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Abstract

Gibbs sampling from continuous real-valued functions is a challenging problem of
interest in machine learning. Here we leverage quantum Fourier transforms to build
a quantum algorithm for this task when the function is periodic. We use the quantum
algorithms for solving linear ordinary differential equations to solve the Fokker–Planck
equation and prepare a quantum state encoding the Gibbs distribution. We show that
the efficiency of interpolation and differentiation of these functions on a quantum
computer depends on the rate of decay of the Fourier coefficients of the Fourier
transform of the function. We view this property as a concentration of measure in the
Fourier domain, and also provide functional analytic conditions for it. Our algorithm
makes zeroeth order queries to a quantum oracle of the function. Despite suffering from
an exponentially long mixing time, this algorithm allows for exponentially improved
precision in sampling, and polynomial quantum speedups in mean estimation in the
general case, and particularly under geometric conditions we identify for the critical
points of the energy function.
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Chapter 1

Introduction

In recent advances in machine learning (ML), a reincarnation of EBMs has provided
state-of-the-art performance in generative modeling [GWJ+19, SK21, SSDK+20, HJA20].
Unlike the traditional EBMs such as Boltzmann machines and Hopfield neural networks
[AHS85, Hop82, HOT06, Hin07] these models require Gibbs sampling from continuous
real-valued functions parameterized by large deep neural networks. However, the
training of these models is extremely difficult and numerically unstable despite using
state-of-the-art ML accelerators such as graphical and tensor processing and streaming
units.

The computational challenge in training EBMs is sampling from the canonical
distribution represented by the model which is the Gibbs distribution

pθ(x) = exp(−Eθ(x))/Zθ (1.1)

of an associated d-dimensional energy potential, Eθ : Rd → R. Here θ denotes a vector
of model parameters θ ∈ Rm and the normalizing constant Zθ =

∫
e−Eθ(x) dx is the

partition function of pθ. This is done using Monte Carlo integration of (the overdamped)
Langevin dynamics [DM19, NHH+20]–a Stochastic Differential Equation (SDE)
governing diffusion processes, which is extremely costly and numerically unstable
[NHZW19]. Despite the limitations imposed by this computational bottleneck, EBMs
have been shown to provide improved representations of classical data. For example,
[GWJ+19, HMZ20] overcome the instabilities of the training process on particular
datasets to provide numerical evidence that EBMs can achieve more calibrated and
adversarially robust representations compared to conventional classifiers. We refer the
reader to Appendix C for more details on the usage of Gibbs sampling in the training of
and inference from EBMs.

In this work, we propose a quantum algorithm for Gibbs sampling from a periodic
continuous potential. We use finite difference techniques for solving differential
equations on quantum computers [BCOW17, CL20, CLO21, LKK+21] to solve the FPE, a
second-order Partial Differential Equation (PDE) admitting the Gibbs distribution as its
steady state solution. The FPE and Langevin dynamics are associated with each other
through Itô integration [Eva23]. Interestingly, directly solving for the steady state of
the FPE requires solving linear systems with exponentially poor condition numbers.
We therefore also have to integrate the FPE for a long enough time to asymptotically
converge to the Gibbs state; as such, we do not achieve a shortcut to the problem of
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long mixing time in equilibrium dynamics. We do, however, achieve a high precision
approximation to the Gibbs state in total variation distance.

1.1 Notation

In this thesis, we say a function f : Rd → R is periodic with a period of length ℓ if
it satisfies the condition f (x + ℓei) = f (x) for all i ∈ [d], where (ei)

d
i=1 represents the

standard basis for Rd. Moreover, we commonly refer to such a function as an ℓ-periodic
function. The Schatten norm, denoted as ∥v∥p, characterizes the ℓp norm of a vector v.
Specifically, when p = 2, the subscript is omitted, resulting in the notation ∥v∥ ≡ ∥v∥2..
The operator norm of an operator A is denoted by

∥A∥ = sup
v

∥Av∥
∥v∥ .

For a square-integrable function, say f ∈ L2(Rd), we denote its norm by

∥ f ∥ =
√∫

x∈Rd
| f (x)|2dx.

For an ℓ-periodic function, say f , we define

∥ f ∥ =
√∫

x∈[− ℓ
2 , ℓ2 ]

d
| f (x)|2dx.

For ℓ > 0, and N ∈ Z≥0, we let [−N..N] := {−N,−N + 1, · · · , N}, and

V(ℓ)
N :=

{(
ℓni

2N + 1

)d

i=1
: (ni)

d
i=1 ∈ [−N..N]d

}
⊂
(
− ℓ

2
,
ℓ

2

)d
.

We often omit superscript ℓ as it is clear from the context. Furthermore, we denote the
Hilbert space CVN (i.e., the space of functions from VN to C) by VN. Given a tuple of
indices m = (m1, · · · , md) ∈ {0, . . . , 2N}×d, we denote the associated computational
basis state in the Hilbert space VN

∼=
(
C2N+1)⊗d by |m⟩. For an ℓ-periodic function u,

we denote by −→uN ∈ VN, the discretization of it on the lattice V(ℓ)
N ; i.e., uN[n] = u( ℓn

2N+1)

for all n ∈ [−N..N]d. Moreover, we denote the unit vector parallel to −→uN by |uN⟩. Thus

|uN⟩ ∝ ∑
m∈{0,...,2N}×d

u(xm−N) |m1⟩ ⊗ |m2⟩ ⊗ · · · ⊗ |md⟩ (1.2)

where xn = ℓn
2N+1 (note that our indices n and m only differ by a shift).

We use the notation Sd−1 to denote the unit ball in d-dimensional Euclidean domain
i.e., Sd−1 := {x ∈ Rd : ∥x∥ = 1}. Furthermore, we use Bd to denote the vectors of length
less than or equal to 1; i.e., Bd := {x ∈ Rd : ∥x∥ ≤ 1}.

We deploy the usual notation for probability spaces (Ω, Σ, P), where Ω is the sample
space, Σ is the σ-algebra, and P (or sometimes µ) is the probability measure. If Ω = Rd,

2



we implicitly use the Borrel sigma algebra; i.e., Σ = B(Rd). Moreover, we use F to
denote the cumulative distribution function (CDF), respectively. For a random variable
X, we use E[X] and Var[X] to denote its expectation value and variance, respectively.
For a bounded subset K ⊂ Rd, we denote by Unif(K) the uniform distribution over K
i.e.,

Unif(K)(dx) =

{
dx

Vol(K) if x ∈ K

0 otherwise,

where Vol(K) is the volume of K.

Also, for a string of length d of non-negative integers α = (α1, · · · , αd) ∈ Zd
+ we

define α! := α1! · · · αd!, and |α| := α1 + · · · + αd, and use the following notation for
higher order derivatives:

Dα :=
∂|α|

∂xα1
1 · · · ∂xαd

d
. (1.3)

1.2 Summary of results

In this section, we present a concise overview of our main contributions and provide a
comparison to the current state of the art.

1.2.1 Fourier interpolation

Definition 1.2.1. Let the function u : Rd → R be ℓ-periodic along all axes, and moreover,
let X ∼ Unif

(
[−ℓ/2, ℓ/2)d) be a uniform random variable. We say u is semi-analytic if there

exists C, a ∈ R+, such that for any m ∈N we have

(
ℓ

2π

)m

√√√√√E

 ∑
α:|α|=m

|Dαu(X)|2
 ≤ C am m!. (1.4)

Furthermore, we refer to C and a as the semi-analyticity parameters.

The Fourier transform of u

u(x) = ∑
k∈Zd

û[k] ei 2π⟨k,x⟩
ℓ (1.5)

has coefficients û[k] = 1
ℓd

∫
T

u(x)e−i 2π⟨k,x⟩
ℓ dx assigned to the lattice points on Zd. The

values |û[k]|2 form a probability measure on this lattice. In Theorem 2.2.2 we show that
semi-analyticity is equivalent to the sub-exponential concentration of this measure.

We provide several examples of semi-analytic functions. Any function with finitely
many non-zero Fourier coefficients is semi-analytic (Example 2.2.1). Every periodic
real-analytic function is semi-analytic (Proposition 2.2.1). We also show how semi-
analyticity parameters change through basic operations like addition, multiplication,
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and composition of functions (Proposition 2.2.7). In Corollary 2.2.5, we use these results
to find the analyticity parameters of deep neural networks, as the de facto function
approximators used in machine learning (which can act as the parameterized oracles
shown in Fig. 1.1b for our quantum algorithm).

We now present our main result regarding upsampling of a quantum state
represented on a discrete lattice to a target continuous distribution defined in the
continuous ambient space of the lattice. Recently, [RC22] has discussed the idea of
upsampling in the context of efficient representation of classical data on a quantum
computer although without a rigorous mathematical account. We, however, provide
a rigorous analysis of the upsampling technique and its precision with respect to the
target continuous distribution, rather than only to a discretization of it on a finer lattice.
Given a tuple of indices n = (n1, · · · , nd) ∈ {0, . . . , 2N}×d, we denote the associated
computational basis state in the Hilbert space VN

∼=
(
C2N+1)⊗d by |n⟩. We further

denote the discretization of u by −→u ∈ VN, and the unit vector parallel to that by
|uN⟩ ∝ ∑m∈{0,...,2N}×d u(xm−N) |m⟩. We now state our main interpolation result.

Theorem 1.2.1 (Main interpolation result). Given an L-Lipschitz (C, a)-semi-analytic
periodic function u, an integer N ≥ 2ad, and a quantum state |ψ⟩ ∈ VN,
such that ∥|ψ⟩ − |uN⟩∥ ≤ δ, there exists a quantum algorithm with gate complexity
O
(

dN
a polylog (NdLℓ/C)

)
that returns samples from a distribution within at most ε total

variation distance from the distribution proportional to u2, where

ε ≤ δ +
16
√

2e3 C
U e−0.6 N

a ,

and U =
√

E u2(X).

In Example 2.2.3 we show a family of functions that help us construct adversary
witnesses that determine how coarse the discretization of our functions are allowed to
be for upsampling to achieve arbitrarily small errors.

Theorem 1.2.2. Let u be a (C, a)-semi-analytic function. Consider any exact discretization
|uN⟩ on the discrete lattice with N ≤ θa/16, where θ ∈ (0, 1). There is no algorithm that can
return samples close to the actual distribution (proportional to u2) with a guaranteed error of
less than (1− θ)2 1

1024e .

We conclude this section by noting that even the first and second order derivatives of
a semi-analytic function u can be approximated with high precision (Proposition 2.2.5).
This is instrumental in constructing high precision approximations to the generator L
of the FPE.

1.2.2 Gibbs sampling

Technical setting In the Euclidean space, the Gibbs measure is only well-defined
for an unbounded potential. This setting is not suitable for finite difference methods,
therefore we are interested in probability density functions with compact support. This
imposes boundary conditions on the FPE. In this paper we consider periodic boundary
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|x⟩
OE

|x⟩

|y⟩ |E(x)⊕ y⟩

(a)

|θ⟩

OEθ

|θ⟩

|x⟩ |x⟩

|y⟩ |Eθ(x)⊕ y⟩

(b)

|θ⟩

OEθ

|θ⟩

|x⟩ |x⟩

|y⟩ |Eθ(x)⊕ y⟩

(c)

Figure 1.1: Schematics of the circuits of quantum oracles. All registers receive float-point representations of real numbers. (a) The
oracle for an energy function E. The first register receives a data sample x ∈ Rd. And, the second register is used to evaluate the
energy function. (b) For a parameterized family of energy functions, an additional register may receive the model parameters
θ ∈ Rm. (c) A controlled variant of the same oracle, controlled on a single qubit represented by the top wire.

conditions since they allow us to leverage quantum Fourier transforms. In other words,
we focus on potentials defined on high dimensional tori. We assume that the energy
function takes values in a real interval of diameter ∆ which we refer to as the diameter of
the potential hereon. Additionally, we use a constant thermodynamic β of 1 throughout
(otherwise β∆ can be thought of as a single parameter). We show that the Fourier
coefficients of f decay sub-exponentially away from the origin assuming a bound on
the growth of the derivatives of f (Definition 2.2.1). The latter is a functional analytic
condition similar to analyticity, however our definition is milder and therefore we
call it semi-analyticity. We also show that if the Fourier coefficients on Zd are viewed
as densities of a probability measure defined on this lattice, then semi-analyticity is
equivalent to the concentration of this measure (Theorem 2.2.2).

Many periodic functions are semi-analytic. For example any function with finitely
many non-zero Fourier coefficients is semi-analytic (Example 2.2.1). Semi-analyticity
is determined using two parameters which we denote as C and a in this paper. The
first parameter represent the scale of the function (i.e., scales linearly with scalar
multiplication), but the second parameter bears information about the geometry of
the function and can be viewed as an inverse radius of convergence of its Taylor
expansion (see ??). We show some of the basic properties of analytic and semi-analytic
functions; i.e., how C and a change under arithmetic operations and compositions
(Proposition 2.2.7). Consequently, we show that parameterized families such as deep
neural networks with analytic activation functions are analytic. However, activation
functions such as the sigmoid function creates sharp ramps in the energy landscape
which shrinks the radius of convergence (Corollary 2.2.5). Beside the algorithmic
contributions in this paper, the above insights can shed light on suitable alternatives
to deep neural networks as parameterized models for energy-based learning.

Given a classical construction of the energy function (e.g., using the weights and
biases of a deep neural network) E : Rd → R, one can construct a quantum circuit

|x⟩ |y⟩ 7→ |x⟩ |y⊕ E(x)⟩ (1.6)

realizing such a function. A schematic of this circuit is provided in Fig. 1.1a. From the
weights and biases θ ∈ Rm of a classical deep neural network a similar oracle for the
associated energy function

|θ⟩ |x⟩ |y⟩ 7→ |θ⟩ |x⟩ |y⊕ E(x)⟩ (1.7)

can be constructed if the circuit is augmented with an additional model parameter
5



Table 1.1: Summary of the query complexities of some of the classical and quantum algorithms for sampling from a d-dimensional
Gibbs distribution. ε denotes the error in the designated norm (TV for total variation distance, and W2 for 2-Wasserstein distance),
and κ f denotes the Poincaré constant of a function f . Our result (first row) corresponds to non-convex periodic functions and the
relevant Poincaré constant is that of the function E/2 due to Born rule(see Section 3.2.1). Therefore, for families of functions that
the Poincaré constant is better than the Eyring-Kramers bound we may achieve a quantum advantage in sampling. For example,
for Morse functions with unique global minima we achieve the query complexities in the third row (Corollary 3.2.1). In
comparison to the classical counterpart (fourth row), our algorithm achieves an exponential advantage in precision ε while only
consuming zeroeth order queries to the function. For estimating means of random variables of the Gibbs state, we achieve a
quadratic advantage for generic periodic functions (last column of the first and second rows) and a quartic advantage in the case
of Morse functions with unique global minima. The prior results (rows five to nine) all require convexity assumptions on the
potential. Here ∆ f is the diameter of the range of values a function f attains.

Method Potential type Query
order

Sampling
complexity Norm Mean estimation

complexity

This paper non-convex
periodic zeroeth Õ

(
κE/2e∆/2d7

)
TV Õ

(
κE/2e∆/2d7∆ f ε−1

)
Rejection sampling non-convex zeroeth O

(
e∆) TV O

(
e∆∆2

f ε−2
)

This paper Morse and periodic zeroeth Õ
(

λ−2e∆/2d7
)

TV Õ
(

λ−2e∆/2d7∆ f ε−1
)

Cl. RLA [LE20] Morse and periodic first Õ
(
λ−4L4d3ε−2) TV Õ

(
λ−4L4d3∆2

f ε−4
)

Cl.
MRW [DCWY18] convex first Õ

(
L2d3ε−2) TV Õ

(
L2d3∆2

f ε−4
)

Q. ULD [CLL+22] strongly convex zeroeth Õ
(

µ−2L2d1/2ε−1
)

W2 –

Cl. ULD [CCBJ17] strongly convex first Õ
(

µ−2L2d1/2ε−1
)

W2 –

Q.
MALA [CLL+22] strongly convex first Õ

(
µ−1/2L1/2d

)
TV Õ

(
µ−1/2L1/2d∆ f ε−1

)
Cl. MALA [LST20] strongly convex first Õ

(
µ−1Ld

)
TV Õ

(
µ−1Ld∆2

f ε−2
)

register as in Fig. 1.1b. It can also be shown that such a construction has only
polylogarithmic overhead compared to the gate complexity of the corresponding
classical boolean circuit [NC02].

The above setting is sufficient for sampling from the Gibbs distribution. However,
in practice we often collect samples in order to estimate the mean of another quantity
f : Rd → R with respect to the Gibbs measure. For example, in training EBMs, the
expectations of the gradients of the energy function is desired (see Appendix C). In this
case, a white-box access to the energy oracle will allow us to use amplitude estimation
techniques to achieve quantum advantage. By this we mean the ability to construct a
controlled variant (as in Fig. 1.1c) of the unitary in Fig. 1.1b and its inverse.

Contributions We first show that real analytic periodic functions admit efficient
quantum algorithms for interpolation and differentiation provided quantum states
encoding very coarse discretizations of such functions (Theorem 1.2.1). We also provide
a lower bound result in Theorem 1.2.2 showing the optimality of our discretization. We
use these results to show that Õ

(
κE/2e∆/2d7) queries to the oracle OE suffices for Gibbs

6



sampling with an approximation error ε in total variation distance (TV) (Theorem D.1.1).
The exponentially poor dependence on ∆ indicates the unsurprising difficulty of low-
temperature Gibbs sampling.

Table 1.1 provides a comparison between our algorithm and previous results. We
note that if E has a positive minimum value E∗ ≥ 0, a naı̈ve classical rejection sampling
routine, consisting of drawing uniform random samples x ∈ Rd and accepting the
sample with probability exp(−E(x)) will require O(e∆+E∗) iterations to generate an
accepted sample from the Gibbs distribution. More rigorously, the mixing time of
Langevin dynamics can be associated with the isoperimetric properties of the Gibbs
measure [KHR22]. For example the mixing time is Õ(κE) where κE is the Poincaré
constant of the potential E. We prove this fact for periodic functions in Proposition B.0.1
following the treatment of Euclidean domains in [MV00]. In Proposition B.0.2 we show
that the Poincaré constant of periodic functions is bounded by O(e∆). This bound can
be interpreted as a Eyring-Kramers law for periodic functions [Ber11].

In our case the potentials are generic non-convex periodic functions and the relevant
Poincaré constant is that of the function E/2 due to Born rule (see Section 3.2.1).
Therefore, our complexity factor κE/2e∆/2 = e∆ in the first row of Table 1.1 saturates
the complexity bound of classical rejection sampling for periodic functions in absence
of any additional structure. However for families of functions with a Poincaré constant
better than the Eyring-Kramers bound we may achieve a quantum advantage. For
example, for Morse functions with unique global minima we achieve the query
complexities in the third row of the table (Corollary 3.2.1). The classical counterpart for
this result is [LE20, Theorem 2.4] which results in the complexity bounds of the fourth
row. In comparison, our algorithm achieves an exponential advantage in precision ε
while only consuming zeroeth order queries to the function.

The prior results Metropolized random walk (MRW), the underdamped Langevin
dynamics (ULD) and the Metropolis-adjusted Langevin algorithm (MALA), together
with their accelerations via quantum random walk in [CLL+22] are also included in
Table 1.1. We note that all these algorithms require convexity assumptions on the
potential. For µ-strongly convex functions the Poincaré constant κE is 1/µ, famously
known as the Bakry-Émery criterion [BGL+14].

Finally, for estimating means of random variables of the Gibbs state, given white-
box access to both the energy and random variable oracles, we achieve a quadratic
advantage for generic periodic functions and a quartic advantage in the case of Morse
functions with unique global minima (Corollary 3.2.2) as reported in the last column of
Table 1.1.

Related works To the best of our knowledge, this work and the independent paper
[CLL+22] are the first efforts to analyze quantum algorithms for the problem of
Gibbs sampling from a continuous real-valued function. [CLL+22] achieves a quadratic
speedup in expediting a Monte Carlo simulation of Langevin dynamics using quantum
random walks but it is restricted to strongly convex potentials. Similarly, classical
algorithms that achieve high precision Gibbs sampling [RT96, DCWY18, CEL+21] also
make assumptions about convexity or satisfaction of isoperimetric inequalities. See
Section 3.1.1 for an overview of these algorithms. However, ML applications demand
highly non-convex potentials that can capture complex modes of data in a multimodal

7



landscape. Fortunately, our algorithm provides high precision Gibbs sampling of
such potentials as long as they satisfy periodic boundary conditions. In addition, the
quantum speedup observed in [CLL+22] assumes accurate access to the gradients of
the potential whereas we only perform zeroeth order queries to the potential. Finally,
we note that prior quantum algorithms such as [TD00, PW09, CS16, vAGGdW17] apply
amplitude amplification to achieve a Grover speedup in preparing the Gibbs state
of discrete spin systems. However, a naı̈ve application of these techniques to (say, a
discretization of) the continuous domain, will at best result in a query complexity that
scales with

√
exp(d).
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Chapter 2

Interpolation

Music is the space between the notes.

Claude Debussy

The problem of interpolation is a fundamental problem with applications spanning
various fields, including statistics, signal processing, and cryptography. At its core,
the problem involves determining a function given a set of function values at distinct
points. However, the problem is inherently unsolvable without additional information
about the underlying structure of the function. To address this challenge, one common
assumption is that the function has a bounded degree. For example, when dealing
with a degree d polynomial f : R → R, the Lagrange interpolation technique can be
employed. This technique allows us to approximate the function f using the formula:

f (x) =
d+1

∑
i=1

f (xi)∏
j ̸=i

x− xj

xi − xj
.

Here, the number of observation points (or queries to the function f ) is d + 1. Indeed, it
is impossible to determine f with d queries. One may contemplate a scenario in which
the function is defined over a finite field Fq. In this case, making d queries does not help
to find the coefficients even with a bounded probability of error. This is the basis for
a classical secret-sharing scheme proposed by [Sha79]. The scheme involves dividing
a secret among d + 1 parties in such a way that any subset of d parties cannot recover
the secret individually, but when all d + 1 parties collaborate, they can reconstruct the
original secret. However, [CvDHS15] shows that ⌈ d+1

2 ⌉ queries suffice to determine f
with bounded error. This query complexity is known to be tight [KK09, MP11].

In this chapter, we focus on the interpolation of functions with different structures.
Specifically, we explore the interpolation of periodic functions and squared integrable
functions. These types of functions find relevance in various domains, such as the field
of signal processing [OS75]. This can be viewed as a generalization of [GR02], and hence,
be used in a sampling algorithm. We indeed make use of this interpolation method in
the next chapter.
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Figure 2.1: An example of interpolation for periodic functions. We consider two functions u = cos(2πx) and v = cos(6πx), and the
sampling points S = {0, 1

4 , 1
2 , 3

4 } (note that 1 and 0 can be treated as the same point as the functions are 1-periodic). As the
maximum k0 for our functions u, v is 3, we need at least 2× 3 + 1 = 7 points to interpolate each. These two functions are
indistinguishable with our 4 observation (query) points x ∈ S.

2.1 Interpolation of periodic functions

In this section, we focus on the interpolation of periodic functions. As mentioned earlier,
solving this interpolation problem requires the identification of underlying structural
patterns within the function. Remarkably, the diameter of the support of the Fourier
transform of a function plays a role analogous to the degree in polynomial interpolation
problems. To elucidate this concept further, let us consider a periodic function f : R →
R with a period of 1. Instead of employing Taylor expansions, we examine its Fourier
series representation given by f (x) = ∑−k0≤k≤k0

f̂ [k]eikx. Notably, a classical algorithm
exists that allows the recovery of the underlying function f by making 2k0 + 1 queries
to the function f , and moreover, this query complexity is tight [OS75]. See Fig. 2.1 for
an illustration.

Recall that for a periodic function u over [− ℓ
2 , ℓ2 ]

d, the discretization on 2N + 1
points along each axis results is a vector −→uN ∈ VN. We also use the notation uN[n] :=
u
(

ℓ n
2N+1

)
, ∀n ∈ [−N..N]d. We now define the Fourier transform of an ℓ-periodic

function u : Rd → R via

u(x) = ∑
k∈Zd

û[k] ei 2π⟨k,x⟩
ℓ , where

û[k] =
1
ℓd

∫
T

u(x)e−i 2π⟨k,x⟩
ℓ dx .

(2.1)

Also, let ũN be the discrete Fourier transform of uN. Thus

ũN[k] =
1

(2N + 1)d/2 ∑
n∈[−N..N]d

uN[n]e−
i2π⟨k,n⟩
2N+1 . (2.2)
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Replacing uN by the series obtained from û (defined in (2.1)) yields

ũN[k] = (2N + 1)d/2

û[k] + ∑
p∈Zd\{0}

û[k + p(2N + 1)]

 . (2.3)

Note that (2.3) shows ũN is a wrapped version of û, and therefore, if k0 = max{∥k∥∞ :
û[k] ̸= 0}, then, choosing N ≥ k0 ensures that ũN[k] = û[k] for all k ∈ Supp(û).
Hence, in case u has a Fourier transform with finitely many non-zero elements, an exact
recovery is possible with 2k0 + 1 queries, as claimed earlier.

The task of our interest, however, differs from the conventional interpolation
problem. We are looking for an answer to the following question.

Given a quantum register |ψ⟩ ∈ VN such that |ψ⟩ ≈ |uN⟩, how well can we generate samples
from the continuous distribution determined by |u|2/∥u∥2?

Here is one motivation for this particular task. Many quantum algorithms have
been developed to solve differential equations. In such algorithms, by ‘solving’ the
problem one means preparing a state that is close to a discretization of the actual
solution on a coarse lattice (e.g., see [CLO21]). But is it sufficient to have such values
only on a coarse lattice? This is one motivation for this work. Notably, the algorithm
of Section 3.2.1 also prepares a solution on a course lattice, which is then interpolated
using the methodology and results of this section.

Let us now provide a concise explanation of how we perform such an interpolation.
Our approach bears resemblance to the concept of ’upsampling’ commonly employed
in signal processing [OS75]. Initially, we construct an isometry denoted by W, which
allows us to have an approximation of |uM⟩with M≫ N. Concretely, we get W⊗d |ψ⟩ ≈
|uM⟩. Subsequently, we measure the resulting state in the computational basis, resulting
in a sample x ∈ VM. From there, we proceed to uniformly sample a point within the box
∏d

i=1[xi − ℓ
4N+2 , xi +

ℓ
4N+2 ]. This box encompasses the points that are closer to x than

any other point of the discrete lattice VM. We show that the isometry W exists (if N is
large enough), and that we can implement it efficiently using 2-qubit gates.

Proposition 2.1.1. Let u be an ℓ-periodic function, whose Fourier transform has a bounded
support. Let k0 = max{∥k∥∞ : û[k] ̸= 0}, and N ≥ 2k0 + 1. There exists an isometry W that
can be prepared by the application of O(log M log log M) many 2-qubit gates, such that

W⊗d |uN⟩ = |uM⟩ (2.4)

for any M ≥ N.

Proof. W applies a quantum Fourier transform, then adds ancillary qubits, and then
performs an inverse quantum Fourier transform on the larger space. In particular, it
maps (uN[n])

N
n=−N to (uM[m])M

m=−M via uM[m] = ∑N
n=−N WmnuN[n]. Here the elements

of W are

Wmn =
1√

(2N + 1)(2M + 1)

N

∑
k=−N

ei2πk( m
2M+1−

n
2N+1) (2.5)
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=

(−1)n sin
(

πm N+ 1
2

M+ 1
2

)
√
(2N + 1)(2M + 1) sin

(
π
( m

2M+1 −
n

2N+1

)) . (2.6)

The complexity of the implementation of W is dominated by the complexity of the
quantum Fourier transform over M, which is O(log M log log M).

Corollary 2.1.1. Let u be an ℓ-periodic function, whose Fourier transform has a bounded
support. Let k0 = max{∥k∥∞ : û[k] ̸= 0}, and N ≥ 2k0 + 1. Then, there exists an
algorithm generating samples from a distribution ε-close to |u|2/∥u∥2, with the gate complexity
O(d log Lℓd

2∥u∥ε log log Lℓd
2∥u∥ε ).

Proof. Note that ∥uN∥ = (2N + 1)d/2∥u∥ for all N ≥ 2k0 + 1. This together with the
analysis in Lemma A.0.8 shows that M = ⌈ Lℓd

2∥u∥ε⌉ suffices to achieve an error less than
ε. Hence, the result follows from Proposition 2.1.1.

It is important to highlight that the findings in signal processing directly imply that
if the support of û is bounded and N ≥ k0, then there exists an isometry W such that
W⊗d |uN⟩ = |uM⟩. However, in order to generate samples from the exact distribution
determined by the density |u|2/∥u∥2, we must take the limit M → ∞. This is infeasible
in practice due to the requirement of infinite memory and time resources. Nevertheless,
as we demonstrate later in Section 2.2, it is possible to generate samples from a
distribution that is ε-close in terms of total variation distance to the desired density
using a circuit composed of O(d polylog(1

ε ) number of 2-qubit gates. Consequently, a
pertinent question arises: under what conditions can we achieve interpolation with a
similar complexity?

We demonstrate that it is possible to attain the same level of precision by relaxing
certain conditions. Specifically, the condition of bounded Fourier spectrum can be replaced
by semi-analytity (a weaker condition than analyticity), and the condition of N ≥ k0
can be replaced by N ≥ 2ad, where a can be interpreted as the (mean) inverse
convergence radius of the function over one period. We introduce semi-analyticity and
prove the complexity results in Section 2.2. Moreover, we show impossibility results
in Section 2.2.1. Specifically, we show that given |uN⟩ with N ≤ ca, for a constant
c > 0, there is no algorithm that outputs samples from the desired density within the
total variation distance of 1

5000 . In Section 2.2.3 we show how analyticity parameters of
our interest change under multiplication, addition, and composition. In Section 2.3 we
extend our results to non-periodic functions that are in L2(Rd).
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2.2 Semi-Analyticity (for periodic functions)

The beauty of mathematics only
shows itself to more patient
followers.

Maryam Mirzakhani

In this section, we analyze the effect of discretization on estimating distributions and
derivatives of differentiable functions. Previous works (e.g., [CLO21]) assume an upper
bound for all derivatives of the function. This, however, is a restrictive assumption as
it excludes simple functions such as cos(2x). We show that a milder condition such as
analyticity (or an even a weaker condition we call semi-analyticity) is enough for such
results to hold.

We now introduce the notion of semi-analyticity for smooth functions and prove
several favourable properties of it using the Fourier spectral method. We borrow some
of the ideas presented in [STW11, Section 2.2], although ibid is only concerned with
functions of a single variable and focused on interpolation errors. In what follows, for
a string of length d of non-negative integers α = (α1, · · · , αd) ∈ Zd

≥0 we define α! :=
α1! · · · αd!, and |α| := α1 + · · · + αd, and use the following notation for higher order
derivatives:

Dα :=
∂|α|

∂xα1
1 · · · ∂xαd

d
. (2.7)

Definition 2.2.1. Let u : Rd → R be ℓ-periodic along all axes, and moreover, let X ∼
Unif

(
[−ℓ/2, ℓ/2)d) be a uniform random variable. We say u is semi-analytic if there exists

C, a ∈ R+, such that for any m ∈N we have

(
ℓ

2π

)m

√√√√√E

 ∑
α:|α|=m

|Dαu(X)|2
 ≤ C am m! (2.8)

Furthermore, we refer to (C, a) as the semi-analyticity parameters.

Note that for a semi-analytic function (C, a) are scale invariant; i.e., replacing u(·) by
u( ·α ) and at the same time changing the fundamental domain to [− α ℓ

2 , α ℓ
2 ]d, for any α >

0, would result in another (C, a)-semi-analytic function. One could absorb the coefficient(
ℓ

2π

)
into a, however, we find our current formulation more convenient.

For simplicity, consider the case of having a univariate function f . We recall that

the Taylor expansion around the point x0 is f (x) = f (x0) + ∑∞
m=1

f (m)

m! (x− x0)
m. Hence,

imposing the condition
∣∣∣ f (m)(x0)

∣∣∣ ≤ am m! on the growth of the derivatives guarantees

convergence of this series for all x ∈ (x − a−1, x + a−1). Similarly, in the multi-
variate case, imposing the condition |Dα f (x0)| ≤ α! a|α| guarantees the convergence
of the Taylor expansion in the box ∏d

i=1(x0,i − a−1, x0,i + a−1), where x0,i denotes the
13



i-th component of x0. Although a rigorous connection between analyticity and semi-
analyticity is provided below, we emphasize that we can understand the parameter a as
an inverse convergence radius.

Recall that for a periodic function u over [− ℓ
2 , ℓ2 ]

d, the discretization on 2N + 1
points along each axis results in a vector −→uN ∈ VN. We also use the notation uN[n] :=
u
(

ℓ n
2N+1

)
, ∀n ∈ [−N..N]d. We now define the Fourier transform of an ℓ-periodic

function u : Rd → R via

u(x) = ∑
k∈Zd

û[k] ei 2π⟨k,x⟩
ℓ , where

û[k] =
1
ℓd

∫
T

u(x)e−i 2π⟨k,x⟩
ℓ dx .

(2.9)

Note that the Fourier transform of Dαu is
(2π

ℓ

)|α|
(ik1)

α1 · · · (ikd)
αd û[k], and hence

by Parseval’s theorem we have
(

ℓ
2π

)|α|
E
[
(Dαu)2

]
= ∑k∈Zd k2α1

1 k2α2
2 · · · k

2αd
d |û[k]|

2.

Moreover, since ∑α:|α|=m k2α1
1 · · · k

2αd
d =

(
k2

1 + · · ·+ k2
d
)m, we conclude that Definition 2.2.1

is equivalent to

|u|m :=
√

∑
k∈Zd

∥k∥2m |û[k]|2 ≤ C am m!. (2.10)

It is straightforward to check that the quantity introduced above is a semi-norm.

We now provide examples of semi-analytic functions and show that this condition
is quite mild. In particular, in Proposition 2.2.1 we prove that every analytic function is
semi-analytic (hence, the naming).

Example 2.2.1. Any function with finitely many non-zero Fourier coefficients is semi-analytic
with C =

√
Var[u(X)] and a = k0, where k0 := max{∥k∥ : û[k] ̸= 0}.

Example 2.2.2. For any z > 0, the function u(x) = ez cos(x) with domain [−π, π]d is(
I0(z) ez/2, max{ z

2 , 1}
)
-semi-analytic with I0 being the modified Bessel function of the first

kind. To see this, note that the Fourier coefficients of u are described by the modified Bessel
function of the first kind [AS64, page 376]:

û[k] =
1

2π

∫ π

x=−π
e−ikx ez cos(x) dx = Ik(z). (2.11)

Furthermore,

Ik(z) =
( z

2

)k
∑
ℓ≥0

( z
2

)2ℓ

ℓ!(k + ℓ)!
≤
( z

2

)k 1
k! ∑

ℓ≥0

( z
2

)2ℓ

(ℓ!)2 =
1
k!

( z
2

)k
I0(z). (2.12)

Therefore, |û[k]| ≤
( z

2

)k I0(z)
k! , which allows us to write

∑
k∈Z

|k|2m |û[k]|2 ≤ (I0(z))
2 ∑

k∈Z

( z
2

)2k k2m

(k!)2 . (2.13)
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Hence, using the fact that the ℓ1-norm is larger in value than the ℓ2-norm, we conclude that

|u|m ≤ I0(z) ∑
k∈Z

( z
2

)k km

k!
≤ I0(z) ez/2

(
max{ z

2
, 1}
)m

m! (2.14)

where the last inequality follows from Lemma A.0.1.

Proposition 2.2.1. Every periodic real-analytic function is semi-analytic.

Proof. Let f be a real analytic and periodic function. It follows from [Kom60, Lemma 1]
that there exist C, a > 0 such that

sup
x∈T

|Dα f (x)| ≤ C a|α| α!. (2.15)

From this we conclude that√
∑

α:|α|=m
E
[
(Dα f )2

]
≤ C am

√
∑

α:|α|=m
(α!)2 ≤ C am ∑

α:|α|=m
α! ≤ 3d−1C am m! (2.16)

where the last inequality follows from Lemma A.0.4.

We let FN denote the unitary representing the d-dimensional discrete Fourier
transform and adopt the notation ũN := FN

−→uN. We drop the subscript N when it is clear
from the context. Moreover, consider Σ ⊆ Γ as an embedding of a finite alphabet Σ in Γ,
Γ being either a larger finite alphabet or N. We also consider the natural embedding of
spaces of functions ι : ℓ2(Σ) ↪→ ℓ2(Γ) induced by the inclusion Σ ⊆ Γ and the usual ℓ2

norm ∥a∥ =
√

∑n∈Γ |a[n]|2 and the induced metric d(a, b) = ∥a− b∥.
We observe that when dealing with a periodic function having a Fourier spectrum

with bounded support, such that û[k] = 0 for k /∈ [−k0..k0]
d, Nyquist’s well-

known theorem guarantees exact recovery of the function [OS75]. Specifically, given
a discretization on a lattice VN with N ≥ k0, there exists a classical algorithm
to reconstruct the entire continuous function u(x). In the following, we show that
under the milder condition of semi-analyticity, one can still achieve approximate
reconstructions. Even though the reconstructions will not be entirely accurate, we can
limit the errors to a poly-logarithmic overhead by exploiting the fact that the values of
û[k] are exponentially small for sufficiently large k (as shown in Lemma 2.2.1 below).
Furthermore, it is worth noting that by measuring quantum states in the computational
basis, we obtain a sample drawn from a distribution corresponding to the squared
amplitudes. This feature enables us to develop a sampler in the continuum.

Lemma 2.2.1. For a (C, a)-semi-analytic periodic function u, with N an integer satisfying
N ≥ 2a, we have √

∑
k:∥k∥2≥N

|û[k]|2 ≤ 2e3 C e−
N
a (1− 1

2e). (2.17)

Proof. We have

∑
k:∥k∥2≥N

|û[k]|2 ≤ N−2m ∑
k:∥k∥2≥N

∥k∥2m |û[k]|2 ≤ N−2m C2 a2m (m!)2 . (2.18)
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Now using m! ≤ mm+1

em−1 we obtain

N−m am m! ≤ e2

a
N−m

(
a(m + 1)

e

)m+1

. (2.19)

Setting m + 1 = ⌊N/a⌋ yields the bound

N−m am m! ≤ e3

a
N e−N/a. (2.20)

We can now use the inequality x ≤ αe
x

α e for all x ∈ R and all α > 0 by setting α = 2 and
x = N/a to complete the proof.

The reader may notice analogies between the result of Lemma 2.2.1 and the sub-
exponential decay bounds in the literature of concentration of measure. We discuss this
connection in Section 2.2.1.

Lemma 2.2.2. Let u be a (C, a)-semi-analytic periodic function with period [− ℓ
2 , ℓ2 ]

d, and let N
be an integer such that N ≥ 2ad. We have

d
(

1
(2N + 1)d/2 ũN, û

)
≤ 2
√

2e3 Ce−
3N
5a . (2.21)

Proof. We start by noting that

1
(2N + 1)d/2 ũN[k] =

1
(2N + 1)d ∑

n∈[−N..N]d
uN[n] e−i 2π⟨k,n⟩

2N+1

=
1

(2N + 1)d ∑
n∈[−N..N]d

∑
k′∈Zd

û[k′] e−i 2π⟨k−k′ ,n⟩
2N+1

= û[k] + ∑
p∈Zd\{0}

û[k + (2N + 1)p].

(2.22)

Therefore,

d
(

1
(2N + 1)d/2 ũN, û

)2

= ∑
k∈[−N..N]d

∣∣∣∣∣∣ ∑
p∈Zd\{0}

û[k + (2N + 1)p]

∣∣∣∣∣∣
2

+ ∑
k∈Zd\[−N..N]d

|û[k]|2

(2.23)
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where the second term was upper-bounded in Lemma 2.2.1. As for the first term

∑
k∈[−N..N]d

∣∣∣∣∣∣ ∑
p∈Zd\{0}

û[k + (2N + 1)p]

∣∣∣∣∣∣
2

≤ ∑
k∈[−N..N]d

(
∑

p∈Zd\{0}
∥k + (2N + 1)p∥−2m

× ∑
p∈Zd\{0}

∥k + (2N + 1)p∥2m |û[k + (2N + 1)p]|2
)

≤ a2mC2 (m!)2 max
k∈[−N..N]d

∑
p∈Zd\{0}

∥k + (2N + 1)p∥−2m.

We note that

max
k∈[−N..N]d

∑
p∈Zd\{0}

∥k + (2N + 1)p∥−2m ≤ max
k∈[−N..N]d

∑
p∈Zd\{0}

∥k + 2N p∥−2m

≤ N−2m max
x∈[−1,1]d

∑
p∈Zd\{0}

∥x + 2 p∥−2m.
(2.24)

Using Lemma A.0.5, if m ≥ d, we get

d
(

1
(2N + 1)d/2 ũN, û

)
≤ 2
√

2amC N−m 2d/2 m! ≤ 2
√

2am C N−m 2n/4a m! (2.25)

and setting m = ⌊N/a⌋ − 1 (which guarantees m ≥ d) yields

d
(

1
(2N + 1)d/2 ũN, û

)
≤ 2e3

√
2 Ce−

n
a

(
1− 1

2e−
ln(2)

4

)
(2.26)

which concludes the proof.

For our purposes, we will be applying Lemma 2.2.2 to normalized vectors. Here
we highlight the following distance bound as a corollary following immediately from
Lemma 2.2.2 and Lemma A.0.6.

Corollary 2.2.1. Let N ≥ 2ad and u be a (C, a)-semi-analytic periodic function. We have

d
(

FN |uN⟩ ,
û
U

)
≤ 4
√

2e3 C
U e−0.6N/a (2.27)

where U =
(

EX∼Unif([−ℓ/2,ℓ/2]d)
[
|u(X)|2

])1/2
.

Now we show that upsampling a semi-analytic function is useful in achieving minor
aliasing effects.1 Recall the sampling procedure introduced in Section 3.2.1. That is, we
measure the output state of the algorithm, say |ψ⟩, in the computational basis to obtain
x ∈ VN. We then sample uniformly at random from the box ∏d

i=1[xi − ℓ
4N+2 , xi +

ℓ
4N+2 ].

We call this procedure continuous sampling from |ψ⟩.
1In signal processing, aliasing effects refer to the errors caused by Fourier interpolation, specially when

the tails of the Fourier transformation (that is, the very high and very low frequency components) have
non-negligible amplitudes [OS75].
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Remark 2.2.1. The total variation distance of continuous sampling from two quantum states is
upper bounded by the ℓ2-norm of their difference. To see this, let |ψ⟩ and |ϕ⟩ be two quantum
states. We denote the probability density associated with the random variable obtained from
continuous sampling from |ψ⟩ by µψ and we note that

µψ(x) = ∑
n∈[−N..N]d

1{x∈Bn} |ψ[n]|
2
(

2N + 1
ℓ

)d
(2.28)

where 1{x∈Bn} is the identifier function; i.e., it is 1 if x ∈ Bn = ∏d
i=1

[
xi − ℓ

4N+2 , xi +
ℓ

4N+2

]
and 0 otherwise. One can then write

1
2

∫
dx
∣∣µψ(x)− µϕ(x)

∣∣ = 1
2 ∑

n∈[−N..N]d

∣∣∣|ψ[n]|2 − |ϕ[n]|2∣∣∣ ≤ ∥|ψ⟩ − |ϕ⟩∥ (2.29)

where the inequality follows from Lemma A.0.7.

Proposition 2.2.2. Given a (C, a)-semi-analytic periodic function u, an integer N ≥ 2ad,
and a quantum state |ψN⟩ ∈ VN satisfying ∥|ψN⟩ − |uN⟩∥ ≤ δ, there exists M ∈ N such
that continuous sampling from F−1

M ιFN |ψN⟩ results in an ε-approximation to the continuous
distribution proportional to u2 in total variation distance, where

ε ≤ 2δ +
8
√

2e3 C
U e−0.6 N

a . (2.30)

Proof. Firstly, note that for any integer r, since sampling from |ur⟩ reaches the actual
|u|2 distribution as r → ∞, there exists an integer M∗ such that |ur⟩ for all r ≥ M∗

gives δ-approximation of the continuous distribution. If N ≥ M∗, then the statement
is trivially satisfied after setting M = N. Otherwise, let M = M∗, and note that due to
Corollary 2.2.1 and by an application of the triangle inequality

∥ιFN |uN⟩ − FM |uM⟩∥ ≤
8
√

2e3 C
U e−0.6 N

a . (2.31)

Since isometries preserve the ℓ2-norm, by another application of the triangle inequality
we get ∥∥∥F−1

M ιFN |ψN⟩ − |uM⟩
∥∥∥ ≤ δ +

8
√

2e3 C
U e−0.6 N

a . (2.32)

Finally, using another triangle inequality for the total-variation distance and
Remark 2.2.1 we obtain the result.

We now investigate the gate complexity of interpolating a semi-analytic function.

Theorem 2.2.1. Given an L-Lipschitz (C, a)-semi-analytic periodic function u, an integer
N ≥ 2ad, and a quantum state |ψ⟩ ∈ VN, such that ∥|ψ⟩ − |uN⟩∥ ≤ δ, there exists a
quantum algorithm with gate complexity O

(
dN
a polylog (NdLℓ/C)

)
that returns samples

from a distribution within at most ε total variation distance from the distribution proportional
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to u2, where

ε ≤ δ +
16
√

2e3 C
U e−0.6 N

a ,

and U =
√

E u2(X).

Proof. In this proof, for an integer α ∈ N the notation [α] stands for {0, 1, . . . , α}. Using
Lemma A.0.8, we set M =

⌈
1

2ε′
Lℓd/2+10/3

√
2 ae4C

U

⌉
with ε′ = 8

√
2e3 C
U e−0.6 N

a . We now show

that we can implement F−1
M ιFN with Õ(d log M) gates. Firstly, note that

FN =
d⊗

i=1

f (i)N (2.33)

where fN = ∑m,k∈[2N] e−i 2π(k−N)(m−N)
2N+1 |k⟩ ⟨m|, and the superscript i means that it acts

non-trivially on the i-th register. We notice that fN = TN f̂NTN, where TN =

∑k∈[2N] e−i 2πNk
2N+1 |k⟩ ⟨k|, and f̂N = ∑m,k∈[2N] e−i 2πkm

2N+1 |k⟩ ⟨m| is the usual quantum Fourier
transform and thus can be implemented using O(log N log log N) gates. Furthermore,
it is straightforward to implement TN inO(log N). Overall, the gate complexity of FN is
Õ(d log N), since it can be implemented via d applications of fN in parallel.

It remains to show that ι itself can also be implemented using O(d log M) gates.

Consider the isometry ι̂ : VN → VM defined as ι̂ =
⊗

ι̂′
(i)

via ι̂′ : |n⟩ 7→ |n⟩ (for
n ∈ [2N]). We note that ι̂′ can be performed by adding auxiliary qubits prepared in the
|0⟩ state. Also, from ι =

⊗d
i=1 ι′(i) with ι′ : |k + N⟩ 7→ |k + M⟩ for k ∈ [−N..N], we

conclude that ι′ = Sι̂′, where S ∈ U (VM) is a shift operator for integers represented
in the computational basis states, S : |m⟩ 7→ |m + M− N mod 2M + 1⟩. Finally, note

that S = f̂NS′ f̂N, given S′ = ∑k∈[2N] e−i 2π(M−N)k
2M+1 |k⟩ ⟨k|, and the latter operator has gate

complexity O(log M). We therefore conclude that the complexity of implementing ι is
O (d log M).

2.2.1 Connections to concentration of measure

Sub-exponential distributions are studied in the context of high-dimensional probability
theory. Intuitively, a random variable is considered sub-exponential if its probability
distribution function has a tail that vanishes exponentially or faster [Ver18]. We make
a connection between this concept and our notion of semi-analyticity, which will later
allow us to better understand the latter class of functions. Let us recall the Bernstein
random variables, which will appear to be useful later in this section.

Definition 2.2.2. X is a Bernstein random variable, if X ≥ 0 almost surely, and for some
A, b > 0 its moments are upper bounded as

E Xm ≤ A bm m!, (2.34)

for all positive integers m.
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Following [BLM13] we prove concentration bounds on a Bernstein random variable.

Lemma 2.2.3. Let X be the Bernstein random variable defined in Definition 2.2.2. It is the case
that

P[X ≥ t] ≤

max(A, 1) e−
(t−b)2

8b2 , if t ≤ 3b,
e max(A, 1) e−

t
2b , if t > 3b.

(2.35)

Proof. Let us first upper bound the generating function corresponding to X. Let 0 ≤ λ <
b−1, then

E eλX = 1 + ∑
m∈N

λm E Xm

m!
≤ 1 + A ∑

m∈N

(bλ)m = 1 + A
λb

1− λb
. (2.36)

Moreover, if 0 ≤ λ ≤ 1
2b , we have 1

1−λb ≤ 1 + 2λb, which together with the identity
1 + x ≤ ex yield

E eλX ≤ max(A, 1) exp
{

λb + 2λ2b2
}

, ∀λ ∈ [0,
1
2b

]. (2.37)

We may now upper bound the tail probability via Chernoff’s bound

P[X ≥ t] ≤ inf
0≤λ

e−λt E[eλX] ≤ max(A, 1) min
0≤λ≤ 1

2b

exp
{
−λ(t− b− 2λb2)

}
. (2.38)

For t ≤ 3b, we make the choice λ = t−b
4b2 , and otherwise, we choose λ = 1

2b to conclude
the result.

Note that the tail of a Bernstein random variable shows a sub-exponential behavior
eventually, as described by Eq. (2.35). Indeed, the set of Bernstein random variables
coincides with the set of positive sub-exponential distributions as stated bellow.

Proposition 2.2.3. The set of Bernstein random variables is the set of almost surely positive
random variables that are sub-exponential.

Proof. This follows from the characterization of sub-exponential random variables in
[Ver18, Proposition 2.7.1], according to which, the positive random variable X is sub-
exponential if and only if E Xm ≤ Qm mm for some Q ≥ 0.2 Now, let X be a sub-
exponential distribution. Using mm

em−1 ≤ m!, we have

E Xm ≤ Qm mm ≤ e−1(Qe)m m!, (2.39)

which concludes that X has a Bernstein property.

Conversely, assume X has a Bernstein property. From m! ≤ mm, one concludes that

E Xm ≤ Abmm! ≤ (max(A, 1) b)m mm, (2.40)

which provides that X is a sub-exponential random variable.
2In [Ver18] the exponent m is taken to be any real number larger than 1, but one could readily observe

that m ∈N is also a sufficient condition through the same proof provided in [Ver18].
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Now we show the connection between the notions of concentration of measure and
the semi-analyticity condition in Definition 2.2.1. The next definition allows us to make
this connection clear.

Definition 2.2.3. Consider the Fourier transform of an ℓ-periodic function u : [− ℓ
2 , ℓ2 ]

d → R,
denoted by (û[k])k. Note that (|û[k]|2/U 2)k defines a probability distribution on the sample
space Zd. We call the random variable Ku corresponding to this distribution the Fourier random
variable of u.

With this definition at hand, we make the following connection between semi-
analyticity and the Bernstein random variables.

Theorem 2.2.2. A periodic function u is semi-analytic if and only if ∥Ku∥ has the Bernstein
property. In particular

• if u is (C, a)-semi-analytic, then ∥Ku∥ has a Bernstein property with parameters
(CU−1, a); and

• if ∥Ku∥ has a Bernstein property with parameters (A, b), then u is (
√

2Ae, 4b)-semi-
analytic.

Proof. u is semi-analytic⇒ ∥Ku∥ has a Bernstein property: From (2.12), we have

√
E ∥Ku∥2m ≤ U−1 C am m!. (2.41)

Putting this together with the Jensen inequality E ∥Ku∥m ≤
√

E ∥Ku∥2m, proves that
∥Ku∥ is a Bernstein random variable with parameters (CU−1, a).

∥Ku∥ has a Bernstein property ⇒ u is semi-analytic: By definition we have
E ∥Ku∥2m ≤ A b2m (2m)!. Note that

(2m)! ≤ (2m)2m+1

e2m−1 ≤ 2e 42m m2m−2

e2m−2 ≤ 2e 42m(m!)2 (2.42)

where the second inequality uses 4m ≥ m3. This implies
√

E ∥Ku∥2m ≤
√

2Ae (4b)m m!.

Making this connection allows us to obtain a Fourier concentration result similar to
Lemma 2.2.1.

Corollary 2.2.2. Let u be (C, a)-semi-analytic. It is the case that

∑
k:∥k∥≥t

|û[k]|2 ≤

max(C,U ) e−
(t−a)2

8a2 , if t ≤ 3a,
e max(C,U ) e−

t
2a , if t > 3a.

(2.43)

Proof. This follows directly from the first implication in Theorem 2.2.2 and Lemma 2.2.3.
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Note that the result of Lemma 2.2.1 can also be proven using the Markov
inequality P [∥Ku∥ > t] = P

[
∥Ku∥m > tm] ≤ E ∥Ku∥m

tm by a suitable choice of m.
This correspondence further lets us find functions that saturate the semi-analyticity
condition, as in the following example.

Example 2.2.3. Let z > 1. The 2π-periodic function u(x) = z−1
1−2
√

z cos(x)+z satisfies the
following inequality.

1
(1 + z−1)1/2

m!
(1− z−1)m ≤

√
E ∥Ku∥2m ≤

√
2e

1 + z−1 max
(

8,
8

z− 1

)m
m! (2.44)

Therefore u is both upper bounded and lower bounded by growth rates in the definition of semi-
analyticity, although for different choices of parameters. We refer the reader to Fig. 2.2 for visual
demonstrations.

To obtain (2.44), note that the Fourier transform of u(x) is û[k] = z−
|k|
2 since

1 + 2
∞

∑
k=1

cos(kx)z−
k
2 =

z− 1
1 + z− 2

√
z cos x

. (2.45)

This implies U 2 = 1+z−1

1−z−1 , and moreover the moments of ∥Ku∥ can be lower bounded as follows

1 + z−1

1− z−1 E ∥Ku∥m =
∞

∑
k=0

km z−k (2.46)

≥ ∂m

∂(z−1)m

(
∑
k≥0

z−k

)
=

∂m

∂(z−1)m

(
1

1− z−1

)
=

m!
(1− z−1)m+1 .

(2.47)

We, therefore, have

1
1 + z−1

m!
(1− z−1)m ≤ E ∥Ku∥m ≤ 1

1 + z−1 max{2,
2

z− 1
}m m! (2.48)

where the upper bound follows from Lemma A.0.2.

We now use another result from probability theory, namely the Paley–Zygmund
lower bound [PZ32, Pet07], to prove that taking Ω(a) points is necessary to produce
samples from a distribution arbitrarily close to the one generated by the underlying
distribution.

Lemma 2.2.4 (Paley–Zygmund). Let X be a non-negative random variable (that is, X ≥ 0
almost surely). For any θ ∈ (0, 1), it is the case that

P [X > θ E[X]] > (1− θ)2 (E[X])2

E[X2]
. (2.49)

Proof. Note that X = X1X≤θ E[X] + X1X>θ E[X], from which it is straightforward to
conclude

E[X] ≤ θ E[X] +
√

E[X2]P [X > θ E[X]], (2.50)
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Figure 2.2: (a) and (b) show two families of functions considered respectively in Example 2.2.2 and Example 2.2.3. The functions
are normalized so that

∫
x∈[0,1] dx ( f (x))2 = 1. That is, f 2 represents a distribution over one period. Note how in (a) the smoothness

of the functions is controlled by the parameter z and in (b) it is controlled by (z− 1)−1. (c) and (d) show the Fourier interpolation
accuracy on the two respective families of functions considered in (a) and (b). We demonstrate the interpolation error given the
state | fN⟩ for different N. Note that in both cases having N larger than our upper bounds on a results in a sampling error less than
0.1. The sampling error is shown with respect to the smoothness parameters z and (z− 1)−1, obtained by the application of the
upsampling algorithm using M = 200. Recall from Example 2.2.2 and Example 2.2.3 that we may think of max(1, z

2 ) and
max(8, 8

z−1 ) as upper bounds on the (average) inverse convergence radius of the respective functions in panels (a) and (b).
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where the second term is due to the Cauchy–Schwartz inequality.

Theorem 2.2.3. Let u be a (C, a)-semi-analytic function. Consider any exact discretization
|uN⟩ on the discrete lattice with N ≤ θa/16, where θ ∈ (0, 1). There is no algorithm that can
return samples close to the actual distribution (proportional to u2) with a guaranteed error of
less than (1− θ)2 1

1024e .

Proof. Note that f (x) = C√
e

z−1
1−2
√

z cos(2πx/ℓ)+z is (C, a)-semi-analytic for z = 1 + 8
a . From

the example above, we have E
∥∥K f

∥∥ ≥ a
16 , therefore

P
[
∥Ku∥ > θ

a
16

]
> P

[∥∥K f
∥∥ > θ E

∥∥K f
∥∥] > (1− θ)2 (a/16)2

2ea2 = (1− θ)2 1
512e

. (2.51)

Hence,
∥∥K f

∥∥ is large with a considerable probability. Let g : [−ℓ/2, ℓ/2] → R be a
function with the Fourier transform

ĝ[k] = α

{
∑p∈Zd f̂ [k + p(2N + 1)], if k ∈ [−N..N]d,
0, otherwise.

(2.52)

Here α is a normalization constant chosen such that EX∼Unif[g(X)2] = C2. One can
readily verify that g

(
nℓ

2N+1

)
= α f

(
nℓ

2N+1

)
. Therefore, | fN⟩ = |gN⟩. Moreover, note that

g is also (C, a)-semi-analytic due to Example 2.2.1 and that the total variation distance
between the distributions whose densities are proportional to | f |2 and |g|2 is at least
P
[∥∥K f

∥∥ > N
]
, which is itself lower bounded by (1− θ)2 1

512e due to N < θ a
16 and (2.51).

Let |ψN⟩ ∈ VN denote the discretization of f and g (so |ψN⟩ = | fN⟩ = |gN⟩). Given
the promises and the state |ψN⟩, any algorithm will sample from a distribution, say P ,
which is at least 1−θ2

1024e away from at least one of Pf and Pg. Hence, the algorithm fails as
stated upon processing either g or f as the underlying functions.

2.2.2 Fourier differentiation method

Assume we are given function values at a set of points x1 < x2 < · · · < xn. How can
we estimate the derivatives at these points? By denoting the function as u, the most
straightforward approach involves employing the following finite difference

u′(xi) ≈ (D1u)i :=
u(xi)− u(xi−1)

xi − xi−1
. (2.53)

One can show that the aforementioned method has an accuracy of O(h), where h =
maxi xi − xi−1 is the largest spacing between consecutive points. If xi’s are structured
nicely, one can have better estimators. For instance, in case xis are equidistant, we can
deploy a central approximation

(D2u)i :=
u(xi+1)− u(xi−1)

xi+1 − xi−1
. (2.54)

One can show that D2 provides a more accurate estimation than D1, as its error is
bounded by O(h2). Using more values of u(xj) for approximating the derivatives at
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a point can improve the approximation accuracy. A survey of this topic is presented
in [STW11]. Assuming that the function is periodic, one can approximate derivatives
exponentially accurately if the points {xi}n

i=1 are equidistant. This is the topic of this
section.

Here we describe the Fourier pseudo-spectral method used in our work and prove
several useful properties of it. Let u : Rd → R be ℓ-periodic in all dimensions. We define
the Fourier derivatives on the discretized lattice as follows:

∂̃juN[n] := F−1
N

(
i2πk j

ℓ

(
FN
−→uN
)
[k]
)

. (2.55)

A straightforward calculation yields the following convolution relation

∂̃juN[n] = ∑
m∈[−N..N]

uN[n1, · · · , nj−1, m, nj+1, · · · , nd] a[nj −m] (2.56)

where

a[m] =

0, if m = 0,
π (−1)m+1

ℓ sin( π m
2N+1)

, otherwise.
(2.57)

Higher order derivatives can then be defined as consecutive applications of the first
order operators:

∂̃r
j uN[n] :=F−1

N

[(
i2πk j

ℓ

)r (
FN
−→uN
)
[k]

]
= ∑

m∈[−N..N]

uN[n1, · · · , nj−1, m, nj+1, · · · , nd] a(r)[nj −m],
(2.58)

where a(r) = a ∗ a ∗ · · · ∗ a is the r-fold convolution. This means that taking the r-
th derivatives in the j-th dimension is identical to r consecutive applications of the
first derivative in direction j. However, if the number of discretization points is even
the Fourier derivatives may be define differently (as in [STW11]) in which case this
composability property may not hold. Note that

∥∥∥∂̃ju
∥∥∥

2
≤ 2π N/ℓ ∥u∥2 since each

derivative is an operator with eigenvectors being the Fourier basis with eigenvalues
i2πkj
ℓ . In what follows, we discuss some properties of this differentiation operation.

Most notably, we show that it respects the Leibniz product rule and that the maximum
derivative is at mostO(N log N) bigger than the largest value the function attains. Note
that analogously when using D f := f (x+h)− f (x)

h for finite difference approximation of
conventional derivatives, using h = 1

2N+1 , the approximation is at most O(N) larger
than the maximum value of f (x).

Proposition 2.2.4. Let u and v be two ℓ-periodic functions in all dimensions. The Fourier
derivatives ∂̃j have the following properties:

1. The product rule: ∂̃j(u · v) = (∂̃ju) · v + u · (∂̃jv).
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2.
∥∥∥∂̃ju

∥∥∥
∞
≤ 2π

ℓ ∥u∥∞(2N + 1)
[

1
π ln

(
4N+2

π

)
+ 1

2

]
. Also, if N > 3, one obtains a simpler

(but worse) upper bound
∥∥∥∂̃ju

∥∥∥
∞
≤ 48

ℓ ∥u∥∞N ln N.

3. ∑n∈[−N..N]d

(
∂̃ju
)
[n]

= 0.

4. ∂̃j
2

is a symmetric operator.

Proof. 1. It suffices to show that the Fourier transforms of the two sides coincide.

(2N + 1)d/2
{

FN

(
∂̃j(u · v)

)}
[k]

(1)
= ∑

q∈[−N..N]d

i2πk j

L
û[q] v̂[k− q]

= ∑
q∈[−N..N]d

i2π(qj + k j − qj)

L
û[q] v̂[k− q]

= ∑
q∈[−N..N]d

(
i2πqj

L
û[q]

)
v̂[k− q] +

(
i2π(k j − qj)

L
v̂[k− q]

)
û[q]

(2)
= (2N + 1)d/2

[
FN

(
(∂̃ju) · v

)
+ FN

(
(∂̃jv) · u

)]
(2.59)

Here (1) and (2) follow from the fact that the Fourier transform of the pointwise
multiplication of two functions is the convolution of their Fourier transforms (up to the
normalization factor (2N + 1)d/2).

2. To show this, we make use of equation (2.56):

∣∣∣(∂̃ju)[n]
∣∣∣ =

∣∣∣∣∣∣ ∑
m∈[−N..N]

u[n1, n2, · · · , m, · · · , nd] a[nj −m]

∣∣∣∣∣∣
(1)
≤ 2π

ℓ
∥u∥∞

N

∑
m=1

1
sin
(

π m
2N+1

)
≤ 2π

ℓ
∥u∥∞

(∫ N

x=1

dx
sin
(

π x
2N+1

) + 1
sin (π/(2N + 1))

)
(2)
≤ 2π

ℓ
∥u∥∞

(
− (2N + 1)

π
ln
(

tan
(

π

4N + 2

))
+

2N + 1
2

)
(3)
≤ 2π

ℓ
∥u∥∞(2N + 1)

[
1
π

ln
(

4N + 2
π

)
+

1
2

]

(2.60)

where (1) follows from Hölder’s inequality, and (2) follows from noting that
sin(π/(2N + 1)) ≥ 2

2N+1 . Finally, (3) follows from the fact that tan(x) ≥ x for 0 ≤
x < π/2. The claim follows since these inequalities hold for any n ∈ [−N..N]d. For
N > 3, in order to simplify the right hand side of (3) we use the fact that 1 + x ≤ 2x if
x ≥ 1. This implies that ∣∣∣(∂̃ju)[n]

∣∣∣ ≤ 48
ℓ
∥u∥∞N ln N. (2.61)
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3. Note that for any vector v defined on the discrete lattice, one has

∑
n∈[−N..N]d

v[n] =
(√

2N + 1
)d

v̂[0] (2.62)

where v̂ represents the Fourier transform of v. Noting that
(

FN ∂̃jv
)
[0]

=
(

2πkj
ℓ û[k]

)
[0]

=

0 completes the proof.

4. (2.56) and (2.57) show that ∂̃j is anti-symmetric. And since composition of an anti-
symmetric operator with itself is symmetric the result follows.

So far we talked about the interpolation results for semi-analytic functions. We
may now show that the Fourier differentiation technique is able to estimate the first
and second order differentiation with high accuracy. Note that this is non-trivial as
the Fourier differentiation operator is not bounded. The proof of this result borrows
ideas from [STW11]. Fig. 2.3 depicts an example of the Fourier interpolation and this
derivative estimation method.

Proposition 2.2.5. Let u be (C, a)-semi-analytic and periodic, and let N ≥ 4ad. It is the case
that √√√√ d

∑
j=1

∥∥∥∥−→∂juN −
−→
∂̃juN

∥∥∥∥2

≤ 40
√

2πe3 a
ℓ

C (2N + 1)d/2 e−
N
2a , and (2.63)

∥∥∥∥−−→∇2uN −
−−→
∇̃2uN

∥∥∥∥ ≤ 200
√

2π2e3 a2

ℓ
C2 (2N + 1)d/2 e−0.4 N

a . (2.64)

Proof. We first prove (2.63). We have

∂ju[n] = ∑
k∈Zd

i2πk j

ℓ
û[k] ei 2π⟨k,n⟩

2N+1 (2.65)

= ∑
k∈[−N..N]d

ei 2π⟨k,n⟩
2N+1 ∑

p∈Zd

i2π(k j + pj(2N + 1))
ℓ

û[k + (2N + 1)p]. (2.66)

And similarly,

∂̃ju[n] =
1

(2N + 1)d/2 ∑
k∈[−N..N]d

i2πk j

ℓ
ũ[k] ei 2π⟨k,n⟩

2N+1 (2.67)

= ∑
k∈[−N..N]d

ei 2π⟨k,n⟩
2N+1 ∑

p∈Zd

i2πk j

ℓ
û[k + (2N + 1)p] (2.68)

where (2.68) follows from (2.22). Hence

∂ju[n]− ∂̃ju[n] = ∑
k∈[−N..N]d

ei 2π⟨k,n⟩
2N+1 ∑

p∈Zd\{0}

i2πpj(2N + 1)
ℓ

û[k + (2N + 1)p] (2.69)
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which using Parseval’s theorem gives

d

∑
j=1

∥∥∥∥−→∂juN −
−→
∂̃juN

∥∥∥∥2

= (2N + 1)d
d

∑
j=1

∑
k∈[−N..N]d

∣∣∣∣∣∣ ∑
p∈Zd\{0}

i2π(2N + 1)pj

ℓ
û[k + (2N + 1)p]

∣∣∣∣∣∣
2

≤ 4π2

ℓ2 (2N + 1)d
d

∑
j=1

∑
k∈[−N..N]d

{ ∑
p∈Zd\{0}

∥k + (2N + 1)p∥−2m


×

 ∑
p∈Zd\{0}

∥k + (2N + 1)p∥2m|(2N + 1)pj|2 |û[k + (2N + 1)p]|2
}.

Then, using inequality (2.24) together with Lemma A.0.5, along with the fact that for
each j ∈ [d] we have |(2N + 1)pj| ≤ 2|(2N + 1)pj + k j|, we get

d

∑
j=1

∥∥∥∥−→∂juN −
−→
∂̃juN

∥∥∥∥2

≤ 32π2

ℓ2 C2 (2N + 1)d 2d N−2m [(m + 1)!]2a2m+2 (2.70)

≤ 32π2

ℓ2 C2 (2N + 1)d 2N/2a N−2m [(m + 1)!]2 a2m+2 (2.71)

for N ≥ 2ad. Hence, by choosing m = ⌊N/a⌋ − 2 one achieves the upper bound√√√√ d

∑
j=1

∥∥∥∥−→∂juN −
−→
∂̃juN

∥∥∥∥2

≤ 8
√

2πe3

ℓ
C (2N + 1)d/2 N e−0.6 N

a . (2.72)

Again, using the inequality x ≤ α e
x
eα for all x and all positive α, and setting α = 5

completes the proof. Now we prove (2.64). As in above, we start by writing the Fourier
transform of the Laplacians:

∇̃2uN[n] = ∑
k∈[−N..N]d

−4π2

ℓ2 ∥k∥2 ∑
p∈Zd

û[k + (2N + 1)p] (2.73)

∇2uN[n] = ∑
k∈[−N..N]d

−4π2

ℓ2 ∑
p∈Zd

∥k + (2N + 1)p∥2 û[k]. (2.74)

Therefore,

∥∥∥∥−−→∇̃2uN −
−−→
∇2uN

∥∥∥∥2

=
16π4

ℓ4 (2N + 1)d ∑
k∈[−N..N]d

∣∣∣∣∣∣ ∑
p∈Zd\{0}

(
∥k + (2N + 1)p∥2 − ∥k∥2

)
ûN[k]

∣∣∣∣∣∣
2

(a)
≤ 16π4

ℓ4 (2N + 1)d ∑
k∈[−N..N]d

{ ∑
p∈Zd\{0}

∥k + p(2N + 1)∥−2m


×

 ∑
p∈Zd\{0}

∥k + (2N + 1)p∥4∥k + (2N + 1)p∥2m |ûN[k]|2
}

(2.75)
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Figure 2.3: Applying the Fourier interpolation of Theorem 2.2.1 on the input function u(x) = ecos 2πx of Example 2.2.2. The plot
shows the interpolation results with N = 3 and M = 10. Filled circles correspond to the initial samples, and the hollow circles
represent the interpolation output. The solid blue line represents the graph of the underlying function u. And the dashed green
lines show the Fourier derivative estimations.

where (a) uses the Cauchy-Schwartz inequality along with the fact that ∥k∥ ≤
∥k + p(2N + 1)∥ for all k ∈ [−N..N]d. Again, we use Lemma A.0.5 and set m =
⌊N/a⌋ − 3 (which is guaranteed to be a natural number since N ≥ 4ad) to conclude
the proof.

2.2.3 Construction of semi-analytic functions

One question that arises in our study of semi-analyticity is the behavior of the semi-
analyticity parameters C and a under composition rules. For example, we may be
interested in the semi-analyticity parameters of the function approximators represented
by deep neural networks. Recall that the definition of semi-analyticity involves taking
high order derivatives. Therefore, we make multiple uses of the Faà di Bruno formula
[Rom80, KP02], according to which we have

dm

dxm f (g(x))

= ∑
i1,i2,··· ,im∈{0,··· ,m}

i1+2i2+···+mim=m

m!
i1! · · · im!

f (i1+···+im)(g(x))
(

dg/dx
1!

)i1
· · ·
(

dmg/dxm

m!

)im

(2.76)

for any pair of smooth functions f , g : R → R. Working in d dimensions, we need to
apply the multivariate Faà di Bruno formula, which is provided below.

Proposition 2.2.6. Let g : Rd → R and f : R→ R be smooth functions and let α ∈ Zd
≥0. We

have

Dα( f ◦ g)(x) = α!
|α|

∑
λ=1

f (λ)(g(x))
|α|

∑
s=1

∑
ps(λ,α)

s

∏
j=1

1
k j!

(
Dℓj g
ℓj!

)kj

, (2.77)
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where

ps(λ, α) :=

{
(k1, · · · , ks, ℓ1, · · · , ℓs) : ki > 0, 0 ≺ ℓ1 ≺ · · · ≺ ℓs,

s

∑
j=1

k jℓj = α,
s

∑
j=1

k j = λ

}
.

Here, for µ, ν ∈ Zd
≥0, we say µ ≺ ν if the 1-norms compare as (i) |µ| < |ν|, or (ii) if |µ| = |ν|

then use lexicographic ordering.

Proof. This proposition is obtained by setting m = 1 in Theorem 2.1 of [CS96].

Reference [KP02, Lemma 1.4.1] proves that the coefficients in (2.76) follow

∑
i1,i2,··· ,im∈{0,··· ,m}

i1+2i2+···+mim=m

(i1 + · · ·+ im)!
i1! · · · im!

Ri1+···+im =
R

R + 1
(R + 1)m, (2.78)

for any R > 0. We use similar ideas to extend this result to the multivariate case.

Lemma 2.2.5. Let α be a d-dimensional vector of non-negative integers. We have

|α|

∑
λ=1

λ! Rλ
|α|

∑
s=1

∑
ps(λ,α)

s

∏
j=1

1
k j!

=
R

R + 1
(R + 1)|α| . (2.79)

Proof. The proof is a generalization of [KP02, Lemma 1.4.1]. Let g(x) = 1
1−∑d

i=1 xi
and

f (x) = 1
1−R(x−1) . In what follows, we consider f (g(x)), and its Taylor expansion, and

subsequently, will apply (2.77) to get the desired relation.

To begin with, we observe the following. Let α = (α1, · · · , αd) ∈ Zd
≥0. One can

readily verify that

Dα(x1 + · · ·+ xd)
n∣∣

x=0 = α! 1{|α|=n} (2.80)

where 1 is the identifier function (i.e., it is 1 if the condition inside the brackets is
satisfied, and 0 otherwise). Therefore, as g(x) = ∑∞

n=0

(
∑d

i=1 xi

)n
in a neighbourhood of

x = 0, we conclude

(Dαg) (0) = α!. (2.81)

Additionally, it is transparent that ( f ◦ g)(x) =
1−∑d

i=1 xi

1−(R+1)∑d
i=1 xi

, which provides the

following expansion on a neighbourhood of x = 0.

( f ◦ g)(x) = 1 +
R

R + 1

∞

∑
n=1

(R + 1)n

(
d

∑
i=1

xi

)n

(2.82)

Combining (2.80) and (2.82) provides Dα( f ◦ g)(0) = R
R+1(R + 1)|α|α!. Furthermore,

it is straightforward to find f (λ)(g(0)) = λ! Rλ, from which the lemma follows by
substitutions into (2.77).
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We are now ready to study the composition of analytic functions of many variables.
To make our claims easier to state and comprehend, let us first introduce some notation.

Definition 2.2.4. Let f be analytic on an open set U. We say f ∈ AU(C, a), if

sup
x∈U

Dα f (x) ≤ C a|α| α!, (2.83)

and we say that g ∈ SU(C, a) if√√√√√ E
X∼Unif(U)

 ∑
α:|α|=m

|Dαg(X)|2
 ≤ C am m!. (2.84)

Note that if f is periodic and analytic in its fundamental domain, then it is analytic on
the entire domain Rd. We use the notation B∞(M) for the open ℓ∞-ball (−M, M)d ⊂ Rd,
and the notation AM as a shorthand for AB∞(M).

Remark 2.2.2. Using the same argument as in Proposition 2.2.1, for any open set U, we have
AU(C, a) ⊆ SU(3d−1C, a).

Proposition 2.2.7. Let f1 ∈ AU(C1, a1) and f2 ∈ AV(C2, a2) for two open domains U and V.
The following statements hold.

1. f1 + f2 ∈ AU∩V(C1 + C2, max{a1, a2}) if U, V ⊆ Rd are in the same Euclidean
domains. Also, the same property holds for the semi-analytic families.

2. f1 · f2 ∈ AU∩V(C1C2, a1 + a2).

3. Let V contain the image of f1, that is f2 ∈ A f1(U)(C2, a2). Then f2 ◦ f1 ∈
AU

(
C1a2C2
1+C1a2

, a1(1 + C1a2)
)

.

Proof. (a) Note that for any α ∈ Zd
+ the quantity supx∈U∩V |Dα f (x)| defines a semi-

norm. Using the triangle inequality of this semi-norm, we can obtain the result. For the

semi-analyticity part, let |u|m :=

√
E
(

∑α:|α|=m Dαu(x)
)2

and note that | · |m is also a

semi-norm, and in particular, | f1 + f2|m ≤ | f1|m + | f2|m.

(b) We note that

Dα( f1 · f2)(x) = ∑
β∈∏d

i=1{0,··· ,αi}

(
α

β

)
Dα−β f1(x) · Dβ f2(x), (2.85)

where we have used the convention (α
β) := ∏d

i=1 (
αi
βi
). Using the upper bounds on the

derivatives of f1 and f2, we get

sup
x∈U∩V

∣∣Dα( f1 · f2)(x)
∣∣ ≤ C1C2a1

d

∏
i=1

αi

∑
βi=0

aαi−βi
1 aβi

2

≤ C1C2

d

∏
i=1

(a1 + a2)
αi = C1C2(a1 + a2)

|α|.

(2.86)
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(c) Using Proposition 2.2.6, we have

sup
x∈U

Dα( f2 ◦ f1) = sup
x∈U

α!
|α|

∑
λ=1

f (λ)2

α

∑
s=1

∑
ps(λ,α)

s

∏
j=1

1
k j!

(
Dℓj f1

ℓj!

)kj

(2.87)

≤ α!C2a|α|1

α

∑
λ=1

λ!aλ
2 Cλ

1

|α|

∑
s=1

∑
ps(λ,α)

s

∏
j=1

1
k j!

(2.88)

(1)
= α!

C2C1a2

1 + a2C1
[a1(1 + a2C1)]

|α| , (2.89)

where (1) follows from Lemma 2.2.5.

Corollary 2.2.3. Let f ∈ AU(C, a). Then, e f ∈ AU(
C

1+C e∆, (1 + C)a), where ∆ =
supx∈U f (x) (compare this with Example 2.2.2).

Proof. This follows from Proposition 2.2.7(c) and the fact that g(x) = ex is in A∆(e∆, 1).

Corollary 2.2.4. Let f ∈ AM(C, a). Then, σ( f (x)) := 1
1+e− f (x) ∈ AM

(
1, a(1 + C(1 + e∆))

)
,

where ∆ = supx∈(−M,M)d | f (x)|.

Proof. This follows Proposition 2.2.7(c) and noting that the function g(x) = 1
1+x is in

AR+(1, 1) because g(m)(x) = (−1)m m!
(1+x)m .

In the final corollary of this section we find the analyticity parameters of deep neural
networks which are the de facto function approximators in deep learning.

Corollary 2.2.5. Let f : Rd → R be the function represented by a deep neural network
consisting of D fully-connected layers with sigmoid activation functions. We denote the i-th
layer weights matrix with W(i) and the bias vector with b(i). Then f ∈ A1(C̃, ã) is with C̃ = 1
and

ã ≤ 2D exp

(
D

∑
k=1

2
∥∥∥W(k)

∥∥∥
∞
+
∥∥∥b(k)

∥∥∥
∞

)
(2.90)

Here the norm ∥·∥∞ is the maximum absolute row sum i.e., ∥X∥∞ = maxi ∑j
∣∣Xij

∣∣
for any matrix X. Also, note that A1 in the statement above could be generalized to AM
for arbitrary M > 0, by rescaling the weights and biases of the first layer.

Proof. Let us denote the input and output of the i-th neuron of the k-th layer be denoted
by f (k)i and g(k)i = σ( f (k))i, respectively. We prove the result by induction on D. As
for the base case, note that the input functions to the neurons of the first layer are
f (1)i := ⟨w(1)

i , x⟩ + b(1)i , where w(1)
i := (W(1)

ij )j is the j-th row of the weight matrix of

the first layer. Hence, by Proposition 2.2.7(a) we get f (1)i ∈ A(
∥∥∥w(1)

i

∥∥∥
1
, 1). Also, note that

supx∈[−1,1]d

∣∣∣ f (1)i (x)
∣∣∣ ≤ ∥∥∥w(1)

i

∥∥∥
1
+
∣∣∣b(1)i

∣∣∣. Applying Corollary 2.2.4 yields g(1)i ∈ A1(1, ai)
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with ai = 2(1 + ∥wi∥1)e
∥∥∥w(1)

i

∥∥∥
1
+
∣∣∣b(1)i

∣∣∣ ≤ 2e
2
∥∥∥w(1)

i

∥∥∥
1
+
∣∣∣b(1)i

∣∣∣. Taking a maximum over i proves
the base case.

Now, assuming the bounds are valid for the neural network consisting of only the
first k layers, we prove the bound for the first k + 1 layers. By assumption g(k)j ∈
A1(1, ãk), where

ãk ≤ 2k exp

(
k

∑
ℓ=1

2
∥∥∥W(ℓ)

∥∥∥
∞
+
∥∥∥b(ℓ)

∥∥∥
∞

)
,

and that f (k+1)
i = ⟨w(k+1)

i , g⟩ + b(k+1)
i . This, together with Proposition 2.2.7(a) implies

f (k+1)
i ∈ A1

(∥∥∥w(k+1)
i

∥∥∥
∞

, ãk

)
. As g(k+1)

i = 1

1+e− f (k+1)
i

, we may use Corollary 2.2.4 once

more to complete our induction.

2.3 Extension to squared-integrable functions

In this subsection, we extend the definition of semi-analyticity and the interpolation
results to non-periodic functions. Consider a function u : Rd → R, such that u and all
its derivatives are in L2(Rd). We are given the following quantum state, which encodes
the values of u at certain points

|uH⟩ ∝ ∑
j∈Zd

u(jH) |j1⟩ ⊗ |j2⟩ ⊗ · · · ⊗ |jd⟩ ,

where H > 0 is the discretization parameter, and j = (j1, j2, · · · , jd) is a vector of
integers. Note that the Fourier transform in this case is a function û ∈ L2(Rd) that
satisfies the following equations.

u(x) =
1

(2π)d/2

∫
ω∈Rd

ei⟨ω,x⟩û(ω)dω (2.91)

û(ω) =
1

(2π)d/2

∫
x∈Rd

e−i⟨ω,x⟩u(x)dx (2.92)

Moreover, associated to −→u ∈ ℓ2(Zd) is a Fourier transform ũ : Rd → R that satisfies

ũ(ω) :=
(

H√
2π

)d

∑
j∈Zd

e−i⟨ω,jH⟩u(jH). (2.93)

The coefficients of (2.91), (2.92), and (2.93) are chosen so that∫
x∈Rd

|u(x)|2 dx =
∫

ω∈Rd
|û(ω)|2 dω, (2.94)

Hd ∑
j∈Zd

|u(jH)|2 =
∫

ω∈[− π
H , π

H ]d
|ũ(ω)|2 dω. (2.95)
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Note the similarities between (2.92) and (2.93), and that ũ → û as H → 0 pointwise.
Indeed, it is transparent that ũ(ω) is periodic with period 2π

H along each axis, and that

ũ(ω) = ∑
k∈Zd

û
(

ω +
2πk
H

)
. (2.96)

Note that ũ depends only on the values of u at the lattice points HZd. Moreover, if û
has a bounded support circumscribed within a fundamental domain of ũ then (2.96)
implies that ũ(ω) = û(ω) for all ω ∈ [− π

H , π
H ]d, and therefore one can exactly recover

the function u (i.e., u(x) can be found within arbitrarily small error at any x ∈ Rd). This
is indeed a restatement of the Nyquist theorem.

In what follows, we focus on the case where the support of û is possibly the
entire domain Rd, but an interpolation with exponentially small error is still feasible.
The arguments closely follow those of the previous subsections regarding periodic
functions, and hence, we keep our proofs brief. From hereon, we use ∥·∥ to refer to
the 2-norm for functions in L2(Rd).

Definition 2.3.1. A function u ∈ L2(Rd) is said to be semi-analytic if∥∥∥∥∥∥ ∑
α:|α|=m

Dαu

∥∥∥∥∥∥ ≤ C am m! (2.97)

for some C, a ≥ 0. As before, we refer to C and a as the semi-analyticity parameters.

We note that Definition 2.3.1 is equivalent to√∫
ω∈Rd

∥ω∥2m|û(ω)|2 dω ≤ C am m!. (2.98)

While establishing a connection between this notion of semi-analyticity and analyticity
is challenging, we provide several examples of such functions.

Example 2.3.1. Any function which has a Fourier transform with bounded support is
(∥u∥, ω0)-semi-analytic, where ω0 = sup{∥ω∥2 : û(ω) ̸= 0}.

Example 2.3.2. The Gaussian function u(x) :=
√

2a
π e−

a
2 x2

with inverse variance a is (1, a)-
semi-analytic. This is due to the fact that |û(ω)|2 corresponds to the probability distribution
function of N (0, a), and hence√∫

ω∈R
|ω|2m|û(ω)|2 dω =

√
E

X∼N (0,a)
[X2m] =

( a
2

)m√
(2m− 1)!! ≤ am m!. (2.99)

Example 2.3.3. The function u(x) = 2λ
λ2+x2 is (

√
e/λ, 2/λ)-semi-analytic. That is due to the

fact that û(ω) = e−λ|ω|. Hence,√∫
ω∈R
|ω|2m|û(ω)|2 dω =

√∫
ω

ω2me−2λ|ω| dω =
1

(2λ)m+ 1
2

√
(2m)! ≤

√
e
λ

(
2
λ

)m
m!.
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We may now show the interpolation result of this section.

Theorem 2.3.1. Let 0 < h < H. Further, let V : ℓ2(Zd) → ℓ2(Zd) be an isometry defined by
its action on the computational basis

V : |j⟩ 7→ ∑
k∈Z

Vjk |k⟩ (2.100)

where Vjk :=
(√

Hh
π

)
(−1)k sin(πhk

H )
hk−Hj . Then, for a (C, a)-semi-analytic function u ∈ L2(Rd), it is

the case that ∥∥∥V⊗d |uH⟩ − |uh⟩
∥∥∥ ≤ 8

√
2e3 C
∥u∥ e−0.6 π

aH (2.101)

if π
H ≥ 2ad.

Proof. To better understand the proof, it is helpful to provide some intuition beforehand.
Although the technical details closely resemble the previous results, we discuss the
reasoning behind it. Note that our aim is to approximate the function values at the
lattice points hZd, given the values on HZd, for h < H. To do so, we note that

u(hj) =
1

(2π)d/2

∫
ω∈Rd

ei⟨jh,ω⟩û(ω)dω

≈ 1
(2π)d/2

∫
ω∈[− π

H , π
H ]d

ei⟨jh,ω⟩ũ(ω)dω

=

(
H
2π

)d ∫
ω∈[− π

H , π
H ]d

ei⟨jh,ω⟩ ∑
k∈Zd

e−i⟨Hk,ω⟩u(kH)dω

= ∑
k∈Zd

u(kH)
d

∏
a=1

Wjaka ,

(2.102)

where Wjk :=
( H

2π

) ∫
ei(jh−Hk)ω =

(H
π

) (−1)k sin
(

jhπ
H

)
jh−kH . A straightforward computation

reveals that ∑j∈Z WjkW jℓ =
√

H
h δkℓ, and hence, we conclude that V is an isometry.

It remains to prove that the approximation error in (2.102) is small. With a similar
argument as the one used in Lemma 2.2.1, we can show that√√√√ ∫

ω/∈[− π
H , π

H ]d

|û(ω)|dω ≤ 2e3C e−
0.6π
Ha , (2.103)

and also, following the proof of Lemma 2.2.2, we obtain√∫
ω∈[− π

H , π
H ]d
|û(ω)− ũ(ω)|2 dω +

∫
ω/∈[− π

H , π
H ]d
|û(ω)|2 dω ≤ 2

√
2e3 Ce−

3π
5aH . (2.104)

The rest of the proof follows directly from the arguments made in Corollary 2.2.2, and
Proposition 2.2.2.

35



We also note that the concentration results of Section 2.2.1 are readily extendable
to the non-periodic cases studied here. In particular, one can show that a function
u is semi-analytic if and only if |û|2/∥u∥ defines a sub-exponential distribution. We
leave it open to investigate whether the foundations provided in the subsection can be
used as the building blocks of quantum algorithms using registers of quantum modes
with infinitely many levels (such as bosonic quantum computers made from quantum
harmonic oscillators).
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Chapter 3

Sampling

Random numbers should not be
generated with a method chosen at
random.

Donald Knuth

Sampling has been a longstanding task of interest. In this section, we are interested
in the following task.

Design an algorithm that draws samples from a given distribution over a set.

In quantum settings, randomness arises naturally due to the probabilistic nature of
quantum mechanics. However, in classical settings, the generation of randomness is not
as straightforward. Therefore, it is commonly assumed that the generation of uniformly
random numbers, say in the interval [0, 1], is easily achievable. In practice, algorithms
like the middle-square method, introduced by von Neumann [VN+51], are utilized to
generate pseudo-random numbers, which emulate samples from Unif([0, 1]) in the real
world.

The question we presented above lacks clarity as we did not specify how the
distribution is provided to us. In a straightforward scenario, we assume that we are
given a distribution on the real line, characterized by an efficiently computable CDF
denoted as F : R → [0, 1]. In this case, it is easy to show that generating a random
variable X from a uniform distribution on the interval [0, 1], say U ∼ Unif([0, 1]), and
then using F−1(U) as a sample, yields a value drawn from the desired distribution.
For instance, X = λ−1 ln

(
1

1−U

)
is distributed according to the exponential distribution

dµ = λ e−λxdx. In many cases, such an inverse does not have an algebraically closed
form, such as the normal distribution N (0, 1). For the specific example of normal
distribution, one might use the so-called Box-Muller algorithm [BM58]. The algorithm
utilizes two independent random variables, denoted as U and V, drawn from a
uniform distribution over the interval [0, 1]. From these, the algorithm generates two
independent random Gaussian variables, represented by X and Y, following a standard
normal distribution with mean 0 and variance 1. This algorithm leverages the insight
that the random variable X2 + Y2 follows an exponential distribution. Additionally,
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the angle formed between the vector (X, Y) and the horizontal axis (1, 0) is uniformly
distributed. To see this note that

dµ =
1

2π
e−

x2+y2
2 dx dy

Hence, letting R2 := X2 + Y2 and Θ := ∠((X, Y), (1, 0)), we have

dµ =
1

2π
e−

r2
2 rdr dθ =

1
2

e−
r2
2 d(r2)

dθ

2π

which indicates that R2 has an exponential distribution with λ = 1
2 , and Θ ∼

Unif([0, 2π)). As a result, X =

√
2 ln
(

1
1−U

)
cos(2πV), with indpendent and identically

distributed (iid) random variables U, V ∼ Unif([0, 1]) has a normal distribution.

Another setting of interest is a uniform sampling from a given subset of Rd. For
instance, uniform sampling from the surface of the unit ball in Sd−1. This can be readily
done by noting that a normalized Gaussian i.e., X̂ = X

∥X∥ for X ∼ N (0, Id), is uniformly

distributed over the unit ball Sd−1. Hence, using d iid standard Gaussians we can
generate the desired samples. Furthermore, one can use the fact that the area of the
ball of radius r is proportional to rd−1, we conclude that Z := X̂ · R, where R follows
the distribution dµ = d rd−1 dr for r ∈ [0, 1], has a uniform distribution inside the unit
ball i.e., Z ∼ Unif(Bd). Note that the random variable R here can be generated using
the inverse CDF method described earlier.

The aforementioned problem can be extended to the more general task of uniformly
sampling from a bounded set K ⊂ Rd. In this context, it is common to assume the
presence of a membership oracle, denoted as OK, which determines if a given point x
belongs to K i.e., OK(x) = 1{x∈K}. The complexity of algorithms addressing this problem
is typically assessed based on the number of queries made to OK and the required
arithmetic operations [Vem05]. Notably, classical algorithms have been developed that
can generate samples uniformly at random from K within polynomial time (in terms of
both the dimensionality and desired sampling accuracy) [Vem05, LV04].

In the broadest form of sampling, known as Gibbs sampling, we assume the
availability of an oracle that computes the logarithm (with a shift) of our target
distribution. Specifically, we aim to sample from the distribution µ(dx) = e− f (x)

Z dx,
where f (x) is accessible through the oracle. It is worth noting that when f is defined
on the positive half of the real line as f (x) = λx for x ≥ 0, we retrieve the problem of
sampling from the exponential distribution. Similarly, setting f (x) = 1

2 x2 corresponds
to the standard Gaussian sampling problem. There has been extensive research focused
on cases where f is a convex function (e.g., see [DCWY18, CLL+22]). Note that this
scenario encompasses the problem of uniform sampling from a convex set K. Notably,
the state-of-the-art sampling algorithms involve devising stochastic processes that reach
the desired distribution as their (often unique) stationary state. The complexities of the
algorithms heavily depend on the mixing times of such processes.

So far, we discussed classical approaches. However, it is worth exploring the
potential of quantum algorithms in addressing the problem at hand. In quantum
sampling, we aim to prepare the state |ψ⟩ = ∑i

√
pi |i⟩. Measuring this state in the
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computational basis allows us to obtain samples that follow the distribution determined
by pi. This quantum approach offers a level of generality beyond what classical
algorithms can achieve. Note that classical algorithms prepare a mixed state ρ =
∑i pi |i⟩ ⟨i|. Quantum algorithms provide additional capabilities by working directly
with the superposition state |ψ⟩. For example, specific quantum algorithms, like the
mean estimation algorithm presented in [KO23], can be applied to |ψ⟩. Leveraging
this feature enables the development of faster algorithms for mean estimation. This
feature will indeed help us devise faster algorithms for mean estimation in section
Section 3.2.2. The article [GR02] demonstrates that in cases where the distribution is
efficiently integrable, it is possible to efficiently prepare the state |ψ⟩. The algorithm
described in the paper achieves this by refining the discretization through the addition
of auxiliary qubits and the application of controlled gates. To elaborate further, let us
assume that we have already prepared the state:

|ψm⟩ =
2m−1

∑
i=0

√
p(m)

i |i⟩ .

Here, pi represents the probability of the random variable x falling within the interval
[x(i,m)

L , x(i,m)
R ), which corresponds to an equidistant discretization of the domain of the

random variable X. To approximate a continuous distribution determined by a measure,
denoted as µ, we assume that X ∈ [0, 1] almost surely. Consequently, we have x(i,m)

L =
i−1

2m−1 and x(i,m)
R = i

2m−1 , resulting in

p(m)
i =

∫ i
2m−1

i−1
2m−1

dµ.

The goal is to demonstrate that if
∫ b

a dµ is efficiently computable for any 0 ≤ a < b ≤ 1,
whether on a quantum or classical computer, then we can efficiently prepare |ψn⟩ for
any n. For instance, if integrating f over any interval takes at most time T, then we can
prepare |ψn⟩ in time O(Tn). To achieve a finer discretization, we introduce an additional
auxiliary qubit in the state |0⟩. Next, we define

f (i) :=

∫ x(i,m)
R −x(i,m)

L
2

x(i,m)
L

dµ∫ x(i,m)
R

x(i,m)
L

dµ

.

The goal of f (i) is to represent the probability of X lying in the left half of the i-th
interval, conditioned on X being on this interval. Therefore, we have

|ψm+1⟩ =
2m−1

∑
i=0

√
p(m)

i f (i) |i⟩ |0⟩+
2m−1

∑
i=0

√
p(m)

i (1− f (i)) |i⟩ |1⟩ .

In transforming |ψm⟩ into |ψm+1⟩, we implement a circuit that performs the following
transformations:
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|i⟩ |0⟩ 7→ |i⟩ |0⟩ |θi⟩ (3.1)

7→ |i⟩
(√

f (i) |0⟩+
√

1− f (i) |1⟩
)
|θi⟩ (3.2)

7→ |i⟩
(√

f (i) |0⟩+
√

1− f (i) |1⟩
)

, (3.3)

where in (3.1), we have cos θi =
√

f (i), which can be implemented by adding auxiliary
qubits and deploying the integration subroutine for the computation of f (i). Equation
(3.2) is performed using controlled rotations controlled by the |cos θi⟩ register. Finally,
in Equation (3.3), we uncompute |θi⟩ and discard the resulting |0⟩ register. Using
this recursive approach n − 1 times (while starting with |ψ1⟩ =

√
µ(X ≤ 0.5) |0⟩ +√

µ(X > 0.5) |1⟩), yields the desired state |ψn⟩.
Note that the above algorithm of [GR02] is very limited as our distribution might

not be efficiently integrable. For instance, when considering the general task of
Gibbs sampling, it is very inefficient. Hence, in more generic cases, quantum random
walks are often exploited. In short, quantum walks provide a powerful framework
for quantum algorithms in sampling, analogous to classical algorithms that employ
stochastic processes. The key idea involves transforming a series of Markov chains into
a sequence of Grover’s search operations, initially introduced in [WA08]. Building upon
this foundation, subsequent works such as [CCH+23, CLL+22] have demonstrated
quantum algorithms capable of preparing uniform distributions over convex bodies
and also log-concave Gibbs distributions, outperforming their classical counterparts.

The rest of this chapter is organized as follows. In Section 3.1.1 we discuss the mixing
times of Markov chains. The mixing time of a Markov chain that is constructed to reach
a desired distribution is at the heart of the analysis of the complexity of a sampling
algorithm. In Section 3.1.3 we describe the work of [WA08] and how can it be used
to achieve quantum speedups. We discuss some of the prior classical and quantum
algorithms proposed for Gibbs sampling in Section 3.1.2 and Section 3.1.4. Finally, in
Section 3.2 we describe our Gibbs sampling algorithm, which uses a novel idea based
on solving PDEs. We analyze the complexity of our algorithm and compare it with the
state-of-the-art.

3.1 Background and prior works

3.1.1 Finite Markov chains

Here we aim to overview the important results of the mixing times of finite, discrete-
time Markov chains. For a detailed analysis of the topic see [LP17, CLRS22]. Consider a
homogeneous time Markov chain over the state space [n], with transition matrix Pj←i :=
P[Xn+1 = j|Xn = i]. Let us denote the set of probability vectors over [n] by Pn that is
Pn := {q ∈ Rn : qi ≥ 0, ∑n

i=1 qi = 1}. We say that π ∈ Pn is a stationary state of the chain
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P, if πP = π. A Markov chain that is irreducible1 and aperiodic2 has a unique stationary
state. In addition to irreducibility and aperiodicity, we assume that P is reversible, that
is

πiPj←i = πjPi←j. (3.4)

The reversibility condition (3.4) serves as a valuable tool for analyzing the spectral gap
of P and its relationship to the mixing time, as outlined below. Note that (3.4) concludes√

πi

πj
Pj←i =

√
πj

πi
Pi←j (3.5)

which concludes that diag(
√

π) P diag(
√

π)−1 is a symmetric matrix, and hence, its
eigenvalues are all real. Furthermore, as this symmetric matrix is related to P via a
similarity transform, we have that all eigenvalues of P are real as well.

Symmetric Markov chains

Let us first consider the case where the stationary distribution of P is uniform. This is
the case, for instance, when P is a random walk on a regular graph. In such cases, P is
itself symmetric since πi =

1
n for all i ∈ [n]. Note that all symmetric Markov chains are

reversible. Furthermore, let

λ(P) := max
q∈Pn

∥qP− π∥
∥q− π∥ = max

x∈Rn :x⊥π

∥xP∥
∥x∥ . (3.6)

To see the second equality above, note that for any q ∈ Pn, the vector x = q − π is
orthogonal to π, and hence, the left hand side is less than or equal to the expression on
the right. To prove the converse, note that for any x ∈ Rn that is orthogonal to π, there
exists a small enough number c > 0 such that π + cx ∈ Pn.

Note that from the first equality in Eq. (3.6) we have

∥q · Pn − π∥ ≤ ∥q− π∥ (λ(P))n (3.7)

Furthermore, let us denote the eigen-values of P by λ1, λ2, · · · , λn orderd so that
1 = λ1 > |λ2| > · · · |λn|.3 From the second equality in (3.6), we have λ(G) = |λ2|, and
hence setting n = O

(
1
γ log

(
1
ε

))
guarantees ε-closeness to the distribution π, where

γ := 1 − |λ2| is the spectal gap of P. Notably, the graphs with large spectral gaps
allow fast convergence. Extensive research has been conducted on classical algorithms
that leverage Markov chains to achieve high efficiency, as demonstrated by their

1An irreducible Markov chain is a chain in which any state can be reached from any other state with
non-zero probability, after some finite number of steps. Mathematically, P is irreducible, if for all i ̸= j,
there exists some n ≥ 1 such that (Pn)ij ̸= 0.

2Let N (i) := {n ∈ Z≥0 : (Pn)ii ̸= 0}. The Markov chain P is said to be aperiodic, if for all i ∈ [n] we
have gcd(N (i)) = 1.

3By the Perron–Frobenius theorem, all eigen-values of any transition matrix P are in the unit disc.
Furthermore, the eigen-value λ1 = 1, has unit geometric and algebraic multiplicity if the chain is
irreducible and aperiodic. Under the latter conditions, we also have |λi| < 1 for all i = 2, · · · , n.
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proven convergence rates. Notable examples include efficient algorithms for estimating
the permanent of matrices with non-negative entries [JSV04], the widely used page
rank algorithm for search engines [PBMW99], and algorithms for counting problems
[KLM89]. These algorithms stand as remarkable achievements in leveraging Markov
chains to tackle complex computational tasks effectively.

The convergence rate for random walks on a graph is also sometimes bounded via
a quantity called conductance. Let us consider an undirected d-regular graph G = (V, E)
with the adjacency matrix A. In this case, we have

P =
A
d

, (3.8)

which is related to the Laplacian of G by LG = I− P. Note that by the second equality
in (3.6), we have that the gap γ := 1− λ(P) can be written as

γ =
1
d

min
x∈Rn :x⊥π

⟨x,LGx⟩
⟨x, x⟩ =

1
d

min
x∈Rn :c⊥π

∑(uv)∈E (xu − xv)
2

∑v∈V x2
v

(3.9)

To see the second equality above, note that to each (u, v) ∈ E, we can assign the terms
x2

u + x2
v − 2xuxv in the expansion of ⟨x,LGx⟩ which is equal to (xu − xv)2. We can relate

the spectral gap of our random walk to a geometrical property of the underlying graph.
Let us now define this geometrical feature (see [MT+06] for a more detailed account of
this topic).

Definition 3.1.1. Consider a cut (S, S) where |S| ≤ n
2 . We define the conductance of this cut

to be

ϕ(S) :=
|E(S, S)|

d|S| . (3.10)

Accordingly, the conductance of the graph is defined as

Φ(G) := min
S:|S|≤ n

2

ϕ(S). (3.11)

We notice that Φ(G) shows the connectivity of each set of vertices to the rest of the
graph. Furthermore, note that for a d-regular graph we have |E(S, S)| ≤ d · |S|, and

hence ϕ(S) ≤ 1 for all S ⊂ V. Also, notice that setting x as xv =
1{v∈S}
|S| −

1{v∈S}
|S| in (3.9)

gives γ ≤ 2ϕ(S), which by minimizing over S results in

γ/2 ≤ Φ(G). (3.12)

We note that the inequality is tight, as for a hypercube of ℓ bits, we have γ = 2
ℓ and

Φ = 1
ℓ . Interestingly, conductance is upper bounded by the square root of the spectral

gap by Cheeger’s inequality.

Theorem 3.1.1 (Cheeger’s inequality, Theorem 5.7 of [MT+06]). It is the case that

γ/2 ≤ Φ(G) ≤
√

2γ. (3.13)
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We note that the second inequality in (3.13) is also tight, as for the cycle Cn, we have
Φ ≈ 2

n , while γ ≈ π2

n2 ).

Therefore, conductance, as a geometric measure, can also be used to upper bound
the mixing time. Indeed, Cheeger’s inequality indicates that O(Φ−2) many steps are
sufficient to get close to the stationary state.

Generic reversible walks

Let us discuss the mixing time of more generic random walks. This is helpful in
understanding the mixing time of Langevin dynamics. We have the following result
about the mixing time.

Theorem 3.1.2 (Theorem 3.4 of [Sou20]). Let P be a reversible Markov chain with stationary
distribution π. Then, for all starting distributions q, we have∥∥∥∥q · Pt

π
− J
∥∥∥∥

π

≤
∥∥∥ q

π
− J
∥∥∥

π
(1− |λ2|)t, (3.14)

where J denotes the all-one vector; i.e., Jv = 1, ∀v ∈ V.

In the above theorem, the distance is defined as ∥x∥2
π =

√
∑v∈V πv x2

v. As before,
|λ2| corresponds to the second largest eigenvalue, in magnitude, of the matrix P.

3.1.2 Stochastic differential equations

In this section, we discuss a few properties of the Itô integral, which provides us with
insights into the meaning of a SDE. The goal here is not to present a comprehensive and
rigorous review of the topic, but rather to develop a better intuition of the fundamental
aspects of such stochastic processes. For a more detailed and rigorous treatment, we
recommend referring to [KKSS91, Eva23].

Firstly, let us recall that a stochastic process is a collection of random variables. In
our context, we can focus on a sequence of the form {X(t) : t ≥ 0}. We define the
Wiener process, denoted as W(·), which satisfies the following properties: (i) W(0) = 0
almost surely: The Wiener process starts at zero with probability one. (ii) W(t)−W(s) ∼
N (0, t− s) for all t ≥ s ≥ 0: The increments of the Wiener process between any two time
points t and s follow a normal distribution with mean zero and variance proportional to
the time difference t− s. (iii) For any ordered sequence of 0 < t1 < · · · < tn, the random
variables W(t1), W(t2)−W(t1), · · · , W(tn)−W(tn−1) are mutually independent: The
increments of the Wiener process at different time intervals are mutually independent
random variables.

There are constructions for a Wiener process (which proves its existence), and
furthermore, one can prove that any two Wiener processes W(·) and W ′(·) have the
same distributions (i.e., for any sequence 0 < t1 < · · · < tn the joint distributions of
{W(ti)}n

i=1 and {W ′(ti)}n
i=1 coincide).4 For a given ω ∈ Ω, the map t 7→ W(t, ω) is

referred to as a sample path. It has been demonstrated that a Wiener process possesses

4This has a straightforward proof, which follows directly by property (iii) and (ii) of a Wiener process.
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continuous sample paths almost surely. However, it is important to note that the sample
path is nowhere differentiable almost surely. To gain a better understanding, we can
examine the concept of Hölder continuity. Recall that a function f is said to be locally
Hölder continuous with an exponent γ if, for any x, there exits ε > 0 such that
| f (x)− f (y)| ≤ C |x− y|γ for a constant C > 0 and all y ∈ (x− ε, x + ε). It is known that
a Wiener process is not locally Hölder continuous (almost surely) for any 1

2 < γ ≤ 1,
but it is locally Hölder continuous (almost surely) for all γ < 1

2 .

Let us now discuss Itô integrals. Our objective is to provide meaning to the following
integrals ∫

W dt,
∫

g dW,
∫

G dW, (3.15)

where we denote a function as g and a stochastic process as G. It is worth noting
that the first integral (

∫
W dt) is well-defined since W(·, ω) is a continuous function

almost surely. This is indeed extendable to any function that is continuous almost surely.
However, we must establish a definition for integration with respect to dW. It is crucial
to understand that integrals involving dW do not possess any inherent meaning until
they are properly defined. In this discussion, we adopt the convention of Itô integration,
which is widely employed in stochastic calculus. Nevertheless, it is worth mentioning
that alternative approaches such as Stratonovich integration exist as well [Oks13].

When performing Itô integration, we can interpret the integration of a function using
the following identity ∫ 1

0
g dW = −

∫ 1

0
g′W dt. (3.16)

It is important to note that the right-hand side of Equation (3.16) is well-defined, thus
leaving us with the task of defining

∫
G dW. Let us first define such integrals when

G(·) has specific features. We say G is a step process5 if there is an ordered sequence
0 = t0 < t1 < · · · < tn = 1 such that G(t) = G(ti) for all i ∈ {0, 1, · · · , n}. For such a
step process, we let ∫ 1

0
G dW :=

n

∑
i=1

G(ti−1) (W(ti −W(ti−1)) . (3.17)

An intriguing observation is that, for a set of stochastic processes considered to be
”nice”, any stochastic process can be effectively approximated by a sequence of step
processes. Furthermore, the previously defined Itô integral exhibits convergence for any
convergent sequence within this ”nice” set. As a result, a more general definition for
Itô integrals emerges. The precise characterization of this ”nice” set involves technical
measure-theoretic assumptions, which are beyond the scope of our current discussion.
However, it is worth emphasizing that the aforementioned ”nice” set encompasses
all stochastic processes G for which E

[∫ 1
0 G2 dt

]
< ∞. This quantity serves as a

norm, which also defines the convergence of stochastic processes. To demonstrate the

5We omit a few technical conditions for the sake of readability and conciseness. In particular, we
emphasize that the stochastic process G(·) that is to be integrated satisfies the following: for any t > 0,
G(t) depends only on the past history (t′ ≤ t) of the Wiener process.
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eccentricity of Itô calculus, we highlight that
∫ T

0 W dW = 1
2W(T)2 − 1

2 T.

Let us now discuss SDEs. We say that a stochastic process X(·) satisfies the following
SDE

dX = F dt + G dW, (3.18)

for all t ∈ [0, T], if it satisfies the following equation (in the Itô sense)

X(t) = X(t0) +
∫ t

t0

F(X(t′), t′)dt +
∫ t

t0

G(X(t′), t′)dW (3.19)

for all 0 ≤ t0 ≤ t ≤ T. We remark that the existence and uniqueness of solutions to an
SDE are well-studied [KKSS91, Eva23].

We emphasize that in the context of SDEs, one can interpret dW as being almost
equal to

√
dt. This notion can be formalized using the Itô formula. Consider a function

u : R × [0, T] → R that is continuous and possesses continuous partial derivatives
of first and second order. If X(t) is the solution to the SDE dX = Fdt + GdW, then
according to the Itô formula, we have

du(X(t), t) = ∂tu dt + ∂xu dX(t) +
1
2

∂2
xu G2 dt

As an example, when we set F = 0, G = 1, and u(x) = x2, we obtain
d(W2) = 2W(t)dW + dt. This confirms the expression we previously discussed for
the integration of W dW.

Langevin dynamics

The definition of SDEs can be extended to higher dimensions. In such cases, F and W are
higher dimensional stochastic processes. A specific instance of these equations is known
as Langevin dynamics, which corresponds to the case where F = −∇ f and G =

√
2,

with f being a potential function. Therefore, the SDE of our interest is

dX(t) = −∇ f (X(t))dt +
√

2 dW(t)

It is well-known that if lim∥x∥→∞ f (x) = ∞, then Langevin dynamics possesses a unique
solution. Furthermore, its unique stationary state corresponds to the Gibbs measure
associated with the potential function f [Pav14]. As a result, extensive research has been
conducted on the development of algorithms for preparing Gibbs states through the
simulation of Langevin dynamics.

Classical algorithms

There have been several studies focused on the design of algorithms for sampling using
discretizations of Langevin dynamics [RT96, DCWY18, LST20, CEL+21]. Often in these
works, the underlying function is assumed to be log-concave. This is due to the fact that
the mixing times of log-concave distributions, can be small i.e., having an upper bound
independent of dimension and temperature.
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Let the desired distribution be described by the density dµ ∝ e− f (x) dx, where f is
a convex function. If we assume Hess( f ) ≥ µI at all points, in other words if f is µ-
strongly convex, it has been shown that the inverse spectral gap of the operator L is at
most 1

µ [Pav14, BGL+14]. This result is known as the Bakry–Emery criteria.

There have been various proposals for simulating Langevin dynamics using
different algorithms. One of the most basic approaches is the unadjusted Langevin
dynamics, which applies the following update rule:

xi+1 = xi − h∇ f +
√

2h ni, (3.20)

where ni ∼ N (0, 1) are iid random Gaussian variables. The unadjusted Langevin
dynamics method, which was used at least as early as [Par81], has limitations
highlighted by [RT96]. Specifically, certain choices of the step size h can result in a
transient Markov chain, leading to a lack of a unique limiting distribution. Although
some of these issues have been addressed [CB18], the discretization error often hinders
the achievement of fast algorithms.

On the other hand, Metropolized algorithms offer speed ups by adjusting the
discretized transition rules. Metropolis adjusted Langevin algorithm (MALA), which
incorporates a probabilistic rejection mechanism and yields a reversible Markov chain
that converges to the desired limiting distribution dµ ∝ e− f dx. In particular, let (see
e.g., [DCWY18])

yi := xi − h∇ f +
√

2h ni, (3.21)

α := min
[

1,
exp ( f (xi) + ∥yi − xi + h∇ f (xi)∥)
exp ( f (yi) + ∥xi − yi + h∇ f (yi)∥)

]
(3.22)

We then perform the update xi ← yi with probability α. For a µ-strongly convex function
f , with L-Lipschitz gradients ∇ f , it is shown that the mixing time of MALA is O(κd),
where d is the dimension of the domain and κ = L

µ [LST20].

3.1.3 From classical to quantum random walks

Szegedy [Sze04] developed an approach to quantizing any random walk on a
regular graph. This was later generalized to reversible Markov chains [MNRS07].
Their approach essentially prepares a unitary matrix that has a phase gap, which is
quadratically larger than the gap of its corresponding classical random walk. This gap
was used to achieve quantum speed ups through phase estimation.

Let us review how quantum walks perform. Given a reversible Markov chain P over
[n], we consider the Hilbert space Cn, and define the following quantum states

|Pv⟩ := ∑
y∈V

√
Pu←v |v⟩ . (3.23)

Accordingly, we define the following subspaces

A := span{|v⟩ ⊗ |Pv⟩ : v ∈ V}, (3.24)
B := span{|Pv⟩ ⊗ |v⟩ : v ∈ V}. (3.25)
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For a subspace K, we let ΠK be the projector onto K. The quantum random walk
operator corresponding to the classical walk is defined as

W(P) := (2ΠB − I)(2ΠA − I). (3.26)

Furthermore, denoting the stationary distribution by π, we define

|π⟩ := ∑
v

√
πv |v⟩ |Pv⟩ . (3.27)

It is transparent that |π⟩ ∈ A. Furthermore, note that

∑
v

√
πv |v⟩ |Pv⟩ = ∑

v,u

√
πvPu←v |v⟩ |u⟩ = ∑

v,u

√
πuPv←u |v⟩ |u⟩ = ∑

u

√
πu |Pu⟩ |u⟩ (3.28)

where in the second last step, we use the fact that P is reversible. Hence, by (3.28), we
have |π⟩ ∈ B. As a result

W(P) |π⟩ = |π⟩ . (3.29)

The next theorem helps us better understand the spectral properties of W. In the
following, we denote by λ0 = 1 the largest (in absolute value) eigen-value of a reversible
Markov chain.

Theorem 3.1.3 (Adaption of Theorem 1 of [WA08]). Let P be a reversible Markov chain. Let
λ1, · · · , λm be the non-zero eigen-values of P (with possible repititions). We have

1. On A∩ B, the operator W(P) acts as identity. Furthermore, A∩ B is a one-dimensional
subspace spanned by |π⟩.

2. On A⊥ ∩ B and A∩ B⊥, the operator W(P) acts as −I. Furthermore, dim(Ker(P)) =
dim(A⊥ ∩ B) = dim(A∩ B⊥).

3. On A + B, those eigenvalues of W(P) that have non-zero imaginary part are
e±2iθ1 , e±2iθ2 , · · · , e±2iθm , where θi ∈ (0, π

2 ) are defined such that cos θi = λi.

4. W(P) has no other eigenvalues on A+ B.

We note that the algorithms that we would work with, ensure that we are always
in the subspace A+ B, and hence, the spectral properties above, would be significantly
useful for us. In particular, the fact that |π⟩ is the unique eigen-vector with eigen-value
+1 on A+ B is very important to us.

Let us now recall Grover’s fixed-point search algorithm [Gro05].

Lemma 3.1.1 (Lemma 1 of [WA08]). Let |ψ1⟩ , |ψ2⟩ ∈ Cd be two quantum states. Also, let R1
and R2 be defined so that

Ri := ω |ψi⟩ ⟨ψi|+ (I− |ψi⟩ ⟨ψi|) , (3.30)

where ω = eiπ/3. There is an algorithm, that given m ∈N, uses M = 3m many R1 and R2 and
prepares a unitary U with the following property

|⟨ψ2, Uψ1⟩|2 ≥ 1− (1− p)M (3.31)
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where p ≤ |⟨ψ2, ψ1⟩|2.

As a result of the latter lemma, we can get ε-close (up to a global phase) to |ψ2⟩,
by O( 1

p log 1
ε ) many applications of R1 and R2. The interesting fact about the fixed-

point algorithms is that they do not overshoot. We highlight that this fixed-point
search algorithm can be improved (in terms of dependence on p), as demonstrated
in [YLC14, GSLW19]. Next, we show that given a random walk operator W, one can
prepare such an operator R (on a restricted subspace).

Lemma 3.1.2 (Adaption of Corollary 2 of [WA08]). Let W be a unitary acting on Cd with
a unique eigen-vector |ψ0⟩ with eigen-value λ0 = 1. Furthermore, let λj = e2πiϕj for j =
1, · · · , d− 1, be the rest of the eigen-values of W. Let ∆ = minj=1,...,d−1 |ϕj| be the phase gap of
W. Let R = ω |ψ0⟩ ⟨ψ0|+ (I− |ψ0⟩ ⟨ψ0|). There is an algorithm to prepare the unitary R̃ such
that

∥∥∥R̃− R
∥∥∥ ≤ ε, with O( 1

∆ log 1
ε ) many uses of controlled W.

Proof. We sketch the proof here. One can use the phase estimation algorithm with
precision ∆. We then have a unitary U that acts approximately as

U :
∣∣ψj
〉
|0⟩ 7→

∣∣ψj
〉 ∣∣ϕj

〉
. (3.32)

Then, we apply the unitary I⊗V with V = ω |0⟩ ⟨0|+ (I− |0⟩ ⟨0|).

Combining all the above provides us with the following.

Theorem 3.1.4 (Adaption of Theorem 2 of [WA08]). Let P0, P1, · · · , Pr be classical reversible
Markov chains with stationary distributions π0, π1, · · · , πr and spectral gaps larger than δ.
Assume πi and πi+1 are close in fidelity i.e., for some p > 0, we have(

∑
v

√
πi(v)πi+1(v)

)2

= ⟨π, πi+1⟩2 ≥ p. (3.33)

Let (Wi)
r
i=1 be the random walk operators corresponding to the Markov chains. Assume we are

given |π0⟩. There a quantum algorithm that makes

O

(
r

p
√

δ
log
(r

ε

)
poly

(
log

r log ε−1

p

))
(3.34)

many calls to controlled-Wis overall, and samples from a distribution ε-close (in total variation
distance) to πr.

The fact that the complexity in Theorem 3.1.4 depends on 1√
δ

(as opposed to 1
δ ) allows

quantum algorithms that achieve quadratic speed ups. In the following subsection, we
show how [CLL+22] uses the aforementioned techniques to develop a quantum analog
of MALA (see Section 3.1.2 for a review of the classical method).
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3.1.4 Quantum MALA

Let us consider a convex potential function f associated with the target Gibbs measure
π. We can efficiently determine the minimum of f , and we assume that this minimum
occurs at the origin and has a value of zero. Additionally, we assume that f is µ-strongly
convex and possesses L-Lipschitz gradients. Our objective is to construct a sequence of
Markov chains and employ the annealing algorithm proposed in [WA08], as discussed

in Section 3.1.3. Let f0 = ∥x∥2

2σ2
1

. Hence, π0(x) ∝ e− f0 represents a multivariate Gaussian.

Furthermore, consider f1, f2, · · · , fM such that fi = f (x) + ∥x∥2

2σ2
i

, where σ2
i+1 = (1 +

α)σ2
i for all i ∈ [M− 1]. We denote the corresponding Gibbs measures by π1, · · · , πM.

Intuitively, πi and πi+1 have large fidelities, and moreover, for a large enough M, we
expect πM to be close to π. The following lemma formalizes this intuition

Lemma 3.1.3 (Adaption of Lemma B.6 of [CLL+22]). For a Gibbs distribution πi, let

|πi⟩ :=
∫

dx
√

πi(x) |x⟩ . (3.35)

We have

1. ⟨π0, π1⟩ ≥ e−σ2
1 dL/4,

2. ⟨πi, πi+1⟩ ≥ e−2( α
α+2 )

2d, for all i ∈ [M− 1], and

3. ⟨πM, π⟩ ≥ e
− d

2µσ4
M .

As a result of the above lemma, choosing α = 1√
d
, M = O(

√
d) and σ2

1 = ε
2Ld

guarantees that all consecutive inner products are lower bounded by a constant.
Furthermore, [CLL+22] shows one can implement the quantum walk corresponding
to MALA with constantly many queries to an oracle for the derivatives of f . Putting
all this together with the fact that the mixing time of MALA is O(κd) and utilizing
Theorem 3.1.4, we conclude that with Õ(d

√
κ) many queries to an oracle for the

derivatives of f , we can sample according to the desired Gibbs distribution. Notice that
this provides a Grover-type speed up in the condition number κ.

3.1.5 Quantum algorithms for solving differential equations

Our algorithm benefits from the use of the high precision quantum linear differential
equation solver developed by Berry et al. [BCOW17]. Krovi later improved this
algorithm in [Kro23]. The solver is designed to tackle the problem of interest, which
is solving the following Ordinary Differential Equation (ODE) at time T > 0:

d−→x
dt

= A−→x +
−→
b , −→x (0) = −→x init, (3.36)

where −→x ,
−→
b ∈ Cn and A ∈ Cn×n is a matrix whose all eigenvalues have non-positive

real parts. The aim of ‘solving’ the ODE is to prepare a quantum state that encodes the
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entries of x(T). The main idea that is used in the construction of the algorithm is the
truncation of the Taylor expansion of the exponential function, as the−→x (T) satisfies the
following closed-form solution ([Kro23, Lemma 6])

−→x (T) = eAt−→x (0) +
(

eAt − I
)

A−1 h
−→
b . (3.37)

More specifically, letting

Tk(z) :=
k

∑
j=0

zj

j!

Sk(z) :=
k−1

∑
j=0

zj

(j + 1)!
,

we have T∞(z) = ez and S∞(z) = (ez − 1)z−1. Notably the sequence {Tk(z)}k and
{Sk(z)}k converge superexpontially fast to T∞(z) and S∞(z) for all z ∈ C with Re(z) ≤ 0
[BCOW17, Lemma 10, 12]. Hence, they propose an algorithm that updates−→x according
to

−→x (nh)← Tk(Ah)−→x ((n− 1)h) + Sk(Ah) b. (3.38)

To implement (3.38) on a quantum computer, one can define the following matrix

N1(A) := I−
m−1

∑
i=0
|i⟩ ⟨i| ⊗

(
k−1

∑
j=0
|j⟩ ⟨j− 1| ⊗ A

j

)
−

m−1

∑
i=0
|i + 1⟩ ⟨i| ⊗

(
k

∑
j=0
|0⟩ ⟨k|

)
⊗ I

(3.39)

As we will see shortly, the first register (indexed by i in summations) counts the time
step, while the second register (indexed by j) counts the terms in Taylor expansion.
Consider the equation

N1(A) |x⟩ = |0⟩ |0⟩ |xinit⟩+ h
m−1

∑
i=0
|i + 1⟩ |1⟩ |b⟩

Letting |x⟩ = ∑i,j∈[m]×[k] |i⟩ |j⟩
∣∣xi,j

〉
we have (note that

∣∣xi,j
〉

might not be normalized to
1)

|x0,0⟩ = |xinit⟩∣∣xi,j
〉
=
∣∣xi,j−1

〉 A
j
+ h |b⟩ δj,1 ∀i ∈ [m− 1], j ∈ [k]

|xi+1,0⟩ =
k

∑
j=0

∣∣xi,j
〉

∀i ∈ {0, · · · , m− 1}.

(3.40)

As a result of (3.40) we have

|xi+1,0⟩ = Tk(Ah) |xi,0⟩+ Sk(Ah) h |b⟩ . (3.41)
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Therefore, we can consider the linear system (3.39) and solve it via a quantum linear
solver [CKS17, HHL09]. Note that we are interested in the state |xm,0⟩. However, it has a
small amplitude. To overcome this issue, we repeat |xm,0⟩many times, say q times. This
can be performed by changing N1 as

N(A) := N1(A)−
m+q

∑
i=m
|i + 1⟩ ⟨i| ⊗ |0⟩ ⟨0| ⊗ I, (3.42)

and then utilizing amplitude amplification in the end. Hence, we solve for

C(A) |x⟩ = |0⟩ |0⟩ |xinit⟩+ h
m−1

∑
i=0
|i + 1⟩ |1⟩ |b⟩

We refer the reader to [BCOW17, Kro23] for the computations of the condition number
of C(A). As shown in [BCOW17], κC is upper bounded by m+ q (i.e., the number of time
steps) multiplied by the condition number of the matrix V whose columns are eigen-
vectors of A. [Kro23] shows that this upper bound can be made tighter via replacing κV
by the log-norm of A. Here, we just provide the main result of [Kro23] and eliminate the
complexity and correctness proofs.

Theorem 3.1.5 (Adoption of Theorem 7 of [Kro23]). Suppose A = VDV−1 is an N × N
diagonalizable matrix, where D = diag(λ1, · · · , λN) satisfies Re(λi) ≤ 0 for any i ∈ [N]. In
addition, suppose A has at most s nonzero entries in any row and column, and we have an oracle
OA that computes these entries. Suppose −→x init and

−→
b are N-dimensional vectors with known

norms and that we have two controlled oracles, Ox and Ob that prepare states proportional to
−→x init and b, respectively. Let −→x evolve according to the differential equation

d
dt
−→x = A−→x +

−→
b (3.43)

with the initial condition −→x (0) = −→x init. Let T > 0 and

g = max
t∈[0,T]

∥∥−→x (t)
∥∥/
∥∥−→x (T)

∥∥. (3.44)

Then there exists a quantum algorithm that produces a state ε-close to −→x (T)/
∥∥−→x (T)

∥∥ in ℓ2-
norm, succeeding with Ω(1) probability, with a flag indicating success, using

O
(

gT∥A∥κV poly
(

s, log d, log
(

1 +
Te2∥b∥
∥xT∥

)
, log

(
1
ε

)
, log(T∥A∥κV)

))
, (3.45)

queries overall, where κV = ∥V∥
∥∥V−1

∥∥ is the condition number of V. In addition, the gate
complexity of the algorithm is larger than its query complexity by a factor of

O(polylog(1 +
Te2∥b∥
∥xT∥

, 1/ε, T∥A∥)) , (3.46)

.

Proof. We can observe that the only difference in the complexity result between our
theorem and the one presented in [Kro23, Theorem 7] is the substitution of C(A) with
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κV . It is worth recalling from [Kro23, Definition 5] that C(A) is defined as the maximum
norm of eAt over the interval [0, T]. By imposing the condition A = VDV−1 with D ≤
0, we readily obtain C(A) ≤ κV . It is worth noting that in the case where A is not
diagonalizable, the relation between C(A) and κV is presented in [Kro23, Lemma 4].

3.2 Gibbs Sampling

In this section we present and analyze our Gibbs sampling algorithm.

3.2.1 The algorithm

Our goal is to obtain the steady state solutions to the FPE

∂tρ(x, t) = ∇ ·
(

e−E(x)∇
(

eE(x) ρ(x, t)
))

(3.47)

corresponding to a toroidal diffusion process. That is, a diffusion process obtained by
projecting the Langevin dynamics

dYt = −∇E(Yt)dt +
√

2dWt (3.48)

on a high dimensional torus T = Rd/Zd. By this notation we mean to topological
quotient of Rd under the action of Zd via g : x 7→ g + x for all g ∈ Zd. We refer the
reader to Appendix B for more details on such stochastic processes. Here (Wt)t≥0 is a
Wiener process and the drift term −∇E(Yt) is along the gradient of a periodic smooth
function E : Rd → R, which is called the energy function, energy potential, or the
potential, for short. We will assume that the fundamental domain of this quotient is of
length ℓ and more specifically [−ℓ/2, ℓ/2]d ⊂ Rd. The unique steady state solution ρs to
(3.47) corresponds to the Gibbs state ρs(x) ∝ e−E(x) of the potential. We intend to find
this distribution by solving (3.47) using a uniform distribution ρ0(x) ∝ 1 as an initial
condition and accessing the long time T ≫ 0 asymptotes of the solution. We refer the
reader to Section 3.2.1 for a pseudo-code of our algorithm.

By solving the FPE we mean preparing a quantum state that encodes the solution of
the PDE (3.47) on a discrete lattice. When discretizing an ℓ-periodic function, we first
consider a lattice obtained from taking an odd number, 2N + 1, of equidistant points
along each axis; xn = ℓn

2N+1 for all n ∈ [−N..N]d. We denote this discrete lattice by
VN and the Hilbert space CVN (i.e., the space of functions from VN to C) by VN. Our
discretization scheme transforms the generator

L(−) = ∇ ·
(

e−E∇
(

eE−
))

(3.49)

of the FPE to a linear operator L : VN → VN. An explicit construction of L is elaborated
in Appendix B.1. We then solve the linear ordinary differential equation

d
dt
−−→
u(t) = L

−−→
u(t) (3.50)
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using the machinery of [BCOW17, Kro23] to find a high precision approximation of the
solution, u(T) (line 2 of Section 3.2.1).

In solving this linear system we use the Fourier pseudo-spectral method to achieve
high precision finite difference approximations of the derivatives of u using merely a
coarse lattice VN. To this end we require a tameness condition on the growth of the
higher derivatives of u. We call this condition semi-analyticity for its close resemblance
to the notion of analyticity in real functional analysis. In Section 2.2.1 we discuss the
connections between semi-analyticity and the concentration of measure for a random
variable we define from the Fourier transform of u. We also provide examples of semi-
analytic functions. In particular, we show that all periodic real analytic functions are
semi-analytic as well.

We note that sampling from the discretization of the Gibbs distribution

|ρs⟩ ∝ ∑
x

e−E(x) |x⟩ , (3.51)

results in an ensemble at thermodynamic β = 2 instead of at β = 1. Here the

normalization constant of this state is 1/
√

Z̄β=2, where the Z̄ notation represents the
partition function of the discretized probability measure. To overcome this problem,
throughout we set the energy function of our interest to be 1

2 E. In the notation |x⟩ :=
|x1⟩ ⊗ · · · ⊗ |xd⟩ ∈ VN for addressing the points on the lattice, each |xi⟩ = |ni + N⟩ is
the one-hot encoding of the index ni + N where ni ∈ {−N,−N + 1, . . . , N}.

Moreover, the discretization of the Gibbs state will result in sampling from each
point of the lattice according to the discrete probability distribution

p(x) =
1

Z̄β=2
e−2E(x) ≃ ℓd

(2n + 1)dZβ=2
e−2E(x). (3.52)

This is the case since Z̄β=2∆x ≃ Zβ=2. Therefore our proposed algorithm is to draw
samples x ∈ Vn via measurements in the computational basis states, and then, generate
uniform samples from the box ∏d

i=1[xi − ℓ
4n+2 , xi +

ℓ
4n+2 ] (line 5 of Section 3.2.1).

However, naı̈ve usage of a small N combined with this uniform sampling strategy
does not provide a good approximation to the Gibbs distribution. This is the second
step in our algorithm wherein the semi-analyticity condition plays a critical role. We
show that given a real periodic function u : Rd → R, we can provide samples from a
high-precision approximation of the distribution proportional to u2 by querying very
few points in the domain of the definition of u. Using a very coarse lattice VN (i.e.,
with N being small) we achieve a sampling error of O(e−N) by employing a technique
from classical signal processing involving representation of u in the Fourier domain,
although we use quantum Fourier transforms (QFT) for its implementation. We call this
procedure upsampling of u [OS75] (line 3 of Section 3.2.1).
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Input: Energy function oracle OE, lattice parameters N, M ∈N, solution time T > 0
1: Construct an oracle for the discretization L of the generator of the Fokker–Planck equation

(see Fig. C.1 in the appendix).
2: Deploy the algorithm of [BCOW17] to prepare a quantum state approximating |u(T)⟩

pertaining to the solution of d
dt
−→u = L

−→u , with −→u (0) = 1, at time t = T.
3: Apply the upsampling isometry F−1

M ιFN involving quantum Fourier transformations on the
prepared state (Theorem 1.2.1).

4: Measure the resulting state in the computational basis to obtain a lattice point x ∈
[−ℓ/2, ℓ/2]d.

5: Draw a sample x̃ uniformly at random from the box ∏d
i=1

[
xi − ℓ

4M+2 , xi +
ℓ

4M+2

]
around x.

Output: Sample point x̃.

To this end, in Chapter 2 we introduced Fourier interpolation and use this technique
to upsample our quantum state in the Fourier domain. However, our interpolation
technique is useful beyond the applications considered herein. For instance, quantum
algorithms for solving partial differential equations (e.g., [CLO21]) also prepare
quantum states that encode the solutions of the equations on coarse discrete lattices. Our
interpolation algorithm, applied as a post-processing quantum circuit, allows one to
find approximate solutions on finer lattices and even on the continuous domain without
discretization.

The quantum algorithm makes queries to oracles for the discrete generator L which
themselves require access to O(dN) oracles of the energy function at different points
(see Eq. (2.56) in the appendix). In Appendix D.1 we show that assuming that the FPE
generates a semi-analytic one-parameter family of probability measures {eLtρ0 : t ≥ 0},
Section 3.2.1 samples from a distribution ε-close to the Gibbs distribution (in total
variation distance) by making Õ(d7 e∆/2

ℓ2 κE/2 polylog(1/ε)) queries to the oracle (1.6)
of the energy function. Note that dilating the domain of the definition of the energy
function by a scalar α multiplies the Poincaré constant by α2. This is why κE/2 is
normalized by a factor of ℓ2 in this complexity.

3.2.2 Algorithm’s analysis

We are now ready to state the computational complexity of our Gibbs sampler
(Section 3.2.1).

Theorem 3.2.1 (Main sampling result). Given an L-Lipschitz periodic potential E, suppose
that the one-parameter family of all probability measures {eLtρ0 : t ≥ 0} consists of semi-
analytic functions with parameters C and a. Section 3.2.1 samples from a distribution ε-close to
the Gibbs distribution (in total variation distance), by making

O
(

d3 κE/2

ℓ2 e
∆
2 max

{
a4d4, log4

(√
de

5∆
4 Ca3(1 + ℓ L)

ε

)}
polylog

(
ade∆ log(C(1 + ℓL))

ε

))

queries to the oracle of the energy function. The algorithm succeeds with bounded probability of
failure and returns a flag indicating its success. In addition, the gate complexity of the algorithm
is larger only by a factor of polylog(Cade∆(1 + ℓL))/ε).
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As a corollary, we show that the complexity of our algorithm improves under
simplifying assumptions on the geometry of the saddle points of the energy function.
Recall that a function E is called a Morse function if all its critical points are non-
degenerate; i.e., if ∇2E(x) is non-singular whenever ∇E(x) = 0. In [MBM16] this
condition is quantified with additional parameters. We use a simplified definition
compared to this reference, and call E to be a λ-strongly Morse function if the spectrum
of ∇2E(x) is bounded below by λ > 0 in absolute value at every critical point;
equivalently, if

∥∥(∇2E(x)
)
(v)
∥∥ ≥ λ∥v∥ for all critical points x and all vectors v.

The strong Morse condition allows every saddle point in the energy landscape
to have steep enough escape directions. Therefore, intuitively, the dynamics opposite
the gradient flow is not obstructed. [LE20] generalizes this definition by allowing flat
eigendirections in the saddle points as long as the exponentiation map along these
directions leaves us inside the critical loci. We also note that for Morse function on
compact domains, the strong Morse criteria is always satisfied for some parameter λ.
Applying [LE20, Proposition 9.14] to weak Morse functions on the products of spheres
results in a better Poincaré constant than the general bound in Proposition B.0.2. This is
a generalization of the Bakry-Emery criterion [BGL+14, Proposition 4.8.1] well beyond
strong convexity. We have,

Corollary 3.2.1. Let E be a λ-strongly Morse potential with a unique global minimum.
Furthermore, assume that E,∇E, and∇2E are Lipschitz continuous with respective parameters
L1, L2, and L3. Letting C denote the set of critical points of the energy potential E, we also make
an additional technical assumption as in [LE20, Proposition 9.14], namely that

CF = min

1,
λ

2
, inf

x:d(x,C)> λ
L3

∥∇E(x)∥
d(x, C)

 ∈ (0, 1]

satisfies max
(

4
λ2 , 6L2d

C2
F

)
≤ C2

F
12L2L2

3d
. Then the query complexity of our algorithm reduces to

O
(

d3

λ2 e∆/2 max

{
a4d4, log4

(√
de3∆/4 Ca3 (1 + ℓ L)

λ2ε

)}
polylog

(
ade∆ log(C(1 + ℓL))

λε

))
.

This follows from the observation that E satisfies a Poincaré inequality with κE =

O
(

1
λ2

)
as per [LE20, Proposition 9.14]. We note that this proposition is stated for Sn ×

· · · × Sn where n ≥ 2. However, in presence of a unique global minimum the result
remains valid for n = 1 as well; i.e., in the case of high-dimensional tori.6

We now investigate how the Gibbs sampler discussed earlier can be employed to
calculate the expected values of random variables with bounded variance. Specifically,
we consider a periodic function f : [− ℓ

2 , ℓ2 ]
d → R that belongs to L2(ρ), and aim at

estimating E[ f (X)], where X is a random variable with distribution ρ. To this end we
use the state-of-the-art mean estimation algorithm presented in [KO23].

Corollary 3.2.2 (Mean estimation). Let E be an energy function, satisfying the assumptions
made in Theorem 3.2.1. Furthermore, let f be an L f -Lipschitz ℓ-periodic function with diameter

6We thank Mufan (Bill) Li for confirming this fact.
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∆ f . There is a quantum algorithm that returns an estimate µ̂ to E[ f (X)], with additive error at
most ε > 0 and success probability at least 1− δ, making

O
(

d7a4e∆/2 κE/2

ℓ2

∆ f

ε
log
(

1
δ

)
polylog

(
C, a,

1
ε

, ∆ f , L f ℓ, Lℓ
))

(3.53)

queries to the controlled and standalone oracles of the energy function E and the function f .

Therefore a quantum computer can prepare a distribution ε-close in TV distance
to the Gibbs distribution of Morse functions defined on tori using Õ

(
λ−2e∆/2d7)

queries to the energy oracle, while the Riemannian Langevin diffusion of [LE20]
uses Õ

(
λ−4L4d3ε−2) classical queries to the energy function. For mean estimation

on the same potentials, quantum computation requires Õ
(
λ−2e∆/2d7∆ f ε−1) queries

to the controlled and standalone energy oracles, while classically one requires
Õ
(

λ−4L4d3∆2
f ε−4

)
queries to the energy function. In both cases, this suggests an

exponential quantum speedup in the sampling precision, and a quartic speedup in the
precision of mean estimation.

For mean estimation we also obtain a quadratic speedup in the range ∆ f of the
quantity f . However, since ∆ = O(Lℓ

√
d) we require to sample at temperatures in

Ω(Lℓ
√

d) in order to avoid an exponentially poor performance in the dimension of the
energy potential and its Lipschitz constant. Nevertheless, even at low temperatures this
algorithm retains a quadratic advantage in comparison to classical rejection sampling.
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Chapter 4

Conclusion

We propose a quantum algorithm for Gibbs sampling from a continuous potential
defined on a d-dimensional torus. Our algorithm queries the quantum oracle of
the energy potential Õ(d7κE/2e∆/2) times in the most notable factors, with only
polylogarithmic scaling with respect to the approximation error of the collected samples
from the Gibbs distribution in total variation distance. Here ∆ is the diameter of
the range of the potential or alternatively the thermodynamic β if the potential was
considered to be normalized in the range. Ergo, the exponentially poor dependence
on ∆ indicates the unsurprising difficulty of low-temperature Gibbs sampling. We
also provide examples of conditions under which at high enough temperatures our
algorithm is suggestive of exponential quantum advantage at this task.

Our motivation for this research is to use quantum computation as a building block
of learning schemes. For instance, the frontiers of research in energy-based learning can
take advantage of improved Gibbs samplers from continuous potentials in order to both
achieve a better representation of knowledge, and require significantly lower power
consumption. Our algorithm achieves this end by solving the second-order PDE known
as the Fokker–Planck equation (FPE). When incorporated into energy-based learning
(Appendix C), the quantum algorithm does not use coherent queries to classical data,
but rather use Hamiltonian simulation techniques to solve a PDE. Therefore, classical
data does not need to be prepared in quantum random access memory (QRAM) as
typically assumed in the literature on quantum algorithms.

This indicates that, more broadly, investigating steady states of PDEs other than
the FPE can also be instrumental in designing classical and quantum machine learning
algorithms. Our analysis made it apparent that except for the problem of long mixing
time in equilibrium dynamics, the exponential hardness in Gibbs sampling at low
temperatures exhibits itself when the eigendirections of the generator of the FPE are
far from perpendicular. We believe that this technical constraint may be ramified for
special families of potentials which ideally exhibit sufficient expressivity for learning
tasks (or for other applications).

Another interesting avenue for future research is further investigation into the
requirement of compactness of the domain of definition of the potential. In this paper,
we considered periodic boundary conditions, hence tori as the domains of definition
of the potential. However, other compact domains, or compactly supported Gibbs
measures are left for further investigations. Perhaps such variations would require other
choices of spectral methods; e.g., by deploying Chebyshev polynomials.
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In order to obtain these results we take advantage of the efficiency of quantum
Fourier transforms in manipulating functions in their Fourier representations. We
show that this performance requires sub-exponential concentration of the Fourier
components. We also show that this is equivalent to a condition milder than analyticity
which we name semi-analyticity. We quantify analyticity and semi-analyticity of
functions using parameters we introduce and track how these parameters change under
arithmetic operations and compositions. However, many similar properties remain
open to be investigated. It is worth noting that our upsampling results of Chapter 2
are generalizable to non-periodic functions as shown in Section 2.3. The measure
concentration results are also straightforward to generalize. However, establishing
connections between semi-analyticity and analyticity for non-periodic functions, as
well as developing efficient algorithms for upsampling them, are left as future areas
of exploration.

Finally, we mention that our method makes queries directly to the oracle of the
energy potential, and therefore is a zeroeth order method. This is unlike typical classical
algorithms for Gibbs sampling, especially ones that use the stochastic integration of
Langevin dynamics, the SDE associated to the FPE. It, therefore, remains open to
investigate the opportunity for improving our results using quantum queries to the first
order oracles of the potential.
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Appendix A

Lemmas used in Section 2.2

Lemma A.0.1. For any integer m ≥ 0 and z > 0

∞

∑
k=0

zk km

k!
≤ ez max{zm, 1}m!. (A.1)

Proof. We note that

∞

∑
k=0

zk km

k!
=

∂m

∂xm

∣∣∣∣∣
x=0

∞

∑
k=0

zk ekx

k!
=

∂m

∂xm

∣∣∣∣∣
x=0

ez ex
. (A.2)

Defining f (x) := ez ex
and g(x) := z ex we observe that f ′(x) = f (x) g(x) and further

g′(x) = g(x). Therefore, one can expand the s-th derivative as follows

∂s

∂xs f (x) =
s

∑
r=1

Cs[r] (g(x))r f (x) (A.3)

Taking derivative of both sides yields the following recursive relations

Cs+1[r] =


Cs[1], if r = 1,
r Cs[r] + Cs[r− 1], if 2 ≤ r ≤ s,
Cs[s], if r = s + 1.

(A.4)

Therefore

s+1

∑
r=1

Cs+1[r] =
s

∑
r=1

Cs[r] (r + 1) ≤ (s + 1)
s

∑
r=1

Cs[r] (A.5)

which given C1[1] = 1 implies that

m

∑
r=1

Cm[r] ≤ m!. (A.6)
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Lastly, we note that

∂m

∂xm

∣∣∣∣∣
x=0

ez ex ≤ ez max{zm, 1}
m

∑
r=1

Cm[r] ≤ ez zm m! (A.7)

since g(0) = z, and f (0) = ez, and the last inequality follows from (A.6). Combined
with (A.2) the result follows.

Lemma A.0.2. For any z > 1 and m ∈N, the following holds

∞

∑
k=0

km z−k ≤ 1
1− z−1 max

(
2,

2
z− 1

)m
m!. (A.8)

Proof. First, we note that the function we are upper bounding is a special case of the
Lerch transcendents [GR], for which we also provide a lower bound in Example 2.2.3. In
particular, Φ(z−1, m, 0) = ∑∞

k=0 kmz−k. We shall now prove the result by setting α = ln z
and writing

∑
k≥0

kmz−k =
∂m

∂αm ∑
k≥0

eαk =
∂m

∂αm
1

1− eα
. (A.9)

By a simple induction, we arrive at the following form

∂m

∂αm
1

1− eα
=

m

∑
r=1

Cm[r]
erα

(1− eα)r+1 , (A.10)

with the following recursive relation for the coefficients

Cs+1[r] =


Cs[1], if r = 1,
r (Cs[r] + Cs[r− 1]) if 2 ≤ r ≤ s,
rCs[s], if r = s + 1.

(A.11)

Hence, we have ∑m
r=1 Cm[r] ≤ 2m ∑m−1

r=1 Cm−1[r], and consequently ∑m
r=1 Cm[r] ≤ 2mm!,

as C1[1] = 1. Therefore,

∂m

∂αm
1

1− eα
≤ 1

1− z−1 max{1,
1

z− 1
}m 2m m!. (A.12)

Lemma A.0.3. For any m ≥ 1

m

∑
k=0

k!(m− k)! ≤ 3 m!. (A.13)

Proof. Note that the inequality could be checked by direct calculation for m = 1, 2, 3. We
now consider m ≥ 4 and note that

m

∑
k=0

k!(m− k)! = m!
m

∑
k=0

1
(m

k )
(A.14)
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However, we have mink=2,··· ,m−2 (
m
k ) ≥ m and hence

m

∑
k=0

1
(m

k )
= 2 +

2
m

+
m−2

∑
k=2

1
(m

k )
≤ 2 +

2
m

+
m− 3

m
≤ 3. (A.15)

Lemma A.0.4. For all d ≥ 1

∑
i1,i2,··· ,id∈{0,··· ,m}
i1+i2+···+id=m

i1! i2! · · · id! ≤ 3d−1 m!. (A.16)

Proof. We prove this claim by induction. The base case (d = 1) is trivially true. Assuming
the statement is correct for d, we have

∑
i1+i2+···+id=m

i1! i2! · · · id+1! =
m

∑
i1=0

i1!

(
∑

i2+···+id+1=m−i1

i2! · · · id+1!

)

≤ 3d−1
m

∑
i1=0

i1 (m− i1)!

≤ 3d m!

(A.17)

where the last step is due to Lemma A.0.3.

Lemma A.0.5. Let m be an integer greater than d. We have

max
x∈[−1,1]d

∑
p∈Zd\{0}

∥x + 2 p∥−2m ≤ 2d+1 (A.18)

for a universal constant ξ.

Proof. Firstly, we note that

max
x∈[−1,1]d

∑
p∈Zd\{0}

∥x + 2 p∥−2m ≤
d

∑
j=1

(
d
j

)
max

x∈[−1,1]j
∑

p∈(Z\{0})j

1

∥x + 2p∥2m (A.19)

≤
d

∑
j=1

(
d
j

)
max

x∈[−1,1]j
∑

p∈(Z\{0})j

1

∥x + 2p∥2j . (A.20)

We now note that ∑p∈(Z\{0})j
1

∥x+2p∥2m is maximized over [−1, 1]j for x being one of the

corner points. Hence, we can upper bound the summation by the following integral
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with respect to the volume form dVj of the j-dimensional ball in the ℓ2 norm:

max
x∈[−1,1]d

∑
p∈Zd\{0}

∥x + 2 p∥−2m ≤
d

∑
j=1

(
d
j

) (
1√

j
+

1
2j

∫ ∞

r=1

dVj

r2j

)

≤
d

∑
j=1

(
d
j

) (
1√

j
+

π j/2

2jΓ(j/2 + 1)

∫ ∞

r=1
r−1−j dr

)

=
d

∑
j=1

(
d
j

) (
1√

j
+

π j/2

2jΓ(j/2 + 1)
1
j

)

≤ 2d sup
j∈N

(
1√

j
+

π j/2

2jΓ(j/2 + 1)
1
j

)
= 2d+1

(A.21)

Lemma A.0.6 (Lemma 13 of [BCOW17]). Let −→a and
−→
b be two vectors of the same vector

space. It is the case that ∥∥∥∥∥∥
−→a∥∥−→a ∥∥ −

−→
b∥∥∥−→b ∥∥∥
∥∥∥∥∥∥ ≤

2
∥∥∥−→a −−→b ∥∥∥

max
[∥∥−→a ∥∥,

∥∥∥−→b ∥∥∥] . (A.22)

Proof. Without loss of generality, we assume −→a has a larger norm. We then write∥∥∥∥∥∥
−→a∥∥−→a ∥∥ −

−→
b∥∥∥−→b ∥∥∥
∥∥∥∥∥∥ =

∥∥∥∥∥∥
−→a∥∥−→a ∥∥ −

−→
b∥∥−→a ∥∥ +

−→
b∥∥−→a ∥∥ −

−→
b∥∥∥−→b ∥∥∥
∥∥∥∥∥∥

≤
∥∥∥∥∥ −→a∥∥−→a ∥∥ −

−→
b∥∥−→a ∥∥
∥∥∥∥∥+

∥∥∥∥∥∥
−→
b∥∥−→a ∥∥ −

−→
b∥∥∥−→b ∥∥∥
∥∥∥∥∥∥

≤
2
∥∥∥−→a −−→b ∥∥∥∥∥−→a ∥∥

(A.23)

where in the last inequality we have used the triangle inequality
∥∥−→a ∥∥ − ∥∥∥−→b ∥∥∥ ≤∥∥∥−→a −−→b ∥∥∥.

Lemma A.0.7. Let |ψ⟩ and |ϕ⟩ be two quantum states residing in a finite dimensional Hilbert
space. Let us denote the output measurement probabilities in the computational basis by Pψ and
Pϕ. Then we have

TV
(

Pψ, Pϕ

)
≤ ∥|ψ⟩ − |ϕ⟩∥. (A.24)
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Proof. We have

TV
(

Pψ, Pϕ

)
=

1
2 ∑

i∈I

∣∣∣|ψ(i)|2 − |ϕ(i)|2∣∣∣
=

1
2 ∑

i∈I

∣∣ |ψ(i) | − | ϕ(i)|∣∣ · ∣∣|ψ(i)|+ |ϕ(i)| ∣∣
≤ 1

2

√
∑
i∈I

∣∣ |ψ(i) | − | ϕ(i)|∣∣2√∑
i∈I

∣∣ |ψ(i) |+ | ϕ(i)|∣∣2
(a)
≤ 1√

2

√
∑
i∈I

∣∣ψ(i)− ϕ(i)
∣∣2 √∑

i∈I
|ψ(i)|2 + |ϕ(i)|2

= ∥|ψ⟩ − |ϕ⟩∥

(A.25)

where (a) follows from the basic inequalities (a + b)2 ≤ 2a2 + 2b2 and
∣∣|a| − |b|∣∣ ≤

|a− b|.

Lemma A.0.8. Let u : Rd → R be ℓ-periodic along each dimension. Further let u be
(C, a)-semi-analytic and L-Lipschitz. Also, let µ be the probability density proportional to u2,
and further, µ̂ be the probability density associated with the continuous sampling from |uM⟩.
Choosing M as

M =

⌈
1
δ

Lℓd/2 + 10/3
√

2 ae4C
U

⌉
(A.26)

where U =
√

E[u2(X)], we are guaranteed to have TV (µ, µ̂) ≤ δ.

Proof. We have

TV(µ, µ̂) =
1
2

∫
dx

∣∣∣∣∣∣ u2

ℓdU 2 − ∑
n∈[−M..M]d

1{x∈Bn}
u2

M[n]∥∥−→uM
∥∥2

(
2M + 1

ℓ

)d
∣∣∣∣∣∣ . (A.27)

Using the triangle inequality, we have

TV(µ, µ̂) ≤ 1
2

∫
dx

∣∣∣∣∣∣ u2

ℓdU 2 − ∑
n∈[−M..M]d

1{x∈Bn}
u2

M[n]
U 2ℓd

∣∣∣∣∣∣
+

1
2

∫ dx
ℓd ∑

n∈[−M..M]d
1{x∈Bn}u

2
M[n] ·

∣∣∣∣∣ 1
U 2 −

(2M + 1)d∥∥−→uM
∥∥2

∣∣∣∣∣
=

1
2ℓdU 2

∫
dx ∑

n∈[−M..M]d
1{x∈Bn}

∣∣∣u2 − u2
M[n]

∣∣∣+ 1
2U 2

∣∣∣∣∣
∥∥−→uM

∥∥2

(2M + 1)d −U
2

∣∣∣∣∣
(a)
≤ Lℓd
U (2M + 1)

+
2
√

2e3C
U e−3M/5a

(A.28)

where in (a) we use Lemma 2.2.2 with the choice of M in (A.26). Using the inequality
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e−x/e ≤ 1/x, we obtain

TV(µ, µ̂) ≤ Lℓd/2 + 10/3
√

2 ae4C
UM

(A.29)

which concludes the proof.
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Appendix B

Langevin diffusion on a torus

Let {Yt}t≥0 be a continuous time stochastic process in Rd satisfying the overdamped
Langevin dynamics at thermodynamic β = 1,

dYt = −∇E(Yt) dt +
√

2 dWt (B.1)

where (Wt)t≥0 is a Wiener process. This equation is well-studied in the literature. In
particular, it is known that for confining energy potentials the process is time reversible,
ergodic, with a unique stationary distribution proportional to e−E [Pav14, Proposition
4.2]. Note that the condition for being confining imposes the function to be non-
periodic. However, we are interested in a counterpart to the same results on a torus.
We refer the reader to [GPSMH19] for notions of toroidal diffusions and wrapping of
a diffusion process in the Euclidean domain on a torus (that is, the pushforward of the
original process under the quotient map of the torus). More generally, [Hsu02] discusses
stochastic calculus on manifolds.

We start with a periodic energy function with period ℓ in all dimensions. It is shown
in [GPSMH19, Proposition 2] that the corresponding wrapped Langevin dynamics is
Markovian, ergodic, time-reversible, and admitting a unique stationary distribution, if
the second derivatives of e−E are Hölder continuous. This condition is satisfied in our
case since compactness of the torus implies that the third partial derivatives of e−E attain
their maxima. Therefore we can derive a Lipschitz property for the second derivatives,
resulting in their Hölder continuity. For further clarity, we will denote the wrapped
process by {Xt}t≥0 and write the overdamped toroidal Langevin diffusion in the same
form as (B.1) given by

dXt = −∇E(Xt) dt +
√

2 dWt. (B.2)

The Fokker–Planck equation associated to (B.1) viewed as an Itô stochastic
differential equation

∂tσ(y, t) = ∇ ·
(

e−E∇
(

eE σ(y, t)
))

(B.3)

describes the evolution of the probability density function σ(−, t) of Yt (see [Pav14] for
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more details). The probability density ρt = ρ(−, t) of the wrapped process Xt satisfies

ρ(x, t) = ∑
k∈Zd

σ(y + k ℓ) (B.4)

and hence, one gets the following parabolic differential equation with periodic
boundary conditions as the Fokker–Planck equation corresponding to the toroidal
diffusion process Xt. We will call this the toroidal Fokker–Planck equation.

∂tρ(x, t) = ∇ ·
(

e−E∇
(

eE ρ(x, t)
))

(B.5)

The corresponding generator L is also a well-defined operator

L(−) = ∇ ·
(

e−E∇
(

eE−
))

. (B.6)

Remark B.0.1. It is worth mentioning that the Fokker–Planck generator is usually written in
the form

L(−) = ∇2E(−) +∇E · ∇(−) +∇2(−) (B.7)

however as we will see in Appendix B.1, the generator is better behaved under discretization
when it is written in the form (B.6). Nevertheless, discretizing all the derivatives in the usual
Fokker–Planck equation results in an operator of the same form

∇̃2E(−) + ∇̃E · ∇̃(−) + ∇̃2(−) = ∇̃ ·
(

e−E ∇̃
(

eE−
))

(B.8)

where the tilde on top represents Fourier differentiation operators. This is due to the fact that
discrete Fourier differentiation obeys Leibniz’s rules (see Section 2.2.2 and Appendix B.1).

Remark B.0.2. We can derive the uniqueness of the stationary state of the toroidal Fokker–
Planck equation by considering the operator

L′ := eE/2 ◦ L ◦ e−E/2. (B.9)

Let π be a density function satisfying Lπ = 0. It is straightforward to see that for any periodic
density function ρ

⟨ρ,L′ρ⟩ = −
∫

x∈[−L/2,L/2]d
e−E
∥∥∥∇ (eE/2ρ

)∥∥∥2
≤ 0 (B.10)

with equality happening if and only if ρ(x) ∝ e−E(x)/2. We apply this inequality to eE/2π and
conclude that π = ρs.

The trend to equilibrium for this stochastic process is studied in the literature [MV00,
Ber11, BGL+14, vH16]. A functional inequality known as the Poincarè inequality is
equivalent to exponentially fast convergence of Langevin diffusion [BGL+14, Theorem
4.2.5] with a rate known as the Poincarè constant. Here we show that an analogous
inequality holds for potentials on a torus and we find a corresponding Poincarè
constant. But first, we will argue that the aforementioned exponential decay property
for diffusions in the Euclidean space translates to a counterpart on the torus for toroidal
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diffusions.

Proposition B.0.1. Given the toroidal Fokker–Planck equation (B.5), let ρs be the corresponding
steady distribution. Further, assume that for a constant λ > 0 any differentiable function f ∈
L2(ρs) satisfies

Varρs [ f ] ≤ λ Eρs

[
∥∇ f ∥2

]
. (B.11)

Then the following decay in the distance of ρt and ρs is satisfied:

∥ρt/ρs − 1∥L2(ρs) ≤ e−t/λ∥ρ0/ρs − 1∥L2(ρs). (B.12)

Proof. Let us denote the ratio of the distributions by ht = h(−, t) = ρt/ρs. Using the
Fokker–Planck equation (B.3) one has ∂th = ρ−1

s ∇ · (ρs∇h), which implies equality (a)

d
dt

∫
x∈[−ℓ/2,ℓ/2]d

ρs (h− 1)2 = 2
∫

x∈[−ℓ/2,ℓ/2]d
ρs (h− 1)∂th (B.13)

(a)
= −2

∫
x∈[−ℓ/2,ℓ/2]d

ρs∥∇h∥2. (B.14)

Note that Eρs [h] = 1 and hence, the left hand side of (B.13) is the time derivative

of Varρs [ht], while the right hand side of (B.14) is −2 Eρs

[
∥∇h∥2

]
. We conclude that

Varρs [ht] ≤ e−2λt Varρs [h0] and therefore the result follows.

Remark B.0.3. We note that by Jensen’s inequality 1

Eρs [|ρt/ρs − 1|] ≤
√

Eρs(ρt/ρs − 1)2 (B.15)

which yields

∫
x∈[−ℓ/2,ℓ/2]d

|ρt(s)− ρs(x)| ≤

√∫
x∈[−ℓ/2,ℓ/2]

ρs(x)
(

ρt

ρs
− 1
)2

. (B.16)

Note that the left hand side is twice the total-variation distance between the two distributions,
hence

TV(ρt, ρs) ≤
1
2

√
Varρs [ρt/ρs]. (B.17)

We can now show that for all bounded energy functions on tori there exists a
universal Poincarè constant exists.

Proposition B.0.2. Let E be an ℓ-periodic energy potential with a bounded range ∆. Then for
all ℓ-periodic f ∈ L2(ρs)

Varρs [ f (X)] ≤ ℓ2 e∆

4π2 Eρs

[
∥∇ f ∥2

2

]
. (B.18)

1The quantity ∥p/q− 1∥2
L2(p) is referred to as the χ2 divergence of distributions p and q.
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Proof. We have

Varρs [ f (X)] = Varρs

[
f (X)−

∫
x∈[− ℓ

2 , ℓ2 ]
d

1
ℓd f (x)

]
≤ Eρs

[(
f (X)−

∫
x∈[− ℓ

2 , ℓ2 ]
d

1
ℓd f (x)

)2
]

≤ e−minx E(x)

Z

∫
x∈[− ℓ

2 , ℓ2 ]
d

(
f (x)−

∫
x∈[− ℓ

2 , ℓ2 ]
d

1
ℓd f (x)

)2

(B.19)

and also, due to Parseval’s theorem∫
x∈[− ℓ

2 , ℓ2 ]
d

(
f (x)−

∫
x∈[− ℓ

2 , ℓ2 ]
d

1
ℓd f (x)

)2

= ℓd ∑
k∈Zd\{0}

∣∣∣ f̂ [k]∣∣∣2 , (B.20)

where f̂ is the Fourier transform of f . Note that the k = 0 term is excluded in (B.20) since
we have subtracted the average of f on the left hand side. On the other hand, since the
Fourier transform of ∇ f is 2iπ

ℓ2 k f̂ [k], one could again use Parseval’s theorem to write

∫
x∈[− ℓ

2 , ℓ2 ]
d
∥∇ f ∥2 = ℓd ∑

k∈Zd

4π2

ℓ2 ∥k∥
2
∣∣∣ f̂ [k]∣∣∣2 ≥ ℓd ∑

k∈Zd\{0}

4π2

ℓ2

∣∣∣ f̂ [k]∣∣∣2 . (B.21)

Now, the inequality e−maxx E(x)

Z

∫
x∈[− ℓ

2 , ℓ2 ]
d ∥∇ f ∥2 ≤ Eρs

[
∥∇ f ∥2

]
together with (B.19),

(B.20), and (B.21) prove the claim.

Corollary B.0.1. In Proposition B.0.1 we have λ = ℓ2 e∆

4π2 as the universal Poincaré constant.

B.1 Discretization of the FPE

We now introduce the discrete operator L obtained from the generatorL of the diffusion
process:

L : VN → VN
−→
f 7→ ∇̃ ·

(
e−E∇̃(eE−→f )

) (B.22)

where tilde on the top of derivative is used to represent Fourier derivative operators (see
Section 2.2.2). Note that by the product rule of the Fourier derivative operator (1) we can
rewrite L in terms of derivatives of e−E and the function that L acts on as follows:

L(−) = eE
(∥∥∥∇̃e−E

∥∥∥2
+ ∇̃2e−E

)
(−)− eE ∇̃e−E · ∇̃(−) + ∇̃2(−). (B.23)

In what follows, we denote the condition number of a matrix A, by κA. We also use the
shorthand notation [−N..N] := {−N,−N + 1, · · · , N}.
Lemma B.1.1. The discrete operator (B.22) has the following properties.
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1. It is diagonalizable as L = V−1 D V with κV ≤ e∆/2, where D is a negative semi-definite
diagonal matrix (i.e., D ≤ 0).

2. The kernel of L is one dimensional and is spanned by the discretized Gibbs distribution
−→ρs .

3. The operator norm of L is bounded above via ∥L∥ ≤ dN2

ℓ2 min
{

4π2 + 2606∆(ln N)2, 4π2 e∆}
for N > 3.

Proof. Claims (a) and (b): Let U = e−E/2 (i.e., U is a diagonal matrix with diagonal entries
all equal to e−E/2). Considering the action of the operator L′ = U−1 L U on the vector
−→
f and by consecutive applications of 1 we have

L′
−→
f = eE/2∇̃ ·

(
e−E∇̃(eE/2−→f )

)
= eE/2∇̃ ·

(
e−E∇̃eE/2

) −→
f +

(
e−E/2∇̃eE/2 + eE/2∇̃e−E/2

)
·
(
∇̃
−→
f
)
+ ∇̃2−→f

= eE/2∇̃ ·
(

e−E∇̃eE/2
) −→

f + ∇̃2−→f .

We now note that the first term above is symmetric since it is a diagonal operator, and
so is the operator in the second term, i.e. ∇̃2 (due to 4). Hence, L′ is symmetric. Note
that this concludes L being diagonalizable, and moreover, since κU ≤ e∆/2, we also have
κV ≤ e∆/2. Next, we show that L′ ≼ 0.

⟨ f , L′ f ⟩ = ∑
n∈[−N..N]d

eE[n]/2 f [n] ∇̃ ·
(

e−E ∇̃(eE/2 f )
)
[n]

(a)
= ∑

n∈[−N..N]d
∇̃ ·

(
eE/2 f ∇̃(eE/2 f )

)
[n]
− ∑

n∈[−N..N]d
e−E[n]

∥∥∥∇̃eE/2 f
∥∥∥2

[n]

(b)
= − ∑

n∈[−N..N]d
e−E[n]

(∥∥∥∇̃eE/2 f
∥∥∥2
)
[n]
≤ 0

where (a) and (b) follow from 1 and 3, respectively. Also, note that the expression is zero
if and only if f [n] ∝ e−E[n]/2. Therefore, the only eigen-direction of L′ corresponding to
the eigenvalue 0 is that of e−E/2. Using the similarity transform between L and L′, this
consequently implies that the kernel of L is the subspace spanned by the discretized
Gibbs distribution.

Claim (c): We note that L =
(
∇̃·
)
◦ e−E ◦ ∇̃ ◦ eE, where

(
∇̃·
)

is the discrete
divergence operator. We can now upper bound the spectral norm of L by noting
that

∥∥e−E
∥∥ ∥∥eE

∥∥ ≤ e∆, and
∥∥∥∇̃∥∥∥ ≤

√
d 2π N

ℓ , and also
∥∥∥(∇̃·)∥∥∥ ≤

√
d 2π N

ℓ .
Furthermore, using (B.8), the triangle inequality, and 2, we conclude that ∥L∥ ≤
dN2

ℓ2

(
4π2 + 482(ln N)2∆ + 96π∆ ln N

)
, for N > 3.

In the following lemma, we prove that evolution under L, does not dramatically
change the ℓ2-norm of the state under evolution. We denote the vector of all ones by
1 ∈ VN.
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Lemma B.1.2. Consider the differential equation d
dt
−→u = L

−→u , with initial condition −→u (0) =
1. We have

sup
t≥0

∥∥−→u (t)
∥∥ ≤ e∆/2 ∥1∥, (B.24)

inf
t≥0

∥∥−→u (t)
∥∥ = ∥1∥ (B.25)

Proof. We write the solution as −→u (t) = eLt−→u (0). From 1 we have
∥∥eLt

∥∥ =∥∥V−1 eDt V
∥∥ ≤ ∥V∥ ∥∥V−1

∥∥ ∥∥eDt
∥∥. Therefore κV = ∥V∥

∥∥V−1
∥∥ and

∥∥eDt
∥∥ ≤ 1 imply

that
∥∥eLt

∥∥ ≤ κV ≤ e∆/2. This proves (B.24).

For (B.25) we use the fact that ⟨1|L = 0 (which follows from 3), to conclude that
⟨1, u(t)⟩ = ⟨1, u(0)⟩. Using the Cauchy-Schwartz inequality one has

∥u(t)∥ ∥1∥ ≥ ⟨1, u(0)⟩ (B.26)

and given ⟨1, u(0)⟩ = ∥1∥2, we have ∥u(t)∥ ≥ ∥1∥. The result follows by noting that
t = 0 this inequality is an equality.

B.2 Auxiliary lemmas

In this section we upper bound the error in solving the discretization of the Fokker–
Planck equation. Here

−−→
u(t) denotes the discretization of the actual solution to the

Fokker–Planck equation(i.e., the differential equation in the continuous domain). We
shorten our notation and denote this solution by −→u . In contrast, we denote the solution
to the discretized Fokker–Planck equation by −→v , that is −→v satisfies the linear system
d−→v
dt = L

−→v .

Lemma B.2.1. Let u(x, t) (∀t ≥ 0) be a solution to the Fokker–Planck equation (B.3). Then
maxx eE u(x, t) is a non-increasing function of time.

Proof. Let v(x, t) = eEu(x, t). Using (B.3) v satisfies

∂tv = −∇E · ∇v +∇2v = L∗v (B.27)

which is the backward Kolmogorov equation with L∗ the adjoint of the operator L (see
for instance [Pav14] or [vH16, Section 2.2]). From this we can generate two proofs to the
lemma.

Let x∗ be a local maximum of v(·, t). Since ∇v(x∗, t) = 0, and ∇2v(x∗, t) ≤ 0, one
concludes from (B.27) that the value of any local maximum of v can only decrease
with time. Another argument relies on observing that the solution to the backward
Kolmogorov equation is the expectation

v(x, t + s) = E
[
v(Xt+s, t)

∣∣Xt = x
]

(∀s, t ≥ 0) (B.28)
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where (Xt)t≥0 is a toroidal stochastic process. However, the expectation of a function is
at most its maximum, therefore

v(x, t + s) ≤ max
y∈T

v(y, t) (∀x). (B.29)

It now suffices to take the maximum of the left hand side of (B.29) to prove the claim.

From hereon we assume E is a potential for which e−E is (C, a)-semi-analytic. Note
that for the shifted potential −E + δ the semi-analyticity parameter C may be replaced
with Ceδ. Therefore without loss of generality we assume E attains its minimum value
at zero. Note also that in this case U ≥ e−∆ as it pertains to Proposition 2.2.2.

Lemma B.2.2. Let −→u denote the discretization of the solution to the Fokker–Planck equation
((B.27)), with the initial condition u(0) = 1. Assuming e−E and u are both (C, a)-semi-analytic,
and given N ≥ max(4ad, 4), we have∥∥∥∥ d

dt
−−→
u(t)−L

−−→
u(t)

∥∥∥∥ ≤ 8× 105πe3
√

d e∆ C (1 + ℓL/48)(a3 + a2)

ℓ2 (2N + 1)d/2 e−0.4N

(B.30)

for every point t ≥ 0 in time, where L is the Lipschitz constant of E. 2

Proof. We write

L
−→u − d

dt
−→u = eE

(∥∥∥∇̃e−E
∥∥∥2
−
∥∥∥∇e−E

∥∥∥2
)
−→u + eE

(
∇̃2e−E −∇2e−E

)−→u
+ eE

(
∇e−E · ∇−→u − ∇̃e−E · ∇̃u

)
+

(
∇̃2−→u −

−−→
∇2u

)
(B.31)

and bound every term on the right hand side as follows. For the first term

∑
n∈[−N..N]d

∣∣∣∣∣eE[n] u[n]
(∥∥∥∇̃e−E

∥∥∥2
−
∥∥∥∇e−E

∥∥∥2
)
[n]

∣∣∣∣∣
2

≤
(

max
x

eE(x)u(x)
)2

∑
n∈[−N..N]d

∣∣∣∣∥∥∥∇̃e−E
∥∥∥2
−
∥∥∥∇e−E

∥∥∥2
∣∣∣∣2

(a)
≤ e2 maxx E(x)

[
∑

n∈[−N..N]d

(∥∥∥∇̃e−E
∥∥∥− ∥∥∥∇e−E

∥∥∥)2

[n]

(∥∥∥∇̃e−E
∥∥∥+ ∥∥∥∇e−E

∥∥∥)2

[n]

]
(b)
≤ d e2∆

(
48
ℓ

N ln N + L
)2

∑
n∈[−N..N]d

∥∥∥∇̃e−E −∇e−E
∥∥∥2

[n]

(c)
≤ A1

dC2a2 e2∆

ℓ4

(
N ln N +

ℓL
48

)2

(2N + 1)d e−N/a

(B.32)

2More pedantically, we may let L be the maximum absolute value of the partial derivatives that E
attains on the lattice L = maxx∈T maxj∈[d]

∣∣∂jE
∣∣.
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where we have used Lemma B.2.1 in (a), a triangle inequality of ℓ2 norms together with
2 in (b), and inequality (2.63) in (c). Here A1 = 3200 × 482π2 e6 < 8 × 106π2e6 is a
constant.

For the second term in (B.31), we use inequality (2.64) and Lemma B.2.1 to write

∑
n∈[−N.N]d

∣∣∣eE[n] u[n]
(
∇̃2e−E −∇2e−E

)∣∣∣2 ≤ A2
C2a4 e2∆

ℓ4 (2N + 1)d e−0.8N/a (B.33)

with A2 = 8× 104π4e6 being a constant.

We rewrite the third term as

eE[n]
(
∇e−E · ∇u− ∇̃e−E · ∇̃u

)
[n]

= eE[n]
[(
∇e−E − ∇̃e−E

)
· ∇̃u +∇e−E ·

(
∇u− ∇̃u

)]
(B.34)

which allows us to conclude that∣∣∣∣eE[n]
(
∇e−E · ∇u− ∇̃e−E · ∇̃u

)
[n]

∣∣∣∣ ≤ eE[n]
∣∣∣(∇e−E − ∇̃e−E

)
· ∇̃u

∣∣∣+ ∣∣∣∇E[n] ·
(
∇u− ∇̃u

)∣∣∣
≤ eE[n]

∥∥∥∇e−E − ∇̃e−E
∥∥∥∥∥∥∇̃u

∥∥∥+ ∥∇E∥
∥∥∥∇u− ∇̃u

∥∥∥.
(B.35)

Hence (by the elementary inequality (a + b)2 ≤ 2a2 + 2b2 and using 2) we have∥∥∥eE
(
∇e−E · ∇u− ∇̃e−E · ∇̃u

)∥∥∥2
≤ 2

d e2 maxx E(x)

ℓ4 (48N log N)2
∥∥∥∇e−E − ∇̃e−E

∥∥∥2

+ 2dL2
∥∥∥∇u− ∇̃u

∥∥∥2
(B.36)

which by applying (2.63) implies

∥∥∥eE
(
∇e−E · ∇u− ∇̃e−E · ∇̃u

)∥∥∥2
≤ 2A1

d e2∆ C2a2

ℓ4

(
N ln N +

ℓL
48

)2

(2N + 1)d e−N/a.

(B.37)

Finally the last term of (B.31) is taken care of directly using (2.64):∥∥∥∇̃2u−∇2u
∥∥∥ ≤ √A2

C a2

ℓ2 (2N + 1)d/2 e−0.4N (B.38)

We now observe that N ln N + x ≤ N ln N(1 + x) for all x > 0 and all N ≥ 3. This
together with N ln N ≤ N2 ≤ 100a2e0.1N/a, and combined with (B.32), (B.33), (B.37),
(B.38), and (B.31) yield∥∥∥∥ d

dt
−−→
u(t)−L

−−→
u(t)

∥∥∥∥ ≤ A

√
de∆C (1 + ℓL

48 )(a3 + a2)

ℓ2 (2N + 1)d/2 e−0.4N (B.39)

where A = 4× 100
√

2A1 < 1.6× 106πe3.
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Proposition B.2.1. Let u(x, t) be the exact solution to the diffusion process and further let −→v
be the solution to the discretized (in space) differential equation i.e., −→v satisfies d−→v

dt = L
−→v .

Assume {u(·, t) : t ∈ [0, T]} consists of (C, a)-semi-analytic functions, and further assume
N ≥ max(4da, 4). Then,

∥∥−→u (T)−−→v (T)
∥∥ ≤ 1.6× 106πe3 T e3∆/2 C2 (a3 + a2) (1 + ℓL

48 )

ℓ2 (2N + 1)d/2 e−0.4 N
a .

(B.40)

Proof. For convenience we will denote the right hand side of (B.30) as f [N] (which defers
from the right hand side of (B.40) above by a factor of Te∆/2).

We now write d
dt
−→u (t) = L

−→u (t) + −→e (t) where
∥∥−→e (t)

∥∥ is upper bounded in
Lemma B.2.2. Note also that d

dt
−→v = L

−→v by definition. Hence, letting −→ε := −→u − −→v
we get

d
dt
−→ε (t) = L

−→ε (t) +−→e (t). (B.41)

By 1, L = V−1 D V where D ≤ 0 and κV ≤ e∆/2. It is left to upper bound the norm of
−→ε (T). We multiply both sides of (B.41) from left by V, and let

−→E := V−→ε and
−→
b := V−→e

to get

d
dt
−→E (t) = D

−→E (t) +
−→
b (t). (B.42)

Now, we take the inner product with respect to
−→E :

⟨−→E ,
d
dt
−→E ⟩ = ⟨−→E , D

−→E ⟩+ ⟨−→E (t),
−→
b (t)⟩. (B.43)

Since D is negative semi-definite

Re
(
⟨−→E ,

d
dt
−→E ⟩
)
≤ Re

(
⟨−→E (t),

−→
b (t)⟩

)
≤
∥∥∥−→E ∥∥∥ ∥∥∥−→b ∥∥∥. (B.44)

Therefore since d
dt

∥∥∥−→E ∥∥∥2
= 2 Re

(
⟨−→E , d

dt
−→E ⟩
)

, we conclude

d
dt

∥∥∥−→E (t)∥∥∥ ≤ ∥∥∥−→b (t)
∥∥∥. (B.45)

Recalling
−→E = V−→ε and

−→
b = V−→e we get

d
dt
∥∥V−→ε

∥∥ ≤ f [N]∥V |e⟩∥. (B.46)

where |e(t)⟩ is −→e (t) normalized. We use ∥V |e⟩∥ ≤ σmax(V) to conclude that∥∥V−→ε (T)
∥∥ ≤ T f [N]σmax (V) . (B.47)

Finally, using
∥∥V−→ε

∥∥ ≥ ∥∥−→ε ∥∥σmin (V) and κV ≤ e∆/2 we complete the proof.
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Appendix C

Training EBMs

In machine learning, energy-based models (EBM) are used to regress a Gibbs
distribution

pθ(x) = exp(−βEθ(x))/Zβ,θ (C.1)

known as the model distribution from an unknown distribution pdata represented by
classical data. The EBM comprises a function approximator for an energy potential Eθ :
Rd → R. Here θ ∈ Rm denotes a vector of m model parameters (e.g., weights and biases
of a deep neural network). Given a set of iid training samples D = {x1, . . . , xN} ⊂ Rd,
the goal of the learning procedure is to find a vector of model parameters θ∗ ∈ Rm

that attain optimal regression of pdata via pθ∗ with respect to the Kullback-Leibler
(KL) distance between the two distributions. It is easy to see that this is equivalent to
maximizing the log-likelihood of the training data:

KL(pdata(x)||pθ(x)) = −Ex∼pdata [log pθ(x)] + constant. (C.2)

However, we do not need access to the value of the likelihood directly but rather the
gradient of the log-probability of the model. We have

Epdata [∇θ log pθ(x)] = −βEpdata [∇θEθ(x)] + βEpθ
[∇θEθ(x)]. (C.3)

While the first term is easy to approximate using the data samples the second term
is approximated through costly Gibbs sampling. Indeed, if we can efficiently draw
samples from the model distribution pθ, we have access to unbiased estimates of the log-
likelihood gradient, which in turn can be used to train the EBM via stochastic gradient
descent ([SK21]).

The energy function is a composition of linear functions (affine transformations)
with nonlinear ones such as the sigmoid function 1 for which we can build a quantum
oracle as in Fig. 1.1. Our algorithm works by queries to an oracle for the discretization
of the generator of the Fokker–Planck equation L (see (B.22)). In order to construct this
oracle, we use the expression (B.8) restated here as

L(−) = ∇̃2E(−) + ∇̃E · ∇̃(−) + ∇̃2(−) (C.4)

1Although the rectified linear unit (ReLU) is more typically used it does not fall under the semi-
analyticity assumptions of our paper.
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OL

...
...

|x1⟩ |x1⟩
|x2⟩ |x2⟩

|0⟩ U

Simple
Arithmetic

U† |0⟩

|0⟩ D D |0⟩

2d(2N + 1)

|0⟩ V1

OE OE

V†
1 |0⟩

|0⟩ |0⟩

|0⟩ Vd(2N+1)

OE OE

V†
d(2N+1) |0⟩

|0⟩ |0⟩

|0⟩ |L[x1, x2]⟩

Figure C.1: The circuit for the oracle of discrete generator L comprising 2d(2N + 1) copies of the energy potential oracle, OE. To
query L[x1, x2] = ⟨x2|L |x1⟩, first the controlled-U gate checks for the difference between x1 and x2: the third register is set to |i⟩ if
x1 and x2 defer only on their i-th entry. The state remains unchanged, if x1 = x2, and it is set to a null state |⊥⟩ otherwise.
Conditioned on this third register being at state |i⟩, another register (the fourth register) computes the distance between x1 and x2
along the i-th axis on the lattice (the controlled-D gate). Again, conditioned on the state of the third register, we query the energy
function at specific lattice points to compute either ∂iE(x1) (if the third register is in |i⟩), or ∇2E(x1) (if the third register is in |0⟩)
using the sequence of controlled-Vj gates. The estimation of these derivatives exploits Fourier spectral method (see Section 2.2.2)
and is applied via a circuit performing simple arithmetic.

constructed using 2d(2N + 1) replicas of the energy oracle.

After iterative queries to the oracle of L, Section 3.2.1 returns a sample from
the model distribution of the EBM. Repeated executions will then provide an
approximation of the second term in (C.3). This in turn allows for updating the model
parameters θ via stochastic gradient descent. And finally, repeated descent steps will
result in an approximation for trained parameters θ∗.

Alternatively, we may use the controlled variant of Fig. C.1 in order to perform
mean estimations of the components of the gradient ∇θEθ(x) as per Corollary 3.2.2
quantumly, as opposed to using samples provided by the quantum computer to
perform classical estimation of the expectation Epθ

[∇θEθ]. The mean estimation
algorithm queries this controlled oracle of L and additionally the controlled oracles of
the m partial derivatives of Eθ. The construction of the latter oracles can be automated
in the same fashion as automatic differentiation in ML.
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Appendix D

Proofs of the results in Section 3.2.2

D.1 Gibbs sampling

Theorem D.1.1 (Theorem 3.2.1 in the manuscript). Given an L-Lipschitz periodic potential
E, suppose that the one-parameter family of all probability measures {eLtρ0 : t ≥ 0} consists of
semi-analytic functions with parameters (C, a). Section 3.2.1 samples from a distribution ε-close
to the Gibbs distribution (in total variation distance), by making

O
(

d3 κE/2

ℓ2 e
∆
2 max

{
a4d4, log4

(√
de

5∆
4 Ca3(1 + ℓ L)

ε

)}
polylog

(
ade∆ log(C(1 + ℓL))

ε

))

queries to the oracle of the energy function. The algorithm succeeds with bounded probability of
failure and returns a flag indicating its success. In addition, the gate complexity of the algorithm
is larger only by a factor of polylog(Cade∆(1 + ℓL))/ε).

Proof. We first note that the energy function we consider in the Fokker–Planck equation
is E/2. Here we provide the method to obtain a 6ε-approximate sampler. Using
Proposition B.2.1 we have

∥∥∥∣∣∣eLT ρ0

〉
−
∣∣∣eLT ρ0

〉∥∥∥ ≤ 3.2× 106πe3

√
dTe3∆/4 C (1 + ℓL

48 )(a3 + a2)

ℓ2 e−0.4N (D.1)

where we have also used Lemma A.0.6 and Lemma B.1.2. Hence, if we let A = 3.2×
106πe3, we may choose

N =

⌈
max

{
0.4−1 log

(
A
√

dT e3∆/4 C (a2 + a3)(1 + ℓ L/48)
ℓ2 ε

)
, 4ad, 4

}⌉
(D.2)

to guarantee an at most ε distance between
∣∣eLT ρ0

〉
and |ρT⟩ =

∣∣eLT ρ0
〉
. Now we apply

Theorem 3.1.5 to obtain an output state |A⟩, for which we have ∥|A⟩ − |ρT⟩∥ ≤ 2ε.
Hence, by Theorem 2.2.1, continuous sampling from the algorithm’s output will provide
samples from a 5ε-close distribution to the distribution proportional to ρ2

T.

Now we need to set T. Lemma D.3.1, together with Corollary B.0.1 implies that
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choosing

T = κE/2 log
(

2e∆/2/ε
)

(D.3)

guarantees that the distribution proportional to ρ2
T is ε-close (in total variation distance)

to the Gibbs distribution. Overall, our sampling procedure returns samples from a
distribution 6ε-close to the Gibbs distribution.

The complexity of the algorithm according to Theorem 3.1.5 is now obtained by
noting firstly that κV ≤ e∆/4 from 1 for E/2. Next, we note that the sparsity of L

is s = O(dN). Also g = O(e
∆
4 ) by Lemma B.1.2. The norm of L is bounded by 3

as ∥L∥ = O(∆dN2/ℓ2 polylog N). Finally β ≤ 1 for us also using Lemma B.1.2. This
provides the complexity of every term in Theorem 3.1.5 with respect to N. We also note
that

N = Θ∗
(

max

{
log

(
√

d
e5∆/4 a3C (1 + ℓL)

ε

)
, ad

})
(D.4)

by our choice of T. Finally, a query to L requires O(dN) queries to OE and this
completes the proof.

D.2 Mean estimation

In this section, we delve into how the Gibbs sampler discussed earlier can be
employed to calculate the expected values of random variables with bounded variance.
Specifically, we consider a periodic function f : [− ℓ

2 , ℓ2 ]
d → R that belongs to L2(ρ),

and we aim at estimating Eρ f (X), where X is a random variable with distribution ρ.
We utilize the state-of-the-art estimation algorithm presented in [KO23] to compute the
expected value of our function.

The main problem of interest is that of the mean estimation of a classical random
variable, whose classical probability amplitudes are encoded in a quantum state. In
[BHMT02], the authors consider having access to a unitary U, that acts as U |0⟩ =√

p |0⟩+
√

1− p
∣∣0⊥〉, where

∣∣0⊥〉 is a vector orthogonal to |0⟩. They prove that O(1
ε )

queries to controlled-U is sufficient to estimate p with precision ε, and with high
probability. The proof is based on the fact that |ψ⟩ := U |0⟩ can be viewed as

|ψ⟩ = 1
2

eiθ
(
|0⟩ − i|0⊥⟩

)
+

1
2

e−iθ
(
|0⟩+ i|0⊥⟩

)
(D.5)

where sin θ =
√

p. We then note that
(
|0⟩ ± i|0⊥⟩

)
are eigenvectors of a rotation matrix

with rotation angle ϕ in the |0⟩ , |0⊥⟩ plane, with eigenvalues e±iϕ. As the Grover
diffusion operator is itself a rotation with angle 2θ, the phase estimation algorithm (with
the unitary being the Grover operator, and the input state being |ψ⟩) will reveal θ, and
consequently p. One can think of this algorithm as an estimation algorithm for a binary
random variable. Note that classically one requires Ω( 1

ε2 ) samples in order to achieve an
ε-accurate estimation of p. This quadratic speedup with respect to the error parameter is
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sometimes referred to as the Heisenberg limit, and as we discuss later, is not restricted
to the case of binary random variables.

Subsequently, [Mon15, LW18] extended the above algorithm and obtained mean
estimation algorithms for more generic cases. [HM18] combines the latter algorithms
and obtains a desired complexity ofO∗(1

ε ). The recent work of [KO23] is the state of the
art and provides an algorithm that we directly apply for our mean estimation tasks.

Assume we have access to controlled-U, and its inverse, such that U |0⟩ =
∑x∈Ω

√
px |x⟩. Further, one can assume having access to controlled versions of a unitary

F and its inverse (F†) that acts as F |x⟩ |0⟩ |0⟩ = |x⟩ | f (x)⟩ |0⟩, for some function f . Note
that F is allowed to exploit auxiliary qubits for the evaluation of f . Having access to
such quantum circuits is phrased as ‘having the code’ for the random variable f (X) in
[KO23]. We restate the following theorem from their work.

Theorem D.2.1 (Theorem 1.3 of [KO23]). There is a computationally efficient quantum
algorithm with the following properties: Given ‘the code’ for a random variable f (X), the
algorithm makes O(n log 1

δ ) queries to the oracles for the controlled unitaries U, U†, F, and
F† to output an estimation µ̂ such that

P

[
|µ̂−E[ f (X)]| ≥ Var[ f (X)]

n

]
≤ δ. (D.6)

The algorithm they propose is again based on Gorver’s diffusion operators.
However, they use unitaries with complex phases (as opposed to reflections). Let us
now state our mean estimation result.

Corollary D.2.1 (Corollary 3.2.2 in the manuscript). Let E be an energy function, satisfying
the assumptions made in Theorem D.1.1. Furthermore, let f be an L f -Lipschitz ℓ-periodic
function with diameter ∆ f . There is a quantum algorithm that returns an estimate µ̂ to E[ f (X)],
with additive error at most ε > 0 and success probability at least 1− δ, making

O
(

d7a4e∆/2 κE/2

ℓ2

∆ f

ε
log
(

1
δ

)
polylog

(
C, a,

1
ε

, ∆ f , L f ℓ, Lℓ
))

(D.7)

queries to the controlled and standalone oracles of the energy function E and the function f .

Proof. Consider the quantum circuit that implements line 2 of Section 3.2.1, and call it U.
We can manipulate this circuit to obtain a unitary Ũ such that

∥∥∥|u(T)⟩ − Ũ |u(0)⟩
∥∥∥ ≤ ε1,

by making O
(

log 1
ε1

)
calls to U, U†, and additional gates. This is achieved via fixed-

point amplitude amplification algorithm1 [Gro05]. Note that a total-variation distance of
ε1 between the two distributions, results in at most a Mε1 distance between the expected
values. Furthermore, we note that expectation with respect to the algorithm’s output
would be far from the actual value by at most

d/2(ℓL f + ℓL∆ f + 10
√

2/3e4∆ f aC)
M

+ 2∆ f ε1, (D.8)

1The π
3 -amplitude amplification algorithm of [Gro05] has a dependence on the success probability

of the algorithm, which is later improved in the works of [YLC14, GSLW19]. However, as the success
probability of our circuit is Ω(1), we do not need to utilize the more complex algorithms.
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which follows from the total variation bounds obtained above, and further, that of
Lemma A.0.8. Hence, implementing line 3 of Section 3.2.1 with M =

poly(C,a,∆ f ,L f ℓ,Lℓ)
ε ,

and ε1 = ε
8∆ f

, results in at most a distance ε/2 from the ideas expectation. Finally, setting

n =
∆ f
ε and applying Theorem D.2.1 concludes the result.

D.3 Lemmas used in Appendix D.1

Lemma D.3.1. Let u(x) be an ℓ-periodic real-valued function satisfying√∫
T

ρs

(
u
ρs
− 1
)2

≤ δ

√∫
T

ρs

(
1

V ρs
− 1
)2

(D.9)

for some δ > 0, with V = ℓd (the volume of the torus T). Then,

1
2

∫
T

∣∣∣∣∣ u2∫
T

u2 −
ρ2

s∫
T

ρ2
s

∣∣∣∣∣ ≤ 2 δ e∆/2. (D.10)

Proof. Note that from the assumption

√∫
T
(u− ρs)

2 ≤ e∆/2 δ

√∫
T

(
1
V
− ρs

)2

. (D.11)

By a similar argument as in Lemma A.0.7 we have

1
2

∫
T

∣∣∣∣∣ u2∫
u2 −

ρ2
s∫

T
ρ2

s

∣∣∣∣∣ ≤
√√√√√∫

T

 u√∫
T

u2
− ρs√∫

T
ρ2

s

2

. (D.12)

Furthermore, using the triangle inequality (c.f., Lemma A.0.6)√√√√√∫
T

 u√∫
T

u2
− ρs√∫

T
ρ2

s

2

≤ 2

√∫
T
(u− ρs)2√∫

T
ρ2

s

. (D.13)

Now, putting equations (D.11), (D.12), and (D.13) together, we have

1
2

∫
T

∣∣∣∣∣ u2∫
u2 −

ρ2
s∫

T
ρ2

s

∣∣∣∣∣ ≤ 2δe∆/2

√∫
T

(
1
V − ρs

)2

√∫
T

ρ2
s

. (D.14)

Now consider a random variable X drawn uniformly at random from T, and define
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Y := ρs(X). It is clear that√∫
T

(
1
V − ρs

)2

√∫
T

ρ2
s

=

√√√√√E

[(
Y− 1

V

)2
]

E [Y2]
. (D.15)

Furthermore, note that E[Y] = 1
V , which implies√∫

T

(
1
V − ρs

)2

√∫
T

ρ2
s

=

√
Var [Y]
E [Y2]

≤ 1. (D.16)

Combining the latter equation with (D.14) completes the proof.
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