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Abstract

Options hedging is a critical problem in financial risk management. The prevailing approach in
financial derivative pricing and hedging has been to firstly assume a parametric model describing
the underlying price dynamics. An option model function V is then calibrated to current market
option prices and various sensitivities are computed and used to hedge the option risk. It has
been recognized that computing hedging position from the sensitivity of the calibrated model
option value function is inadequate in minimizing the variance of the option hedging risk, as it
fails to capture the model parameter dependence on the underlying price. We propose several
data-driven approaches to directly learn a hedging function from the historical market option and
underlying data by minimizing certain measure of the local hedging risk and total hedging risk.
This thesis will focus on answering the following questions: 1) Can we efficiently build direct
data-driven models for discrete hedging problem that outperform existing state-of-art parametric
hedging models based on the market prices? 2) Can we incorporate feature selection and fea-
ture extraction into the data-driven models to further improve the performance of the discrete
hedging? 3) Can we build efficient models for both the one-step local risk hedging problem and
multi-steps total risk hedging problem based on the state-of-art learning framework such as deep
learning framework and kernel learning framework?

Using the S&P 500 index daily option data for more than a decade ending in August 2015, we
firstly propose a direct data-driven approach [143] based on kernel learning framework and we
demonstrate that the proposed method outperforms the parametric minimum variance hedging
method proposed in [112], as well as minimum variance hedging corrective techniques based on
stochastic volatility or local volatility models. Furthermore, we show that the proposed approach
achieves significant gain over the implied Black-Sholes delta hedging for weekly and monthly
hedging.

Following the direct data-driven kernel learning approach [143], we propose a robust encoder-
decoder Gated Recurrent Unit (GRU) model, GRUδ , for optimal discrete option hedging. The
proposed GRUδ utilizes the Black-Scholes model as a pre-trained model and incorporates se-
quential information and feature selection. Using the S&P 500 index European option market
data from January 2, 2004 to August 31, 2015, we demonstrate that the weekly and monthly
hedging performance of the proposed GRUδ significantly surpasses that of the data-driven min-
imum variance (MV) method in [112], the regularized kernel data-driven model [143], and the
SABR-Bartlett method [98]. In addition, the daily hedging performance of the proposed GRUδ

also surpasses that of MV methods in [112] based on parametric models, the kernel method [143]
and SABR-Bartlett method [98].

Lastly, we design a multi-steps data-driven models GRUTOTAL based on the GRUδ to hedge
the option discretely until the expiry. We utilize SABR model and Local Volatility Function
(LVF) to augment existing market data and thus alleviate the problem of scarcity in market op-
tion prices. The augmented market data is used to train a sufficient total risk hedging model
GRUTOTAL.
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and the candidate activation ĥi, where the combination weight zi is produced by
the update unit. Each edge in the graph has an arrow on it, pointing from a node
whose output is used by the node pointed by the arrow as an input. . . . . . . . . 51

xi



4.3 NNδ : decoder GRU only. This simplified model only retains the decoder. The
decoder computes the hedging position solely based on the information vector
xT,K

t observed at time t. A candidate output δ̂ M
t,T,K is produced. The final output

δ M
t,T,K is computed based on the linear combination of BS delta δ BS

t,T,K and the

candidate output δ̂ M
t,T,K . The combination weight is determined by Wδ . The fea-

ture weight ωL is used to produce the weighted local feature x̂T,K
t . The weighting

acts as a feature selection process. Each edge in the graph has an arrow on it,
pointing from a node whose output is used by the node pointed by the arrow as
an input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 GRUc: This simplified model removes the output gate in the decoder. The en-
coder summarizes the time series YT,K

t =
[
yT,K

t̆1
, . . . ,yT,K

t̆N+1

]
as a succinct vector
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outputs the hedging position based on the vector ĥE and the previous hedging
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Chapter 1

Introduction

One of the critical problems in financial risk management is to hedge the risk of trading option.
The traditional approach in financial derivative pricing and hedging relies heavily on parametric
assumptions describing the dynamics of underlying asset. The common practice is to calibrate
an option pricing function based on the specific parametric model for the underlying price and
compute various sensitivities to hedge option risk. For example, the sensitivity of the option
value function to the underlying price is used in delta hedging. Under the assumption of a
complete market [165] where one can continuously rebalance the hedging portfolio, the value
of an option written on the underlying asset can be perfectly replicated by a hedging portfolio
consisting of the underlying asset and the risk-free asset. In practice, we have to rebalance the
hedging portfolio discretely instead of continuously due to the existence of the transaction cost.
The practice of adjusting the hedging portfolio discretely is often referred to as discrete hedging.

There are many parametric models proposed to describe the dynamics of underlying asset.
The original and most celebrated parametric Black-Scholes (BS) model uses a constant volatility
[20, 139], which is shown to produce inaccurate option prices particularly for deeply out-of-
the-money options and deeply in-the-money options [87]. In addition, the BS model is un-
able to capture the non-zero correlation between the volatility and the underlying asset price,
e.g., [80, 22]. The practitioner’s BS delta hedging approach sets the constant volatility in the
BS model to the implied volatility calibrated to the market price at the time of re-balancing.
Many alternative parametric models have been proposed to improve the BS model, including the
Stochastic Volatility (SV) model, e.g., [99, 103, 111, 13], the Local Volatility Function (LVF)
model [45, 66, 158, 68], and the jump model, e.g., [100, 122]. Unfortunately, all models have
been shown to have their limitations in accurately modeling option market prices.

Errors in the option value model have significant implications in hedging. Consider, for
example, when the hedging position is computed from the sensitivity of the option value function
calibrated at the hedging time, the computed hedging position only depends on the assumed
dynamics of the underlying price and the current market option prices. Unless the assumed
dynamics for the underlying price is exact and all assumptions that results in the option pricing
function are all valid, the option function calibrated at the hedging time cannot predict how the
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future option market price depends on the underlying prices.

Specifically, let V (S, t,T,K,r,q;θ ∗) be the option value function and θ ∗ be the vector of
model parameters of the assumed option pricing model. At the hedging time t, assume that we
calibrate the model price to match the market option price so that

V (St , t,T,K,rt ,qt ;θ
∗) =V mkt

t,T,K (1.0.1)

where V mkt
t,T,K denotes the actual market option price at time t with strike price K and the expiry

date T , St denotes the underlying price at t, rt denotes the risk-free rate at t and qt denotes the
dividend yield at t. The option value function V (S, t,T,K,r,q;θ ∗), calibrated to market price at
time t, does not ensure that the option delta from the pricing model ∂V

∂S equals to ∂V mkt

∂S , which is
indeed unknown, and requires the modelling of the dependence of the calibrated model parameter
on the underlying price [143, 45, 112]. The missing sensitivity ∂θ∗

∂S , is difficult to account for
and is often ignored, though for some models, corrections have been proposed to capture the
dependence [112, 98, 16].

Since machine learning algorithms usually do not impose assumptions on the model to be
learned, they have recently been adopted to determine an option value function directly from
the market data, with the goal of avoiding the model misspecification issues from the paramet-
ric modeling approach e.g.,[93, 82, 114]. Unfortunately, using nonparametric learning, hedging
positions still need to be computed from the sensitivity of the model value function. While no
assumption is explicitly made for the dynamics of underlying asset, the option value function
is determined by data through cross-validation, leading to training errors. Since there is no as-
surance that the sensitivity of the learned option value function with regards to underlying asset
matches that the sensitivity of the market option price, the parameters of the model learned di-
rectly from data can similarly exhibit dependence on the underlying price. When the hedging
position is computed from the partial derivative of the data-driven option value function, e.g.,
[114], this dependence cannot be accounted for and again is ignored. Hence, option hedging risk
remains insufficiently minimized. Furthermore, many data-driven option pricing models previ-
ously proposed [93, 82, 114] face the challenges in avoiding arbitrage in the resulting pricing
surfaces. Therefore, recent research [30, 192, 127] on data-driven pricing model often focuses
on using machine learning techniques in modelling and predicting the implied volatility surface
and then use the resulting implied volatilities with Black-Scholes model to ensure the absence
of the arbitrage. Again, the dependence of the implied volatility on the underlying asset is still
omitted in those work.

Furthermore, using option delta from pricing model ∂V
∂S as the hedging position becomes in-

adequate when discrete hedging is performed in practice, particularly when rebalancing becomes
infrequent. Instead, optimal discrete hedging strategy can be determined directly using an ap-
propriate objective in the discrete hedging context, e.g., minimizing the variance of the hedging
error, [112, 8, 92].

In hedging, the ultimate goal is to discover a hedging strategy which minimizes the hedging
error measured by the market option and underlying prices. With the increasing availability of
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market option prices, a timely question arises: is it possible to learn optimal hedging positions
directly from market option prices and underlying prices data? Up until now, research in learning
the hedging position directly from market data is scarce. Recently, a data-driven approach [112]
is proposed to learn a parametric model for the minimum variance delta hedging based on the
analysis of the BS option greeks and underlying market prices. However, the proposed paramet-
ric model focuses on the instantaneous hedging error analysis in a parametric model framework.

In this thesis, we study the discrete option hedging problem by explicitly focusing on the
issues arising from model specification errors and calibrated model parameter dependence on
underlying. We illustrate that the inability to minimize variance of the hedging error, when de-
termining hedging position from option value function from a parametric model, is also shared
by an option model estimated from a nonparametric method. Although a nonparametric model-
ing approach to option value can potentially lead to smaller mis-specification error, we illustrate
that non-parametric model parameters can similarly depend on the underlying. Consequently
the sensitivity of the estimated option value function will not lead to the minimization of op-
tion hedging risk. Furthermore, the estimated pricing function inevitably has errors, due to both
model mis-specification, discretization, and numerical roundoff errors. The error in the value
function can potentially be substantially magnified in computing partial derivatives as hedging
positions.

We explore several direct market data-driven approaches to bypass the challenges mentioned
above to achieve effective hedging performance. We firstly propose a data-driven kernel learning
approach [143] to learn a local risk minimization hedging model directly from the market data
observed at the hedging time. We learn a hedging function from the market data by minimizing
the empirical local hedging risk with a suitable regularization. The local risk corresponds directly
to the variance of the hedging error in the discrete rebalancing period. A novel encoder-decoder
RNN model GRUδ [144], to extract both sequential and local features at hedging time t from
market prices, is also proposed to learn option hedging positions directly from the market. We
include a feature weighting procedure to select the most relevant local features at hedging time
and sequential features for the sequential data-driven model GRUδ . Lastly, in order to deal
with multi-steps discrete total hedging scenarios where we hedge until the expiry of the option
[145], we extend our sequential local hedging model GRUδ to be GRUTOTAL. We compare our
data-driven approaches with the parametric approaches and demonstrate the effectiveness of the
data-driven hedging models in terms of both local hedging risk and total hedging risk.

1.1 Contribution

The contributions of this thesis with respect to the data-driven kernel hedging model [143] are
summarized below:

• We analyze and discuss the implications from model mis-specification in the option value
function for discrete option hedging. We illustrate challenges in accounting for the depen-
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dence of the calibrated model parameters on the underlying, which arises due to model
mis-specification.

• We analyze a regularized kernel network for option value estimation and illustrate that the
partial derivative of the estimated value function with respect to the underlying similarly
does not minimize the variance of the local hedging risk in general, not even infinitesimally.

• We propose a data-driven approach to learn a hedging position function directly by min-
imizing the variance of the local hedging risk. Specifically we implement a regularized
spline kernel method DKLSPL to nonparametrically estimate the hedging function from
the market data.

• Using synthetic data sets, we compare daily, weekly, and monthly hedging performance
using the kernel direct data-driven hedging approach with the performance of the indirect
approach where hedging positions are computed from the sensitivity of the nonparametric
option value function. In particular, we present computational results which demonstrate
that the direct spline kernel hedging position learning outperforms the hedging position
computed from the sensitivity of the spline kernel option value function.

• Using S&P 500 index option market data for more than a decade ending in August 31,
2015, we demonstrate that the daily hedging performance of the direct spline kernel hedg-
ing function learning method surpasses that of the minimum variance quadratic hedging
formula proposed in [112], as well as corrective methods based on LVF and SABR imple-
mented in [112].

• We also present weekly and monthly hedging results using the S&P 500 index option mar-
ket data and demonstrate significant enhanced performance over the BS implied volatility
hedging.

The contributions with respect to the data-driven hedging model with sequential features
[144] are summarized below:

• We propose a novel encoder-decoder RNN model, to extract both sequential and current
features from market prices, and to learn option hedging positions directly from the market.
We include a feature weighting procedure to select the most relevant local features and
sequential time series features for the data-driven model.

• To ensure robust learning, we use the Huber loss function as the learning objective, adap-
tively setting the error resolution parameter to the Black–Scholes hedging error, allowing
it to varying from data instance to data instance. Furthermore, the proposed GRUδ can
be updated more frequently than the data-driven model in [143] to account for the market
shifts.

• Using the S&P 500 index option market data from January 2, 2004 to August 31st, 2015,
we demonstrate that the weekly and monthly hedging performance of the proposed GRUδ
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significantly surpasses that of the data-driven minimum variance (MV) method in [112],
the regularized kernel data-driven model [143], and the SABR-Bartlett method [16].

• Using the S&P 500 index option market data from January 2, 2004 to August 31st, 2015,
we demonstrate that the daily hedging performance of the proposed GRUδ surpasses that
of the minimum variance quadratic hedging method proposed in [112], the corrective meth-
ods based on LVF and SABR implemented in [112], the SABR-Bartlett method [16], as
well as the data-driven model in [143].

• To motivate the roles of each major component of the proposed GRUδ , we demonstrate
performance sensitivity through computational experiments. In addition, we illustrate and
analyze the relative importance of selected features.

The contributions with respect to the data-driven total hedging model [145] are summarized
below:

• We extend the data-driven local hedging model GRUδ [144] to total risk hedging where
we rebalance multiple times until the expiries of the options.

• We augment the market data using SABR model and local volatility model to cope with
the challenges of scarcity in market option data.

• Using the S&P 500 index call option market data from January 1, 2000 to August 31st,
2015, we demonstrate the effectiveness on weekly and monthly hedging performance of
the proposed total hedging model GRUTOTAL. We compare GRUTOTAL with the sequential
data-driven local hedging model GRULOCAL

TOTAL , which adopts the same model structure but
is trained with a different objective functions, the BS delta hedging model and the SABR-
Bartlett method [16]. The hedging performance is evaluated at the expiries of options.

1.2 Outline

The remainder of the thesis is organized as follows. Chapter 2 reviews the existing derivative
pricing models, discrete hedging problems, local and total hedging risk and various existing
parametric approaches to hedge options. Chapter 3 discusses the kernel learning framework and
introduces the data-driven kernel local risk hedging model DKLSPL. Chapter 4 discusses the
Recurrent Neural Network (RNN) framework and introduces the data-driven sequential local
hedging model GRUδ . Chapter 5 discusses the empirical results from the data-driven sequential
local hedging model GRUδ and data-driven kernel local hedging model DKLSPL. Chapter 6
introduces the data-driven total risk hedging model GRUTOTAL and presents the empirical com-
parisons between local risk hedging model GRULOCAL

TOTAL and total risk hedging model GRUTOTAL.
Chapter 6 also discusses the challenges of using market data to build data-driven total risk hedg-
ing models and the data augmentation procedure to cope with the challenges. We conclude in
Chapter 7 with summary remarks and potential extensions.
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Chapter 2

Option Hedging: From Past to Present

In this chapter, we review the existing option pricing models and discuss the problem of pricing
model parameters dependence on underlying asset. In addition, we specify the discrete hedging
problem and define the total and local hedging risk. Most of the discussion in this chapter are
drawn from [165, 103, 16, 98, 99].

2.1 Discrete Hedging Problem

A European style call or put option gives its buyer the right to buy or sell the underlying asset on
the option expiry with a strike price. Let the strike price be K and the ST be the underlying price
at expiry T . The payoff of call options is:

max(ST −K,0).

The payoff of put options is:
max(K−ST ,0).

When a market is complete, e.g., under the assumptions of the Black–Scholes framework, the
option payoff can be perfectly replicated by continuously trading the underlying asset and a risk-
free asset account. However, markets are incomplete in practice and the risk associated with
options cannot be eliminated completely. On the other hand, reducing risk as much as possible
remains the main goal of hedging.

In an incomplete market, risk minimization is not completely defined until one specifies how
to measure risk [78, 79, 163, 69]. For European options, a pricing measure can be determined
through quadratic risk minimization, see, e.g., [164, 163, 50]. In this framework risk is measured
by the expected quadratic difference between the payoff of an option and the value of a self-
financing hedging portfolio at expiry date. This is the key idea behind total risk minimization.
However, this strategy may not always exist and may be difficult to compute, particularly under
more complex asset price dynamics[48, 49].
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An alternative to total risk minimization is local risk minimization. In contrast to total risk
minimization, in local risk minimization the expected quadratic incremental cost is minimized.
As can be seen for European options [48] and American options [49] , optimal local risk mini-
mization hedging strategies typically lead to a small total risk. Moreover, it has been shown that
the choice of measure for incremental cost is important when the market is highly incomplete,
e.g., [48, 49].

Literature in risk minimization pricing and hedging has focused on assuming a parametric
form of the underlying asset dynamics. For example, the underlying asset price is assumed to
follow a geometric Brownian motion:

dSt = µStdt +σStdWt .

and the derivation of the hedging position can be computed with a binomial model [48, 49]. The
key distinction between our work and the previous work on local and total risk minimization is
that we have no assumption on the underlying asset price dynamics and therefore our models are
not bound with a specific parametric form.

In this thesis, we propose to learn discrete data-driven hedging positions for standard eu-
ropean options, calls or puts, based on observations of the option market prices on the same
underlying price at a set of trading times. The goal of the data-driven discrete option hedging in
this thesis is to learn a hedging position function δ in the underlying dynamically to minimize
certain appropriate measurements of the hedging risk on the historical market data and then apply
the model on the unobserved testing cases. We are interested in two different types of hedging
risk:

• Local hedging risk

• Total hedging risk

Note that in this thesis, the empirical performance of an option hedging method are measured
by real market option and underlying prices. The definition of the local hedging risk and total
hedging risk in discrete hedging are explained in the following subsections.

2.1.1 Local Hedging Risk

Let ∆t denote a fixed time interval. Each observation of a market option price V mkt
t,T,K is uniquely

associated with a triplet {t,T,K}, where t is the trading time of the option price, K is the strike,
and expiry T . Furthermore, we assume the risk-free interest rate r = 0 in the discussion in this
section. Denote:

∆V mkt
t,T,K =V mkt

t+∆t,T,K−V mkt
t,T,K

∆St = St+∆t−St .
(2.1.1)
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The local hedging risk in the rebalancing interval ∆t is:

Risklocal
t,T,K = ∆Stδt,T,K−∆V mkt

t,T,K (2.1.2)

where δt,T,K is a hedging position for the corresponding option.

The discrete local hedging risk can be understood as the following. We set up the following
portfolio at time t:

• A short position on option V mkt
t,T,K

• A position of δt,T,K , shares on underlying St ,

• An amount in the risk-free bank.account Bt

We use PH
t,T,K to denote the hedging portfolio value at t for hedging options with expiry T and

strike K. The hedging portfolio value is set to be zero by choosing Bt :

PH
t,T,K =−V mkt

t,T,K +Stδt,T,K +Bt = 0.

Therefore, the bank account at time t is set to be:

Bt =V mkt
t,T,K−Stδt,T,K.

Let dV mkt
t,T,K , dSt , dBt , and dPH

t,T,K denote the instantaneous change in the market option price, the
underlying price, bank account and the hedging portfolio value respectively, the instantaneous
hedging risk at time t is therefore:

dPH
t,T,K = dStδt,T,K−dV mkt

t,T,K +dBt . (2.1.3)

Note that dBt is deterministic when we assume r is a constant:

dBt = rBtdt

Therefore, if we assume the risk-free interest rate is zero (or omit dBt since it is deterministic),
we have:

dPH
t,T,K = dStδt,T,K−dV mkt

t,T,K. (2.1.4)

Under the assumption of a complete market where continuous hedging is feasible, the random-
ness in this instantaneous hedging risk can theoretically be eliminated by continuously trading

the underlying asset and set δt,T,K =
dV mkt

t,T,K
dSt

. However in practice, market is incomplete, since
hedging can only be done at discrete times and additional risk, e.g., jump and volatility, can-

not be eliminated by trading the underlying asset only [103, 84]. Lastly, in practice,
∂V mkt

t,T,K
∂St

is
unobserved. Therefore, the hedging risk cannot be eliminated even instantaneously.
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In practice, one actually care about the portfolio changes after a discrete time interval ∆t.
With the assumption of r = 0, after the fixed interval ∆t, we have:

∆PH
t,T,K = PH

t+∆t,T,K−PH
t,T,K = ∆Stδt,T,K−∆V mkt

t,K,T . (2.1.5)

The local hedging risk is therefore defined to be the one-step hedging error when we assume the
risk-free interest risk is zero. The local discrete hedging risk (2.1.2) measures the changes in the
hedging portfolio after a fixed time interval ∆t when the hedging position is set to be δt,T,K . As
∆t→ 0, we also have local hedging risk converge to instantaneous hedging risk.

2.1.2 Total Hedging Risk

In reality, one usually want to hedge until the expiries of the options, which requires re-balancing
the hedging portfolio multiple times. Again, consider a hedging portfolio PH

t,T,K which is com-
posed of:

• A short position on option V mkt
t,T,K ,

• A position of δt,T,K shares on underlying St ,

• An amount in a risk-free bank account Bt .

For the notational simplicity since the T and K are fixed in following discussion, we drop them
in the subscript:

V mkt
t =V mkt

t,T,K ,δt = δt,T,K, PH
t = PH

t,T,K.

Assume we rebalance Nrb times, the hedging portfolio is rebalanced at discrete times {t0, t1, . . . , tNrb−1}
and the risk-free interest rate is r = 0. Initially at t0, we have

PH
t0 =−V mkt

t0 +δt0St0 +Bt0 = 0

And
Bt0 =V mkt

t0 −δt0St0

At each rebalancing time t j, we update our hedging position by changing the share we hold from
δt j−1 to δt j at t j, where any required cash is borrowed, and any excess cash is loaned. Assume
∆t = t j− t j−1 is fixed and risk-free interest rate is zero. The bank account is updated by:

Bt j = Bt j−1−St j(δt j −δt j−1)
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Let t+j and t−j be the time immediately after and immediately before t j. Assume that the perfor-
mance is measured at the t−Nrb

, where tNrb = T is the expiry:

Pt−Nrb
= BtNrb−1−V mkt

tNrb
+StNrb

δtNrb−1

=
Nrb−1

∑
j=0

{(
St j+1−St j

)
δt j

}
+V mkt

t0 −V mkt
tNrb

=
Nrb−1

∑
j=0

{(
St j+1−St j

)
δt j − (V mkt

t j+1
−V mkt

t j
)
} (2.1.6)

Equation (2.1.6) is defined as the discrete total hedging risk. Assuming the market is complete,
if we always set δt =

∂V mkt
t

∂St
and let ∆t→ 0 (we continuously rebalance the portfolio), then Pt−Nrb

=

0. In reality, even if we can set the hedging position to be δt =
∂V mkt

t
∂St

, we can only rebalance
discretely due to the existence of transaction cost. Thus, Pt−Nrb

can take positive (profit) and

negative value (loss). The total hedging risk measures the hedging portfolio profit and loss at the
expiry T for the entire hedging period [t0,T ].

Equation (2.1.6) can be written as:

PH
t−Nrb

=
Nrb−1

∑
j=0

{(
St j+1−St j

)
δt j − (V mkt

t j+1
−V mkt

t j
)
}

=
Nrb−1

∑
j=0

{
∆St jδt j −∆V mkt

t j

}
with ∆V mkt

t j
and ∆St j given in (2.1.1).

Plugging in the T and K into the subscript, we denote the discrete total hedging risk as:

Risktotal
t0,T,K =

Nrb−1

∑
j=0

{
∆St jδt j,T,K−∆V mkt

t j,T,K

}
=

Nrb−1

∑
j=0

Risklocal
t j,T,K (2.1.7)

which corresponding to the hedging portfolio value at the expiry T . By comparing equation
(2.1.2) and (2.1.7), we can see that the discrete total hedging risk is the summation of the discrete
local hedging risk evaluated at discrete rebalancing time {t0, t1, . . . , tNrb−1}.

2.1.3 Interest Rate and Dividend

In the previous discussion in section 2.1.1 and section 2.1.2, we assume zero interest rate when
we define the discrete total hedging risk and the discrete local hedging risk. The zero interest
rate was assumed when measuring the hedging performance under discrete local hedging risk
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framework. The results presented in [143] and [144] were evaluated from 2007 to 2015 for
local hedging risk framework. During most of the time from 2007 and 2015, the interest rate
is virtually zero. So the zero interest assumption is valid during most of the time. For the
experimental results for total hedging risk in [145], such assumption is relaxed and we include
the effect of interest rate since the period from 2000 to 2007 is also included in the experiments.
We assume the interest rate is fixed as a constant during the life time of the hedging portfolio
and denote it as r. This assumption is justified for two primary reasons. Firstly, empirical
evidence indicates that the impact of interest rate changes on option prices is typically limited.
Secondly, the hedging experiments conducted in this thesis cover a relatively short time span of
100 business days, making it improbable for significant interest rate fluctuations to occur during
such a brief period. Hence, we can reasonably consider the impact of interest rate changes as
negligible in our analysis. The discrete total hedging risk is therefore:

Risktotal
t0,T,K =

Nrb−1

∑
j=0

{[
St j+1

D(t j+1,T )
−

St j

D(t j,T )

]
δ

M
t j,T,K

}
+

V mkt
t0,T,K

D(t0,T )
−V mkt

T,T,K (2.1.8)

where
D(t,T ) = e−r(T−t)

In this thesis, we focus on S&P 500 index options. For the S&P 500 index, the closing index
price of each day is already adjusted to capture corporate actions that affect market capitaliza-
tion such as as additional share insurance, dividends and restructuring events such as mergers or
spin-offs[123]. When we calibrating the option pricing models such as the Black-Scholes model,
an estimate of the dividends to be paid up until the expiration of the option is needed. We as-
sume that the the index pays dividends continuously, according to a continuously-compounded
annual dividend yield q. Similarly, traditional option pricing models requires a continuously-
compounded interest rate as input. This interest rate is calculated from a collection of continu-
ously compounded zero-coupon interest rates at various maturities, collectively referred to as the
zero curve.

In this thesis, we use the option market data from OptionMetric [147] database. The Op-
tionMetric [147] database provides us market option bid and ask quotes for each trading day
from 1996-01 to 2015-08-31. We also use the zero curves on each trading day provided by
the OptionMetric [147] database to extract the risk-free interest rate r. The zero curve used by
the OptionMetric database is derived from ICE IBA USD LIBOR rates and settlement prices
of CME Eurodollar futures. For a given option, the appropriate interest rate input r for option
pricing corresponds to the zero-coupon rate that has a maturity equal to the time to maturity of
the option T − t, and is obtained by linearly interpolating between the two closest zero-coupon
rates on the zero curve. In addition, OptionMetric [147] database provides annual dividend yield
q for the S&P 500 index. The q is recorded daily for the S&P 500 index and supplied as the input
for calibrating the option pricing models. Details of how OptionMetric compute the zero curves
and the annual dividend yield q using market data can be found in [147].
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2.2 Option Pricing Model

2.2.1 Black-Scholes Model

In [20], the famous closed-form pricing Black–Scholes formula for European options is derived.
Under Black–Scholes (BS) model, it is assumed that the underlying asset price follows a geo-
metric Brownian motion:

dSt = µStdt +σStdWt

where Wt is a standard Brownian motion, µ is the constant drift rate of the asset and σ is the
constant volatility of the asset. We can easily show that:

St = S0e(µ−
σ2
2 )t+σWt

At any time t one can construct an instantaneously riskless portfolio consisting of one option and
shares of the underlying asset. The riskless portfolio needs to be continuously adjusted so that
the number of shares always equal to the partial derivative of the option pricing function with
regards to the underlying asset. No-arbitrage condition implies that the the return of the riskless
portfolio must be equal to the risk-free interest rate. This leads to the renowned Black-Scholes
(BS) partial differential equation and the closed-form pricing formula.

Let CBS be the option value function for call option which at time t and with underlying price
S. For notational simplicity, we have:

∂CBS

∂ t
=

∂CBS

∂ t
(t,St) ,

∂CBS

∂St
=

∂CBS

∂S
(t,St) ,

∂ 2CBS

∂S2
t

=
∂ 2CBS

∂S2 (t,St) ,CBS
t =CBS(t,St)

With Ito’s Lemma [165], we have:

dCBS
t =

(
∂CBS

∂ t
+µSt

∂CBS

∂St
+

1
2

σ
2S2

t
∂ 2CBS

∂S2
t

)
dt +σSt

∂CBS

∂St
dWt

Now consider a specific portfolio, called the delta-hedge portfolio, consisting of being short one
call option and long ∂CBS

∂St
shares at time t. The total value of the delta-hedge portfolio Pδ at time

t is:

Pδ
t =−CBS

t +St
∂CBS

∂St

The instantaneous profit or loss is:

dPδ
t =−

(
∂CBS

∂ t
+

1
2

σ
2S2

t
∂ 2CBS

∂S2
t

)
dt

Assume there is a riskless asset with risk-free rate of return r. We can see that the delta-hedge
portfolio Pδ is also riskless because the diffusion term associated with dWt is dropped. Under
no-arbitrage condition, two riskless investment must earn the same rate of return so we must
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have:
dPδ

t = rPδ
t dt

This leads to the Black-Scholes partial differential equation:

∂CBS

∂ t
+

1
2

σ
2S2

t
∂ 2CBS

∂S2
t

+ rS
∂CBS

∂St
− rCBS

t = 0 (2.2.1)

The solution with European call option is the well-known Black-Scholes pricing formula:

CBS(t,S) = SN (d1)− e−r(T−t)KN (d2) (2.2.2)

where N is the cumulative density function of the standard normal distribution

d1 =
ln(S/K)+(r+σ2/2)(T − t)

σ
√

T − t
, d2 = d1−σ

√
T − t

Similarly, the Black-Scholes pricing formula for European put option is:

PBS(t,S) = e−r(T−t)KN (−d2)−SN (−d1) (2.2.3)

Alternatively, we can derive the Black-Scholes formula under the risk-neutral pricing frame-
work. As the name suggests, under a risk-neural measure Q, all agents in the economy are neutral
to risk. Under a risk-neutral measure, all tradable assets have the same expected rate of return as
the risk-free asset, which earns the risk-free interest rate r. The derivative price can thus derived
from the expected payoff, discounted back to the current time at the risk-free rate r.

Under the Black-Scholes assumption, one can use the Girsanov’s theorem [165] to convert the
geometric brownian motion in the actual physical probability measure to the geometric brownian
motion in a unique risk-neutral probability measure Q. Under risk-neutral pricing framework,
we have:

CBS(t,S) = e−r(T−t)EQ[max(ST −K,0)] (2.2.4)

PBS(t,S) = e−r(T−t)EQ[max(K−ST ,0)] (2.2.5)

where EQ[·] is the expectation under the risk-neutral measure Q. More specifically, define Θ1 to
be the market price of risk:

Θ1 =
µ− r

σ
(2.2.6)

We change the original Brownian motion dWt in the actual physical probability measure to ˆdWt
in the risk-neutral probability measure Q with

ˆdWt = dWt +Θ1dt (2.2.7)
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The underlying dynamic will have the drift to be the risk-free interest rate r.

dSt = rStdt +σSt ˆdWt

It can be shown that ˆdWt is the Brownian motion under the risk-neutral measure Q defined
through Radon-Nikodym derivative via Girsanov’s theorem [165]. Using the fact that the drift
rate of underlying asset dynamic under risk-neutral measure Q is r, following (2.2.4) and (2.2.5),
we can arrive at the same pricing formula as (2.2.2) and (2.2.3). Interest reader can refer to [165]
for more details about risk-neutral pricing and change from physical measure to risk-neutral
measure Q.

Since actual drift µ is irrelevant in determining the option price under Black-Scholes frame-
work, when pricing the option using parametric models such as Black-Scholes model in this
thesis, the drift of underlying dynamic is the risk-free interest rate r. Lastly, to include the effect
of dividend, we can rewrite the d1 and d2 in the Black-Scholes pricing formula as:

d1 =
ln(S/K)+((r−q)+σ2/2)(T − t)

σ
√

T − t
, d2 = d1−σ

√
T − t

where q is the given annual dividend yield. In this thesis, we use VBS(S, t,T,K,r,q;σ) to denote
the European Black-Scholes pricing function regardless of the call or put nature.

Although, Black-Scholes framework provides a close-form formula, the Black-Scholes model
is only a simple approximation to the market. Empirical evidence indicates markets often violate
the assumption of Black-Scholes model. The two major aspects that has been criticized about
Black-Scholes model are:

1. The constant volatility does not hold in real market. In practice, the implied volatility σ imp,
which equates the Black-Scholes option value VBS(S, t,T,K,r,q;σ) to market option price
V mkt

t,T,K , is often used to make sure that Black-Scholes price match the market observation.
However, one can often find that the implied volatility σ imp tends to differ across different
strikes and expiries. This breaks down the assumption of a constant volatility

2. Transaction cost exists in a real market. Due to the existence of transaction cost, con-
tinuously adjusting the shares of underlying is not feasible and frequent hedging can be
prohibitively expensive. Therefore, the argument of the Black-Scholes theory falls apart.

The violations from the assumption of Black-Scholes model in actual market motivate people to
propose various approaches for relaxing the assumptions. These attempts include, but not limited
to, local volatility models [45, 66, 158, 68], stochastic volatility models [99, 103, 111, 13], jump
diffusion models [100, 122] and nonparametric pricing models based on regression [184, 17,
93, 82, 131]. Although nonparametric pricing models based on regression models can be a
useful alternative, one usually ignores the no-arbitrage conditions in pricing when applying those
regression approaches [184, 17, 93, 82, 131], which can be problematic in practice [115]. Recent
focus of the data-driven models on pricing is on modelling and predicting the implied volatility
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surface to ensure the absence of arbitrage [30, 192, 127]. In the following section, we discuss
two stochastic volatility models relevant to this thesis, Heston model and SABR model, which
provide efficient closed-form solutions for the option price similar to Black-Scholes model.

2.2.2 Heston Model

Heston [103] proposed a stochastic volatility model, which has often been used to model the
volatility smile. The volatility smiles refer to the phenomenon that the options in real market
whose strike prices differ substantially from the current underlying asset price tend to have higher
implied volatilities than options whose strike prices are close to the underlying asset price. One
of the key reasons for the popularity of the Heston model is that European call and put option
under Heston model have closed-form solution which makes the calibration of the model com-
putationally more efficient and more accurate. The Heston model assumes that the underlying,
St follows a Black-Scholes type stochastic process, but with a stochastic variance ϒt that follows
a Cox, Ingersoll, Ross (CIR) process [55].

dSt = µStdt +
√

ϒStdWt

dϒt = κ(ϒ−ϒt)dt +η
√

ϒtdZt

E[dZtdWt ] = ρdt

These parameters are described as follows:

• µ is the drift coefficient of the underlying asset

• ϒ is the long term mean of variance

• κ is the rate of mean reversion

• η is the volatility of volatility

• St is the underlying asset price

• ϒt is the instantaneous variance

• Wt and Zt are correlated Wiener processes with correlation coefficient ρ

Similarly, the Heston dynamics can be described under a risk-neutral measure Q. Heston [103]
assumes that the market price of volatility risk is proportional to the volatility

√
ϒt :

Θ2 =
λ

η

√
ϒt (2.2.8)

λ is a parametric adjustment to the market price of volatility risk. Recall that market price of risk
is:

Θ1 =
µ− r√

ϒt
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It can be shown that a risk-neutral measure Q can be defined through Radon-Nikodym derivative
via multi-dimensional Girsanov’s theorem [165] using Θ1 and Θ2. Heston model under a risk-
neutral measure Q is:

dS = rSdt +
√

ϒSdŴ

dϒ = κ
∗(ϒ
∗−ϒ)dt +η

√
ϒdẐ

E[dẐdŴ ] = ρdt

(2.2.9)

where

κ
∗ = κ +λ ,ϒ

∗
=

κϒ

κ +λ

dŴ = dW +Θ1dt

dẐ = dZ +Θ2dt

Similar to the Black-Scholes model, Heston model has the closed-form solutions. The closed
formed solution for European call option is

CHeston(t,S) = S N1−Ke−r(T−t) N2 (2.2.10)

Let us define the imaginary unit I 2 =−1. Then the N1 and N2 are defined as:

N j =
1
2
+

1
π

∫
∞

0
Re

[
e−I ϕ lnK f j(S,ϒ, t,T ;ϕ)

I ϕ

]
dϕ; j = 1,2

with Re[·] denoting the real part of a complext number. The characteristic function f j(S,ϒ, t,T ;ϕ)
is :

f j(S,ϒ, t,T ;ϕ) = eA j(t,T,ϕ)+B j(t,T,ϕ)ϒ+I ϕ lnS , j = 1,2

where:

A j(t,T,ϕ) = rϕ(T − t)+
κ∗ϒ

∗

η2

{
(b j−ρηϕI +d j)(T − t)−2ln

[
1−g jed

j (T − t)

1−g j

]}

B j(t,T,ϕ) = g j

[
1− ed

j (T − t)

1−g jed j(T−t)

]

g j =
b j−ρϕI +d j

b j−ρϕI −d j

d j =
√

(ρηϕI −b j)2−η2(2u jϕ−ϕ2)

u1 = 0.5,u2 =−0.5,b1 = κ
∗−ρϒ,b2 = κ

∗
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European put option price can be derived from the call-put parity:

PHeston(t,S) =CHeston(t,S)−S+Ke−r(T−t)

The parameters to be calibrated from the market option prices are {ϒ0,κ
∗,ϒ
∗
,η ,ρ} where ϒ0

is the initial instantaneous variance, ϒ
∗ is the long term mean of variance under risk-neutral

measurem Q, κ∗ is the rate of mean reversion under risk-neutral measure Q, η is the volatility of
volatility, and ρ is correlation.

Under the assumption of the Black-Scholes model, an option is written on a tradable asset
St . The randomness in option value is determined by the randomness of the asset St . Such
uncertainly can be hedged by continuously adjusting the shares of underlying asset as we have
discussed in section 2.2.1. This implies a complete market [165]. Under a stochastic volatility
model such as Heston model, the uncertainty of option value comes from both the underlying
asset St and the volatility (or the variance ϒt as in Heston model). The volatility itself is not
tradable which implies an incomplete market under stochastic volatility model. One can assume
a risk-neutral measure Q exists and calibrate the Heston model to match the the market option
prices directly using the dynamics in (2.2.9) without specifying λ . In this way, λ has been
implied and embedded into the calibrated model parameters κ∗ and ϒ

∗. Interested readers can
refer to [103, 84] for more details of risk-neutral pricing under the Heston model.

In this thesis, we deal with Heston model under the risk-neural measurement Q. For simplic-
ity, in this thesis, we use VHeston(S, t,T,K,r,q;ϒ0,κ

∗,ϒ
∗
,η ,ρ) to denote the European Heston

pricing function regardless whether it is a call option or a put option.

2.2.3 SABR Model

The SABR model [99] is another stochastic volatility model, which attempts to capture the
volatility smile in a derivative market. The name SABR stands for ”Stochastic Alpha, Beta,
Rho”, referring to the parameters of the model. The popularity of SABR model is due to the fact
that it can reproduce the market-observed volatility smile more accurately. Additionally, it pro-
vides a closed-form formula for the implied volatility under the Black model, which is a variant
of the Black–Scholes model. Given the risk-free interest rate r, the annual dividend yield q, and
the forward Ft with expiry T is:

Ft = Ste(r−q)(T−t)

In the SABR stochastic volatility model, the forward Ft price follows the following stochastic
differential equation:

dFt = αt(Ft)
β dWt

dαt = ναtdZt

E[dWtdZt ] = ρdt

These parameters are described as follows:
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• αt is the instantaneous volatility of the forward Ft .

• ν is the volatility of instantaneous volatility αt .

• Wt and Zt are correlated Wiener processes with correlation coefficient ρ

A variant of the Black–Scholes option pricing model, the Black model [19], is often used
together with SABR model. Under thr Black model, the forward Ft price follows the following
stochastic differential equation:

dFt = σBFtdWt

where σB is the volatility. We use VB(F,K,r, t,T ;σB) to denote the Black pricing function. For
European call option:

CB(F, t,T,K,r;σB) = e−r(T−t)[FN (d3)−KN (d4)]

For European put option:

PB(F, t,T,K,r;σB) = e−r(T−t)[KN (−d4)−FN (−d3)]

where N is the cumulative density function of standard normal distribution

d3 =
ln(F/K)+σ2/2(T − t)

σ
√

T − t
, d4 = d3−σ

√
T − t

Consider an option on the forward F with expiry T and strike K at time t. If we force the SABR
model price of the option into the form of the Black model valuation formula, then the SABR
implied volatility, which is the value of the σB in Black’s model that forces it to match the SABR
price, is approximately given by [99, 16]:

σB(F, t,T,K;α,β ,ν ,ρ)≈ α

(FK)(1−β )/2
[
1+ (1−β )2

24 log2(F/K)+ (1−β )4

1920 log4(F/K)+ · · ·
] · z

x(z)

·
{

1+
[
(1−β )2

24
α2

(FK)1−β
+

1
4

ρβνα

(FK)(1−β )/2
+

2−3ρ2

24
ν

2
]
(T − t)

}
(2.2.11)

where

z =
ν

α
(FK)(1−β )/2 log(F/K), x(z) = log

{√
1−2ρz+ z2 + z−ρ

1−ρ

}

For the special case of at-the-money options, which are the options struck at K = F , this formula
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reduces to

σAT M = σB(F, t,T,F ;α,β ,ν ,ρ)

≈ α

F(1−β )

{
1+
[
(1−β )2

24
α2

F2−2β
+

1
4

ρβαν

F(1−β )
+

2−3ρ2

24
ν

2
]
(T − t)

}
Therefore, the European option value under SABR model is given by:

CSABR =CB(F, t,T,K;σB(F, t,T,K;α,β ,ν ,ρ))

PSABR = PB(F, t,T,K;σB(F, t,T,K;α,β ,ν ,ρ))

The σB(F, t,T,K;α,β ,ν ,ρ) under SABR model depends on the forward F , the strike K, the
time to expiry T − t, the initial SABR volatility α , the power of forward β , the volatility of
volatility ν , and the correlation ρ . Interested readers can refer to [99] for the detailed derivation
of the analytical approximation σB(F, t,T,K;α,β ,ν ,ρ). 1 We use VSABR(S, t,T,K,r,q;α,β ,ν ,ρ)
to denote the option pricing formula under SABR model regardless whether it is a call option or
a put option in the latter discussion.

2.3 Option Hedging Using the Sensitivity from Pricing Model

Ideally, we could compute the ∂V mkt

∂S as the instantaneous hedging position. In reality, ∂V mkt

∂S is
unknown. Thus we often assume a specific underlying dynamics as what has been discussed in
2.2. In order to obtain the pricing model parameters, we calibrate the model so that model option
prices can match the market option prices. Then one can use the ∂V

∂S as the hedging position. This
is know as the delta-hedging strategy.

In this section, we discuss how to compute the hedging position δt,T,K from the option pricing
model under the delta-hedging strategy, as well as the drawbacks of this approach. Specifically,
we discuss the pricing model parameters dependence issue, which motivates our data-driven
model. In addition, we provide several existing ways for correcting the model parameter depen-
dence.

2.3.1 Classical Hedging Position from Pricing Model

In section 2.2, we have introduced several option pricing models with analytical pricing formula.
In this section, we consider the option hedging. We assume the risk-free interest rate and annual
dividend yield are given as r and q. Therefore, we denote V (S, t,T,K;θ) as an option pricing
model with θ as the model parameters to be calibrated. For Black-Scholes model, θ is the

1Note that equation (2.2.11) is an approximation where higher order terms are dropped, we will disucss in later
chapter on how to fix the potential arbitrage created by the approximation.
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volatility σ . For Heston model, θ = {ϒ0,κ
∗,ϒ
∗
,η ,ρ}. For SABR model, θ = {α,β ,ν ,ρ}. 2 In

order to determine hedging position with the most recent information, we calibrate the pricing
model to match the market option prices.

On each trading time t, we have observed market option prices for different strikes {K1, . . . ,KNk(t)}
and different expiries {T1, . . . ,TNT (t)}, where Nk(t) is the number of strikes and NT (t) is the num-
ber of expiries. Note that we use Nk(t) and NT (t) to indicate the number of strikes and number
of expiries observed from market are time-dependent. The underlying asset price is St . The
calibration can be done by:

min
θ

NT (t)

∑
i=1

NK(t)

∑
j=1

(
V (St , t,Ti,K j;θ)−V mkt

t,Ti,Ki

)2
(2.3.1)

Determining a single model solving equation (2.3.1) is challenging In practice. approxima-
tions are often made. For the Black-Scholes model, there is only one parameter to be calibrated,
so one can match each market prices exactly by:

VBS(St , t,Ti,K j;σ
imp
t,Ti,K j

) =V mkt
t,Ti,Ki

The volatility σ
imp
t,Ti,K j

that equals the Black-Scholes price with the market option price is called
Black-Scholes implied volatility. (In section 2.2.3, we have introduced a term called SABR
implied volatility which equals the SABR model price with the Black model price. The SABR
implied volatility and Black-Scholes implied volatility are two different but related concepts.)
Note that in this way, for different options V mkt

t,Ti,K j
, different models are calibrated. One can often

find that the implied volatility σ imp tends to differ across different strikes and expiries.

For stochastic volatility models, such as Heston and SABR, the calibration is usually done
by matching the volatility smile for each expiry Ti instead of the entire volatility surface [103,
99, 112]. In other words, for a expiry Ti, we solve

min
θ

NK(t)

∑
j=1

(
V (St , t,Ti,K j;θ)−V mkt

t,Ti,K j

)2

Note that in this way, pricing models are calibrated separately for different expiries Ti on the
same trading date t.

Given the option pricing model V (S, t,T,K;θ ∗) with the calibrated θ ∗, the hedging position
is commonly determined by:

δt,T,K =
∂V (S, t,T,K;θ ∗)

∂S
Although a more complex option pricing model such as stochastic volatility models can match
the market prices better and account for the volatility smile better, it does not necessarily lead

2Note that, Studies [112, 99, 98] shows that β can often be fixed a priori. In this case, θ = {α,ν ,ρ}.
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to better hedging strategy. Several studies [66, 13, 190, 123] detail the hedging performances
of option pricing models and show that, while explicitly modelling volatility smile substantially
improves the pricing accuracy, it frequently decreases the hedging performance, compared to the
simpler Black-Scholes models. A recent empirical study [123] demonstrates that, for hedging
S&P 500 index options, the simple Black-Scholes model with the implied volatility calibrated
on each trading date can even outperform complex stochastic volatility models such as Heston
model [103] and Heston-Nandi model [104]. The phenomenon where better pricing model leads
to worse hedging performance is refer to as pricing/hedging conundrum in [123]. In the following
section, we provide one of the potential explanation why such phenomenon exists.

2.3.2 Parameter Dependence on Underlying Asset Price

We demonstrate that determining the hedging position from the partial derivative:

δt,T,K =
∂V (S, t,T,K;θ ∗)

∂S

of the calibrated pricing function inevitably leads to incomplete elimination of the underlying
sensitivity, even in the context of instantaneous hedging. To see this, let us assume that a pric-
ing model matches the market price V mkt

t,T,K with strike K and expiry T at t exactly, i.e., θ ∗ is
determined so that:

V (S, t,T,K;θ
∗) =V mkt

t,T,K. (2.3.2)

Let us further assume the risk-free interest rate and dividend yield {r,q} do not depend on S.

The derivative pricing theory yields the risk neutral (or risk-adjusted) option value function
V (·). The option hedging position is then often determined by the model option function sensi-
tivity ∂V

∂S . However, using ∂V
∂S as the hedging position only ensures delta neutral with respect to

the model option function V . Unfortunately this does not ensure delta neutral with respect to the
market price V mkt . This is because that the calibration equation (2.3.2) does not imply that the
sensitivity ∂V

∂S matches ∂V mkt

∂S , since the calibration equation contains no information on change
in the market option price. This leads to dependence of the parameters of the calibrated model
on the underlying price, i.e., ∂θ∗

∂S 6= 0. This can be understood by hypothetically assuming that
(2.3.2) holds at any S, which implies

∂V
∂S

+
∂V
∂θ ∗

∂θ ∗

∂S
=

∂V mkt

∂S
(2.3.3)

Since calibration (2.3.2) only ensures matching in the option values, not matching the change
in the market option price, it is likely that ∂V

∂S −
∂V mkt

∂S 6= 0. Although this parameter dependence
issue has been noted, see, e.g., [45, 112], correcting for this risk exposure is not straightforward.

Even with the perfect case where we can have a pricing model matching all observed market
prices, which is often not achievable due to the calibration error following the equation (2.3.3),
we still have the pricing model parameters dependence issue to be addressed. Since it is difficult
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to account for parameter dependence ∂θ∗

∂S , ∂V mkt

∂S can be hard to be captured accurately. Therefore,
it is difficult for the classical delta-hedging approach of using ∂V

∂S as the hedging position to
eliminate the instantaneous hedging risk.

A more complex model usually has more pricing model parameters to be calibrated. There-
fore, the parameter dependence likely becomes harder to be addressed. That may be one of
the reason why many studies observe poorer hedging performance from more complex pricing
model than simple Black-Scholes model in the real market. Even with the simple Black-Scholes
model, the Black-Scholes implied volatility still depends on the underlying asset. In the fol-
lowing section, we introduce several corrections under the Black-Scholes framework for the
parameter dependence. In addition, complex models like Heston model usually can not match
the observed market option prices exactly. The calibration error can also potentially increase the
hedging errors when the partial derivative is used as the hedging position.

2.3.3 Corrections under the Black-Scholes Framework

Although the issue of pricing model parameters dependence on underlying asset has been noted,
e.g., in [45, 112], correcting for this risk exposure is not straightforward. Methods have been
proposed to compensate for this missing exposure. Typically methods are based on analysis of
some parametric models, e.g., LVF and SV; these correction methods attempt to minimize the
variance of the hedging error [112, 3, 7, 8, 92]. In this section, we present several correction
methods under Black-Scholes framework. The discussion below is drawn from [112, 98, 16].

2.3.3.1 A Data-Driven Correction for the Black-Scholes Delta Hedging

Equation (2.3.3) implies that the sensitivity of the option value function ∂V
∂S , calibrated at the re-

balancing time to satisfy the calibration equation (2.3.2), cannot completely hedge the sensitivity
of the market option price to the underlying price since ∂θ∗

∂S is not accounted for. If the hedging
risk in each rebalancing period is the performance criteria, the information in the option market
price change needs to be explicitly incorporated to determine a better hedging method which
minimizes the hedging risk as measured by the market option price changes instead of the model
option price changes.

If sufficient market option and underlying price data exist, a potentially more effective ap-
proach is to learn the hedging strategy based on historical observations of both changes in the
market option prices and the underlying prices. This approach is completely different from the
existing sensitivity approach based on parametric option pricing model.

To the best of our knowledge, the study [112] is the first to determine the hedging strategy
based on historical observations of the market option prices and underlying prices.

Hull and White [112] proposed a correction form based on the following analysis using the
Black-Scholes model. More specifically, assume we have calibrated the implied volatilities σ imp

to match all the market option prices as what we have discussed in section 2.3.1. Let us again
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assume we are computing the hedging position with a fixed T and K at a specific trading time t, so
for notational simplicity in the following discussion, we drop t,T,K in the subscript. Following
(2.3.3), to determine the sensitivity accurately, one needs to compute

∂VBS

∂S
+

∂VBS

∂σ imp
∂σ imp

∂S
(2.3.4)

∂VBS
∂S is the Black–Scholes delta with the implied volatility and ∂VBS

∂σ imp is Black-Scholes vega with

the implied volatility. Both can be computed analytically. The undetermined part is ∂σ imp

∂S . In
[112], the authors choose

∂σ imp

∂S
=

a+b · ∂VBS
∂S + c · (∂VBS

∂S )2

S
√

T − t
where a,b and c are the parameters to be fitted using market option data. Therefore, plugging in
the notation for t,T,K, the minimum variance delta is therefore:

δ
MV
t,T,K = δ

BS
t,T,K +vegaBS

t,T,K
a+b ·δ BS

t,T,K + c · (δ BS
t,T,K)

2

St
√

T − t
, (2.3.5)

where δ BS
t,T,K and vegaBS

t,T,K are respectively the Black–Scholes delta and vega, using the implied
volatility at time t for option with strike K and expiry T .

The model parameters a,b,c are determined using historical observations. Let M denote the
number of historical data instances. Each data instance corresponds to a unique combination of
{t,T,K}. For data instance i, with time ti, strike Ki, and expiry Ti, we approximate the instanta-
neous changes in the market option price and underlying price by the daily changes of the market
option prices and underlying prices:

dV mkt
ti,Ti,Ki

≈ ∆V mkt
ti,Ti,Ki

, dSti ≈ ∆Sti

Thus, we have the following minimization problem:

min
a,b,c

M

∑
i=1

(
∆Stiδ

MV
ti,Ti,Ki

−∆V mkt
ti,Ti,Ki

)2

A linear regression is performed to determine the model parameters a,b,c.

Consequently, the minimum variance hedging function δ MV is computed based on regression
estimation, assuming the quadratic parametric model (2.3.5). It has been shown [112] that the
corrective formula (2.3.5) can significantly improve the daily hedging performance.
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2.3.3.2 Correction With LVF Model For The Black–Scholes Delta Hedging

As an improvement over the BS model, the local volatility function (LVF) model,

dSt

St
= (r−q)dt +σ(St , t)dWt (2.3.6)

has also been considered, see e.g., [67, 60, 61]. LVF and its extensions remain widely popular
in practice [46, 57]. Many methods have been proposed to calibrate a local volatility function
σ(S, t) from the traded market option prices, see e.g., [116, 4, 44]. In addition, Coleman et al.
[45] discuss a relationship between the partial derivatives of calls and puts in the context of the
LVF model, under which a call and put symmetry relation holds, see, e.g., [31, 32]. This rela-
tionship is found useful in correcting the dependence of the implied volatility on the underlying
for Black–Scholes delta hedging.

In Theorem 2.3.1 below, we formalize this relation [45] to any call and put functions satisfy-
ing the call-put-symmetry. Let Call(S, t,T,K,r,q) and Put(S, t,T,K,r,q) be the call option price
and the put option price with underlying price S, strike K, expiry T , time t, interest rate r and
dividend yield q. Then let Put(K, t,T,S,q,r) denote the put price with underlying price K, strike
S, expiry T , time t , risk free rate q and dividend yield r. When the underlying price satisfies the
stochastic equation (2.3.6), the European put and call prices are related through the reversal of K
and S, and q and r via the following call-put symmetry.

Call(S, t,T,K,r,q) = Put(K, t,T,S,q,r). (2.3.7)

Interested reader can refer to [95, 45] for the detailed proof of this call-put symmetry. We note
that, for this relationship to be useful in correcting for MV hedging in practice, the relevant price
functions correspond to the market option prices, not model option values.

Theorem 2.3.1. Let Call(S, t,T,K,r,q) and Put(S, t,T,K,r,q) be the call option price and put
option price with underlying price S, strike K, expiry T , time t, interest rate r and dividend yield
q. Assume further that there exists a unique implied volatility calibrating to Call(S, t,T,K,r,q)
and Put(S, t,T,K,r,q) respectively and the call-put-symmetry below holds:

Call(S, t,T,K,r,q) = Put(K, t,T,S,q,r). (2.3.8)

Then
∂ σ̆c(S, t,T,K,r,q)

∂S
=

∂ σ̆p(K, t,T,S,q,r)
∂S

. (2.3.9)

where σ̆c(·) is the BS implied volatility calibrated to C(·) and σ̆p(·) is the BS implied volatility
calibrated to P(·) respectively.

Proof. Let CBS(·) and PBS(·) denote the BS model option value functions. Put and call symmetry
under the Black-Scholes model implies that

CBS(S, t,T,K,r,q;σ) = PBS(K, t,T,S,q,r;σ), (2.3.10)
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where σ is any constant volatility. Let σ̆c(S, t,T,K,r,q) and σ̆p(K, t,T,S,q,r) be the Black–Scholes
implied volatilities calibrated to Call(S, t,T,K,r,q) and Put(K, t,T,S,q,r). Then

Call(S, t,T,K,r,q) =CBS(S, t,T,K,r,q; σ̆c(S, t,T,K,r,q))
Put(K, t,T,S,q,r) = PBS(K, t,T,S,q,r; σ̆p(K, t,T,S,q,r)). (2.3.11)

From (2.3.8) and above, it follows

CBS(S, t,T,K,r,q; σ̆c(S, t,T,K,r,q)) = PBS(K, t,T,S,q,r; σ̆p(K, t,T,S,q,r)) (2.3.12)

Using (2.3.10) with σ̆c(·),

CBS(S, t,T,K,r,q; σ̆c(S, t,T,K,r,q)) = PBS(K, t,T,S,q,r; σ̆c(S, t,T,K,r,q))

From above and (2.3.12), it follows

PBS(K, t,T,S,q,r, σ̆c(S, t,T,K,r,q)) = PBS(K, t,T,S,q,r; σ̆p(K, t,T,S,q,r))

Assuming that there is a unique implied volatility from the BS formula, we have

σ̆c(S, t,T,K,r,q) = σ̆p(K, t,T,S,q,r) (2.3.13)

Taking derivative with respect to S, we have

∂ σ̆c(S, t,T,K,r,q)
∂S

=
∂ σ̆p(K, t,T,S,q,r)

∂S
,

i.e., (2.3.9) holds. This completes the proof.

Assume that the market option prices satisfy put-call symmetry. Then the relevance of Theo-
rem 2.3.1 in accounting for dependence of the implied volatility on the underlying can be appre-
ciated as follows. On the left hand side of (2.3.9), the derivative is with respect to the underlying
price (the first argument). On the right hand side, the derivative is with respect to the strike price
(the fourth argument). When q≈ r (as in the futures options market), ∂ σ̆p(K,t,T,S,q,r)

∂S can be esti-
mated from the observed implied volatility surface. In other words, for at-the-money with K = S
option, the rate of change in the implied volatility with respect to changes in the underlying price
is equal to the slope of the volatility smile. Consequently the sensitivity of the implied volatility
to the underlying can be estimated.

Hull and White [112] implement a corrective formula for minimum variance hedging based
on (2.3.9), referred to as the LVF minimum variance hedging. Hull and White [112] further
assume that the rate of change in the implied volatility with respect to changes in the under-
lying price is equal to the slope of the volatility smile for options which are not at-the-money.
Therefore, the LVF correction is:
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δ
LV F
t,T,K = δ

BS
t,T,K +vegaBS

t,T,K
∂σ imp

∂K
(2.3.14)

where ∂σ imp

∂K can be estimated from the a quadratic function fitting the volatility smile for each
expiry. Other minimum variance delta hedge methods have also been proposed to correct practi-
tioner Black–Scholes delta explicitly, see, e.g., [13, 56, 15, 152, 11]. Interested reader can refer
to them for more details.

2.3.3.3 Correction With SABR model for the the Black–Scholes Delta Hedging

Recall that the SABR implied volatility, which is the value of the σB in Black’s model that forces
the Black’s model price to match the SABR model price, is given in section 2.2.3. Based on
SARR model, a correction formula for Black delta hedging is thus given by:

∂VB

∂F
+

∂VB

∂σB

∂σB

∂F
(2.3.15)

Note that, Black delta can be converted to Black–Scholes delta. One can rewrite the formula
(2.3.15) to compute the sensitivity with regards to underlying asset price S instead of forward F
by: (

∂VB

∂F
+

∂VB

∂σB

∂σB

∂F

)
∂F
∂S

(2.3.16)

Given the risk-free interest rate r, the annual dividend yield q, the forward Ft at time t with expiry
T is:

Ft = Ste(r−q)(T−t)

Adding the dependence for t,T,K as what we did in previous sections, we have:

δ
SABR
t,T,K =

(
δ

B
t,T,K +vegaB

t,T,K
∂σB

∂F

)
e(r−q)(T−t) (2.3.17)

where δ B
t,T,K is the Black delta ∂VB

∂F at time t for option with strike K and expiry T . Here vegaB
t,T,K

is the Black vega ∂VB
∂σB

at time t for the option with strike K and expiry T , and ∂σB
∂F is the shortened

form of ∂σB(F,t,T,K;α,β ,ν ,ρ)
∂F .

Although, SABR model can be used to correct for the dependence of implied volatility on the
forward price, the formula (2.3.17) omits the fact the initial SABR volatility α is correlated with
the forward F . Here whenever the forward F changes, the initial SABR volatility α changes.
There is still an unaccounted parameter dependence in equation (2.3.17).

Bartlett correction [98, 16] was proposed to account for the dependence of α on F . The
Bartlett correction is based on the following analysis. Recall that, in the SABR model, we
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assume:

dFt = αt(Ft)
β dWt

dαt = ναtdZt

E[dWtdZt ] = ρdt

which can be rewritten as:

dFt = αt(Ft)
β dWt

dαt = ναt

(
ρdWt +

√
1−ρ2dẐt

)
=

ρν

(Ft)β
dFt +ναt

√
1−ρ2dẐt

where Ẑt and Wt are independent random variables. Therefore, one can readily find that:

dαt

dFt
=

ρν

(Ft)β
+

ν
√

1−ρ2

(Ft)β

dẐt

dWt
.

Since Ẑt and Wt are independent, we have [16]:

E
[

dαt

dFt

]
=

ρν

(Ft)β

The formula for Bartlett correction is thus:

δ
Bartlett
t,T,K =

[
δ

B
t,T,K +vegaB

t,T,K

(
∂σB

∂F
+

∂σB

∂α

ρν

(Ft)β

)]
e(r−q)(T−t) (2.3.18)

with ∂σB
∂α

being the shortened form for ∂σB(F,t,T,K;α,β ,ν ,ρ)
∂α

. The Bartlett correction improves over
the SABR delta in two different aspects:

• Empirically, the Bartlett correction is less sensitive to the choice of β parameter. In prac-
tice, β is often fixed instead of being calibrated together with α,ν ,ρ in SABR model.
Different choices of β can often all fit the market prices but different choices of β can of-
ten lead to different SABR delta δ SABR

t,T,K position. On the other hand, δ Bartlett
t,T,K is consistent

with different choices of β . This phenomenon is shown in Figure 2.1. We calibrate the
SABR model for S&P 500 index options on 2012-01-04 and the option expiry is 2012-12-
31. We compute and compare delta position and we can see that for SABR delta, different
choice of β can lead to significantly different hedging position while the Bartlett delta
position is consistent.

• Empirically, the Bartlett correction provides better hedging strategy. As an example, one
can observe significant hedging performance difference between δ Bartlett

t,T,K and δ SABR
t,T,K on

S&P 500 index options. More specifically, we calibrate the SABR models on each trading
date from 2007-01-01 to 2015-08-31 as discussed in section 2.2 with β = 1 and note that
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Figure 2.1: Comparing the original SABR delta δ SABR
t,T,K and Bartlett delta δ Bartlett

t,T,K from SABR
models calibrated with β = 0, 0.5, 1.0 on 2012-01-04 for S&P500 index option. The computa-
tion of Bartlett delta δ Bartlett

t,T,K is more robust to the choice of β .
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here we calibrate SABR models separately for each expiry on each trading date t. And we
compare the local hedging performance for all the traded options. Following [112], we use
the Gain ratio below as the measure of the local hedging risk performance:

GAIN = 1−
∑

m
i=1

(
∆V mkt

ti,Ti,Ki
−δti,Ti,Ki ∆Sti

)2

∑
m
i=1

(
∆V mkt

ti,Ti,Ki
−δ BS

ti,Ti,Ki
∆Sti

)2 . (2.3.19)

where m is the total number of data instances to be evaluated. The δ BS
ti,Ti,Ki

is the implied
Black–Scholes delta, δti,Ti,Ki is the hedging position from the method under consideration,
e.g., SABR delta δ SABR

ti,Ti,Ki
and Bartlett delta δ Bartlett

ti,Ti,Ki
. ∆V mkt

ti,Ti,Ki
and ∆Sti are the changes

in market option and underlying prices over a fixed time interval. Here we compare the
daily local hedging risk with the daily changes of prices. The results are shown in Table
2.1: As we can see in Table 2.1, δ Bartlett

t,T,K performs much better than δ SABR
t,T,K . What is more,

Method SABR δ SABR
t,T,K Bartlett δ Bartlett

t,T,K
Gain (%) -4.2 27.1

Table 2.1: Daily local hedging risk comparison between original delta δ SABR
t,T,K from SABR model

and δ Bartlett
t,T,K from Bartlett correction. The performance is evaluated in terms of improvement

over Black-Scholes delta on local hedging risk.

δ SABR
t,T,K actually performs worse than Black–Scholes delta δ BS

t,T,K with implied volatility. The
similar phenomenon has been observed in [123] where Heston and Heston-Nandi model
perform worse than Black–Scholes delta δ BS

t,T,K with implied volatility. The difference of
the hedging performance between δ Bartlett

t,T,K and δ SABR
t,T,K is an example to illustrate how

the unaccounted pricing model parameter dependence on underlying asset affects the
hedging performance. Unfortunately, the pricing model parameter dependence often is
not that easy to be accounted for as in SABR model with Bartlett correction.

Lastly, we introduce the corrective formula for minimum variance hedging based on SABR
model implemented by Hull and White [112] . We use δ SV to denote the minimum variance
hedging based on SABR model from [112]. Let ∆F be a small changes in forward F , the δ SV is
given by:

δ
SV
t,T,K =

VB(Ft +∆F, t,T,K,r;σB(Ft +∆F, t,T,K;α,β ,ν ,ρ))−VB(Ft , t,T,K,r;σB(Ft , t,T,K;α,β ,ν ,ρ))

∆F
(2.3.20)

with VB be the Black pricing formula and σB be the SABR implied volatility formula discussed
in section 2.2.3.
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2.4 Motivation For Direct Nonparametric Data-Driven Hedg-
ing Models

In the previous sections, we discuss the issue of parameter dependence and present several
correction methods under Black–Scholes framework. Although the corrective formula (2.3.5),
(2.3.14), (2.3.17), and (2.3.18) adopt similar forms, the data-driven MV delta (2.3.5) is signifi-
cantly different from other corrective formula for the fact that it is based on historical data while
(2.3.14) ,(2.3.17), and (2.3.18) are based on pricing model calibrated to the spot options and un-
derlying prices. Hull and White [112] indicate that MV delta δ MV

t,T,K estimated based on historical
data performs better than δ LV F

t,T,K and δ SV
t,T,K estimated based on spot data.

Our exploration on the data-driven models for hedging start roughly the same years as the
work of [112] and we adopt the similar methodology as the MV delta where we learn a hedging
position function from historical data. However, our explorations are motivated differently:

• The hedging position δ MV
t,T,K , δ LV F

t,T,K and δ SV
t,T,K proposed in [112] is to correct for the BS

implied volatility dependence on underlying asset prices. Specifically, Hull and White
[112] demonstrate how one can estimate the ∂σ imp

∂S empirically.

• Noticing the pricing parameters dependence, we try to learn a hedging position directly
from the market data. We are not specifically trying to correct parameters dependence for
certain pricing models. We are trying to avoid it by obtaining hedging position without a
pricing model at all.

In addition, the data-driven models proposed in this thesis and MV delta are also different in the
following ways:

• Hull and White [112] assume a quadratic form to account for the implied volatility de-
pendence on the underlying asset within Black–Scholes framework. The hedging position
from our proposed data-driven models is purely determined by market data with machine
learning algorithms with no specific parametric form.

• The MV hedging model (2.3.5) focuses on instantaneous hedging analysis (2.1.4). For dis-
crete hedging, particularly when re-balancing is done infrequently, e.g., weekly or monthly,
(2.3.5) may no longer be suitable. Our proposed models, which are not based on comput-
ing sensitivity of option pricing functions with regards to the underlying asset prices, can
potentially improve the hedging results when the hedging is done less frequently.

• Our proposed data-driven models GRUδ and GRUTOTAL can naturally include feature se-
lection and feature extraction which can potentially improve the hedging performance.

• Our proposed data-driven model GRUTOTAL is enhanced to deal with total risk hedging
scenarios instead of focusing on reducing the instantaneous local hedging risk as the MV
hedging model (2.3.5).
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In the following chapters, we will start to formally describe the proposed hedging models and
present numerical hedging performance comparisons on both synthetic data and real market data.
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Chapter 3

Data-Driven Kernel Learning Framework
for Local Hedging

In this chapter, we start the discussion on our proposed data-driven local hedging model from
kernel learning framework. The data-driven kernel hedging model can be summarized as the fol-
lowing: Assume we have M data instances. Each observation of a market European option price
V mkt

ti,Ki,Ti
is uniquely associated with a triplet {ti,Ti,Ki}, where ti is the trading time of the option

price, Ki is the strike, and expiry Ti, i = 1, . . . ,M. The hedging position function is determined
by the quadratic data-driven local risk minimization problem:

min
1

2M

M

∑
i=1

(
∆Stiδ (x

Ti,Ki
ti )−∆V mkt

ti,Ki,Ti

)2

With ∆Sti and ∆V mkt
ti,Ki,Ti

given in (2.1.1) for a fixed time interval ∆t, the hedging position δ (xTi,Ki
ti )

is given by a data-driven hedging function: DKLSPL(x
T,K
t ; α̂̂α̂α∗):

δ (xTi,Ki
ti ) = DKLSPL(x

T,K
t ; α̂̂α̂α∗)

with α̂̂α̂α∗ being the parameters for the hedging functions and xT,K
t being the input features for the

hedging function. Please note that α̂̂α̂α∗ in this chapter is the parameter for the regularized kernel
network to be learnt from data. The α in section 2.2.3 is the volatility for SABR.The α and α̂̂α̂α∗

are two unrelated notations.

From chapter 2, we have seen various challenges for hedging when the position is computed
from the calibrated option value function. Since nonparametric option function estimation does
not make specific assumptions and can potentially match option prices more accurately, it is
not unreasonable to expect that this hedging challenge can potentially be addressed by reducing
mis-specification using a data-driven approach to learn an option value function. In this chapter
we also discuss this approach and analyze its challenging for option hedging. Similar to dis-
crete hedging under the parametric model, the hedging position can be computed by learning a
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nonparametric option value model and then determining hedging position from the partial deriva-
tives. Indeed this is the approach adopted in [114]. In this chapters, we indicate that the issue of
pricing model parameters dependence still exists even if one estimate the pricing model using a
machine learning model with no assumption on the dynamic of the underlying asset movement.

The organization of this chapter is as the following: We discuss how one can compute a
hedging positions from partial derivatives of the optimal regularized kernel functions in section
3.1. The proposed data-driven kernel hedging learning method is presented in section 3.2. In
section 3.3, we present experiments using synthetic data to illustrate the drawbacks of determin-
ing hedging position from partial derivative of pricing function estimated using machine learning
algorithms and the effectiveness of data-driven direct kernel hedging functions.

3.1 Regularized Kernel Pricing Model

Recognizing various challenges in the parametric financial modelling approach, nonparametric
option pricing has also been studied. The nonparametric option value modeling approach has
the distinctive advantage of not relying on specific assumptions about the underlying asset price
dynamics. Hutchinson et al. [114] first propose a nonparametric data-driven approach to price
and hedge European options using neural networks, radial basis functions, and projection pursuit
regressions. Many other neural network methods for European option pricing have also been
proposed, see, e.g., [184, 17, 93, 82, 131].

Although there are quite a few studies on nonparametric option pricing models, to our knowl-
edge, there has been little research specifically focusing on discrete hedging using a nonparamet-
ric method. Even when the hedging problem is considered, e.g., [114], it is treated as a byproduct
of obtaining a nonparametric pricing function: The hedging position is obtained from the partial
derivative of the option value function. Hutchinson et al. [114] show that, based on hedging
errors on some simulated paths, this indirect data-driven hedging approach can potentially be an
effective alternative to the traditional parametric delta hedging methods.

In this section, we follow the methodology of [114] and learn a data-driven option pricing
model with the regularized kernel network. The hedging position is then given by the partial
derivative of the option pricing model with regards to the underlying asset. Our goal is to learn a
nonlinear option pricing function V (x; α̂̂α̂α∗) using a regularized kernel method [73].

Assume that we are given a positive definite kernel similarity

K (x,x′) : Rd×Rd → R,

which captures similarity between x and x′ implicitly in a high dimensional feature space. As-
sume that HK is the Reproducing Kernel Hilbert Space (RKHS) induced by the symmetric pos-
itive definite kernel function K (x,y) and ‖ f‖K is the norm in RKHS. We have the following
Representer Theorem [176]:
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Theorem 3.1.1. (The Representer Theorem) Let X be a nonempty set and K a positive definite
real-valued kernel on X ×X with the RKHS HK . Given the a training sample {x1,x2, · · · ,xM},
a strictly monotonically increasing real valued function g : [0,∞)→ R, and an arbitrary empiri-
cal risk function E : X M→R and E depends on f only through { f (x1), f (x2), · · · , f (xM)}, then
for any f ∗ ∈HK satisfying

f ∗ = argmin
f∈HK

E ( f (x1), f (x2), · · · , f (xM))+g(‖ f‖K )

f ∗ admits a representation of the form:

f ∗(·) =
M

∑
i=1

α̂
∗
i K (·,xi)

with α̂∗i ∈ R for all 1≤ i≤M

A regularized kernel regression problem can be formulated as

min
f∈HK

(
M

∑
i=1

L( f (xi))+λP‖ f‖2
K

)
(3.1.1)

where L(·) is a loss function. The regularization parameter λP > 0 can be determined based on
cross validation.

Following the Representer Theorem, e.g., [176], a solution of (3.1.1) has the form

f (x) =
M

∑
i=1

α̂
∗
i K (x,xi) (3.1.2)

and the regularization term is given by

‖ f‖2
K =

M

∑
i=1

M

∑
j=1

α̂
∗
i α̂
∗
j K (xi,x j). (3.1.3)

Assume that a set of M training points {(xT1,K1
t1 ,V mkt

t1,K1,T1
), · · · ,(xTM ,KM

tM ,V mkt
tM ,KM ,TM

)} are given,
where xT,K

t ∈ Rdl is the input feature for pricing the option with strike K and expiry T at time
t and V mkt

t,K,T is the market option price at time t with strike K and expiry T . Each data instance
corresponds to a unique triplet {t,T,K}. We can estimate an option value function V (x; α̂̂α̂α∗)
based on the regularized kernel estimation (3.1.1) with α̂̂α̂α∗ = {α̂∗1 , . . . , α̂∗M}.

Using (3.1.2) and (3.1.3), assuming quadratic loss, the option pricing function:

V (xT,K
t ; α̂̂α̂α∗) =

N

∑
i=1

α̂
∗
i K (xT,K

t ,xTi,Ki
ti ) (3.1.4)
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can be computed by solving

α̂̂α̂α
∗
= argmin

α

 M

∑
i=1

(
V mkt

ti,Ti,Ki
−

M

∑
j=1

α̂ jK (xTj,K j
t j ,xTi,Ki

ti )

)2

+λP

M

∑
i=1

M

∑
j=1

α̂iα̂ jK (xTj,K j
t j ,xTi,Ki

ti )


(3.1.5)

For standard options, the universal RBF kernel

K (x, x̃) = e
− ‖x−x̃‖22

2ρ̂2 (3.1.6)

is a reasonable kernel choice, since the option value function is very smooth, and a suitable
bandwidth ρ̂ is typically problem dependent and can be determined using cross validation.

3.1.1 Indirect Hedging Positions From Kernel Pricing Functions

Assume that the one dimension of the attribute vector xT,K
t ∈ Rdl corresponds to the moneyness

St/K at time t and other dimensions are not related to underlying prices. Then the delta hedging
function option with strike K and expiry T at trading time t is typically determined as:

δ
IKL
t,T,K =

∂V (xT,K
t ; α̂̂α̂α∗)
∂S

=
M

∑
i=1

α̂
∗
i

∂K (xT,K
t ,xTi,Ki

ti )

∂S
=

M

∑
i=1

α̂∗i
K

∂K (xT,K
t ,xTi,Ki

ti )

∂S/K
(3.1.7)

Hutchinson et al. [114] demonstrate that this nonparametric hedging approach, using the partial
derivative of a nonparametric pricing function learned from historical market data, can be a useful
alternative for option hedging.

However, using (3.1.7) as the hedging position similarly does not minimize variance of hedg-
ing risk in general and the challenge in accounting for parameter dependence on the underlying
remains. We can see that from the following arguments. We made an unrealistic assumption that
the estimated kernel function V (xT,K

t ; α̂̂α̂α∗) matches the target market option price exactly, i.e.,

V (xT,K
t ; α̂̂α̂α∗) =V mkt

t,T,K

Then we have:
M

∑
i=1

α̂
∗
i

∂K (xT,K
t ,xTi,Ki

ti )

∂S
+

M

∑
i=1

∂ α̂∗i
∂S

K (x,xi) =
∂V mkt

∂S

Again, since model calibration only ensures matching in the option values, not matching the
change in the market option price, in general

∂ α̂∗i
∂S
6= 0
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unless
∂V
∂S

(xT,K
t ; α̂̂α̂α∗) =

∂V mkt

∂S
. (3.1.8)

However, there is no reason that a solution of the regression problem (3.1.5) should satisfy
(3.1.8). Consequently it is similarly difficult to account for all dependence from α̂̂α̂α∗ on the un-
derlying asset, even infinitesimally, in the estimated kernel model.

Furthermore, error magnification can happen by deriving the hedging position from a es-
timated kernel function. In general, the estimated kernel pricing function V (xT,K

t ; α̂̂α̂α∗) can not
match all the target market option prices exactly and the estimated kernel pricing function in-
evitably will have prediction error when used to predict the price of unobserved testing data
instances. The calibration error and prediction can potentially increase the hedging error when
using the ∂V

∂S (x
T,K
t ; α̂̂α̂α∗) as the hedging position.

Lastly, with above data-driven pricing approach, we predict the option value without consid-
ering the arbitrage constraints in the resulting price surfaces. As indicated by many recent stud-
ies [30, 192, 127], the option prices produced by data-driven machine learning model directly
often contains arbitrage opportunities. Therefore, recent proposed data-driven pricing models
[30, 192, 127] start to focus on predicting arbitrage-free implied volatility surface and the re-
sulting volatility surfaces used together with the Black-Scholes model to produce the prices and
hedging positions. As one can readily see, this data-driven pricing approach still omit the depen-
dence of the implied volatility on the underlying asset prices since they focus on matching the
observed historical implied volatility surfaces than matching the changes of implied volatility
surfaces with regards to the underlying asset prices.

3.2 Regularized Kernel Hedging Model

Let us again assume that a set of M training points{
(xT1,K1

t1 ,∆V mkt
t1,K1,T1

,∆St1), · · · ,(x
TM ,KM
tM ,∆V mkt

tM ,KM ,TM
,∆StM)

}
are given, where xT,K

t ∈ Rdl is the input feature for hedging the option with strike K and expiry
T at time t. The ∆V mkt

t,K,T is the change of market option price at time t with strike K and expiry T
over a fixed time intervel ∆t, e.g., daily, weekly, or monthly. The ∆St is the change of underling
price at time t over over the same ∆t. ∆V mkt

t,K,T and ∆St are given by equation (2.1.1). Again, each
data instance corresponds to a unique triplet {t,T,K}.

We can estimate an option hedging function δ (xT,K
t ; α̂̂α̂α∗) based on the regularized kernel

network with α̂̂α̂α∗ = {α̂∗1 , . . . , α̂∗M}. The empirical loss function is chosen to correspond to the
square of discrete local hedging risk in section 2.1, i.e.,

L
(

δ (xT,K
t ; α̂̂α̂α)

)
=
(

∆V mkt
t,K,T −∆Stδ (xT,K

t ; α̂̂α̂α)
)2

. (3.2.1)
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The hedging position function δ (xT,K
t ; α̂̂α̂α∗) can be estimated from the regularized optimization

below:

min
δ∈HK

{
M

∑
i=1

L
(

δ (xTi,Ki
ti ; α̂̂α̂α)

)2
+λP‖δ‖2

K

}
(3.2.2)

Note that the Representer Theorem still holds for (3.2.2). Using the Representer Theorem (3.1.2)
and (3.1.3), (3.2.3) can be computed by solving the following convex quadratic minimization,

α̂̂α̂α
∗= argmin

α̂̂α̂α

 M

∑
i=1

(
∆V mkt

ti,Ti,Ki
−∆Sti

M

∑
j=1

α̂ jK (xTj,K j
t j ,xTi,Ki

ti )

)2

+λP

M

∑
i=1

M

∑
j=1

α̂iα̂ jK (xTj,K j
t j ,xTi,Ki

ti )


(3.2.3)

The loss function for the hedging function in the proposed formulation (3.2.2) directly cor-
responds to the sum of squares of local hedging risk for a discrete ∆t-time period. In addition
the hedge function is the solution of the optimization problem and there is no potential error
magnification through partial derivative computation. We avoid the pricing model parameters
dependence on underlying asset by not computing a prcing model at all.

Since at the expiry the delta of the payoff function is a discontinuous step function, the delta
hedging function of an option changes quickly as the underlying changes near the expiry. Con-
sequently we choose to use a spline kernel function [174] for the hedging function estimation.
The explicit expression for the spline kernel with order Od for the one-dimensional case is :

K (x,y) =
Od

∑
r=0

(Od
r

)
2Od− r+1

min(x,y)2Od−r+1|x− y|r +
Od

∑
r=0

xryr

For multidimensional data, the spline kernel is the product of one-dimensional spline kernel
functions with respect to each dimension. Interested readers can referred to [174] for more
details. The main benefit of using the spline kernel over the Gaussian kernel is that spline kernel
does not have a hyperparameter to be tuned while Gaussian kernel has a bandwidth parameter to
be tuned by cross-validation which is often costly. In this thesis, we focus on spline kernel and,
in section 3.3, we will show that spline kernel performs better or equally well when compared
with Gaussian kernel. In the latter discussion, we denote δ DKL

t,T,K = δ (xT,K
t α̂̂α̂α

∗
) as the hedging

position from the direct kernel hedging model. For our data-driven approach, we need to select
an appropriate penalty λP to control the model complexity. Cross-validation (CV) is a commonly
used method for the performance estimation and model selection for the learning algorithms.
For example, the Leave-One-Out Cross-Validation (LOOCV) computes the output for each data
instance using parameters trained on the remaining data instances. For the regularized kernel
methods, we can compute the CV error efficiently without retraining the model in each CV
round [148]. More detailed discussion on the fast LOOCV of regularized kernel network [148]
can be found in appendix A.
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3.3 Comparison using synthetic data

Following the S&P 500 market option specifications in [113], we first synthetically generate
option data assuming that the underlying price follows a Heston model [103]. We compare
hedging effectiveness of direct hedging function learning (3.2.2) and indirect hedging function
estimation (3.1.5). In addition, we compare their performance to that of using analytic delta
under the Heston model, which can be regarded as a benchmark. Note that there is no model
mis-specification for the underlying price in this synthetic case.

The experiments in this section demonstrate the following:

• Computing the hedging position as the partial derivative of an nonparametric option pricing
model with regards to underlying asset still suffers from the issue of parameter dependence
on underlying asset.

• The hedging position directly learnt from data as in (3.2.3) can be very close to the best
case benchmark in daily hedging.

• The hedging position directly learnt from data using spline kernel performs better or
equally well when compared with Gaussian kernel.

Since the loss function is quadratic, solutions to (3.2.2) and (3.1.5) can be easily computed
from linear equation solvers. In addition we also compare hedging performance using a RBF
kernel (3.1.6) versus a spline kernel. Specifically, using the generated synthetic data, we compare
here hedging performance of the following hedging computation methods:

• δ BS
t,T,K: implied volatility BS delta

• δ Heston
t,T,K : analytical Heston delta

• DKLSPL : directly learning a spline kernel hedging function based on (3.2.2)

• DKLRBF : directly learning a RBF kernel hedging function directly based on (3.2.2)

• IKLSPL: determining hedging position indirectly as the partial derivative (3.1.7) of the
option value function estimated from (3.1.5) using a spline kernel

• IKLRBF: determining hedging position indirectly as the partial derivative (3.1.7) of the
option value function estimated from (3.1.5) using a RBF kernel

Training data consists of simulated daily underlying price St for two years1, t = 1, · · · ,2×
252, assuming a risk-neutral Heston model below:

dS = (r−q)Sdt +
√

ϒSdŴ

dϒ = κ
∗(ϒ
∗−ϒ)dt +η

√
ϒdẐ

E[dẐdŴ ] = ρdt

1We assume that there are 252 trading days in a year.
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In addition, a vector of simulated (traded) market call option prices are generated, on each day
t, with different strikes and time to expiry, following the CBOE specifications of stock options
described in [113]. The option prices V mkt are computed using the analytical option formula
(2.2.10) under the Heston model [103] in section 2.2.2 , using the the parameters from [13],
which are given in Table 3.1. In other words, we assume in this section:

V mkt
t,T,K =VHeston(St , t,T,K,r,q;ϒ,κ∗,ϒ

∗
,η ,ρ)

Note that the Heston delta position under this synthetic scenarios does not have the parameter
dependence issue, since for the synthetic case all heston parameter are fixed, and can be used as
the benchmark 2.

δ
Heston
t,T,K =

∂VHeston(St , t,T,K,r,q;ϒ,κ∗,ϒ
∗
,η ,ρ)

∂S
=

∂V mkt

∂S

The Black-Scholes delta position from implied volatility still has the the issue of implied volatil-
ity depending on underlying asset:

δ
BS
t,T,K =

∂VBS(St , t,T,K,r,q;σ
imp
t,T,K)

∂S
6= ∂V mkt

∂S

where σ
imp
t,T,K is the volatility that equals Black–Scholes price and Heston price

VBS(St , t,T,K,r,q;σ
imp
t,T,K) =VHeston(St , t,T,K,r,q;ϒ,κ∗,ϒ

∗
,η ,ρ)

r q ϒ
∗

κ∗ η ρ S0 ϒ0
0.02 0.0 0.04 1.15 0.39 -0.64 100 0.04

Table 3.1: Parameters for the Heston model. This set of parameters is used to generate synthetic
experiments for demonstrating the effectiveness of DKLSPL on local risk hedging.

Testing data consists of 100 daily underlying price paths and corresponding option prices,
spanning a six month period. The Heston parameter is specified as in Table 3.1. We report
average performance measures over 10 random training-test-data sets generated as described. 3

We train a regularized option price kernel model for the indirect hedging IKLSPL and IKLRBF.
For IKLSPL and IKLRBF, the hedging position is the partial derivative of the estimated pricing
function (3.1.7), as in [114]. We note that the simulation hedging analysis in [114] considers
only the Black–Scholes model and the results in [114] indicate that a lower hedging error can be
achieved on a subset of simulated paths.

2Heston price and delta in this thesis is evaluated using numerical integration methods.
3Following CBOE option specification rules, the size of a training or testing data set can vary slightly for each

simulation run.
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We use the standard deviation of the pairwise Euclidean distance of the training data as the
bandwidth ρ for the RBF kernel. The regularization parameter λP is however selected using a 5-
fold cross-validation. We also consider weekly hedging and monthly hedging, which correspond
to hedging over a 5-business-days period and 20-business-days period respectively.

To investigate impact of the feature choice, we evaluate hedging performance using

• Feature Set #1 = {MONEYNESS (St/K), TIME-TO-EXPIRY (T − t)}.

• Feature Set #2 = {MONEYNESS (St/K), TIME-TO-EXPIRY (T − t), δ BS
t,T,K}.

In the second feature set, the Black–Scholes delta δ BS
t,T,K using the implied volatility is used as an

additional feature in determining the hedging position.

Let the number of data instances to be evaluated be m. As in section 2.1.1, the local hedging
risk over the fixed time interval ∆t for each data instance, which corresponds to a unique triplet
{t,T,K}, is given as below:

Risklocal
t,T,K = ∆Stδt,T,K−∆V mkt

t,K,T

where δt,T,K is the hedging position from different approaches, e.g., Black–Scholes delta δ BS
t,T,K ,

Heston delta δ Heston
t,T,K , direct data-driven hedging position δ DKL

t,T,K , and indirect data-driven hedging
positionδ IKL

t,T,K . We evaluate the hedging performance in four different ways:

1. Gain (2.3.19) over Black-Scholes δ BS
t,T,K as in [112].

2. The mean absolute value of Risklocal
t,T,K

E(|∆V mkt−∆Sδ |) = 1
m

m

∑
i=1
|Risklocal

ti,Ti,Ki
|

3. The 95% Value-at-Risk (VaR) of {Risklocal
ti,Ti,Ki

|i = 1, . . . ,m}

4. The 95% Conditional-Value-at-Risk (CVaR) of {Risklocal
ti,Ti,Ki

|i = 1, . . . ,m}

3.3.0.1 Feature Set #1:{MONEYNESS (St/K), TIME-TO-EXPIRY (T − t)}

For the synthetic data, it is known that the option price is a function of the moneyness S
K and

time to expiry T − t, which are the attributes xT,K
t in Feature Set #1. Table 3.2, 3.3 and 3.4 report

results for daily, weekly, and monthly hedging respectively.

Table 3.2 and 3.3 demonstrate that the direct hedging function learning DKLSPL & DKLRBF
significantly outperform the indirect hedging learning IKLSPL and IKLRBF in Gain and different
risk measures considered. Indeed, DKLSPL and DKLRBF slightly outperform the benchmark of
using the analytic Heston delta. The indirect hedging function learning performs more poorly
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Method Gain (%) E(|∆V mkt−∆Sδ |) Std VaR CVaR
δBS 0.0 0.185 0.286 0.380 0.574
IKLRBF -3.3 0.171 0.291 0.356 0.566
IKLSPL -183.3 0.291 0.482 0.669 1.105
DKLRBF 63.1 0.120 0.174 0.251 0.352
DKLSPL 64.9 0.121 0.170 0.255 0.345
HESTON 63.6 0.121 0.173 0.266 0.360

Table 3.2: Daily hedging comparison on synthetic experiments be-
tween various hedging strategies. The hedging performance is evalu-
ated in terms of local hedging risk.

1 FS #1: x = {MONEYNESS, TIME-TO-EXPIRY}
2 Bold entry indicating best Gain

Method Gain (%) E(|∆V mkt−∆Sδ |) Std VaR CVaR
δBS 0.0 0.414 0.620 0.776 1.009
IKLRBF -197.6 0.406 1.070 0.741 1.254
IKLSPL -94.7 0.548 0.866 1.114 1.738
DKLRBF 47.0 0.312 0.451 0.620 0.825
DKLSPL 50.8 0.312 0.435 0.622 0.797
HESTON 45.7 0.319 0.456 0.651 0.840

Table 3.3: Weekly hedging comparison on synthetic experiments be-
tween various hedging strategies. The hedging performance is evalu-
ated in terms of local hedging risk.

1 FS #1: x = {MONEYNESS, TIME-TO-EXPIRY}
2 Bold entry indicating best Gain
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Method Gain (%) E(|∆V mkt−∆Sδ |) Std VaR CVaR
δBS 0.0 0.941 1.484 1.516 1.808
IKLRBF 1.0 0.888 1.470 1.516 1.829
IKLSPL -36.9 1.135 1.729 2.033 2.894
DKLRBF 33.6 0.860 1.181 1.612 1.949
DKLSPL 35.4 0.858 1.165 1.610 1.922
HESTON 38.7 0.814 1.136 1.544 1.829

Table 3.4: Monthly hedging comparison on synthetic experiments be-
tween various hedging strategies. The hedging performance is evalu-
ated in terms of local hedging risk.

1 FS #1: x = {MONEYNESS, TIME-TO-EXPIRY}
2 Bold entry indicating best Gain

than the implied BS delta hedging. In addition, the spline kernel performs better than the RBF
kernel (with the standard deviation as the bandwidth parameter). The RBF kernel yields larger
risk measures and smaller Gain for both the direct and indirect hedging learning methods.

Table 3.4 reports hedging comparison for monthly hedging. We observe that DKLSPL &
DKLRBF significantly outperform the indirect hedging learning IKLSPL & IKLRBF in Gain and
various risk measures. In addition, DKLSPL & DKLRBF continue to achieve enhanced per-
formance over δBS, with the spline kernel DKLSPL yielding better results than DKLRBF. Not
surprisingly, hedging performance of each method also deteriorates as the length of the hedg-
ing period increases, with larger mean absolute hedging error and larger standard deviation for
monthly hedging than for daily and weekly hedging.

Table 3.4 also illustrates that, unlike daily and weekly hedging, DKLSPL & DKLRBF slightly
underperform the analytic Heston delta benchmark for monthly hedging. Given that the ana-
lytic delta is for instantaneous hedging while the direct hedging learning DKLSPL minimizes
quadratic hedging error, one would expect better performance from the direct hedging learning
DKLSPL. We suspect that this is due to the effect of the specific combination of choices of fea-
tures and kernel. Next we show that, with a different feature set, performance of direct hedging
is improved, which suggests the possibility of surpassing analytic Heston delta benchmark, using
a more suitable feature set, for a longer period hedging.

3.3.0.2 Feature Set #2: {MONEYNESS (St/K), TIME-TO-EXPIRY (T − t), δ BS
t,T,K}

We add the Black–Scholes delta δ BS
t,T,K using the implied volatility as an additional feature in

the direct hedging learning, since Hull and White [112] indicate that a better minimum variance
hedge can be calculated based on the implied volatility delta. Table 3.5, 3.6, and 3.7 present hedg-
ing results for DKLSPL & DKLRBF for {MONEYNESS (St

K ), TIME-TO-EXPIRY (T − t), δ BS
t,T,K}.
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For clarity, we also include the results for FS #1 {MONEYNESS (St
K ), TIME-TO-EXPIRY (T − t)}

and Heston delta for ease of comparison.

Method Gain (%) E(|∆V mkt−∆Sδ |) Std VaR CVaR

DKLRBF
FS #1 63.1 0.120 0.174 0.251 0.352
FS #2 62.3 0.114 0.176 0.238 0.349

DKLSPL
FS #1 64.9 0.121 0.170 0.255 0.345
FS #2 70.9 0.110 0.154 0.234 0.322

HESTON 63.6 0.121 0.173 0.266 0.360

Table 3.5: Daily hedging comparison on synthetic experiments between var-
ious hedging strategies. One additional feature δBS is added. The hedging
performance is evaluated in terms of local hedging risk.

1 FS #2: x = {MONEYNESS, TIME-TO-EXPIRY, δBS}
2 Bold entry indicating best Gain

Method Gain (%) E(|∆V mkt−∆Sδ |) Std VaR CVaR

DKLRBF
FS #1 47.0 0.312 0.451 0.620 0.825
FS #2 51.4 0.301 0.432 0.611 0.816

DKLSPL
FS #1 50.8 0.312 0.435 0.622 0.797
FS #2 53.5 0.299 0.422 0.606 0.794

HESTON 45.7 0.319 0.456 0.651 0.840

Table 3.6: Weekly hedging comparison on synthetic experiments between var-
ious hedging strategies. One additional feature δBS is added. The hedging
performance is evaluated in terms of local hedging risk.

1 FS #2: x = {MONEYNESS, TIME-TO-EXPIRY, δBS}
2 Bold entry indicating best Gain

From Table 3.5, 3.6 and 3.7, we observe that, for daily and weekly hedging, including the
BS delta further improves the performance of the direct hedging learning methods, which out-
performs analytical delta hedging. For monthly hedging, however, the performance is similar to
what we obtain with that of the feature set #1. Overall, including the BS delta as an attribute is
beneficial for the direct hedging function learning.

3.4 Enhancement Over the Kernel Local Hedging Model

In this chapter, we have illustrated that, even in a nonparametric kernel approach to model the op-
tion value function, dependence on the underlying can exist for the estimated kernel parameters.
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Method Gain (%) E(|∆V mkt−∆Sδ |) Std VaR CVaR

DKLRBF
FS #1 33.6 0.860 1.181 1.612 1.949
FS #2 30.1 0.863 1.217 1.652 2.104

DKLSPL
FS #1 35.4 0.858 1.165 1.610 1.922
FS #2 36.6 0.836 1.156 1.609 1.953

HESTON 38.7 0.814 1.136 1.544 1.829

Table 3.7: Monthly hedging comparison on synthetic experiments between
various hedging strategies. One additional feature δBS is added. The hedging
performance is evaluated in terms of local hedging risk.

1 FS #2: x = {MONEYNESS, TIME-TO-EXPIRY, δBS}
2 Bold entry indicating best Gain

Consequently, using the partial derivatives of the model option pricing function, parametrically
or nonparametrically estimated, will fail to minimize hedging error, even instantaneously.

Thus, we propose to directly learn nonparametric kernel hedging functions by minimizing
the sum of square of the discrete local hedging risk, bypassing the intermediate step of the option
value function estimation. Using synthetic data, we first demonstrate that the proposed direct
hedging function learning significantly outperforms hedging based on the sensitivity of the model
option function learned nonparametrically. In addition, we demonstrate that spline kernel yields
better hedging performance in comparison to that of the RBF kernel. The exploratory research in
this chapter clearly demonstrates the potential role of a market data-driven approach for financial
derivative modelling and risk management.

However, we also notice the positive gain ratios (2.3.19) are smaller for monthly hedging in
comparison to daily and weekly hedging for the synthetic data. In addition, when testing on real
market S&P 500 index option with the DKLSPL model and the feature set #2, we observed the
similar phenomenon as it is for the synthetic scenario: the gain ratio decreases when we move
from daily hedging to weekly and monthly hedging. The details of the real data comparison can
be found in [143] and will be discussed in details in chapter 5.

We suspect that neither the feature set #1 nor the feature set #2 is enough to learn a sufficient
data-driven local hedging model for longer period such as weekly and monthly. We are thus
motivated to enhance the data-driven local hedging model using the RNN framework by adding
the following components to include more features in computing the hedging position:

• Feature selection process.

• Sequential feature extraction process.

We demonstrate using real S&P 500 index option data that such enhancement greatly improve
the local hedging performance. Besides, the GRUδ proposed in Chapter 4 is more computational
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efficient enabling us to update the model more frequently to incorporate market changes. Details
of the enhanced data-driven local hedging model GRUδ will be discussed in chapter 4. The
experimental results of DKLSPL and GRUδ on real S&P500 index option data will be discussed
together in chapter 5.
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Chapter 4

Data-Driven Sequential Learning
Framework for Local Hedging Risk

In chapter 3, we have explored the data-driven kernel hedging model DKLSPL [143]. However,
we believe that the data-driven hedging learning approach in [143] can potentially benefit from
further improvements in a few directions. Firstly, Nian et al. [143] only use moneyness, time-to-
expiry, and Black–Scholes delta as features to compute the hedging position. In practice, since
both the underlying and options markets have complex price dynamics, feature extraction and
feature selection can potentially further enhance hedging performance. Secondly, when com-
pute the hedging position at the rebalancing time t, only attributes observed at t are used as
features in [143]. However, a financial market exhibits volatility clustering, describing a posi-
tive, significant, and slowly decaying volatility autocorrelation [132]. For example, a generalized
autoregressive conditionally heteroskedastic (GARCH) model has been proposed for option pric-
ing because of its capability in better characterizing asset returns [104] . It has been shown that
the option pricing function under a GARCH model depends not only on the current underlying
price but also on the observed underlying price history [62, 104]. This suggests that the infor-
mation immediately prior to the rebalancing time should be relevant in determining the hedging
position at the rebalancing time. Thirdly, the mean squared error is used as the loss function in
[143] but a more appropriate robust objective function and framework may lead to a more stable
optimal learning as the market shifts between crisis and normal regimes. Lastly, when a kernel
data-driven model needs to be updated frequently, e.g., daily, it is computationally prohibitive
to conduct backtesting over a long time period (e.g., a decade). Consequently the regularized
spline kernel network is only updated monthly in [143]. To accurately assess the potential of a
data-driven hedging approach, a model which is sufficiently computationally efficient needs to
be considered to allow more frequent updating in a back-testing study of a long time horizon.

To incorporate sequential information in the hedging model, we use the Recurrent Neural
Network (RNN), a feed-forward neural networks augmented with edges that connect adjacent
steps. In the early 1980s, Hopfield [108] introduced RNN for sequential pattern recognitions.
Jordan [119] and Elman [70] developed basic architectures for RNN with a group of neural
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networks that have a ”memory” to capture past information. This can be beneficial in time series
applications.

Training RNN is similar to training the traditional neural network, with the Stochastic Gra-
dient Descent (SGD) as the primary optimization tool. The Back Propagation Through Time
(BPTT) algorithm is used to calculate gradients. However, vanishing and exploding gradients
[107] can occur when back-propagating errors across many steps, which pose challenges for
standard RNN architectures to learn long-term dependence between steps. The Long Short-Term
Memory (LSTM) [106] model and the Gated Recurrent Unit (GRU) model [40] are subsequently
proposed to address issues of vanishing and exploding gradients. LSTM and GRU utilize a gate
structure with element-wise operations, which can retain information in memory for a longer
period. This alleviates the problem of vanishing and exploding gradients [106]. GRU and LSTM
models are shown to perform better than the standard RNN model [40], although performances
of GRU and LSTM are comparable. Since GRU has fewer parameters than LSTM and usually
require less training data [187], we use the GRU in the proposed encode-decoder hedging model
GRUδ .

4.1 The Proposed GRUδ for market data-driven hedging

4.1.1 Local Discrete Hedging GRU Model

Figure 4.1 depicts the proposed local discrete GRU hedging model GRUδ , which uses an encoder-
decoder structure to combine the local and sequential features, similar to the sequence to se-
quence (seq2seq) models [40]. This model uses both the local features at the hedging time and
the sequential features, which encode information immediately before the hedging time.

Consider a data instance at the hedging time t, strike K, and expiry T . Let the associated
change of the market option price be ∆V mkt

t,T,K and underlying price change be ∆St , as in (2.1.1).
Assume that at the hedging time t, we have local features vector xT,K

t ∈ Rdl which records local
information at the hedging time t for hedging the option with expiry T and strike K.

Let ∆td denote the time interval for sequential information recording. In the subsequent
empirical study, the interval ∆td equals one-day. We denote the sequential features recording the
daily history for hedging the option with expiry T and strike K as

YT,K
t =

[
yT,K

t−N∆td
, . . . ,yT,K

t

]
For notational simplicity, we denote t̆i = t− (N +1− i)∆td with i = 1, . . . ,N +1, we thus have:

YT,K
t =

[
yT,K

t̆1
, . . . ,yT,K

t̆N+1

]
The vector yT,K

t̆i
∈ Rds has ds features at time t̆i in the input sequential feature. Thus dl is the
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dimension for the local feature xT,K
t , ds is the dimension for the sequential feature YT,K

t , and
N +1 is the length of the sequential feature sequence.

The encoder transforms information from the sequential feature YT,K
t to a fixed-sized vector

ĥE and the decoder makes the final prediction based on both ĥE and the local feature xT,K
t .

The overall structure of the proposed model is illustrated in Figure 4.1. Next we discuss each
component of the proposed encoder-decoder model in details.

4.1.2 Feature Selection via Embedded Feature Weighting

Feature selection improves machine learning performance by eliminating noise and providing
better interpretability. While various feature selection frameworks have been proposed, we con-
sider the feature weighting method [172], which embeds feature selection in the SVM training.
This embedded feature weighting method is shown to outperform other state-of-the-art embed-
ded feature selection methods [172]. We adopt a similar feature weighting embedding technique
in the discrete GRU model to conduct feature selections on both the local feature xT,K

t and the
sequential feature YT,K

t . Features are first weighted and then fed into the encoder and decoder as
inputs. Feature weights are optimized during model training.

We use a softmax function to generate a normalized feature weighting vector. For the local
feature xT,K

t ∈ Rdl , the jth component of the normalized weight vector is given by

exp(ωL
j )

∑
dl
i=1 exp(ωL

i )

The weighted local feature vector is defined as

x̂T,K
t =

exp(ωL)

∑
dl
i=1 exp(ωL

i )
�xT,K

t

where � denotes the element-wise multiplication.

Similarly, for the sequential feature yT,K
t̆i

, the jth component of the normalized weight vector
is given by

exp(ωS
j )

∑
ds
i=1 exp(ωS

i )

The weighted feature vector at time t̆i is defined as

ŷT,K
t̆i

=
exp(ωS)

∑
ds
j=1 exp(ωS

j )
�yT,K

t̆i

The weighting procedure acts as a feature selection. If a particular feature is not relevant in
compute the hedging position, the associated weight after learning is expected to be negligible.
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ŷT,K
t̆N+1

h1 hN

Encoder

� �
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t ĥE
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Figure 4.1: GRUδ : GRU encode-decoder hedging model. The encoder summarizes the time
series YT,K

t =
[
yT,K

t̆1
, . . . ,yT,K

t̆N+1

]
as a succinct vector ĥE . The decoder outputs the hedging position

based on the vector ĥE and the local feature vector xT,K
t observed at the hedging time t. More

specifically, in the decoder, a candidate output δ̂ M
t,T,K is firstly produced. The final output δ M

t,T,K is

computed based on the linear combination of BS delta δ BS
t,T,K and the candidate output δ̂ M

t,T,K . The
combination weight is determined by Wδ . The feature weight ωL and ωS are used to produce the
weighted local feature and x̂T,K

t and weighted sequential feature ŷT,K
t̆ respectively. The weighting

acts as a feature selection process. Each edge in the graph has an arrow on it, pointing from a
node whose output is used by the node pointed by the arrow as an input.
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4.1.3 GRU Encoder

The proposed GRUδ in Figure 4.1 has an one-layer GRU, which encodes the sequential feature
YT,K

t to a fixed-sized vector ĥE . At the step i, the encoder computes the value of the hidden state
hi using a GRU cell. The input at the step i of the encoder is ŷT,K

t̆i
, i = 1, . . . ,N +1. The internal

structure of the GRU cell is shown in Figure 4.2.

Let WWW z,UUU z,bz,WWW r,UUU r,br,WWW h,UUUh,bh denote parameters shared by all GRU cells.

1. The update gate decides how much the cell updates its activation:

zi = sigmoid(WWW zŷT,K
t̆i

+UUU zhi−1 +bz)

2. The reset gate decides how much information to retain from the previous hidden state
hi−1:

ri = sigmoid(WWW rŷT,K
t̆i

+UUU rhi−1 +br)

3. The candidate hidden state value ĥi is computed from the current input ŷT,K
t̆i

, previous
hidden state hi−1, and the reset value ri :

ĥi = tanh(WWW hŷT,K
t̆i

+UUUh(ri�hi−1)+bh)

4. The output hidden state value hi is computed based on a weighted combination of the
previous activation hi−1 and the candidate activation ĥi:

hi = (1− zi)�hi−1 + zi� ĥi

The hidden state at the last step hN+1, corresponding to time t̆N+1 = t, is supplied to the
decoder as the fixed size vector ĥE , which extracts relevant information in YT,K

t .

4.1.4 Decoder

The decoder combines the output of the encoder from the sequential feature YT,K
t at the hedging

time t with the current local feature xT,K
t . It uses one neural network layer to firstly compute a

candidate output δ̂ M
t,T,K , based on both the weighted local input x̂T,K

t and the fixed size vector ĥE
:

δ̂
M
t,T,K = sigmoid(vT

out tanh(UUUout ĥE +WWW out x̂T,K
t +bout)).

The the output gate value Wδ is given by another neural network layer, based on both the
weighted local input x̂T,K

t and the fixed size vector ĥE :

Wδ = sigmoid(vT
Gate tanh(UUUGateĥE +WWW Gatex̂T,K

t +bGate)). (4.1.1)
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ŷT,K
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Figure 4.2: Illustration of the GRU cell. At step i, GRU cell produces a vector hi as the current
hidden states based on the hidden states produced from the previous steps hi−1 and the input
ŷT,K

t̆i
. The reset unit produces the weight ri which determines how much information is retained

from hi−1. The final output from the GRU cell hi is computed based on a weighted combination
of the previous activation hi−1 and the candidate activation ĥi, where the combination weight zi
is produced by the update unit. Each edge in the graph has an arrow on it, pointing from a node
whose output is used by the node pointed by the arrow as an input.

The practitioner’s BS delta encapsulates a significant portion of the sensitivity of the option
price to the underlying and has been adopted in option hedging practice. Therefore we use BS
implied volatility delta as a pre-trained model in the designed GRUδ to utilize both local and
sequential features to minimize hedge risk. We believe that incorporating the practitioner’s BS
delta into our model will not only expedite the learning process but also enhance the performance
of hedging results. This unique and innovative aspect distinguishes our work from other data-
driven models. Specifically, the output of the proposed GRUδ is a linear combination of the
candidate output δ̂ M

t,T,K and the BS delta δ BS
t,T,K computed from the implied volatility at the hedging

time t for the option with expiry T and strike K. In addition, different combination formula are
used when training for different types of options. For hedging a call option, the final output from
GRUδ is :

δ
M
t,T,K = δ̂

M
t,T,K×Wδ +δ

BS
t,T,K× (1−Wδ ) (4.1.2)

For hedging a put option, the final output from the model is:

δ
M
t,T,K =−δ̂

M
t,T,K×Wδ +δ

BS
t,T,K× (1−Wδ ) (4.1.3)

where δ̂ M
t,T,K is the candidate output. When Wδ = 0, δ BS

t,T,K is the output and, when Wδ = 1, the

output is the candidate δ̂ M
t,T,K . The combination weight Wδ is defined in (4.1.1). The sigmoid

function is used as the final activation function because, under the Black-Scholes-Merton frame-
work [20], the range of the hedging position for call options is [0,1] and the range of the hedging
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position for put options is [−1,0]. It can be easily shown that δ M
t,T,K , given by (4.1.2), is within

[0,1] and δ M
t,T,K , given by (4.1.3), is within [−1,0].

4.1.5 Robust Loss Function

At the hedging time ti, for the data instance i with strike Ki, and expiry Ti , the local discrete
hedging loss is:

lossi = ∆V mkt
ti,Ti,Ki

−∆Stiδ
M
ti,Ti,Ki

where δ M
ti,Ti,Ki

is the corresponding final output from GRUδ , ∆Sti denotes the change in the market
underlying price, and ∆V mkt

ti,Ti,Ki
denotes the change in the market option price, see (2.1.1). Let M

be the number of data instances. The objective function used in the data-driven regularized kernel
hedging model in [143] is the mean squared loss,

MSE =
1

2M

M

∑
i=1

loss2
i . (4.1.4)

Since the quadratic error function is sensitive to outliers, in this work, we additionally incorporate
the Huber loss function [110] below in the proposed GRUδ :

HE =
1
M

M

∑
i=1

Huber(lossi),

where Huber(·) is as defined below:

Huber(loss,T ) =

{ 1
2 loss2, if |loss| ≤T
T (|loss|− 1

2T ), otherwise

The Huber loss [110] has been shown to be more robust than the squared loss with respect
to outliers, when the threshold parameter T is carefully chosen a priori. In the context of
machine learning, the parameter T can be tuned but this can be computationally expensive. In
the proposed GRUδ , since delta from the BS model with the implied volatility is used as a pre-
trained model, we adaptively set the threshold parameter T to be absolute value of the hedging
error from the Black–Scholes delta of the data instance i, i.e.,

Ti = |∆V mkt
ti,Ti,Ki

−∆Stiδ
BS
ti,Ti,Ki

| (4.1.5)

where δ BS
ti,Ti,Ki

is the Black–Scholes delta using implied volatility for data instance i. The modified
Huber loss becomes

MHuber(lossi,Ti) =

{ 1
2 loss2

i , if |lossi| ≤Ti
Ti(|lossi|− 1

2Ti), otherwise
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Using the Huber loss with the adaptive threshholding parameter in (4.1.5), the objective for the
proposed GRUδ is:

MHE =
1
M

M

∑
i=1

MHuber(lossi,Ti) (4.1.6)

4.2 Training GRUδ

Next we discuss training GRUδ , including initialization, pre-training, optimization, and regular-
ization.

4.2.1 Initialization

When training a RNN model, an initial weight matrix is typically chosen as a random orthogonal
matrix. Since the orthogonal initialization can often speed up training [124], all the weight ma-
trices are initialized as orthogonal random matrices in training GRUδ . The random orthogonal
matrices are Householder transformations of random matrices [124].

4.2.2 Optimization

First-order optimization methods, such as stochastic gradient descent (SGD) and its extensions,
are the most widely used optimization methods in machine learning, due to their low computa-
tional costs. Despite their wide usage, well-known deficiencies when training highly non-convex
objective functions include relatively-slow convergence, sensitivity to hyper-parameter values
(e.g., learning rate), stagnation at high training errors, and difficulty in escaping flat regions and
saddle points [185].

More recently, improved SGD methods such as ADAM [120], have been proposed. These
methods seem to achieve significantly better solutions compared with earlier SGD. However, it
has recently been empirically observed in [155] that these algorithms sometimes fail to converge
to a first-order critical point due to the exponential moving average used in these gradient descent
algorithms.

Since the data size and the number of the parameters in GRUδ are relatively small (total
number of parameters < 1000), which is a distinguishing characteristics of many financial data
mining problems, it is computationally feasible to apply a second order optimization method.
Furthermore, the recently proposed trust-region sub-problem solver [125] computes the trust
region sub-problem solution iteratively requiring only Hessian-vector products. Consequently
we use a trust region method, which is shown in Algorithm 4.1, when training GRUδ . The
meta-parameters for trust-region algorithm are shown in Table 4.1.
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Algorithm 4.1: Trust-region Algorithm
Input: θ0 ∈ Rn: initial vector of parameters.

Ob j(θ): the objective function
R0: initial trust region radius
εθ : tolerance for the norm of the gradient
εr: tolerance for the trust region radius
ηr1: first threshold for update the trust region radius
ηr2: second threshold for update the trust region radius
γu > 1: ratio to increase the trust-region radius
0 < γd < 1: ratio to decrease the trust-region radius

Output: θ ∗: the vector of parameters that minimize the objective function Ob j(θ)
1 begin
2 k = 0;
3 while ‖∇Ob j(θk)‖2 ≥ εθ and Rk ≥ εr do
4 solve the trust-region subproblem [125]:

s∗k = argmin
s

mk(s) = Ob j(θk)+ sT
∇Ob j(θk)+ sT

∇
2Ob j(θk)s

s.t. ‖s‖2 ≤Rk

define

Pk =
Ob j(θk)−Ob j(θk + s∗k)

Ob j(θk)−mk(s∗k)

5 if Pk ≥ ηr1 then
6 θk+1 = θk + s∗k
7 else
8 θk+1 = θk
9 end

10 Update the radius:

Rk+1 =


γu‖s∗k‖2, if Pk < ηr1

Rk, if ηr1 ≤Pk ≤ ηr2

max(γd‖s∗k‖2,Rk), if Pk > ηr2

k=k+1
11 end
12

θ
∗ = θk

13 end
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R0 εθ εr ηr1 ηr2 γu γd
1.0 10−5 10−8 0.25 0.75 2 0.5

Table 4.1: Parameters for the trust-region algorithm. The trust-region algorithm is used for
training all the data-driven models based on neural network framework in this thesis.

4.2.3 Pre-training and Regularization

We use early stopping as the regularization [153]. At each training date, we reserve a fraction of
the observed data to be the validation set. The rest of the observed data is used as the training
set. The performance on the validation set is used to avoid over-fitting. Let θ denote the set
of parameters to be learned for the proposed GRUδ . After each training step k, the model
performance is evaluated on the validation set and the associated parameters θk is recorded.
Model training optimization is performed on the training set until the trust-region optimizer
terminates. The parameters θk that achieve the best performance on the validation set is used to
predict the hedging position for the testing data instances.

For GRUδ , the training optimization problem is nonconvex, which can benefit from a good
initial model. We choose the initial model for the training problem by matching the output
of GRUδ to the pre-trained BS model δ BS

t,T,K . Specifically, we determine the initial model for
training optimization by solving the nonlinear least square problem below,

min
1

2M

M

∑
i=1

(δ M
ti,Ti,Ki

−δ
BS
ti,Ti,Ki

)2, (4.2.1)

where the starting point for (4.2.1) is a set of randomly initialized weight matrices, as described
in section 4.2.1.

Using a solution to (4.2.1) as the initial model, we train GRUδ with the robust objective
function (4.1.6). Recall that the output of GRUδ , either (4.1.2) or (4.1.3), is a linear combination
of the candidate output δ̂ M

t,T,K and the BS delta δ BS
t,T,K computed from the implied volatility. When

Wδ approaches 0, the output of GRUδ converges to δ BS
t,T,K as the output. When Wδ approaches

1, GRUδ outputs candidate δ̂ M
t,T,K . This simple combination structure allows the pre-training

phase to be finished in just a few training steps.1 The pre-training stage guarantees that the initial
performance of the model on the validation set is close to δ BS

t,T,K . If the output from the model
after training performs worse than δ BS

t,T,K on the validation set, we use the initial model after
pre-training.

Additionally the validation set is also used to select whether to use the mean square objec-

1Note that we will also stop the pre-training when Wδ > 0.97.5 or Wδ < 0.025. This is because, when we have
Wδ > 0.97.5 or Wδ < 0.025, due to saturating gradient problem of the sigmoid function, the initial gradient, when
training with actual local hedging objective, will be very small. This will slow down the first few learning steps
when training with actual local hedging objective.
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tive function (4.1.4) or the modified Huber loss objective (4.1.6) . The model trained with the
objective function that performs better on the validation set is used when predicting the hedging
position of the testing data instances, which are unobserved at the time of training.

4.2.4 Model Re-use and Re-initialization

In contrast to the regularized kernel method in [143], one advantage of the proposed GRUδ is that
the parameters from one trained model can be readily reused as the starting point for the model
training on a subsequent rebalancing day. This allows a model to be updated more frequently,
adapting to market changes without completely rebuilding a model. The kernel method in [143],
on the other hand, recomputes the kernel matrix at each rebalancing time, which requires O(m3)
computation assuming a completely new kernel matrix. Thus, updating the model frequently
using the kernel method in [143] is computationally prohibitive.

An artificial neural network is known to potentially suffer catastrophic interference or catas-
trophic forgetting [136], i.e., a model forgets completely and abruptly previously learned infor-
mation upon observing new information. When this happens, the resulting broken model usually
has poor generalization ability. If a broken model with poor generalization ability is allowed
to be continually updated, the performance of all the future models may be negatively affected.
Thus, whenever a worse performance, in comparison to δ BS

t,T,K , is observed on a validation set,
we re-initialize the parameters of GRUδ and pre-train the model again. This avoids continually
updating the broken model. If after model re-initialization and training, the performance of the
proposed GRUδ remains worse than that of δ BS

t,T,K on the validation set, we simply output δ BS
t,T,K .

In summary, we initialize the model as described in section 4.2.1 and 4.2.3 on the first testing
date. When we train the model, we reuse the parameters from the previously trained model as
the starting point unless the performance of the proposed GRUδ is worse than that of δ BS

t,T,K , in
which case we re-initialize the parameters of the proposed GRUδ and train the model again.

4.3 Alternative Data-Driven Hedging Models Under Neural
Network Framework

Before jumping into the real data experimental results for local discrete hedging in Chapter 5,
we introduce the following supplementary models:

1. To gain insights on the roles of the decoder and encoder in the proposed GRUδ , we also
consider a decoder only model NNδ , which corresponds to removing the encoder from
GRUδ in Figure 4.3. We train NNδ in the same way as described in section 4.2.

2. To gain insights on the role of output gate and robust Huber loss, we remove the output
gate part of the decoder model. The resulting model is shown in Figure 4.4. In other words,
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Figure 4.3: NNδ : decoder GRU only. This simplified model only retains the decoder. The
decoder computes the hedging position solely based on the information vector xT,K

t observed at
time t. A candidate output δ̂ M

t,T,K is produced. The final output δ M
t,T,K is computed based on the

linear combination of BS delta δ BS
t,T,K and the candidate output δ̂ M

t,T,K . The combination weight
is determined by Wδ . The feature weight ωL is used to produce the weighted local feature x̂T,K

t .
The weighting acts as a feature selection process. Each edge in the graph has an arrow on it,
pointing from a node whose output is used by the node pointed by the arrow as an input.

the output δ M is purely based on ĥE and x̂T,K
t :

δ
M
t,T,K = sigmoid(vT

out tanh(UUUout ĥE +WWW out x̂T,K
t +bout)).

We denote the model shown in Figure 4.4 as GRUc. The training procedure of GRUc is
slightly different from GRUδ : the objective function is fixed to be the mean squared loss.
Therefore, by comparing the hedging performance from GRUc and GRUδ , we can see the
importance of the robust Huber losses and the output gate mechanism.
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Figure 4.4: GRUc: This simplified model removes the output gate in the decoder. The encoder
summarizes the time series YT,K

t =
[
yT,K

t̆1
, . . . ,yT,K

t̆N+1

]
as a succinct vector ĥE . The decoder outputs

the hedging position based on the vector ĥE and the local feature vector xT,K
t observed at the

hedging time t directly. The output gate is removed and we do not combine the output with δ BS
t,T,K

using linear combination as in Figure 4.1. Each edge in the graph has an arrow on it, pointing
from a node whose output is used by the node pointed by the arrow as an input.
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Chapter 5

Local Discrete Hedging Performance
Comparison Using S&P 500 index Options

Using the S&P 500 (European) index option market data from January 2, 2001 to August 31,
2015, we compare hedging performance of different hedging strategies.

Following [112], we use the Gain ratio below as the evaluating measure for the hedging
performance:

GAIN = 1−
∑

m
i=1

(
(∆V mkt

ti,Ti,Ki
−δti,Ti,Ki ∆Sti

)2

∑
m
i=1

(
(∆V mkt

ti,Ti,Ki
−δ BS

ti,Ti,Ki
∆Sti

)2 ,

where m is the total number of data instances to be evaluated. In addition, for the data instance
i, corresponding to hedging option with expiry Ti and strike Ki at hedging time ti, we recall that
δ BS

ti,Ti,Ki
is the implied Black–Scholes delta, δti,Ti,Ki is the hedging position from the method under

consideration, e.g., SABR delta, MV delta, and output from DKLSPL or GRUδ . In addition
∆V mkt

ti,Ti,Ki
is the change in option price, and ∆Sti is the change in the underlying price which are

given by (2.1.1).

5.1 Data and Experimental Setting

The option data used in this study comes from the OptionMetric database and the data is pro-
cessed following the same procedure described in [112]. On each day, the mid-price from the bid
and ask is used as the price of the option on that day. The closing price for the underlying is re-
garded as the daily underlying price. Options with time-to-expiry less than 14 days are removed
from the data set. The call options with the BS delta δ BS

t,T,K from the implied volatility outside of
[0.05, 0.95] and the put options with the BS delta δ BS

t,T,K from implied volatility outside of [-0.95,
-0.05] are also excluded from the data set. These removed option prices are noisy and unreliable
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since they correspond to either deeply out-of-money options, deeply in-money option, or very
short term options. As in [112], the option data instances are divided into nine buckets accord-
ing to the Black–Scholes delta δ BS from the implied volatility (rounded to the nearest tenth) for
detailed hedging performance comparisons.

Inputs to GRUδ , YT,K
t ∈Rds×(N+1), are 6 sequential features and the length of each sequence

is 6, i.e., ds = 6 and N = 5. At each hedging time t, YT,K
t is the matrix recording the historical

time series of the feature listed in Table 5.1.

option mid price
option implied volatility
option BS delta
option BS gamma
option BS vega
moneyness

Table 5.1: Sequential features for model GRUδ at time t are the historical time series of the
features listed in this table

At each hedging time t, there are 10 local features xT,K
t , which are given in Table 5.2 :

moneyness
time to expiry
index close price
option bid price
option offer price
option BS delta
δMV from equation (2.3.5)
option implied volatility
option BS gamma
option BS vega

Table 5.2: Local features xT,K
t at time t for model GRUδ

The number of hidden states, for the single-layer GRU encoder, the neural network outputting
δ̂ M

t,T,K , and the neural network outputting Wδ in Figure 4.1, are all set to be 5. In comparison with
most RNN applications, we train a relatively small model and the number of data instances
available for the hedging problem is also relatively small. We note that our training and testing
data instances are generated from daily observations with a moving window. On each day, data
instances observed in the previous 36 months are reserved as the training set and the validation
set. For daily and weekly hedging, the validation consists of the data instances observed during
the past 30 days. For monthly hedging, the validation set is the data instances observed during
the previous 60 days. This is because, for monthly hedging, the ∆St and ∆V mkt

t,T,K of many data
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instances during the last 30 days have not been observed.1 The data instances, which are observed
in the previous 36 months but are not used in the validation set, are used as the training set. The
models are updated daily.

We note that the length of our backtest time is longer than a decade. Since learning a single
DKLSPL model for all options will be computationally expensive, a separate model is built for
each delta bucket when training DKLSPL, which has the feature set # 2 below{

moneyness
(

S
K

)
, time-to-expiry(T − t),Black–Scholes delta(δ BS

t,T,K)

}
.

In addition, we use the efficient leave-one-out cross-validation (LOOCV) as in section A to
choose regularization parameter λP for DKLSPL. For each month, LOOCV is used to choose a
value of the regularization parameter from the candidate set as below:

λP ∈ {107,106,105,104,103,102,100,10−1,10−2,10−3,10−4,10−5,10−6,10−7}.

For the call option, the DKLSPL for each bucket is estimated using all options traded in a 36
months window. For the put option, there is much larger variation in the number of data instances
in each bucket. To ensure a reasonable training data size, we have used a time window of 24
months for delta buckets -0.1 and -0.2, window of 36 months for delta buckets -0.3 and -0.4,
window of 48 months for delta buckets -0.5 and -0.6, and window of 72 months for delta buckets
-0.7, -0.8 and -0.9. Hence, the training data for puts ranges from Jan 2001 to August 31 2015. We
train the direct hedging function model DKLSPL using all options traded in a fixed time window,
as described above, and determine the hedge each day in the following month using the trained
model, following the same sliding training-testing window procedure in [112]. Furthermore, the
DKLSPL model is updated monthly due to the limitation of computationally cost.

The training set, the validation set, and the testing set are the same for GRUδ , GRUc, and
NNδ . The training procedure is the same for GRUδ and NNδ which is described in section 4.2.
In addition, GRUc is trained using the data instances, observed in the previous 36 months and
procedure described as in section 4.3.

For additional reference, we also include the performance of the MV model (2.3.5) and
Bartlett delta on weekly and monthly hedging. For MV in Table 5.3 & 5.4, on each day, the
model parameter, a,b and c are estimated using all traded options in a 36-month-window. 2

For DKLSPL and GRUδ , we present out-of-sample daily hedging performance test result
using either traded data or all data in the database.

1As an example, assume the model is trained on 2022-01-03. The previous 30 days period as of 2022-01-03
is from 2021-12-03 to 2022-01-02. However, we cannot observe ∆St and ∆V mkt

t,T,K for any of those dates since 20
business days away from 2021-12-03, which is the starting point of this period, is 2022-01-05, which is after the as
of date:2022-01-03.

2Note that, in the OptionMetric Database, not all the option data instances are actually traded. For many data
instances, the trading volumes are zero. It is not clear to us whether the reported test results in [112] are computed
using all data or traded data only.
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5.1.1 Weekly and Monthly Hedging Comparisons

We first present hedging comparisons for weekly and monthly hedging. We assume a period of
5-business-days for weekly hedging and a period of 20-business-days for monthly hedging. We
note that the MV hedging method is only considered for daily hedging in [112].

Specifically, we compare the following methods,

• GRUδ : The sequential learning framework trained as in section 4.2.

• MV: MV hedging based on formulation (2.3.5),

• Bartlett: Barlett corrective delta based on (2.3.18),

• DKLSPL: Direct spline kernel hedging method as in 3.2,

• NNδ : NN with the decoder only described in Figure 4.3.

• GRUc: The sequential learning model excluding the output gate and trained with MSE
objective only.

Table 5.3 present comparisons for calls while Table 5.4 demonstrate comparisons for puts.
We further note that the parameters of MV are updated daily in this section while the parameters
of MV in [112] are updated monthly. We also note that the out-of-sample results for the MV
model in [112] are obtained with daily changes of the index price and option price in [112] while,
in Table 5.3 and 5.4, the out-of-sample results are obtained with weekly and monthly changes
of the index price and option price. The SABR model used to compute the Bartlett delta is also
calibrated daily.

From Table 5.3 and Table 5.4, we observe that, overall, GRUδ outperforms GRUc, MV,
Bartlett, DKLSPL, and NNδ . In addition, the hedging performance of the four data-driven mod-
els, DKLSPL, NNδ , GRUc, and GRUδ , is significantly better than that of the MV model and
Bartlett except for put option weekly hedging where Bartlett correction performs better than
DKLSPL. This is not surprising since the MV formula (2.3.5) and Bartlett formula (2.3.18) are
based on instantaneous hedging analysis. Furthermore, by comparing DKLSPL with NNδ , we
see that the decoder only NNδ still achieves significant improvement over DKLSPL. The im-
provement possibly comes from inclusions of more local features in NNδ and more frequent
updates of NNδ , timely addressing the market changes. The overall improvement of GRUδ

over NNδ illustrates the important role of the GRU encoder, which incorporates sequential fea-
ture information, in weekly and monthly hedging. Lastly, the overall improvement of GRUδ

over GRUc illustrates the important role of the output gate, the robust Huber loss and the robust
training procedure in section 4.2.
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Delta

Comparing Model(%)
Weekly Monthly

MV Bartlett DKLSPL NNδ GRUc GRUδ MV Bartlett DKLSPL NNδ GRUc GRUδ

0.1 26.3 -16.9 38.9 35.6 36.6 47.8 13.5 -8. 2 22.7 29.7 34.8 53.9
0.2 21.6 -5.6 29.0 36.4 39.6 48.5 16.4 0.4 23.5 38.4 38.9 51.7
0.3 20.1 11.9 23.5 38.6 39.7 48.5 17.9 2.1 24.0 40.2 41.7 50.2
0.4 18.1 17.3 20.8 38.7 38.9 45.9 16.9 2.7 21.0 38.6 42.6 47.8
0.5 16.0 21.7 19.9 42.3 37.5 46.6 15.2 5.7 13.5 36.3 42.3 44.5
0.6 12.1 24.1 17.3 43.4 33.5 44.8 12.7 8.4 14.3 36.0 40.7 44.6
0.7 8.1 26.3 16.8 45.6 31.1 43.9 5.9 7.5 6.1 30.2 26.3 35.3
0.8 3.7 25.5 12.5 39.6 31.7 37.7 -1.2 4.2 5.3 22.3 26.3 24.8
0.9 2.4 21.7 6.2 26.3 28.7 16.4 -1.8 9.8 4.1 21.1 17.3 10.5

Overall 15.1 18.6 20.2 39.9 33.5 43.7 13.4 4.5 16.3 35.4 38.0 44.5

Table 5.3: S&P 500 call options hedging comparison on traded data, bold entries indicating
best Gain. The Gain ratio is a measure for the local hedging performance. The larger the
gain ratio is, the better improvement the model achieves over the baseline BS delta hedging
method in terms of local hedging risk. The gain ratio is reported on different delta buckets.

Delta

Comparing Model(%)
Weekly Monthly

MV Bartlett DKLSPL NNδ GRUc GRUδ MV Bartlett DKLSPL NNδ GRUc GRUδ

-0.9 23.9 9.1 10.1 29.5 32.1 34.7 16.9 1.2 6.5 28.3 27.4 32.6
-0.8 21.5 -0.1 18.3 39.6 40.1 44.2 11.5 5.6 6.1 41.7 35.6 49.5
-0.7 19.1 0.4 20.2 44.0 39.6 49.6 9.6 6.7 7.3 43.4 41.1 52.4
-0.6 16.1 9.1 20.8 43.0 40.3 51.3 8.1 8.6 10.3 42.1 41.5 51.6
-0.5 15.3 20.9 22.4 43.4 36.3 53.5 7.7 13.2 13.9 41.2 42.7 51.4
-0.4 12.3 25.7 21.0 41.4 34.6 53.2 6.8 14.4 15.6 40.7 42.9 53.4
-0.3 9.7 29.4 22.2 38.2 37.4 51.1 4.7 13.6 19.5 34.1 42.5 48.4
-0.2 7.8 33.1 20.8 29.8 25.4 46.3 2.9 10.7 20.6 21.7 24.7 44.7
-0.1 4.9 30.5 19.2 15.5 10.4 37.2 -1.8 10.8 13.0 12.3 15.1 26.8

Overall 14.4 26.4 20.4 38.7 32.5 49.1 8.6 12.1 13.5 38.6 40.5 49.5

Table 5.4: S&P 500 put options hedging comparison on traded data, bold entries indicat-
ing best Gain. The Gain ratio is a measure for the local hedging performance. The larger
the gain ratio is, the better improvement the model achieves over the baseline BS delta
hedging method in terms of local hedging risk. The gain ratio is reported on different
delta buckets.
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5.1.2 Feature Importance

Next, we discuss feature importance in the trained model GRUδ . Specifically, we show how
the normalized feature weight, for both the local features xT,K

t and for the sequential features X,
changes from Jan 2007 to Aug 2015. The normalized feature weight vector are:

exp(ωL)

∑
dl
i=1 exp(ωL

i )

and
exp(ωS)

∑
ds
i=1 exp(ωS

i )

respectively. The feature score, shown in Figure 5.1& 5.2, represents the normalized feature
weights averaged over a calendar month for the model trained using traded data instance. Note
that the model is updated daily and the normalized feature weights vary with the training date.
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Figure 5.1: Feature scores for weekly and monthly hedging models GRUδ on traded S&P500
call option data.

From subplots (a) and (b) in Figure 5.1, it can be observed that, for weekly hedging call
options, the index price S is ranked as the most important local feature after Jan 2010. Moreover,
the average weight for the index price S exhibits an increasing trend after Jan 2009. The past
implied volatility sequence is ranked as the most important sequential feature after March 2009.
The average weight for the past implied volatility sequence also exhibits an increasing trend after
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Jan 2009. From subplots (c) and (d) in Figure 5.1, it can be observed that, for monthly hedging
the call option, the index price S is always ranked as the most important local feature. In addition,
the average weight of the index price S is always higher than 0.5 after Jan 2008. The past implied
volatility sequence is always ranked as the most important sequential feature after Jan 2009. The
average weight for the past implied volatility sequence also is always greater than 0.4 after Jan
2008.

For the put option, the situation is slightly different. From subplots (a) and (b) in Figure 5.2,
we can see that, for weekly hedging the put option, the index price S is often ranked as the most
important local feature. The past implied volatility sequence and the past BS delta sequence are
identified as the two most important sequential features. From subplots (a) and (b) in Figure
5.2, we can see that, for monthly hedging put options, the index price S is ranked as the most
important local feature after Jan 2008. The past implied volatility sequence is ranked as the most
important sequential feature after Jan 2013.

Overall, the index price S has often been identified as an important local feature for hedging
both call and put options. Since the BS delta of the implied volatility is one of the local features,
this confirms the fact that the BS delta does not capture all dependence on the underlying In
addition, the past implied volatility has often been identified as an important sequential feature
for hedging both calls and puts.
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Figure 5.2: Feature score for weekly and monthly hedging models GRUδ on traded S&P500 put
option data

65



5.1.3 Daily Hedging Comparison

In section 5.1.1 - 5.1.2, we have presented hedging comparisons for weekly and monthly hedging.
Now we compare the proposed GRUδ with the following methods for daily hedging,

• MV: MV hedging based on formulation (2.3.5),

• LVF: MV hedging in [112] from local volatility function based on formulation (2.3.14),

• SABRMV : MV hedging in [112] from SABR model based on formulation (2.3.20),

• δ BS: implied volatility Black–Scholes delta,

• Bartlett: Bartlett formula based on (2.3.18),

• DKLSPL: Direct spline kernel hedging method as in 3.2.

We have omitted NNδ and GRUc in the daily hedging comparison since it has been shown
to underperform GRUδ . But we have added LVF and SABRMV since they are based on instan-
taneous hedging analysis and are more suitable for daily hedging. Overall, all methods perform
similarly in terms of daily hedging with data-driven model slightly outperforming the parametric
models.

Since the same S&P 500 index option data from the OptionMetric Database is used here,
we simply quote the results presented in [112] for MV, LVF, and SABRMV, and the results
presented in [143] for DKLSPL.

As stated in [112] and section 2.3.1, the SABRMV model is calibrated daily, from which the
hedge position is determined and applied the next day. For LVF, the partial derivative of the
expected implied volatility to the underlying is calculated from the slope of the observed implied
volatility smile daily. For MV, the model parameter, a,b and c are estimated using all options in
a 36-month-window and then applied to determine the hedging position daily in the subsequent
month.

Table 5.5 presents daily hedging comparisons for call options. From Table 5.5, using either
traded data or all data for testing, GRUδ outperforms the minimum variance hedging methods
reported in [112] in the overall performance. For most delta buckets, delta greater than or equal
to 0.3, the performance of GRUδ is better than those of the minimum variance hedging methods.
However, for the bucket of the delta value 0.1 or 0.2, the performance is slightly worse.

In addition, from Table 5.5, the performance of the GRUδ model is slightly better than that
of the kernel hedging DKLSPL in overall performance. For the delta buckets 0.3-0.9, GRUδ

outperforms the direct kernel hedging DKLSPL. However, GRUδ performs slightly worse for
the delta bucket 0.1 and 0.2.

Table 5.6 presents daily hedging comparisons for put options. Table 5.6 shows that both
overall performance and the performances for different delta buckets of the GRUδ model are
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better than those from minimum variance hedging methods in [112] and the direct kernel hedging
DKLSPL, for testing result using all data. Similarly to the call, GRUδ has model bold entries in
most of delta buckets, indicating outperforming other methods.

Both GRUδ and DKLSPL are non-parametric data-driven hedging methods, with a main dif-
ference in features included. The hedging performance comparison between the two suggests
that including the sequential features and more local features improves the overall hedging per-
formance slightly for daily hedging.

Delta MV (%) SABRMV(%) LVF(%)
Bartlett Data-Driven Model

Traded All
DKLSPL (%) GRUδ (%)
Traded All Traded All

0.1 42.1 39.4 42.6 29.0 35.1 47.1 48.6 32.3 33.8
0.2 35.8 33.4 36.2 28.2 32.3 37.8 40.0 33.7 36.4
0.3 31.1 29.4 30.3 27.7 28.9 34.1 35.1 34.1 35.5
0.4 28.5 26.3 26.7 28.7 27.3 32.3 32.0 33.7 34.2
0.5 27.1 24.9 25.5 26.9 26.7 29.3 29.4 35.1 33.0
0.6 25.7 25.2 25.2 28.3 26.6 29.9 28.4 35.6 32.1
0.7 25.4 24.7 25.8 28.5 26.4 29.0 26.8 31.8 29.7
0.8 24.1 23.5 25.4 23.1 24.9 25.9 24.7 28.6 26.5
0.9 16.6 17.0 16.9 14.0 15.6 17.7 13.9 19.3 18.9

Overall 25.7 24.6 25.5 27.1 24.8 31.3 26.0 32.9 28.7

Table 5.5: S&P 500 call option hedging for 1-business day: bold entries indicating best Gain.
The Gain ratio is a measure for the local hedging performance. The larger the gain ratio is, the
better improvement the model achieves over the baseline BS delta hedging method in terms of
local hedging risk. The gain ratio is reported on different delta buckets.

We similarly demonstrate feature importance in Figure 5.3&5.4 for daily hedging. From
Figure 5.3, it can be observed that, for daily hedging call options, MV delta δ MV and index price
S are the local features that are often ranked as the most important under GRUδ . The history of
BS delta δ BS is ranked as the most important sequential feature during most of the months. The
past implied volatility sequence is often ranked as the second most important sequential feature.

From subplots (a) and (b) in Figure 5.4, it can be observed that the index price S is of-
ten ranked as the most important local feature for daily hedging put options. The past implied
volatility sequence, the past BS delta sequence, and the past option price Vmid are often identi-
fied as the three important sequential features. A natural extension is to extend the sequential
local hedging model to be a total risk hedging model where we rebalance multiple times until
the expiries of the options. In the following chapter 6, we discuss the challenges associated with
building such models and present our exploration on the data-driven total risk hedging model.

67



Delta MV (%) SABRMV(%) LVF(%)
Bartlett Data-Driven Model

Traded All
DKLSPL (%) GRUδ (%)
Traded All Traded All

-0.9 15.1 11.2 -7.4 9.1 23.4 8.6 13.6 15.1 17.2
-0.8 18.7 19.6 6.8 3.2 21.9 6.5 16.7 23.2 28.5
-0.7 20.3 17.7 9.1 1.5 20.1 10.6 19.8 28.5 32.8
-0.6 20.4 16.7 9.2 6.1 19.2 14.9 21.0 28.3 33.9
-0.5 22.1 16.7 10.8 15.5 21.3 22.5 23.1 29.2 34.5
-0.4 23.8 17.7 12.0 21.0 24.4 24.2 25.2 29.9 34.7
-0.4 27.1 21.7 16.8 26.7 29.0 27.7 28.3 30.6 33.6
-0.2 29.6 25.8 20.6 29.3 31.6 30.1 30.8 25.4 29.9
-0.1 27.5 26.9 17.7 31.4 32.5 29.1 31.2 18.7 21.4

Overall 22.5 19.0 10.2 20.0 24.8 23.4 23.2 26.2 29.7

Table 5.6: S&P 500 put option hedging for 1-business day: bold entries indicating best Gain. The
Gain ratio is a measure for the local hedging performance. The larger the gain ratio is, the better
improvement the model achieves over the baseline BS delta hedging method in terms of local
hedging risk. The gain ratio is reported on different delta buckets.
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Figure 5.3: Feature score for daily hedging model GRUδ : S&P500 call option (traded data)
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Figure 5.4: Feature score for daily hedging model GRUδ : S&P500 put option (traded data)
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Chapter 6

Data-Driven Sequential Learning for Total
Hedging Risk

As we have discussed in section 2.1, in reality, one often want to hedge until the expiry of the
option. Total risk measures the hedging error from a dynamic hedging strategy in the entire
hedging horizon. While mininimizing local risk has the effect of limiting the total hedging error,
we investigate here whether minimizing the total hedging risk directly can lead to better total
risk mimization strategy. From the mathematical model perspective, such enhancement seems
achievable. Indeed, recently a deep hedging model was proposed to minimize the total option
hedging risk evaluated at the option expiry [28]. It is shown that using a RNN to represent the
hedging position model can be a computationally efficient framework to determine the optimal
hedging function when the market is incomplete, e.g., under the transaction cost [28].

Although minimizing the total hedging risk, which is the hedging portfolio value at the expiry
T , is more desirable, there are several major obstacles in obtaining enough market data to build
a data-driven total hedging model due to the fact that options listed in the exchanges often have
fixed expiry dates (e.g., once a month for S&P500 index options). The deep hedging model [28]
is only built on synthetic data. Due to the lack of market data needed to build a model, applying
the deep hedging model [28] can be challenging in real world applications. 1

In this chapter, we provide a technique to deal with the issue of lack of market data. In
addition, a sequential total risk hedging model GRUTOTAL is introduced to minimize a discrete
total risk hedging objective. We then build the total risk hedging model GRUTOTAL based on the
data augmentation technique we propose and demonstrate its effectiveness and the performance
of the total risk hedging model GRUTOTAL using real market data experiments. The goal in this
chapter is to learn a hedging model for hedging option from a total hedging horizon of NH days
to expiry.

1Before 2016, the expiry date for S&P500 index options is fixed as the third Friday of each month. The CBOE
introduces weekly S&P500 option in 2016 and daily S&P 500 options in 2022. However, in this thesis, the option
data is gathered between 1996 and 2015, therefore, data augmentation is still needed. We comment that if we apply
our data-driven model as of now, the lack of data issue will be significantly improved.
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6.1 Total Risk Hedging Model

In this section, we describe the total risk hedging model. Figure 6.1 depicts the proposed total
risk GRU hedging model GRUTOTAL, which is an extension from the local hedging model GRUδ

we proposed in Chapter 4. This model uses the sequential features, which encode information of
two consecutive re-balancing time steps. In addition, the model uses the hedging position from
the previous re-balancing time as the input. The output hedging position is used as the input for
the next re-balancing time.

Following the discrete total risk definition in section 2.1.2, consider a hedging portfolio which
is composed of:

• A short position on option Vt,T,K .

• δ M
t,T,K shares of St .

• An amount in a risk-free bank account Bt .

As discussed in section 2.1.2, the final hedging portfolio value at T is:

Risktotal
t0,T,K =

Nrb−1

∑
j=0

{[
St j+1

D(t j+1,T )
−

St j

D(t j,T )

]
δ

M
t j,T,K

}
+

Vt0,T,K

D(t0,T )
−VT,T,K (6.1.1)

where D(t,T )= e−r(T−t) is the discount factor and {t0, t1, . . . , tNrb−1} is the set of rebalacing time.
Note that, for testing scenarios, following the scenario construction procedure, we can guarantee
that Vt0,T,K , VT,T,K , and St in equation (6.1.1) are all directly from market instead of model. The
detailed testing scenario construction procedure is described in Algorithm C.2 in Appendix C.

Now, consider at a rebalancing time t ∈ {t0, t1, . . . , tNrb−1}, hedging an option with a strike K,
and an expiry T . Assume we have computed the hedging position at the previous rebalancing
time t−∆t: δt−∆t,T,K . Let ∆td denote the time interval for sequential information recording. In
the subsequent empirical study, the interval ∆td equals one-day. Note that this setting is the same
for local risk model described in Chapter 4. We denote the sequential features recording the daily
history for hedging the option with expiry T and strike K as

YT,K
t =

[
yT,K

t−N∆td
, . . . ,yT,K

t

]
For notational simplicity, we denote t̆i = t− (N +1− i)∆td with i = 1, . . . ,N +1, we thus have:

YT,K
t =

[
yT,K

t̆1
, . . . ,yT,K

t̆N+1

]
The vector yT,K

t̆i
∈ Rds has ds features at time t̆i in the input sequential feature where ds is the di-

mension of the sequential feature YT,K
t , and N+1 is the length of the sequential feature sequence.
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We set N = ∆t
∆td

. Thus YT,K
t includes the sequential information between two consecutive rebal-

ancing time t and t−∆t. The encoder transforms information from the sequential feature YT,K
t

to a fixed-sized vector ĥE and the decoder makes the final prediction based on both ĥE and the
previous hedging position δ M

t−∆t,T,K . The overall structure of the proposed model is illustrated in
Figure 6.1. Note that for the initial hedging date t = t0, the previous hedging position is set as 0.
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Figure 6.1: GRUTOTAL: GRU encode-decoder total hedging model. The encoder summarizes the
time series YT,K

t =
[
yT,K

t̆1
, . . . ,yT,K

t̆N+1

]
as a succinct vector ĥE . The decoder outputs the hedging

position based on the vector ĥE and the previous hedging position δ M
t−∆t,T,K observed at the

hedging time t. More specifically, in the decoder, a candidate output δ̂ M
t,T,K is firstly produced.

The final output δ M
t,T,K is computed based on the linear combination of BS delta δ BS

t,T,K and the

candidate output δ̂ M
t,T,K . The combination weight is determined by Wδ . The feature weight ωL

is used to compute weighted sequential feature ŷT,K
t̆ . The weighting acts as a feature selection

process. Each edge in the graph has an arrow on it, pointing from a node whose output is used
by the node pointed by the arrow as an input. The output δ M

t,T,K at t is used as the input for next
step t +∆t.
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6.1.1 Difference Between GRUδ And GRUTOTAL

Comparing GRUδ in Figure 4.1 and GRUTOTAL in Figure 6.1, it is clear that the model structures
between GRUδ and GRUTOTAL are similar. The most significant difference between GRUTOTAL

and GRUδ is that GRUδ is built on minimizing discrete local risk as in section 2.1.1 while
GRUTOTAL is built based on minimizing the discrete total risk as in in section 2.1.2.

More differences between GRUTOTAL and GRUδ are given below:

• In GRUδ , we have a local features vector xT,K
t ∈ Rdl which records local information at

the hedging time t for hedging the option with expiry T and strike K. In Chapter 4 we
demonstrate importance of using sequential learning by comparing performance with and
without sequential features.

• Recognize importance of sequential features, in GRUTOTAL, here we omit the local features
vector xT,K

t ∈ Rdl as the input to the model GRUTOTAL and use the sequential feature YT,K
t

which contains all the sequential information between two consecutive rebalancing time t
and t−∆t. Note that sequential feature also contains the local information the the hedging
time t.

• Since the analytical formula for the variance-optimal total risk hedging [164] and spline
total risk minimization formulation [50] both demonstrate the dependence of the cur-
rent hedging position on the past hedging position, we include previous hedging position
δ M

t−∆t,T,K as the input to compute the current hedging position δ M
t,T,K .

The more details of the model structure of GRUTOTAL is discussed in Appendix F.

6.1.2 Training Objective For GRUTOTAL

Assume that we are given a set of hedging scenarios identified by the expiry date Ti and strike
Ki:

{Scenario(T1,K1), . . . ,Scenario(TM,KM)}

A natural total risk hedging loss function is the mean squared error:

MSEtotal =
1
M

M

∑
i=1

(
Risktotal

t i
0,Ti,Ki

)2

where Risktotal
t0,T,K is defined as in equation (6.1.1), t i

0 = Ti− 100
250 , and M is the number of hedg-

ing scenarios. A more appropriate criteria however is the relative hedging error instead of the
absolute total hedging error since we are mixing scenarios of different strikes together (i.e., the
scenarios include near-money, in-the-money, and out-of-the money options. The absolute hedg-
ing errors for in-the-money options tend to be much bigger than those of near-the-money options
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and out-of-money options). Additionally, MSE is sensitive to the existence of outliers. Further-
more, Coleman et al. [50] demonstrated that the l1-norm error loss function can produce better
hedging performance. Therefore, in training the GRUTOTAL, we use the following objective:

Ob jtotal =
M

∑
i=1

∣∣∣Reltotal
t i
0,Ti,Ki

∣∣∣ (6.1.2)

where the relative total hedging error is defined as:

Reltotal
t0,T,K =

D(t0,T )Risktotal
t0,T,K

Vt0,T,K
(6.1.3)

6.1.3 Market Data Augmentation

As discussed in section 2.1.2, the final hedging portfolio value at T is:

Risktotal
t0,T,K =

Nrb−1

∑
j=0

{[
St j+1

D(t j+1,T )
−

St j

D(t j,T )

]
δ

M
t j,T,K

}
+

Vt0,T,K

D(t0,T )
−VT,T,K (6.1.4)

where D(t,T ) = e−r(T−t) is the discount factor and {t0, t1, . . . , tNrb−1} is the set of rebalacing
time. The t0 in this thesis is set to be NH days to the expiry where NH is a constant.

For total risk hedging, assuming the starting hedging date t0 is NH days to expiry T , each
data instance is uniquely determined by the duplet {T,K}. We observe that in the total hedging
risk measure, as shown in equation (6.1.4), the only market option data required is Vt0,T,K , as
VT,T,K represents the payoff at expiry. In theory, it is possible to construct a data-driven total
risk hedging model without providing the option data between t0 and T . However, in practice,
we have encountered challenges in developing an effective data-driven total risk hedging model
without the option data in the interval (t0,T ]. Furthermore, if we solely rely on the market to
extract the required time series, we will encounter the following challenges:

1. Options listed in an exchange only have fixed expiry dates and only a few strikes are listed
every day. In other words, the number of unique duplet {T,K} in actual market is small.
For example, the expiration date for the standard S&P 500 index option is fixed at the third
Friday of each month.2 Therefore, if we only use market available expiration dates, the
number of training scenarios will be severely limited.

2. In addition, the option with specific strike K and expiry T may not be traded on every trad-
ing date during its lifetime. Requiring the market option prices of strike K and expiry T to

2Starting from 2016, CBOE also introduces weekly S&P 500 index options which expired on Monday, Wednes-
day and Friday of each week. The CBOE further introduces daily S&P 500 options in May 2022. Therefore, as of
now, S&P 500 options actually expire on each business day. Unfortunately, the data we gathered is up to 2015-08-31,
so our experiments in this thesis does not include those data.
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be available on entire hedging horizon [t0,T ] is unrealistic especially for in-the-money and
out-of-money options. Therefore, we will have to rely on certain parametric models cali-
brated to market prices to compute the necessary derived features (e.g., option sensitivity),
which is used as the input of the data-driven model, when there are not market prices for
the specific combination of T and K on some trading dates.

3. Lastly, under an ideal setting, one should use non-overlapping underlying asset paths to
generate training and testing hedging scenarios as one often observe autocorrelation in fi-
nancial time series. In reality, using non-overlapping underlying asset path to generate
training and testing scenarios is not practical. For instance, assuming we are building a
data-driven model for hedging 3 months until expiry, with non-overlapping underlying as-
set paths, 20 years of market data can provide only 80 different non-overlapping underlying
asset paths, making building a data-driven model difficult.

In order to overcome above challenges, we use the following remedy to augment training
data sets.

1. Overlapping underlying asset paths are allowed.

2. A no-arbitrage surface is calibrated on each business day to match the market prices. We
will query the calibrated surface to obtain the option prices and option sensitivities when
the corresponding market data is not available.

3. Instead of using only market available expiration dates, we assume every business day can
be the expiration date of the options. The option prices and option sensitivities for these
newly added expiry dates will come from querying the no-arbitrage surface.

Therefore, we greatly increase the number of training scenarios, since now the hedging sce-
narios can have more combinations of T and K even if the combinations of T and K are not di-
rectly observed in the market. We create a parametrization of the price surface that is arbitrage-
free. This is done by using SABR model to match the market volatility smiles and we use an
arbitrage-free interpolation based on Local Volatility Function (LVF) model to interpolate the
SABR model value between expiries. We refer an interested reader to Appendix B for details of
no arbitrage surface calibration.

As an example, in Figure 6.2, we show the calibrated price surface and implied volatility
surface for SP500 index call options on 2012-01-04. In Figure 6.2, we use τ = T − t to denote
the time to maturity.

6.1.4 Training and Testing Data Construction

The training and testing dataset comprises a collection of hedging scenarios. If we fix the rebal-
ancing time gap to be ∆t and the number of times we rebalance the hedging portfolio to be Nrb,
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Figure 6.2: The price surface and implied volatility surface calibrated to SP500 index call op-
tions on 2012-01-04. The smile is more pronounced for the shorter maturities than the longer
maturities, which is consistent with observations from various studies [34, 157] using market
data. Interested readers can also refer to [157] for some mathematical explanation on why the
smile becomes more and more flattened as τ increases.
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we can easily determine the rebalance times {t0, t1, . . . , tNrb−1} for a given expiry T . Therefore,
we can uniquely define a hedging scenario by T and K, where each scenario is identified by a
duplet of the expiry date and strike (T,K). Let t0 be the initial date for setting up the hedging
portfolio, and tB = {t0, . . . ,T} be the set of all business days between the initial date t0 and the
expiry date T . Each hedging scenario consists of the following time series uniquely identified by
(T,K):

• {St |∀t ∈ tB}: the the time-series of underlying prices with t0 as the initial date and T as the
expiry date.

• {Vt,T,K|∀t ∈ tB}: the time-series of option value for a hedging scenario identified by (T,K).

• {yT,K
t |∀t ∈ tB}: the time-series of feature vectors for a hedging scenario identified by

(T,K).

The detailed algorithms for the training, testing and validation scenario constructions are in Ap-
pendix C.

6.1.4.1 Construction of Training Scenarios

Based on the calibration process discussed above, we summarize the procedure for generating
training scenarios for hedging NH business days as follows.

1. Each of the hedging scenarios is identified uniquely by a duplet of expiry and strike (T,K).
We need to construct the time series corresponding to the duplet as the input to our model.
For a training scenario, we do not require the option price for the duplet (T,K) to exist in
market. We will query the surface constructed by Algorithm B.4 for each rebalancing time
t: V t

model(T,K) for option values and compute the associated option related sensitivities,
which are used to construct the feature vector for the model. In this way, we greatly
increase the number of training scenarios.

2. The starting date t0 to set up the initial hedging portfolio is NH-business days away from
the expiry date T . In this thesis, NH is set to be 100. We assume there are 250 business days
in a year. Denote T mkt

t,max as the maximum expiry listed on CBOE at time t. Note that we
always have T mkt

t,max− t > 100/250 in market for all the business dates in the experiments.
Therefore, no volatility extrapolation is needed.

3. We check all the market observed strikes for all the business dates between t0 and T . Let
Kmkt

max(t0,T ) be the maximum of strikes observed in market between t0 and T . The grid of
strikes for the outputting option values with expiry date T is defined as: Kgrid(t0,T ) =
{0 = K0 < K1 < · · ·< 2∗Kmkt

max(t0, T̂ )} where Ki−Ki−1 = ∆K, i≥ 1. In this chapter, we set
∆K = 5 for experiments on S&P 500 index options which is consistent with the S&P500
index option strike specification in real market [113].

A detailed description of training scenario generation is given in Algorithm C.1 in Appendix C.
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6.1.4.2 Construction of the Testing Scenarios

The key differences between the testing scenarios and the training scenarios are:

• For testing scenarios, we use real market prices to initialize the hedging portfolio at t0
and the strikes and expiries are real market strikes and expiries. Therefore, the total risk
objectived (6.1.2) computed for testing scenarios are all based on real market option prices.

• For testing scenarios, at the intermediate time steps between t0 and T , we use real op-
tion market data to construct the time-series whenever associated option market data is
available. Otherwise, we will query the calibrated option value function.

• For training scenarios, we use model prices to initialize the hedging portfolio. The strikes
and expiries do not necessarily have to be are real market strikes and expiries.

• For training scenarios, we always query the parametrization of the option value calibrated
to construct the time series. Note that since we calibrate the models to match the market
prices, when market prices are available, the model prices will be very close to the market
prices.

A summary of the construction of testing scenarios is as the following:

1. A testing expiry date T must be a real expiry date that exists in market. Before 2016,
For the S&P 500 index options listed in Chicago Board Options Exchange (CBOE) the
expiration dates are the third Fridays of each month. After 2016, more expiration dates are
introduced in CBOE.

2. The date t0 to set up the initial hedging portfolio is NH-business days away from T .

3. On the starting date t0, we can obtain all market option prices for the expiry T and we have
a grid of market strikes for expiry T on date t0: Kmkt

grid(t0,T ) = {K
mkt
t0,T,1, . . . ,K

mkt
t0,T,NK

}. Note
that we have market options prices for all K ∈Kmkt

grid(t0,T ) at time t0.

4. On each business day t in between t0 and T , an arbitrage free surface is constructed
{V t

model(T,K)}T,K using Algorithm B.4 in Appendix B. When there is no market price
V mkt

t,T,K on time t for K ∈ Kmkt
grid(t0,T ), we will query {V t

model(T,K)}T,K to obtain option
prices and option sensitivities. Note that, with this approach, for instance, a part of the
time series of option prices for a testing scenario can be real market prices while the other
part can be model prices from the parametrization obtained following the calibration pro-
cess in Appendix B.

A detailed algorithm is given in Algorithm C.2 in Appendix C.
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6.1.5 Training Procedure For GRUTOTAL

For the experiments in this chapter, we are hedging for a relatively long period (100 business
days) until the expiry. Empirically, we have observed that if we do not update the data-driven
model during the hedging period, the performance from the data-driven hedging would be much
worse than the performance of the traditional parametric hedging models such as hedging with
delta produced by Black-Scholes implied volatility. This is not surprising since market can dras-
tically change during the hedging period which is relatively long and we cannot assume one set
of parameter for a data-driven model to be effective for such long period. Lastly, by comparing
the performance of local risk model DKLSPL, which is updated on a monthly basis, with those
of NNδ and GRUδ ,which are updated on a daily basis in Chapter 5, we can already see the
effectiveness of more frequent update. Therefore, the training and validation data set are updated
as we move from one rebalancing date to another rebalancing date. In other words, we update
the model every ∆t days where ∆t is the time gaps between two consecutive rebalancing dates.
Also note that there is no forward looking scenarios in training the model. An interested reader
can refer to Appendix C for the detailed construction process of data sets.

We initialize the GRU parameters using the same procedure as in section 4.2.1 and we pre-
train the GRUTOTAL similarly as in section 4.2.3. Early stopping is used as the regularization
techniques. We reserve the validation set to determine when to stop training. We train GRUTOTAL

until the trust region algorithm (i.e., Algorithm 4.1) stops and select the best performing model
parameters on validation set based on the the total risk objective (6.1.2). The parameters for the
trust region algorithm are in Table 4.1. Early stopping is used as the regularization technique,
which is the same as in chapter 4. The overall model building procedure and data construction
procedure is given in Algorithm C.3 in Appendix C.

6.2 Total Discrete Hedging Performance Comparison Using
S&P 500 index Options

Using the S&P 500 (European) index option market data from September 1, 1996 to August 31,
20153, we compare the total hedging performance of different hedging strategies. We evaluate
the total hedging performance using the following 5 criteria:

1. The mean absolute value of the relative hedging error:

Mean(t0,T,K)

(∣∣∣Reltotal
t0,T,K

∣∣∣)
for all the testing scenarios.

2. The 95% Value-at-Risk (VaR) of the relative total hedging error Reltotal
t0,T,K

3The option historical data from OptionMetric [147] started on September 1, 1996. Due to the limits of data
license, we only have access to OptionMetric up to August 31, 2015.
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3. The 95% Conditional-Value-at-Risk (CVaR) of the relative total hedging error Reltotal
t0,T,K

4. The 99% Value-at-Risk (VaR) of the relative total hedging error Reltotal
t0,T,K

5. The 99% Conditional-Value-at-Risk (CVaR) of the relative total hedging error Reltotal
t0,T,K

6.2.1 Data and Experimental Setting

The option prices used to calculate the total risk are the ones at the initial time t0 and expiry
time T , as seen in (6.1.1). From a model perspective, it is possible to create a model without
incorporating the option prices and related sensitivities at intermediate re-balancing times as in-
puts since they don’t appear in the total risk objective function. However, the volatility smile
phenomenon tells us that implied volatilities for options with different moneyness are different.
Thus, the implied dynamics of underlying price movement for options with different moneyness
also differ. Since we’re mixing options with varying moneyness in the model training, building
a model with only underlying related information will be challenging. Thus, including option
prices and option-related sensitivities as inputs to our models is still necessary. The sequential in-
puts to GRUTOTAL, YT,K

t , at a rebalancing time t, are the time series recorded daily from previous
rebalancing time t−∆t to current rebalancing time t for the following features:

Option price
Black–Scholes implied volatility
Black–Scholes delta
Black–Scholes vega
Bartlett delta
Time to expiry
S&P 500 index price
VIX index price
Moneyness S/K
Minimum variance delta δMV (2.3.5)
Strike K

Table 6.1: Sequential features for GRUTOTAL and GRULOCAL
TOTAL at time t are the time series of

features listed in this table. The time series are constructed according to the procedures as in
Algorithm C.1 and Algorithm C.2.

The number of hidden states, for the single-layer GRU encoder, the neural network outputting
δ̂ M

t,T,K , and the neural network outputting Wδ in Figure 6.1, are all set to be 5. Specifically, we
compare with the following methods,

• GRUTOTAL: the model shown in Figure 6.1 and is trained with the total risk objective
(6.1.2).
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• Bartlett: Barlett corrective delta based on (2.3.18),

• BS: Black–Scholes delta based on the implied volatility

The hedging period is fixed to be 100 business days. We have two different hedging frequencies:
weekly and monthly hedging. For weekly hedging, we rebalance every 5 business days so the
number of rebalancing times is Nrb = 20. For monthly hedging, we rebalance every 20 business
days so the number of rebalacing times is Nrb = 5.

6.2.2 Call Option Total Hedging Comparison

In this subsection, we present the results for call options. We show the hedging performance for
Near-The-Money(NTM), In-The-Money(ITM), Out-of-The-Money(OTM) separately. Note that
we are not training models for NTM, ITM and OTM separately. We still train the model using all
training set. The NTM, OTM, and ITM scenarios are classified based on the Black-Scholes delta
at the initial date t0 where we set up the hedging portfolio: δ BS

t0,T,K . For call option, the criteria is:

• NTM: 0.3≤ δ BS
t0,T,K < 0.7

• ITM: 0.7≤ δ BS
t0,T,K < 0.95

• OTM: 0.05≤ δ BS
t0,T,K < 0.3

We omit the testing scenarios for deep in-the-money and deep out-of-the money options due to
the fact that they are highly illiquid in market and their market quotes are highly unreliable. Also,
the deep in-the-money (0.95 ≤ δ BS

t0,T,K < 1.0) and deep out-of-the money (0.0 ≤ δ BS
t0,T,K < 0.05)

scenarios are excluded from training set and validation set. Out of all the call option testing
scenarios, 39.7% fall in the near-the-money (NTM) bucket, while 37.7% and 21.0% fall in the
in-the-money (ITM) and out-of-the-money (OTM) buckets, respectively. The excluded scenarios
make up 1.6% of the call option testing scenarios.

6.2.2.1 Call Option Weekly Hedging Comparison

In Table 6.2, we demonstrate the results on weekly hedging call options. Furthermore, in Figure
6.3, and Figure 6.4, we compare the distribution of the relative hedging error using GRUTOTAL

with the corresponding distributions using the BS model and the Bartlett model respectively.

From Table 6.2, we can see that, GRUTOTAL performs better than the other methods in terms
of mean absolute relative hedging error for NTM and OTM scenarios, while BS model performs
slightly better than GRUTOTAL for ITM scenarios. The difference between GRUTOTAL and BS
model is small for ITM scenarios. Since our objective function as in equation (6.1.2) is the
sum of the absolute value of the relative hedging errors, we do not expect our model to perform
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Figure 6.3: Comparing total risk hedging model GRUTOTAL and BS Model on weekly hedging
S&P 500 call options (testing set) in terms of the distribution of the relative hedging portfolio
value at the expiries as in equation (6.1.3). The distribution in this figure assumes we are on the
sell-side of the option trading.
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Figure 6.4: Comparing total risk hedging model GRUTOTAL and Bartlett model on weekly hedg-
ing S&P 500 call options (testing set) in terms of the distribution of the relative hedging portfolio
value at the expiries as in equation (6.1.3). The distribution in this figure assumes we are on the
sell-side of the option trading.
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Near-The-Money In-The-Money Out-of-The-Money

Mean Abs Relative Error
GRUTOTAL 0.1927 0.0571 0.7344
Bartlett 0.2347 0.0641 0.7383
BS 0.2198 0.0531 0.9706

VaR (95%)
GRUTOTAL 0.2827 0.1121 0.5298
Bartlett 0.4836 0.1656 0.9841
BS 0.4823 0.1523 0.8603

CVaR (95%)
GRUTOTAL 0.4721 0.1865 1.0003
Bartlett 0.7103 0.2192 1.4232
BS 0.7009 0.2724 1.2299

VaR (99%)
GRUTOTAL 0.5301 0.1976 1.5077
Bartlett 0.778 0.2654 1.6152
BS 0.7171 0.3653 1.3363

CVaR (99%)
GRUTOTAL 0.8205 0.3261 1.6090
Bartlett 1.0827 0.2883 2.1225
BS 1.0040 0.4712 1.6074

Table 6.2: Summary of weekly hedging S&P 500 call options (testing set) for 100 business days
with total hedging evaluation criteria described in section 6.2. Please note that the total hedging
evaluation in this table assumes we are at the sell-side of the option trading.

best in tail risk measurement. However, GRUTOTAL, in most of cases, perform the best in terms
of VaR and CVaR, indicating that GRUTOTAL performs better in reducing the tail loss, with the
exceptions given below:

• BS model performs best in terms of VaR(99%) and CVaR(99%) for OTM scenarios. This
is an interesting observation. From 6.3 (c), We also note that the extreme tail on the profit
side from BS model on OTM scenarios is actually longer than the other three models,
indicating a larger probability of getting profit. However, we notice that the difference in
CVaR(99%) for OTM scenarios between GRUTOTAL and BS model is small.

• Bartlett model performs the best in terms of CVaR(99%) for ITM scenarios. However
CVaR(99%) of GRUTOTAL is only slightly worse than that of the Bartlett model but GRUTOTAL

performs still the best in terms of the VaR(99%).

Another interesting observation is that Bartlett delta actually performs worse than BS delta in
most of the cases as shown in Table 6.2. We suspect that this is due to the fact that SABR model
was originally designed for modeling interest rate derivatives, the time to maturity for which is
usually larger than one-year, and it is less suitable to model option surface with extreme short
time to maturity[35]. For weekly hedging, we have used SABR model to produce Bartlett delta
with extremely small time to maturity, e.g., 5/250 for the last rebalancing time. Notice that in
chapter 5 when we compare models on local risk criteria, options with time-to-expiry less than
14 days are removed from the data set. Therefore, we did not notice this phenomenon.
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6.2.2.2 Call Option Monthly Hedging Comparison

In Table 6.3, we demonstrate the results on monthly hedging call options. Furthermore, in Figure
6.5 and Figure 6.6, we compare the distribution of the relative monthly hedging error with the
distributions from the BS model and Bartlett model respectively.

From Table 6.3, we can see that, GRUTOTAL performs better than the other methods in terms
of mean absolute relative hedging error for NTM and ITM scenarios. Bartlett method performs
best in terms of mean absolute relative hedging error for OTM scenarios. In terms of VaR and
CVaR, by comparing Table 6.3 and Table 6.2, GRUTOTAL is less dominant in monthly hedging
call options than in weekly hedging call options. Bartlett delta produces best VaR(99%) and
CVaR(99%) for NTM scenarios. However, from Table 6.3 we can also see, the performance of
GRUTOTAL is very close to best performance even if GRUTOTAL is not the dominant model in
certain criteria.

Near-The-Money In-The-Money Out-of-The-Money

Mean Abs Relative Error
GRUTOTAL 0.2643 0.0633 1.0479
Bartlett 0.282 0.073 0.9674
BS 0.2865 0.0655 1.3248

VaR (95%)
GRUTOTAL 0.4102 0.1472 1.0842
Bartlett 0.4775 0.1611 1.1936
BS 0.5115 0.1554 1.3442

CVaR (95%)
GRUTOTAL 0.6073 0.3125 1.6658
Bartlett 0.6680 0.3372 2.0221
BS 0.9735 0.4380 2.0016

VaR (99%)
GRUTOTAL 0.7752 0.4300 1.7567
Bartlett 0.7201 0.4815 2.3799
BS 1.2384 0.6058 2.8419

CVaR (99%)
GRUTOTAL 0.8692 0.4627 2.7536
Bartlett 0.8090 0.5725 2.8797
BS 1.2864 0.7859 3.0839

Table 6.3: Summary of monthly hedging S&P 500 call options (testing set) for 100 business days
with total risk hedging evaluation criteria described in section 6.2. The total hedging evaluation
in this table assumes we are on the sell-side of the option trading.
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Figure 6.5: Comparing total risk hedging model GRUTOTAL and BS model on monthly hedging
S&P 500 call options (testing set) in terms of the distribution of the relative hedging portfolio
value at the expiries as in equation (6.1.3). The distribution in this figure assumes we are on the
sell-side of the option trading.
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Figure 6.6: Comparing total risk model GRUTOTAL and bartlett model on monthly hedging S&P
500 call options (testing set) in terms of the distribution of the relative hedging portfolio value at
the expiries as in equation (6.1.3). The distribution in this figure assumes we are at the sell-side
of the option trading.
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6.2.3 Put Option Total Risk Hedging Comparison

In this subsection, we present the results for put options. We again show the hedging performance
for Near-The-Money(NTM), In-The-Money(ITM), Out-of-The-Money(OTM) separately. The
NTM, OTM, and ITM scanerios are classified based on the Black-Scholes delta at the initial date
t0 where we set up the hedging portfolio: δ BS

t0,T,K . For put option, the criteria is:

• NTM: −0.3≥ δ BS
t0,T,K >−0.7

• ITM: −0.7≥ δ BS
t0,T,K >−0.95

• OTM: −0.05≥ δ BS
t0,T,K >−0.3

We omit the testing scenarios for deep in-the-money (−0.95≥ δ BS
t0,T,K >−1.0) and deep out-of-

the money ( 0.0≥ δ BS
t0,T,K >−0.05) options due to the fact that they are highly illiquid in market

and their market quotes are highly unreliable. Also, the deep in-the-money and deep out-of-the
money scenarios are excluded from training set and validation set. Out of all the put option
testing scenarios, 43.8% fall in the near-the-money (NTM) bucket, while 23.6% and 28.5% fall
in the in-the-money (ITM) and out-of-the-money (OTM) buckets, respectively. The excluded
scenarios make up 4.1% of the put option testing scenarios.

6.2.3.1 Put Option Weekly Hedging Comparison

In Table 6.4, we demonstrate the results on weekly hedging put options. Furthermore, in Figure
6.8 and Figure 6.7, we compare the distribution of the relative hedging error of GRUTOTAL with
the distributions of the relative hedging error of the BS model and the Bartlett model respectively.

From Table 6.4, we can see that, GRUTOTAL performs better for weekly hedging put options
in most of the criteria for NTM, ITM, and OTM options. There is one exception: Bartlett delta
performs slightly better than GRUTOTAL for OTM scenarios in terms of mean absolute relative
hedging error.

Another interesting observation is that, for put options, the loss tail of the relative hedging
distribution is significantly longer than call option. We suspect this is due to the fact that selling
put options during market crisis period can lead to significant loss as the original OTM options
can become ITM in a short period of time, especially when we are getting closer to the expiry.
For weekly hedging put options, it is worth to note that the tail loss, which is measured by VaR
and CVaR, from GRUTOTAL is significantly smaller than those from the BS model and the Bartlett
model.
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Figure 6.7: Comparing total risk hedging model GRUTOTAL and BS model on weekly hedging
put options (testing set) in terms of the distribution of the relative hedging portfolio value at the
expiries as in equation (6.1.3). The distribution in this figure assumes we are on the sell-side of
the option trading.
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Figure 6.8: Comparing total risk hedging model GRUTOTAL and Bartlett model on weekly hedg-
ing put options (testing set) in terms of the distribution of the relative hedging portfolio value at
the expiries as in equation (6.1.3). The distribution in this figure assumes we are on the sell-side
of the option trading.
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Near-The-Money In-The-Money Out-of-The-Money

Mean Abs Relative Error
GRUTOTAL 0.2535 0.0965 1.5356
Bartlett 0.2993 0.167 1.4815
BS 0.2773 0.1227 1.7109

VaR (95%)
GRUTOTAL 0.8124 0.2364 7.2478
Bartlett 0.9374 0.5133 8.5614
BS 0.8854 0.4274 8.7374

CVaR (95%)
GRUTOTAL 1.0475 0.3452 10.9438
Bartlett 1.4781 0.8078 12.2226
BS 1.4812 0.7236 13.3299

VaR (99%)
GRUTOTAL 1.1138 0.3763 11.7573
Bartlett 1.6118 0.99 12.2933
BS 1.7625 0.7979 19.0822

CVaR(99%)
GRUTOTAL 1.3597 0.4616 15.1555
Bartlett 2.3355 1.2264 17.4385
BS 2.2831 1.1347 20.6413

Table 6.4: Summary of weekly hedging S&P 500 put options (testing set) for 100 Business days
with total risk hedging evaluation criteria described in section 6.2. Please note that the total
hedging evaluation in this table assumes we are on the sell-side of the option trading.

6.2.3.2 Put Option Monthly Hedging Comparison

In Table 6.5, we demonstrate the results on monthly hedging put options. Furthermore, in Figure
6.9 and Figure 6.10, we compare the distribution of the relative hedging error using GRUTOTAL

with the distributions using the BS model and the Bartlett model respectively.

From Table 6.5, we can see that, GRUTOTAL is still the dominant method for monthly hedging
put options in terms of most of the criteria for NTM, ITM, and OTM scenarios. However, by
comparing Table 6.4 and Table 6.5, we can see GRUTOTAL is less dominant in monthly hedging
than in weekly hedging. In certain case, Bartlett methods can perform much better. For instance,
for NTM scenarios, the CVaR (95%) and CVaR (99%) from Bartlett method is significantly better
than the other two comparing methods. Another interesting observation is that the GRUTOTAL

produces longer tail for NTM and OTM scenarios on the profit side while for ITM scenarios,
GRUTOTAL has a much shorter tail on the loss side.

6.2.4 Comparison to Local Risk Hedging Model

We aim to evaluate the relative performance of local risk hedging models in minimizing total
hedging risk. However, comparing the performance of GRUδ and GRUTOTAL directly may not
be reasonable since GRUδ is built from market data while GRUTOTAL is built from augmented
market data. Therefore, we introduce a new model, GRULOCAL

TOTAL , to compare the effects of dif-
ferent objective functions. The model structure of GRULOCAL

TOTAL is identical to that of GRUTOTAL
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Figure 6.9: Comparing total risk hedging model GRUTOTAL and BS model on monthly hedging
put options (testing set) in terms of the distribution of the relative hedging portfolio value at the
expiries as in equation (6.1.3). The distribution in this figure assumes we are on the sell-side of
the option trading.
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Figure 6.10: Comparing total risk hedging model GRUTOTAL and Bartlett model on monthly
hedging put options (testing set) in terms of the distribution of the relative hedging portfolio
value at the expiries as in equation (6.1.3). The distribution in this figure assumes we are on the
sell-side of the option trading.
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Near-The-Money In-The-Money Out-of-The-Money

Mean Abs Relative Error

GRUTOTAL 0.2986 0.1240 1.7639
Bartlett 0.3205 0.1583 1.7383
BS 0.3224 0.1342 1.8482

VaR (95%)

GRUTOTAL 0.7395 0.2562 8.5602
Bartlett 0.8370 0.3583 9.0303
BS 0.7768 0.3088 9.7018

CVaR (95%)

GRUTOTAL 1.7761 0.3577 13.3160
Bartlett 1.5710 0.6016 14.4425
BS 1.8682 0.5401 16.1024

VaR (99%)

GRUTOTAL 2.1792 0.4121 15.2323
Bartlett 2.1925 0.7728 15.0144
BS 2.5569 0.7583 15.8393

CVaR (99%)

GRUTOTAL 3.4001 0.4509 20.6503
Bartlett 2.9164 0.8463 24.1757
BS 3.5486 0.8109 26.4941

Table 6.5: Summary of monthly hedging S&P 500 put options for 100 business days with total
hedging evaluation criteria described in section 6.2. The total hedging evaluation in this table
assumes we are on the sell-side of the option trading.

shown in Figure 6.1, but it is built on minimizing a local risk objective instead of the total objec-
tive used for GRUTOTAL. This approach allows us to isolate the impact of the objective function
choice on the model’s performance.

More specifically, for an expiry T and a strike K, at a rebalancing time t j ,we have

∆Vt j,K,T = D(t0, t j+1)Vt j+1,K,T −D(t0, t j)Vt j,K,T

∆St j = D(t0, t j+1)St j+1−D(t0, t j)St j

D(t,T ) = e−r(T−t)

t j = t0 + j∆t; j = 0, . . . ,Nrb−1; t0 = T −Nrb∆t .

The objective for the GRULOCAL
TOTAL is therefore:

Ob jLocal =
M

∑
i=1

∑
t∈ti

RB

|∆V mkt
t,T i,Ki−∆Stδ

M
t,T i,Ki| (6.2.1)

where ti
RB = {t i

0, . . . , t
i
Nrb−1} is the set of rebalancing dates for the i-th hedging scenarios with

expiry T i and initial date t i
0. The model structure for GRUTOTAL and GRULOCAL

TOTAL is the same
which is further discussed in Appendix F. The same set of hedging scenarios are used as the
training, testing and validation data sets. The training procedure is also the same as indicated in
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Algorithm C.3. The only difference is the objective function used in training.

The detailed comparison between GRUTOTAL and GRULOCAL
TOTAL is given in Appendix G. Here

we summarize the major results:

• For weekly hedging call options, GRUTOTAL performs better than GRULOCAL
TOTAL in terms of

most of total risk measures. However, in terms of tail loss reduction, the improvement
from GRUTOTAL over GRULOCAL

TOTAL is less significant.

• For monthly hedging call options, GRUTOTAL improve over GRULOCAL
TOTAL in terms of the

mean absolute relative error slightly. The GRUTOTAL and GRULOCAL
TOTAL perform roughly the

same in terms of tail loss measured by VaR and CVaR.

• For weekly hedging put options, GRUTOTAL still performs better than GRULOCAL
TOTAL in terms

of reducing the mean absolute relative error for ITM and OTM scenarios and the perfor-
mance for NTM scenarios is similar. On the other hand, in terms of tail loss measured by
VaR and CVaR, the reduction from GRUTOTAL over GRULOCAL

TOTAL is significant.

• For monthly hedging put options with NTM and ITM scenarios, we achieve better mean
absolute relative error from GRUTOTAL. For OTM scenarios, GRULOCAL

TOTAL performs better in
terms of mean absolute relative error. The tail loss measured by VaR and CVaR for NTM
scenarios is roughly the same for GRUTOTAL and GRULOCAL

TOTAL . The tail loss from GRUTOTAL

for OTM scenarios is slightly better than GRULOCAL
TOTAL . The tail loss from GRUTOTAL for ITM

scenarios is significantly better than GRULOCAL
TOTAL .

As we have already discussed in section 2.1.2, with the assumption of zero interest rate, the
discrete total hedging risk which is defined as:

Risktotal
t0,T,K =

Nrb−1

∑
j=0

{
∆St jδt j,T,K−∆V mkt

t j,T,K

}
=

Nrb−1

∑
j=0

Risklocal
t j,T,K (6.2.2)

In other words, discrete total hedging risk is the summation of the discrete local hedging risk
evaluated at discrete rebalancing time {t0, t1, . . . , tNrb−1}. As a consequence, building a model
reducing the discrete local hedging risk will reduce the discrete total hedging risk as well. There-
fore, it is not surprising to see that GRULOCAL

TOTAL is still competitive in terms of total risk measure-
ments.
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Chapter 7

Conclusion and Future Work

In this thesis, we have proposed a direct kernel hedging model DKLSPL and a novel encoder-
decoder model, GRUδ , for discrete local risk option hedging. The DKLSPL is our first ex-
ploration on computing a data-driven local hedging model directly from market prices without
estimating a option pricing model. GRUδ is proposed to further improve direct data-driven local
risk hedging using machine learning techniques. GRUδ consists of an encoder, which generates
a concise representation of the past market information. The decoder uses the Black-Scholes
delta as a pre-trained model and utilizes a gate to generate a predicative hedging model, combin-
ing the pre-trained delta model and the outputs from the encoder. Feature selections are imple-
mented through normalized weights embedded in the model training. In addition, a data instance
adaptive Huber loss function is incorporated for robustness, with the error from the pre-trained
Black-Scholes delta model for that instance as the thresholding parameter.

Using the S&P 500 index and the index option price data, from January 1, 2004, to August
31st, 2015, we assess and compare hedging performance of the GRUδ and DKLSPL with other
hedging strategies in terms of local risk criteria. For weekly and monthly hedging, computa-
tional results demonstrate that performance of the proposed GRUδ significantly surpasses that
of the MV model, SABR-Bartlett, regularized spline kernel model DKLSPL, all of which per-
form significantly better than the Black–Scholes model with implied volatility in terms of local
risk hedging criteria (6.2.1). In addition, the DKLSPL also outperforms MV model in terms of
weekly and monthly hedging results. We further demonstrate that the encoder for the sequential
features plays a significant role in GRUδ , since removing the encoder deteriorates hedging per-
formance. Lastly, by comparing the weekly and monthly hedging performance from the GRUc,
for which we remove the output gate and training with MSE, and GRUδ , we demonstrate that
the output gate, robust loss function and also play significant roles in GRUδ .

We further demonstrate that the daily hedging performance of the proposed GRUδ also sur-
passes that of the MV hedging method, LVF and SABR corrective methods (implemented in
[112]), data-driven regularized spline kernel network model DKLSPL, and SABR-Bartlett. In
addition, DKLSPL also outperforms MV hedging method , LVF and SABR corrective methods
(implemented in [112]).
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In addition, from the testing hedging performance, we assess feature importance in GRUδ for
the S&P 500 index option hedging. The monthly average feature weights identify the underlying
as the most important local feature and the past implied volatility sequence as the most important
sequential feature during normal market periods.

To assess whether minimizing the total risk directly can lead to better performing total risk
minimization strategy, in the context of data-driven hedging, we extend GRUδ to GRUTOTAL for
multi-step total risk hedging. To deal with the challenges of acquiring enough market option
information for building data-driven hedging models, we augment the market data using SABR
model and local volatility model. Using the S&P 500 index option market data from January 1st,
2000 to August 31st, 2015, we compare the weekly and monthly hedging performance of the
proposed total risk hedging model GRUTOTAL with the sequential data-driven local risk hedging
model GRULOCAL

TOTAL , which adopts the same model structure but is trained with a local risk training
objective, the Black-Scholes delta with implied volatilities, and the SABR-Bartlett delta. We
measure the total risk hedging performance, which is evaluated on the expiries of the options.
We demonstrate the effectiveness of the total risk hedging model GRUTOTAL in reducing the
sell-side loss tail risk for both put and call options. We also confirm that the total hedging
model GRUTOTAL often leads to better hedging performance in terms of total hedging criteria
when compared with GRULOCAL

TOTAL , SABR-Bartlett method, and Black-Scholes model. However,
alternative local risk model GRULOCAL

TOTAL remain competitive in controlling the total hedging risk.

The main objective of this research is to assess hedging performance of strategies learned
directly from the historical time series of the market option price and underlying price, us-
ing machine learning methods. Hedging performance comparisons between data-driven models
DKLSPL, GRUδ , GRUTOTAL,and GRULOCAL

TOTAL and the classical option hedging based on paramet-
ric model calibration suggest that the data driven learning hedging can be a viable alternative to
the classical methods, potentially leading to better hedging performance.

In terms of limitation of this research, we compare the data-driven models mostly with para-
metric models available in academic literature. We understand that the actual industry practice
may not apply the parametric models in the same way as we did in this thesis for hedging deriva-
tives. While it would also be interesting to compare hedging methods actually adopted in the
financial industry, limitation in accessing industry practice makes it difficult to conduct such a
study.

Additionally, comparing with the calibration of the traditional parametric pricing models on
vanilla index options, the learning process for the data-driven hedging model is less computation-
ally efficient. However, one should notice that once the model learning of the data-driven model
is done, the outputing process of the hedging position is computaionally efficient. In practice,
one can train the model after the business trading hours and use the trained model to produce the
hedging position efficiently during the business trading hours.

Lastly, the learning process requires certain amount of historical data. For calibrating a para-
metric model, one usually needs much less data and can build the model based on market data
observed on spot and compute the sensitivity as hedging position accordingly. Therefore, our
proposed data-driven models are not directly applicable to the illiquid derivative markets.
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For extending our work, we note that there are several directions:

• In this thesis, we rely on market data to generate the hedging scenarios. The volatility
surface is calibrated from market data and underlying price paths are extracted from mar-
ket with overlapping period. Our models based on a neural network approach have less
parameters compared with other applications of the deep learning techniques, given the
relative scarcity of available historical data. For future work, one can explore how we can
use machine learning techniques to generate hedging scenarios so that we can combine ar-
tificial scenarios with real scenarios. This will enable us to build more complex model for
hedging. Indeed, for this direction, there are already several attempts. For example, Berg-
eron et al. [18] apply the variational autoencoders [121] on generating synthetic volatility
surface that are indistinguishable from those observed historically. Pardo and López [149]
apply the Generative Adversarial Networks (GANs) [91] on learning the underlying struc-
ture inherent to the dynamics of financial series and acquiring the capacity to generate
scenarios that share many similarities to those seen in the historic time series.

• In this thesis, we use S&P 500 index options for experimental comparison. It will be
interesting to explore effectiveness of the data-driven models on more complex derivatives
such as basket options where the dimensionality of the underlying is higher.

• In this thesis, we have not included transaction cost into our models. A more realistic
model should include the effect of the transaction cost as in [28].

• In this thesis, for total hedging model, we assume we rebalance every 5 business days or 20
business days. In reality, we do not have to fix the interval length between two rebalancing
times. It may be interesting to extend the model so that the data-driven model determines
when is the best time to rebalance the hedging portfolio.

• Trader in real worlds may use the financial derivatives from one asset class to hedge the
financial derivatives from other asset classes. For example, credit default swaption on
credit index is very illiquid in market. Therefore, in practice, trader may use equity index
option to hedge the risk of the credit default swap since there exists strong correlation
between equity index and credit index. Traditional parametric model cannot easily capture
this kind of implicit exposure from equity option towards credit index. However, with the
help of the data-driven model, such implicit sensitivity can be learned directly from market
data. This is another potential area of extension for this data-driven approach.
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Appendix A

Cross Validation of Kernel Regularized
Network

For our data-driven approach based on kernel regularized network methond, we need to select an
appropriate penalty λP to control the model complexity. Cross-validation (CV) is a commonly
used method for the performance estimation and model selection for the learning algorithms.
For example, the Leave-One-Out Cross-Validation (LOOCV) computes the output for each data
instance using parameters trained on the remaining data instances. For the regularized kernel
methods, we can compute the CV error efficiently without retraining the model in each CV
round [148, 176].

Recall that, for the regularized pricing model, the minimization problem is

min
α̂̂α̂α

 M

∑
i=1

(
V mkt

ti,Ti,Ki
−

M

∑
j=1

α̂ jK (xTj,K j
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ti )

)2

+λP

M
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i=1

M

∑
j=1
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ti )

 (A.1)

Here V mkt
ti,Ti,Ki

is the market option value for time ti, expiry Ti and strike Ki. The vector xTj,K j
t j is the

vector of corresponding input features and λP is the penalty parameter for the regulation. Let K
be the kernel matrix with Ki j = K (xi,x j). Note K here denotes the kernel matrix which should
not be confused with the strike K. Problem (A.1) can be rewritten in matrix form:

min
α̂̂α̂α∈RM

(Kα̂̂α̂α−V)T (Kα̂̂α̂α−V)+λPα̂̂α̂α
TKα̂̂α̂α (A.2)

with
V= {V mkt

t1,T1,K1
, . . . ,V mkt

tM ,TM ,KM
} , α̂̂α̂α = {α̂1, . . . , α̂M}

The solution to (A.2) is:
α̂̂α̂α
∗ = (K+λPIII)−1V
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Given the eigen-decomposition K=QQQΛΛΛQQQT , we can easily see that:

(K+λPIII)−1 =QQQ(ΛΛΛ+λPIII)−1QQQT (A.3)

Because (ΛΛΛ+λPI) is a diagonal matrix, given the eigen-decomposition K=QQQΛΛΛQQQT , we can get
different solutions to (A.2) as λP varies in O(M2).

Let V (xTj,K j
t j ; α̂̂α̂α∗) be the output for data instance j when regularized kernel methods (A.1)

is trained on all training data instances. Let V l(xTj,K j
t j ; α̂̂α̂α l) be the output for data instance j

when regularized kernel methods (A.1) is trained on all training data instances except xTl ,Kl
tl . Let

Vl = {Vl
1,Vl

2, · · · ,Vl
M} be the vector where Vl

j =V mkt
t j,Tj,K j

for j 6= l and Vl
l =V l(xTl ,Kl

tl ; α̂̂α̂α l). Since

V l(·; α̂̂α̂α l) is the model trained on all example except for xTl ,Kl
tl , it is easy to see that V l(·; α̂̂α̂α l)

minimizes
min

α̂̂α̂α∈RM
(Kα̂̂α̂α−Vl)T (Kα̂̂α̂α−Vl)+λPα̂̂α̂α

TKα̂̂α̂α (A.4)

The solution to (A.4) is:
α̂̂α̂α

l = (K+λPIII)−1Vl

Let BBB =K(K+λPIII)−1, therefore, we have

BBBV= {V (xT1,K1
t1 ; α̂̂α̂α∗), . . . ,V (xTM ,KM

tM ; α̂̂α̂α∗)}

where V (xT,K
t ; α̂̂α̂α∗) is the option value funtion with the solution α̂̂α̂α∗ given by α̂̂α̂α∗ = (K+λPIII)−1V.

Let Bi j be the element of BBB of ith row and jth column. We can easily show that:

V l(xT,K
t ; α̂̂α̂α l)−V (xT,K

t ; α̂̂α̂α∗)=
M

∑
i=1

Bli(Vl
i−Vi)=Bll(V l(xTl ,Kl

tl ; α̂̂α̂α l)−Vl)=Bll(V l(xTl ,Kl
tl ; α̂̂α̂α l)−V mkt

tl ,Tl ,Kl
)

Thus,

V l(xTl ,Kl
tl ; α̂̂α̂α l) =

V (xTl ,Kl
tl ; α̂̂α̂α∗)−BllV mkt

tl ,Tl ,Kl

1−Bll
(A.5)

Therefore, we can get the V l(xTl ,Kl
tl ; α̂̂α̂α l) without actually retraining the model.

The leave-one-out estimations are:

Vloo = (I−BBBLL)
−1(BBBV−BBBLLV) (A.6)

and the leave-one-out errors for all data instance are:

V−Vloo = V− (III−BBBLL)
−1(BBBV−BBBLLV) = (III−BBBLL)

−1(V−BBBV) (A.7)

where BBBLL is a diagonal matrix with diagonal element of the matrix BBB, i.e., Bii, i = 1, . . . ,M, on
its diagonal.
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We can further simplify the expression by noting the fact that:

BBB =K(K+λPIII)−1

=QQQΛΛΛ(ΛΛΛ+λPIII)−1QQQT

=QQQ(ΛΛΛ+λPIII−λPIII)(ΛΛΛ+λPIII)−1QQQT

= III−λPQQQ(ΛΛΛ+λPIII)−1QQQT = III−λP(K+λPIII)−1

Therefore, we get:

(III−BBBLL) = diag(III−BBB) = λP diag((K+λPIII)−1)

V−BV= λP(K+λPIII)−1V= λPα̂̂α̂α
∗ (A.8)

From equation (A.7) and (A.8) , we can get:

V−Vloo = diag((K+λPIII)−1)−1
α̂̂α̂α
∗ (A.9)

Given the eigen-decomposition K = QQQΛΛΛQQQT , we can compute α̂̂α̂α∗ as λP varies in O(M2).
Similarly, given the eigen-decomposition K = QQQΛΛΛQQQT , we can compute the diagonal of (K+
λPIII)−1 in O(M2). Then using (A.9), the LOOCV errors can be computed in O(M2). It can
been further shown [148] that, given the eigen-decomposition K = QQQΛΛΛQQQT , the computational
complexity for the n-fold cross-validation (nFCV) is O(M3/n). Interested readers can referred
to [148] for more details.

Let ∆V = {∆V mkt
t1,T1,K1

, · · · ,∆V mkt
tM ,TM ,KM

} and let DDD be a diagonal matrix with Dii = ∆Sti. i =
1, · · · ,M. on its diagonal. Similarly, we can rewrite the minimization problem in matrix form:

min
α̂̂α̂α∈Rm

(DDDKα̂̂α̂α−∆V)T (DDDKα̂̂α̂α−∆V)+λPα̂̂α̂α
TKα̂̂α̂α (A.10)

Let K̃=DDDK, the solution to (A.10) can be obtained by:

α̂̂α̂α
∗ = (K̃T K̃+λPK)−1K̃T

∆V

In this thesis, we change the penalty term for (A.10) from λPα̂̂α̂αTKα̂̂α̂α to λPα̂̂α̂αT α̂̂α̂α , the mini-
mization problem becomes:

min
α̂̂α̂α∈Rm

(DDDKα̂̂α̂α−∆V̆̆V̆V )T (DDDKα̂̂α̂α−∆V̆̆V̆V )+λPα̂̂α̂α
T

α̂̂α̂α (A.11)

The solution to (A.11) can be obtained by:

α̂̂α̂α
∗ = (K̃T K̃+λPIII)−1K̃T

∆V

Utilizing the ideas from [148, 176], we can similarly show that, given the singular value decom-
position K̃ =UUUΣΣΣVVV T , for the problem (A.11), the computational complexity for the LOOCV is
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still O(M2) and the computational complexity for the nFCV is still O(M3/n). In practice, chang-
ing the penalty term from λPα̂̂α̂αTKα̂̂α̂α to λPα̂̂α̂αT α̂̂α̂α will not affect the actual performance too much.
Therefore, in order to improve the computation efficiency for the direct data-driven approach, we
are solving the problem (A.11).
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Appendix B

No-Arbitrage Price Surface

In this section, we describe how to calibrate an arbitrage-free price surface on each business day
from the market option prices. We want to create a parametrization of the price surface that
is arbitrage-free. We use SABR model to match the market volatility smiles and we use an
arbitrage-free interpolation based on Local Volatility Function (LVF) model to interpolate the
SABR model value between expiries.

In this thesis, we choose the SABR model over LVF models in matching market smiles and
computing the value of options with the strikes unobserved in the market. This is because LVF
models that were initially proposed by Dupire et al. [68], Derman and Kani [60] and Rubinstein
[158] and put into highly efficient pricing engines by Andersen and Brotherton-Ratcliffe [5]
and Dempster and Richards [59] amongst others, heavily rely on an arbitrage-free BS implied
volatility surface as the input. If there are arbitrage violations, the convergence of the algorithm
solving the underlying generalized Black Scholes partial differential equation will be obstructed
[75]. Unfortunately, an arbitrage-free BS implied volatility surface as the input is not guranteed
in practice. For instance, we in this thesis observe market bid and ask quotes of European options.
The mid prices are used in calibrating pricing functions. The input of BS implied volatilities from
mid prices are not guaranteed to be arbitrage-free. Therefore, we need to remove the arbitrage
of the BS implied volatilities in the input data either manually or use arbitrage-free smoonthing
algorithm as in [75] before using it as the input in LVF pricing. Another problem as indicated by
Hagan et al. [99] is that the dynamics of the market smile predicted by LVF can be opposite to
the market behavior. The contradiction between model and market lead to unstable sensitivities
(delta, vega) computation. Hedging using the delta from LVF may perform worse than hedging
using BS implied delta [99]. 1

Surface calibration models based on LVF that do not reply on the assumption that the input
BS implied volatility surface is arbitrage-free exists. For example, volatility interpolation algo-
rithm from Andreasen and Huge [6] can create an arbitrage-free surface without assuming the
input is arbitrage-free. However, the resulting model cannot interpolate and extrapolate in strikes

1Note that we also use SABR-Bartlett delta as the comparing hedging method, we will need to calibrate the
SABR model for each expiry anyway.
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as we will discuss in more details in later section. Therefore, in this thesis, we only use the
volatility interpolation algorithm [6] to interpolate the model value from SABR between market
available expiries.

B.1 Arbitrage-Free Surface From SABR Model

In this section, we discuss how to use SABR model to create an arbitrage-free surface calibrated
to match market available prices. Although SABR model is computationally efficient and can
match the market volatility smile well, it is not arbitrage-free. The formula (2.2.11) is an ap-
proximation, obtained from an asymptotic series expansion. Its accuracy degrades if the option
strikes move away from the option at-the-money (ATM) strike. Therefore, we also discuss how
to fix the arbitrage issue of SABR.

Following [85], we check whether an implied volatility surface is free of calendar arbitrage,
and butterfly arbitrage, which we describe below. Assume that we have a collection of European
call option prices {C(T,K)}T,K for a range of strikes, K, and expiries, T , with the Black-Scholes
implied volatility surface {σ imp(T,K)}T,K . We also suppose that interest rates are deterministic
with D(t,T ) = e−r(T−t) for the discount factor, where t is trading date and T is the maturity date.

1. Butterfly Arbitrage: At time t, given a collection of call option prices {C(T,K)}T,K , using
Dupire’s method [68], one can write the option value with an implied probability density
p(·;T,St) such that

C(T,K) = D(t,T )
∫
(0,∞)

(S−K)+p(S;T,St)dS. (B.1)

We say that the surface {σ imp(T,K)}T,K , where σ imp(T,K) is the Black-Scholes im-
plied volatility, is free of Butterfly Arbitrage if there exists an implied probability density
p(·;T,St) satisfying equation (B.1). That is to p(·;T,St) is a valid density, i.e., p(S;T,St)≥
0 for all S > 0 and

∫
∞

0 p(S;T,St)dS = 1. Additionally, the condition p(S;T,St)≥ 0 for all

S > 0 is equivalent to require ∂ 2C(T,K)
∂K2 ≥ 0 for all K > 0 since Breeden and Litzenberger

[24] show that:
∂ 2C(T,K)

∂K2

∣∣∣∣
K=x

= D(t,T )p(x;T,St)

2. Calendar Arbitrage: Given a surface σ imp(T,K), we consider, at the time t, the correspond-
ing total variance (TV) surface defined by

w(τ,k) = σ
imp(T,K)2

τ

where τ = T − t and k is parameterized by log-moneyness, i.e. k := log(K/F(t;T )), and
F(t;T ) = Ste(r−q)(T−t) is the at-the-money forward (ATMF) price for St . Let t = T0 < T1 <
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· · ·< TM be a set of expiries. We say that the surface {σ imp(T,K)}T,K is free of Calendar
Arbitrage

• if ∂w(τ,k)
∂T ≥ 0 for all k ∈ R,T > 0 for continuous time data

• if w(τi,k)≤ w(τi+1,k) for all k ∈ R,Ti < Ti+1 for discrete time data

Furthermore, given a grid of strikes: 0 = K0 < K1 < · · ·< KN , and a grid of expiries t = T0 <
T1 < · · · < TM. The corresponding discrete criteria [33] for a grid of option prices to be free of
arbitrage are set as the following with j = 1, . . . ,N−1:

1. No butterfly spread arbitrage condition:

C(Tj,Ki−1)−C(Tj,Ki)>
Ki−Ki−1

Ki+1−Ki

(
C(Tj,Ki)−C(Tj,Ki+1)

)
(B.2)

2. No calendar spread arbitrage:

C(Tj,Ki)≥C(Tj−1,Ki) (B.3)

In this thesis, we will use SABR model to obtain the option price for an strike K unobserved
in the market for each expiry T listed in the exchange.

We denote the grid of market observed expiries on a business date t to be

Tmkt
t = {T0 < T1 < · · ·< TM}

We set the first expiry be t: T0 = t. Note that for the first expiry T0 = t, the market option value
at t is just the option payoff at t which is max{St −K,0} (call) or max{K−St ,0} (put). For an
expiry Ti, let us further define:

Kmkt(t,T ) = {Kmkt
t,T,1, . . . ,K

mkt
t,T,NK

}

to be the grid of strikes K observed in market on date t for which we have market option value
for the expiry T

To calibrate an option value function with the market prices under SABR model, given Ti and
fix β = 1, we solve

min
α,ν ,ρ

∑
K∈Kmkt(t,Ti)

(
VSABR(St , t,Ti,K,r,q;α,β ,ν ,ρ)−V mkt

t,Ti,K

)2

where VSABR(S, t,T,K,r,q;α,β ,ν ,ρ) is option pricing function described in section 2.2.3 with
the approximation formula (2.2.11). Hagan et al. [99] suggest that β can be chosen from prior
beliefs about which assumption on the distribution of ST is appropriate (e.g., β = 0 implies a
normal distribution of ST conditioned on a realization of the volatility while β = 1 implies a
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lognormal distribution of ST conditioned on a realization of the volatility). In this thesis, we
fix β = 1 in the calibration process since we are dealing with equity options. If we are dealing
with interest rate derivatives, setting β = 0 or β = 0.5 may be more appropriate. In practice,
the choice of β has little effect on the resulting shape of the volatility curve produced by the
SABR model. Hagan et al. [99] suggest that the choice of β is not crucial in matching the market
volatility smile. Furthermore, Bartlett [16] suggests that the choice of β is also not crucial when
we use the Bartlett delta as in equation (2.3.18) as the delta position from SABR model.

We calibrate a different pricing function model for each expiry. A different set of parame-
ters is specified for each expiry, describing an instantaneous process. We choose this approach
because the single implied volatility surface calibrated for all expiries and strikes is unlikely
to fit the actual surface very well. In addition, calibrating a single surface is harder and more
time-consuming.

Note that for each expiry T we have three parameters to be calibrated so we need to observe
at least 3 data points from market to successfully build a SABR model. Therefore, the number
of strikes NK is expected be larger than or equal to 3. 2

Due to the fact that equation (2.2.11) being an appproximation, the implied probability den-
sity function:

1
D(t,T )

∂ 2CSABR(T,K)

∂K2

∣∣∣∣
K=x

= p(x;T,St) (B.4)

where CSABR(T,K) is the SABR pricing function of a call option at strike K and expiry T com-
puted using the equation (2.2.11), may become negative at very low or very high strikes. There-
fore, we may observe butterfly spread arbitrage in SABR prices returned by the calibrated mod-
els. In addition, for each expiry, a separate set of SABR parameters is calibrated so that calender
spread arbitrage can also exist. However, the existence of calendar arbitrage will be rare since
the market option prices rarely contains calendar arbitrage and therefore the SABR model, which
usually matches the market option data very well, rarely produces calendar arbitrage.

Given a grid of strikes K for which we aim to use SABR model to produce the option prices,
if we find that the grid of prices returned by the SABR model has failed the discrete arbitrage
conditions for butterfly arbitrage (B.2), we will introduce some adjustments. To fix the butterfly
spread arbitrage, we implements a risk-neutral adjustment. This adjustment substitutes the two
implied distribution tails by those of certain log-normal distributions. The following adjustment
is inspired by [27]. Interested reader can refer to [27] for more details. Here we just briefly
discuss the process of the adjustment.

Firstly, we introduce lower and upper strike limits, KL and KU within which the implicit
probability density function (p.d.f) p(x;T,St) from SABR model is valid. The lower and upper
strike limit can be the maximum and minimum strike K for which the discrete no butterfly spread
arbitrage condition (B.2) holds. Brunner and Hafner [27] set the tail distributions as the mixture

2The V mkt
t,T,K is the mid-price of market observed best bid and best ask prices.
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of two lognormal distributions:

ĝ(x) =


λL q(x; µ1

L,σ
1
L)+(1−λL) q(x; µ2

L,σ
2
L), if 0 < x < KL

p(x;T,St), if KL ≤ x≤ KU
λU q(x; µ1

U ,σ
1
U)+(1−λU) q(x; µ2

U ,σ
2
U), if x > KU

(B.5)

where q(x; µ,σ) is the p.d.f of a log-normal distribution:

q(x; µ,σ) =
1

xσ
√

2π
e−

(ln(x)−µ)2

2σ2 .

and p(x;T,St) is the implied probability density from the calibrated SABR model. Here, the
parameters to be determined are:

{λL,µ
1
L,σ

1
L ,µ

2
L,σ

2
L ,λU ,µ

1
U ,σ

1
U ,µ

2
U ,σ

2
U}.

In this thesis, we assume the adjusted p.d.f is of the following simplified form:

ĝ(x) =


λL q(x; µL,σL), if 0 < x < KL
p(x;T,St), if KL ≤ x≤ KU
λU q(x; µU ,σU), if x > KU

(B.6)

We assume that the underlying price at expiry at T : ST is distributed according the adjusted p.d.f
ĝ(x). We choose the equation (B.6) becasue it has a simpler solution than the equation (B.5), for
which we need to solve an overdetermined non-linear system.

We require the following condition to be satisfied:

1. Integrability constraint∫ KL

0
λLq(x; µL,σL)dx+

∫ KU

KL

p(x;T,St)dx+
∫

∞

KU

λU q(x; µU ,σU)dx = 1 (B.7)

2. Martingale constraint∫ KL

0
xλLq(x; µL,σL)dx+

∫ KU

KL

xp(x;T,St)dx+
∫

∞

KU

xλU q(x; µU ,σU)dx = F(t,T ) (B.8)

The Integrability constraint ensures that ĝ(x) is a valid p.d.f. The martingale constraint
ensures that E[ST ] = F(t,T ) = Ste(r−q)(T−t) under ther adjusted p.d.f.

Since they are six unknown parameters {µL,µU ,σL,σU ,λL,λU}, additional calibration condi-
tions are imposed. Observing that the Black-Scholes [20] model implies that, under the risk
neutral measurement, the prices of the underlying asset ST at the maturity T are log-normal
distributed:

ln(ST )∼N (ln(St)+(r−q− σ2

2
)(T − t),σ2(T − t))
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we set µL = ln(St)+(r−q− σ2
L

2 )(T − t) and µU = ln(St)+(r−q− σ2
U
2 )(T − t) such that we have

only four parameters to be solved: {σL,σU ,λL,λU}. Furthermore, with µL = ln(St)+ (r− q−
σ2

L
2 )(T − t) and µU = ln(St)+ (r− q− σ2

U
2 )(T − t), one can easily verify that if we have {σL =

σB(KL),σU = σB(KU),λL = 1,λU = 1}, integrability constraint (B.7) and martingale constraint
(B.8) will be satisfied. Here, we write σB(K) to denote the implied Black’s volatility given by
the SABR formula (2.2.11) for a strike K since the other inputs in σB(F, t,T,K;α,β ,ν ,ρ) as in
formula (2.2.11) remain unchanged in the following discussion for an expiry T at a time t.

We use the adjusted p.d.f (B.6) for option pricing

Cĝ(x)(T,K) = D(t,T )
∫

∞

−∞

(x−K)+ĝ(x)dx (B.9)

By setting:

σL = σB(KL) , σU = σB(KU)

λL = 1 , λU = 1

µL = ln(St)+(r−q− σB(KL)
2

2
)(T − t)

µU = ln(St)+(r−q− σB(KU)
2

2
)(T − t)

(B.10)

we can easily verify that (B.9) can be written as:

CSABR(T,K)←Cĝ(x)(T,K) =

 CBS(T,K;σB(KL)) if 0 < K < KL

CSABR(T,K) if KL ≤ K ≤ KU

CBS(T,K;σB(KU)) if K > KU

Here we use the CSABR(T,K) to indicate it is the SABR model value after the fix for the butterfly
arbitrage. Since the adjusted p.d.f (B.6) with the setting (B.10) satisfies integrability constraint
(B.7) and martingale constraint (B.8) and will not be negative at tails of the distribution because
that the two tails are from two log-normal distributions, Therefore, the adjusted CSABR(T,K) will
be free of butterfly arbitrage. In appendix D, we show in details that the adjusted p.d.f (B.6) with
the parameters setting as in equations (B.10) will satisfy the integrability constraint (B.7) and
martingale constraint (B.8).

For calendar arbitrage, we will shift the price by the following procedure to remove it. Sup-
pose we have a grid of Kgrid = {K0,K1, . . . ,KN} and a grid of expiries t = T0 < T1 < · · · < TM.
Then for each expiry Tj, i = 1, . . . ,M, we have:

shi f tTj =−min
{

minK∈Kgrid

[
CSABR(Tj,K)−CSABR(Tj−1,K)

]
,0
}
.

C̃SABR(Tj,K)←CSABR(Tj,K)+ shi f tTj

Note the shift will be zero if no calendar arbitrage is observed between Tj and Tj−1. Note that the
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constant shift will preserve the no butterfly arbitrage condition from CSABR(T,K), one can easily
see this by noting that no butterfly arbitrage implies that:

CSABR(Tj,Ki−1)−CSABR(Tj,Ki)>
Ki−Ki−1

Ki+1−Ki

(
CSABR(Tj,Ki)−CSABR(Tj,Ki+1)

)
Therefore, we still have

[CSABR(Tj,Ki−1)+ shi f tTj ]− [CSABR(Tj,Ki)+ shi f tTj ]

>
Ki−Ki−1

Ki+1−Ki

{[
CSABR(Tj,Ki)+ shi f tTj

]
−
[
CSABR(Tj,Ki+1)+ shi f tTj

]}
Lastly, there is a no call-spread arbitrage condition that requires the call option value decreasing
in strikes:

C(T,Ki+1)≤C(T,Ki) when Ki+1 > Ki.

We comments that call-spread arbitrage violation is rare and no violations of this condition from
the prices produced by SABR model are observed for all the computational results in this thesis.
Additionally, by the call-put parity, if we have no butterfly arbitrage and no calendar arbitrage
with call option prices, then we will have no butterfly arbitrage and no calendar arbitrage in the
put option prices as well.

B.1.1 Alternative Methods to SABR Calibration

Given BS implied volatilities computed from market option values as a discrete set of points
{σ imp

BS,mkt(T,K)}T,K , a natural question is whether arbitrage exists. In most cases, one must

1. Fit a parameterization to the points {σ imp
BS,mkt(T,K)}T,K , typically by time-slice as what we

do with SABR model, obtaining a parameterization σ̃
imp
model(Ti,K) for each Ti separately.

For example, if we fit a SABR model, σ̃
imp
model(Ti,K) = σB(F, t,Ti,K;α,β ,ν ,ρ) and, since

except K all other parameters are fixed for an expiry Tj at a time t, it is a function of K
only.

2. Compute {w̃(τi,k)}N
i=1 on a fine grid of k using the expression w̃(τi,k) := σ̃

imp
model(Ti,K)2τi,

where τi = Ti− t and k is parameterized by log-moneyness, i.e. k := log(K/F(t;T )).

3. Check for the discrete no-arbitrage criteria (B.2) and (B.3) as in [33] for a given grid of
strikes and a given grid of expiries.

Alternative to using a stochastic volatility model like SABR or Heston to fit {σ imp
BS,mkt(T,K)}T,K ,

one can also consider a generalized model such as Stochastic Volatility Inspired (SVI) parame-
terizations.

The Stochastic Inspired Volatility model (SVI) [83] was used internally at Merrill Lynch and
publicly disclosed by Jim Gatheral in 2004. SVI is a simple five-parameters model. In 2012, the
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Surface SVI (SSVI) [85] is proposed by Gatheral and Jacquier to extend SVI model to be a model
that can fit the whole surface instead of just one volatility smile. The SSVI is parameterized in
a way that a SSVI slice at a given maturity T is a SVI slice with only 3 parameters. This
restriction leads to explicit sufficient conditions for the absence of arbitrage, while allowing
enough flexibility for calibration. The SSVI model is recently extended in [102] and [53]. If the
input market data used for calibration contains arbitrage, the calibrated surface from SSVI [85]
or its extension [102, 53] can typically be viewed as the surface that is as close as possible to
the original market data, while staying arbitrage-free. In this section we briefly review a recent
variant dd-eSSVI ( data-driven extended SSVI) method [53] as an example.

B.1.1.1 dd-eSSVI Parameterization

Following the work of [53], we consider the following SSVI parameterization for a surface’s
Total Variance (TV), w(τ,k) as

w(τ,k) =
θ̂τ

2

(
1+ ρ̂τ ψ̂τk+

√
(ψ̂τk+ ρ̂τ)

2 +(1− ρ̂2
τ )

)
(B.11)

In this parameterization we have that

• θ̂τ is the ATM Forward TV which can be extracted from market directly.

θ̂τ = w(τ,0) = σ
imp
BS,mkt(T,KAT MF)

2 · τ

where KAT MF = F(t,T )

• ρ̂τ controls the slope of the skew

• ψ̂τ controls the curvature, which is usually defined as a function of θ̂τ : ψ̂τ(θ̂τ)

An important feature of this parameterizations is that it provides easy way to impose sufficient
conditions on the parameters (θ̂τ , ρ̂τ , ψ̂τ ) so that there is no butterfly arbitrage for a given slice,
and no calendar arbitrage between two time slices. Interested reader can refer to [53, 85] for the
detailed conditions on those parameters.

There are many different approaches for calibrating SSVI models. For example, one can fit
SSVI model to market data without imposing any constraints on the parameters and then check
if any arbitrage exists by imposing the arbitrage conditions on the calibrated parameters. If
arbitrage conditions are violated, one can adjust the parameters so that the sufficient conditions
on parameters are satisfied. One can also use an arbitrage-free calibration [53] by imposing the
sufficient conditions on the parameters into the calibration process. Interested reader can refer to
[102, 53] for more details on how to calibrate the SSVI efficiently.

Since the major goal in this thesis is not to compare arbitrage-free surface calibration meth-
ods, we leave the exploration of the alternative methods to calibrate the arbitrage-free surface
and comparing its impact on the data-driven risk hedging model as the future work of our study.
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B.2 Volatility Interpolation Between Expiries

In the previous section, for each Ti, we calibrate a separate set of SABR parameters and we then
use the calibrated SABR parameters to compute option price and the associated implied volatiliy
for a predetermined grid of strikes for each Ti. We correct for butterfly arbitrage and calendar
arbitrage if we detect any from the SABR models. However, after the SABR calibration, we
only obtain the parametrization of option values for expiries listed in the market. Our next goal
is get the parametrization of option values for expiries that are not available in the market. In this
section, we discuss how to interpolate the volatility between different expiries. Note that even
if we use SSVI instead of SABR model, this step of volatility interpolation between expiries is
still needed since SSVI model and SABR model are both calibrated to match the volatility smile
of market for each market expiry only. Under SSVI models, one usually interpolates the SSVI
parameters {θ̂τ , ρ̂τ , ψ̂τ} between different expiries available in market [53].

Andreasen and Huge [6] have introduced an efficient and arbitrage-free volatility interpo-
lation method based on an one step finite difference implicit Euler scheme applied to a local
volatility parametrization. In this thesis, we use the volatility interpolation approach to compute
option price for an arbitrary expiry T unobserved in the market.

The volatility interpolation method is based on the Dupire’s equation [68]. The Dupire’s
equation enables us to deduce the volatility function in a local volatility model from put and call
options in the market. Under a risk-neutral measure, we assume:

dSt

St
= (r−q)dt +σ(t,St)dZt

where r is the risk-free interest rate and q is the dividend yield. Let C(T,K) be the call option
pricing function, Dupire’s equation states:

∂C(T,K)

∂T
=

1
2

σ
2(T,K)K2 ∂ 2C(T,K)

∂K2 − (r−q)K
∂C(T,K)

∂K
−qC(T,K)

Define the normalized call price in terms of discounting factor D(t,T ) and forward price F(t,T )
and the normalized strike K̂ as:

D(t,T ) = e−r(T−t)

F(t,T ) = Ste(r−q)(T−t)

K̂ =
K

F(t,T )

Ĉ(T, K̂) =
C(T, K̂F(t,T ))
D(t,T )F(t,T )

=
C(T,K)

D(t,T )F(t,T )
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Dupire’s equation can be simplified as [6]3:

∂Ĉ(T, K̂)

∂T
=

1
2

σ̂
2(T, K̂)K̂2 ∂ 2Ĉ(T, K̂)

∂ K̂2
, σ̂(T, K̂) = σ(T,K)

Therefore, we can sequentially solve the finite difference discretization of the Dupire’s for-
ward equation using the fully implicit method. Observing that T0 = t, on the trading date t,
the option value expiring at t is just option payoff, we have the the initial condition Ĉ(T0, K̂) =

max(1− K̂,0). Furthermore, when K = 0, we arrive at the lower boundary condition Ĉ(T,0) = 1.
When the largest strike Kmax� St , we assume the upper boundary condition Ĉ(T, K̂max) = 0 is
true.

Assume we are given a grid of expiries available in market t = T0 < T1 < · · ·< TM and a grid
of normalized strike: 0 = K̂0 < K̂1 < · · ·< K̂N = K̂max, Andreasen and Huge [6] assume σ̂(T, K̂)
to be a piecewise constant functions for a given Ti.

σ̂(Ti, K̂) =



σ̂Ti,K̂0
, if K̂ ≤ K̂0

...
...

σ̂Ti,K̂ j
, if K̂ j−1 < K̂ ≤ K̂ j

...
...

σ̂Ti,K̂N
, if K̂ > K̂N

(B.1)

The authors further assume:

∂ 2Ĉ(T, K̂)

∂ K̂2

∣∣∣∣∣
K̂=0

=
∂ 2Ĉ(T, K̂)

∂ K̂2

∣∣∣∣∣
K̂=K̂N

= 0 (B.2)

From (B.4), one can see the second partial derivative of call prices with regards to strike K is the
implied density:

1
D(t,T )

∂ 2C(T,K)

∂K2

∣∣∣∣
K=x

= p(x;T,St)

Therefore, the boundary conditions (B.2) essentially assume that the probablity density at the
low strike boundary (K = 0) and high strike boundary (K = KN) is zero, which is a reasonable
assumption.

3We use the call option as the example but the analysis also holds for put options. More specifically, let P(T,K)
be the function of put option price, the Dupire’s equation for put option is:

∂ P̂(T, K̂)

∂T
=

1
2

σ̂
2(T, K̂)K̂2 ∂ 2P̂(T, K̂)

∂ K̂2
, σ̂(T, K̂) = σ(T,K).
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The fully implicit finite difference method in matrix form is:
Ĉ(Ti, K̂0)

Ĉ(Ti, K̂1)

Ĉ(Ti, K̂2)
...

Ĉ(Ti, K̂N)

= (I−SD(Ti+1−Ti))


Ĉ(Ti+1, K̂0)

Ĉ(Ti+1, K̂1)

Ĉ(Ti+1, K̂2)
...

Ĉ(Ti+1, K̂N)

 (B.3)

where I is the identity matrix, S is a diagonal matrix parameterized by σ̂(Ti, .) as in equation
(B.1), D is proportional to the discrete second order difference matrix and (Ti+1−Ti) is a scaler.
Specifically:

S=

σ̂2(Ti, K̂0)
... . . . ...

σ̂2(Ti, K̂N)

 (B.4)

D=



0 0
l1 −l1−u1 u1

l2 −l2−u2 u2
. . . . . . . . .

lN−1 −lN−1−uN−1 uN−1
0 0


(B.5)

where
l j =

1

K̂ j+1− K̂ j−1

1

K̂ j− K̂ j−1

u j =
1

K̂ j+1− K̂ j−1

1

K̂ j+1− K̂ j

Denote M(Ti+1,Ti, σ̂(Ti, .)) = (I−SD(Ti+1−Ti)). We can see that M(Ti+1,Ti, σ̂(Ti, .)) is a
tri-diagonal matrix parametrized by σ̂(Ti, .), Ti+1, and Ti.

Given the price vector at Ti as the input:[
Ĉ(Ti, K̂0), Ĉ(Ti, K̂1), Ĉ(Ti, K̂2), · · · Ĉ(Ti, K̂N)

]
and the matrix M(Ti+1,Ti, σ̂(Ti, .)), we can compute the price vector at Ti+1:[

Ĉ(Ti+1, K̂0), Ĉ(Ti+1, K̂1), Ĉ(Ti+1, K̂2), · · · Ĉ(Ti+1, K̂N)
]
.

We want the price vector at Ti+1 produced by the above LVF to match the price vector we com-
puted using SABR model on Ti+1. In other words, we will try to find the σ̂(Ti, .), which has the
form as in equation (B.1). Andreasen and Huge [6] suggest one can obtain σ̂∗(Ti, .) by solving
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the following non-linear least square problem:

inf
σ̂(Ti,.)

N

∑
j=0

(
Ĉ(Ti+1, K̂ j)−ĈSABR(Ti+1, K̂ j)

VegaB(Ti+1, K̂ j)

)2

(B.6)

where we set:

ĈSABR(Ti+1, K̂ j) =
C̃SABR(Ti+1,K j)

D(t,Ti+1)F(t,Ti+1)
,

VegaB(Ti+1, K̂ j) is the vega computed using SABR model calibrated to market prices at Ti+1 and
C̃SABR(T,K) is the arbitrage-free SABR model value we produce in previous section.

Note that for the intial case T0 = t, Ĉ(T0, K̂) = max(1− K̂,0) is given as the payoff. Given
Ĉ(T0, K̂), we firstly solve (B.6) for the σ̂∗(T0, .). After obtaining σ̂∗(T0, .), we can then solve the
forward system (B.6) to get 

Ĉ(Ti, K̂0)

Ĉ(Ti, K̂1)

Ĉ(Ti, K̂2)
...

Ĉ(Ti, K̂N)


sequentially for i = 1,2, . . . ,TM−1, where M is the number of expiries in the grid.

After we solved for σ̂∗(Ti, .), i = 0,1, . . . ,TM−1, for T ∈ (Ti,Ti+1], we can fill in the gaps by:
Ĉ(T, K̂0)

Ĉ(T, K̂1)

Ĉ(T, K̂2)
...

Ĉ(T, K̂max)

=M−1(T,Ti, σ̂
∗(Ti, .))


Ĉ(Ti, K̂0)

Ĉ(Ti, K̂1)

Ĉ(Ti, K̂2)
...

Ĉ(Ti, K̂max)

 (B.7)

where M(T,Ti, σ̂
∗(Ti, .)) = I−SD(T −Ti) is now a tri-diagonal matrix parametrized by σ∗(Ti, .),

T and Ti. Note that σ∗(Ti, .) is known after the calibration (B.6). We then recover the call price
by:

C(T,K) = Ĉ(T, K̂)D(t,T )F(t,T )

Interpolation based on the above procedure can guarantee the option prices computed is arbitrage-
free. Detailed proofs are can be found in Appendix E.

In this thesis, we only use the above volatility interpolation algorithm to interpolate the option
value produced by SABR model for expiry T ∈ (Ti,Ti+1), where Ti and Ti+1 are expiries listed in
the market. A natural question the reader may ask is that why we cannot apply above algorithm
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with purely market prices? In other words, we solve the below problem instead of problem (B.6):

inf
σ̂(Ti,.)

∑
j
(
Ĉ(Ti+1, K̂ j)−Ĉmkt(Ti+1, K̂ j)

VegaB(Ti+1, K̂ j)
)2 .

In reality, it is hard to find a grid of normalized strike: 0 = K̂0 < K̂1 < · · · < K̂N , for which,
Ĉmkt(Ti, K̂ j), i = 0,1, . . . ,N all exists. Especially, if we want our grid of strike to cover both
in-the-money option and out-of-the-money option. That is why we use SABR model which can
produce option value for any K for an expiry Ti in market after the calibration. In this way, we
can use any grid of strikes as we want.

Following the discussion in section B, we summarize the SABR smile calibration and the
corresponding fix for the butterfly arbitrage and the calendar arbitrage in Algorithm B.1 and
Algorithm B.2. We summarize the LVF volatility interpolation in Algorithm B.3. With the help
from SABR model and LVF volatility interpolation, we essentially obtain a parametrization of
the option value at each trading date t: {V t

model(T,K)}T,K . Here the expiry T can be any value
that is later than t and before the maximum expiry T mkt

t,max observed in the market on date t. The
strike K price can be any value. We summarize the process of constructing the arbitrage-free
options values for a given grid of strikes and a given grid of expiries in Algorithm B.4.
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Algorithm B.1: Function For SABR Calibration
1 Function SABRCalibration(t, T , Kgrid):

Input: t: An option trading date t.
T : A market option expiry.
Kgrid = {K0,K1, . . . ,KN}: A grid of strikes for outputting option values.

2 Extract the set of strikes available in market at time t: Kmkt(t,T )
3 Extract the set of market option prices {V mkt

t,T,K|∀K ∈Kmkt(t,T )}.
4 Set β ∗ = 1
5 Solve:

(α∗,ν∗,ρ∗) = argminα,ν ,ρ ∑K∈Kmkt(t,T )

(
VSABR(St , t,T,K,r,q;α,β ∗,ν ,ρ)−V mkt

t,T,K

)2

6 Calculate the call option prices CSABR(T,K) for K ∈Kgrid using the SABR
parameters β ∗,α∗,ν∗,ρ∗.

7 Check if there is any violation of the following condition on the grid of strikes Kgrid
with i = 1, . . . ,N−1:

CSABR(T,Ki−1)−CSABR(T,Ki)>
Ki−Ki−1

Ki+1−Ki
(CSABR(T,Ki)−CSABR(T,Ki+1)) (B.8)

8 if No violation then
9 Set KL = K0, KU = KN

10 else
11 Set KL to be the smallest Ki where condition (B.8) hold
12 Set KU to be the largest Ki where condition (B.8) hold

13 Calculate call option value function with no-butterfly arbitrage:

CSABR(T,K)←Cĝ(x)(T,K) =

 CBS(T,K;σB(KL)) if 0 < K < KL

CSABR(T,K) if KL ≤ K ≤ KU

CBS(T,K;σB(KU)) if K > KU

/* σB(K) is the short form of the SABR implied volatility

approximation (2.2.11). */

14

15 return CSABR(T,K)
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Algorithm B.2: Function For Arbitrage Free Smile With SABR Model.
1 Function SABRArbitrageFree( t, Tmkt ,Kgrid):

Input: t: An option trading date t.
Tmkt

t = {T0 = t, . . . ,TM}: A grid of market available expiries at time t.
Kgrid = {K0,K1, . . . ,KN}: A grid of strikes for outputting option value.
SABRCalibration: SABR Calibration Algorithm as in Algorithm B.1.

2 Set C̃SABR(T0,K) = max(St−K,0)
/* Option value with expiry T0 = t is the payoff */

3 for i = 1; i≤M; i = i+1 do
4 CSABR(Ti,K)← SABRCalibration(t,Ti,Kgrid)

5

6 for i = 1; i < M; i = i+1 do
7 shi f tTi =−min

{
minK∈Kgrid

[
CSABR(Ti,K)−CSABR(Ti−1,K)

]
,0
}
.

8 if shi f tTi 6= 0 then
9 for j = i; j < M; j = j+1 do

/* We need to shift every Tj ≥ Ti, if shift is not zero */

10 CSABR(Tj,K)←CSABR(Tj,K)+ shi f tTi

11 C̃SABR(Ti,K)←CSABR(Ti,K)

12 else
13 C̃SABR(Ti,K)←CSABR(Ti,K)

14 return {C̃SABR(T,K)|∀T ∈ Tmkt , ∀K ∈Kgrid}
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Algorithm B.3: Function For LVF Calibration.
1 Function LVFCalibration( t,Tmkt

t , Kgrid ,Tgrid):
Input: t: An option trading date t.

Tmkt
t = {T0 = t, . . . ,TM}: A grid of market available expiries at time t.

Kgrid = {K0,K1, . . . ,KN}: A grid of strikes for outputting option value.
Tgrid = {T B

0 = t, . . . ,T B
NB
}: A grid of expiries for outputting option value.

This grid includes every business days between T0 = t and TM.
SABRArbitrageFree: SABR Surfrace Algorithm as in Algorithm B.2.

2 {C̃SABR(T,K)|∀T ∈ Tmkt
t , ∀K ∈Kgrid} ← SABRArbitrageFree(t,Tmkt

t ,Kgrid)
3 Calculate

ĈSABR(T, K̂) =
C̃SABR(T,K)

D(t,T )F(t,T )
, K̂ =

K
F(t,T )

D(t,T ) = e−r(T−t),F(t,T ) = Ste(r−q)(T−t)

4 ’ Set Ĉ(T0, K̂) = max(1− K̂,0)
/* The normalized option value with expiry T0 = t is the normalized

payoff */

5 for i = 0; i < M; i = i+1 do
6 Obtain the local volatility function σ̂∗(Ti,K) by solving problem (B.6)
7 Construct S parametrized by σ̂∗(Ti,K) as in equation (B.4)
8 Construct D as in equation (B.5)
9 for j = 1; j < NB; j = j+1 do

10 if T B
j ∈ (Ti,Ti+1] then

11 Construct M(T B
j ,Ti, σ̂

∗(Ti, .)) = (I−SD(T B
j −Ti))

12 Compute 
Ĉ(T B

j , K̂0)

Ĉ(T B
j , K̂1)

Ĉ(T B
j , K̂2)
...

Ĉ(T B
j , K̂N)

=M−1(T B
j ,Ti, σ̂

∗(Ti, .))


Ĉ(Ti, K̂0)

Ĉ(Ti, K̂1)

Ĉ(Ti, K̂2)
...

Ĉ(Ti, K̂N)



13 return {Ĉ(T, K̂)|∀T ∈ Tgrid , ∀K ∈Kgrid}
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Algorithm B.4: Function For Arbitrage Free Surface Construction.
1 Function ArbitrageFreeSurface( t, Kgrid ,Tmkt ,optType):

Input: t: An option trading date t.
Kgrid = {K0,K1, . . . ,KN}: A grid of strikes for outputting option value.
Tmkt

t = {T0 = t, . . . ,TM}: A grid of market available expiries at time t.
optType: Call or Put Option.
LVFCalibration: The volatility Interpolation function as in Algorithm B.3.

2 Extract Tgrid = {T B
0 = t, . . . ,T B

NB
= TM}: This grid includes every business days

between t and TM. The TM is the maximum market expiry date in Tmkt
t .

3 {Ĉ(T, K̂)|∀T ∈ Tgrid , ∀K ∈Kgrid} ← LVFCalibration(t,Tmkt
t ,Kgrid ,Tgrid)

/* Construct Put opton value using call-put parity */

4

Ct
model(T,K) = Ĉ(T, K̂)D(t,T )F(t,T ),D(t,T ) = e−r(T−t),F(t,T ) = Ste(r−q)(T−t)

Pt
model(T,K) =Ct

model(T,K)−St +KD(t,T )

5 if optType=Call then
6

V t
model(T,K) =Ct

model(T,K)

7 else
8

V t
model(T,K) = Pt

model(T,K)

9 return {V t
model(T,K)|∀T ∈ Tgrid , ∀K ∈Kgrid}
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Appendix C

Construction of Training, Testing and
Validation Data Sets For GRUTOTAL

In this chapter, we provide more details on the construction process for the training, testing and
validation data sets.

Step 1: We test on options with the real market expiries. The set of all testing expiries is defined
as:

TAllTest = {T mkt |2000-01-01≤ T mkt ≤ 2015-08-31,T mkt is a market expiry date }

Namely, we test on all the market observed expiry date T , which are between 2000-01-01
to 2015-08-31. Note that, we have included two crisis periods: the burst of dot-com bubble
period (2000 to 2002) and subprime mortgage crisis period (2007 to 2008). We assume we
are on the sell-side of the option trading.

Step 2: For a testing expiry date T test ∈ TAllTest , we construct the testing set below:

TestSet = {Scenario(T test ,K)|∀K ∈Kmkt
grid(t0,T

test)}

where Kmkt
grid(t0,T

test) is the grid of market strikes for expiry T test that can be observed
directly from market on the initial date t0. And t0 is 100 business away from T test . In
other word, the total hedging horizon is NH = 100 business days. We build a sequence
of models to hedge those testing scenarios with the same expiry date T test and different
strikes K ∈ Kmkt

grid(t0,T
test). The testing scenario: Scenario(T test ,K) is constructed using

procedure described in Algorithm C.2.

Step 3: On the initial date t0, we prepare the training set as:

TrainSet = {Scenario(T,K)|∀K ∈Kgrid(T −
100
250

,T ),∀T ∈ B(Tmin, t0)}
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B(Tmin, t0) = {t|t is a business day,Tmin < t < t0}

where Tmin is the earliest expiry to be included in the training set and B(Tmin, t0) is the set
of all business days t with Tmin < t < t0. We set Tmin to be 3 years prior to the intial date
of the testing scenarios t0. The grid of strikes Kgrid(t,T ) is defined as: Kgrid(t,T ) = {0 =
K0 < K1 < · · ·< 2∗Kmkt

max(t,T )} with Ki−Ki−1 = 5, i ≥ 1 and Kmkt
max(t,T ) is defined as the

maximum of strikes we observed in market between between t and T . In other words, we
include all training hedging scenarios for which the expiry dates are before t0 and later
than Tmin.

The validation set is:

ValSet = {Scenario(T,K)|T = t0,∀K ∈Kgrid(T −
100
250

,T )}

In other words, we include all training hedging scenarios for which the expiry date is t0 as
the validation set. Note that for training and validation set, we do not require T and K to be
observed directly from market. We train the model based on the training sets. We get the
hedging position for the testing scenarios from the data-driven model for t0 only: δ M

t0,T,K .

Step 4: Similarly, on any rebalancing date t j > t0, the training set and validation set are:

TrainSet = {Scenario(T,K)|∀K ∈Kgrid(T −
100
250

,T ),∀T ∈ B(Tmin, t j)}

B(Tmin, t j) = {t|t is a business day,Tmin < t < t j}

where B(Tmin, t j) is the set of all business days t with Tmin < t < t j.

ValSet = {Scenario(T,K)|T = t j,∀K ∈Kgrid(T −
100
250

,T )}

We update the model based on the new training set. We get the hedging position from the
data-driven model GRUTOTAL for t j only: δ M

t j,T,K . Notice that the range for the allowed ex-
piries in the training set is extended because B(Tmin, t0)⊂ B(Tmin, t j) when t j > t0. There-
fore, We have included new data into the training data set. We also validate our model
based on most recent scenarios expiring on t j. Note that there is no forward looking
scenarios in training the model since at a rebalancing date t j, the training scenarios and
validation scenarios all expired already.
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Algorithm C.1: Function For Constructing Training Hedging Scenarios.
1 Function TrainingScenarioGeneration(T ,optType):

Input: T : an expiry date for the hedging scenarios.
optType: Call or put option.
ArbitrageFreeSurface: The function for surface construction as in
Alogrithm B.4.

2 Set t0 = T − 100
250 : A initial date for setting up the hedging scenarios.

3 Let tB = {t0, . . . , tN = T} be the set of business dates between t0 and T sorted in
ascending order.

4 Let Kmkt
max(t0,T ) be the maximum of strikes we observed in market between between

t0 and T .
5 Construct the grid of strikes: Kgrid(t0,T ) = {0 = K0 < K1 < · · ·< 2∗Kmkt

max(t0, T̂ )}
where Ki−Ki−1 = 5

6 for t ∈ tB do
/* Construct the Surface for each date t ∈ tB */

7 Tmkt
t ← the set of market expiries at t

8 ArbitrageFreeSurface(t, Kgrid(t0,T ),Tmkt
t ,optType)

9 for t ∈ tB do
10 for K ∈Kgrid(t0,T ) do
11 Extract underlying price St directly from market.
12 Extract option value Vt,T,K =V t

model(T,K) on the ArbitrageFreeSurface at t.
13 Construct a vector of features yT,K

t based on model option value.

14 for K ∈Kgrid(t0,T ) do
/* {St |∀t ∈ tB}: the time-series of underlying prices.

{Vt,T,K|∀t ∈ tB}:the time-series of option prices for a hedging

scenario identified by (T,K).

{yT,K
t |∀t ∈ tB}:the time-series of feature vectors for a

hedging scenario identified by (T,K). */

15 Scenario(T,K)←{St ,Vt,T,K,yT,K
t |∀t ∈ tB}

16 return {Scenario(T,K)|∀K ∈Kgrid(t0,T )}
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Algorithm C.2: Function For Constructing Testing Hedging Scenarios.
1 Function TestingScenarioGeneration(T ,optType):

Input: T : A market expiry date for the hedging scenarios.
optType: Call or put option.
ArbitrageFreeSurface: The function for surface construction as in
Alogrithm B.4.

2 Set t0 = T − 100
250 : A initial date for setting up the hedging scenarios.

3 Extract tB = {t0, . . . , tN = T}: the set of business dates between t0 and T sorted in
ascending order.

4 Extract all market available strikes at t0 for the expiry T as the grid of strikes:
Kmkt

grid(t0,T ) = {K
mkt
t0,T,1, . . . ,K

mkt
t0,T,NK

}
5 for t ∈ tB do

/* Construct the Surface for each date t ∈ tB */

6 Tmkt
t ← the set of market expiries at time t

7 ArbitrageFreeSurface(t, Kmkt
grid(t0,T ),T

mkt
t ,optType)

8 for t ∈ tB do
9 for K ∈Kmkt

grid(t0,T ) do
10 Extract underlying price St directly from market.
11 if V mkt

t,T,K does not exist then
12 Extract option value as Vt,T,K =V t

model(T,K) on the ArbitrageFreeSurface
at t.

13 Construct a vector of fetures yT,K
t based on model option value.

14 else
15 Extract option value as Vt,T,K =V mkt

t,T,K .
16 Construct a vector of features yT,K

t based on market option value.

17 for K ∈Kgrid(t0,T ) do
/* {St |∀t ∈ tB}: the time-series of underlying prices.

{Vt,T,K|∀t ∈ tB}:the time-series of option prices for a hedging

scenario identified by (T,K).

{yT,K
t |∀t ∈ tB}:the time-series of feature vectors for a

hedging scenario identified by (T,K). */

18 Scenario(T,K)←{St , Vt,T,K, yT,K
t |∀t ∈ tB}

19 return {Scenario(T,K)|∀K ∈Kmkt
grid(t0,T )}
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Algorithm C.3: Building Model To Hedge Testing Scenarios Expiring on T test .
1 Function BuildModelForScenarios( T test , optType):

Input: T test : A market expiry date for the testing hedging scenarios.
optType: Call or put option.
TestingScenarioGeneration: The function for generating testing
scenarios as in Algorithm C.2.
TrainingScenarioGeneration: The function for generating training
scenarios as in Algorithm C.1.

2 Set t0← T test− 100
250

3 Extract tRB = {t0, . . . , t j, . . . , tNrb−1}: the set of rebalancing dates sorted in ascending
order. Each rebalancing time is t j = t0 + j×∆t and ∆t is the gap between the
adjacent rebalancing dates.

4 Extract all market available strikes at t0 for the expiry T test as the grid of
strikes:Kmkt

grid(t0,T
test)

5 TestSet← TestingScenarioGeneration(T test ,optType)
6 Set Tmin← t0−3: Tmin is 3 years prior to t0.
7 for j = 0, j < Nrb, j = j+1 do
8 TrainSet← /0
9 Extract B(Tmin, t j): the set of all business days between Tmin and t j.

10 for T ∈ B(Tmin, t j) do
11 TrainSubSet← TrainingScenarioGeneration(T,optType)
12 TrainSet← TrainSet∪TrainSubSet

13 ValSet← TrainingScenarioGeneration(t j,optType)
14 Bulid model based on TrainSet
15 Validate model based on ValSet
16 Compute the hedging position at t j for TestSet:

{δ M
t j,T,K|∀K ∈Kmkt

grid(t0,T ),T = T test}

17 return {δ M
t,T,K|∀t ∈ tRB,∀K ∈Kmkt

grid(t0,T ),T = T test}
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Appendix D

Fixing the Butterfly Arbitrage for SABR
Model

In this thesis, we assume the adjusted p.d.f is of the following simplified form:

ĝ(x) =


λL q(x; µL,σL), if 0 < x < KL
p(x;T,St), if KL ≤ x≤ KU
λU q(x; µU ,σU), if x > KU

(D.1)

Here, KL and KU are the lower and upper strike limits, within which the implicit probability
density function (p.d.f) p(x;T,St) from SABR model is assumed to be valid. The q(x; µ,σ) is
the p.d.f of a log-normal distribution parametrized by µ and σ :

q(x; µ,σ) =
1

xσ
√

2π
e−

(ln(x)−µ)2

2σ2 .

We require the following conditions to be satisfied:

1. Integrability constraint∫ KL

0
λLq(x; µL,σL)dx+

∫ KU

KL

p(x;T,St)dx+
∫

∞

KU

λU q(x; µU ,σU)dx = 1 (D.2)

2. Martingale constraint∫ KL

0
xλLq(x; µL,σL)dx+

∫ KU

KL

xp(x;T,St)dx+
∫

∞

KU

xλU q(x; µU ,σU)dx = F(t,T ) (D.3)

The Integrability constraint ensures that ĝ(x) is a valid p.d.f. The martingale constraint
ensures that E[ST ] = F(t,T ) = Ste(r−q)(T−t) under their adjusted p.d.f.
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Furthermore, we set µL = ln(St)+ (r− q− σ2
L

2 )(T − t) and µU = ln(St)+ (r− q− σ2
U
2 )(T − t)

such that we have only four parameters to be solved: {σL,σU ,λL,λU}.

Let:

• CBS(T,K;σ) and PBS(T,K;σ) be the call and put option prices from Black-Scholes model
with the Black-Scholes volatility σ .

• DCBS(T,K;σ) and DPBS(T,K;σ) be the digital call and put option prices from Black-
Scholes model with the Black-Scholes volatility σ where a digital call pays one dollar
if the underlying price exceeds the strike and a digital put pays the same amount if the
underlying is below the strike.

• σB be implied Black’s volatility given by the SABR approximation formula (2.2.11) for
K ∈ [KL,KU ]. For simplicity, we write σB(K) to denote the implied Black’s volatility given
by the SABR formula (2.2.11) for a strike K since the other parameters in σB(F, t,T,K;α,β ,ν ,ρ)
remain unchanged in the following discussion for an expiry T at a time t.

By above settings, we will have:

D(t,T )
∫ KL

0
λLq(x; µL,σL)dx = λLDPBS(T,KL;σL) (D.4)

D(t,T )
∫

∞

KU

λU q(x; µU ,σU)dx = λU DCBS(T,KU ;σU) (D.5)

D(t,T )
∫ KL

0
(KL− x)λLq(x; µL,σL)dx = λLPBS(T,KL;σL) (D.6)

D(t,T )
∫

∞

KU

(x−KU)λU q(x; µU ,σU)dx = λUCBS(T,KU ;σU) (D.7)

If we have the below equations hold:

λLDPBS(T,KL;σL) = DPBS(T,KL;σB(KL)) (D.8)
λU DCBS(T,KU ;σU) = DCBS(T,KU ;σB(KU)) (D.9)

λLPBS(T,KL;σL) = PBS(T,KL;σB(KL)) (D.10)
λUCBS(T,KU ;σU) =CBS(T,KU ;σB(KU)) (D.11)

we can show the Integrability constraint (D.2) and martingale constraint (D.3) are also satisfied
Furthermore, the solution to the equations (D.8) to (D.11) is {σL = σB(KL),σU = σB(KU),λL =
1,λU = 1}. Therefore, if we have {σL =σB(KL),σU =σB(KU),λL = 1,λU = 1}, the Integrability
constraint (D.2) and martingale constraint (D.3) are satisfied
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Here, we firstly show the Integrability constraint (D.2) is satisfied if we have equations (D.8)
to (D.11) hold. Combining equation (D.4) and equation (D.8), we have:

1
D(t,T )

DPBS(T,KL;σB(KL)) =
1

D(t,T )
λLDPBS(T,KL;σL) =

∫ KL

0
λLq(x; µL,σL)dx (D.12)

Similarly, combining equation (D.5) and equation (D.9), we have

1
D(t,T )

DCBS(T,KU ;σB(KU)) =
1

D(t,T )
λLDCBS(T,KU ;σU) =

∫
∞

KU

λLq(x; µL,σL)dx (D.13)

We further note that:∫ KU

KL

p(x;T,St) =
∫

∞

KL

p(x;T,St)−
∫

∞

KU

p(x;T,St)

=
1

D(t,T )
DCBS(T,KL;σB(KL))−

1
D(t,T )

DCBS(T,KU ;σB(KU))

(D.14)

By call-put parity, we have:

DCBS(T,KL;σB(KL)) = D(t,T )−DPBS(T,KL;σB(KL))

Therefore, we have:∫ KU

KL

p(x;T,St) =
∫

∞

KL

p(x;T,St)−
∫

∞

KU

p(x;T,St)

= 1− 1
D(t,T )

DPBS(T,KL;σB(KL))−
1

D(t,T )
DCBS(T,KU ;σB(KU))

(D.15)

Combining equations (D.12) and (D.13) with equation (D.15), we show that the Integrability
constraint (D.2) is satisfied.

In terms of the martingale constraint, we firstly split the equation (D.6) as follows:∫ KL

0
(KL− x)λL q(x; µL,σL)dx =

∫ KL

0
KλL q(x; µL,σL)dx−

∫ KL

0
xλL q(x; µL,σL)dx (D.16)

Plugging in equation (D.4), we have:

KLλLDPBS(T,KL;σL)−λLPBS(T,KL;σL) = D(t,T )
∫ KL

0
xλL q(x; µL,σL)dx (D.17)

Similarly, we have:

KU λU DCBS(T,KU ;σU)+λUCBS(T,KU ;σU) = D(t,T )
∫

∞

KU

xλU q(x; µU ,σU)dx (D.18)
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Furthermore, we can show that for KL < K < KU :

D(t,T )
∫ KU

KL

(x−K)p(x;T,St)dx = [CBS(T,KL;σB(KL))+(KL−K)DCBS(T,KL;σB(KL))]

− [CBS(T,KU ;σB(KU))+(KU −K)DCBS(T,KL;σB(KU))]

(D.19)

From equation (D.15) we know that:

D(t,T )
∫ KU

KL

K p(x;T,St)dx = K[D(t,T )−DPBS(T,KL;σB(KL))−DCBS(T,KU ;σB(KU))]

Therefore, we have

D(t,T )
∫ KU

KL

xp(x;T,St)dx = [CBS(T,KL;σB(KL))+(KL−K)DCBS(T,KL; ;σB(KL))]

− [CBS(T,KU ;σB(KU))+(KU −K)DCBS(T,KL;σB(KU))]

+K[D(t,T )−DPBS(T,KL;σB(KL))−DCBS(T,KU ;σB(KU))]

(D.20)

By the call-put parity, we have:

CBS(T,KL;σB(KL)) = D(t,T )[F(t,T )−KL]+PBS(T,KL;σB(KL))

DCBS(T,KL;σB(KL)) = D(t,T )−DPBS(T,KL;σB(KL))
(D.21)

Combining equation (D.20) and equations (D.21), we then have:∫ KU

KL

xp(x;T,St)dx =F(t,T )− 1
D(t,T )

[KLDPBS(T,KL;σB(KL))−PBS(T,KL;σB(KL))]−

1
D(t,T )

[KU DCBS(T,KU ;σB(KU))+CBS(T,KU ;σB(KU))]

(D.22)

Plugging in equations (D.8) to (D.11) into equation (D.22), we have∫ KU

KL

xp(x;T,St)dx =F(t,T )− 1
D(t,T )

[KLDPBS(T,KL;σL)−PBS(T,KL;σL)]−

1
D(t,T )

[KU DCBS(T,KU ;σU)+CBS(T,KU ;σU)]

(D.23)
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Lastly, combining equation (D.16), (D.17) and (D.23) together,

F(t,T ) =
1

D(t,T )
λL[KLDPBS(T,KL;σL)−PBS(T,KL;σL)]+

F(t,T )− 1
D(t,T )

[KLDPBS(T,KL;σL)−PBS(T,KL;σL)]−

1
D(t,T )

[KU DCBS(T,KU ;σU)+CBS(T,KU ;σU)]

1
D(t,T )

λU [KU DCBS(T,KU ;σU)+CBS(T,KU ;σU)]

(D.24)

We therefore prove the martingale constraint (D.3) is satisfied

Since the adjusted p.d.f (D.1) satisfies Integrability constraint (D.2) and martingale constraint
(D.3) with the setting:

σL = σB(KL) , σU = σB(KU)

λL = 1 , λU = 1

µL = ln(St)+(r−q− σB(KL)
2

2
)(T − t)

µU = ln(St)+(r−q− σB(KU)
2

2
)(T − t)

(D.25)

and will not be negative at tails of the distribution because that the two tails are from two log-
normal distributions, we can conclude that the adjusted CSABR(T,K) will be free of butterfly
arbitrage.

In this thesis, we use the risk neutral adjustment (D.1) with 4 parameters {σL,σU ,λL,λU}
due to its simplicity. Notice that density function ĝ(x) calibrated following the above risk neutral
adjustment maybe discontinuous at KL and KU . If one want to ensure the continuity of the density
function, one can solve the overdetermined system suggested by Brunner and Hafner [27].
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Appendix E

No-Arbitrage Properties of the Volatility
Interpolation Algorithm

Define the normalized call price Ĉ(T, K̂) in terms of discount factor D(t,T ) and forward price
F(t,T ) and the normalized strike K̂ as:

D(t,T ) = e−r(T−t)

F(t,T ) = Ste(r−q)(T−t)

K̂ =
K

F(t,T )

Ĉ(T, K̂) =
C(T, K̂F(t,T ))
D(t,T )F(t,T )

=
C(T,K)

D(t,T )F(t,T )

In this thesis, we use the Dupire’s equation to interpolate the implied volatilities between expiries:

∂Ĉ(T, K̂)

∂T
=

1
2

σ̂
2(T, K̂)K̂2 ∂ 2Ĉ(T, K̂)

∂ K̂2
, σ̂(T, K̂) = σ(T,K)

Assume we are given a grid of expiries available in market t = T0 < T1 < · · ·< TM and a grid
of normalized strike: 0 = K̂0 < K̂1 < · · ·< K̂N , and σ̂(T, K̂) is a piecewise constant functions for
a given Ti.

σ̂(Ti, K̂) =



σ̂Ti,K̂0
, if K̂ ≤ K̂0

...
...

σ̂Ti,K̂ j
, if K̂ j−1 < K̂ ≤ K̂ j

...
...

σ̂Ti,K̂N
, if K̂ > K̂N

(E.1)
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The fully implicit finite difference method in matrix form is:
Ĉ(Ti, K̂0)

Ĉ(Ti, K̂1)

Ĉ(Ti, K̂2)
...

Ĉ(Ti, K̂N)

= (I−SD(Ti+1−Ti))


Ĉ(Ti+1, K̂0)

Ĉ(Ti+1, K̂1)

Ĉ(Ti+1, K̂2)
...

Ĉ(Ti+1, K̂N)

 (E.2)

where I is the identity matrix, S is a diagonal matrix parameterized by σ̂(Ti, .) as in equation
(E.1), D is proportional to the discrete second order difference matrix and (Ti+1−Ti) is a scaler.
Specifically:

S=

σ̂2(Ti, K̂0)
... . . . ...

σ̂2(Ti, K̂N)

 (E.3)

D=



0 0
l1 −l1−u1 u1

l2 −l2−u2 u2
. . . . . . . . .

lN−1 −lN−1−uN−1 uN−1
0 0


(E.4)

where
l j =

1

K̂ j+1− K̂ j−1

1

K̂ j− K̂ j−1

u j =
1

K̂ j+1− K̂ j−1

1

K̂ j+1− K̂ j

Given the price vector at Ti as the input:[
Ĉ(Ti, K̂0), Ĉ(Ti, K̂1), Ĉ(Ti, K̂2), · · · Ĉ(Ti, K̂N)

]
and the matrix M(Ti+1,Ti, σ̂(Ti, .)), we can compute the price vector at Ti+1:[

Ĉ(Ti+1, K̂0), Ĉ(Ti+1, K̂1), Ĉ(Ti+1, K̂2), · · · Ĉ(Ti+1, K̂N)
]
.

We want the price vector at Ti+1 produced by the above LVF to match the price vector we com-
puted using SABR model on Ti+1. In other words, we will try to find the σ̂(Ti, .), which has the
form as in equation (E.1), by solving the following non-linear least square problem:

inf
σ̂(Ti,.)

∑
j
(
Ĉ(Ti+1, K̂ j)−ĈSABR(Ti+1, K̂ j)

VegaB(Ti+1, K̂ j)
)2 (E.5)
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where we set:

ĈSABR(Ti+1, K̂ j) =
C̃SABR(Ti+1,K j)

D(t,Ti+1)F(t,Ti+1)
,

VegaB(Ti+1, K̂ j) is the vega computed using SABR model calibrated to market prices at Ti+1 and
C̃SABR(T,K) is the arbitrage-free SABR model value we produce in previous section.

Note that for the initial case T0 = t, Ĉ(T0, K̂) = max(1− K̂,0) is given as the payoff. Given
Ĉ(T0, K̂), we firstly solve (E.5) for the σ̂(T0, .). After obtaining σ̂(T0, .), we can then solve the
forward system (E.5) to get 

Ĉ(Ti, K̂0)

Ĉ(Ti, K̂1)

Ĉ(Ti, K̂2)
...

Ĉ(Ti, K̂N)


sequentially for i = 1,2, . . . ,TM−1, where M is the number of expiries in the grid.

After we solved for σ̂(Ti, .), i = 0,1, . . . ,TM−1, for T ∈ (Ti,Ti+1], we can fill in the gaps by:
Ĉ(T, K̂0)

Ĉ(T, K̂1)

Ĉ(T, K̂2)
...

Ĉ(T, K̂max)

=M−1(T,Ti, σ̂(Ti, .))


Ĉ(Ti, K̂0)

Ĉ(Ti, K̂1)

Ĉ(Ti, K̂2)
...

Ĉ(Ti, K̂max)

 (E.6)

where M(T,Ti, σ̂(Ti, .)) = I−SD(T −Ti) is now a tri-diagonal matrix parametrized by σ(Ti, .),
T and Ti. Note that σ(Ti, .) is known after the calibration. We then recover the call price by:

C(T,K) = Ĉ(T, K̂)D(t,T )F(t,T )

The finite difference scheme (E.2) and (E.6) produce call option prices that are free of but-
terfly and calendar arbitrage. We prove this with the following Theorem E.1 and Theorem E.2.
In this thesis, we provide proofs for discrete cases with a given grid of strikes and expiries. For
detailed proofs for the continuous cases, interested readers can refer to [6].

Theorem E.1. On the discrete strike grid K̂0, . . . , K̂N , the finite difference scheme (E.2) and (E.6)
produces call option prices that are convex in strikes:

C(T,Ki−1)−C(T,Ki)>
Ki−Ki−1

Ki+1−Ki
(C(T,Ki)−C(T,Ki+1)) when Ki+1 > Ki > Ki−1

Proof. We prove this by the mathematical induction.
Base case: For the first expiry T0 = t, we have Ĉ(T0, K̂) = max(1− K̂,0) which is the normalized
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payoff. We naturally have the convexity in strikes at T0. Denote the vector of option value to be:

Ĉ(T0) =
[
Ĉ(T0, K̂0) Ĉ(T0, K̂1) Ĉ(T0, K̂2) · · · Ĉ(T0, K̂N)

]
As we can see, the convexity in strikes at T0 implies all elements in DĈ(T0) are non-negative.
Induction step: Assume we have the convexity in strikes at Ti, i = 0,1, . . . ,N− 1, i.e., all el-
ements in DĈ(Ti) are non-negative. The finite difference scheme (E.6) can be written as the
matrix equation system

(I−SD(T −Ti))Ĉ(T ) = Ĉ(Ti), i = 0,1,2, . . . ,N−1, T ∈ (Ti,Ti+1]. (E.7)

Thus, we can rewrite the equation (E.7) as

[S−1− D̃](SD̃Ĉ(T )) = D̃Ĉ(Ti) (E.8)

where we denote D̃= D(T −Ti).

We assume that σ̂(Ti, K̂)> 0 for all K̂, therefore we can easily see that:

A= S−1− D̃

is an M-Matrix [150] and thus all elements of A−1 are non-negative.

We can then easily see that if elements in the vector DĈ(Ti) are all non-negative, then el-
ements in D̃Ĉ(Ti) are all non-negative. With all elements of A−1 being non-negative, we can
easily show that elements in the vector SD̃Ĉ(T ) are all non-negative. Furthermore, since:

SD̃Ĉ(T ) = (T −Ti)SDĈ(T ),

and S is a diagonal matrix with non-negative diagonal elements, we can easily see that all ele-
ments in DĈ(T ) are non-negative which is equivalent to show that:

C(T,Ki−1)−C(T,Ki)>
Ki−Ki−1

Ki+1−Ki
(C(T,Ki)−C(T,Ki+1)) .

Conclusion: Since both the base case and the induction step have been proved as true, by math-
ematical induction, we therefore prove the convexity in strikes which proves the absence of
butterfly arbitrage.

Theorem E.2. On the discrete strike grid K̂0, . . . , K̂N , the finite difference scheme (E.2) and (E.6)
produces call option prices increasing in maturity:

C(Ti,Ki)≥C(Ti−1,Ki) when Ti > Ti−1

Proof. Recall that, for T ∈ (Ti,Ti+1], i = 0, . . . ,M− 1, we rewrite the finite difference scheme
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(E.6) as:
[I−SD(T −Ti)]Ĉ(T ) = Ĉ(Ti) (E.9)

Differentiating equation (E.9) by T on both side:

∂ [I−SD(T −Ti)]

∂T
Ĉ(T )+ [I−SD(T −Ti)]

∂ Ĉ(T )
∂T

= 0

Therefore:

[I−SD(T −Ti)]
∂ Ĉ(T )

∂T
= SDĈ(T )

Multiply S−1 on both side:

[S−1−D(T −Ti)]
∂ Ĉ(T )

∂T
= DĈ(T ) (E.10)

Recall we define:
A= S−1− D̃

where we denote D̃= D(T −Ti). Therefore, we can rewrite equation (E.10) as:

∂ Ĉ(T )
∂T

= A−1DĈ(T ) (E.11)

Since in Theorem E.1 we already prove the convexity in strikes which implies elements in DĈ(T )
are all non-negative and all elements in A−1 are non-negative since A is an M-Matrix [150],

we can further conclude that all elements in ∂ Ĉ(T )
∂T are non-negative. Therefore we prove the

generated option prices are increasing in maturity which proves the absence of calendar arbitrage.
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Appendix F

Model Structure of GRUTOTAL and
GRULOCAL

TOTAL

Below we briefly illustrate the model structure of GRUTOTAL and GRULOCAL
TOTAL

F.1 Feature Selection via Embedded Feature Weighting

Similarly as in GRUδ , for the sequential feature yT,K
t̆i

, the jth component of the normalized
weight vector is given by

exp(ωS
j )

∑
ds
i=1 exp(ωS

i )

The weighted feature vector at time t̆i is defined as

ŷT,K
t̆i

=
exp(ωS)

∑
ds
j=1 exp(ωS

j )
�yT,K

t̆i

F.2 GRU Encoder

At the step i, the encoder computes the value of the hidden state hi using a GRU cell. The input
at the step i of the encoder is ŷT,K

t̆i
, i = 1, . . . ,N + 1. The internal structure of the GRU cell is

shown in Figure 4.2.

Let WWW z,UUU z,bz,WWW r,UUU r,br,WWW h,UUUh,bh denote parameters shared by all GRU cells. We com-
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pute the hi as:

zi = sigmoid(WWW zŷT,K
t̆i

+UUU zhi−1 +bz)

ri = sigmoid(WWW rŷT,K
t̆i

+UUU rhi−1 +br)

ĥi = tanh(WWW hŷT,K
t̆i

+UUUh(ri�hi−1)+bh)

hi = (1− zi)�hi−1 + zi� ĥi

The hidden state at the last step hN+1, corresponding to time t̆N+1 = t, is supplied to the decoder
as the fixed size vector ĥE , which extracts relevant information in YT,K

t .

F.3 Decoder for GRUTOTAL

The decoder of GRUTOTAL computes the candidate output δ̂ M
t,T,K in the following way:

δ̂
M
t,T,K = sigmoid(vT

out tanh(UUUout ĥE +WWW outδ
M
t−∆t,T,K +bout)).

The the output gate value Wδ is given by:

Wδ = sigmoid(vT
Gate tanh(UUUGateĥE +WWW Gateδ

M
t−∆t,T,K +bGate)).

For hedging a call option, the final output from GRUδ is :

δ
M
t,T,K = δ̂

M
t,T,K×Wδ +δ

BS
t,T,K× (1−Wδ )

For hedging a put option, the final output from the model is:

δ
M
t,T,K =−δ̂

M
t,T,K×Wδ +δ

BS
t,T,K× (1−Wδ )

where δ̂ M
t,T,K is the candidate output.
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Appendix G

Comparison of GRUTOTAL and GRULOCAL
TOTAL

We define the total hedging risk as:

Risktotal
t0,T,K =

Nrb−1

∑
j=0

{[
St j+1

D(t j+1,T )
−

St j

D(t j,T )

]
δ

M
t j,T,K

}
+

Vt0,T,K

D(t0,T )
−VT,T,K (G.1)

where D(t,T ) = e−r(T−t) is the discount factor and {t0, t1, . . . , tNrb−1} is the set of rebalacing
time.

In training the GRUTOTAL, we use the following objective:

Ob jtotal =
M

∑
i=1

∣∣∣Reltotal
t i
0,T

i,Ki

∣∣∣ (G.2)

where the relative total hedging error is defined as:

Reltotal
t0,T,K =

D(t0,Ti)Risktotal
t0,T,K

Vt0,T,K
(G.3)

The objective for training the GRULOCAL
TOTAL is:

Ob jLocal =
M

∑
i=1

∑
t∈ti

RB

|∆V mkt
t,T i,Ki−∆Stδ

M
t,T i,Ki| (G.4)

where ti
RB = {t i

0, . . . , t
i
Nrb−1} is the set of rebalancing dates for the i-th hedging scenarios with
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expiry T i and initial date t i
0 and we have:

∆Vt j,K,T = D(t0, t j+1)Vt j+1,K,T −D(t0, t j)Vt j,K,T

∆St j = D(t0, t j+1)St j+1−D(t0, t j)St j

D(t,T ) = e−r(T−t)

t j = t0 + j∆t; j = 0, . . . ,Nrb−1; t0 = T −Nrb∆t

The model structure for GRUTOTAL and GRULOCAL
TOTAL is the same which is discussed in Ap-

pendix F. The same set of hedging scenarios are used as the training, testing and validation data
sets. The training procedure is also the same as indicated in Algorithm C.3. The only difference
is the objective function used in training.

G.1 Call Option Total Hedging Comparison

In this subsection, we present the results for call options. We show the hedging performance for
Near-The-Money(NTM), In-The-Money(ITM), Out-of-The-Money(OTM) separately. Note that
we are not training models for NTM, ITM and OTM separately. We still train the model using all
training set. The NTM, OTM, and ITM scenarios are classified based on the Black-Scholes delta
at the initial date t0 where we set up the hedging portfolio: δ BS

t0,T,K . For call option, the criteria is:

• NTM: 0.3≤ δ BS
t0,T,K < 0.7

• ITM: 0.7≤ δ BS
t0,T,K < 0.95

• OTM: 0.05≤ δ BS
t0,T,K < 0.3

We omit the testing scenarios for deep in-the-money (0.95 ≤ δ BS
t0,T,K < 1.0) and deep out-of-

the money (0.0 ≤ δ BS
t0,T,K < 0.05) options due to the fact that they are highly illiquid in market

and their market quotes are highly unreliable. Also, the deep in-the-money and deep out-of-the
money scenarios are deleted from training set and validation set.

G.1.1 Call Option Weekly Hedging Comparison

In Table G.1, we demonstrate the results on weekly hedging call options. Furthermore, in Figure
G.1, we compare the distribution of the relative hedging error of GRUTOTAL with the distributions
of the relative hedging error of GRULOCAL

TOTAL .

From Table G.1, we can see that, GRUTOTAL performs better than GRULOCAL
TOTAL in terms of most

of total risk measures except for the CVaR(99%) for ITM and NTM scenarios and VaR(99%)
for the OTM scenarios. We have observed significant reduction of the mean absolute relative
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Near-The-Money In-The-Money Out-of-The-Money

Mean Abs Relative Error
GRUTOTAL 0.1927 0.0571 0.7344
GRULOCAL

TOTAL 0.2250 0.0866 0.8285

VaR (95%)
GRUTOTAL 0.2827 0.1121 0.5298
GRULOCAL

TOTAL 0.3622 0.1806 0.5753

CVaR (95%)
GRUTOTAL 0.4721 0.1865 1.0003
GRULOCAL

TOTAL 0.5643 0.2081 1.1673

VaR (99%)
GRUTOTAL 0.5301 0.1976 1.5077
GRULOCAL

TOTAL 0.6361 0.2168 1.3583

CVaR (99%)
GRUTOTAL 0.8205 0.3261 1.6090
GRULOCAL

TOTAL 0.7942 0.2301 2.1206

Table G.1: Summary of weekly hedging S&P 500 call options (testing set) for 100 business days
with total hedging evaluation criteria described in section 6.2. Please note that the total hedging
evaluation in this table assumes we are at the sell-side of the option trading.
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Figure G.1: Comparing total risk hedging model GRUTOTAL and local risk hedging model
GRULOCAL

TOTAL on weekly hedging S&P 500 call options (testing set) in terms of the distribution
of the relative hedging portfolio value at the expiries as in equation (6.1.3). The distribution in
this figure assumes we are on the sell-side of the option trading.
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error GRUTOTAL when comparing with GRULOCAL
TOTAL . However, in terms of tail loss reduction, the

improvement from GRUTOTAL over GRULOCAL
TOTAL is less significant.

G.1.2 Call Option Monthly Hedging Comparison

In Table G.2, we demonstrate the results on monthly hedging call options. Furthermore, in Figure
G.2, we compare the distribution of the relative hedging error of GRUTOTAL with the distributions
of the relative hedging error of GRULOCAL

TOTAL . From Table G.2, we can see that, GRUTOTAL still

Near-The-Money In-The-Money Out-of-The-Money

Mean Abs Relative Error
GRUTOTAL 0.2643 0.0633 1.0479
GRULOCAL

TOTAL 0.2740 0.0642 1.2255

VaR (95%)
GRUTOTAL 0.4102 0.1472 1.0842
GRULOCAL

TOTAL 0.3998 0.1394 0.9531

CVaR (95%)
GRUTOTAL 0.6073 0.3125 1.6658
GRULOCAL

TOTAL 0.6671 0.3144 1.6962

VaR (99%)
GRUTOTAL 0.7752 0.4300 1.7567
GRULOCAL

TOTAL 0.8703 0.4329 1.9142

CVaR (99%)
GRUTOTAL 0.8692 0.4627 2.7536
GRULOCAL

TOTAL 1.0861 0.4670 2.5194

Table G.2: Summary of monthly hedging S&P 500 call options (testing set) for 100 business days
with total risk hedging evaluation criteria described in section 6.2. The total hedging evaluation
in this table assumes we are on the sell-side of the option trading.
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Figure G.2: Comparing total risk hedging model GRUTOTAL and local risk hedging model
GRULOCAL

TOTAL on monthly hedging S&P 500 call options (testing set) in terms of the distribution of
the relative hedging portfolio value at the expiries as in equation (6.1.3). The distribution in this
figure assumes we are on the sell-side of the option trading.

performs better than GRULOCAL
TOTAL in terms of reducing the mean absolute relative error. However,

the reduction is less significant than the comparison in weekly hedging. Also, GRUTOTAL and
GRULOCAL

TOTAL perform roughly the same in terms of tail loss measured by VaR and CVaR.
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G.2 Put Option Total Risk Hedging Comparison

In this subsection, we present the results for put options. We again show the hedging performance
for Near-The-Money(NTM), In-The-Money(ITM), Out-of-The-Money(OTM) separately. The
NTM, OTM, and ITM scenarios are classified based on the Black-Scholes delta at the initial date
t0 where we set up the hedging portfolio: δ BS

t0,T,K . For put option, the criteria is:

• NTM: −0.3≥ δ BS
t0,T,K >−0.7

• ITM: −0.7≥ δ BS
t0,T,K >−0.95

• OTM: −0.05≥ δ BS
t0,T,K >−0.3

We omit the testing scenarios for deep in-the-money ( −0.95≥ δ BS
t0,T,K >−1.0) and deep out-of-

the money (0.0≥ δ BS
t0,T,K >−0.05) options due to the fact that they are highly illiquid in market

and their market quotes are highly unreliable. Also, the deep in-the-money and deep out-of-the
money scenarios are deleted from training set and validation set.

G.2.1 Put Option Weekly Hedging Comparison

In Table G.3, we demonstrate the results on monthly hedging put options. Furthermore, in Figure
G.3, we compare the distribution of the relative hedging error of GRUTOTAL with the distributions
of the relative hedging error of GRULOCAL

TOTAL .

From Table G.3, we can see that, GRUTOTAL still performs better than GRULOCAL
TOTAL in terms of

reducing the mean absolute relative error for ITM and OTM scenarios and the performance for
NTM scenarios is similar. On the other hand, in terms of tail loss measured by VaR and CVaR,
the reduction from GRUTOTAL over GRULOCAL

TOTAL is significant for ITM scenarios.
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Near-The-Money In-The-Money Out-of-The-Money

Mean Abs Relative Error
GRUTOTAL 0.2535 0.0965 1.5356
GRULOCAL

TOTAL 0.2516 0.1140 1.6042

VaR (95%)
GRUTOTAL 0.8124 0.2364 7.2478
GRULOCAL

TOTAL 0.8229 0.3160 8.0506

CVaR (95%)
GRUTOTAL 1.0475 0.3452 10.9438
GRULOCAL

TOTAL 1.2335 0.5405 11.8778

VaR (99%)
GRUTOTAL 1.1138 0.3763 11.7573
GRULOCAL

TOTAL 1.4361 0.7996 14.5369

CVaR(99%)
GRUTOTAL 1.3597 0.4616 15.1555
GRULOCAL

TOTAL 1.7732 0.9739 17.0642

Table G.3: Summary of weekly hedging S&P 500 put options (testing set) for 100 Business days
with total risk hedging evaluation criteria described in section 6.2. Please note that the total
hedging evaluation in this table assumes we are on the sell-side of the option trading.
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Figure G.3: Comparing total risk hedging model GRUTOTAL and local risk hedging model
GRULOCAL

TOTAL on weekly hedging put options (testing set) in terms of the distribution of the rel-
ative hedging portfolio value at the expiries as in equation (6.1.3). The distribution in this figure
assumes we are on the sell-side of the option trading.
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G.2.2 Put Option Monthly Hedging Comparison

In Table G.4, we demonstrate the results on monthly hedging put options. Furthermore, in Figure
G.4, we compare the distribution of the relative hedging error of GRUTOTAL with the distributions
of the relative hedging error of GRULOCAL

TOTAL .

From Table G.4, we can see that, for NTM and ITM scenarios, we achieve better mean
absolute relative error from GRUTOTAL. For OTM scenarios, GRULOCAL

TOTAL performs better in terms
of mean absolute relative error. The tail loss measured by VaR and CVaR for NTM scenarios
is roughly the same for GRUTOTAL and GRULOCAL

TOTAL . GRUTOTAL. The tail loss from GRUTOTAL

for OTM scenarios is slightly better than GRULOCAL
TOTAL . The tail loss from GRUTOTAL for ITM

scenarios is significantly better than GRULOCAL
TOTAL .

Near-The-Money In-The-Money Out-of-The-Money

Mean Abs Relative Error
GRUTOTAL 0.2986 0.1240 1.7639
GRULOCAL

TOTAL 0.3485 0.1394 1.6849

VaR (95%)
GRUTOTAL 0.7395 0.2562 8.5602
GRULOCAL

TOTAL 0.7558 0.3268 8.1812

CVaR (95%)
GRUTOTAL 1.7761 0.3577 13.3160
GRULOCAL

TOTAL 1.8144 0.4898 14.6857

VaR (99%)
GRUTOTAL 2.1792 0.4121 15.2323
GRULOCAL

TOTAL 2.1577 0.6454 16.5192

CVaR (99%)
GRUTOTAL 3.4001 0.4509 20.6503
GRULOCAL

TOTAL 3.3717 0.6910 21.7928

Table G.4: Summary of monthly hedging S&P 500 put options for 100 business days with total
hedging evaluation criteria described in section 6.2. The total hedging evaluation in this table
assumes we are on the sell-side of the option trading.

4 2 0 20

25

50

75

100

125

Hi
st

og
ra

m

Near-The-Money Put Option
Local
Total

(a)

0.75 0.50 0.25 0.00 0.250

10

20

30

Hi
st

og
ra

m

In-The-Money Put Option
Local
Total

(b)

30 20 10 00

50

100

150

Hi
st

og
ra

m

Out-of-Money Put Option
Local
Total

(c)

Figure G.4: Comparing total risk hedging model GRUTOTAL and local risk hedging model
GRULOCAL

TOTAL on monthly hedging put options (testing set) in terms of the distribution of the rela-
tive hedging portfolio value at the expiries as in equation (6.1.3). The distribution in this figure
assumes we are on the sell-side of the option trading.
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