downsides. Firstly, users are often not provided information about when and if the issued
transactions become durable. Secondly, users cannot know if durable and non-durable
transactions see each other’s effects. Finally, this approach pushes durability handling
outside the scope of the transactional model, making it difficult for applications to reason
about correctness and data consistency.

To address these issues, we present the idea of “Eventual Durability” (ED) to provide a
principled way for applications to manage transaction durability trade-offs. The ED model
extends the traditional transaction model by decoupling a transaction’s commit point from
its durability point – therefore, allowing applications to control which transactions should
be acknowledged at commit point and which ones at their durability point. Furthermore,
we redefine serialisability and recoverability under ED to allow applications to ascertain
if fast transactions became durable and how they might have interacted with safe ones.
With ED, users and applications can know what to expect to lose when there is a failure
– thus, bringing back managing durability inside the transaction model.

We implement the ED model in PostgreSQL and evaluate it to understand the model’s
effect on transaction latency, abort rates and throughput. We show that ED Postgres
achieves significant latency improvements even while ensuring the guarantees provided by
the model. Since a transaction’s resources are released earlier in ED Postgres, we expected
to see lower abort rates and higher throughput. Consequently, we observed that ED
Postgres provides an average of 91.25% – 93% reduction in abort rates under a contentious
workload and an average of 75% increase in throughput compared to baseline Postgres.
We also run the TPC-C benchmark against ED Postgres and discuss the findings. Lastly,
we discuss how ED Postgres can be used in realistic settings to obtain latency benefits,
throughput improvements, reduced abort rates, and fresher reads.
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Chapter 1

Introduction

A transaction’s commit has been tied to its durability ever since the idea of ACID (Atom-
icity, Consistency, Isolation, and Durability) transactions was introduced more than fifty
years ago [32] [26] [27]. According to the transaction model initially presented by Gray
and Reuter [29], when a transaction commits, its effects are ‘durable’. Indeed, committing
a transaction may mean many things nowadays, but we will stick to the original definition
for this discussion. Durability, in turn, means that the effects of the transaction can survive
some failures.

A system might choose to protect itself against multiple kinds of failures. For instance,
in a single-server, in-memory database, preventing data loss during power failures would
mean writing a transaction’s effects durably to disk. If the server irrecoverably fails, data
written to disk is also lost. To protect against irrecoverable node failures, a standby server
or a replica may be added to this single-server database setup. Now, making the transaction
‘durable’ would mean that its effects have to be written to the disk of the primary and to
the memory or disk of one or more standby servers to survive node failures. In the case of
a distributed database supporting distributed transactions, the transaction’s effects may
need to be durably recorded on multiple servers so that the transaction may survive the
failure of one or more servers. Since disk writes/access times and network latencies are
orders of magnitude higher than cache and memory access times [47] as shown in Table
1.1, it is easy to see how quickly the durability costs of transactions can add up when
transactions need to survive progressively more complex and different types of failures.

Consider a concrete example using PostgreSQL that illustrates the increasing costs of
transaction durability just described. Postgres allows synchronous standbys to be added
to the primary node to enable failovers. The greater the number of synchronous standbys
and the further away they are from the primary server, the higher the cost of making a
transaction durable. We will show this cost of durability with a simple experiment that
uses Postgres configured with different levels of durability. One primary Postgres node and
one synchronous standby are set up, and we measure the latency of simple transactions,
each of which performs one single-row update. We start the experiment with durability
turned off, i.e., a transaction gets acknowledged even before its effects are written to disk.
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Operation Latency
CPU Instruction Execution 1 ns
fetch from L1 cache memory 0.5 ns

branch misprediction 5 ns
fetch from L2 cache memory 7 ns

Mutex lock/unlock 25 ns
fetch from main memory 100 ns

send 2K bytes over 1Gbps network 20,000 ns
read 1MB sequentially from memory 250,000 ns
fetch from new disk location (seek) 8,000,000 ns
read 1MB sequentially from disk 20,000,000 ns

send packet US to Europe and back 150 milliseconds = 150,000,000 ns

Table 1.1: Approximate times of various operations in a distributed system, from [47]

Then, we step up the durability level by forcing the transaction to the local disk before it
is acknowledged. Following this, we increase the durability level even further by placing
the synchronous standby progressively further away from the primary server – i.e., we start
by having the standby in the same region and the same availability zone as the primary,
and we go up to when the standby is in a distant region from the primary. The results are
shown in Fig. 1.1.

We used ping1 to measure the TCP round-trip time between the test client and the pri-
mary Postgres server. The results showed that the average round-trip latency is 0.162 ms.
Based on this finding, and using the latency from the “no-durability” option (us-east-1a,
sync=off in Fig. 1.1), we can estimate that the average per-transaction processing time on
the server-side during the experiment for this specific transaction is 0.025 ms. The remain-
ing latency experienced by the client can be attributed to network and disk latency. Using
this information as a starting point, we can estimate the combined overhead of network
and disk costs in subsequent configurations.

From Fig. 1.1, we see that the setting sync=local adds 0.79 ms of latency to the
sync=off latency. This shows that making a transaction durable accounts for about 97%
of server-side latency. On the client side, latency increases by about 522%. When the
durability level is increased to remote flush, the overhead is almost 99% of the total trans-
action latency. In the final setting, where the synchronous standby is in a distant region,
almost all of the transaction latency is due to network and disk overhead, which comes up
to almost 100% of the total latency.

Therefore, making a transaction durable is expensive, and making transactions toler-
ant to different types of failures incurs increasingly higher costs. If we were to consider

1Using 64 byte ICMP packets
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Figure 1.1: The Cost of Durability

this experimental setup as being representative of a multi-region, multi-standby Postgres
configuration where there is one synchronous standby per data centre and possibly mul-
tiple asynchronous standbys, we can interpret the increasing latencies as rising costs of
durability to make a transaction multi-data-centre fault-tolerant. This simple demonstra-
tion shows how quickly durability costs can add up as the cluster is configured to handle
increasingly complex failures.

However, the manner in which systems have made durability tradeoffs over the years has
not been particularly friendly to application developers. Since the traditional transaction
model requires that a transaction be durable at commit time, databases cannot provide
strictly-ACID transactions and achieve good performance at the same time. Hence, systems
have relaxed this guarantee to achieve better performance, but, in doing so, they have
pushed durability-handling outside the transaction model. With this approach, developers
have the freedom to issue synchronous and asynchronous transactions, but there are still
many uncertainties that they have to deal with while writing applications.

A common ad-hoc approach for avoiding durability costs is simply committing trans-
actions without making them durable. E.g., using synchronous commit=off in Postgres
or using asynchronous commits in other systems. In systems using such approaches, of
course, non-durable transactions can be lost on failures. Another problem is that appli-
cations are unaware of when and if the transactions become durable. If they try to read
their own writes and do not see them, they can infer that a failure must have wiped out
the in-memory, non-durable writes. However, if they see the writes, they cannot know if
the records visible to them are durable or volatile. Applications have to work with this
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uncertainty and trust that the database system will eventually make those records durable.
However, suppose their subsequent decisions required the durability of those records, and
they were lost due to a failure. In that case, applications have to untangle themselves from
this mess without much help from the database system. We discuss more examples and
case studies of ad-hoc durability handling in related work (Chapter 5).

The second issue is with the visibility of transactions. When both synchronous and
asynchronous transactions are active in the system, applications cannot be sure whether
they saw each other’s effects. For example, asynchronous transactions may not be able to
see the effects of synchronous transactions until they are durable. There is a secondary
implication of this visibility issue as well. Because the synchronous transactions hold on
to locks and resources for the entire duration of their durability, they may cause higher
aborts and, thus, lower throughput under contentious workloads.

Finally, because of this ad-hoc approach, database systems may silently lose transac-
tions, and applications would be oblivious to it until they attempt to read the database
state. Furthermore, this can lead to a non-repeatable-read-like situation where an ap-
plication sees that a record has changed before and after a failure despite the updating
transaction having committed. Not only does this violate the traditional transactional
model, but it also leads to uncertainties that application developers have to work around.
Therefore, clearly, there is a need to address these issues formally.

1.1 Summary of Contributions

To deal with durability costs in a principled way and to provide a formal framework to
manage these tradeoffs, we extend the traditional transaction model to introduce Eventual
Durability in this thesis.

• Chapter 2 begins by providing a brief background on serialisability and recoverability.
It then introduces the idea of Eventual Durability (ED) and compares it to the
traditional transactional model.

• For a system to support durability tradeoffs, serialisability and recoverability are
important transactional properties to guarantee. Therefore, we redefine serialisability
and recoverability under ED by building on top of the classical model. We further
illustrate how they can be leveraged to eliminate uncertainties described earlier.

• Chapter 3 discusses in detail how the ED model was implemented in Postgres. We
identify the missing pieces and describe the changes made to implement these pieces
in the transaction manager. We argue for the correctness of these changes and show
that they uphold ED guarantees.

• Finally, Chapter 4 presents experimental results of ED Postgres and shows how ED
reduces latency, contention, improves throughput and enables fresher reads.

4



Chapter 2

Eventual Durability

2.1 Background

Before presenting the Eventual Durability (ED) model, we will first provide some brief
background on serialisability and recoverability.

A database operation involves either reading or writing data items in the database.
Read operations are denoted as r[x], which indicates that the operation read x. A write
operation is denoted as w[x] indicating that the operation wrote to the value x. A trans-
action is a collection of one or more database operations that forms some logical unit of
work. E.g., a transaction T could have:

T = r[a] w[a] r[b] w[b] c

This denotes that the transaction T first read the value a and then updated it, followed
by reading the value b and updating it. In this notation, a sequence of operations in a
transaction is always followed by one of two operations – c for commit or a for abort. Now,
consider two transactions T1 and T2:

T1 = r1[a] w1[a] r1[b] w1[b] c1

T2 = r2[a] w2[b] c2

If T1 and T2 try to execute simultaneously, the database system has to make a decision
on how to interleave their operations. A history H is some interleaving of concurrent
database operations. E.g.:

H1 = r1[a] r2[a] w2[b] c2 w1[a] r1[b] w1[b] c1
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Now consider this alternate history H2:

H2 = r1[a] w1[a] r2[a] w2[b] r1[b] w1[b] c1 c2

While it may appear that there are only slight differences between H1 and H2, the
results of a and b at the end of H1 and H2 are different. With this brief background, we
now proceed to provide the classical definitions of serialisability and recoverability, followed
by their renewed definitions under ED.

2.1.1 Serialisability

Bernstein et al.[11] define that a history “is serialisable if it produces the same output and
has the same effect on the database as some serial execution of the same transactions”. In
our earlier example, H1 is serialisable since its output will be equivalent to running T2 first
and then T1. However, H2 is not serialisable because its output will not be equivalent to
any serial execution of T1 and T2 – i.e., running T1;T2 or running T2;T1 both give different
outputs from running H2. While there is a lot of complexity and nuance in serialisability,
its realisation and its implications on systems, this simple definition should be sufficient to
extend the classical idea.

2.1.2 Recoverability

Once again, we turn to Bernstein et al. [11] to define recoverability. A database system’s
recovery mechanism must ensure that the database state has all the effects of committed
transactions but none of the effects of uncommitted or aborted transactions. In order to
“undo” a transaction’s effects, the database system has to restore the state on disk, as well
as abort affected transactions. In the traditional transactional model, the database system
guarantees that if a transaction is committed, it will not subsequently be aborted. There-
fore, before a transaction commits, the system must ensure that all the transactions that
the committing transaction, say T , has read from will not abort – or, in other words, have
themselves committed. So, we say that a history H is recoverable if, for every transaction
T in H that commits, T ’s commit follows the commit of every transaction from which T
read.

2.2 The Eventual Durability Model

Traditional ways to deal with high durability costs have involved ad-hoc mechanisms that
may or may not retain the transactional ACID guarantees. Many database systems have
no notion of a transaction, do not reliably persist writes, and acknowledge requests while
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writes have been accepted transiently in memory [39] [53][12]. Such ad-hoc approaches pose
a legitimate risk to data, especially when developers do not have any control over which
transactions should be acknowledged quickly and which ones should be acknowledged only
after they are fully durable. Applications using such systems may have a limited notion
of failure models, and, therefore, issuing write requests becomes a roll of dice for its users
[51]. Systems like PostgreSQL provide synchronous and asynchronous commit options for
transactions. However, users do not have any way of knowing when these asynchronous
transactions become durable and how these transaction types interact with each other
when run concurrently.

In this work, we introduce the idea of Eventual Durability to provide users with a prin-
cipled foundation to manage durability trade-offs. The core idea of eventual durability is
that transactions commit first and then become durable over time. We decouple a trans-
action’s commit point from its durability guarantee while ensuring that execution histories
are serialisable and optionally recoverable if the user desires. We also provide a realisation
of the eventual durability model and set down its properties and guarantees. This model
paves the way for applications to have fine-grained control over which transactions should
commit quickly and which ones safely. Because of the recoverability property offered by
ED, users can know what to expect during crashes.

Let us now take a closer look at the transaction processing model initially presented
by Gray and Reuter [29]. Fig. 2.1 shows, in a simplified sense, the transaction lifecycle
in traditional database systems. A transaction is initially in the active or pending state
when it is still executing some read or write operations on the database. Once done, the
user issues a COMMIT. At this point, the database system may perform some commit-time
processing, and the state of the transaction is switched from either active or pending to
committed. When the transaction commits, in addition to being guaranteed atomicity and
serialisability, it is also guaranteed durability. In the traditional model, a transaction’s
commit is a promise by the database system that the effects of the transaction will not be
lost from the system.

With the eventual durability model, we untether a transaction’s ACID semantics from
its durability guarantee. A transaction is serialised, atomically executed, and its changes
are made visible to other transactions, but its writes may not be fully durable at commit
time. This model is illustrated in Fig. 2.2. All transactions under the ED model commit
first but become durable later. An important distinction from the traditional transaction
processing model is that under ED, a committed transaction can be “lost” if it fails to
achieve full durability.

There is more than one way for database systems to expose eventual durability to
database applications. In this work, we expose eventual durability by allowing applications
to choose between two types of transactions: “fast” and “safe”. “Safe” transactions behave
like traditional database transactions – they are not acknowledged until they have become
durable. Fast transactions, on the other hand, are acknowledged as soon as they commit.
All transactions – whether fast or safe – become visible after committing, just as in the
traditional model.

7



Figure 2.1: Traditional Commit Processing in ACID databases

Because a fast transaction’s commit will be acknowledged before the transaction is
durable, the application must be prepared for the possibility that a fast transaction will be
lost – even though its commit has been acknowledged – in the event that it fails to become
durable. Although fast transactions are not guaranteed to be durable when acknowledged,
they retain all other ACID properties – i.e., they remain isolated and fully serialised with
respect to other transactions. Under the ED model, applications can now choose to issue
critical transactions in the “safe” mode and non-critical ones in the “fast” mode.

Furthermore, an important property that we guarantee, in addition to ED serialisabil-
ity, is ED recoverability. We will formally define both these properties shortly, but in
summary, ED recoverability states that a transaction cannot become durable until all of
its dependencies have become fully durable. This property ensures that if a safe transac-
tion, say Ts, happens to read the effects of a prior fast transaction, say Tf , which is not
durable yet, Ts will not be acknowledged until both Tf and Ts are durable. This feature of
interest in the ED model sets it apart from ad-hoc techniques that manage durability. In
systems that accept commit requests and make transactions durable asynchronously, it is
almost impossible for users to tell whether the data they are reading is durable or volatile.
With ED, however, users can always be assured that if their safe transaction has read
non-durable effects, they will all be fully durable when the database system acknowledges
the safe transaction.

8



Figure 2.2: Proposed changes to the commit processing model in ACID Databases

2.2.1 Summary of Eventual Durability Properties and Guaran-
tees

We will now summarise the set of properties and guarantees the ED model provides when
realised using fast and safe transactions.

1. A transaction in a database system that implements ED can be tagged fast or safe.

2. All transactions in an ED system can be in one of five states at any given point – ac-
tive, committed, aborted, durable or failed. The progression of states of a transaction
can be one of the following:

Active→ Committed→ Durable

Active→ Committed→ Failed

Active→ Aborted

3. Transactions in the committed and durable states are visible, while others are not.
Therefore, it follows that transactions that were once visible when they were in the
committed state cease to be visible if they move into the failed state.

4. Fast transactions are acknowledged as soon as they commit. These are similar to
asynchronous transactions offered by some databases but with key differences. Say,
a fast transaction Tj reads from another fast transaction Ti and proceeds to commit.
Ti later fails to become durable and is moved to the failed state. In such a situation,
Tj can never become durable and will be moved to the failed state by the database.
More generally, a transaction can become durable only if all of its dependencies have
themselves become durable – should the ED implementation choose to guarantee ED
recoverability.
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5. A safe transaction is acknowledged only after it is fully durable in the database
system. Sub-properties of safe transactions are listed below:

(a) As soon as a safe transaction commits, it is immediately visible to other con-
currently running transactions in the database system, even though the effects
of the safe transaction are not durable. Depending on whether it is fast or safe,
the reading transaction can decide to wait or return quickly.

(b) Assuming the ED implementation guarantees ED recoverability, a read-only and
safe transaction is acknowledged only after all its read-dependency transactions
have become durable.

2.2.2 Serialisability under Eventual Durability

We will now formally extend the classical definitions of serialisability and recoverability
under eventual durability. The eventual durability model introduces two new states for
a transaction, namely, durable and failed. This is in addition to the allowed states in
the traditional transactional model – active, committed and aborted. When dealing with
serialisability under ED, it is important to consider that even if a transaction is committed,
it can still fail if it does not become durable. We account for this and extend Bernstein et
al.’s [11] definition of serialisability herein.

In the classical model, a transaction is a set of database read-and-write operations that
form some logical unit of work and is followed by either a c (commit) or an a (abort).
For eventual durability, we introduce two new transaction history events, f (failure) and
d (durability). In a history, a transaction’s commit (c) may be followed by either d or
f , but not both. d indicates that the transaction has become durable - we refer to it
as the durability point. f , on the other hand, indicates that the transaction has failed.
State transition events (a, c, d, f) mark the transaction’s state progression, as described in
Property 2 above.

A history over a set of transactions is an interleaving of the operations of those trans-
actions. A committed projection C(H) of a history H is a projection of all database
operations and commit events from H, but not containing operations of failed or aborted
transactions, and not containing any d events. Note that committed projections (C(H))
of ED histories are classical histories since they will never contain either of the two new
events (d and f) that were introduced for ED histories.

Consider two ED transactions, T1 and T2 without any c, a, d or f events:

T1 = r1[x] w1[y]

T2 = r2[y] w2[z]

10



and two alternate histories Ha and Hb involving T1 and T2:

Ha = r1[x0] w1[y] c1 r2[y1] w2[z] c2 f1 d2

Hb = r1[x0] w1[y] c1 r2[y1] w2[z] c2 d1 d2

The subscript in each read operation indicates the version of the value being read. For
example, r2[y1] means that T2 read the value y that was previously written by T1. In Ha,
T1 fails after reading x and writing y; and T2 becomes durable after reading y and writing
to z. In Hb, both T1 and T2 commit and become durable. The committed projections of
both Ha and Hb are as follows:

C(Ha) = r2[y1] w2[z] c2

C(Hb) = r1[x0] w1[y] c1 r2[y1] w2[z] c2

With this, we can define ED serialisability as:

Definition 2.2.1 (ED Serialisability) An eventually durable history H is serialisable if
its committed projection, C(H), is serialisable in the classical sense.

In our example above, C(Ha) is not serialisable, and C(Hb) is serialisable. C(Ha) is
not serialisable because its output is not equivalent to the execution of T2 from the initial
state of the database. Had T2 read from y0, C(Ha) would have been serialisable. On the
other hand, C(Hb) is serialisable because it is equivalent to running T1;T2.

Definition 2.2.2 (ED Recoverability) An ED history is recoverable if both of the fol-
lowing conditions hold:

1. If T2 reads from T1 in H, then T2 does not commit before T1 commits.

2. If T2 reads from T1 in H, then T2 does not become durable before T1 becomes durable.
That is, if d2 ∈ H, then d1 ∈ H and d1 < d2.

The first condition matches the classical definition of recoverability. It ensures that
committed transactions, which are visible to the application, do not depend on transactions
that have not committed yet, since such transactions might abort.

The second condition is specific to ED histories. Consider the following history, in
which T2 has read from T1, like this:

Hc = w1[x] r2[x1] w2[x2] c1 c2
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Hc is ED recoverable according to our definition, yet it seems “risky” because committed
ED transactions can still fail. What if T1 were to fail? The resulting history would no
longer be ED serialisable since T2 has seen the effects of T1. This seems like exactly the
kind of situation that recoverable histories should avoid! We define this history to be ED
recoverable because that database system actually has an ”escape” from this situation:
if T1 fails, it can force T2 to fail as well. That is, it can fail and erase not only T1 but
anything that depends on T1. However, this escape is available only if T2 is not durable
since durable transactions do not fail. This motivates the second condition in the ED
recoverability definition: if T2 depends on T1, we cannot allow T2 to become durable until
we are sure that T1 will not fail, i.e., until T1 is durable. Note that this does not mean
that T2 will become durable, but simply means that for T2 to become durable, T1 must be
durable.

2.2.3 Read-Only Transactions

We will conclude this section with a brief discussion of read-only transactions. Like all ED
transactions, read-only ED transactions eventually fail or become durable after commit-
ting. Since read-only transactions make no changes to the database, this may seem like a
distinction without a difference. However, the distinction is actually important.

If the database system guarantees ED serialisability, applications are guaranteed that
a committed read-only transaction has seen a serialisable view of the database. However,
committing a read-only transaction does not guarantee that the data it has read is durable.
The read-only transaction may have read from earlier transactions that are committed but
are not yet durable.

This is where the read-only transaction’s durability point comes in. As long as the
execution is recoverable, the second condition in Definition 2.2.2 demands that the read-
only transaction’s durability point occurs only after the data it has read is durable. Thus,
the durability point serves to indicate when the reads are safe. Conversely, if the read-
only transaction has read from a transaction that fails after commit, then the read-only
transaction must also fail after its commit.

By exposing these events to the applications, the database system can provide them
with valuable information for managing failure risks. In the subsequent chapters, we will
discuss various ways in which the database system can do this.
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Chapter 3

Eventual Durability in PostgreSQL

We will now describe the implementation of eventual durability in Postgres. We begin by
looking at the general architecture of Postgres and then its streaming replication feature.
Finally, we deep dive into the relevant modules needed for explaining the ED implemen-
tation. We then explain the changes made to Postgres and justify why they were made.
Finally, we provide an argument for the correctness of the ED implementation in Postgres.

3.1 General Architecture of PostgreSQL

PostgreSQL is an open-source, object-relational database management system that has
been in use and active development since 1987. It is one of the most popular relational
database systems with rich documentation and community support. We chose Postgres to
implement ED because it is already closely aligned with the model and needed fairly
non-complex changes for a working implementation of ED. Postgres supports tunable
synchronous commit modes that were leveraged for our implementation. In this sub-
section, we will briefly look at the system architecture of Postgres to lay the groundwork
for presenting the ED implementation later on.

Fig. 3.1 shows the system architecture of Postgres. Postgres uses a process-per-
connection model and is organised as a multi-process system, with each process performing
a specific set of tasks. For example, the back end process (also called the postgres pro-
cess) handles queries from a client on a database. The background writer (bgwriter)
and the checkpointer processes flush dirty pages from the buffer cache to disk, and
the autovacuum process removes dead tuples from a table and compacts table size. The
postmaster process is an orchestrator that spawns and kills other postgres processes as
needed. It is responsible for initially accepting a connection request from a client and as-
signing a back end to handle the connection. There are many more background processes
of Postgres that perform essential functions but are not relevant to the ED implementation.

Postgres maintains a buffer cache that contains copies of data on disk as pages in
memory. Frequently accessed pages are loaded from the disk and kept in the cache, while
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Figure 3.1: PostgreSQL System Architecture (from [52])

unused pages are routinely evicted. The database system uses write-ahead logging to record
changes and provide a REDOmechanism for crash recovery. A background process frequently
flushes dirty pages in the buffer cache to the kernel’s disk buffers, eventually making their
way to durable storage. It is worth mentioning here that Postgres uses shared memory
to coordinate the functioning of various background tasks and is meant to be run on a
single compute instance. Nevertheless, Postgres allows for a high-availability configuration
involving two or more Postgres instances across different machines through its streaming
replication mechanism, which we will describe in a forthcoming section.

3.2 Index of terms

We will now briefly define some acronyms and terms used in this chapter.

• XLOG: The XLOG, also called the Transaction Log or the Write-Ahead Log(WAL), is
a record of changes made to the state of the database. We will interchangeably use
XLOG and WAL in this chapter.

• CLOG: The Commit Log or CLOG stores the status of transactions. A transaction
can be in one of the following states at any given time – IN PROGRESS, COMMITTED,
ABORTED or SUB COMMITTED.

• XID: Also called the transaction ID and used interchangeably, it is a 32-bit integer
that uniquely identifies a transaction and wraps around every 4 billion transactions.

• LSN: A Log Sequence Number (LSN) uniquely indicates the position of an XLOG record
both in the in-memory and the on-disk copy of the XLOG. They are monotonically
increasing numbers assigned to XLOG records when written to the in-memory XLOG.
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• WALSender: The WALsender is a process on the primary server that ships new
changes in the XLOG to standby servers when physical replication is enabled.

• WALReceiver: A WALreceiver is a process running on each standby server that
connects to the primary server and receives XLOG entries from the WALsender when
physical replication is enabled.

• WAL writer: The WAL writer flushes WAL entries from the in-memory XLOG cache
to disk in asynchronous commit mode.

3.3 Path of a write query in PostgreSQL

Let us examine what happens when a user submits a transaction T that changes the state
of the database. Assume the transaction has two operations – an update query followed
by a commit. We will primarily look at the sequence of steps executed when the commit is
issued. Fig. 3.2 illustrates this workflow.

We assume that the update query of the transaction received by the Postgres back
end has made its way through the query processing engine and concurrency control and is
waiting to be applied to the corresponding tablespaces. The very first thing the back end
does when it receives the update query of the transaction is to extend the CLOG and mark
the current transaction as IN PROGRESS. Next, an exclusive lock on the buffer containing
the data page in the buffer cache is obtained, and its usage count is incremented. The
changes are made on the buffer (arrow #2 in Fig.3.2), and a corresponding XLOG record is
generated. The XLOG record is inserted into the in-memory XLOG cache (arrow #3 in Fig.
3.2), which is stored as a ring buffer in memory. Once inserted, the record gets assigned an
LSN, which is then updated on the corresponding page in the buffer cache. At this point,
the update query is acknowledged by the Postgres back end and sent to the client.

After receiving confirmation that the update query was executed, the client proceeds to
issue a commit for the transaction. The commit record follows a similar path as the update
query did. The commit record is inserted into the in-memory XLOG. The commit request is
not yet acknowledged to the client. Since, by default, synchronous commit is set to on, the
changes recorded in the in-memory XLOG cache are flushed to the on-disk copy of the XLOG
(also called the WAL segment files) before the commit request is acknowledged to the user
(arrow #5 in Fig. 3.2). It is worthwhile to note here that since LSNs are monotonically
increasing, a flush of the commit record from the in-memory XLOG to the WAL segment
files ensures that the XLOG records generated by the update query are also flushed to disk.
Once the commit record is flushed to disk, the transaction status in the CLOG is updated
to COMMITTED.

The transaction’s changes are now recorded in the buffer cache, the in-memory XLOG

cache and on disk in the WAL segment files. The checkpointer and the background writer

processes of Postgres are responsible for eventually flushing dirty pages in the buffer cache
to disk.
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Figure 3.2: Path of a Transaction in PostgreSQL
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Figure 3.3: Streaming Replication in PostgreSQL

3.4 Streaming Replication in PostgreSQL

As briefly mentioned previously, Postgres supports streaming replication in synchronous or
asynchronous mode to secondary servers. This feature, along with other techniques, may
be used to set up a highly-available/fault-tolerant database cluster. Streaming replication
may also be used to set up read load-balancing to reduce strain on the primary server.
In the most straightforward configuration that uses streaming replication, there could be
just one primary server and one standby server. However, Postgres also allows for complex
structures with multiple synchronous standbys, cascading replication, and so on. The ED
implementation in Postgres is integrated with replication, and therefore we will now look
at streaming replication in PostgreSQL.

Fig. 3.3 illustrates the steps involved in the streaming replication process. The numbers
on the arrows indicate the sequence in which the writes happen. In Section 3.3, we looked
at how a transaction that changes the state of the database makes its way from the client
to durable storage of the Postgres machine. This section will look at what happens to those
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changes if streaming replication is enabled. In other words, how the changes recorded on
the XLOG of the primary server get propagated to configured standbys.

As soon as a set of in-memory XLOG changes is flushed to the WAL segment files on
disk, Postgres wakes up all WALsender processes to inform them that new data in the
XLOG needs to be shipped out to the standby servers. Note that there is one WALsender
process per standby server configured for streaming replication. The WALsender process
is created when a standby server connects to the primary server in “replication” mode.
The WALsender process wakes up when its latch is set by an XLOG flush. It consults the
in-memory copy of the XLOG and begins sending XLOG records to subscribed WALreceivers.
The WALreceivers on the standby servers receive these records and start writing to the
kernel’s disk cache. These changes are then flushed to the disk, and finally, they get applied
to the in-memory shared buffers.

3.5 Commit Configuration

The synchronous commit option specifies when a transaction’s commit can be acknowl-
edged to the client. Even when synchronous replication is not set up, this option changes
when clients receive acknowledgements for their transaction commits. The options allowed
by Postgres and their implications on transaction commit acknowledgements are described
below:

• off : When synchronous commit is set to off, commit requests are acknowledged as
soon as they are written to the in-memory XLOG ring buffer (shown by the arrow #1
in Fig. 3.3), but before the XLOG records are flushed locally to disk or sent to any
of the standby servers (if configured). Essentially, this option reduces transaction
latencies by allowing them to be acknowledged much earlier than they would usually
have been (since the default option is on). However, there is a risk that changes
made by the transaction – which have been acknowledged as committed – may be
lost if the primary server fails.

• local : When the option is set to local, the Postgres back end waits for the changes
submitted by the client to be written to the in-memory XLOG cache and for the XLOG
records to be flushed to the local disk (shown by arrow #3 in Fig.3.3). Transactions
that use this synchronous commit option can survive primary node restarts but
not their complete failure. When and if the primary node restarts due to an issue,
although the in-memory XLOG is lost, it can be recovered from the disk. However,
if the primary node were to fail completely, then the transaction’s effects would be
lost.

• on: When there are synchronous standbys defined, the on option ensures that the
back end process waits for the XLOG changes to be a) written to the in-memory XLOG

cache b) flushed to the WAL segment files on disk c) written to the kernel disk cache
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on the remote server(s); and d) flushed to the remote server(s)’ disk This is shown
by the arrow #5 in Fig. 3.3. This is the default option and ensures that transaction
effects survive primary node failures.

• remote write: The remote write option is a slightly weaker version of the on option.
With this synchronous commit level, the back end waits for everything it would have
waited for with the on option, except for the last step, i.e., flush of XLOG records on
the remote disks (shown by the arrow #4 in Fig. 3.3). Using this option also ensures
that transactions survive primary node failures.

• remote apply : The remote apply option is the most expensive among all the above
options. With this option, the Postgres back end waits for everything it would have
waited for with the on option and, in addition, waits for the XLOG changes to be
applied to the corresponding pages in the buffer cache (shown by the arrow #6 in
Fig. 3.3). Using this option ensures that transactions are visible to readers on
standby servers as soon as they are acknowledged on the primary.

3.6 Eventual Durability in PostgreSQL – The Missing

Pieces

As a quick recap, the ED model decouples a transaction’s commit point from its dura-
bility. One way of implementing ED is by using two kinds of transactions – fast and
safe. All transactions commit first and become durable eventually. Fast transactions are
acknowledged at commit, and safe transactions are acknowledged at durability. The ED
implementation in Postgres enforces ED recoverability as well.

We overload the synchronous commit option to implement fast and safe transactions.
To execute a fast transaction, a client uses the synchronous commit=off option, and to
execute a safe transaction, the client uses synchronous commit=on. All transactions in
ED Postgres become visible as soon as they commit. Fast transactions in ED Postgres
are acknowledged as soon as they commit, and safe transactions are acknowledged when
they become durable. Since the ED implementation in Postgres enforces recoverability,
transactions cannot become durable until all their dependencies have become durable. As
safe transactions in ED are acknowledged only after they are fully durable, it means that
when they are acknowledged, the safe transaction itself and all of its dependencies must
be durable.

Let us now look at how implementing ED in Postgres would change the commit path
of transactions. Fig. 3.4 shows the difference between the commit processing of sync=on,
read-write transactions in baseline Postgres, and the commit processing of safe, read-
write transactions in ED Postgres. In baseline Postgres with synchronous commit=on,
the transaction becomes visible only when the commit record has been flushed to disk
and replicated to synchronous standbys, if any. However, ED Postgres allows transactions
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Figure 3.4: Baseline vs ED Postgres back end states during transaction commit

to become visible once their state is updated in the CLOG. Therefore, we observe that
transactions in unmodified Postgres become visible much later than they are allowed by
the ED model. Hence, the first missing piece for implementing ED in Postgres is to make
safe transactions visible as soon as they commit.

Fig. 3.5 shows the commit path of an ED fast transaction. The commit record is
written to the XLOG, and the transaction is marked committed in the CLOG. Following this,
the client’s commit request is acknowledged. This commit path is similar to the commit
path for synchronous commit=off transactions in baseline Postgres.

For the next missing piece, say that a sync=on transaction in unmodified Postgres has
both reads and writes to the database. In this case, the property of the ED model that
a safe transaction’s dependencies should be durable at commit time is honoured because
such transactions wait for the XLOG flush of their commit record (on local and/or standby
servers), thereby ensuring that all transactions serialised before them are durable. However,
if the said transaction were to contain only reads, then this property is no longer upheld in
unmodified Postgres because read-only transactions do not create XLOG entries and hence,
do not wait for any flushes to complete. Therefore, a safe read-only transaction’s commit
may be acknowledged before its dependencies are fully durable. This path is shown in
Fig. 3.6a. To rectify this and to provide a full realisation of the safe transaction concept
in Postgres, we need to make safe, read-only transactions wait for their dependencies to
become fully durable before they return results to the client. The path for safe, read-only
transactions in ED Postgres is shown in Fig. 3.6b.
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Figure 3.5: ED Postgres back end state for fast transaction commits

3.7 Implementing Early Visibility of Transactions

In baseline Postgres, sync=on transactions are not visible until they are durable. However,
in the ED model, all transactions become visible as soon as they commit. This section
will look at how we made safe transactions in ED Postgres visible early – right after they
commit – without waiting for durability. Safe transactions are still acknowledged after
durability but become visible as soon as they commit.

First, we will examine the snapshotting and transaction visibility mechanism in unmod-
ified Postgres, and then we will explore the modifications we have introduced and their
impact on transaction visibility.

Every Postgres transaction gets a snapshot of the database when the transaction begins.
This snapshot contains a range of XIDs that the transaction can use while executing to
decide whether a tuple is visible to it or not. Consider Fig. 3.7, which illustrates the
snapshotting mechanism in unmodified Postgres. It depicts four transactions of varying
durations that start and end and different times. Say, a snapshot was taken at time unit
5. At this point, XIDs 700 and 705 are still running, while XID 702 has committed. XID

707 has not started yet. In unmodified Postgres, commit implies durability, and therefore
XID 702 is also durable. Postgres includes only committed transactions in a snapshot that
finished before the snapshotting process started. Therefore, only XID 702 is included in
the snapshot. So, if a transaction were to use a snapshot taken at time unit 5, it would
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(a) Baseline (b) ED

Figure 3.6: Baseline sync=on vs ED Postgres Safe for read-only transaction commits

only see the effects of XID 702.

In the ED model, transactions commit and become visible first but become durable
later. Fig. 3.8 depicts how the above snapshotting mechanism would work in ED Postgres.
The setting is almost the same as depicted in Fig. 3.7, but the transactions are ED
transactions this time. They commit and become durable at different times, allowing for
interesting scenarios. At time unit 5 when the snapshot is taken, XIDs 700 and 705 are
still “running”, while XID 702 has “finished”, and XID 707 has not started yet. However,
the difference, in this case, is that XID 700 has committed and is visible, which means
the snapshotter can see it and include it in the snapshot. This time, the snapshot would
not only contain XID 702, but also contain XID 700 because it committed before the
snapshotting started. In summary, the snapshot would contain just XID 702 in unmodified
Postgres, while it would contain both XID 702 and XID 700 in ED Postgres.

We now present how this visibility change was achieved in Postgres. Algorithm 1 out-
lines, at a high level, the steps that are involved when a transaction commits in unmodified
Postgres and gives a concrete shape to the states presented in Fig. 3.4. When the trans-
action attempts to commit, the CommitTransaction procedure first generates a commit
record and writes it in the in-memory XLOG. If sync is greater than off (or simply on
in our case), the back end waits for disk flush and remote replication before making the
transaction visible. If the sync is off, however, it immediately acknowledges the client after
writing the commit record to the in-memory XLOG.

The ED model allows us to make the transaction visible as early as right after writing
the commit record to XLOG (line 3 in Alg. 1). We, therefore, allow all transactions to
be visible as soon as their commit record is in the in-memory XLOG. This is shown in
line 6 in Algorithm. 2. The actual process of changing the visibility involves marking
the transaction as ‘complete’ in ProcArray but still holding on to heavyweight locks,
transaction metadata and resources. These locks and resources are released, and the final
clean-up steps are completed once the transaction replicates on synchronous standbys.
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Figure 3.7: Snapshotting in unmodified Postgres

Figure 3.8: Snapshotting in ED Postgres
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Algorithm 1 Commit Path of a Read-Write Transaction in Unmodified Postgres

1: procedure CommitTransaction(T )
2: c← Commit Record of T ▷ Generate a commit record for the transaction
3: lsn← XLogWrite(c) ▷ Write commit record to in-memory XLOG
4: CLogWrite(T, xact committed) ▷ Mark T as committed in CLOG
5:

6: if sync=on then
7: XLogFlush(lsn) ▷ Flush up to the commit record’s LSN
8: WaitForReplication(lsn) ▷ Wait for replication to finish
9: end if
10:

11: MakeVisible(T) ▷ Make T visible to other transactions
12: ReleaseResources(T) ▷ Release resources held by T
13: sendClientAck() ▷ Acknowledge client’s commit request
14: end procedure

This seemingly minor re-ordering of actions in the commit path of transactions actually
results in a massive effect on reducing abort rates and increasing throughput – as we will
see in the evaluations chapter. With this change, transactions ‘stay alive’ only for tens of
microseconds as opposed to some milliseconds, irrespective of how slow disks are or how
long it takes for replication to complete. Indeed, safe transactions wait for both disk flush
and remote replication before getting acknowledged, but, as far as Postgres is concerned,
all transactions cease to remain ‘in progress’ as soon as their commit record is in the
in-memory XLOG. This directly translates to fewer conflicts, reduced aborts, and, thus, a
higher overall throughput rate under a contentious workload.

Algorithm 2 Commit Path of a Read-Write Transaction in ED Postgres

1: procedure CommitTransaction(T )
2: c← Commit Record of T ▷ Generate a commit record for the transaction
3: lsn← XLogWrite(c) ▷ Write commit record to in-memory XLOG
4: CLogWrite(T, xact committed) ▷ Mark T as committed in CLOG
5:

6: MakeVisible(T) ▷ Make T visible to other transactions
7:

8: if sync=on then
9: XLogFlush(lsn) ▷ Flush up to the commit record’s LSN
10: WaitForReplication(lsn) ▷ Wait for replication to finish
11: end if
12:

13: ReleaseResources(T) ▷ Release resources held by T
14: sendClientAck() ▷ Ack client’s commit request
15: end procedure
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Figure 3.9: WAL Send/Receive in Streaming Replication

3.8 Implementing ED Recoverability

The next big piece in implementing ED in Postgres was making safe, read-only transac-
tions wait for their dependencies to become fully durable – i.e., flushed to local disks and
replicated to synchronous standbys. In unmodified Postgres, read-write transactions with
sync=off, use a procedure called SyncRepWaitForLSN() to implement the wait logic. This
procedure accepts the LSN of the commit record of the transaction and initiates the waiting
process. It first resets the current Postgres back end’s latch and adds it to a shared mem-
ory queue. When the WALReceiver gets an acknowledgement from synchronous standbys
for previously sent XLOG records, it also receives LSN values. These LSN values serve as
high-watermarks that indicate the location up to which the XLOG records were replayed on
the standbys. Using these LSN values, the WALReceiver wakes up all waiting back ends in
the wait queue up to the received LSNs by setting their latches.

In the example illustrated in Fig. 3.9, there is one primary server and two synchronous
standbys. The primary initially sends XLOG records from LSN 10700 – LSN 11400 to both
the standbys. Standby 2 acknowledges up to LSN 11400 in its first reply (or heartbeat).
But standby 1 initially acknowledges up to 11200 and then eventually acknowledges up to
11400. If the commit record of the current transaction was at or below LSN 11400, the
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primary can wake up back ends only up to LSN 11200 when it first receives replies from
both standbys. It cannot wake up the back end waiting for LSN 11400. It is only when it
receives the second reply from standby can it proceed to wake up the transaction waiting
on LSN 11400.

We wanted to reuse the SyncRepWaitForLSN() procedure since it is already a well-
designed wait mechanism built into Postgres. However, the issue was that read-only trans-
actions do not create any XLOG entries and hence, do not have a commit record LSN. One
option to circumvent this problem is to track reads and calculate a moving maximum of
the highest LSN of the commit record of the read dependencies. However, this approach
would have been relatively complex, and we wanted to stick to our principle of minimal
intrusion for changing Postgres. Therefore, the more straightforward alternative to this
was to compute the current insertion point in the XLOG at snapshot creation time for the
read-only transaction and use that as the LSN to wait for in SyncRepWaitForLSN(). We
call this the maxLSN. This maxLSN of the read-only transaction is guaranteed to be higher
than the commit-record LSN of all committed transactions. Therefore, it is a safe but
conservative choice.

Algorithm 3 Wait algorithm for safe, read-only transactions in ED Postgres

1: procedure SafeWait(T , maxLSN)
2: readOnly ← isReadOnly(T)
3: if readOnly && sync=on then
4: if !standbysConfigured then
5: XLogFlush(maxLSN)
6: end if
7: remoteFlushLSN ← GetRemoteLSNs()
8: if maxLSN > remoteFlushLSN and remoteFlushLSN > 0 then
9: SyncRepWaitForLSN(maxLSN)
10: end if
11: end if
12: end procedure

The implemented wait logic for safe, read-only transactions is shown in Algorithm. 3.
The current insertion point in the XLOG – maxLSN is recorded when the snapshot is created
for the read-only transaction. If it were a read-write transaction, a new XLOG, record would
have been inserted at this location. However, for our case, we need this maxLSN to wait
for replication and not for inserting new records. The algorithm begins by checking if the
current transaction is read-only and if the sync level is on. If no synchronous standbys
have been configured, then we need to ensure that the transaction waits for the durability
of prior fast transactions. We do this by forcing a disk flush up to the obtained insertion
pointer – the maxLSN. This is sufficient to ensure the correct behaviour of safe read-only
transactions under the ED model in a single-node case.

When synchronous standbys are configured, we first obtain the LSN up to which the
XLOG has been flushed on remote servers. We then check if the maxLSN value is greater
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than remoteFlushLSN. This would indicate that there are newer records that were not yet
replayed on the standbys. In this case, we invoke SyncRepWaitForLSN() and pass in the
obtained maxLSN. This performs the actual waiting process, and the back end gets woken
up when the standbys have acknowledged up to the supplied LSN.

With the above two changes implemented in Postgres – visibility change and safe,
read-only waits, a prototype of the ED model with PostgreSQL as a test bed is complete.

3.9 An Argument for Correctness

3.9.1 Recoverability

We will quickly revisit recoverability and serialisability definitions under ED before provid-
ing an argument for the correctness of the ED implementation in Postgres. From Chapter
2, an ED history is recoverable if both of the following conditions hold:

1. If T2 reads from T1 in H, then T2 does not commit before T1 commits.

2. If T2 reads from T1 in H, then T2 does not become durable before T1 becomes durable.
That is, if d2 ∈ H, then d1 ∈ H and d1 < d2.

Although we change the point at which transactions become visible, we do not do
it before a transaction is committed. In other words, we continue to ensure that only
committed transactions are visible. Say that in ED Postgres, a transaction T2 reads from
another transaction T1. This means that T1 was included in T2’s snapshot – formed on T2’s
first operation. Therefore, T1 must have committed before T2’s snapshot is created for it
to be included in T2’s snapshot. Now, if T2 commits, it will be after the point at which
its snapshot was taken, and therefore, its commit record will be ordered after the commit
record of T1 in the XLOG. Hence, enforcing the first condition of recoverability.

To prove that condition 2 of ED recoverability is upheld in ED Postgres, consider, once
again, that a transaction T2 has read from another transaction T1. The recoverability
property has to hold if T2 is a read-write transaction as well as if it is just a read-only
transaction.

In the first case, when T2 is a read-write transaction, we have seen from the previous
argument that T2 can commit only after T1 has. Therefore, it follows that T2’s commit
record succeeds T1’s commit record in the XLOG, and hence, must have a higher LSN value
than T1’s commit record. Postgres always flushes the in-memory XLOG in LSN-order. Fur-
thermore, XLOG records also are replicated to standbys in LSN order. So, if T2’s commit
record has a higher LSN than T1’s commit record, T1 must have become durable (flushed
to disk and replicated to standbys) before T2’s commit record becomes durable.

In the second case, when T2 is a read-only transaction, it does not generate any XLOG

records, and therefore, recoverability is guaranteed differently here. From the first condition
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of ED recoverability, we know that if T2 has seen T1’s effects, then T1 must have committed.
In ED Postgres, the latest insertion point in the XLOG is captured as an LSN value in a
transaction’s snapshot – we call this the maxLSN. We have seen earlier that if a read-only
transaction is safe, it waits until all records up to maxLSN in the XLOG are fully durable
(flushed to disk and replicated to standbys) before being acknowledged. Therefore, if
T2 is a safe, read-only transaction, its maxLSN will be at least as high as T1’s commit
record’s LSN. So, if, at commit time, T2 waits for the maxLSN to become durable, it would
have effectively waited for all of T1’s effects to have become durable. This concludes the
correctness argument for ED recoverability in ED Postgres.

3.9.2 Serialisability

In general, a history H with a partially ordered set of interleaved transaction operations is
serialisable if its execution produces the same output as some serial execution of transac-
tions in H. For ED serialisability, we say that the committed projection of H, denoted as
C(H), must be serialisable for H to be serialisable. The committed projection C(H) will
only contain operations from committed transactions and their respective commit events,
but none of the operations from failed transactions or any durability events of committed
transactions. For a full discussion, please refer back to Chapter 2.

We will consider two cases. For the first case, we assume that Postgres does not
crash and restart. Since committed (but not durable) transactions only fail because of
crashes, this means that the execution history H does not include any transaction failures.
This, in turn, means that C(H) includes all and only the committed transactions from
H, whether they are durable or not. If we assume that Postgres’ existing concurrency
control mechanism correctly serialises all committed transactions, this mechanism will also
guarantee ED serialisability in this case.

For the second case, suppose that there has been a crash. When Postgres recovers from
the crash, one or more committed (but not durable) transactions from before the crash
may be lost, i.e., they may fail. Thus, although such transactions were in H, they will no
longer be present in C(H) after recovery. If any surviving transaction depends on such a
failed transaction, our schedule will no longer be ED serialisable: a surviving transaction
(in C(H)) cannot depend on a transaction that is not in C(H) in an ED serialisable history.
Fortunately, this cannot occur if the system enforces ED recoverability, which ensures that
committed transactions survive (are durable) only if their dependencies are also durable.
Thus, the history must be ED serialisable in this case as well.

3.10 Shortcomings and Scope for Future Work

Safe transactions in the current ED implementation in Postgres wait for an LSN value
much higher than is actually necessary. When the safe, read-only transaction starts, we
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get the highest LSN value from the XLOG module and wait for the remote disk flush up to
that LSN. However, the transaction might have only read from tuples that have already
replicated and therefore does not need to wait. In such cases, in-flight write transactions
might unnecessarily slow down safe, read-only transactions. To remedy this, we need to
keep track of the highest commit LSN among all XIDs the read-only transaction has read
from and wait only for that LSN. If we find that the target LSN is already replicated, we
return early from the wait loop. We plan to implement this in the next ED release of
Postgres.
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Chapter 4

Evaluation

In this chapter, we evaluate ED Postgres to obtain answers to the following questions:

• How much faster are “fast” transactions compared to “safe” ones in ED Postgres?

• How does the performance of fast and safe transactions vary when the system is
subjected to a mixed workload consisting of both transaction types?

• Does ED Postgres reduce data contention, and thus abort rates, compared to baseline
Postgres since resources are released earlier?

• How does ED implementation in Postgres affect performance under realistic work-
loads like TPC-C, and how can ED Postgres be used in similar realistic situations?

Section 4.1 describes the general setup used for the experiments. We then present the
results of basic latency experiments in Section 4.2, mixed workload results in Section 4.3
and contention results in Section 4.4. Finally, we present the results of running TPC-C on
ED Postgres and discuss the findings.

4.1 Setup

Most experiments, unless otherwise specified, use a 2-node setup of AWS m5.large in-
stances with two Intel(R) Xeon(R) Platinum 8175M CPUs @ 2.50GHz, 8 GiB of memory
and 100 GiB of Elastic Block Storage (EBS) volume attached to each instance. One node is
configured as the primary, and the second is configured as a synchronous standby. A third
node, an AWS c5.4xlarge instance with 16 Intel(R) Xeon(R) Platinum 8124M CPUs @
3.00GHz, 32 GiB of memory and 30 GiB of EBS attached, is used as a client node. The
client node is only used for running test scripts and workloads against the Postgres servers.

In single-region experiments, all three Postgres nodes are in the same region but may
be in different availability zones (AZs). In multi-region experiments, the primary is in one
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of the regions, and the synchronous standby is in a different region. The client is always co-
located in the same region as the primary node for all experiment runs. Specific placement
details are discussed just before presenting the results of the respective experiment.

We compile Postgres from source for both the unmodified and ED versions. For the
unmodified version, we use the 15.1 release of Postgres. For the eventual durability version,
we branch off from the 15.1 release, make modifications to implement eventual durability
and use the 0.5 release of the new ED Postgres.

4.2 Basic Latency Experiments

We start by conducting basic latency measurements on ED Postgres to observe how trans-
action latencies vary when the synchronous standby is placed increasingly further away
from the primary. There is a single table on the primary node with two columns, key and
value, that are both integers. The test node uses pgbench[2] to generate transactions that
each update one row. The pgbench process on the test server runs for 120 seconds and
uses one thread and one client to issue one transaction at a time and records latency. This
experiment is repeated multiple with the standby placed in different locations. We run
this experiment on both ED Postgres and baseline Postgres. The results are shown in Fig.
4.1

The first set of values in the figure (us-east-1a; sync=off) compares the latencies of
ED fast transactions and baseline sync=off transactions. Following this, we compare the
latencies of ED safe transactions against baseline sync=on transactions when the standby is
placed in different regions. The results of this experiment, when it ran on baseline Postgres
alone, were presented in the introduction (Chapter 1) to make a point about durability
costs. As with the previous run, the results obtained from ED Postgres also indicate
that network and durability costs dominate transaction latencies as the standby server is
placed progressively further away from the primary. The 95% confidence intervals of these
measurements ranged from≈ 6µs to≈ 52µs. The main conclusion here is that, as expected,
ED fast transactions have similar latencies as sync=off transactions in baseline Postgres,
and ED safe transactions have similar latencies as sync=on transactions in baseline Postgres
for different placements of the standby server.

4.3 Mixed Workload

To address the second question we sought to answer, we subject ED Postgres to a workload
consisting of a mix of fast and safe transactions issued at a constant rate per second. We
vary the percentage of fast transactions in the mix from 0% – 100% and measure the overall
average latency, average fast transaction latency and the average safe transaction latency.
This is done by running two pgbench clients in parallel and varying their individual rates
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Figure 4.1: Basic Latency tests: Baseline vs ED Postgres

to control the percentage of fast transactions in the workload mix.1 The setup for this
experiment is slightly different from the one described at the beginning of this chapter.
We use an AWS c5d.4xlarge instance for the primary and an m5.large instance for the
standby. Furthermore, we ensure that Postgres’ data directory on the primary is on the
instance store and not on an EBS volume to reduce disk contention for safe transactions.
More details on this are forthcoming. Each pgbench client uses 16 threads and 16 clients to
issue transactions at a total rate of 4000 TPS for 120 seconds. Each transaction performs a
simple insert on a table with two integer columns. Lastly, we run a purely fast and purely
safe workload with just one thread and one client for the same duration and plot those
lines for reference. The results are shown in Fig. 4.2

With this experiment, we wanted to know if fast transaction latencies are, in any way,
affected when safe transactions are introduced. We see from the results that the latency
of fast transactions remains practically unchanged no matter how many safe transactions
are added to the mix. As the percentage of fast transactions in the total mix increases,
it drives down the total average latency, as expected. The fast transactions’ latencies in
the mixed workload stay fairly flat but, on average, are about 50% higher when compared
to single-client fast transaction latencies. This increase can be attributed to the fact that
the system-under-test is handling around 10X more load and several more clients than
the reference fast transaction test. On the other hand, safe transaction latencies display
an interesting behaviour, as the percentage of fast transactions is increased in the total

1We did not use pgbench’s weight parameter to limit possible confounding costs from set

synchronous commit commands.
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Figure 4.2: ED Postgres performance under a mixed workload

workload mix. They average at 2.3 ms when there are no fast transactions in the system,
jump slightly by 3% when fast transactions are introduced at 5% of the total rate, and
then gradually decrease to get closer to the reference, single-client safe latency as their
share in the total mix comes down.

We found that this difference in safe transaction latencies from its single-client reference
latency line is primarily because of the WAL writes. When there is a higher percentage of
safe transactions in the mixed workload, they all compete to acquire the WAL write lock and
subsequently flush WAL entries to disk. As the percentage of safe transactions, and thus
their rate, decreases, there is no longer as much contention for the lock or the disk. Hence,
we see a reduction in safe transaction latency as their percentage in the total workload
reduces.

However, at any given point, the Postgres backend handling safe transactions still
competes with the WALWriter for the WAL lock and the disk flush. This is because the
WALWriter is responsible for flushing WAL entries to disk in the case of fast transactions.
Hence, we see a slight increase in safe transaction latency when fast transactions are in-
troduced into the workload. It is also why safe transaction latencies do not fully converge
with the single-client reference latency at the 95% fast, 5% safe configuration.

Both deviant-from-ideal behaviours – increase in fast transaction latencies compared to
their single-client reference line and the gradual decrease of safe transaction latency when
their rate decreases – are also seen in baseline Postgres. The displayed behaviour of safe
transactions in this experiment was further verified using an instance with an EBS store.
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Figure 4.3: Baseline Postgres performance under a mixed workload

The decrease was found to be steeper since disk I/O is slower compared to instance storage,
and hence, reduced safe transaction rates translated to steeper decreases in latency.

The results of running the mixed workload experiment on baseline Postgres are shown
in Fig. 4.3. In conclusion, running fast and safe transactions together in ED Postgres at a
reasonably demanding transaction rate does not significantly alter their individual average
latencies by more than what the experiment itself effects – as was verified by running the
mixed workload on baseline Postgres.

4.4 Contention Tests

Since, in ED Postgres, we make transactions visible earlier, we expect there to be fewer
aborts under contentious workloads. We test this hypothesis by conducting experiments
under varying levels of contention to observe abort rates in both baseline and ED Post-
gres. The test setup is very similar to the setup used for the mixed workload experiments
above. We use an AWS c5.4xlarge instance for the primary node in us-east-1a, and an
m5.large instance for the standby node in us-east-1b. The test client configuration and
placement remain the same. We populate the database initially with a table containing 250
rows of keys and values – both integers. The pgbench client uses 16 threads and 16 clients
to issue transactions at a rate of 4000 TPS. Each transaction updates one row in the table,
and the row is chosen based on the set contention level. For example, if the contention
level is 0.95, then there is a 95% chance that the transaction chooses a row from the first
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5% of the rows in the table and a 5% chance that a row is chosen from the bottom 95% of
the table space. We vary contention levels from 0.5 – which is about the same as sampling
from a uniform distribution, all the way up to 0.95, which we use as the highest contention
level in our experiments. For each level of contention, we issue transactions at a rate of
4000 TPS for 120 seconds and measure abort rates.

We begin by performing this experiment at Postgres’ serializable isolation level. The
results are shown in Fig. 4.4a. There is a pronounced difference in abort rates between
baseline sync=on transactions and the other transaction types in the graph. We will be
using sync=on to refer to the synchronous commit=on option and sync=off to refer to the
synchronous commit=off option in baseline Postgres. Baseline Postgres has an average
of about 15X more aborts compared to ED Safe transactions and ranges between having
12X more aborts in the best case when the contention level is 0.5; up to having 18X more
aborts than ED safe transactions in the worst case when the contention level is 0.8. ED safe
transactions, on average, offer a 93% reduction in aborts compared to baseline sync=on

transactions under the serializable isolation level.

This significant difference in aborts between baseline sync=on transactions and the rest
of transactions is because of two reasons – concurrent updates and serialisation anomalies.
Postgres’ ‘repeatable read’ isolation corresponds to a slightly stricter version of Snapshot
Isolation (SI) [3] defined by the ANSI SQL standard [10]. This isolation level uses the
first-committer-wins policy and aborts transactions when they have overlapping write sets
with transactions that were concurrent but just finished committing. Apart from these
kinds of aborts caused by SI rules, Postgres further aborts more transactions under its
‘serializable’ isolation level. Postgres’ ‘serializable’ isolation level uses serialisable snapshot
isolation that aborts transactions with r–w dependency cycles.

In the case of baseline sync=on transactions, they do not become visible or release their
locks until after XLogFlush of their commit record and waiting for synchronous replication
(SyncRepWait). This results in the transaction staying active until it is fully durable.
When the transaction stays active for a longer period, there is a higher chance of concurrent
transactions queuing up for the row lock, waiting to update the same row, and waiting for
the completion or abortion of our long-running transaction. If the long-running transaction
commits successfully, all transactions waiting are aborted. These aborts are, in addition
to aborts caused by SSI check failures on the predicate locks.

On the other hand, the behaviour of ED safe transactions is different. They become
visible as soon they commit, and their status is updated in the in-memory CLOG. However,
they still hold on to their locks until XLogFlush and SyncRepWait are complete. That
means that concurrent transactions would see their status as committed while the trans-
action is still waiting for the disk flush of its commit record and replication to standbys.
Therefore, when concurrent transactions try to update the same row, they see that the
row is locked, but the updating transaction has committed. Postgres allows the row to
be updated in such cases. There are still some aborts in ED safe transactions because
of concurrent updates – when competing transactions see that the row lock is held and
the updating transaction is in progress. The combined abort rates because of concurrent
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(a) With baseline sync=on transactions

(b) Without baseline sync=on transactions

Figure 4.4: Contention vs Abort Rates under Serialisable Isolation
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updates and SSI check failures are still significantly lower than baseline sync=on abort
rates.

Fig. 4.4b shows the difference in abort rates between ED Safe, ED Fast and baseline
sync=off transactions. It is the same graph as Fig. 4.4a, but with baseline sync=on

transactions removed, and the graph zoomed in to show the abort rate differences clearly.
ED Fast and baseline sync=off transactions have very similar abort rates since we do not
significantly alter the execution behaviour of fast transactions in ED Postgres from their
read-write, sync=off counterparts in baseline Postgres. However, we observe that ED
safe transactions have 1.65X to 2.9X more aborts compared to ED fast transactions, even
though their execution paths are the same up until XLogFlush and SyncRepWait happen.
In other words, both ED fast and ED safe transactions perform the same steps in the
transaction manager and become visible right after they commit. At this point, ED fast
transactions short-circuit out of waiting for XLogFlush and SyncRepWait, while ED safe
transactions wait for them. Both transaction kinds release locks and resources after this
step.

Since ED safe transactions hold on to heavyweight locks until they are fully durable, it is
possible that concurrent ED safe updaters queue up on these heavyweight locks, after which
they all get aborted once the locking transaction commits. This is because Postgres aborts
transactions that finish waiting for a lock, acquire it, but try to update the same tuple
as the earlier locking transaction. Since Postgres does not have a well-defined queueing
mechanism for row locks, the presence of heavyweight locks in the lock table acquired by
ED safe transactions may interfere with concurrent updaters after the locking transaction
has committed but before it is durable. Hence, we see a higher number of aborts compared
to ED fast transactions, even though their execution paths are similar. However, ED safe
transaction aborts are still lower than baseline sync=on transactions because, in the latter
case, a greater number of updaters queue up since the locking transaction is in-progress
for a longer duration.

We now re-run this experiment by setting the isolation level to repeatable read in Post-
gres. Since the repeatable read isolation level does not have SSI checks (predicate lock
checks), we expect fewer aborts in both baseline and ED Postgres. Fig. 4.5a shows the
results with baseline sync=on transactions included.

There is still a significant difference between ED safe and baseline sync=on abort rates,
but it is slightly lesser compared to the difference when the isolation was set to ‘serializable’.
Baseline sync=on transactions have between 10X – 12.45X times more aborts than ED safe
transactions across different contention levels, with an average of 11.5X more aborts. ED
safe transactions, on average, offer a 91.25% reduction in aborts compared to baseline
sync=on transactions under the repeatable read isolation level.

Fig. 4.5b compares the abort rates between ED safe, ED fast and baseline sync=off

transactions. The abort rates of ED fast and baseline sync=off transactions are nearly
identical, while the abort rates of ED safe transactions are about 3X higher. In fact, it
ranges from 3X to 4.3X more aborts and averages around 3.5X more aborts compared to
ED fast transactions. This difference in abort rates can be attributed to the same reasons
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(a) With baseline sync=on transactions

(b) Without baseline sync=on transactions

Figure 4.5: Contention vs Abort Rates under Repeatable Read Isolation
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Figure 4.6: Actual Throughput vs Offered Rate Under 0.95 Contention

specified earlier for the serializable isolation level. This result also shows that the aborts
are primarily because of concurrent update failures and not because of SSI check failures.
If they had been mostly because of the latter, we would have seen a steeper reduction in
abort rates in ED safe transactions under the repeatable read isolation level.

4.4.1 Throughput vs Offered Rate under Fixed Contention

We have just seen that ED Postgres offers between 91.25% to 93% reduction in abort rates
compared to baseline sync=on transactions under a contentious workload. Since fewer
aborts mean that a higher number of transactions succeed, we expect ED Postgres to offer
higher throughput compared to baseline Postgres.

To test this, we use the same setup as we did for contention tests above, but instead
of varying contention, we vary the offered rate from 2000 TPS to 22,000 TPS and fix
contention at 0.95. Each run lasts for 120 seconds. The results of this experiment are
shown in Fig. 4.6. ED Postgres offers, on average, about a 75% increase in throughput
compared to baseline Postgres. We observe that as the offered load increases, the actual
throughput from all four Postgres flavours initially rises and then saturates at a rate above
which they cannot serve requests.

Naturally, both ED fast and baseline sync=off transactions plateau much later com-
pared to ED safe and baseline sync=on transactions because they are asynchronous, short-
lived, and hold on to resources and locks for tens of microseconds as opposed to some
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milliseconds in the case of safe or sync=on transactions. This allows backends to become
free earlier and serve more transactions, which ultimately results in an overall increase in
throughput.

ED safe transactions plateau slightly later than baseline sync=on transactions while
maintaining a difference of about 75% more throughput. Once again, this increase in
throughput can be attributed to backends marking transactions committed much earlier
compared to baseline Postgres, thus freeing up backends to serve new transactions and
resulting in fewer aborts.

4.5 TPC-C

To test ED Postgres under a realistic workload, we run TPC-C and measure the latencies
of different transaction types. Our intention behind running a workload like TPC-C is to
show that in a real-world situation when multiple types of transactions are involved, ED
Postgres can be used to set which ones should execute quickly and which ones safely – all
while enjoying the benefits ED provides. The setup of this experiment is similar to the one
used for the contention tests, but instead of using a standby instance in us-east-1b, we
use a standby placed in ca-central-1. This change allowed us to clearly observe latency
differences between safe and fast transactions – specifically, the NewOrder transaction.

We use CMU’s benchbase [19] – with minor modifications to control transaction dura-
bility – to carry out the TPC-C test. We wanted to keep the experiment setting simple,
so we used a scale factor (number of warehouses) of 100 and 16 terminals. The test ran
for 10 minutes at an unlimited rate (terminals issued transactions as fast as possible), and
we recorded latencies and throughputs of the different transaction types. Fig. 4.7a shows
the results when all transaction types of TPC-C are issued as safe transactions. All of
the transaction types that perform updates (NewOrder, Payment and Delivery) have la-
tencies that are consistent with previous experiment runs when the standby was placed in
ca-central-1.

Fig. 4.7b shows the latencies of transactions when NewOrder is issued as a fast trans-
action. The latency of the NewOrder transaction drops by about 74% because it is now
issued as a fast transaction. Secondly, although the latencies of the other transaction types
do not deviate much from when NewOrder was safe, they do increase slightly. This increase
is because the system is now processing more transactions per second compared to when
NewOrder was safe.

Fig. 4.8 compares the average throughputs of transaction types. The purple bars cor-
respond to transaction throughputs when all transaction types were issued as safe transac-
tions. The red bars show the transaction throughputs when NewOrder was fast. Since we
make NewOrder transactions fast, we expectedly see an increase in their throughput. How-
ever, we also notice that the throughput of Payment transactions increases. As database
and system resources are released much earlier in the case of fast transactions (NewOrder),
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(a) TPC-C Transaction Latencies when NewOrder is Safe

(b) TPC-C Transaction Latencies when NewOrder is Fast

Figure 4.7: TPC-C Transaction Latencies
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Figure 4.8: TPC-C Average Throughput Comparison by Transaction Type

the shorter turn-around time and an “unlimited” rate setting translate to terminals issu-
ing a greater number of transactions resulting in higher throughput across all transaction
types. We observe that the throughput of the NewOrder transaction is about 47% higher
compared to when it was a safe transaction. Secondly, even though we retain the Payment
transaction as safe, we still notice a ≈ 47.5% increase in throughput for the aforementioned
reasons. There is a consistent increase of 45%-47% throughput across all transaction types
when NewOrder is issued as a fast transaction. We attribute this increase to the greater
availability of resources because of the fast NewOrder transaction and the unlimited rate
setting on the test client. Had we used a constant rate that the database was fully com-
fortable handling, we would not have seen the increase in throughput in the latter case.

Although the scale factor and the number of terminals used in this experiment are
small, they are still high enough to be moderately demanding on the database system. Our
intention with running TPC-C was not to benchmark ED Postgres against baseline Postgres
but rather to show that ED Postgres can be used in realistic settings with potentially
multiple transaction types to have fine-grained control over which transactions should
execute quickly and which ones safely – all while enjoying ED Postgres benefits like reduced
contention, increased throughput and recoverability.

The latency and throughput benefits obtained by tagging NewOrder as fast could also
have been obtained in baseline Postgres by setting sync=off. However, the difference
with ED Postgres is that an application can comfortably issue fast NewOrder transactions
knowing that OrderStatus, Delivery and Payment are safe transactions. Because of the
ED recoverability property, the latter set of transactions can only succeed if NewOrder
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committed and became durable. This seemingly simple difference which can arguably be
solved by application logic becomes important in applications like auctions and gaming.
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Chapter 5

Related Work

5.0.1 Tackling Durability Costs

The idea of tackling durability costs has been around for almost as long as databases and
storage systems have. One the earliest database systems – IBM’s IMS/VS [23] provided
a fast path for memory-resident data alongside the standard IMS transactions. The IMS
database predates Codd’s relational model [16], Gray’s transaction model [26] and the de-
velopment of many other fundamental ideas around modern database systems. Therefore,
it is not surprising that the issue of managing durability costs has seen a considerable
number of approaches since then.

Tackling durability costs initially began with efforts to leverage main memory for faster
transaction processing. Some of the earliest works in this space are DeWitt et al. [18],
Ammann et al. [6], and Garcia-Molina and Salem [21]. Garcia-Molina and Salem [22]
provide a good commentary on the implications of memory resident database systems on
concurrency control, commit processing, data indexing and so on. The ED model, in
contrast, focuses on providing a framework for flexible durability within the transactional
model.

A recent consequence of attempting to manage durability trade-offs has been the de-
velopment of NoSQL databases. With the dot-com boom [43], massive growth in internet
adoption and technology-based companies in the 2000s, the amount of data that needed
managing shot up significantly. Traditional OLTP[34] databases like PostgreSQL [31],
MySQL[46] and Microsoft’s SQL Server[1] were not built to scale horizontally and keep
up with the high throughput requirements of these newly developed applications. Almost
every major technology company – Google, Facebook, Microsoft and so on, started build-
ing their own systems to address their needs. In doing so, they deviated heavily from the
principles and guarantees of the relational database world. Not only did these systems
break away from the relational concept by dropping the use of tables, but they also let go
of ACID guarantees[32] as they saw fit. Some systems completely moved away from trans-
actions and transaction-related guarantees, while others watered down these guarantees or
handled them poorly.
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As these systems relaxed strong guarantees and semantics of relational database sys-
tems, it gave rise to a new set of problems like lost writes [51] and data consistency
issues[39]. C. Mohan provides a trenchant commentary on these issues[44] and brings up
important questions about design decisions that need answering before one is sold into
the idea of using a NoSQL database for their next application. Among the many in-
stances where people realised that tearing down decades-old, well-thought-out mechanisms
for transactions, recovery, concurrency, and durability is not a good idea, a notable in-
stance was when Facebook engineers came to terms with the fact that the semantics of
eventual consistency in Cassandra were too painful to deal with and hence switched over
to HBase[4].

Many of these NoSQL databases, which let go of strongly defined semantics and guar-
antees of relational database systems, started adding back features on an ad-hoc basis
to compensate for the lack of a formal framework that provided these guarantees. For
example, MongoDB introduced document joins, much like relational table joins, despite
initially distancing itself from the relational model. Furthermore, as these ad-hoc features
became unruly, NoSQL database developers decided to reintroduce formal guarantees that
were relaxed earlier. An example was when MongoDB added support for transactions and
ACID guarantees[37]. Of course, many of these new developments have emerged not just to
overcome durability costs but also to address other issues like scalability and reduced flex-
ibility with structured data. Nevertheless, addressing durability costs continues to remain
a paramount concern for several systems.

5.0.2 Relaxed Durability

As far as we have seen, the work closest to Eventual Durability has been “Weakly Durable
Transactions” introduced by Chang et al. [15]. This paper discusses decoupling a trans-
action’s commit point from its durability. It also supports strongly and weakly durable
transactions – similar to the ED model’s fast and safe transactions. The authors argue
that ad-hoc durability mechanisms can cause external and internal data inconsistencies
in databases and attempt to provide a theoretical grounding to safely relaxing durability.
Following this, they argue that the serialisability and consistency guarantees upheld in
ACID systems must also be upheld in ACID- (weakly durable) systems. However, their
reasoning around recoverability may not fully hold in certain cases. Eventual Durability is
very similar to weakly durable transactions, but we take the idea further by formally ex-
tending Bernstein et al.’s [11] classical definition of serialisability and recoverability under
ED. Furthermore, we also lay down a concrete set of properties offered by fast and safe
transactions to enable applications to understand the benefits and risks of making durabil-
ity decisions. Finally, we provide early visibility of transactions to reduce contention and
improve throughput.

Some other recent works that have recognised high costs of durability in transactional
systems and offered workarounds have been Prasaad et al.’s “Concurrent Prefix Recovery
(CPR)” [50], and Li et al.’s “Distributed Prefix Recovery” [42] that extends CPR to a
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distributed setting. CPR introduces a high-performance recovery mechanism by combining
the semantics of asynchronous checkpoints and WAL group commit. Commit boundaries
of the transaction log across all running threads are decided by the system rather than the
user. The user is then notified of this point which they can use to prune their in-flight
operations log.

Li et al. [41] introduce the idea of RedBlue consistency which allows users to issue
fast (or blue) operations that execute locally and are lazily replicated; alongside slow
(or red) operations that provide strong consistency and serialisability guarantees. If a
group of operations issued by a client contained only blue operations, the system provides
eventual consistency semantics, whereas if all operations were red, then the system provides
serialisability. While this idea, to some extent, is similar to the ED model’s fast and safe
transactions, it imposes significant complexity since all blue operations have to be globally
commutative with both red and blue operations. Because of this complication, marking
operations as red or blue is not a trivial decision. The ED model is considerably simpler
and provides greater flexibility to users.

The next class of approaches to dealing with durability primarily advocate for some
kind of asynchronous processing of transactions – whether locally or in a replicated setting.
Some of the most notable and earlier works in this list are [33][28][49][13] and [40]. Eventual
Durability differs from these approaches in that it advocates against dealing with durability
outside the scope of the transaction model. Interestingly, in this family of lazy evaluations,
one approach stands out and warrants further discussion. Faleiro et al. [20] introduce the
idea of “Lazy Transactions”, which borrows the idea of lazy evaluations from program-
ming languages research. Traditionally, database systems accept transactional operations,
evaluate them, and decide whether to commit or abort them. This approach, on the other
hand, first decides whether to commit or abort a transaction and makes a ‘promise’ to the
user. This promise is only fulfilled once a reader actually tries to read the values changed
by the transaction. So, a transaction executes in two phases, namely, the now-phase and
the later-phase. In the now-phase, the transaction’s read and write set is determined,
serialisation checks are carried out and ‘stickies’ are inserted over records indicating that
they have pending updates. Clients can demarcate now-phases and later-phases. If a
transaction does not have any now-phase, it is executed as an eager transaction similar
to a regular transaction. But, if it contains a now-phase, it is treated as a lazy transac-
tion. This is an interesting approach that provides fine-grained flexibility to users to decide
which operations should be lazy and which ones should be executed eagerly. However, it
significantly increases the burden on the user to choose an appropriate point for now-phase
so that it does not lead to an abort decision and still yields throughput benefits. In con-
trast, the ED model is much simpler for clients – they simply need to tag transactions as
‘fast’ or ‘safe’. Lazy replication also reduces a transaction’s contention footprint resulting
in a lower contention rate among transactions.

Another class of studies have looked at releasing locks early to reduce contention and
improve transaction throughput. The key insight is that transactions hold on to locks for
much longer than they actually need them – especially since they spend the majority of
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their time becoming durable. Interestingly, DeWitt et al. [18] first propose the idea of
releasing transaction locks early, which is implemented in IMS/VS [23]. Recently, Johnson
et al. [38] and Graefe et al. [24] implemented early lock release in Shore-MT and Foster
B-Trees, respectively. However, in some cases, early lock release techniques may produce
wrong results and fail to honour commit dependencies. Graefe et al. [25] propose the idea of
controlled lock violation. They observe that a transaction spends most of its time becoming
durable and that they need not hold on to their locks for their full lifetime. However, instead
of releasing the locks early, concurrent transactions are allowed to selectively ‘violate’ these
locks. The latter transaction will then incur a commit dependency on the former if the
lock was an exclusive one. If the second transaction were read-only, it would wait for the
earlier transaction to be flushed to disk.

This approach is similar to the ED model on several counts. Firstly, the ED model
allows for early lock release without causing serialisation anomalies. In our ED implemen-
tation in Postgres, a safe transaction releases all row locks at commit time but holds on
to heavyweight locks until it becomes durable. Changing the visibility of transactions to
follow the ED model had the fortuitous benefit of early lock release, thus yielding signifi-
cantly reduced contention and increased throughput. Secondly, safe, read-only transactions
in ED incur a commit dependency on transactions from which it read and, therefore, waits
for them to become durable – similar to how read-only, lock-violating transactions incur
commit dependencies.
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Chapter 6

Conclusions and Future Work

6.0.1 Conclusions

In this work, we present the idea of Eventual Durability to provide a principled framework
for clients to make fine-grained decisions about transaction durability trade-offs. Further-
more, we formally extend the traditional transactional model and redefine serialisability
and recoverability under ED. We then discuss implementing ED in Postgres, and show
that ED reduces abort rates by an average of 91.25% – 93% and increases throughput by
an average of 75% compared to baseline Postgres.

6.0.2 Future Work

PostgreSQL provides a fairly amenable test bed to implement Eventual Durability. Post-
gres has a single XLOG which gets replicated to standby systems; LSN values are monotoni-
cally increasing, and the durability of an XLOG record with an LSN implies durability of all
XLOG records with smaller LSNs. Therefore, the changes necessitated by the ED implemen-
tation in Postgres are not nearly as complex as what is potentially needed for a complex
system like CockroachDB that implements distributed transactions.

Our next step, therefore, is to implement ED in systems like CockroachDB[55], TiKV[36],
FoundationDB[56], and other similar systems that support distributed, ACID transactions.
The transactions in such systems might span multiple transaction logs, and the implemen-
tation of fast and safe transactions might involve significant changes to their respective
transaction processing modules.
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