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Abstract 
A major task in the design of automated vehicles is the need to quickly and thoroughly validate a 

development teams algorithms. There currently exists no explicitly defined common standard for 

developers working on Advanced Driver Assisted Systems to adopt during their software testing 

process. Instead different teams customize their testing process specifically to their software 

systems current needs. Literature indicates that these processes can be comprehensive but 

convoluted, and not flexible to change as test requirements and the system itself does. This thesis 

introduces a test framework at the unit, integration, and system test levels with the objective of 

addressing these challenges through a complete test framework centered around rapid execution 

and modular test design. At the unit test level a recommendation guide is put forth that is largely 

aimed at new developers with concrete actionable items that can be integrated into a teams 

process. For integration and system level testing, a software solution for ROS based 

development referred to as University of Waterloo Structured Testing Framework (UW-STF) is 

described in regards to both the benefits it provides as well as its low level implementation 

details. This includes how to tie the framework into using data generated from the popular 

simulator CARLA for end-to-end testing of a system. Lastly the test framework is applied to the 

codebase of UWAFT for their development efforts related to connected and automated vehicles. 

The framework was shown to increase readability/clarity at the unit test level, facilitate robust 

automated testing at the integration level and provide transparency on the teams current 

algorithms performance at the system test level (average F1-score of 0.77 and average OSPA of 

2.42). When compared to the standard ROS integration test framework, UW-STF executed the 

same test suite with 60%+ reduction in lines of code and meaningful differences in CPU and 

memory requirements. 
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1. Introduction 

1.1 Background of Industry and Academia Involvement  

The market for automated vehicles continues to show accelerated growth and indicates no signs 

of stopping in the coming decade. In fact, analysis by Market.us forecasts the Autonomous 

Vehicle (AV) market size (which includes both semi-autonomous and fully autonomous 

vehicles) to exceed $3.4 billion USD by 2032 resulting in a Compound Annual Growth Rate 

(CAGR) of 38.8% between 2023 to 2032 [1]. AV research started gaining traction in North 

America in the 80s when universities, in conjunction with the U.S. Defense Advanced Research 

Projects Agency (DARPA) began development and testing of these vehicles. DARPA’s 

autonomous land vehicle was a 12 ft tall robot tasked to traverse a path without human 

intervention. Since then the DARPA Grand Challenge series has challenged research groups to 

complete fully autonomous navigation of courses. Some say that this Challenge was one of the 

multiple markers of the transition of implementation of automated features from solely academic 

research pursuits to industrial development as well [2]. In the 1990s and then 2000s, semi-

automated features for consumer vehicles evolved alongside the state-of-the-art research in 

academia. These features included Adaptive Cruise Control (ACC), Forward Collision Warning 

(FCW) shortly after, and then Lane Departure Warning (LDW) in the 2000s. Though 

popularized in mainstream media by Tesla, the first level 2 system actually around in 2013 when 

Mercedes launched a production vehicle with both integrated lateral and longitudinal control. 

Tesla’s ‘Autopilot’ released to consumers shortly after in 2015.   

All that to say, industry and academia have often gone hand in hand by complementing state of 

the art research with more practical but limited solutions for vehicle automation. This 

relationship reveals two key points that are relevant to the research of this thesis. 

1. With the demand for automated driving solutions growing, so too does the demand 

for tools that support its research/development. With the vast majority of consumer 

vehicles possessing at least one Advanced Driver Assisted System (ADAS) feature, there 

is a clear trend towards increasing automation. Billion dollar spending on full autonomy 

by companies such as Cruise and Waymo further highlight this trend. With such a trend 

for increased demand of automation, comes the need for correspondingly greater research 

and development in the fields supporting it. This includes everything from the 

development of perception algorithms, corresponding sensor hardware, compute 

resources and even the testing tools to support the development process itself. In the 

safety critical world of automated driving, the risk of functionality breaking code changes 

becomes even more severe. Modern vehicles are now in the realm of 100 million lines of 

code and with increasing autonomy this number does not look to trend downwards [3]. 

With this comes the need for even more ‘continuous integration’ as per Mihailovici, the 

Managing Director of Porsche Engineering Romania [3]. This thesis thus addresses one 

such implementation of continuous integration relevant to the use case of automated 

vehicle algorithm development.  
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2. The relationship between industry and academia is mutually beneficial and should 

be considered when developing tools for automated driving. As highlighted in the 

section above discussing the progression of automated vehicles throughout time, it is rare 

not to see both industry and academia playing a part in pushing its development forward. 

DARPA’s Grand Challenge for example brought together industry, academia and the 

government to push the needle on this frontier. Another competition that has done so in a 

similar fashion is the Advanced Vehicle Technology Competition (AVTC) series. The 

AVTC series was established in 1988 by the U.S Department of Energy and Argonne 

National Laboratory in partnership with North America’s automotive industry [4]. The 

multi-year competition tests some of North America’s leading engineering institutions to 

develop the next generation of automotive engineers. The most recent installment in the 

AVTC series, the EcoCAR Electric Vehicle Challenge (EVC), challenges schools across 

North America to re-design powertrain, consumer-facing and semi-autonomous features 

of a 2022 Cadillac Lyriq using industry standards and practices. Competition supporters 

include the U.S. Department of Energy, General Motors, Mathworks and many industry 

sponsors. Delving into the background of a stakeholder collaboration project such as the 

EVC is relevant for two reasons. Firstly, this thesis research was conducted as part of the 

University of Waterloo Alternative Fuels Team’s (UWAFT) development efforts in year 

1 of the EVC, and thus the product of this thesis, was designed with the consideration of 

a student design team work environment in mind as one of the users of the final product.  

As opposed to a conventional research setting, student team competitions elicit an 

environment that is fast-paced, highly collaborative, and has high member turnover (e.g., 

due to changing academic terms, member graduation, etc.). With this in mind, a key 

consideration for the work presented is that the interface is simple to grasp, easily 

repeatable and intuitive in its workflow. The second reason the EVC is relevant is 

because it represents a major use case for the proposed work. Of course solutions 

designed for the limited use case of a specific research group or company setting may 

fare well in that setting, but we sought to find a solution that would be flexible enough to 

work in almost any environment it was applied to correctly. As explored later in this 

thesis, design decisions relevant to the proposed work were made with the intent of open-

source software that is accessible to all groups.   

 

1.2 Problem Statement 

To support the work of industry and academia, we focus on the testing aspect of ADAS software 

development. This section provides a summary of the areas that need to be addressed and why 

they serve as motivation for the underlying objective of this thesis. Specifics of shortcomings 

based on current literature are provided in Section 2: Literature Review.  

One of the consistent themes that arise after consultation of the literature is the extent of choices 

that exist in the realm of tools for ADAS software testing and development. Though not an 

evident problem by itself, the multiplicity of proposed options online leave development groups 

with a lot of choices but little direction in the set of tools that would best fit their use case. This 

manifests itself in different ways at the different levels of testing. In the realm of Unit testing, 
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findings by Daka and Fraser in [5] indicate that developers have an unclear priority on what 

makes an individual test high quality. At the integration and system test level, different problems 

persist. Due to the increased complexity of testing, frameworks tend to be more rigid and 

specific to an application or a team’s software platform. Increased testing time is often a 

consequence of such complex frameworks, as validated in developer surveys such as [6] which 

note that a majority of ADS (Advanced Driving System) developers cited the need of “speeding 

up ADS testing” as very important or important. Additional requirements for test frameworks 

from the study included that they should support multi-module software Stacks, custom metrics 

and consideration of simulation data.   

 

1.3 Objectives and Proposed Contribution  

Based on the discussion in the previous section, the main challenges with respect to ADAS 

software testing that need to be addressed are: 

• Rigid testing frameworks that do not lend themselves to usage across different 

development teams (e.g. due to use of complicated/unclear setup process) as well as 

different stakeholders or software platforms (e.g. proprietary software usage) 

• Multiplicity of software tools and testing techniques to choose from with no standard or 

direction for ADAS development teams to follow  

• A test framework that meets the needs of the developers using them including:  

o Tests that support both custom and standard metrics for evaluation 

o Support for multi-module ADAS stacks as the more common architecture 

o Consideration of real world scenarios and crash reports to drive development  

o Adaptable to use of both simulated and real world data 

Note that development will be based around the usage of ROS (Robot Operating System) which 

is the key middleware suite used by UWAFT. From [7], ROS “is an open-source framework that 

helps researchers and developers build and reuse code between robotics applications”. It boasts 

of many benefits including compatibility with C++ and Python languages, a code base applicable 

to various hardware platforms (robotics, automotive, drones etc.) and most importantly open-

source development meaning it is open to contribution and use from any industry and academic 

institution. Because of its usage in the following key phases of the proposed framework, note 

that ‘Node’ here onwards refers to a ROS node. As per official ROS documentation [8], a Node 

is an executable which uses a ROS client library to communicate with other nodes. They are able 

to publish or subscribe to a Topic which is how data is transferred between nodes. 

Thus the central objective of this thesis will be to develop a full scale open-source test 

framework based on ROS including considerations at the unit test, integration test and 

system test level that facilitates rapid and modular testing to address the challenges stated 

above. In addition, it is important to note that the framework is centered around operation in a 

software-in-the-loop test environment. From here onwards, usage of the general term “test 

framework” refers to the combination of all three levels of testing as it relates to the proposed 

contributions below. The contribution at each level of testing is described below: 
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Unit testing (i.e., testing of individual functions or methods within a Node): Because unit tests 

happen at the lowest level and are highly application/algorithm specific, no novel development 

contributions are made to standardize this. Alternatively, a guide to unit test creation is provided 

based on a thorough literature review of current best practices and addressing areas of 

improvement. As per the study on current developer perceptions of unit testing practices [5], a 

common pain point is difficulty is how to write a high quality test itself. The provided guide to 

unit test development will help to supplement this with specific examples of development and 

common pitfalls that new developers may be prone to.  

Integration testing (i.e., testing of a subset of nodes of the entire ‘system’): For this and the next 

phase, a custom developed test framework known as the University of Waterloo - Structured 

Testing Framework (UW-STF) is employed and the benefits of it to streamlining the testing 

process are shown. UW-STF is a framework that focuses on being simple to customize, 

integrable with Continuous Integration (CI) tools, and modular / easily integrable to different 

software platforms. It works based on the concept of monitoring nodes called Observers, which 

compare a target ROS Topics data to an expected value or pass criterion.  

System testing (i.e., testing of the entire system (all nodes) as a whole): The system testing 

phase expands on the functionality of UW-STF to include all nodes under test. The difference 

here is that the Observers produce system level metrics. UW-STF allows for custom metrics to 

be defined in addition to standard ones which was listed as a key takeaway from the work of 

Lou, Deng, Zheng et al. [6]. Additionally at the system test level, a pipeline from simulation to 

testing is included to address timeliness challenges associated with scenario generation and 

selection, again identified in [6]. 

1.4 Organization of this Thesis  

This thesis is organized as per the following layout: 

Chapter 2 provides an overview of the related work in the field with a focus on references to 

current literature. As well, shortcomings of current solutions are highlighted to give way to the 

potential benefits of the proposed solution.  

Chapter 3 covers the contents of the test framework (testing guide for Unit testing and 

architecture of UW-STF for integration and system level testing). This includes how it works 

and a justification of design decisions based on the design intents it was set to meet. 

Chapter 4 then moves on to a walkthrough of the test framework when integrated with 

UWAFT’s existing codebase as part of their ADAS software development efforts for year 1 of 

EVC. This includes specific examples of how the framework improves the quality of the 

codebase at the uniting testing level, and how it improves modularity, ease of use, and 

automation at the integration and system test levels.  

Finally Chapter 6 covers conclusions made from the test cases including limitations of the work 

and future improvements required to address them.  
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2. Literature Review 
Common to projects of large scale and of complex development requirements, the industry 

standard “V” diagram (shown in  Figure 1) is used to illustrate the relationship between 

development and validation cycles of an automated vehicle system. As evident in the 

forthcoming literature review, many current solutions to testing are specific to a testing phase 

and thus lack modularity as the product/feature moves through different levels of the V diagram. 

 

 

Figure 1: Systems engineering "V" diagram [9] 

The remainder of Section 2 two delves deeper into each of the three levels of the testing 

framework covered in this thesis – unit, integration, and System testing. Specifically, many 

sources proposes their own pipelines for each level, while others note weaknesses of that level 

thereby helping to understand what the proposed framework may help address. 

 

2.1 Unit Testing and Automation: Current Practices  

Section 1.2 introduced the work of Daka and Fraser, in which a mass survey was conducted with 

developers to gauge to what extent current Unit testing methodologies served a purpose [5]. In 

addition, it sought to highlight any areas where further research was necessary including what 

part of current processes could use improvement. The survey included participants from a wide 

range of personal and programming backgrounds. The first key response was that unit testing 

itself was largely driven by management requirement and developers’ own conviction. From this 

it can be surmised that the adoption rate of new techniques must have benefits quantifiable 

enough to convince management as well as immediately evident enough to convince developers. 

Thus any proposed solution would benefit from improvements to user interface and performance 

so that users can both see and measure their newly improved development pipeline. The second 

question in [5] looked at what activities take the most time in the development process. When 

including things like debugging and fixing tests, developers perceived to spend close to half their 
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time on “testing”, indicating just how important streamlining this process would be. In 

conjunction with this, fixes to the test itself were seen as a much more common approach than 

fixes to the code itself. This was especially prevalent with less experienced developers who 

admitted to deleting tests significantly more than their experienced counterparts. Tools / 

guidelines in writing tests at the early stages of a developer’s career might be a way to address 

this uncertainty in test writing. Complimenting this finding was the response to the follow-up 

question of how developers approach test writing. Though most respondents claimed to use a 

systematic approach to testing, many also admitted to not having a clear prioritization of what 

the acceptance criteria for a ‘good’ test even was. Lastly in the realm of how unit testing could 

be improved, developers again had a lot to say. In writing unit tests, identifying the code to test 

was ranked as highest, followed then by isolating the test and then determining what to check as 

the second and third greatest challenges. Though support such as code coverage tools exist, 

developers may not know how to use them or have a good grasp of which ones are applicable to 

the development they are conducting. In the matter of failing tests, ‘flaky’ tests were cited as the 

highest concern. This could be attributed to things like non-deterministic code or environmental 

factors affecting the outcome. Other issues such as difficulty in code test interpretation or a lack 

of test applicability were also cited. Again the issue of a lack of direction when writing tests 

seems relevant. The last question asked from participants was general to their overall perceptions 

of unit testing of which a clear majority stated an interest in more tool support as the test writing 

itself was not an enjoyable aspect of their development experience. Summarizing the findings of 

Daka and Fraser as relevant to this thesis, there seems to exist a general confusion on best 

practices to unit testing and a lack of direction on what characterizes a high quality, robust test 

suite. Furthermore, tool support would be of great benefit considering the many hurdles and 

often quickly outdated status of previously written tests.  

Next a review of some of the empirical research related to Unit testing is provided:  

The first case study is by Bhat et al. in which the effect of using Test Driven 

Development (TDD) on code quality as well as time spent on writing unit tests is analyzed [10]. 

In this study, projects from two different divisions in Microsoft are compared to similar ones 

within their division. The metrics used are defect density and effort estimates which were 

provided by team managers. Both cases showed a reduction in defect density when TDD was 

used by a factor of 2. 

 In a similar study on the use of TDD by Nagappan et al., software quality measure by 

defect density was shown to be reduced between 40-90% given its deployment, at the expense of 

initial development time which increased 15-35% [11].  A key recommendation of this paper 

was the automation of the testing process in response to this increased initial development time. 

Some other key recommendations to note are to: start TDD from the beginning of the project and 

introduce automation shortly after as well; add tests incrementally as problems arise whenever 

they arise; track the project using quantifiable metrics such as code coverage; and share unit tests 

within the team to help identify integration issues as early as possible.  

 A study conducted by Williams et al. involves the automation of Unit testing [12]. In this 

case study, a company team transitioned from ad hoc unit testing practices to the more 
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standardized NUnit automated testing framework for version 2 of the product. Comparisons in 

terms of test defects and development time were made to the previous version. For version 1, the 

development process was kept quite linear, following the general flow of:  

feature list creation → design documents → design and test plan reviews → coding and 

debugging → build verification tests → executing test plans 

 Additionally automated test cases were rarely every written with the majority of test cases being 

private to the developer and usually one-time use. Execution of the test plans then occurred by 

running manual ad-hoc testing. Version 2 followed a similar initial process in terms of feature 

lists being used to draft up design documents by developers. However, the key difference was 

that automated unit tests was mandated from the beginning in addition to the build verification 

tests that needed to be passed before checking in code. By the end, almost four times the number 

of automated unit tests had been written for version 2 including a shared bed of unit tests for 

development collaboration and transparency. In the end, the version 2 of the produce achieved a 

20.9% decrease in test defects. Similar to previously mentioned case studies however, this came 

at a cost of increased development time. Of greatest importance was the effect this had on the 

end user. Data indicated that there was a relative decrease in customer-reported failures. 

Consistent with the results from other case studies, the conclusion drawn was that code quality 

improved while total defects decreased. Lessons from this case study include: management 

support for unit testing is necessary to keep it active in the pipeline; single tool mentality is 

important to minimize complication (i.e. tool standardization); unit testing must be open to 

contributions across the team; and execution of the tests should be as simple as possible.  

Generalizing the effect of test automation in general (that is, not just limited to Unit testing), 

Kumar and Mishra show its positive effects on cost, quality and time to market for a software 

application [13]. Specifically, they use leverage CI to calculate the return on investment from 

test automation. The experiment is set up by monitoring metrics relating to cost, quality, and 

time to market on three separate software projects. For example software quality is measured by 

Functionality, Reliability and Maintainability measurements which are defined in Equations 1-3 

respectively: 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 𝐹 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑
 

( 1 ) 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑅 =  
𝑚𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒

𝑚𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 + 𝑚𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑟𝑒𝑝𝑎𝑖𝑟
 

( 2 ) 

𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑀 =  
𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑜𝑛 𝑡𝑒𝑠𝑡𝑖𝑛𝑔

𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒
 

( 3 ) 
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Results indicated consistently higher metrics across all fields for the project with test automation. 

The drawbacks of test automation were found to be high implementation and maintenance costs. 

However, the authors of the paper still favour the use of automated testing due to highly 

beneficial returns in the long run. To address the drawbacks of high implementation and 

maintenance costs, the proposed solution would benefit from using open source software and 

being highly intuitive to reduce developer time commitments when using it.  

Soares et al. take a broader look at the effects of continuous integration in a systematic review of 

the literature in [14]. They ask: What are existing project criteria to justify the use of CI? What 

are the claims of the effects of CI on software development? And which methods are used in the 

studies that investigate these effects? Looking into the current practices of CI, the study 

summarizes those proposed by Duvall et al. [15] and Fowler [16] as seen in Figure 2: 

 

Figure 2: CI practices summarized by Soares et al. from previous research. [14]. 

Of highest relevance in their findings were the results related to question 2 of the study, i.e. what 

are the effects of CI? These effects were categorized into several themes: 

1. Development activities: The most significant mentions across literature were that CI is 

associated with increases in productivity and efficiency. As well several more studies 

claimed to associate it with an increase in confidence, presumably associated with the 

quality of the resulting product. Negative associations were also documented with several 

other studies referencing added complexity when CI is involved.  

2. Software processes: In regards to effects on software processes, the highest number of 

claims across the literature were that CI positively affected release cycles, were 

associated with an increase in cooperation, and that it improved process reliability. On 

the negative side was an association with more technical challenges when CI is integrated 

into a development pipeline.  

3. Quality assurance: The majority of studies claimed that CI had a positive impact on test 

practice and was related to an increase in quality assessment. There was also reliable 

evidence on the association between CI and increasing code coverage.  

4. Integration patterns: The standout claim was that CI had a positive impact on pull request 

life cycle and integration practice in general. A smaller number of studies claimed it to be 
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associated with a commit pattern change, which aligns with theme #2’s findings of 

“increased technical challenges”.  

5. Issues and defects: Defect reduction was among the most common claims. For defects 

that existed however, studies claimed an overall decrease in time to address them based 

on the metric of issue resolution rate.  

6. Build patterns: Most studies related to build pattern mentioned a strong association with 

build health, thereby contributing to more successful builds.  

The themes across literature show quite confidently a handful of measurable positive effects 

when CI is integrated into a software development pipeline. Specifically, doing so translates to 

increases in productivity, team collaboration and final product quality itself. It is however 

important to keep in mind the additional workload that CI entails for a team. If CI is chosen to be 

integrated into a test framework, it must be done in a way that limits additional development 

workload but has a huge potential for long term benefits. Donca et al. quantified some of these 

improvements by implementing a custom CI pipeline system and comparing it to manual testing 

and Gitlab CI systems [17]. They found pipeline runtime differences that were improved by a 

significant order of magnitude and pipeline infrastructure costs that were also much lower than 

their manual counterparts. 

 

2.2 Current Methods of Integration testing  

Given that the current research on the practices and effects of Unit testing have been presented it 

is logical to do the same for the next level of testing as well: Integration testing. Ernits et al. 

cover one approach to integration testing which is model-based using ROS [18]. ROS 

infrastructure is known to have plenty of well-documented support for unit testing including 

leveraging testing tools such as Google’s gtest and Python’s unittest. The same cannot 

necessarily be said for higher level integration testing. This paper therefore extends on the Robot 

Unit Testing methodology introduced by Bihlmaier and Worn in [19] (which uses a simulation 

environment and control software to test robot performance) but have introduced functionality to 

measure code coverage as well as drive the robot through scenarios. Uppaal Tron is used as the 

text execution engine in which the output of the robot when provided a certain input action, is 

checked for equivalence against a target value. In addition code coverage is checked at the end of 

each scenario. The study concluded that their test engine setup was able to achieve a high degree 

of code coverage and incorporate multiple scenarios to check robot functionality. Additionally, 

automating generation of models allows valuable validation of difference scenarios. However, 

the topological map approach becomes quite convoluted because of the focus on low level robot 

signals when expanded to more complex systems. Moreover, code also needs to be modified for 

higher fidelity levels of testing as specific signals/interfaces change. As highlighted in [14], the 

burden of increased technical complexity in a software pipeline is a relevant concern, so care 

must be taken that too involved integration practices don’t deter from adopting integration 

testing itself.  

Bures proposes an integration test framework for IoT solutions which is a hybrid of conventional 

testing protocols [20]. In it he describes three common concepts in testing / quality assurance. 
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The first is simulation which benefits from “a reduction of potential expensive testbed 

composing of physical devices”. However, it is still known to be limited in accuracy and not 

meant to be a 100% replacement for hardware testing. The next two concepts are sub-styles of 

Integration testing: unit integration testing and end-to-end (E2E) integration testing. In unit 

integration testing, specific interfaces are put under test by corresponding API calls and 

compared to an expected results. E2E testing on the other hand verifies system functions or sub-

systems as part of the system as a whole. The higher-level interaction of the units under test lend 

itself to catching problems of higher technical complexity. The downside is that it may be less 

clear which part of the sub-system is the issue. Due to complementary benefits/drawbacks of the 

different methods, Bures proposes a solution that allows developers to reap the benefits of all 

three testing concepts, i.e. a framework that uses simulation as an input to the system, leverages 

Junit’s E2E testing capabilities and a configurable library that allows integration testing to start 

early in development and be integrated quickly because tests just need minor modifications. 

Though the specific tools and frameworks from IoT testing cannot be apply to the domain of 

ADAS, the principles of the framework can be. Namely, designing a system that incorporates 

simulation and either unit or E2E integration testing. In this way the system is exposed to 

multiple potential fault scenarios while minimizing full system scale setup complexities.  

In their project based on a testing infrastructure in ROS, Lasaca et al. approach Integration 

testing from a completely different angle [21]. The second of the two tools developed in their 

project known as TopicFuzzer is based on the concepts of compiler sanitizers and fuzzing. 

Specifically, they sought to test a single ROS nodes external API. The TopicFuzzer employs a 

grey-box testing technique in which a parameterized drive program sends variations of input to 

explore a Node under test in a systematic way. The benefit of this testing solution is that it is 

scalable and fully automated. After testing the solution with a case study, the benefits of an easy 

to use solution that achieve high code coverage in a timely manner are seen. The additional layer 

of automation when parameterizing test inputs is an often overlooked but time-consuming aspect 

of integration. Automation using a tool such as TopicFuzzer may be an effective tool to remedy 

this.  

Brito, S. Souza and P. Souza propose their own framework for Integration testing which is 

easier to connect to the domain of ADS [22]. As it relates to ROS the researchers write that the 

integration testing in question involves evaluating the communication of publishers/subscribers 

between different components in the robotic system. They note that ROStest, a built-in 

integration testing framework suffers from a lot of additional code development required and 

limited types of input data. Instead, the researchers apply a model-based test (MBT) technique to 

evaluate the functionality and performance of a real-time system. An overview of their testing 

approach is used in Figure 3, which inspires some of the design elements in the proposed testing 

framework. First test scenarios are generated using a simulator. Then the test criterion is set to 

identify target functionalities. A ROS communication and abstracted robot system graph is then 

generated to assure adequate communication channels are designated. Following this the system 

is executed with the evaluation of test coverage done in parallel. Once a test report is generated, 

it is used to inform the creation of new tests. Ultimately applying it to the case of separate 

development paths provided evidence of the applicability of the approach in other scenarios. 
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Figure 3: Testing framework used in [22] 

 

In a further effort to optimize the Integration testing approach, Leung and White identify the 

common faults in combining modules as well as recommendations on test selection to minimize 

redundant test running [23]. Firstly, in regard to the most common errors, they are described as: 

interpretation errors (difference in actual specification of a module vs. what the user interprets), 

miscoded call error (call instruction to a submodule is listed at the wrong point in a program), 

and interface error (mismatch exists between interface standards). Secondly, in regard to 

principles for test selection strategy, they suggest several metrics and test selection strategies. 

One such strategy is the concept of a firewall which is defined as a limit on the modules which 

must be considered when its surrounding modules are modified. Doing so prioritizes testing of 

key parts of the module that are actually affected at runtime. Applying a similar strategy to test 

case development may lend itself to considerable time savings in the long run.  

ROS itself also has an officially supported framework for Integration testing that leverages the 

pre-built libraries such as roslaunch and pytest. Though the official ROS documentation falls 

short in adequately describing its usage, the Autoware foundation has a well-documented support 

site on its own [24]. The specificity requirements of test case developments can be seen as both a 

pro and a con. For every test in the suite, changes must first be made to the package.xml and 

CMakeLists.txt files for listing dependencies. The main test file then requires the following be 

specified: relevant package imports, Node launching process, specific test cases. Because the 
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framework relies on existing test libraries such as pytest for Python, the issues of low level, and 

often tedious test case specification still remain. The advantage of this is a high degree of 

customization in terms of test setup.   

In [25], Bihlmaier and Worn develop a system to gain introspection capabilities of ROS based 

systems. Though not explicitly intended for traditional integration tests, it is easy to see the use 

case for this. The system works based on the concept of a monitoring Node that compares output 

data against reference values for correctness. In addition, a Graphical User Interface (GUI) is 

developed to report on system status. In their paper, the introspection system is applied to the 

case of a robot with attached sensors to demonstrate its efficacy in a real world scenario where 

fail-safe measures can be triggered based on the monitoring node. A note left for future outlook 

is the ability to write checks that detect anomalies with a high degree of accuracy but do no 

impede on flexibility in future use (i.e. robust tests). As seen in the literature review section on 

Unit testing, this is a common area of concern for test frameworks. 

 

2.3 Current System Testing Approaches 

At the system test level, developers seek to gain a true understanding of their system as a whole. 

It is at this stage that even the tiniest of errors can manifest into disastrous results in the case of a 

real time scenario such as a vehicle with an activated automated feature. Thus, a development 

team’s efforts at the previous unit and integration test level can have a major impact on their 

experience with system level testing.   

Lou, Deng, Zheng et al. conducted a comprehensive study and literature review to analyze the 

gap between current ADS development practices and the actual needs of software engineers 

working on them based on experience [6]. Initially the researchers got a gauge of what the 

current common practices are in ADS testing, starting with the type of ADS that participants 

worked on. The majority responded to have worked with multi-module systems as opposed to 

end-to-end driving models (e.g. PilotNet [26]) and thus a conclusion was that multi-module 

ADS’s “deserve more attention in future research”. Another finding was that the use of both 

standard performance metrics as well as custom-tailored metrics is a desired requirement of 

testing. A key takeaway from this is that test tooling must be able to support both types of 

metrics for test evaluation. With regards to System testing, the study found valuable 

perspectives on it as well. From these insights it was clear that a proposed testing framework 

must be adaptable to both simulation and real-world scenarios, have the ability to evaluate 

system level performance, and that it would benefit greatly from ease of custom drive scenario 

integration for simulation.  As part of [6], emerging needs of ADS testing were also identified. 

The need to speed up testing was mentioned in Section 1.2 as one of the major findings of the 

survey. The justification for this is evident upon the evaluation of the high reliability 

requirements for testing. As per the insights of ADS practitioners, though simulators just take 

one-tenth of the time compared to real-world testing, the high reliability requirements means that 

lots of testing mileage is needed. In fact, existing work suggests a catastrophic failure rate should 

be minimized to 10-7 to 10-9 for 1-10 hours of driving [27] [28]. Thus, even in simulation, 

assuring high reliability is a significant time investment. The study suggests areas such as test 
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selection and prioritization as future areas of improvement. Applying these lessons to the context 

of this thesis, it is evident that methods in reducing the time requirements of the ADS testing 

pipeline would have worthwhile benefits in assuring overall system reliability.  

Lattarulo, Perez and Dendaluce present a validation methodology centered around the path 

planning and controls algorithms for automated vehicles in [29]. The proposed framework  

consists of all the submodules of an automated vehicle including modules for Human Machine 

Interface (HMI), communication, a vehicle dynamics model as well as Dynacar for visualization 

as well as sensor data generation. Dynacar was chosen as the simulation software because of the 

focus on high-fidelity vehicle physics. Additionally, Matlab-Simulink was chosen to implement 

the system model because of its wide reach in academia and its easy to use interface. When put 

together, it can be seen how a model based approach to algorithm design and testing looks like in 

Figure 4. The proposed testing architecture also benefits from integration with Hardware In the 

Loop (HIL) testbeds. Thus created scenarios can be run in simulation and then controller 

responses can be measured either through a physical or soft Electronic Control Unit (ECU). In 

addition, the focus of modularity in model based design allows for different blocks to be tested 

and replaced/modified as necessary for testing.  

 

Figure 4: Model based design approach to ADAS algorithm design and testing in [29] 

Though a comprehensive approach to testing, the lack of intermediate unit/integration test levels 

means a lot can go wrong in between. In addition, the test process is not trivial and/or quick to 

set up. A scenario must be run in Dynacar and then the inputs to the algorithm must be 

monitored as they make their way through the different blocks in the system. This approach thus 

seems inflexible to quick system or testing changes. 

Tatar maximizes test coverage while minimizing test design time requirements using a software 

application known as TestWeaver [30]. As illustrated in Figure 5, Tatar incorporates TestWeaver 

in the center of a close loop between model outputs and inputs so that as many states in the state 

space can be reached as possible. The applications controls the specified parameters and based 

on predefined ‘correct’ values, automatically generates inputs to drive the system to as many 
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different states as possible. The intuition is that the more states that can be reached, the higher 

the likelihood of finding defects that were not previously caught. Additionally, because the ‘test 

case’ is automatically generated after initial system setup, time is saved in the long run. Though 

compatible with Simulink, it does not directly interface with ROS which is an issue for teams 

that use it in their algorithms. Furthermore, though the test inputs are automatically generated, 

this framework does require that the system as a whole is well defined in advance including the 

plant model, controllers and quality Observers as noted in Figure 5. Thus, intermediate testing is 

again not trivial with this proposed test architecture.  

 

Figure 5: How TestWeaver fits into the system test architecture in [30] 

 

In [31], Jiang proposes the Generalized RAcing Intelligence Competition (GRAIC) framework in 

which the CARLA (CAR Learning to Act) simulator and ROS is used in conjunction for 

System testing. Specifically, the focus of GRAIC is to provide ground truth detection results so 

the focus of development can be on purely algorithm development with the rest of the testing 

pipeline fully automated. This is done so by incorporating CI tools. The architecture of the 

GRAIC framework is illustrated in Figure 6. CARLA’s Scenario Runner application is used to 

generated varying scenarios including different actors, vehicle dynamics and environments. This 

is then integrated with GRAIC such that ground truth results can be input to planning and 

controls nodes where simulator results are checked against correct values. Based on the results of 

previous scenarios, new ones can be created dynamically to detect as many failure states as 

possible.  
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Figure 6: GRAIC architecture as shown in [31] 

The shortcoming of the GRAIC framework is that it does not expand to perception module 

testing as these results are directly produced by the simulator. Instead, as mentioned, planning 

and controls is the focus.  

Son et al. present yet another approach to ADAS development and validation using tools not 

mentioned in previous papers but ones that are still seen in industry [32]. The scope of test 

functionality is set to ADAS features including demonstrations of ACC, Vehicle to 

Infrastructure (V2I) communications and autonomous parking. LMS Amesim is a physics-based 

simulation platform that for the purposes of ADAS /AV testing allows for the simulation of 

vehicle dynamics in a model based design fashion. PreScan is another software that some in the 

automotive industry are familiar with because of its advanced visualization capabilities and 

intuitive GUI. Controls and planning development for the different features then come from a 

combination of Amesim as well as Matlab and Python. Putting the pipeline together allows for a 

closed loop testing environment in which drive scenarios seen in real world conditions are able 

to be simulated with a relatively high degree of accuracy. The conclusions from this 

methodology reveals benefits as well as areas for improvement. In terms of benefits, the 

development team noted that the high fidelity of the model, customizable scenarios and great 

visualization possibilities stood out. On the other hand the time consuming nature of the 

simulation was seen as the biggest drawback considering everything was done manually and in a 

linear fashion. As well, the different tools, environments and even languages seemed to add a 

layer of complexity and thus time intensiveness to the project.  

In the aforementioned works, several tools are used for simulation and validation of ADAS /AV 

algorithms. With the many options for testing and the various use cases within the domain of 

automated vehicle development, it can be hard to choose the best toolset for the project at hand. 

Kaur et al. provide a description of the minimum criterion for a good simulator for System 

testing as well as a comparison of the commonly used simulators today [33]. The functional 

requirements listed for a good automotive simulator are that it is able to effectively 

demonstrate/showcase: perception capabilities, multi-view geometry (e.g. for SLAM 

applications), path planning and controls support (e.g. controller tuning), a 3D virtual 

environment, traffic infrastructure / scenario simulation, and ground truth. In additional non-
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functional requirements, as sought after in most software applications, include good 

stability/maintenance, modularity (such as through a flexible API), portability, scalability and 

open-source (preferred). The paper compares MATLAB/Simulink, CarSim, PreScan, CARLA, 

Gazebo, and LGSVL. Ultimately several key observations are made. For instance LGSVL and 

CARLA are described as most suited to E2E testing because of the comprehensive support for 

automated features and modules such as perception, mapping etc. Software such as 

MATLAB/Simulink is described as a top choice for upper-level algorithms based on model 

based design.  

 

2.4 Chapter Summary 

For each of the testing levels discussed, a summary of the key findings are listed:  

Unit Testing  

• There is a general lack of clarity among developers on what defines a high quality test [5] 

• Tool support for unit test development is highly sought after [5]. 

• A TDD approach has long term benefits in product and development process quality at 

the expense of increased short term effort and time expenditure [10] [11] [12]. 

• Similar to TDD, test automation has a significant potential upside for long term time 

savings at the cost of higher short term pipeline development effort [17]. 

Integration Testing  

• Model based testing approaches such as in [18] provide great scalability and 

comprehensive testing at the expense of high technical complexity. 

• Testing frameworks centered around ROS such as in [22] benefit from evaluation of 

publishers/subscribers as the most common failure point. 

• The standard ROS Integration testing framework, though highly customizable is also 

extremely tedious to develop around. 

System Testing  

• A survey of ADS software engineers revealed major shortcomings in system test runtime, 

scenario selection/prioritization, and the importance of custom metric definition [6]. 

• Many options to test systems in software exist such as in [29] and [30] but closed source 

software tools are a barrier to adoption. 

• Other system test setups often suffer from high technical complexity and time investment 

for implementation and/or test running [32]. 
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3 Test Framework Architecture 

This section proposes the test framework that was developed to address the challenges described 

in Section 2. At each level of testing (unit, integration, and system), the proposed contribution is 

explained in detail, including a justification of the design decisions that led to its development.   

3.1 Unit Testing Guide 

Being the lowest level in the test framework, Unit testing is extremely application and 

implementation specific. For example, consider the module for state estimation in two separate 

ADAS software algorithms, where algorithm A chooses to implement a simple Kalman filter to 

realize this module and algorithm B uses a particle filter. Unit tests would then test sub functions 

of these algorithms themselves. In the case of A, perhaps tests would cover a specific case of the 

prediction step and verify that the covariance matrices output results within a reasonable 

tolerance. In the case of the particle filter on the other hand, we may instead want to test that 

samples are generated correctly in the initial sampling step. Due to the innate differences in 

algorithm definition, it is thus clear just how wide the variance of unit tests may be if they were 

incorporated by two different development groups. For this reason, this section will provide a 

more generalized list of guiding principles for unit test development as opposed to concrete 

examples of test cases themselves in the ADAS domain. The lessons learned from the literature 

review in Section 2.1: Unit Testing and Automation: Current Practices, as well as an additional 

online literature review of ten additional sources were used to compile the six guiding principles 

for unit test development described below. They are listed below in order from least to most 

common frequency of mention among the sources consulted. 

Recommendation #1:  Consistent naming convention  

Mention of proper naming convention was referred to in four of the sources [34] [35] [36] [37]. 

Though a seemingly trivial consideration in the development of a suite of tests, a unified 

convention serves to minimize barriers in communication within a team. Tests are often written 

and maintained by multiple developers, and consistent naming conventions make it easier for 

them to grasp the purpose and behavior of each test without having to dig into the 

implementation details. A well-defined naming convention also aids in organizing tests into 

logical groups. By following a consistent naming pattern, developers can categorize tests based 

on functionality, modules, or classes. This organization simplifies the process of locating specific 

tests and helps identify any gaps in test coverage. [34] recommends the convention of 

Method_Scenario_ExpectedBehavior. In addition to improving clarity for the originators of the 

test suite, future readers of the code will benefit from increased readability. [36] even suggests 

that the behavior of the code should be able to be interpreted without ever having to look at the 

code itself, i.e., functionality should be evident from the test name.  

Recommendation #2: Code clarity and documentation  

In a slightly different but related vein of overall test development clarity, five of the sources 

referred to the importance of enhanced organization and/or readability of the test code itself as 

well as made the case for clear documentation of its purpose [34] [35] [37] [38] [38]. Clear 

organization promotes scalability and helps to more easily facilitate modifications to the test 



18 

 

suite in the future. [36] leverages the Arrange-Act-Assert framework to maximize 

standardization and thus readability between tests. That is, plan the tests initialization, call an 

action, and then verify the outcome. The resulting high degree of readability allows development 

teams to quickly understand the purpose of tests without having to dive too deeply into the 

specifics of its implementation. It may also serve to prevent redundant copies of tests that are 

known to come up when communication within the development team is limited. Documentation 

is of importance for teams that are new and/or that may have to deal with a high degree of 

knowledge transfer and onboarding. The learning curve for new developers is reduced and thus 

simplifies the work of future developers who may have to modify tests that they didn’t initially 

set up themselves.  

Recommendation #3: Avoid test interdependence  

Another prevalent theme in the source material was the proper isolation of tests, which can be 

increasingly challenging as the test suite, and the algorithm that it supports increases in size and 

complexity. Isolation in this case refers to the practice of isolating units under test in a way that 

prevents interference from external dependencies. As mentioned in six different sources, the 

ability to isolate tests properly is a significant indicator of good test quality [34] [35]  [39] [38] 

[36]. This means that tests should not interfere with the functionality of others and each should 

be responsible for its own setup/cleanup processes. As stated in [35], no real-world or external 

dependencies should affect the outcome of a given test. The very practice of unit tests is said to 

help with code decoupling itself. By designing and planning test suites for specific sections of 

your codebase, it encourages development teams to modularize their algorithms functions into 

manageable subsections. Additionally, when it comes time to automate test processes, Test 

runners tend to run multiple test simultaneously without attention to a specific order. Thus 

reliance on the outcomes of other tests or sections of the codebase undergoing test may lead to 

failures in the suite. Testing in parallel enables faster cycle tests of test execution and may at the 

worst case, point out potential concurrency or thread-safety issues.  

Recommendation #4: Minimize tests, maximize coverage  

The fine balance between minimizing test while maximizing coverage is a central challenge in 

any approach to test case development, but especially at the unit test level when specificity is 

high but so are the potential costs of maintenance/test running. Seven sources brought up this 

challenge in one form or another [12] [35] [36] [37] [40] [41]. A helpful insight when 

determining the scope of a test is to focus on a single use case for each test. However, this should 

not detract from the goal of maximal coverage given current resources. Of course, 100% 

coverage is ideal target, but development groups have to decide for themselves what the tradeoff 

will be given the increased time and resources required for additional development. A common 

shortcoming of test development is doing so without a firm plan in place. [40] described the 

benefit of proper planning and even a teamwide known test strategy before undergoing the 

testing phase. The paper brings up the following two questions as points of consideration 

whenever a test is written: 1 -  “What does it mean when the test passes?” and 2 – “what does it 

mean when it fails?” Failure to answer both thus implies improper understanding/planning of the 

test at hand. Khorikov’s book Unit Testing: Principles, Practices and Patterns succinctly covers 

this theme with the characterization of a good unit test suite as amoung other things, one that 
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provides maximum value with minimum maintenance costs [41]. When there are less tests to 

update/modify, developers are less burdened with having to scour the codebase for a specific 

test. The importance of this is further justified when analyzing the learnings of developer 

experience such as those found in [5]. Data shows that failing tests are often treated with fixes or 

deletion of the tests rather than fixes to the code itself so the ability to keep a well maintained 

and organized test suite is of high importance. On the note of code coverage, learnings from a 

Microsoft case study showed the benefit of having an automated but single tool for code 

coverage across the team [12]. As well, incorporating the coverage as a formal metric that is 

visible teamwide was seen as critical takeaway to team buy-in of unit test practices.  

Recommendation #5: Test driven development  

TDD [42] is an iterative approach to development which focuses on writing tests before writing 

the actual production code. In other words, programmers using the approach would not write a 

new function until a text exists that would fail because of the lack of this said function. The 

general cycle is visualized in Figure 7. The goal is seen by some as focusing on feature 

specification as opposed to validation, implying it is more of an agile requirements technique 

[43]. This is because writing a test means that the developer / development team has already 

defined the pass criterion that the added functionality is supposed to meet. An alternative 

viewpoint is that TDD is in itself a programming technique with the goal being clean working 

code [44]. Irrespective of viewpoint however, the majority of sources consulted in this literature 

review recommended it as a key consideration to incorporating unit test practices [12] [34] [35] 

[36] [41]  [45]. [34] claims the benefits of TDD include more readable code (due to regular 

refactoring), easier maintainable codebase (consequence of smoother and more iterative design 

process) and better organized dependencies. As evaluated in the Microsoft case study, these 

improvements were quantified by defect comparison in development groups using a TDD 

approach to ones that were not [12]. The TDD group’s product had 60-90% fewer defects as well 

as an increase in test coverage. By nature of its design process, TDD also improves regression 

prevention as existing functionality must pass before the failure status of any new tests can be 

evaluated. Thus, unintended side effects or regressions in previously working code are tackled 

earlier. A criticism of the method is that longer initial development timeline than traditional 

approaches. However, TDD enables faster development iterations because smaller units are 

focused on at a time.  
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Figure 7: TDD process as depicted in [35] 

Recommendation #6: Automated/timely  

The consideration of timeliness of a unit test pipeline or its outright automation was the most 

prevalent recommendation across the consulted sources [12] [35] [36] [37] [38] [39] [40]. 

Manual testing is both extremely time intensive and potentially less reliable in the scheme of an 

entire suite of tests covering a development project. Thus, an automated version makes clear 

sense in many scenarios. [40] defines completion of automation as test suite integration that 

requires no human input, allows for tests that are consistently executable, does not have 

dependencies, and that can run repeatably in all supported configurations. Timeliness in the 

sense of writing test code is recommended to be kept in mind as well. As recommended in  [39], 

the length of time taken to write the test should not be disproportionately higher than the time 

taken to write the code being tested. A situation where this does arrive is a reason to reconsider 

the test design. This very lesson was explicitly stated as a learning in Microsoft’s unit test case 

study  [12]. In addition, an automated Unit testing pipeline allows for rapid feedback with little 

effort. This in turn reduces the cost and effort associated with fixing bugs in later stages of 

development. Preventing regressions is also much easier if the codebase is being verified with a 

higher frequency. Ultimately timeliness / automation is largely seen as a required characteristic 

of any major development project. For the developers it reduces time and effort, and for the 

customers it produces higher quality software products.  

Though not listed as specific recommendations in the testing guide, other less common but still 

useful recommendations for proper unit test design include: 

Deterministic tests – Determinism in this context refers to the ability of the code to provide 

consistent outputs across multiple different runs. A lack of determinism makes it challenging to 

separate genuine test failures from false positives or intermittent issues. This is another benefit of 

having a continuous integration pipeline. If certain runs fail non deterministically, the test suite 

has not been designed in an optimal fashion.   
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Avoiding logic – Avoiding logic in Unit testing allows developers to focus on the unit’s 

behavior and not the test, thereby enhancing readability and maintainability of the test suite. The 

inclusion of logic into the code increases the likelihood of rework for developers who would then 

have to make sure the logic in test cases keeps up with a dynamic codebase.  

 

3.2 University of Waterloo Structured Testing Framework (UW-STF) 

The unit test guide suffices for lower level testing which is too specific to benefit from a 

structured framework in many applications. However, moving to integration and System testing 

in ROS presents the opportunity to streamline the process with a flexible framework that can be 

used in many applications and software platforms. This is the central theme of design for UW-

STF.  

3.2.1 Design Intent and High Level Functionality  

UW-STF focuses on addressing some of the shortcomings of current testing approaches that 

were discussed in detail in Section 2.2 and 2.3. Specifically UW-STF was developed with the 

following design intents: 

1. An intuitive and simple to use interface for test specification. 

2. Integration with existing CI tools for automated test execution of the entire test suite. 

3. Adaptable to integration and system level testing.  

4. Adaptable to different software platforms and accessible for any development team 

through a focus on open source software. 

At a high level, UW-STF is responsible for spinning up ROS nodes, monitoring the desired 

Topics from these nodes, and then evaluating the incoming data for correctness based on 

predefined validity criteria. It also handles setup/cleanup operations of the nodes without any 

further specification. Once the nodes have been spun up and are ready to receive data, 

prerecorded ROS data is played back using the specified Bag file which serves as the input to 

the system under test. When the test is complete, a results file is generated that lists the system 

performance for each test as well as pass/fail status. When connected to a CI tool, the overall 

system status is determined by these individual pass/fail status results.    

3.2.2 Detailed Design  

An architecture diagram for UW-STF is presented in Figure 8. In this section we cover specific 

implementation details for each of the major components underlying UW-STF including 

perspectives on how they address some of the major challenges of current integration test 

practices raised in the literature review section. The descriptions are based on internal team 

documentation originally written by UWAFT team member Ansar Khan and then updated as 

necessary by the author of this thesis. 
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Figure 8: UW-STF architecture diagram for Nodes A & B under test 

 

1. .sim file 

The .sim file is central to the operation of UW-STF as it defines all important high level 

parameters for test execution. A picture of a sample .sim file is shown in Figure 9. This file 

includes the following fields to be input by the user: 

a. Launch files: location of launch files specified in conventional ROS2 format using the 

preexisting roslaunch tool to spin up nodes [46]. The user is responsible for correctly 

calling out the nodes to be run during test execution. However, failure to correctly 

populate the Node graph with the necessary dependencies will be raised as an error 

by UW-STF such that tests will not continue through till execution.  

b. Published Topics: name of topics that are published by the nodes under test and that 

will be monitored by the Observer nodes or Observers 

c. Required topics: topics to publish from the bag file that serve as inputs to the nodes 

under test. They can be played directly using the rosbag tool.  

d. Bag file: path to bag file containing prerecorded ROS topic data which serves as the 

input to the software stack. In the context of ADAS testing, this is often sensor data. 

Bag files are ideal because they can reflect either simulated or real-world data. 

e. Test duration: test timeout value in seconds. After this time, the test will be stopped 

and final pass/fail criterion is evaluated for each of the Observer nodes 

f. Observer: custom implemented node classes that monitor data published from nodes 

under test against validity criterion. Observers are described in greater detail below. 
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Figure 9: Contents of .sim file used in UW-STF 

2. Observers 

Observers are custom implemented Python classes that extend the Node() class and define how 

a specific Observer processes and evaluates incoming data. Though custom implemented 

Observers require similar time commitments as conventional Integration testing practices, the 

aim with created Observer classes is that they can be added to an open repository or database of 

Observers that are reusable. As seen at the bottom of Figure 9, Observers require several 

common fields. Current Observer templates are listed in Appendix A. Other fields not shared 

between them are specific to the purpose of that Observer and should be documented in the 

associated Observers usage documentation. The common fields are as follows: 

a. name: name of the Observer that is used to associate the specified Observer with its 

corresponding results file entry. 

b. observerClass: Python class defining the functionality of the Observer.  

c. oberverType: Type of Observer must be one of {ALWAYS_TRUE, TRUE_ONCE, 

TRUE_AT_END, TRUE_AT_START}. Note that this field is not necessarily 

required for all Observers. 

d. Topic: Name of topic that Observer subscribers to. Depending on the functionality of 

the subscriber multi topic inputs may be required (e.g. comparing ground truth topic 

to output of perception module) 
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e. msgType: Data type of the message in the same format that it would be imported in a 

Python script (e.g. std_msgs.msg.Float32). 

f. field: Subfield of the message that is being ‘consumed’ by the Observer. It is indexed 

through a dot operator. 

The Observer framework is designed to support rapid development of new custom Observers 

targeted to specific use cases. After creating the class in the Observers directory of the structured 

testing package, the class must inherit the parent BaseObserver class which does not require any 

user modification itself. The BaseObserver provides functionality common to all Observers 

including methods to start up the Observer nodes and subscribers, create single or multi Topic 

callback functions, consume and log topic data, and print the results to a results file when test 

execution is complete. Any of these methods may be overridden as necessary in the specific 

Observer class. New Observer development also requires the inclusion of a few main methods to 

properly integrate it with UW-STF.  

An initializer should take following form, ensuring that the super initializer is called. 

def __init__(self, *, name, topic, msgType, observerType, customArg1, customArg2, 
...        ,  **kwargs): 
        super().__init__(name, [topic], [msgType], observerType)  

A consumeMsg function is called every time a msg is published with the purpose of parsing the 

data and then evaluating it against a correctness criterion if necessary within the function. Note 

that Observers can be classified as memoryless (i.e. its truth value is able to be determined with 

messages at current time step without memory of previous values) or not. If memoryless, the 

getResult function will return an overall truth value at a time that is determined by the specified 

Observer type: ALWAYS_TRUE, TRUE_ONCE, TRUE_AT_END, TRUE_AT_STAR.  

A getResult function is called once at the end of the simulation and is expected to return a 

boolean that corresponds to a pass/fail of the test.  

Lastly, the metaDict function is called once at the end of the simulation and is expected to return 

a dictionary which contains any contents that the user wants to output to the results file beyond 

just the pass/fail status. This is most commonly parameters used specific to a certain test. For 

example when using the In Range Observer which checks if the Topic data is within a certain 

range, the metaDict should contain the minimum and maximum values used to define a valid 

range.  

3. .simresults file and CI integration 

The .simresults file displays the results of all Observers specified in its corresponding .sim file, 

and is automatically produced as an output of UW-STF following completion of the test(s). 

Figure 10 shows the results of the tests executed from the .sim file in Figure 9. It is evident that 

fields like name, status and observerClass are common to every Observer but other fields are 

specific to that Observer itself.  
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Figure 10: Sample .simresults file associated with the .sim file shown in Figure 9 

 

Following the creation of the .simresults file, a seperate check_results.py script parses the results 

for its pass or fail status and returns the appropriate exit code. Thus integrating UW-STF into a 

CI tool such as Gitlab simply requires the addition of the following lines to the .gitlab-ci.yml 

file.  

For a certain stage just add the command to run the start_sim.py file with the .sim file as the 

command line argument: 

python3 path/to/start_sim.py path/to/my_test_example.sim 

And then with the newly generated .simresults file as the command line argument, the 

check_results.py script can be run: 

python3 path/to/check_results.py path/to/my_system_test.simresults 

3.2.3 Addressing Design Intents  

Now that low level design aspects have been described in detail, a preliminary analysis of how 

the framework meets the design intents listed in Section 3.2.1 can be addressed. Firstly in regard 

to point #1 – an intuitive and simple to use interface, YAML was selected as the language for 

.sim file specification because of its human readable input. Parameters are modified much easier 

and more intuitively than in conventional programming language test development. In addition, 

it has strict syntax (which is better for robustness) and matches data structures native to Python 
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for parsing. On the development side, it is also extremely version control friendly since it is 

purely test based as well as being open to comments. Though the rest of UW-STF is developed 

in Python, users that are not test developers can still easily interpret the tests themselves as 

YAML is used without requiring a specific operating system or programming language.  

Point #2 (integration with CI tools for automated test execution) is addressed in the last part of 

Section 3.2.2. Specifically, the check_results.py script is able to parse the results file and return 

an error code that is compatible with the standard convention for CI pipelines.  

Point #3 (UW-STF’s adaptability to both integration and system levels of testing) is possible by 

nature of its evaluation of the interfaces of a Node (Topics) in the system. A demonstration of 

this concept is shown in Figure 11 in which dependent on the topics that are evaluated the scope 

of testing changes. Integration testing involves testing of a subset of the modules in isolation 

(e.g. planning and controls nodes). System testing on the other hand involves the whole system 

and so must encapsulate all its modules. Thus the input and output topics of the entire system are 

monitored.  

 

Figure 11: Given an ADAS system with several modules (ROS nodes), the scope of testing may 

be changed by selecting the appropriate topics. Integration testing (above) and system testing 

(below) is shown as defined for the following pictured system. 

Lastly, point #4 (adaptable to different software platforms and open source accessibility) is 

evident given the tools and software used for its implementation. The framework itself is built 

around testing of ROS nodes which itself is an open-source middleware. Python and YAML are 

also freely available languages used in the execution and development of tests. UW-STF requires 

no other external dependencies or paid software subscriptions to carry out tests. This means there 

are no barriers to its adoption in either industry or academia. 
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3.3 Generating Simulation Data 

Beyond tool support for testing, the review of literature in earlier sections revealed a major 

requirement for ADAS testing teams was to speed up the simulation process [6] [32] . 

Additionally, Williams et al. determined a key takeaway for adoption of a formal testing 

framework was to keep execution of the tests as simple as possible [12]. To address these 

challenges, a pipeline for sensor data generation that serves as input to UW-STF is proposed 

including a selection suggestion for the source of ADAS driving scenarios.  

Two areas of potential pipeline speed improvements identified in [6] are test selection and 

prioritization. Fortunately however, the National Highway Traffic Safety Administration already 

provides a comprehensive report on the most common pre-crash scenario typology [47]. As 

stated in their report, the portrayal of frequency and type of crash scenarios is done so with the 

intent to among others, enable researchers to prioritize crash typologies, devise appropriate 

countermeasures and specify automated vehicle control capabilities that can assist drivers in 

preventing these types of crashes in the future.  

 

3.3.1 Choice of Simulator  

The subteam within UWAFT responsible for software development related to vehicle 

automation is known as the Connected and Automated Vehicle (CAV) subteam and so the 

selected simulator had to be suitable for their needs. CARLA is selected for the criterion 

described below, but UW-STF is not limited to just this choice. The only requirement for a 

simulator is that its data can be converted to Bag file format. From UWAFT’s internal training 

documentation, “UWAFT has chosen to use the open-source, feature-rich, high-detail offering of 

CARLA for its perception simulation environment. Coupled with extensive open assets created 

for the purpose of CAV software development, full control of custom environments, traffic, and 

weather, and a deep, flexible sensor suite, this program allows for a high degree of customization 

with high fidelity graphics. In turn, this will benefit the team by allowing for increasingly 

complex test scenarios as the perception algorithm evolves over the course of the competition. 

CARLA also provides a seamless connection to ROS via its custom ROS bridge” [48]. Research 

from Kaur et al. further justify this decision with their comparison to other simulators by stating 

CARLA was one of the most suitable for end to end testing because of its comprehensive support 

for automated features [33]. Of particular usefulness when compared to other simulator options 

is CARLA’s customizable suite of actors, environments and especially sensors as seen in Figure 

12. Beyond the provided list of configurable sensors such as lidars, cameras, and radars, new 

sensors can be created from scratch. As will be explained in Section 4, this feature was a 

necessity in the EVC because of the competition provided vehicle’s stock sensors and their 

unique output of preprocessed detections to the Controller Area Network (CAN) bus.  
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Figure 12: CARLA provides a flexible suite of environments (top left), vehicles (top right), and 

sensors (bottom) [49] 

3.3.2 Proposed Simulation Pipeline 

To comply with the requirements of UW-STF as well as address the issue of simulation 

timeliness as a testing pipeline bottleneck, the approach below is proposed: 

 

1. Pick suite of highest priority scenarios from NHTSA pre-crash report and 

find/implement them in CARLA. 

For example if the ADAS development team was still in the preliminary stages of algorithm 

development and testing it’d make sense to choose scenarios in which the operational design 

domain was less complex than others such as in the case of two-vehicle light-vehicle crashes. In 

this case the team may consult some of the scenarios from the report, ordered based on highest 

relative frequency (Figure 13).  

 

 
Figure 13: Top five most common two-vehicle light-vehicle crash scenarios as according to [47]. 

 

The scenarios can be implemented by the development team with the help of CARLA’s 

dedicated traffic scenario definition module ScenarioRunner [50]. Alternatively, if the 

requirements for scenario selection are even less rigid, development teams can leverage the pre-

built scenarios used for the CARLA Autonomous Driving Challenge which were also based off 

the NHTSA pre-crash report [51]. Some of these scenarios are visualized in Figure 14.  
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Figure 14: Two of the several CARLA Autonomous Driving Challenge scenarios from [51] 

 

2. Add sensors to ego vehicle including custom ground truth sensor 

CARLA by default does not have a sensor capable of reading ground truth measurements of 

target objects. Thus, a custom developed Ground Truth sensor was developed for this purpose. It 

works by using CARLA’s provided tick() function for sensors which records data for the sensor 

it is attached to at each simulated timestep. The ground truth sensor can be attached to the ego 

vehicle with a fixed mounting point similar to the default sensors. As seen in Figure 15, it is 

initialized using the sensor actor object, output path of its recorded data, the ego vehicle actor, 

and the target vehicle actors. Additionally, it inherits from a base Sensor class which has 

methods for recording longitudinal/lateral position, velocity, and acceleration measurements as 

well as heading angle.  

 

 
Figure 15: Ground truth sensors initialization function 

3. Run scenario in CARLA and complete test by saving sensor data to Bag file.  

Though listed here as one, this step has two parts to realize its execution. Leveraging CARLA’s 

Python API, a single script is responsible for opening the CARLA world which acts as a server. 
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It also sets up the ego vehicle and other relevant actors in the scenario including configuring the 

sensors to record data. By the end of the simulation this data is saved in a bag file format.  

 

4. Run each Bag file scenario as input to UW-STF.  

With each scenario recorded as a separate bag file, it is now compatible with UW-STF as long as 

the corresponding .sim file is set up. When running system test level Observers, the ground truth 

Topic can be accessed as any other by specifying the topic name. UW-STF is capable of time-

synching the ground truth and system output topics based on their timestamps. An illustration of 

the whole pipeline including gathering simulation inputs is shown in Figure 16. 

 

 
Figure 16: Illustration of the full testing pipeline including simulation input 

 

As described previously, scenario setup and selection is done within the CARLA environment. 

The output of this is both ground truth data of the target objects as well as sensor data in which 

noise profile parameters have been accounted for. Topics relating to both ground truth and 

sensor data are saved to a Bag file. From here onwards, UW-STF takes authority of the testing 

process by spinning up the required ROS nodes in the software Stack, the Observers in the .sim 

file, as well as playing the bag file containing the simulation data. Once test execution is 

complete (either manually by a developer or automatically by a CI tool), relevant performance 

metrics are displayed in the .simresults file. If executed by a CI tool, the pass/fail status of these 

performance metrics determines the status of that testing pipeline. Because UW-STF handles 

cleanup of tests as well, multiple scenarios can be run in succession as long as they are entered in 

the desired order in the CI configuration file.  

3.4 Chapter Summary 

• Due to the extremely application specific nature of unit tests, a generalized guide (based 

on a review of literature) of six key recommendations to improve test quality is provided. 

• At the integration and system test level, a custom test framework known as UW-STF is 

proposed to address shortcomings of previously mentioned frameworks. Advantages 

include a rapid and modular development approach, high flexibility in integration and an 

intuitive interface. 

• Simulation data using CARLA is tied into the framework to show how UW-STF can 

function in a full scale System testing pipeline. The pipeline includes consideration of 

scenario prioritization and selection using NHTSA’s report on pre-crash typology.  
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4 Application of Framework to the UWAFT Stack 

4.1  UWAFT Architecture 

To validate the effectiveness of the proposed testing framework in a working development 

setting, this section utilizes the codebase developed by the CAV subteam of UWAFT. EVC 

requires the addition of ADAS features to a 2023 Cadillac Lyriq and at the time of writing, year 

1 of the competition has been completed. Section 4.1 introduces the hardware and software 

Stack of the team while the following sections apply UW-STF to the stack at different levels of 

testing.  

4.1.1 Software Architecture 

For year 1 of EVC, each school’s CAV subteam in the competition was tasked with developing 

a baseline perception architecture including considerations for both software and hardware 

implementation. Features that teams would have to implement by the end of the four-year 

competition include autonomous parking, V2X based intersection navigation, adaptive cruise 

control, and lane centering. The CAV team elected to go with an architecture design that focused 

on ease of implementation and debugging for the first year. Being the first year of competition, 

the skill levels of new recruits was largely at the beginner level. Thus, electing for design choices 

that members could more easily understand was a priority. Based on a review of the literature 

CAV members chose to modularize their design into the following to achieve ADAS L2/L3 

functionality: perception, object tracking, planning, and controls.  

Object Fusion: The perception module in Y1 was required to handle data from both stock Lyriq 

sensors, which output processed object detections over CAN, as well as conventional team added 

sensors, which output raw sensor data. Specifically, a team added front camera which outputs 

RGB images and overhead 32-channel LIDAR were proposed as key additions to the sensor suite 

to complement the existing stock sensors. Thus a full versioned perception module would have 

to include an object detection sub-module for the team added sensors. It would then be required 

to sync the data that was pre-processed with the output results of a custom object detection 

algorithm using a sensor fusion algorithm. For the initial version, or V0, of algorithm 

implementation which as mentioned, focused on simplicity of implementation and debugging, 

the scope of the perception algorithm was modified to exclude team added sensors. As a result, 

sensor fusion for V0 included fusing only the pre-processed object detections from stock sensors. 

Given the redefined scope, several traditional methods for sensor fusion were evaluated, from 

which a weighted-voting based approach was selected.  

Tracking: Multiple variations of object trackers exist, from traditional cluster based approaches 

to probabilistic methods to newer machine learning based approaches. The full scale version of 

the object tracking module would be responsible for taking in fused sensor objects and being 

able to consistently associate them with a separate ground truth object, or track. Object tracking 

is also responsible for maintenance of the tracks in the case new objects are introduced into a 

scenario or if older objects are removed. Once updated, estimation filtering is usually conducted 

to provide an updated estimate of the state of the object(s). Lastly, traditional approaches to 

tracking include a gating step which helps to inform the bounds of assignment of new objects to 
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tracks in the next iteration. In the name of keeping the algorithm has easy to intuit for new 

developers in the team as possible, a nearest neighbours approach to object assignment was 

implemented. Track maintenance occurred through the update of an active status counter for 

each track, which was modifiable. State estimation was also implemented with the simplest of 

approaches found in literature – the vanilla Kalman Filter.  

Planning: The planning module was defined by the CAV team to include behavioural and 

motion planning. Behavioural planning was set to include high level state actions that the ego 

vehicle should take given its current trajectory as well as the trajectories of all obstacle tracks 

provided by the object tracking module. Then motion planning could account for vehicle 

dynamics limits, collision avoidance, and drive quality, to make a decision on the optimal 

trajectory given a list of possible options. Behavioural planning via a Finite State Machine 

(FSM) approach was selected for V0 because of its ability to be modularly expanded to different 

feature requirements as well as its inherent transparency of current status. The 2019 Hyundai 

Autonomous Vehicle Competition, a project with a scope similar to EcoCAR, further justified 

this FSM based strategy [52]. The article incorporated such an approach for behavior planning of 

connected intersections in urban environments.   

Controls: After lessons learned from previous implementation efforts in the previous EcoCAR 

competition as well as consultation with professors working on the subject matter, the team 

elected to go with a Model Predictive Controller (MPC) to realize the conversion of a target state 

from the planning Node to control signals to send to the propulsion controller. Similar to [52], 

the control of vehicle dynamics was decided to be split into decoupled controllers for 

longitudinal and lateral motion. A decoupled system benefits from being easier to debug and 

tune in different dynamic driving scenarios, with the drawback being a potentially less optimal 

solution than a single controller. Beyond the control module’s outputs of acceleration, braking, 

and steering torque signals, the propulsion compute unit handles conversion of these to actuate 

vehicle dynamics. However, this is deemed to be out of scope for this thesis.  

A complete software architecture diagram including the sensors, main ROS modules, as well as 

high level signals between them is shown in Appendix B. However, due to the fact that the 

planning and controls modules are yet to be integrated with the rest of the system, the scope of 

the examples in this thesis will just be limited to perception and tracking modules, which herein 

define our “system” under test. Furthermore, as integration tests validate a subset of nodes in the 

system, the system is further broken down into submodules for clarity of communication about 

where we are in the system with respect to the test (Figure 17). This will be of use in Section 4.3 

when integration test examples are described at different points in the system.  
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Figure 17: Definition of UWAFT system used in Section 4 examples  

 

4.1.2 Hardware Architecture  

To support the current and future algorithms running in vehicle, the CAV team also had to make 

decisions on sensor and compute hardware that would persist throughout the remaining years of 

the competition. In the way of sensor types the team chose the sensor suite presented in Table 1. 

Note that exact range and Field of View (FOV) specifications of the stock sensors are not shown 

due to General Motor’s confidentiality requirements: 

Table 1: Sensor Detail Overview 

Sensor Type Quantity Stock or 

Team-Added  

Range & Horizontal Field of 

View (FOV) 

Front Long Range Radar 

(LRR)  

1 Stock Long range, narrow FOV 

Front Short Range Radar 

(SRR)  

2 Stock Short range, wide FOV 

Rear Short Range Radar 

(SRR)  

3 Stock Short range, wide FOV 

Front Camera Module 

(FCM) 

1 Stock Medium range, medium FOV 

Ouster LiDAR (OS1-32) 1 Team-Added 360° @90m 

Pi Camera Module 3 Wide 1 Team-Added 120° 

 

The additional LiDAR gives the team the advantage of a unique 360° field of view and higher-

resolution detection that can be leveraged in obstacle dense environments such as heavy traffic 

and parking scenarios. The selected model also has a resolution matching that of large-scale 

online datasets (e.g. nuScenes), which make testing object detection feasible in simulation. 

Another team added sensor of high relevance to the perception algorithm is the Pi camera which  

provides raw RGB images instead of pre-processed detections, enabling team members to test 

machine learning (ML) based approaches to object detection. For the first iteration of algorithm 

development however, the team chose to focus on just the stock sensor inputs as they would not 

require an additional object detection step in the software Stack. The combined FOV is 

visualized in Figure 18.  
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Figure 18: FOV depiction of stock sensors plus team added LiDAR and camera. Note that FOV 

and range are not to scale. 

Beyond the sensor hardware which provides the inputs to the algorithm, the compute units 

required to run the algorithms themselves were also a decision for the CAV team to make. The 

network architecture chosen resembles a more centralized design with the dSPACE Autera 

taking on most of the computational load. Its extendable RAM and GPU capabilities allow the 

team to balance power, timeliness, and energy efficiency as needed. In addition, the team plans 

to add a Nvidia A5000 GPU to the AUTERA to further enhance its compute performance. The 

NavQPlus and Jetson were chosen as the main edge devices for work offloading. In addition to 

its competition sponsorship, the minimal footprint of the NAVQPlus allows for simpler 

offloading of tasks from the AUTERA with minimal increases in energy expenditure. Lastly, the 

Jetson TX2 was chosen because of the team’s familiarity and experience with it in past 

competitions in which it has shown that it is capable of handling the power and timeliness 

requirements for data visualization. The proposed network diagram for the teams compute 

architecture is shown in Appendix C. 

 

4.2 Unit Testing 

In this section the recommendations from Section 3.1 Unit Testing Guide are applied to the 

UWAFT codebase to improve the quality of testing at this level. 

First, we apply recommendation #1: consistent naming convention. Prior to the application of 

this guideline, no naming convention for tests existed on the team. The only guideline developers 

were told to follow is that tests for a specific package must be kept in that packages ‘test’ folder. 

This led to a quickly unorganized collection of unit tests that, though all related to a specific 

module, had relationships to the methods under test that were unclear. As seen in Figure 19, the 

relationship between tests and their corresponding source code scripts within the obj_tracking 

package is ambiguous as all the tests for the package are continually added to the same file in the 

order of when that test was conceived.  
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Figure 19: Example of old unit test organization for object tracking module 

Taking direction from [34], the naming convention was changed to follow 

UnitOfWork_StateUnderTest_ExpectedBehavior. For instance, a test of the Kalman Filter’s 

predict method in the kalman_filter.py file to ensure it returns the expected prediction can be 

named: predictStep_validPrediction_returnPredictedState. The same principle can be applied to 

the remaining tests and a new test file can be created to group tests for each of the src files in the 

obj_tracking module. This is shown in Figure 20. 

 

Figure 20: New folder structure and naming convention for unit tests as per recommendation #6 

Contrary to the old folder structure, a test file for each corresponding src folder script leaves no 

question as to where the area under test is derived from. Within each test file, the new naming 

convention for unit tests also clarify the scope of each test. In the top right callout of Figure 20 it 

is evident that two completely different methods are being tested within the kalman_filter.py 

script whereas the bottom right callout shows how to differentiate between two states of the same 

function (in that case Euclidean distance function) being tested for different behaviour.  

Recommendation #2 – to increase code clarity and documentation – was realized in two steps. 

The first was to explicitly include a documentation requirement as part of the official merge 

request process for any change to the teams codebase. Furthermore it was included as part of the 

teams merge request template checklist as seen in Figure 21. 
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Figure 21: Highlighted text showing documentation requirement added to team's default merge 

request template 

To improve clarity in the test code, the Arrange-Act-Assert (AAA) framework can be leveraged 

as recommended in several sources  [34] [35] [36]. As an example, it can be applied to the 

existing test case for validity of the Euclidean distance function as seen in Figure 22.  

 
 

 
 

Figure 22: Old test code (top) and new test code after application of AAA (bottom) 

 

Figure 22 is a trivial example that likely doesn’t present a significant increase in readability. 

However when test cases being more comprehensive or involve multiple assert requirements as 
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in Figure 23, applying the AAA framework increases readability of the test code by 

standardizing the organization of its subsections.  

 

Figure 23: The benefit of AAA is more pronounced for more involved tests such as those with 

multiple assert requirements which are grouped together as opposed to spread throughout  

Recommendation #3 entails avoiding interdependence between tests as well as minimizing the 

use of external dependencies. As seen in Figure 24, one way to do this is avoid the use of 

external processes / modules. In this figure the CAV team has developed a test to verify proper 

functionality of the callback method of the object tracking Node when it receives data from the 

upstream sensor fusion node. The former test strategy seen at the top of the figure leverages 

Pythons subprocesses in which the sensor fusion node is run. This requires the creation of 

processes that are external to the program and also requires that the process lifecycle is managed 

to ensure it does not remain active after test completion. Improper termination of processes 

increases memory consumption as well as possibly affects the outcome of future tests. As seen 

from the bottom of the figure the alternative method reduces dependencies (evident from less 

imports) by creating its own ROS publisher required to trigger the callback. Doing so using 

ROS’s rclpy library also ensures proper cleanup of the nodes after use.  

 

 
(a) 
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(b) 

Figure 24: Test that relies on more external dependencies (a) and test with fewer 

dependencies (b) 

Per recommendation #4, the tradeoff between the time required to write tests versus the coverage 

that more tests usually provide is a balance for any development team. The self-prompts of 1 - 

“What does it mean when the test passes?” and 2 – “what does it mean when it fails?” from [40] 

are very useful in this context to discern value added tests cases versus development for the sake 

of meeting an arbitrary coverage goal from management (as pointed out in [5], management 

requests are often a primary motivation for test development). One tool that is suitable for the 

CAV team’s efforts is coveralls.io because it works with ROS modules including support for 

Python and C++ (Figure 25). Many alternatives tools exist but the key takeaway as cited by 

Microsoft’s case study is to pick a single tool that can be used teamwide [12]. This greatly 

increases the ease and likelihood of tool adoption among team members.  

 

Figure 25: Example code coverage dashboard from coveralls.io 

TDD as an approach to development (recommendation #5) is not something that can be suddenly 

ingrained in the teams processes with results that are immediately available. Thus, at this point 

we do not have conclusive data of the before and after effects of TDD within UWAFT. That said 

it is planned to be implemented in year 2 of EVC where sufficient internal team documentation 

will be added to the team documentation repository regarding TDD. 
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Lastly, and of highest importance to an efficient test development and usage pipeline, is 

recommendation #6, consideration of timeliness of the test suite including its ability to be run by 

automatically. Given its usage of Gitlab for hosting of the codebase, the CAV team leveraged 

Gitlab’s built-in CI tools for test suite running. The team also benefitted from a design team 

dedicated server cluster built and maintained by WATOnomous to house dedicated Test runners 

[53]. Test runners have been added at the group and specific repository level so runners can be 

distributed evenly among ongoing CAV projects with some redundancy in case one of the 

servers are down. The assignment and prioritization of Gitlab runners are all set fairly intuitively 

in Gitlab’s CI settings section (Figure 26). Following the setup of a runner, a YAML based CI 

configuration file (.gitlab-ci.yml) was set up using the online documentation provided as a 

reference [54].  

 

Figure 26: Project test runners are assigned using Gitlab’s CI settings screen 

 

4.3 Integration Tests  

Integration tests utilize UW-STF as described in Section 3.2 to validate different sections of a 

system in parallel by using a single source of data stored in a Bag file. For the purpose of CAV 

related work, this bag file contains recorded sensor data collected from simulation (though real-

world data is also a possibility). The scenario used in this section is an approach of a stationary 

lead vehicle which as seen from NHTSA’s pre-crash report was the most common crash scenario 

for a two light-vehicles. A video of the scenario can be found at this link with a screenshot of it 

shown in Figure 27. 

https://youtu.be/eIw6O_6NaRI
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Figure 27: Stationary approach scenario seen in CARLA 

In this section several Observers developed for Integration testing are demonstrated using the 

aforementioned scenario. A summary of the subsequent integration test examples that will follow 

are listed below:  

• Heartbeat Observer for Sensor Inputs 

• In Range Observer for Fusion Output 

• Frequency Observer for Tracking Output 

• Max Observer for Number of Tracks Detected:  

 

Heartbeat Observer for Sensor Inputs 

The first test demonstrates the use of a Heartbeat Observer which checks for initial 

communication between sensor Topics and its interfacing ROS Node in the system (Figure 28). 

It is one of the quickest tests to validate because it simply checks that data has been published 

but does not check the quality of its contents. Note that because the teams first iteration of their 

algorithm doesn’t require object detection, the object fusion node is the furthest upstream. In this 

example we use it to verify that the connection between the Bag file and the start of the system 

works as expected.  

 

Figure 28: Location of Heartbeat Observer within system 

The beginning of the .sim file for integration tests is shown on the lefthand side of Figure 29. 

The Launch file starts up the sensor fusion Node while the published and required Topics are 

also set up. Note that topics not directly related to sensor fusion appear (e.g. /tracked_obj) but 
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this is so the same .sim fle can be used for additional integration tests that will be described in 

later sections.  

 

 

Figure 29: Setup parameters of .sim file (left) including Observer section (right) 

 

Once the setup parameters have been configured, the Observers can be added (righthand side of 

Figure 29). In this case a Heartbeat Observer is added for each sensor on the ego vehicle. As per 

the stock sensor suite (Section 4.1.2)  this includes 1 FCM, 1 Front LRR, 1 Front Left SRR, and 

1 Front Right SRR. A check of the ground truth sensor is also added. With a simple copy and 

paste of the standard Heartbeat Observer schema and some minor modifications, 5 separate 

integration tests are set up in a matter of minutes.  The corresponding results file after running 

the simulation is shown in Figure 30. As per the figure, the front camera, long range radar, and 

ground truth sensors have passed but the left and right radars have not established ROS 

communications with the software Stack. In general miscommunication issues may be due to 

incorrect Topic naming, an issue with the Bag file itself or improper specification of a message 

type. In this case the left/right short range radars were purposely disabled in simulation to 

validate that the issue would be caught. Due to the purely longitudinal direction of the scenario, 

it is not critical that they be used.  
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Figure 30: Results file from running Heartbeat Observer on sensor topics 

In Range Observer for Fusion Output 

Having verified communications between the sensor data and the fusion Node, we can move 

further downstream to test the sensor fusion output itself. This Observer verifies that the output 

of a Node responsible for object fusion is within reasonable bounds (Figure 31). For high level 

performance gauging, the In Range Observer is of great use given a priori knowledge of the node 

under test’s behavior.  

 

Figure 31: Location of In Range Observer within system 

 

For example, we can first observe a plot of the ground truth of the relative longitudinal distance 

between ego and target vehicle, identified as DX (distance in the +x direction) as seen in Figure 

32. As evident in the scenario video/figure, two target vehicles are present in the vicinity of the 

ego vehicle with only one being in the current lane.  
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Figure 32: Ground truth plot for two target vehicles in scenario 1 

Given that the range of ground truth for both vehicles is between 0 to 50m, we can add a rough 

20% error tolerance to the Observer definition of the max value. Because only the frontal field 

of view is relevant for this scenario no tolerance less than 0m is required. Overlaying the fused 

detection results over ground truth produces the plot at the top of Figure 33. The bottom of the 

Figure shows the Observer definition as part of the generated results file.  

 
 

 
Figure 33: Sensor fusion algorithm results overlayed on ground truth for scenario 1 (top) and 

the corresponding the Observer entry in the .simresults file. 
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Evident in the plot and the results file, the test passes as detection results came nowhere close to 

the 60m maximum. It is important to note that the 20% error tolerance is not a hard rule. 

Tolerances must be defined by the user based on their understanding or expectations of system 

performance. It is not meant to be a target metric either and is better used as a “minimum” 

expectation for the system to pass.  

Frequency Observer for Tracking Output 

A higher data rate often benefits downstream nodes which are then more quickly able to respond 

to changes in inputs. For the use case where data must be transmitted at a minimum frequency, 

the Frequency Observer is an ideal choice for testing. Note that though this observer is located 

at the output of the system, it is not considered a system test because it specifically relates to the 

quality of data of being output from the last submodule (state estimation) as seen in Figure 34, 

and is not a reflection of the whole systems performance as a whole. 

 

Figure 34: Location of frequency observer within system 

 

Thus this example utilizes the Frequency Observer to ensure the output of the tracking module 

is transmitted at a minimum frequency. The definition of the Observer can be seen in Figure 35. 

 

Figure 35: Frequency Observer definition for tracked object data specifying 8Hz 

Because the team does not possess the vehicle and thus stock sensors to make determinations 

about a reasonable data transfer rate, 10Hz was used as a conservative estimate when setting the 

ROS Node spin rate for the different modules. This is based on the lowest frequency sensor for 

the previous competition vehicle in the EcoCAR Mobility Challenge, where stock radars and 

cameras were also present. Using the 20% tolerance rule, the minimum frequency defined to be 

considered a pass for the test was 20% less than 10Hz. This specification is evident by the 8Hz 

minimum frequency defined in Figure 35. Then running the test as part of the integration test 

suite we have been building upon thus far produces the .simresult entry seen in Figure 36. The 

performance of the system is close to the 10Hz requirement that was set for the system and thus 

definitely passes the more lenient 8Hz requirement defined by the Observer.  
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Figure 36: Output of frequency Observer test when an 8Hz minimum frequency is specified 

Max Observer for Number of Tracks Detected  

Another relevant metric to evaluate from the output of the object tracking Node is the tracks 

themselves. At a high level, the number of tracks detected provide information of the algorithms 

ability to distinguish target objects and match them continuously to their previous frames over 

time. In general the Max/Min Observer verifies that a tested message is above or below a certain 

threshold reflecting a minimum pass criteria for the system performance (Figure 37). In this case, 

we use the Max Observer. 

 

Figure 37: Location of Max Observer within system 

 

Based on the ground truth plot for this scenario (Figure 32), it is known that the correct number 

of tracks throughout the simulation is 2. When setting a pass limit for this Observer, the 20% rule 

may not suffice because the number of tracks needs to be an integer. For this reason, we’ll set the 

max to be 3 to provide a proper tolerance for error. This is seen in the lefthand side of Figure 33. 

The righthand side on the other hand shows the results once the test is completed. It can be seen 

that the actual value did reach the maximum of 3 tracks but did not surpass it.  

 

 
Figure 38: Max Observer definition for max tolerable number of tracks (left) and 

corresponding results file output showing that output was equal to max limit (right) 
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When plotting the number of tracks detected over the course of the simulation the team can 

identify where the shortcomings in detections occur as seen in Figure 39. Thus, Integration 

testing here plays the role of a quick identifier of weaknesses in the system. Though it does not 

provide exact feedback on areas that need improvement it gives developers a start to their ‘search 

area’ when debugging an ADAS algorithm.  

 

Figure 39: Number of tracks detected over course of scenario 1 

 

4.4 System Tests 

System tests involve the full scale of the software Stack and is the highest level of testing before 

acceptance testing (out of scope for this thesis). Thus, the defined Observers reflect more 

standardized metrics for system evaluation of the CAV teams algorithm in year 1. The metrics 

used by UWAFT are expanded on in Section 4.4.1. Following an explanation of the metrics, 

Section 4.4.2 shows how they are applied to scenarios selected based on NHTA’s report on pre-

crash typology [47]. Note that the purpose of UW-STF is not to improve metric performance of 

an ADAS system but rather to objectively evaluate it. The metric results presented in Section 

4.4.2 represent the teams first iteration of a simple algorithm and is not an evaluation of UW-

STF itself. Section 4.4.3 however evaluates UW-STF itself as a test framework and thus provides 

more useful analysis as to how well the framework actually met its design intents.  

4.4.1 Metrics 

The first metric used at the system test level is F1-score. It is known as the harmonic mean of 

precision and recall, indicating its ability to convey information about a system in terms of both 

its ability to capture true positives amidst all its perceived detections (recall) as well as 

accurately signal a detection whenever a true object is present (precision)  [55]. In the context of 

the CAV team’s development efforts, a True Positive (TP) is defined as a detection that 

corresponds to a ground truth object (while a False Positive, FP, does not) and a True Negative 

(TN) is defined as a lack of detection output given that no ground truth object exists (while a 

False Negative, FN, occurs given a ground truth object actually does exist). This is visually 
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presented in Figure 40. Precision and Recall are then fractions of these binary combinations as 

per Equations 4 and 5 while F1-core combines both previous measures as in Equation 6. 

 

Figure 40:Visualization of precision and recall as seen in [56] 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

( 4 ) 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

( 5 ) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∙ 𝑃 ∙ 𝑅

𝑃 + 𝑅
 

( 6 ) 

To realize an interpretation of the F1 score that was applicable to vehicle detection in ADAS 

scenarios, a tolerance bound was set for what was considered a TP. Unsurprisingly, expecting 

detections to be exactly at ground truth positions is unrealistic given realities such as sensor 

noise and other unideal real world driving conditions. The tolerance for the first iteration of the 

CAVs algorithm was set to be 4m based on the average length of a light vehicle.  

The second metric of use to the CAV team for algorithm evaluation was Optimal Sub Pattern 

Assignment (OSPA). While the F1-score is based on binary classification of detections at a 

certain timestamp, OSPA is oriented towards the evaluations of tracks. Tracks take into account 

potential temporal disruptions in detections by representing a labeled sequence of state estimates 

over said period of time [57]. OSPA was developed to address several shortcomings of other 

metrics in multi-object tracking [58]. The Hausdorff metric for instance, though very suitable to 

measure dissimilarity between binary images is insensitive to differing cardinalities of sets. The 

Optimal Mass Transfer (OMAT) metric partly addresses the cardinality shortcoming of 

Hausdorff but introduces its own problems such as inconsistency when there are different 

numbers of points assigned to ground truth objects as well as behavior dependent on the 
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geometry of the ground truth objects themselves. OMAT is also undefined if the cardinality is 

zero. Thus OSPA is introduced which is described and defined in Figure 41 and Equation 7. 

  
Figure 41: Notation description for Equation 4 from [58] 

 
( 7 ) 

Parameters p and c are set by the user. Increases in p are interpreted as higher leniency to outlier 

objects. Cut-off c on the other hand determines how much cardinality errors are penalized. 

Applying this to the teams use case, p is set as 2 as recommended by [58] while the cutoff c is set 

to be 4 which is approximately an average car length [59].  

 

4.4.2 Results 

Scenario 1 – Stationary Approach 

The stationary approach of a lead vehicle, besides being the most common on NHTSA’s list of 

light vehicle crashes, was sought after by the team because of the focus of year 1 on ease of 

implementation over accuracy. Thus, scenarios that were simpler to interpret, also meant quicker 

debugging and validation of the system (albeit not extremely challenging for it performance 

wise). As described in earlier sections, CARLA was used to generate the simulation data 

leveraging the development work for simple scenario generation described in Section 3.3.2. As 

with Integration testing, the Observers must be defined and added to the .sim file prior to the 

start of the simulation. On a new separate file than what was used for integration testing, both the 

F1-score and OSPA metric Observers are defined. Their definitions are shown in Figure 42.  
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Figure 42: Key fields for each system test Observers is highlighted in their corresponding .sim 

file. F1-score is shown on the left while the OSPA is on the right. 

 

As described in Section 4.4.1, custom metric parameters such as the true positive tolerance for 

F1-score and the outlier sensitivity and cut-off parameters for OSPA are defined in a user 

friendly YAML format under the Observer like any other field. Note the addition of a 

“_pass_score” field that was not mentioned earlier. This defines a minimum/maximum metric 

score that must be achieved for the test to be considered a PASS/FAIL. This is so the CI pipeline 

simply needs to parse the result to make a determination on overall pipeline status. For F1-score 

a higher score is better so the pass score is a minimum. Alternatively, because OSPA is a loss 

distance, a lower value is better and thus the pass score is a maximum. Similarly to the pass 

scores for integration tests, the users should consider this a minimum performance goal rather 

than an ideal target. UWAFT elected to choose their minimum requirements on numbers 

grounded in a literature review of state of the art performance results. State of the art machine 

learning techniques for F1-scores for example may achieve values in the range of 90-97% such 

as in the work by Alqarqaz et el. [60]. Considering the team was focused on ease of 

implementation over accuracy, and thus would not be pursuing state of the art algorithms in year 

1, a pass criterion of 80% for F1score was chosen. A similar literature review in the use of OSPA 

for ADAS related performance evaluation showed scores < 2m such as the approach used by 

Lee, Kim and Lim [61]. By the same reasoning as for F1 score, UWAFTUWAFT’s pass 

criterion was set slightly more lenient than this at 3m.  

Because both longitudinal and lateral position is considered, RViz was used to visualize 

detections alongside the simulation. A video of the visualization efforts is seen at this link. An 

annotation of the actors in it is seen in Figure 43. The data is then saved to a Bag file where it 

can now be used as an input to UW-STF. The results of the simulation for just the longitudinal 

direction (DX) is shown in Figure 44 where ground truth as well as the output of the tracking 

module is displayed. 

https://youtu.be/KBeVMzbaq4M
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Figure 43: Annotation of CARLA and RViz visualization consisting of the ego vehicle, targets 

(tracks) and ground truth lines (green) 

 

Figure 44: Ground truth and system tracking results for scenario 1 

It is evident in the video of the simulation and by the corresponding plot that track switching 

occurs once the object in the adjacent lane goes out of sight. Other than this section however, the 

tracking algorithm is able to separate the objects and relatively consistently follow the ground 

truth objects over time. Finally, running the UW-STF pipeline yield the .simresults file in 

Figure 45. It can be seen that both F1 score and OSPA pass criterion is met. This was expected 

given the simple nature of the scenario.  
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Figure 45: System test Observer results for scenario 1. F1-score shown on the left and OSPA 

shown on the right.  

Scenario 2 – Lange Change  

The second scenario chosen is a lane change scenario from a target vehicle in an adjacent lane to 

that of the ego vehicle. This was selected from the list of top 5 NHTSA pre-crash scenarios as 

well because of its inclusion of lateral movement by the target vehicle (whereas scenario 1 only 

involved relative longitudinal movement). A video of the scenario including its side by side 

RViz tracking visualization is seen in at this link. The moment a lead vehicle turns into the ego 

vehicle lane is captured in the screenshot in Figure 46.  

 

Figure 46: The moment in simulation where a vehicle turns into the ego vehicles lane (Scenario 

2) 

Similar to scenario 1, F1-score and OSPA are used as the measures of evaluation. The results of 

these generated by UW-STF are seen in Figure 47.  

https://youtu.be/RG96VbBPCCw


52 

 

  
  

Figure 47: F score and OSPA results of scenario 2. F1-score is worse than the pass score so 

the test fails. OSPA however is better than the pass score so it passes. 

For scenario 2, the F1 score is below the pass criterion but the OSPA shows that the system 

passes. Similar to Integration testing Observers, these results do not provide an in depth root 

cause analysis of what went wrong, but there are learnings to be made. The failure of the F1 

score may point at weaknesses in the perception module as that is what generates the detections 

that tracks are based on. Alternatively, perhaps the pass score set for OSPA was too lenient as 

well causing it to detract from shortcomings in the tracking algorithm. Having tied this into our 

CI pipeline the system status is thus currently set as a failure. The benefit of UW-STF however 

is that any further changes to the code do not require any modifications to the Observer .sim files 

unless they are Topic definition changes. This means alternative algorithms, techniques, and 

even bug fixes can be validated quickly and automatically.  

4.5 Quantitative Performance Analysis  

Now that the functionality of UW-STF when applied to a real world use case has been proven, a 

reasonable next step is to objectively evaluate its performance at doing so. Accordingly, we 

compared UW-STF’s performance against ROS’s Standard Integration Testing (SIT) approach 

described in [24] on the basis of several metrics. Specifically, the analysis compared usability 

(based on lines of code required for a test) as well as timeliness/efficiency (based on the metrics 

of runtime, CPU - Central Processing Unit - and memory consumption) as shown in Tables 2 

and 3 [62]. In this analysis the same input scenario, compute hardware and test types were used. 

The only difference is that in UW-STF predefined Observers (In Range Observer and Minimum 

Frequency Observer) are used to carry out the tests while for SIT we replicate the functionality 

of these Observers from scratch using conventional Python development. The comparison is 

expressed as a percentage difference between the two frameworks.  
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Table 2: Lines of code comparison 

Test Type 
Lines of Code 

Reduction 
SIT UW-STF 

In Range 112 36 68% 

Minimum 

Frequency 
114 44 61% 

 

Table 3: Difference in runtime, CPU and memory requirements of UW-STF compared to SIT 

Test Type 
Delta (UW-STF Minus SIT) 

Runtime(s) CPU (%) Memory (%) 

In Range -0.00299 -6.2 -0.690 

Min.  Freq. -0.0891 -6.0 -0.684 

 

As evident by the data, UW-STF had a significant reduction in the lines of code required to 

implement both test types as well as statistically significant improvements in CPU and memory 

consumption based on t-test results [62]. Runtime improvements were deemed not to be of 

statistical significance however.  

4.6 Chapter Summary  

• To validate its functionality with source code, the UWAFT codebase is used. The team is 

developing ADAS features for a 2023 Cadillac Lyriq as part of EVC and thus has made 

decisions on the software and hardware architecture that will define the automated 

features of the prototype vehicle. 

• The proposed Unit testing guide is used to highlight areas for improvement in the teams 

codebase and corresponding organization/code changes are made in some cases. 

• UW-STF is applied at the integration test level where sample tests are used to check 

communication and data quality for different nodes in the architecture  

• At the system test level, the full-scale pipeline from Section 3 is utilized in which 

scenarios are chosen from NHTSA’s report, and then the simulated data is realized in 

CARLA. Next, UW-STF is applied in a similar way to the previous level except with 

Observers that generate F1-score and OSPA metrics for the system that are based on 

algorithm performance in each of the scenarios.  
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5 Conclusion  

5.1 Summary of Work and Current Limitations 

The proposed test framework, validated by the performance metric results in Section 4.5, as well 

as the case study of the UWAFT codebase, demonstrates success at the initial objective of the 

completion of a full-scale open-source test framework to facilitate rapid and modular testing. 

These features also give the way for potential adoption by stakeholders in both industry and 

academia.  

Specifically, this thesis has provided a thorough framework for validation of ADAS software 

systems including unit, integration and system level testing. At the Unit testing level, the most 

commonly expressed sentiments across the reviewed online sources on improving test quality 

were succinctly tied to six recommendations with actionable items that any development team 

could integrate in their own processes. At the Integration testing and System testing level, a 

custom test framework known as UW-STF was developed to address many of the shortcomings 

of existing testing pipelines. Through another literature review, these shortcomings were found 

to include that existing frameworks were mainly geared towards comprehensive testing of the 

system and not rapid validation for CI purposes. With this in mind, UW-STF was designed with 

the intent to: 1 – provide an intuitive user interface for developers to make quick changes to 

testing, 2 – integrate easily with any existing CI tool for automated test running, 3 – be adaptable 

to multiple levels of testing, and 4 – be easily integrable with any teams software platform that 

uses ROS. Through a YAML file based test specification schema and a monitoring system that 

uses “Observer” nodes, these goals were addressed. In addition at the system test level, a 

simulation pipeline was proposed to address major hurdles in existing system testing in relation 

to scenario prioritization and generation in simulation. The combination of research done by the 

NHTSA for scenario prioritization and use of CARLA and ScenarioRunner to realize these 

scenarios was selected as the best fit to work with the rest of the UW-STF pipeline.  

To verify the efficacy of the proposed framework, we apply it to the codebase of the CAV 

subteam within the UWAFT, a team competing in the EcoCAR challenge to, among other goals, 

automate a 2023 Cadillac Lyriq. Starting with Unit testing, the CAV codebase is analysed for 

prospective improvements based on the unit testing guide. Multiple improvements for cleaner 

and more maintainable code are made including leveraging the Arrange-Act-Assert framework 

and reducing the external dependencies of the codebase. At the integration level, checks for 

prerequisite ROS communications and minimum acceptable data quality are all made using UW-

STF’s Observers. At the system level, the proposed simulation pipeline using NHTSA’s pre-

crash report and CARLA to generate scenarios greatly simplified the process to test the CAV 

teams algorithms. At the end of their first year, the algorithm saw reasonable performance in 

both stationary lead vehicle and moving lane change scenarios based on metrics of an average 

F1-score of 0.77 and average OSPA of 2.42. However, much work remains to be done to 

improve the accuracy and reliability of the system to be able to test their algorithms in vehicle. 

Lastly, a quantitative analysis comparing UW-STF to SIT is made. The analysis shows a greater 

than 60% reduction in lines of code required to write an equivalent test using UW-STF as 
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compared to SIT. UW-STF also demonstrated improvements in approximately 6% reduction in 

CPU and 0.7% reduction in memory usage for a given test.  

Despite the initial success in establishing a test framework that meets the teams baseline goals, 

there still exist limitations on its application as well as opportunities for improvement. In regard 

to unit testing, a limitation of the literature review was the assumption of equal weighting given 

to the different sources surveyed. Despite the recommendation guide being arranged based on the 

number of mentions across the different sources, each source was not of the same quality. For 

example, large scale case studies consider more input than individual developer experiences. 

Providing weightings to the sources based on relative comprehensiveness may be a better 

approach to tacking this. The next limitation of significance is the lack of specific direction 

provided to the user when a test fails. As seen during the evaluation of UWAFT’s Stack, test 

failures were simply denoted on the .simresults file as a FAIL but without further description. 

This is especially true when UW-STF is tied into a CI pipeline because the .simresults file will 

not be visible to the user, only the console output. Gitlab’s CI tool only provides the overall 

pipeline status as well as which stage in the pipeline failed. Another shortcoming of the proposed 

framework from a technical standpoint is the lack of determinism for Observers that require 

multi-Topic synching like the F1-score and OSPA Observers. Both require that the ground truth 

topic and the topic under test are time-synched so corresponding values can be compared to 

generate the metrics. Currently this is implemented using ROS2’s ApproximateTimeSynchronizer 

message filter object which allows that messages within a certain time tolerance are associated 

with each other and passed to the same callback [63]. The problem with its current 

implementation is that different trials result in slightly different associations between ground 

truth and detection messages which manifests in slight variations in the final metric calculations. 

The validation of UW-STF also falls short in the domain of robust testing environments. That is, 

the framework has only been applied in the software-in-the-loop domain and was not designed 

for considerations of hardware and vehicle-in-the-loop testing. These higher fidelity testing 

environments often require consideration for communication interfaces such as CAN which is 

not handled by this testing framework. That said however, the benefit of using bag files is that 

they can be recorded from in-vehicle testing itself, as long as the topic names and format match 

up with its counterpart in simulation.   

 

5.2 Future Work  

To address the issue of a lack of test of test transparency future considerations should include the 

addition of lower-level debugging outputs, especially when UW-STF is integrated into a CI 

pipeline. As mentioned in Section 5.1, the current CI pipeline outputs represent very high level 

information and thus do not provide the user much additional support for debugging. More 

detailed print statements for failed test cases should be added to an Observer class such that 

specific failure points are transparent to the user also. In addition, if common reasons for test 

failure are documented by a team over the course of the project, corresponding resolution items 

can be documented as well. Furthermore, they can be output as suggestions available to the user 

to provide a direction for their debugging efforts.  
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The lack of determinism for some current system test metrics also represents a major priority for 

development. An alternative to the current approach using ROS2’s 

ApproximateTimeSynchronizer is to implement a custom method for time synching of multiple 

Topics using traditional Subscribers. A Cache message filter can be used to store messages from 

the separate topics and then pass them to be processed by the Observer once the timestamps are 

within an acceptable tolerance.  

To further improve the ease and simplicity with which UW-STF is integrated into a teams 

software stack, an open repository of Observers would be beneficial to have. Alongside 

corresponding documentation of the Observers schema, users of UW-STF could simply pull 

Observers that best meet their needs from the repository and modify it to their needs. The 

additional open source aspect of sharing and using Observers made by other development teams 

would decrease the workload for both initial developer and end user. 

A feature that would further improve the quality of the system status readout would be a GUI 

similar to the one used in [25] for ROS introspection capabilities. CI logs are not necessarily 

user friendly and do not provide a clear overview of the status of the system or specific 

submodules. An interface that users are able to view for specific test failures as well as what part 

of the system the test covered would be a value added feature for debugging. Furthermore, 

mapping failures to their source scenario when conducting System testing may provide insights 

into which type of driving scenario the ADAS algorithm is most challenged by and thus help 

justify future prioritization of test cases.  

 

Lastly, and most importantly, to truly validate that the framework has achieved its design intent 

of modularity, it should be used in teams and software systems outside of UWAFT. Given that it 

was designed with the intent to be adopted by both industry and academia, having relationships 

with groups on both sides willing to trial it and provide feedback is crucial. Doing so provides 

the opportunity to receive feedback from users who may use the framework in ways different 

than initially intended, which increases the likelihood of rooting out bugs or additional 

limitations with the framework. Specific to UW-STF, continual and frequent updates of the 

source code are expected at the early stages of release, which will only help to improve the 

quality and adoption rates of it in the long run.    
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Appendix A – Template Observers 
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Appendix B – Software Architecture Diagram 
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Appendix C – Network Diagram 
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Glossary 

Bag file File format used in ROS to save and playback topic data. In UW-STF it is 

used as the input for the software system under test (e.g. sensor data).   

 

CARLA Open source simulator for autonomous driving. Abbreviation here: CARLA.  

 

F1-score Harmonic mean of precision and recall. It is a measure of a model’s 

accuracy. 

 

Integration 

testing 

Testing of a subset of nodes of the entire ‘system’. 

 

 

Launch file File (can be in XML) used to configure and start up multiple nodes 

simultaneously. 

 

Node An executable which uses a ROS client library to communicate with other 

nodes. Data is transferred from one node to another via a publish-subscriber 

model of communication. 

 

Observer Name given to designated “monitor” node within UW-STF. When 

configured, they represent the different tests that can be run on nodes. 

Observers have the ability to monitor a topic, compare incoming data with 

expected values and provide a pass or fail status for the test. 

 

RViz 3D visualization software for ROS. 

 

SIT ROS standard framework for integration testing as described in [24]. 

 

Stack Components of a software system including the operating middleware, 

modules, and other libraries and tools that it is composed of. 

 

System testing Testing of the entire system (all nodes) as a whole. 

 

Test runner Tool that runs the commands when triggered as specified in a CI 

configuration file. These commands are usually related to building and 

running the source code so that this doesn’t have to be done manually by a 

developer. 

 

Topic Name given to a communication bus from which data can be exchanged. The 

topic from which multiple nodes subscribes from and publishes to must be 

the same in order for the data to be exchanged.  

 

Unit testing Testing of individual functions or methods within a node. 
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.sim file A YAML file that defines how the University of Waterloo Structured 

Testing Framework runs. All important parameters for a suite of tests are 

configured in this file including the launch file(s), topic data, Bag file(s), test 

duration, and Observers.  

 

.simresults file A YAML file automatically generated at the end of the University of 

Waterloo Structured Testing Framework’s execution. Each file corresponds 

to one .sim file and it is given the same name except with the .simresults 

extension.  

 


