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Abstract

In the current era of noisy intermediate-scale quantum devices, quantum sampling algo-
rithms have been of great interest as they permit errors in their execution while maintaining
their advantage over classical counterparts [26]. However, the sampling problems consid-
ered often do not possess immediate practical relevance. This thesis explores two quantum
algorithms for applicable classical sampling problems that can be implemented on today’s
quantum devices. Specifically, we are considering algorithms to sample from a Boltzmann
distribution of a classical Hamiltonian. This sampling task is of significant importance in
the fields of statistical physics, machine learning, and optimization.

The first such algorithm adiabatically prepares a quantum state which encodes the
desired Boltzmann distribution [44]. Projectively measuring this state then produces un-
correlated samples from the desired distribution. The state preparation time scaling of this
algorithm can be related to the properties of quantum phase transitions, giving physical
insights into the mechanism of speedups found. Numerical investigations of the algorith-
mic performance on the Ising chain are reproduced, showing a quadratic improvement over
a classical Markov chain Monte Carlo (MCMC) method. On the same model, counter-
diabatic driving protocols are explored with the limitation of local driving terms. It is
shown numerically this restriction of local driving terms leads to unfavourable scaling of
the state preparation time.

Next, the quantum-enhanced Markov Chain Monte Carlo algorithm is explored [23].
This hybrid algorithm creates a Markov chain over the classical configuration space, where
new configurations are proposed through a projectively measured quantum evolution. This
algorithm has guaranteed convergence, independent of the quality of the evolution, making
it an algorithm suited for near-term implementation. The performance of this algorithm
on the Sherrington-Kirkpatrick model is numerically reproduced, showing faster mixing
time than classical MCMC in the low-temperature limit. Bottlenecks of this chain are
then explored for the Ising chain, giving an analytic bound on performance showing the
algorithmic advantage found for small systems numerically persists for larger system sizes.
Finally, this algorithm is tested numerically on the maximum independent set problem,
which is native to an array of Rydberg atoms and has been experimentally realized on
current quantum devices [12]. Our findings did not indicate any advantage of the quantum-
enhanced MCMC algorithm over classical algorithms for the limited number of numerically
accessible system sizes.
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Chapter 1

Introduction

The task of sampling from a classical distribution is ubiquitous in statistical physics and
has critical applications in other fields such as machine learning and optimization. A
sampling problem is characterized by a probability distribution D{λ} : S → R which acts
on a space S and may be parameterized by a set of parameters {λ}. The task is to output
samples y ∈ S according the distribution D{λ}. Sampling algorithms play a crucial role
in extracting insights into problems where exhaustive analysis or analytical solutions are
infeasible. For problems with high-dimensional parameter spaces, sampling algorithms are
often the only methods to acquire an understanding of the underlying distribution.

A quantum state |ψ⟩ when measured in a defined basis {|n⟩} encodes a sampling prob-
lem. This measurement gives outcome n with probability p(n) = | ⟨n|ψ⟩ |2 according to
Born’s rule. This process generates probabilistic samples from a distribution determined
by the state preparation method, for example, a quantum circuit. With this procedure, it
is possible to construct distributions which can be efficiently sampled by a quantum com-
puter but are difficult to sample classically [26]. Recent experimental demonstrations have
shown instances where current quantum devices exhibit superior performance compared
to classical devices for carefully designed sampling problems [3, 47, 48, 49, 27]. Although
these experiments represent an important milestone in the field of quantum computing,
the sampling problems considered do not have applications outside of the field.

This thesis will focus on a sampling task characterized by a specific distribution; the
Boltzmann distribution of a classical Hamiltonian at a fixed temperature. This Hamilto-
nian will be defined on the finite space characterized by N spin variables σi = ±1. A spin
configuration σ⃗, a vector of length N , is the assignment of a value to each spin variable.
The state space is then spanned by the set of 2N possible spin configurations, S = {σ⃗}. At
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the core of equilibrium statistical mechanics is the notion of a partition function, encom-
passing all the crucial details pertaining to a system. The form of the partition function
for a system with Hamiltonian H(σ⃗) is

Z =
∑
{σ⃗}

e−βH(σ⃗), (1.1)

where β is the inverse temperature. The above sum is over all possible states of the system,
thus calculating Z is typically intractable. The partition function is essential in defining
the Boltzmann distribution, which gives the probability that the system will be in a certain
state. Specifically, the probability the system will be in the state σ⃗ at a given temperature
T = 1/β is,

π(σ⃗) =
1

Z
e−βH(σ⃗). (1.2)

An algorithm which can sample efficiently from this distribution can be used to estimate
numerical quantities which are hard to compute deterministically. A common application
of these algorithms is to approximately compute thermodynamic quantities. For example,
calculating expectation values of the form,

⟨O⟩π =
1

Z
∑
{σ⃗}

O(σ⃗)e−βH(σ⃗). (1.3)

is typically infeasible. A sampling algorithms generates, for exampleM samples {σ⃗1, σ⃗2, ..., σ⃗M}
according to π. The above observable can then be approximated with these generated sam-
ples,

⟨O⟩ ∼ 1

M

M∑
i=1

O(σ⃗i) = ŌM . (1.4)

For many physical systems, this estimation method is the only method to gain insight into
their thermodynamic properties and phase transitions [34, 36].

This class of sampling problems is not only essential in statistical physics but is a
common subroutine in machine learning and combinatorial optimization [20]. For example,
this sampling task is the primary training bottleneck of energy-based models. These are
very successful probabilistic machine-learning networks which recently achieved state-of-
the-art generative modelling performance [16, 41]. Due to the importance of this sampling,
there is an active field of research proposing and investigating quantum algorithms for this
task [17, 2, 24, 29, 40, 42, 46]. Several distinct approaches exist to explore this problem,
many taking inspiration from their classical counterparts. For example, quantum walks
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have been shown to give quadratically faster mixing time compared to classical Markov
Chain Monte Carlo in a variety of special cases [33]. Additionally, quantum simulated
annealing algorithms have also shown an algorithmic speedup over their classical analogues
[46, 17, 24]. A subset of these algorithms will be briefly described in Chapter 2.

Current quantum processors are of limited size, have short coherence times, and can
only perform error-prone gates. These physical devices are not yet able to achieve the
algorithmic advantages found in the above algorithms. The current quantum processors,
dubbed noisy intermediate-scale quantum (NISQ) devices [32], require quantum algorithms
which are resistant to the inherent errors of the physical system [19]. The focus of this
thesis is quantum algorithms for Boltzmann sampling which do not require fault-tolerant
quantum computers but can be implemented on today’s devices.

• Chapter 2 outlines the common classical and quantum sampling algorithms. The
main focus is Markov chain Monte Carlo methods. Conditions for convergence, mix-
ing and autocorrelation times, common chains, and bottleneck ratios are reviewed.
Quantum walks and more sophisticated quantum algorithms for sampling are dis-
cussed.

• In Chapter 3 an adiabatic state preparation algorithm for sampling is examined.
Known results for sampling the Ising chain at low temperatures with this algorithm
are reproduced. The applicability of this algorithm to other more complicated sam-
pling problems will be discussed. This algorithm will then be coupled with counter-
diabatic driving protocols. The counter-diabatic drives will be approximated with
local Hamiltonians in order to maintain the possibility of near-term implementation.

• Chapter 4 focuses on the quantum-enhanced Markov Chain Monte Carlo algorithm,
examining its performance in various scenarios. We begin by numerically replicating
its performance on the Sherrington-Kirkpatrick model. The mixing time of this
method is then bounded analytically for the Ising chain by analyzing the bottleneck
of the Markov chain. Numerically this algorithm is then tested on the maximum
independent set (MIS) problem. This is motivated by the physical implementation
of the MIS on Rydberg atom devices.

3



Chapter 2

Sampling Algorithms Background

2.1 Markov Chain Monte Carlo

In the context of algorithms considered in this thesis we are interested in a finite, discrete
state space S. A Markov chain on this space is a process such that when at some x ∈ S the
next state, y ∈ S, is chosen with a fixed probability dependant only on the current state,
x. We can specify this process with a transition matrix P which describes the probability
of moving between any two states in S. Formally, this property states that a sequence of
random variables (X0, X1, ...) is a Markov chain on S if for every t > 0,

P(Xt+1 = y|X0, X1, ..., Xt = x) = P (x, y). (2.1)

Where P (x, y) ≥ 0 describes the probability to move from x to y. The transition matrix
P = (P (x, y))x,y∈S then fully describes this process and will be essential in analyzing these
algorithms. As the x-th row of P describes the probability for the state x to move all other
possible states, the row describes a probability distribution. As a result, P is a stochastic
matrix, ∑

y∈S

P (x, y) = 1 ∀x ∈ S. (2.2)

Let (X0, X1, ...) be a Markov chain on S, and let µt be the vector form of the distribution
of Xt over the state space S. An element of this vector µt is defined to be,

µt(x) = P{Xt = x} (2.3)
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for some x ∈ S. This distribution µt can be written in terms of previous distributions of
the chain,

µt = µt−1P = µ0P
t. (2.4)

Ideally, we want this Markov chain to converge to a stationary distribution π, that is
µt → π as t→ ∞. In matrix notation, this is equivalently,

π = πP. (2.5)

Markov chain Monte Carlo (MCMC) is the method of using a Markov chain to create
samples from a desired probability distribution. If a chain can be constructed such that its
stationary distribution is π, then after some large enough number of Markov chain steps,
the chain will produce samples from a distribution sufficiently close to π. The rate of
convergence of MCMC algorithms to their stationary distribution is an important aspect
of their algorithmic complexity.

2.1.1 Convergence Conditions

The total variation (TV) distance between two probability distributions µ and ν is the
max distance between the probability assigned by both distributions to a single event A
[25],

||µ− ν||TV = max
A⊆S

|µ(A)− ν(A)|. (2.6)

Using this, we can then define a distance between a Markov chain at step t and the
distribution π,

d(t) = max
x∈S

||P t(x, ·)− π||TV . (2.7)

Before considering the convergence of the chain, it is necessary to show the existence of π.
In particular, if P is a transition matrix of an irreducible Markov chain then there exists
a unique stationary distribution [25]. An irreducible chain has a non-zero probability of
moving between any states after some t number of steps, P t(x, y) > 0 ∀x, y ∈ S. If this
were not the case, the chain would not be able to access all of the state space. To show
that the chain converges to this stationary state, we also need the chain to be aperiodic
[25]. Let,

T (x) = {t ≥ 1 : P t(x, x) > 0} (2.8)

then the period of a state x ∈ S is the greatest common divisor of T (x). Here T (x) is
the set of t where there is a non-zero probability for the chain to return to x, and its
greatest common divisor gives the period of any cyclic behaviour of this state’s movement.
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A chain is then aperiodic if the period of every state is 1. This is equivalent to saying
that for every starting state, the chain has a non-zero probability of staying in its current
position. Periodic chains return to the same states after a fixed number of steps and do not
converge to a steady state distribution. A chain P with these two properties, irreducible
and aperiodic, can be shown to converge to the stationary distribution of Eq. 2.5[25][5].

Another important property of a chain is reversibility. Specifically, a chain is reversible
if it satisfies the detailed balance condition,

π(x)P (x, y) = π(y)P (y, x) ∀x, y ∈ S. (2.9)

If a distribution π satisfies Eq. 2.9 then it is stationary for P since P is stochastic,∑
y∈S

π(y)P (y, x) =
∑
y∈S

π(x)P (x, y) = π(x).

This condition is not necessary for π to be a stationary distribution of P , however, it
is a sufficient condition. As will see in Chapter 4, when given a desired steady-state
distribution, it is common to use this condition to engineer a stochastic process that is
guaranteed to converge.

2.1.2 Markov Chain Mixing

Assume we have an aperiodic, irreducible chain P that satisfies the detailed balance con-
dition. If λ is an eigenvalue of P then, since P is stochastic |λ| ≤ 1, as a result of the
Perron-Frobenius theorem [25]. Due to the detailed balance condition, all eigenvalues are
real and can be therefore ordered as,

λ1 = 1 > λ2 ≥ λ3 ≥ ... ≥ −1.

An important note is that since P is irreducible, there is a unique steady state distribution,
and the eigenspace associated with the eigenvalue 1 is one-dimensional [25]. Specifically,
from Eq. 2.5, the stationary state is the left eigenvector of this eigenvalue.

The mixing time of a Markov chain is defined as the time required for the total varia-
tional distance to the stationary state π to be ϵ-small,

tmix(ϵ) = inf{t ≥ 0 : d(t) ≤ ϵ}. (2.10)

The distribution of the chain at time t, µt, is the repeated application of the transition
matrix P . As π is associated with the eigenvalue 1 of P , the spectral gap δ = 1 − |λ2|
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gives information about the rate of coverage. More precisely, for t → ∞, d(t) decays
exponentially with the rate of decay governed by this spectral gap δ. This structure can
then be used to bound tmix(ϵ). Specifically, given a reversible, irreducible Markov chain on
S with transition matrix P , then

(δ−1 − 1) ln

(
1

2ϵ

)
≤ tmix(ϵ) ≤ δ−1 ln

(
1

ϵπmin

)
(2.11)

where πmin = minx∈S π(x). The proof of this theorem can be found in Chapter 12 of Ref.
[25]. Due to this bound, the spectral gap is commonly used in performance analyses of
this type of Markov chain.

2.1.3 Common Chain Constructions

Let S = {σ⃗} be the configuration space of a system of N discrete spin variables σi = ±1.
Consider a classical Hamiltonian Hc(σ⃗) acting on these spins, we are interested in sampling
from the Boltzmann distribution,

π(σ⃗) =
1

Z
e−βHc(σ⃗), (2.12)

where Z =
∑

{σ⃗} e
−βHc(σ⃗) is the partition function and β the inverse temperature.

In the previous sections, given some chain P we examined conditions needed for it to
converge to a stationary distribution π. Here given a distribution, π, we want to construct
a P that converges but can also be simulated efficiently. We need to design a stochastic
process which produces the needed P . Often this is achieved by creating chains that are
composed of two steps, a proposal step and an acceptance step. If the chain is at some
configuration Xt = σ⃗, a new configuration σ⃗′ is proposed with probability Q(σ⃗′|σ⃗). Then
this new configuration is accepted as the new state of the chain, Xt+1 = σ⃗′, with probability
A(σ⃗′|σ⃗). We can then construct the transition matrix P according to these steps.

P (σ⃗, σ⃗′) =

{
Q(σ⃗′|σ⃗)A(σ⃗′|σ⃗), if σ⃗′ ̸= σ⃗

1−
∑

{σ⃗i ̸=σ⃗′}Q(σ⃗
′|σ⃗i)A(σ⃗′|σ⃗i), if σ⃗′ = σ⃗

(2.13)

The diagonal elements of this matrix are explicitly constructed so that P is stochastic and
represents the probabilistic movement of the chain.

We will explore different proposal and acceptance strategies and investigate the pro-
duced chain’s convergence rate for different problems. For both the proposal and accep-
tance steps, it is important to consider strategies that can be computed efficiently. Below
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we will consider two such acceptance strategies which, although they involve π, only require
a ratio so that the intractable partition function of the Boltzmann distribution cancels. The
first such acceptance strategy, known as Metropolis-Hastings, accepts a new configuration
with the following probability,

A(σ⃗′|σ⃗)MH = min

(
1,
π(σ⃗′)

π(σ⃗)

Q(σ⃗|σ⃗′)

Q(σ⃗′|σ⃗)

)
= min

(
1, e−β(Hc(σ⃗′)−Hc(σ⃗)

Q(σ⃗|σ⃗′)

Q(σ⃗′|σ⃗)

)
. (2.14)

If the new configuration is lower in energy, it will be accepted by the chain with unit
probability. Another common method is to accept new configuration with the following
Glauber probability,

A(σ⃗′|σ⃗)G =

[
1 +

(
π(σ⃗′)

π(σ⃗)

Q(σ⃗|σ⃗′)

Q(σ⃗′|σ⃗)

)−1
]−1

=

[
1 +

(
e−β(Hc(σ⃗′)−Hc(σ⃗))

Q(σ⃗|σ⃗′)

Q(σ⃗′|σ⃗)

)−1
]−1

.

(2.15)
Unlike Metropolis-Hastings, if the new configuration has lower energy, it is only accepted
with 50% probability. This leads to a “lazy” chain, which is often implemented to avoid
periodic behaviour [25]. Often the chosen proposal strategy is symmetric, that is Q(σ⃗′|σ⃗) =
Q(σ⃗|σ⃗′), and both acceptance probability further reduce. Both of these chains are designed
to satisfy the detailed balance condition [22].

2.1.4 Autocorrelation Time and Critical Slowing Down

So far we have discussed one time measure, the mixing time tmix(ϵ). However, this measure
is often not tractable to calculate for large systems as it requires diagonalizing the mixing
matrix P . When using MCMC-generated samples to estimate some observable B, as
in Eq. 1.4, correlations between samples lead to additional error in the estimate as the
samples are not statistically independent. The autocorrelation function of the observable
B is defined as [5],

AB(x) =
⟨B(t+ x)B(t)⟩ − ⟨B⟩2

⟨B2⟩ − ⟨B⟩2
. (2.16)

For samples far apart in the chain (i.e., large x) this function goes to zero. Typically, this
decay is asymptotically exponential [22],

AB(t) ∼ e−t/τB , (2.17)
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which defines another time measure – the autocorrelation time τB [34]. This time is im-
portant in calculating estimator errors and is fundamentally related to the mixing time of
the chain. Like the mixing time, it is upper bounded by the inverse spectral gap of the
chain [15], validating the use of only the spectral gap as a measure of chain performance.

The autocorrelation time is also used to characterize an important effect when using
MCMC methods to estimate observables near a phase transition. Near a critical point,
there are large spatial correlations in the systems which correspond to time correlations
in the chain. This leads to an effect known as critical slowing down, where near a phase
transition, a Markov chain will require a longer time to mix. This is typically quantified
with the autocorrelation time as, unlike the mixing time, it is tractable to compute. This
critical behaviour of the chain can be expressed as a power law,

τB ∝ ξz

where ξ is the correlation length and z is the dynamical critical exponent. The value of
z depends on the specific dynamics of the chain. For instance, near a critical point where
there are large fluctuations, a local update strategy will have difficulty sampling relevant
configurations and thus a larger z as compared to a cluster method. Throughout the
rest of this thesis, we will only be considering the mixing time of chains. Mixing time is
the maximum autocorrelation time over all possible observables for reversible chains [5].
Since mixing time upper bounds autocorrelation time, it is a justifiable measure of MCMC
performance [25].

2.1.5 Cheeger Inequality

There are multiple types of bounds that can be put on the mixing time of a Markov chain.
We have seen already how for a reversible, irreducible chain the spectral gap δ of P is an
important metric. However, finding δ quickly becomes intractable since P is a 2N × 2N

dense matrix for the spin problems considered in this thesis. Instead, another avenue of
analysis is to consider the bottlenecks of the chain – geometric features that restrict the
flow of the chain and ultimately determine the mixing time.

There is a natural graph associated with a chain, where the vertices are elements of S,
and edge weights are the equilibrium flow through that edge. Assuming a reversible chain,
the equilibrium flow between vertex x and y is given by E(x, y) = π(x)P (x, y). Given
A,B ⊂ S, the flow from A to B is

E(A,B) =
∑

x∈A,y∈B

E(x, y). (2.18)
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We are interested in determining where the flow is restricted in the chain, so it is useful
to define a measure of the amount of flow out of a set relative to the size of the set.
Specifically, this is the bottleneck ratio of a set A [25],

Φ(A) =
E(A,Ac)

π(A)
, (2.19)

where π(A) =
∑

x∈A π(x). The bottleneck ratio of the whole chain is then,

Φ⋆ := min
A:π(A)≤1/2

Φ(A), (2.20)

which is a minimization over all subsets to determine where the restriction of movement
occurs. As mentioned, this bottleneck is related to the mixing time of the chain. It bounds
the spectral gap on both sides through Cheeger’s inequality,

Φ2
⋆

2
≤ δ ≤ 2Φ⋆. (2.21)

The proof of this inequality can be found in Chapter 13 of [25]. This gives another avenue
for understanding the mixing time, however the minimization in Eq. 2.20 is often difficult.
For some problems, Φ⋆ can be determined, and it is often used to prove the slow mixing
of chains.

2.2 Quantum Sampling Algorithms

2.2.1 Quantum Walks

The first quantum algorithm we will discuss is the discrete-time random walk, as it is a
quantum analog of the classical MCMCmethods considered above [9]. A general framework
to convert classical Markov chains into the quantum setting was presented by Szegedy
[42]. Originally formulated for search problems, this process was later combined with the
quantum adiabatic algorithm [40] in order to produce samples from a desired distribution.

At each time step, a classical MCMC method must occupy one possible state of the
state space S, with transitions governed by P . Quantum walks instead transition the state
x into a superposition of all possible y determined by P ,

|x⟩ →
∑
y∈S

√
P (x, y) |y⟩ . (2.22)
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This process is not unitary, requiring this algorithm to instead act on an enlarged Hilbert
space H = Cd ⊗ Cd = {|x⟩ |y⟩ : x, y ∈ S} [42]. In this space, this transition unitary W is
defined as,

W |x⟩ ⊗ |0⟩ = |wx⟩ ⊗ |x⟩ =
∑
y∈S

√
P (x, y) |y⟩ ⊗ |x⟩ .

The quantum walk is performed through successive applications of the unitary UW , which
is defined as,

UW = (2Π0 − 1)W †ΛW.

Here Π0 is the projector on the subspace spanned by S0 = {|x⟩ ⊗ |0⟩}∀x ∈ S and Λ is
the swap operator. The stationary state of this walk is the following superposition of the
classical steady-state distribution π [42],

|π⟩ =
∑
x

√
πx |x⟩ . (2.23)

Projectively measuring this state gives an uncorrelation sample of the wanted classical
distribution. What is advantageous about the quantum walk is that its spectral gap is
quadratically larger than the classical chain on which it is based, δQ ≥

√
δC [9].

To understand the properties of UW it is useful to consider the operator X, which is
obtained by projecting W †ΛW onto S0.

X = Π0W
†ΛWΠ0

=
∑
x,y

√
PxyPyx |y⟩⟨x| ⊗ |0⟩⟨0|

=
∑
x,y

√
π(x)

π(y)
Pyx |y⟩⟨x| ⊗ |0⟩⟨0|

(2.24)

Where we have made use of the detailed balance condition of the classical chain. On the
subspace S0 we have that X and P are similar and thus share eigenvalues. Define the
eigenstates of X and P as,

X |ẽk⟩ = λk |ẽk⟩ . (2.25)

Extending these states to the larger space as |ek⟩ = |ẽk⟩⊗ |0⟩, we can consider UW without
the projection acting on this state,

W †ΛW |ek⟩ = λk |ek⟩ − βk
∣∣e⊥k 〉 . (2.26)

Here
∣∣e⊥k 〉 orthogonal to S0 and thus also to all |e′k⟩ with k′ ̸= k. Additionally, since

W †ΛW is unitary the
∣∣e⊥k 〉 are also mutually orthogonal. We have now that W †ΛW is
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block diagonal in {|ek⟩ ,
∣∣e⊥k 〉} and again as it is unitary we can write βk =

√
1− |λk|2.

Overall we have,

UW |ek⟩ = λk |ek⟩+
√

1− |λk|2
∣∣e⊥k 〉

UW

∣∣e⊥k 〉 =√1− |λk|2 |ek⟩ − λk
∣∣e⊥k 〉 (2.27)

Thus the eigenvalues of UW are e±iθk with cos(θk) = λk. Due to the construction of UW ,
it can be shown that the state that corresponds to the eigenvalue θk = 0 is the stationary
distribution on S0 [9],

|π⟩ ⊗ |0⟩ . (2.28)

Then quantum phase estimation, a common quantum subroutine which is used to mea-
sure the eigenvalues of a unitary is used on UW [9]. We want this measurement of the
eigenvalues to be accurate enough to resolve the eigenvalue θ = 0. The spectral gap of
UW is δQ = arccos(λ) ∼

√
δC , we need at least this precision, which leads to a runtime of

O(1/δQ). In all this algorithm requires 1/
√
δC steps of the quantum walker, or equivalently

1/
√
δC applications of UW . These types of algorithms are typically formulated with the

assumption of oracle formation of the classical transition matrix. There have been further
improvements to this algorithm that avoid the costly implementation of the oracle [24].

2.2.2 Quantum Simulated Annealing

One of the state-of-the-art quantum algorithms for approximating partition functions uses
quantum simulated annealing [2]. As in their classical counterparts, the annealing process
is characterized by a sequence of inverse temperatures β. The system will begin with
the goal of approximating a partition function at high temperature and then, following
this defined sequence, the temperature will be decreased until the desired distribution is
reached [39].

Consider an initial state for the above quantum walk algorithm, |ψ⟩ ⊗ |0⟩. The proba-
bility of a measurement outcome of θk = 0 is then | ⟨ψ|π⟩ |2, thus it is important to choose
an initial state with large overlap with the steady-state distribution. In some cases, an
initial state with a significant overlap can be efficiently prepared, but if this is not the
case, adiabatic state preparation can be employed. This process adds additional runtime
depending on the problem considered [24]. Another method is to consider a sequence of
slow varying Markov chains [46]. These sequences are specifically chosen such that the
stationary distributions of adjacent Markov chains are sufficiently close. The system can
then stay in the θk = 0 space for each of these quantum walks. By preparing intermediate
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states through amplitude amplification, a speedup can be maintained [46], with further
improvements by implementing an annealing schedule [39]. Adaptive sequences of quan-
tum walks were later explored, allowing changes to the sequences throughout the algorithm
[17, 2, 29]. These protocols often adapt optimized annealing schedules from their classical
simulated annealing counterparts [2].

2.3 Computational Complexity

Classical Markov chains have a mixing time O(δ−1 log(1/minx π(x))) coming from the
bound of Eq. 2.11. In the most general context, quantum Markov chains have a mixing
time O(1/

√
δminx π(x)) [17]. Due to this dependence on minx π(x), there is no general

quantum speedup for Monte Chain Monte Carlo methods, but speedups can be observed
on certain problems.

In these quantum algorithms, the goal is to create a quantum state of the form,

|π⟩ =
∑
x

√
πx |x⟩ . (2.29)

Measuring this state leads to an uncorrelated sample from the distribution π. The state
of Eq. 2.29 is known as a qsample. Preparing a qsample |π⟩ is generally difficult, even
if sampling from π is efficient [30]. For example, consider having access to an algorithm
that can efficiently produce a state x with probability π(x). One could make a quantum
circuit which prepares the state |π̃⟩ =

∑
x

√
π(x) |x⟩ |ϕ(x)⟩ [30]. Here the extra register

is required as the quantum circuit must be unitary. However, there is no efficient way to
remove the information in the second register, making |π⟩ unobtainable.

Preparing qsamples without information about the underlying distribution is part of a
complexity class known as Statistical Zero Knowledge (SZK). This is a class of decision
problems that can be verified by a statistical zero-knowledge proof [43]. SZK contains
problems such as graph isomorphism. It is not believed that the problems in this class
can be solved in bounded-error quantum polynomial (BQP) time, specifically BQP ⊆ SZK
[30]. If there were a generic method to prepare qsamples more efficiently than the classical
chains, then it would imply SZK ⊆ BQP.

The quantum and classical mixing time scaling have different dependencies on minx π(x),
which further restricts the possible quantum performance. There is not expected to be a
generic method to prepare qsamples even polynomially more slowly than the mixing time of
classical MCMC methods [17]. However, there are problems in which a quantum speedup
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has been proven. In these cases, specific structures of the problems have been exploited,
and the methods cannot be generalized. This will be the case throughout this thesis. We
are considering algorithms which use information about the classical Hamiltonian of the
desired Boltzmann distribution. Preparing a qsample with this information is no longer in
the SZK class, allowing the possibility of a quantum speedup.
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Chapter 3

Adiabatic Quantum Sampling

In contrast to the quantum algorithms considered in Chapter 2, the remainder of this thesis
will focus on algorithms that do not require large universal quantum computers but are
well-suited for current devices. The first such algorithm [44, 45], adiabatically prepares a
quantum state which encodes the Boltzmann distribution of a classical problem. Projec-
tively measuring this state then produces an independent sample from this distribution.
Properties of the phase transitions in the space that is adiabatically traversed give physical
insights into the computational speedup found.

3.1 Algorithm Overview

3.1.1 Parent Hamiltonian Definition

This algorithm [44] is designed to produce unbiased samples from the Boltzmann distri-
bution, Eq. 2.12, of a classical Hamiltonian Hc. This distribution can be encoded in the
following qsample, as in Eq. 2.29,

|ψ(β)⟩ = 1√
Z

∑
σ⃗

e−βHc(σ⃗)/2 |σ⃗⟩ . (3.1)

Projectively measuring this state in the computational basis generates a sample of the
Boltzmann distribution. The time complexity of the algorithm is related to the preparation
process of this state. This is done adiabatically, starting from a state that is easy to prepare
and slowly varying parameters until the desired state is reached. The state space which
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is traversed adiabatically is defined by a parent Hamiltonian whose ground state is the
qsample [44].

Consider a reversible Markov chain P whose stationary distribution π is the Boltzmann
distribution of the classical Hamiltonian Hc. The parent Hamiltonian is defined with this
transition matrix P as

Hq(β) = N(I− e−βHc/2PeβHc/2). (3.2)

The second term of the Hamiltonian is a similarity transformation on P, thus it conserves
its eigenvectors and eigenvectors. The eigenspace corresponding to the λ1 = 1 eigenvalue
of P is one-dimensional since the chain has a unique steady state distribution. As a result,
Hq(β) has a unique ground state with zero energy. It can be easily shown that the ground
state of this Hamiltonian is exactly the qsample of Eq. 3.1. Additionally, the spectral gap
of the Markov chain is the energy difference between the first excited state and the ground
state. The factor of N ensures that the spectrum of Hq is extensive to match physical
Hamiltonians. The relationship between the classical mixing matrix and the spectra of the
quantum Hamiltonian allows for algorithmic speed-ups depending on the specifics of the
quantum phase transitions in the adiabatic space.

3.1.2 Adiabatic State Preparation

Starting at an easy-to-prepare ground state of Hq we can adiabatically modify parameters
of Hq to obtain the qsample of Eq. 3.1 at a desired β. In order to maintain the adiabatic
condition, it is required that the probability of moving out of the ground state is small
as the Hamiltonian parameters are varied. Let En be the energy of the instantaneous
eigenstates |n⟩, with |0⟩ the ground state. The adiabatic condition is be maintained by
requiring that for a chosen small ε,

∑
n>0

1

(En − E0)2

∣∣∣∣⟨n| ddt |0⟩
∣∣∣∣2 = ε2, (3.3)

where d
dt
|0⟩ is the time dependence of the ground state. This condition ensures that the

Hamiltonian parameters are varied slowly when the gap is small, taking into account the
probability of moving into a particular excited state |n⟩. Eq. 3.3 established a limit on the
transitions between the ground state and any excited state. This is necessary to ensure
the adiabatic condition is maintained at a phase transition.

We will consider adiabatic paths parameterized by s ∈ [0, 1]. These paths will be in
the parameter space of the Hamiltonian Hq. Labelling these Hamiltonian parameters {λµ}
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a path is specified through λµ(s)’s dependence on s. Due to this parametrization of the
path, the time dependence of the ground state is,

d

dt
|0⟩ = ds

dt

∑
i

∂ |0⟩
∂λi

dλi
ds

=
ds

dt

∑
i

|∂µ0⟩
dλi
ds
. (3.4)

The adiabatic condition of Eq. 3.3 restricts the rate of change in terms of s,

dt

ds
=

1

ε

√∑
µ,ν

gµν(s)
dλµ
ds

dλν
ds

(3.5)

where the adiabatic metric gµ,ν is defined as [21],

gµν =
∑
n>0

1

(En − E0)2
⟨∂µ0 |n⟩ ⟨n |∂ν0⟩ . (3.6)

Finally, the adiabatic state preparation time can be found by integrating Eq. 3.5,

ttot =
1

ε

∫ 1

0

ds

√∑
µ,ν

gµ,ν(s)
dλµ
ds

dλν
ds

=
l

ε
. (3.7)

This time is dependent on the ε considered. The value of ε controls how much movement
out of the ground state is allowed. With a larger ε, the adiabatic path can be traversed
faster at the cost of an inaccurate final state. The integral in Eq. 3.7, label as l, is the
adiabatic path length,

l =

∫ 1

0

ds

√∑
µ,ν

gµ,ν(s)
dλµ
ds

dλν
ds

. (3.8)

Adiabatic state preparation of the ground state of Hq can be achieved by varying only
one parameter. However, considering an extended parameter space allows for adiabatic
paths, which result in a speed up as compared to classical mixing times [45, 44].

3.2 Ising Chain

3.2.1 Parent Hamiltonian

The first model considered is the ferromagnetic Ising chain with periodic boundary condi-
tions,

Hc = −
N∑
i=1

σz
i σ

z
i+1. (3.9)
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Figure 3.1: Quantum phase diagram of the parent Hamiltonian Hq corresponding the Ising
chain. Three different phases are shown; a paramagnetic phase (PM), a ferromagnetic phase
(FM), and a cluster-state-like phase (CS). The ground state on the red curve corresponds
to the qsample of Eq. 2.29 at some β. The β = 0 point lies at the origin, and β = ∞ at
J1/h = 2, J2/h = 1, at a tricritial point. Reproduced from [44].

Here I will reproduce the results in [44] which shows a quadratic improvement in adiabatic
time scaling as compared to classical Glauber Markov chain Monte Carlo. The underlying
Markov chain is defined on the space of spin configurations. At each step of the chain, a
new configuration is proposed by flipping one spin from the previous chain configuration.
This new configuration is then accepted according to the Glauber acceptance probability
of Eq. 2.15. This update rule was chosen as the transition matrix of this chain can be
written compactly with local terms. Consider a proposed configuration with spin i flipped,
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the probability P (σ⃗′|σ⃗) is then,

Q(σ⃗′|σ⃗)A(σ⃗′|σ⃗)G =
1

2N cosh
(
β(σz

i−1 + σz
i−1)
)e−βσz

i (σ
z
i−1+σz

i−1) := pi. (3.10)

The transition matrix is thus,

P =
∑
i

piσ
x
i +

(
I−

∑
i

pi

)
. (3.11)

After some simplification, which can be found in Appendix B, the parent Hamiltonian of
this chain is,

Hq(β) =
N

2
I−

∑
i

[
J1(β)σ

z
i σ

z
i+1 + h(β)σx

i − J2(β)σ
z
i−1σ

x
i σ

z
i+1

]
(3.12)

with h(β) = 1
4
(1 + 1/ cosh(2β)), J1(β) = 1

2
tanh(2β), and J2(β) = 1

4
(1 − 1/ cosh(2β)).

This Hamiltonian can be solved exactly through a Jordan-Wigner transformation where
the spin degrees of freedom are mapped to free fermions, the details of which can also be
found in Appendix B. This Hamiltonian is diagonalized in the momentum space of these
fermions, where energy excitations at a given k are given by,

εk =
√

(h+ J1(β) cos(k) + J2(β) cos(2k))2 + (J1(β) sin(k) + J2(β) sin(2k))2. (3.13)

The ground state is at half filling, so a quantum phase transition occurs whenever
εk = 0 for some k. For any finite β there is no phase transition, and the system is in a
paramagnetic phase. Since the system is gapped, the Markov chain mixes rapidly away
from large β. This spectral gap is calculated in Appendix B and for low temperature
decreases as ∼ N−2. This can additionally be related to the dynamic critical exponent z
at the β = ∞ quantum phase transition. The characteristic energy scale of the problem
∆, for example, the gap between the first excited state and the ground state, decreases to
the zth power of the correlation length scale [35],

∆ ∼ ξ−z. (3.14)

For finite-sized systems ξ ∼ N , and Eq. 3.13 gives a form for ∆ in terms of k ∼ 1/N . At
the β = ∞ phase transition εk = 0 at multiple values of k and the dispersion relation is
quadratic as seen in Fig. 3.2. This quadratic dependence on k shows this quantum phase
transition has z = 2.
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Figure 3.2: Ising chain dispersion relations at the tricritical point (shown in blue) and at
the paramagnet to ferromagnetic transition (shown in orange). The quadratic and linear
behaviour near the zeros shows the dynamic critical exponent value of z = 2 and z = 1,
respectively.

We can also consider an extended parameter space where h, J1, and J2 can take on any
value, not restricted by their β dependence. In this extended space, there are numerous
phase transitions, for example, along the line h + J1 + J2 = 0 where εk=0 = 0. When
h − J1 + J2 = 0 then εk=π = 0. Additionally, when h − J2 = 0 with |J1| < 2|h| then
εk = 0 for k = π − cos−1(J1/(2J2)). This leads to the phase diagram seen in Fig. 3.1. The
phases are identified through line cuts through parameters space leading to Hamiltonians
with well-known phases [45]. There are three distinct phases, a paramagnet phase, a
ferromagnetic phase, and a cluster-state-like phase. The red curve of Fig. 3.1 shows the
path in parameter space corresponding to h(β), J1(β), and J2(β) for some β. The β = 0
point lies at the origin, and β = ∞ at J1/h = 2, J2/h = 1. Only along this path does the
ground state of the Hamiltonian correspond to the qsample state of Eq. 3.1. At all phase
transitions besides the tricritical point at J1/h = 2, J2/h = 1, the dispersion relation is
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linear, as seen in Fig. 3.2. Thus all other phase transitions have a dynamic critical exponent
of z = 1.

3.2.2 Adiabatic Paths

Following [44], we will compare four different adiabatic paths through the extended param-
eter space of Hq. All methods will begin in the ground state of Hq at J1/h = J2 = 0, which
corresponds to the β = 0 encoded distribution state. This is the equally mixed state, which
is assumed to be easy to prepare. In order for the final state to describe a Boltzmann dis-
tribution of the classical Hamiltonian, the adiabatic path must return to the h(β), J1(β),
J2(β) curve for some β. Since this problem is only difficult at low temperatures the paths
we will compare all end at β = ∞, the tricritical point of Hq.

The four different paths are shown in Fig. 3.3, with path ii) corresponding to the path
where h(β), J1(β), and J2(β) depend on β. These paths are parameterized by s, which is
zero at the starting point, at one at the final point. The explicit parametrization of these
paths is listed in Table. 3.1.

Path J1/h J2/h

i) 2s s
ii) 2s s2

iii) 3(1−s)2s+7.5(1−s)s2+2s3 1.5(1− s)s2 + s3

iv) 6(1− s)2s+9(1− s)s2+2s3 −3(1−s)2s+4.5(1−s)s2+s3

Table 3.1: Ising-chain adiabatic paths parametrization in terms of s ∈ [0, 1]

To compare the adiabatic time along these different paths, we will fix a target fidelity
of the final state. This is the overlap of the adiabatically evolved state and the wanted
encoded distribution state,

F = | ⟨ψ(β)|ϕ(ttot)⟩|2. (3.15)

The final state ϕ(ttot) is found by numerically integrating the Schrodinger equations under
the constraints of Eq. 3.3. The details of this calculation can be found in Appendix B.
For each path an infidelity cutoff of 1 − F < 10−3 is used to determine ε. The infidelity
dependence on ε can be seen in Fig. 3.4 for the four paths considered.

Once an ε is fixed for each path, the state preparation time ta is the shortest time
needed to obtain 1−F < 10−3. Since the adiabatic metric can be calculated, the adiabatic
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Figure 3.3: Four adiabatic paths in the parameter space of Hq. All methods begin at
Hq(β = 0), (J1/h = J2/h = 0), and end at Hq(β = ∞), (J1/h = 2, J2/h = 1), in order to
prepare the zero temperature qsample.

path length l from Eq. 3.8 can be found. With the values of ε found for each path, the
state preparation time is given by

ta =
l

ε
. (3.16)

Fig. 3.5 shows the scaling with the system size of the adiabatic preparation time for
each of the paths considered. The dependency on the system sizes matches the results of
[45]. As the found ϵ is roughly independent of system size, this same scaling is found when
considering the adiabatic path length l. Path ii), which corresponds to the Glauber mixing
matrix, shows scaling with ∼ n2. This matches the analytic scaling of the spectral gap of
the mixing matrix at low temperature found in Appendix B. The scaling of the paths is
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Figure 3.4: Infidelity of final prepared state after adiabatic evolution specified by ε for all
four paths. Two system sizes are shown N = 10 and N = 100.

dominated by their behaviour around critical points.

In Fig. 3.6, the integrand of l is plotted for paths ii) and iii). Path iii) has an increase of
this integrand over the phase transition from the paramagnet phase into the ferromagnetic
phase and then as the path approaches the tricritical point. However, its behaviour around
the tricritical point is different from the classical path ii). Paths which first cross over to
the ferromagnetic phase before approaching the critical point show quadratic improvement
in Fig. 3.5. This can be understood by considering how domain walls are removed from
the paramagnetic state for the different paths. Along path ii) this process occurs while
approaching the tricritical point. In paths iii) and iv), these domain walls are removed
when crossing to the ferromagnetic phase. These phase transitions have different charac-
teristics, most importantly different dynamic critical exponents z. By definition, Eq. 3.14,
z describes how the energy gap scales with the correlation length ξ. For finite systems, at
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Figure 3.5: Adiabatic state preparation time scaling of the four paths considered. All
adiabatic schedules are chosen to ensure 1 − F < 10−3. The scaling is linearly fit to
showcase the expected quadratic speedup between path iii) and iv) as compared to the
classical scaling of path ii)

criticality, ξ ∼ N therefore, z describes how the energy gap scales with the system size.
Thus, z also indicates the scaling of the slowdown needed to cross the phase transition
adiabatically. Since the paramagnet to ferromagnet transition has z = 1 the domain walls
can be removed with much better scaling in path iii) and iv) than in path ii) which is
dependent on the z = 2 tricritical behaviour. The scaling of path iii) is also dependent on
the behaviour of the phase transition out of the paramagnetic phase. However, unlike the
other phase transitions the spectral gap can close exactly for finite-size systems during the
transition from the paramagnetic to cluster-state-like phase [45]. This effect accounts for
the additional slowdown observed for path iii).
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Figure 3.6: Adiabatic path length integrand plotted along path ii) and iii) for N = 50
showing different behaviour approaching the tricritical point.

3.3 Discussion

The results of [44], reproduced in Section. 3.2.2, show a quadratic improvement in adiabatic
state preparation time using information of the phase transition of the parent Hamiltonian.
The Ising chain example is quite unique as the parent Hamiltonian can be solved exactly.
While this example is an interesting illustration of the connection between the algorithmic
performance and the properties of the phase transitions, it is somewhat contrived. Ising
chain sampling only becomes difficult at zero temperature and in the limit of large system
sizes as only here are there long-range correlations. Away from this limit, classical local
strategies mix quickly as there are no long-range correlations. In the zero temperature
limit, the task becomes sampling from the ground state manifold, where optimization
algorithms can be utilized. Additionally, for this problem, the parent Hamiltonian has a
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three-body term, which is not typically experimentally achievable.

These problems are addressed in [44] by considering a variety of other demonstrative
examples. For example, two weighted independent set problems were explored; a chain
and star graph sampling. The chain graph, which also has slow mixing classically only at
zero temperature, showed a similar quadratic speedup as the Ising chain attributed to fast
domain wall propagation. The star graph mixes slowly classically at finite temperatures.
The parent Hamiltonian of the star graph instead exhibits a first-order quantum phase
transition, so the quadratic speed up found through this algorithm is a result of a larger
tunnelling rate, not fast domain wall propagation [45]. A similar first-order transition was
found when considering the unstructured search problem. All examples considered showed
a speedup with an origin depending on the nature of the phase transition.

The original motivation for investigating this adiabatic algorithm was to explore its ap-
plicability for sampling from energy-based machine learning models [41]. However, gaining
insight into the phases transitions of parent Hamiltonians derived from more complicated
classical Hamiltonians is difficult. For example, even extending this algorithm to a higher
dimensional Ising model leads to a parent Hamiltonian whose phases can only be investi-
gated through numerical methods such as quantum Monte Carlo. Additionally, it is only on
the one-parameter line of Hq(β) where Hq is guaranteed to be sign-problem free. Knowl-
edge of the phase transitions of the parent Hamiltonian is necessary for this algorithm,
limiting its application.

3.4 Counterdiabatic Driving

The above algorithm’s performance is determined by the rate at which paths can be tra-
versed while maintaining the adiabatic condition. Counterdiabatic driving protocols, some-
times known as shortcuts to adiabaticity, drive the system in order to suppress transitions
out of the ground state [21]. Here we explore this protocol on the one-parameter line of
Hq(β) as an alternative to the extended parameter space paths. Unlike the above algo-
rithm, this process does not require knowledge of the phase transitions of Hq. The needed
driving terms to counteract these diabatic transitions exactly are often nonlocal. Here
we will consider local approximations to the counterdiabatic Hamiltonian for the qsample
state preparation problem of the above section. The locality constraint is needed to run
this algorithm on near-term devices.

26



3.4.1 Counterdiabatic Driving Background

Consider a general setting of evolution under the Hamiltionian H0(λ(t)), parametrized by
some parameter λ. We could equivalently consider a set of parameters {λ}. Instantaneously
diagonalizing this Hamiltonian given the eigenstates |m(λ)⟩. If λ is varied slowly, main-
taining the adiabatic condition, the new instantaneous eigenstates are related to |m(λ)⟩
through the adiabatic theorem. A specific unitary transformation can be made between
these adiabatically connected states. Gauge potentials are the generators of continuous
unitary transformations. The adiabatic gauge potential, Aλ, is defined to be the gauge
potential associated with the specific unitary made between these adiabatically connected
eigenstates.

Consider a moving observer in the instantaneous eigenbasis of H0. A transformation
into this moving frame is given by |ψ⟩ = U(λ)|ψ̃⟩. For this observer, the Hamiltonian is no
longer H0 but it gains an additional term associated with the moving frame of reference.
The term that gets added is exactly this adiabatic gauge potential in this moving frame,

Heff
0 = U †H0U − iλ̇U †∂λU,

= U †H0U − λ̇U †AλU,
(3.17)

where the gauge potential in the lab frame is,

Aλ = i∂λ. (3.18)

The form of Eq. 3.17 is found by solving the Schrodinger equation in the moving frame.
Since we have defined the unitary U to be a transformation into the instantaneous eigen-
basis of H0, the term U †H0U is diagonal. Thus it is the term involving the adiabatic
gauge potential which causes non-adiabatic transitions. With this in mind, an alternative
Hamiltonian can be constructed which cancels out this extra term in the moving frame.
This is exactly the counterdiabatic Hamiltonian,

HCD(t) = H0 + λ̇Aλ. (3.19)

The addition of the driving term allows arbitrary fast state preparation protocols. If
the system is initialized in the ground state, the driving term counteracts any diabatic
transitions that occur if the parameter λ are varied non-adiabatically, and the system will
remain in the ground state. It can be shown that the adiabatic gauge potential defined for
the Hamiltion H0 satisfies the following equation [21],

[i∂λH0 − [Aλ, H0], H0] = 0. (3.20)
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Although solving this equation does not require diagonalizing the Hamiltonian it is often
difficult to solve and in some cases does not yield a solution [21]. It can be shown that
this condition can be reformulated as a minimization problem, allowing approximate gauge
potentials to be found variationally [37]. Consider the operator Gλ defined as,

Gλ(X ) = ∂λHk + i [X , Hk] . (3.21)

Then we have,

Gλ(Aλ) = −
∑
n

∂En

∂λ
|n(λ)⟩⟨n(λ)| := −Mλ. (3.22)

Finding Aλ is equivalent to minimizing the operator distance between Gλ(X ) and −Mλ

with respect to X . Using the Frobenius norm, it can be shown that minimizing this distance
is equivalent to minimizing the norm of Gλ(X ) [21]. In all, we can now consider an action
associated with the gauge potential,

S = Tr
[
G2

λ(X )
]
. (3.23)

With this problem now mapped to a minimization of this action, we can consider a varia-
tional form of Aλ under constraints such as locality [37].

3.4.2 Ising Chain

With this formalism, we can now return to the task of preparing the encoded distribution
state for the Ising chain. Since we can solve the parent Hamiltonian of Eq. 3.12 through a
Jordan-Wigner transformation, we can find the counterdiabatic Hamiltonian exactly [11].
The Jordan-Wigner solution, derived in Appendix B, leads to the following representation
of Hq in terms of momentum space fermionic operators,

Hq = −2
∑
k

(
a†k a−k

)(Ak −iBk

iBk −Ak

)(
ak
a†−k

)
= 2

∑
k

ψ†
kHkψk, (3.24)

where Ak = −h− J1 cos(k)− J2 cos(2k) and Bk = J1 sin(k) + J2 sin(2k). We can consider
each of these k blocks separately since they are non-interacting, and the problem reduces
to a set of uncoupled two-level systems,

Hk = −2

(
Ak −iBk

iBk −Ak

)
= −2Akσ

z
k − 2Bkσ

y
k . (3.25)
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Consider the following general form of A(k) in this space,

A(k) =
1

2
(αx(k)σ

x
k + αy(k)σ

y
k + αz(k)σ

z
k) . (3.26)

The exact form of the adiabatic gauge potential can be found by minimizing the action,
Eq. 3.23. Let us first find the commutator of this A(k) with Hk.

i [A(k), Hk] = 2 (αyAk − αzBk)σ
x
k − 2αxAkσ

y
k + 2αxBkσ

z
k (3.27)

Recall the paths considered are parameterized by s ∈ [0, 1]. To minimize the norm of
Gs(A) we require the additional term,

∂sHk = −2∂sAkσ
z
k − 2∂sBkσ

y
k . (3.28)

This leads to the following action,

Ss

4
= (αyAk − αzBk)

2 + (∂sBk + αxAk)
2 + (αxBk − ∂sAk)

2 (3.29)

Minimizing with respect to αx, αy, and αz gives the following form of the adiabatic gauge
potential for a k block,

A(k) = −Ak∂sBk −Bk∂sAk

2ε2k
σx
k (3.30)

where recall ε2k = A2
k+B

2
k. When we diagonalized this Hamiltonian in Appendix B we used

a Bogoliubov transformation which was a rotation in the σy
k , σ

z
k plane. Here the adiabatic

gauge potential is the σx
k direction, as it is a generator of the diagonalizing transformation.

The adiabatic gauge potential for the entire system is then,

As = −1

2

∑
k

Ak∂sBk −Bk∂sAk

ε2k
ψ†
kσ

x
kψk. (3.31)

If we evolved the system under the counter diabatic Hamiltonian of Eq. 3.19 using this
adiabatic gauge potential, we would be able to stay in the ground state of the system no
matter how quickly the Hamiltonian parameters are varied. For the problem at hand, this
would give perfect fidelity at s = 1 no matter the value of ds/dt. Although this As is
compact in the momentum space representation when we transfer back into the original
spin variables we get something highly non-local, and therefore not experimentally feasible.

ψ†
kσ

x
kψk = a†ka

†
−k + a−kak =

i

N

∑
j,l

sin(lk)
(
a†ja

†
j+l + aj+laj

)
(3.32)
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Figure 3.7: Infidelity with ds/dt of approximated counter adiabatic evolution for N = 10
with maximum string length M = 3.

In the real-space spin variables the adiabatic gauge potential is,

As =
N∑
l=1

αlOl, (3.33)

where

αl = − 1

4N

∑
k

sin(lk) (Ak∂sBk −Bk∂sAk)

ε2k
(3.34)

and the operators Ol are Pauli strings of length l,

Ol = 2i
∑
j

(
a†ja

†
j+l + aj+laj

)
=
∑
j

i
(
σy
jσ

x
j+1σ

x
j+2 . . . σ

x
j+l−1σ

y
j+l − σz

jσ
x
j+1σ

x
j+2 . . . σ

x
j+l−1σ

z
j+l

)
.

(3.35)

We will consider the parent Hamiltonian along path ii) whose ground state corresponds
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Figure 3.8: Counter diabatic state preparation time with approximated Hamiltonian with
a fixed string length of M = 3.

to the encoded distributed state at some β. This path’s parametrization is listed in Ta-
ble. 3.1, where s = tanh(β). For this path we can make some simplifications,

Ak∂sBk −Bk∂sAk =
(
−1− 2s cos(k)− s2 cos(2k)

)
(2 sin(k) + 2s sin(2k))

−
(
2s sin(k) + s2 sin(2k)

)
(−2 cos(k)− 2s cos(2k))

= −2 sin(k)
(
2s cos(k) + s2 + 1

)
,

(3.36)

ε2k = A2
k +B2

k =
(
2s cos(k) + s2 + 1

)2
. (3.37)

For path ii) we then have the following coefficients on the string operators,

αl = − 1

2N

∑
k

sin(k) sin(lk)

2s cos(k) + s2 + 1
. (3.38)

Away from the critical point, these αl decay exponentially with l, but at the critical point
all the strings are relevant. These strings are difficult to implement experimentally, so we
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can consider an approximation to this gauge potential and therefore the counter-diabatic
Hamiltonian by taking only spin strings up to length M ,

A′
s =

M∑
l=1

αlOl. (3.39)

Return to the k space representation to see the effect of this truncation,

A′
s = 4

∑
k

(
M∑
l=1

αl sin(lk)

)
ψ†
kσ

x
kψk. (3.40)

Let us now consider evolving under the counter diabatic Hamiltonian of Eq. 3.19 with this
approximation to the adiabatic gauge potential. As it is an approximation, some diabatic
transitions will occur which limits the rate at which the paths can be traversed.

Following the procedure from the previous section, the fidelity of the final state Eq. B.34
is found as a function of allowed excitations. In this case, instead of limiting transitions
with ε, they are limited by the rate of change of s. Fig. 3.7 shows the infidelity as a function
of ds/dt for N = 10 with a fixed string length of M = 3. For each system size considered,
the value of ds/dt is found to give an infidelity of 10−3. With this rate of change, the
adiabatic state preparation time can be found. The scaling of this time with system size
is shown in Fig. 3.8. The nature of this scaling needs to be further investigated, but it
shows unfavourable dependence on the system size as compared to the classical MCMC to
sample at zero temperature.

This method of counterdiabatic driving gives a protocol to prepare the qsample state
instantaneously but at the cost of Pauli strings with a length the size of the system. These
types of interactions are difficult experimentally therefore a local approximation to the
driving terms was made. Unfortunately, the adiabatic state preparation time of this local
approximation scales as ∼ N3 as compared to the ∼ N2 scaling of the classical method.
There are many possible directions for further research regarding this protocol. The nature
of this scaling needed to be further investigated to determine if this scaling disadvantage
would be present in other systems. This method was tested only on the Ising chain,
where the adiabatic gauge potential can be calculated exactly. However, this protocol
can be adapted to other more complicated systems as the gauge potential can be found
variationally through minimizing the action of Eq. 3.23 [37].
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Chapter 4

Quantum Enhanced Markov Chain
Monte Carlo

The next algorithm considered, a quantum enchanced MCMC method [23], is also well
suited for current quantum devices. This hybrid method constructs a Markov chain on the
classical configuration space but uses a quantum evolution to propose new configurations.
A typical method, such as Metropolis-Hastings, accepts or rejects this proposed configura-
tion. This construction maintains detailed balance, ensuring the convergence to the desired
distribution. Unlike the quantum algorithms of the previous chapters, this algorithm does
not produce qsamples, but classical samples. This algorithm has shorter mixing times than
standard classical methods for spin glass problems in the low-temperature regime, seen nu-
merically and experimentally on small system sizes [23]. These results will be numerically
reproduced here, and analytic bounds are found for simpler systems to investigate the
nature of this speedup.

4.1 Algorithm Overview

The only quantum step of the quantum-enhanced Markov chain Monte Carlo algorithm [23]
is to propose new spin configurations. Specifically, the current classical state of the MCMC
is prepared as a computational basis state |σ⃗⟩, evolved unitarily, and then measured in the
computational basis. This procedure gives the following proposal probability,

Q(σ⃗′|σ⃗) = |⟨σ⃗′|U |σ⃗⟩|2.
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The focus will be on the evolution U = e−iHt with the following time-independent Hamil-
tonian,

H = (1− γ)αHc + γHmix, (4.1)

with

α =
∥Hmix∥F
∥Hc∥F

Hmix =
∑
i

σx
i . (4.2)

Here α maintains a common energy scale between the two terms of the Hamiltonian.

4.1.1 Convergence

Recall in Section 2.1.1 a sufficient condition for π to be a stationary state of P is if the
chain satisfies the detailed balance condition. This quantum algorithm satisfies the detailed
balance condition if the proposal probability is symmetric,

Q(σ⃗′|σ⃗) = |⟨σ⃗′|U |σ⃗⟩|2 = Q(σ⃗|σ⃗′). (4.3)

This is generally not the case for any arbitrary unitary U . However, it is satisfied in this
algorithm as the Hamiltonian of Eq. 4.1 is symmetric for any Hc. There are many other
choices of U that would maintain this condition. Recall the detailed balance condition
requires π(x)P (x, y) = π(y)P (y, x) ∀x, y ∈ S. The case when x = y is trivial, so assume
x ̸= y. Since the proposal probability is symmetric, this condition becomes π(x)A(y|x) =
π(y)A(x|y).

π(x)A(y|x) = π(x)min

(
1,
π(y)

π(x)

Q(x|y)
Q(y|x)

)
= π(x)min

(
1,
π(y)

π(x)

)
= π(y)min

(
1,
π(x)

π(y)

) (4.4)

Where the last line can be seen by considering the two cases of π(x) > π(y) and π(x) <
π(y). In order to prove the convergence to this steady state π, the chain must be aperiodic
and irreducible. Both of these conditions are satisfied if Q(σ⃗′|σ⃗) > 0 ∀σ⃗′, σ⃗ [23]. However,
the proposal probability is not greater than zero for all choices of Hamiltonian parameters
in Eq. 4.1. For example, if γ = 0 the system is initialized in an eigenstate of H and thus
remains in that state after the evolution. In this case, the MCMC would never propose
new states and thus not mix. In later sections, the performance of the algorithm will be
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investigated for different Hamiltonian parameters. We will see that many Hamiltonian
parameters lead to short mixing times, justifying the procedure of [23] of choosing them
at random at each step of the chain. This strategy additionally ensures that the chain
remains irreducible.

Errors in the physical implementation of this evolution may break the symmetry of
the proposal probably, a condition needed for convergence. It is only errors that break
this symmetry which bias the MCMC sampling. Other errors may lead to longer mixing
times, but the algorithm will still converge to the wanted distribution. In the physical
implementation of this algorithm in [23], the quantum evolution is approximated through
a Suzuki-Trotter expansion. This process induces errors which break the needed symmetry
and are therefore randomized through a process of SPAM twirling [23]. This method
restores the needed symmetry. Error effects on this algorithm are not studied in detail in
this thesis but left as a possible extension. However, with this SPAM twirling addition
when this algorithm is implemented on near-term error-prone devices, convergence to the
wanted distribution is still achieved.

4.1.2 Hamiltonian Monte Carlo

Before exploring the performance of this algorithm, we can gain some intuition for why it
may lead to a performance increase by relating it to Hamiltonian Monte Carlo (HMC) a
successful classical algorithm for sampling continuous distributions[6]. Consider a possible
target distribution π(x) with x ∈ Rd. HMC considers a different distribution, f , from
which to sample in order to produce samples of π(x) with a higher acceptance rate. These
samples are proposed by running Hamiltonian dynamics for some time τ . Specifically, the
Hamiltonian considered consists of a potential determined by the wanted distribution and
the addition of a canonical momentum p ∈ Rd,

H(x, p) = V (x) +
1

2
p2, (4.5)

where V (x) = − log(π(x)). The Boltzmann distribution of this Hamiltonian at β = 1,

f(x, p) ∝ e−H(x,p), (4.6)

will be the distribution HMC samples from. From the definition of the Hamiltonian H(x, p)
it can be seen that the marginal distribution of the position variable is the desired π(x).
Starting at some (x, p0) a new sample is generated by HMC with the following procedure.

1. Draw a random momentum vector, p, typically chosen to be a multivariate Gaussian.

35



2. Evolve the system under Hamiltonian dynamics starting at (x, p) for some time τ ,
specifically following

dxi
dt

=
∂H

∂pi
,

dpi
dt

=
∂H

∂xi
. (4.7)

The resulting point after this evolution is (x′, p′).

3. Accept or reject the new sample using the Metropolis-Hastings acceptance probabil-
ity,

A((x′, p′)|(x, p)) = max

(
1,
e−H(x′,p′)

e−H(x,p)

)
. (4.8)

What is important about this process is that energy is conserved throughout the Hamil-
tonian dynamics so new samples are always accepted with unit probability. However, this
evolution when done numerically introduces slight errors. This is why the Metropolis-
Hastings acceptance step is then added to account for these added errors and ensure con-
vergence. With some choice of τ depending on the problem, this algorithm allows one
to generate samples far away in state space that are almost guaranteed to be accepted,
leading to fast mixing times [6].

There are many parallels between HMC and the quantum-enhanced MCMC algorithm.
In the quantum setting, we still have continuous Hamiltonian dynamics which conserve
energy, but no longer have commutation of the canonical variables. Additionally, our
target distribution is now over discrete variables. These complications mean in this setting
we lose the guaranteed acceptance after evolution. However, it is still possible that it is
beneficial to consider proposal through quantum evolution as we may obtain samples which
are more likely to be accepted. We will see that this is the case for some problems at low
temperatures. The quantum-enhanced MCMC algorithm is able to move between samples
σ⃗ → σ⃗′ which are far in Hamming distance but are close is energy, therefore they are likely
to be accepted.

4.2 Sherrington-Kirkpatrick Model

To numerically verify the results found in [23], the first model considered is a fully connected
spin glass,

Hc = −
∑
j>i=1

Jijσ
z
jσ

z
i +

∑
i

hiσ
z
i , (4.9)
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where the parameters {Jij}Nj>i=1 and {hi}Ni=1 are drawn from a normal distribution with a
mean of zero and a standard deviation of one. This model is a slightly modified version of
the well-known Sherrington-Kirkpatrick (SK) model [38], as the normal distribution has a
standard deviation of one, instead of the typical value of 1/

√
N . This choice is made to

compare the scaling of models with different connectivity more easily. Additionally, this
Hamiltonian has random local fields {hi}Ni=1, which are not present in the first presentation
of the SK model. This additional term further complicates the problem; a fully-connected
N spin problem with local fields is equivalent to a N + 1 fully-connected model without
local fields. These models often have many local minima that are far in Hamming distance,
making them difficult to sample from. At zero temperature, sampling from a Boltzmann
distribution produces samples from the ground state manifold of Hc. For spin glass models,
finding the ground state is NP-hard [4].

4.2.1 Numerical Results

The mixing time of this quantum algorithm can be probed by numerically finding the
spectral gap δ of the associated transition matrix P . The configuration space grows expo-
nentially with the system size, therefore this type of numerical investigation is limited to
small system sizes.

As in [23], I will compare this quantum algorithm to two different classical proposal
strategies. For the Ising model, other updates lead to faster mixing times, such as cluster
algorithms [36]. However, these types of updates are not advantageous for more complex
spin glasses problems. For these harder problems, typically annealing or parallel tempering
methods are employed. Here we will compare constant temperature updates, with the
possibility of expanding to these varying temperature methods.

The first is a uniform strategy which proposes a new configuration at random. In this
case, we have Q(σ⃗′|σ⃗) = 1/2N for all σ⃗′, σ⃗. These updates allow movement to configura-
tions far in Hamming distance from the previous configuration. The second strategy, the
local strategy, proposes a new configuration by flipping one of the N spins. In this case,
Q(σ⃗′|σ⃗) = 1/N , for σ⃗′ and σ⃗ separated by a single spin flip, and zero otherwise. Due to
the local structure of the Hamiltonian, this new configuration will be close in energy to
the previous.

For all algorithms, quantum and classical, the mixing time of the chain depends on the
system size N and the temperature T = 1/β. We will use the same acceptance proba-
bility in all cases, the Metropolis-Hastings probability of Eq. 2.14. Due to the symmetric
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Figure 4.1: Spectral gap δ of quantum enhanced MCMC for N = 7 averaged over 100
instances of the SK model at β = 5.

proposals, this probability further simplifies to,

A(σ⃗′|σ⃗)MH = min
(
1, e−β(Hc(σ⃗′)−Hc(σ⃗))

)
. (4.10)

Glauber acceptance probability was simulated for all methods but led to insignificant per-
formance differences. The proposal strategy of this quantum algorithm involves evolving
under the following Hamiltonian,

tH = t ((1− γ)αHc + γHmix)

= κα

(
−
∑
j>i=1

Jijσ
z
jσ

z
i +

∑
i

hiσ
z
i

)
+ η

N∑
i=1

σx
i

(4.11)
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Here I have redefined the evolution parameters γ and t in order to simplify the numerical
analysis.

The quantum proposal depends non-trivially on κ and η. This dependence can be seen
in Fig. 4.1. In this figure, the spectral gap at low-temperature averaged over 100 N = 7
Hamiltonian instances is shown as a function of κ and η. There is a substantial section of
this parameter space which leads to a large gap and thus fast mixing of the chain. We can
understand the limits of this diagram through perturbation theory.

When η is small we can approximate, to first order in η, an eigenstate of the Hamiltonian
of Eq. 4.15 as, ∣∣n0

〉
+ η

∣∣n1
〉

∣∣n0
〉
+ η

N∑
i=1

1

E0
n − E0

ni

∣∣n0
i

〉 (4.12)

Here |n0⟩ are the eigenstates of Hc, the computational basis states, and |n0
i ⟩ is a configu-

ration which differs from |n0⟩ by a single spin flip. There are N states |n0
i ⟩, for each |n0⟩.

The evolution on a computation basis state is then given by,

e−iH
∣∣n0
〉
= e−iE0

n
∣∣n0
〉
+ η

N∑
i=1

(
e−iE0

n − e−iE0
ni

) 1

E0
n − E0

ni

∣∣n0
i

〉
. (4.13)

As we then measure in the computational basis, the resulting proposal reduces to classical
local strategy. In this limit, spectral gap scaling with the system size, which will discuss
in more detail in a later section, matches that of the local strategy.

In the limit of small α, Fig. 4.1 shows a periodic behaviour with η. We can consider
the evolution at α = 0, which rotates the spins depending on the value of η. The spectral
gap returns to zero at each factor of η = π as this rotates all spins back to their original
position. Additionally, at each factor of η = π/2 the spectral gap is also zero. At these
values, the resulting state after evolution is the computational basis with all spins flipped
compared to the starting state. This makes the chain periodic as it continues to flip between
these two configurations. Periodic chains do not have unique stationary distribution, so
there are multiple eigenstates with eigenvalues of 1, leading to a spectral gap of zero. At
factors of η = π/4 this evolution leaves the system in an equal superposition state over all
configurations. Through measurement in the computation basis, there is equal probability
in proposing all configurations. At these values, the quantum algorithm reduces to the
classical uniform MCMC. This is again verified numerically as the spectral gap scaling

39



with system size matches the uniform method. At α = 0 the value of η that leads to the
largest spectral gap is slightly larger than η = π/4 where there is still overlap with many
basis states, but the ones with closer energy are slightly favoured. This optimal value of
η is dependent on the specific Hamiltonian considered. As seen in Fig. 4.1, this periodic
nature continues on average for small κ.

Away from these limits, the structure of Fig. 4.1 is harder to determine. We will see
when considering simpler models that analyzing the bottlenecks of this chain will give
further insight. However, for this model it is not known why there is a concentrated region
of large average δ and if it persists at larger system sizes not accessible numerically.

Temperature Dependence

At low temperatures, the mixing time of the MCMC methods increases. This can be seen
as the Metropolis-Hastings acceptance probability of Eq. 2.14 exponentially decreases with
β. The chain accepts fewer proposed configurations, causing it to stay at one location
in the configuration space and mix slowly. This temperature dependence can be seen in
Fig. 4.2. Depending on the energy scale of the Hamiltonian, this plot also shows how the
Boltzmann distribution changes the task of sampling. For example, below around T = 0.5,
sampling from the Boltzmann distribution becomes finding the ground state manifold of
the Hamiltonian. At high temperatures, all states become equally weighted, and sampling
becomes much easier leading to much larger spectral gaps.

Unlike the other strategies, the local proposal method does not plateau at low tempera-
tures but behaves erratically. When sampling from the ground state manifold, the strategy
needs to be able to go between configurations potentially far in Hamming distance, a task
that is very difficult for a local proposal strategy. The uniform strategy has an equal prob-
ability of proposing all configurations, leading to a plateaued spectral gap. Additionally,
the gap of the local strategy decreases at high temperatures. This is because the chain is
close to periodic, and an eigenvalue of its transition matrix is approaching −1. This known
effect can be easily fixed with a lazy chain strategy, which keeps the chain at the same
place with some probability, for example by using Glauber acceptance probability [5].

The quantum strategy depends on the choice κ and η as seen in Fig. 4.1. In order to
get an indication of performance when taking random values of κ, η ∈ [0, 50] at each step
of the MCMC, the geometric mean over this range is plotted in Fig. 4.2 labelled as the
random quantum proposal. The error bars on this value show a 95% confidence interval of
this geometric mean. Additionally, the best quantum proposal shows the largest gap found
in κ, η ∈ [0, 50]. Finally, the spectral gap was averaged over 100 Hamiltonian instances for
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Figure 4.2: Spectral gap δ of classical and quantum strategies for N = 8 averaged over
100 instances of the SK model. The random quantum proposal is the geometric mean over
κ, η ∈ [0, 50] with error bars indicating a 95% confidence interval of this mean. The best
quantum proposal shows the largest gap over the same range of κ and η.

all methods. At low temperatures, the quantum-enhanced MCMC method shows a larger
spectral gap than the classical methods, showing a faster mixing time of the chain and
matching the results of [23].

Low-Temperature System Size Scaling

The quantum proposal strategy is only beneficial compared to the classical method con-
sidered in the low-temperature limit. In Fig. 4.3, the spectral gap is shown at β = 5
for increasing system sizes. Here we numerically verify the results seen in [23], that this
algorithm gives an average case polynomial enhancement compared to a uniform proposal
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Figure 4.3: Average spectral gap scaling with system size at β = 5 for 100 instances of the
SK model.

strategy for the SK model. The exact improvement depends on the temperature consid-
ered, but for all temperatures less than around one, this polynomial scaling improvement
persists.

Due to the complexity of the system, it is difficult to bound this mixing time and get
an understanding of the source of this improvement. Most critically, it is difficult to say
if this improvement persists for larger system sizes which are not accessible numerically.
Additionally, Fig. 4.1 shows areas with small κ and η, which still lead to a large spectral
gap. This indicates that this improvement exists even with short-time evolution, which
can be simulated classically. However, that effect may not persist for larger system sizes.
Further understanding of the gap dependence on the Hamiltonian parameter is necessary
to describe the generic behaviour of this algorithm. In comparing only the mixing time we
are also not accounting for the extra time it takes to evolve quantum mechanically. This
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is again related to the strategy used to choose κ and η, and requires further understanding
of Fig. 4.1.

4.3 Ising Chain

Although the focus of [23] is on more complex models, a useful simplification is to consider
an Ising chain. The quantum evolution associated with this system can be solved ana-
lytically, allowing theoretical exploration beyond the system sizes accessible numerically.
Consider the N spin ferromagnetic Ising chain with periodic boundary conditions,

Hc = −
N∑
i=1

σz
i σ

z
i+1. (4.14)

The choice to take periodic boundary conditions is to simplify the analytic scaling argu-
ments but can be easily adapted to other boundary conditions. Using a Peierls argument,
it can be shown that this model has no long-range order and hence no phase transition for
T > 0 [14]. At T = 0 the system is ferromagnetically ordered. Due to the Z2 symmetry of
the system, this ground state is doubly degenerate. The proposal strategy of this quantum
algorithm involves evolving under the transverse field Ising model,

tH = −κ
N∑
i=1

σz
i σ

z
i+1 + η

N∑
i=1

σx
i , (4.15)

as α defined in Eq. 4.2 equals one for this system.

4.3.1 Numerical Results

Although this quantum evolution can be solved in the thermodynamic limit, this only
gives individual elements of transition matrix P . Calculating the spectral gap of P is
still intractable for large systems, limiting the numerical exploration. Fig. 4.4 shows the
spectral gap dependence on κ and η for the N = 9 Ising chain at β = 5. As in the SK
model, the area with a larger gap is concentrated in the lower half of this plot. However,
there is more intricate periodic behaviour.
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Figure 4.4: Spectral gap δ of quantum enhanced MCMC for N = 9 Ising chain at β = 5.

Temperature Dependence

The temperature dependence of these methods for N = 8 are shown in Fig. 4.5, with
very similar behaviour as in the SK model. The low-temperature sampling task for this
problem involves sampling from the two ferromagnetic states. The failure of the local
proposal strategy is evident as in order to transition between these two configurations, a
defect needs to be created. This initial step of flipping one spin when the others are aligned
is energetically unfavourable. More specifically, it is exponentially (in β) suppressed by
the Metropolis-Hastings probability, leading to the continuing decrease of the spectral gap
with temperature. As in the SK model, the quantum algorithm has a larger spectral gap
in this low-temperature regime.
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Figure 4.5: Spectral gap δ of classical and quantum strategies for N = 8. The random
quantum proposal is the geometric mean over κ, η ∈ [0, 50] with error bars indicating a
95% confidence interval of this mean. The best quantum proposal shows the largest gap
over the same range of κ and η.

Low-Temperature System Size Scaling

Fig. 4.6 show the low-temperature scaling of the quantum and classical methods. This
model shows a similar polynomial enhancement for the quantum method as compared to
the uniform MCMC. A local proposal strategy is a typical choice for this model due to
its polynomial scaling with the system size, which can be seen in this figure. However,
as mentioned in the previous section it struggles to move between the Z2 subspaces, thus
exponentially suppressing its spectral gap. In practice, this is not an issue as the chain can
be restarted and run multiple times in order to sample from both subspaces. This technique
is not captured when considering the algorithm performance based on the spectral gap.
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Figure 4.6: Spectral gap scaling at β = 5. The quantum strategy is averaged over κ, η ∈
[0, 50].

We can solve exactly for the gap when we take a local proposal strategy with Glauber
acceptance probability. Discussion of this scaling can be found in Appendix B.3. Although
that analysis is done with a different acceptance probability (Glauber), both local proposal
methods lead to polynomial scaling. The other strategies seen in Fig. 4.6 add additional
complications, and their scaling is explored through Cheeger bounds in the next section.

4.3.2 Mixing Time Bound

We can gain further insight into the scaling of this algorithm through a bound of the mixing
time. Recall that the Cheeger inequality, Eq. 2.21, provides a lower and upper bound on
δ. This inequality requires the bottleneck ratio of the chain, Φ∗, which is defined as a
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minimization over subsets A of the state space, such that π(A) ≤ 1/2. This minimization
is typically intractable, however, here we are considering the low-temperature limit that
allows for some simplifying approximations.

Since the Markov chain updates depend on the energy of the configuration, it is useful
to organize the space into subsets of configurations with the same energies. As we have
periodic boundary conditions the possible energy values are,

E(k) = −N + 4k (4.16)

with k = {0, 1, .., N/2} for N even and k = {0, 1, .., (N − 1)/2} for N odd. Let Sk be the
subset such that ∀x ∈ Sk Hc(x) = E(k). The ground state subset, S0, has a cardinally of
2, containing the all up and all down set. More generally,

|Sk| = 2

(
N

2k

)
. (4.17)

Consider an arbitrary subset A containing elements from {S0, S1, S2, S3, ...}. Specifically
A contains c0 elements of S0, c1 elements of S1,... with 0 ≤ ci ≤ |Si|. Label the states
of Sk as {x1k, x2k, ..}, with xk a generic state in this subset. For all the above methods, a
Metropolis-Hastings update probability is used. The bottleneck ratio of a generic set A
can be expanded by using the problem’s structure. Recall we have,

π(A) =
∑
i=0

ciπ(xi). (4.18)

Φ(A) =
E(A,Ac)

π(A)
=

1

π(A)

( ∑
x∈A,y∈Ac

π(x)A(y|x)Q(y|x)

)

=
1

π(A)

[
c0π(x0)

(∑
y∈Ac

Q(y|x0)min(1, e−β(Hc(y)−E0))

)

+ c1π(x1)

(∑
y∈Ac

Q(y|x1)min
(
1, e−β(Hc(y)−E1

))
+ ...

]

=
1

π(A)

[
c0π(x0)

[
Q(x0|x0)(|S0| − c0) +Q(x1|x0)(|S1| − c1)e

−4β +Q(x2|x0)(|S2| − c2)e
−8β + ....

]
+ c1π(x1)

[
Q(x0|x1)(|S0| − c0) +Q(x1|x1)(|S1| − c1) +Q(x2|x1)(|S2| − c2)e

−4β + ....
]
+ ....

]
(4.19)
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In the low-temperature limit, many of these terms are exponentially suppressed. Addition-
ally, only the lowest energy states contribute to the distribution π. To find the bottleneck
of the entire chain Eq. 4.19 is minimized over any possible subset A.

Uniform Proposal

The bottleneck ratio further reduces for the classical strategy with a uniform proposal
probability Q(y|x) = 1/2N∀x, y.

Φ(A) =
1

2Nπ(A)

( ∑
x∈A,y∈Ac

π(x)A(y|x)

)

=
1

2Nπ(A)

[
c0π(x0)

[
(|S0| − c0) + (|S1| − c1)e

−4β + (|S2| − c2)e
−8β + ....

]
+ c1π(x1)

[
(|S0| − c0) + (|S1| − c1) + (|S2| − c2)e

−4β + ....
]
+ ....

]

=
1

2N
∑

i=0 ciπ(xi)

[
(|S0| − c0)

∑
i=0

ciπ(xi) + (|S1| − c1)
∑
i=1

ciπ(xi) + ...

+
∑
j=0

cjπ(xj)
∑
i=1

(|Si+j| − ci+j)e
−2iβ

]

(4.20)

In the low-temperature limit,

Φ(A) ∼ 1

2N
∑

i=0 ciπ(xi)

(
(|S0| − c0)

∑
i=0

ciπ(xi) + (|S1| − c1)
∑
i=1

ciπ(xi) + ...

)

=
1

2N

(
(|S0| − c0) + (|S1| − c1)

∑
i=1 ciπ(xi)∑
i=0 ciπ(xi)

+ ...

)
=

1

2N

(∑
j=0

(|Sj| − cj)

∑
i=j ciπ(xi)∑
i=0 ciπ(xi)

)

=
1

2N

(∑
j=0

(|Sj| − cj)

∑
i=j cie

−4iβ

c0 +
∑

i=1 cie
−4iβ

)

∼ 1

2N
(|S0| − c0)

(4.21)
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As we have the constraint that π(A) ≤ 1/2, this is minimal if we take A to contain one of
our ground states. Thus, Φ⋆ =

1
2N

, which matches the numerical minimization and shows
the scaling seen in Fig. 4.6.

Quantum Proposal

Like the spectral gap δ, the bottleneck ratio of the quantum algorithm depends on κ and
η. More specifically, the set A, which minimizes Φ(A) changes across κ and η. This
minimization can be done numerically for small system sizes. As seen in Fig. 4.7, this
minimization recovers the specific structure seen in the spectral gap. These patterns emerge
by changing between two specific sets A. One, which I will label as A1, contains just
one of the ground states, A1 = {x10}. The other does not contain either of the ground
states, Ac

2 = S0. As higher energy states are further suppressed in Eq. 4.19, it is a valid
approximation to take A2 = S1 when considering large β.

When β is large, the constraint of π(A) ≤ 1/2 limits our choice of A. We have a
degenerate ground state, π(x0) ∼ 1/2. From the form of Eq. 4.19, the two sets for A
described above emerge as the leading order contributions. Since we can solve this evolution
exactly, we can calculate the bottleneck ratio in both these cases.

We will first investigate the bottleneck ratio with the set A1 = {x10}. Again in the
low-temperature limit, transitions from x10 into higher energy states are exponentially sup-
pressed due to the Metropolis-Hastings acceptance probability.

Φ(A1) =
1

π(x10)

∑
y ̸=x1

0

π(x10)A(y|x10)|
〈
x10
∣∣U |y⟩ |2


=
∑
y ̸=x1

0

A(x10, y)|
〈
x10
∣∣U |y⟩ |2

∼ |
〈
x10
∣∣U ∣∣x20〉 |2

(4.22)

To calculate this overlap, I will make use of the exact solution of the transverse Ising model
derived in Appendix A. As |x10⟩ and |x20⟩ denote the two ground states of the classical Ising
Hamiltonian, they are also ground states of the transverse field Ising model (TFIM) of
Eq. 4.15 when κ = 1 and η = 0. Due to the Z(2) symmetry of the problem, the TFIM
Hamiltonian can be split into two fermionic parity sectors labelled as p = 0 and p = 1.
The classical states |x10⟩ and |x20⟩ can then be written in terms of the lowest energy states
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Figure 4.7: Left: Spectral gap of the quantum algorithm for N = 4 at β = 5. Right:
Numerically minimized bottleneck for N = 4 at β = 5. The structure seen here comes
from transitions between the sets A1 and A2.

of the p = 0 and p = 1 sectors, labelled |gs0⟩ and |gs1⟩, respectively.∣∣x10〉 = 1√
2
(|gs0⟩+ |gs1⟩)∣∣x20〉 = 1√

2
(|gs0⟩ − |gs1⟩)

(4.23)

Expanding the overlap of Eq. 4.22 we have,

|
〈
x10
∣∣U ∣∣x20〉 |2 = 1

4
(⟨gs0|U |gs0⟩ − ⟨gs1|U |gs1⟩)

(
⟨gs0|U † |gs0⟩ − ⟨gs1|U † |gs1⟩

)
=

1

4

[
| ⟨gs0|U |gs0⟩ |2 + | ⟨gs1|U |gs1⟩ |2

− ⟨gs0|U |gs0⟩ ⟨gs1|U † |gs1⟩ − ⟨gs1|U |gs1⟩ ⟨gs0|U † |gs0⟩
]
.

(4.24)

Here we require the evolution of the classical ground state under the TFIM. Since these
two models coincide when η = 0, we can write these classical states in terms of the momen-
tum space fermions needed to diagonalize the TFIM. In this fermionic basis, the overlaps
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present in the bottleneck ratio can be calculated exactly. The derivation is presented in
Appendix C, with the final forms listed below.

| ⟨gs0|U |gs0⟩ |2 =
∏
K+

0

[
1− η2 sin2(k)

ε2k
sin2(2εk)

]
(4.25)

| ⟨gs1|U |gs1⟩ |2 =
∏
K+

1

[
1− η2 sin2(k)

ε2k
sin2(2εk)

]
(4.26)

⟨gs0|U |gs0⟩ ⟨gs1|U † |gs1⟩

= e−2iα(N/2−1)
∏
{K0}

[
cos(2εk)−

i(η cos(k)− α)

εk
sin(2εk)

] ∏
{K1}

[
cos(2εk) +

i(η cos(k)− α)

εk
sin(2εk)

]
(4.27)

⟨gs1|U |gs1⟩ ⟨gs0|U † |gs0⟩

= e2iα(N/2−1)
∏
{K0}

[
cos(2εk) +

i(η cos(k)− α)

εk
sin(2εk)

] ∏
{K1}

[
cos(2εk)−

i(η cos(k)− α)

εk
sin(2εk)

]
(4.28)

This analytic form can investigate much larger systems for the bottleneck ratio for A1 =
{x10}. The other subset we need to consider is A2 = S1.

Φ(A2) =
1

|S1|π(x1)

( ∑
x∈S1,y∈Ac

π(x1)A(x, y)| ⟨y|U |x⟩ |2
)

=
1

|S1|
∑

x∈S1,y∈Ac

A(x, y)| ⟨y|U |x⟩ |2

=
1

|S1|
∑

x∈S1,y∈S0

A(x, y)| ⟨y|U |x⟩ |2 + 1

|S1|
∑

x∈S1,y∈S2

A(x, y)| ⟨y|U |x⟩ |2 + ..

∼ 1

|S1|
∑

x∈S1,y∈S0

| ⟨y|U |x⟩ |2

(4.29)

Recall we have |S1| = N(N − 1) from Eq. 2.21. This can also be seen as we need to create
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2 domain walls, which can be placed at N sites.∑
x∈S1,y∈S0

| ⟨y|U |x⟩ |2 =
∑
x∈S1

〈
x10
∣∣U |x⟩ ⟨x|U † ∣∣x10〉+ 〈x20∣∣U |x⟩ ⟨x|U † ∣∣x20〉

=
∑
x∈S1

⟨gs0|U |x⟩ ⟨x|U † |gs0⟩+ ⟨gs1|U |x⟩ ⟨x|U † |gs1⟩
(4.30)

Compared to the previous calculation, these overlap terms also contain states in S1. These
excited states can also be divided into the p = 0 and p = 1 sectors, each containing
N(N − 1)/2 states. Since U perseveres the fermionic parity, there is no method to move
from one parity sector to another under this evolution. This allows these two sectors to be
considered separately.∑
x∈S1,y∈S0

| ⟨y|U |x⟩ |2 =
∑

x∈Sp=0
1

⟨gs0|U |x⟩ ⟨x|U † |gs0⟩+
∑

x∈Sp=1
1

⟨gs1|U |x⟩ ⟨x|U † |gs1⟩ (4.31)

These terms are derived in detail in Appendix C, leading to the following bottleneck ratio,

Φ(A2) =
1

N(N − 1)

[
| ⟨gs0|U |gs0⟩ |2

∑
{K0}

(
η2 sin2(2εk) sin

2(k)

ε2k − η2 sin2(2εk) sin
2(k)

)

+ | ⟨gs1|U |gs0⟩ |2
∑
{K1}

(
η2 sin2(2εk) sin

2(k)

ε2k − η2 sin2(2εk) sin
2(k)

)]
.

(4.32)

With the analytic form of the bottleneck ratio for A1 and A2, we can explore the system
size dependence of this bound. Although the ratio of the set A1 was shown to be relevant
numerically for small systems, for larger N , the ratio associated with set A2 is smaller for all
η and κ. This can be seen as both ratios contain the Loschmidt echo term | ⟨gs0|U |gs0⟩ |2,
but Φ(A2) has additional polynomially suppression. We can rewrite this bottleneck ratio
in a form to make the system size dependence evident.

| ⟨gs|U |gs⟩ |2 =
∏
{K0}

[
1− η2 sin2(k)

ε2k
sin2(2εk)

]

= exp

−N
− 1

N

∑
{K0}

ln

(
1− η2 sin2(k)

ε2k
sin2(2εk)

)
= e−Nλ(κ,η)

(4.33)
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In the continuum limit, {K0} = {K1} and we have for both sectors,

λ(κ, η) = − lim
N→∞

1

N

∑
k

ln

(
1− η2 sin2(k)

ε2k
sin2(2εk)

)
= −

∫ π

0

dk

2π
ln

(
1− η2 sin2(k)

ε2k
sin2(2εk)

)
.

(4.34)

This gives the final form of Φ(A2),

Φ(A2) =
1

N(N − 1)

[
| ⟨gs0|U |gs0⟩ |2

∑
{K0}

(
η2 sin2(2εk) sin

2(k)

ε2k − η2 sin2(2εk) sin
2(k)

)

+ | ⟨gs1|U |gs0⟩ |2
∑
{K1}

(
η2 sin2(2εk) sin

2(k)

ε2k − η2 sin2(2εk) sin
2(k)

)]

=
2

N(N − 1)
e−Nλ(κ,η)Nγ(κ, η)

=
2e−Nλ(κ,η)γ(κ, η)

N − 1

(4.35)

Where γ(κ, η) is defined as,

γ = lim
N→∞

1

N

∑
k

η2 sin2(2εk) sin
2(k)

ε2k − η2 sin2(2εk) sin
2(k)

=

∫ π

0

dk

2π

η2 sin2(2εk) sin
2(k)

ε2k − η2 sin2(2εk) sin
2(k)

.

(4.36)

The behaviour of the bottleneck ratio scaling is determined by the exponential dependence
on N , weighted by the value of λ. The value of λ is only small in the limit of small
η, where polynomial scaling is obtained. This matches the numerical results as in this
limit the quantum-enhanced MCMC reduces to the local classical strategy, which scales
polynomially. Outside of this limit, the bottleneck ratio scales exponentially with the
system size. The value of λ depends on κ and η as seen in Fig. 4.8. In the region η > κ, λ
is approximately constant. This can also be seen from Eq. 4.34 as the enveloping function
η2/ε2k becomes constant in this region.

Taking this fixed value of λ the Cheeger inequality bounds are shown in Fig. 4.9 along
with the fit of the random quantum proposal from Fig. 4.6. The numerical fit found for
small system sizes remains in the bounds given by this bottleneck analysis. Although
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Figure 4.8: Exponential scaling factor λ of the chain’s bottleneck ratio as a function of κ
and η.

displayed here, the lower bound is not precise due to approximations made in the mini-
mization over sets A. In the limit of β → ∞ these approximations become exact. These
results show that for a large η and κ the scaling found numerically for small systems falls
within the analytic bounds of the Cheeger inequality at large system sizes. Additionally,
the scaling of the uniform proposal is shown in Fig. 4.9. The lower Cheeger bound shows
favourable scaling of the quantum strategy over this classical uniform method.

The bottleneck ratio of this chain gave insight into the dependence of κ and η seen in
Fig. 4.4. Additionally, the Cheeger inequality shows the quantum improvement seen in
the Ising chain persists at larger systems beyond what is numerically accessible. We were
able to find the bottleneck ratio for this model because the quantum evolution is exactly
solvable. As the transverse field Ising model is integrable, it does not obey the eigenstate
thermalization hypothesis. The limit of large κ and η is the long time limit of the evolution
when the system is expected to have thermalized. The specifics of this model which allowed
the bottleneck ratio to be found, may also be causing the scaling speedup shown above.
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Figure 4.9: Cheeger bounds for quantum proposal strategy at large κ and η. The scaling fit
from the small system size numerical results of the random quantum proposal falls within
the Cheeger bounds. Additionally, the classical uniform proposal scaling is shown.

The thermalization of this and other models needs to be further investigated to see if the
large system scaling found here can be generalized to other systems.

4.4 Maximum Independent Set Problem

4.4.1 Motivation

This algorithm was tested experimentally on a superconducting quantum device for random
chain-connected SK model instances with near-degenerate local minimum [23]. The unitary
U = e−iHt was approximately implemented using a second-order Suzuki-Trotter expansion.
With this approximation and experimental errors, a mixing time speed-up was still observed
compared to a classical uniform MCMC method [23]. However, due to device limitations,
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this algorithm was only explored for systems with N ≤ 10.

Fortunately, other candidate quantum devices, such as neutral atom arrays, are better
suited for quantum simulation and have been scaled to sizes of hundreds of atoms [18].
Neutral atom arrays offer a highly coherent and controllable platform for implementing
quantum many-body Hamiltonians. This algorithm only requires evolution under a spe-
cific Hamiltonian, thus avoiding the need for gate-based computation. Recently, it has
been shown the Maximum Independent Set (MIS) problem can be encoded onto arrays
of Rydberg atoms, a type of neutral atom-based quantum device [31]. The many-body
Hamiltonian governing such Rydberg systems contains terms needed for the evolution per-
formed in this algorithm, making it a promising candidate device for quantum-enhanced
MCMC.

4.4.2 Rydberg Atom Arrays

Rydberg atom arrays consist of neutral atoms that are trapped and arranged using optical
tweezers. These atoms, typically rubidium, are driven between their ground state and a
Rydberg state, characterized by a large principal quantum number. Two atoms in the
Rydberg state experience a dipole-dipole interaction. If the two atoms are at positions x⃗j
and x⃗k respectively, typically the atoms are experimentally prepared so that the leading-
order behaviour is a 1/|x⃗j − x⃗k|6 van der Waals interaction [8]. This interaction penalizes
atoms of close proximity to both be excited into the Rydberg state, an effect known as the
Rydberg blockade. Atomic excitations through homogeneous laser pulses are specified with
a time-dependent Rabi frequency Ω(t) and detuning ∆(t). In combination with the van
der Waals interaction, these arrays are described with the many-body Hamiltonian [13],

H(t) =
Ω(t)

2

N∑
i=1

σx
i −∆(t)

∑
j

n̂j +
∑
i<j

Vijn̂in̂j. (4.37)

This Hamiltonian acts on the Rydberg state occupation basis, where each of the N atoms
are described by the two-dimensional Hilbert space spanned by the atom’s ground state |g⟩
and Rydberg state |r⟩. The Rydberg occupation operator is defined as n̂i = |ri⟩⟨ri|, and
here σx

i = |gi⟩⟨ri| + |ri⟩⟨gi|. The interaction term, which penalizes atoms both in Rydberg
state, has the following power-law decay,

Vij = V0/|x⃗j − x⃗k|6. (4.38)

A distance scale Rb, known as the blockade radius, determines the radius at which the
Rydberg interaction becomes strong. Specifically, this radius defines where the interaction
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energy is comparable to the coupling determined by Ω,

V0
R6

b

= Ω. (4.39)

If any atoms are closer than this radius, it is energetically unfavourable for them to both be
in the Rydberg state. In an atom array created with optical tweezers, the effective blockade
radius can be modified by programming the lattice spacing. This strongly-interacting
Hamiltonian has been experimentally realized with a high degree of control for systems
with hundreds of atoms [13].

Unit Disk Maximum Independent Set Problem

There is a hardware-efficient encoding of an NP-hard optimization problem on these arrays
which requires the experimental ability to control the position of the atoms as well as
the capability to control the atomic state [31]. Specifically, a maximum independent set
problem can be encoded. On a graph G with vertices V and edges E an independent set is
a collection of vertices in which no pair is connected by an edge. Finding the largest subset
is a problem known as Maximum Independent Set (MIS). We will focus on the unit disk
MIS problem, where the graph is embedded in a two-dimensional plane where two vertices
are connected only if they are separated by a distance smaller than a unit radius. Even on
this restricted graph type, this problem is NP-hard [10].

The Rydberg blockade mechanism that restricts two atoms in close proximity from
becoming excited naturally enforces this independent set constraint. With a positive de-
tuning ∆, the ground state of this Hamilton then finds the maximum independent set.
It has been shown that the Rydberg Hamiltonian Eq. 4.37, with long-range interaction
tails, can encode this NP-hard problem [31]. Additionally, Rydberg atom arrays have been
used to optimize this MIS problem through variational algorithms [12]. Motivated by this
physical device which can also implement the needed σx term, we will numerically explore
this quantum algorithm on the unit disk maximum independent set problem. Ignoring
additional effects from the interaction tails of the Rydberg interaction, we will consider the
following Hamiltonian,

HMIS
c = −

∑
i∈V

n̂i +
∑

(i,j)∈E

νn̂in̂j (4.40)

where ν = 100. In order to exactly calculate δ we are limited to small systems simulations.
These problems are embedded in a two-dimensional grid so two parameters are used the
specify the problem. The first is edge length L and the second is a random dropout
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Figure 4.10: Unit disk maximum independent set solution on a L = 4 lattice with random
dropout probability D = 0.2 [1].

probability D. For example, the lattice seen in Fig. 4.10 has L = 4 and D = 0.2. The
maximum independent set is highlighted in red. Configurations were generated and solved
using the Bloqade package [1].

4.4.3 Numerical Results

Using spin variable σi = ±1, the current configuration set is all spin with value one.
At low temperatures, the MCMC will sample from sets which minimize Eq. 4.40, the
maximum independent sets of the graph. We will compare the quantum-enhanced MCMC
method to the uniform and local classical MCMC methods described above. However, we
will additionally compare a classical update optimized for the MIS problem, the exchange
MCMC (A fixed temperature variant of the Rydberg simulated annealing algorithm of
[12]). Due to the independent set constraint Eq. 4.40, having two neighbouring spins part
of the set is unfavourable. The exchange MCMC makes use of this structure and proposes
new configurations primarily through a spin exchange. Spin exchanges remove one site
from the set and add one of its neighbours to the set. This movement is not penalized by
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the independent set constraint like random site addition is. Let free sites be the set of spins
which have no neighbours in the set. The exchange MCMC generates new configurations
through the following process.

1. Select a spin at random from the set of free sites and the sites in the set.

2. If the selected site is free, add it to the set.

3. If the selected site is in the set, randomly pick one of its neighbours. Spin exchange
with this neighbour with probability 1/8. Remove the spin from the set with the
remaining probability.

The spin exchange occurs with probability 1/8 to ensure similar behaviour for graphs with
different connectivity. This chain does not satisfy the detailed balance conditions and is
not fully mixing at high temperatures. However, for low-temperature, where the system is
already constrained to independent sets, this chain mixes and has more favourable scaling
than the other classical alternatives.

We will also compare a quantum alternative to the exchange MCMC. With the mo-
tivation of emulating the spin exchange advantage for this problem, we will consider the
following term of the quantum evolution under Eq. 4.1,

Hmix =
∑
i,j∈E

1

2
(σ+

i σ
−
j + σ−

i σ
+
j ). (4.41)

The quantum enhanced MCMC method is easy to adapt to variants optimized for the
problem at hand. We will use the same steps as the classical algorithm, replacing the spin
exchange with the quantum evolution.

1. Select a spin at random from the set of free sites and the sites in the set.

2. If the selected site is free, add it to the set.

3. If the selected site is in the set, with probability (# of neighbours)/8 evolve under
the Hamiltonian of Eq. 4.1, with Hmix of Eq. 4.41. With the remaining probability,
remove the spin from the set.

In the limit of small η this algorithm reduces to the above exchange MCMC. The depen-
dence of the average δ for both these quantum strategies can be seen in Fig. 4.11 for N = 7
in the low-temperature limit. Unlike both the SK and Ising model, there is a concentration
of large spectral gaps when η is small in Fig. 4.11. The reasoning for this concentration is
unknown and needs to be further investigated.
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Figure 4.11: Spectral gap δ of quantum enhanced MCMC for N = 7 (L = 3 and D = 0.2)
averaged over 100 instances of MIS at β = 10. Both the original quantum-enhanced MCMC
proposal and the exchange proposal are shown.

Temperature Dependence

The average spectral gap of these algorithms are compared as a function of temperature in
Fig. 4.12. In the uniform proposal method, the three energy regimes of this problem are
evident. For low temperatures, below around T = 0.1, the chain samples from maximum
independent sets. At slightly higher temperatures, independent sets are sampled. Finally,
at high temperatures, non-independent sets are sampled as there is enough energy to
overcome the large interaction term in the Hamiltonian. These three plateaus are also
seen in the quantum proposal as that method is fully mixing at all temperatures. Both
the classical and quantum exchange methods cannot add sites that break the independent
set constraint and thus do not mix at large temperatures. Not evident in this figure, but
at those temperatures, the exchange methods converge to an incorrect distribution. In
the low-temperature limit, for this system size, the quantum strategies have longer mixing
times as compared to the uniform proposal.
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Figure 4.12: Spectral gap δ of classical and quantum strategies for N = 8 averaged over
100 graphs with L = 4 and D = 0.5.

Low-Temperautre System Size Scaling

Due to the graph structure of this problem, the system sizes are varied by considering
different amounts of random dropouts. As a result, for some system sizes the graph is
significantly more sparse, leading to varying difficulty in the task of finding the maximum
independent set. Due to this added complication, we will consider scaling for graphs of
comparable difficulty. Two measures of difficulty will be considered, the first being the
degeneracy of the ground state manifold, D|MIS|. The second will be the graph’s hardness
parameter [12]. This is a measure of how hard it is for a random walker on the set of size
|MIS| − 1 to find a global minimum. It depends on the degeneracy of this set, D|MIS|−1, as
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Figure 4.13: Mixing time scaling with system size of classical and quantum methods for
graphs with fixed hardness parameter and degeneracy at β = 10.

well as the size and degeneracy of the optimal set. Specifically, it is defined as

HP =
D|MIS|−1

|MIS|D|MIS|
. (4.42)

In Fig. 4.13 the β = 10 scaling is shown for fixed degeneracy and hardness parameters.
Specifically, graphs with only one MIS set and a hardness parameter of 2 were used. Un-
fortunately, configurations with these specifications do not exist for all system sizes. This
limitation makes it hard to determine the scaling characteristics of both the classical ex-
change proposal and the quantum strategies. However, from this data, there does not seem
to be an advantage of the quantum algorithm over the exchange classical method. A possi-
ble extension to consider larger system sizes is to simulate only the subspace of the mixing
matrix acting on the independent set configurations. As we are in the low-temperature
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limit, transitions to non-independent set configurations are very unlikely. Simulating only
this subspace would allow for larger system sizes to be considered in the scaling perfor-
mance of the quantum algorithm. More scaling data is necessary for conclusions of the
performance of this algorithm on this problem. However, this avenue was not yet pursued
due to a lack of understanding of Fig. 4.11, instead, simpler models where more insight
could be gained were considered.

4.5 Gaussian Distributed States

When exploring the bottleneck ratio of the Ising model, it was realized that the requirement
of a unitary proposal might restrict the performance of the chain. The optimal unitary can
be found for a model with Gaussian distributed states, giving insight into the best bound
under this restriction of a unitary proposal. Assume we have a large system size such that
the density of states of the classical Hamiltonian is a continuous function of energy, E.
Specifically, it will be assumed to be Gaussian,

ρ(E) =
1

σ
√
2π
e−

E2

2σ2 , (4.43)

where σ is the standard deviation. The Boltzmann distribution π of this system can be
found exactly as the assumption of a Gaussian density of states allows the partition function
Z to be solved.

1 =
1

Z

∫ ∞

−∞
dEρ(E)e−βE

=
1

Z

∫ ∞

−∞
dE

1

σ
√
2π
e−

E2

2σ2−βE

=
1

Z

∫ ∞

−∞
dE

1

σ
√
2π
e−

1
2σ2 (E+βσ2)2+β2σ2

2

→ Z = eβ
2σ2/2

(4.44)

We will make use of the Cheeger inequality, Eq. 2.21, in order to gain insight of the scaling
of the quantum-enhanced MCMC on this system. Recall we need the bottle ratio of the
chain which is a minimization over subsets A,

Φ⋆ := min
A:π(A)≤1/2

∑
x∈A,y∈Ac π(x)P (x, y)

π(A)
, (4.45)
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In order to maximize the denominator of the bottleneck,

π(A) =
1

Z

∫
E(A)

dEρ(E)e−βE =

∫
E(A)

dE
1

σ
√
2π
e−

1
2σ2 (E+βσ2)2 ∼ 1

2
(4.46)

Additionally, in order to minimize the numerator, A should contain the largest energy
states so they get suppressed by π(x). Consider a cutoff E∗ and let A be all states with
E > E∗. To satisfy Eq. 4.46, E∗ is the peak of the Gaussian,

E∗ = −βσ2. (4.47)

Moving from this set A to Ac lowers the energy. Using Metropolis-Hastings acceptance
probability, this new configuration is always acceptance. This simplifies the form of the
bottleneck ratio,

Φ(A,Ac) =

∑
x∈A,y∈Ac π(x) ⟨y|U |x⟩⟨x|U † |y⟩∑

x∈A π(x)
. (4.48)

4.5.1 Optimal Unitary

Our goal is to see, given the optimal unitary, U , how the quantum method performs. Given
the fixed A found above, we will consider the optimal unitary, the one which maximizes the
bottleneck ratio. To maximize the numerator, the largest number of states from A should
be moved to Ac. Due to the constraint of unitary evolution, at most |Ac| states of A can
be transferred into Ac. For classical methods, all states can be transferred into Ac, so the
restriction of U limits the quantum strategy. However, in the numerator of the bottleneck
ratio the terms are additionally weighted by π(x). For high-energy states, when sampling
from the low-temperature Boltzmann distribution, π(x) for these states is exponentially
small. The quantum algorithm can only transfer a fixed number of states, but many states
barely contribute due to this exponential suppression. The optimal unitary U transfers
the |Ac| smallest energy states of A. Define E ′ to be the cutoff where all states in A with
E∗ < E < E ′ will get transferred into Ac. The size of Ac is,

|Ac| =
∫ E∗

−∞
dE

1

σ
√
2π
e−

E2

2σ2 =
1

2

(
1− erf

(
βσ√
2

))
. (4.49)

With |Ac| we can now solve for E ′.∫ E∗

−∞
dE

1

σ
√
2π
e−

E2

2σ2 =

∫ E′

E∗
dE

1

σ
√
2π
e−

E2

2σ2

1

2

(
1− erf

(
βσ√
2

))
=

1

2

(
erf

(
E ′
√
2σ

)
+ erf

(
βσ√
2

)) (4.50)
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E ′ =
√
2σerf−1

(
1− 2erf

(
βσ√
2

))
(4.51)

The conductance for the optimal quantum strategy is then,

Φ(A,Ac) = 2

∫ E′

E∗
dE

1

σ
√
2π
e−

1
2σ2 (E+βσ2)2

= erf

(
βσ2 + E ′
√
2σ

)
− erf

(
βσ2 + E∗

√
2σ

)
= erf

(
βσ2 + E ′
√
2σ

)
= erf

(
βσ√
2
+ erf−1

(
1− 2erf

(
βσ√
2

)))
≤ 1

βσ
.

Typically many-body systems have extensive bandwidth thus σ2 ∼ N [35]. For this opti-
mized unitary, we then have,

Φ(A,Ac) ≤ 1

β
√
N
. (4.52)

This upper bound on the bottleneck ratio does not have exponential dependence on the
system size. The situation outlined here is not practical as there is no general strategy
which implements this optimal unitary. It does demonstrate that requiring a unitary
proposal method does not immediately give exponentially increasing mixing time, thus not
eliminating a possibility for a large system size quantum speedup.

4.6 Discussion

In this chapter, we saw the application of the quantum-enhanced MCMC algorithm on
numerous problems. First, the SK model was explored numerically, confirming the low-
temperature fast mixing as compared to uniform classical MCMC chain as seen in [23].
Next, the Ising chain was considered both numerically and analytically. We again observe
a low-temperature advantage of the quantum algorithm as compared to a uniform clas-
sical strategy numerically. The bottleneck ratio of the quantum chain was then explored
which not only gave insights into which Hamiltonian parameters lead to a large spectral
gap, but allowed us to consider the behaviour of the chain for system sizes not accessible
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numerically. In the limit of large κ and η the Cheeger inequality showed the quantum
algorithm for low-temperature sampling maintains a mixing time advantage over the uni-
form classical method. Next, the algorithm was tested on the experimentally relevant MIS
problem. Numerically we did not find any advantage of the quantum-enhanced MCMC
algorithm over classical algorithms specified for this problem. The quantum algorithm
was additionally extended to a version also optimized for this problem but still showed no
advantage. Finally, Gaussian distributed states were explored in order to see if there was
any limitation of requiring unitary proposal methods. Our analysis suggests that for this
problem, this restriction does not lead to exponential scaling of the mixing time.

As we have seen from the above examples, the quantum-enhanced MCMC only ever
shows an improvement over the classical methods in the low-temperature limit. In this
limit, classical sampling methods have been shown to be substantially improved with an-
nealing and parallel tempering methods [36, 7]. These methods are not compared here, and
in order to claim any advantage of this quantum algorithm over its classical counterparts
this comparison is necessary. Due to the Markov chain construction of the quantum-
enhanced MCMC, this quantum method can also be extended with these same annealing
and parallel tempering methods. However, it is unknown if this would lead to any algo-
rithmic improvement over classical methods. At a fixed temperature, the quantum method
is able to transition between states far in Hamming distance that are still close in energy.
This is difficult for classical methods at fixed temperatures, however with the addition
of annealing or parallel tempering, they no longer have this limitation. Therefore it is
plausible that allowing variable temperature strategies may result in no quantum improve-
ment. Additionally, often there are classical MCMC methods that are optimized for the
specific problem at hand. We have seen an example of one such example when considering
the MIS problem. In that case we were unable to show any numerical advantage of the
quantum-enhanced MCMC algorithm over the classical strategy. This potentially limits
the use case of this quantum algorithm to only difficult problems where uniform classical
methods are the only option. More optimistically, as this quantum algorithm creates a
classical chain, it can be easily adapted to the specific problem. This was showcased in the
quantum exchange algorithm for the MIS problem.

There are still many open questions surrounding this quantum algorithm and possible
directions for further research. From the investigation presented in this research, it is
still unknown if this quantum algorithm can be simulated classically. For the examples
considered, it seems large spectral gaps can be obtained for short-time quantum evolution,
indicating there is a possibility of classical simulation. Another current path of investigation
is to consider the long time limit of evolution where the quantum system is assumed to be
thermalized. Hopefully, these explorations will give insight into the large system behaviour
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of non-integrable systems, a previously inaccessible limit.
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Chapter 5

Conclusion

Near-term quantum algorithms for sampling often focus on sampling tasks that are difficult
classically but lack immediate practical relevance. In this thesis, we consider near-term
quantum algorithms to sample from a Boltzmann distribution of a classical Hamiltonian.
This sampling problem is ubiquitous in statistical physics in order to estimate observables
of intractable systems. However, this task is also relevant much more broadly in fields such
as machine learning and optimization.

The first quantum algorithm considered, adiabatically prepares a qsample which en-
codes the Boltzmann distribution [44]. The adiabatic state preparation time of this algo-
rithm is related to the properties of the phase transitions traversed during the adiabatic
schedule. Specifically, a quantum parent Hamiltonian such that its ground state is the
wanted qsample. By considering adiabatic paths in an extended parameter space of this
parent Hamiltonian, this algorithm can give a scaling improvement of the state preparation
time as compared to the mixing time of the classical MCMC method.

We reproduce the quadratic scaling improvement found for a one-dimensional Ising
model. The applicability of this algorithm to other more complicated classical problems
is limited as it requires knowledge of the phase transitions of the quantum parent Hamil-
tonian. Instead, we consider counterdiabatic driving protocols on the adiabatic qsample
preparation problem presented. Counterdiabatic driving protocols add additional driving
terms to the Hamiltonian to suppress transitions out of the ground state. If these terms
are found and implemented exactly, the qsample can be prepared instantaneously. The
driving terms are often nonlocal and not practical for today’s quantum devices. We there-
fore considered local approximations and numerically investigated the state preparation
time of the qsample. This protocol was tested on the one-dimensional Ising model, where
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the counterdiabatic terms can be calculated exactly. When the driving terms are locally
restricted, the state preparation time scales unfavourably as compared to the classical
MCMC. Further investigation is needed to determine the nature of this scaling and the
applicability of this method to other problems.

In Chapter 4, another near-term quantum algorithm to sample from the Boltzmann
distribution is investigated; the quantum-enhanced Markov chain Monte Carlo [23]. This
algorithm does not produce qsamples. Instead, it is a Markov chain on the space of classical
configurations. New configurations are proposed by encoding the current configuration as
a computational basis state, evolving under a quantum Hamiltonian, and then protectively
measuring to obtain a new classical configuration. This new configuration is then accepted
as the new state of the MCMC according to the Metropolis-Hastings acceptance probability.
This chain converges to the desired Boltzmann distribution, even if the quantum evolution
is inaccurate.

First, the mixing time of this MCMC is investigated through numerical calculation of
the spectral gap of the transition matrix on the Sherrington-Kirkpatrick model. We showed
faster mixing times than standard classical MCMC methods at low temperatures for the
numerically accessible system sizes, verifying the results of [23]. However, for this system,
it is difficult to gain an understanding of the spectral gap’s dependence on the parameters
of the quantum evolution. For the accessible system sizes, the system maintains fast mixing
even for short quantum evolutions, indicating the possibility of classical simulation of this
evolution. Additionally, it is unknown if this speedup seen numerically is affected by finite-
size effects and if it persists to large system sizes. The dependence of the spectral gap on
the parameters of the quantum evolution is important for understanding the nature of the
speed-up found and, unfortunately, very difficult to investigate for this system.

Next, a simplified model was considered, the one-dimensional Ising model. The spectral
gap was found numerically, showing the same scaling advantage over uniform classical
methods as in the SK model. The quantum evolution in the quantum-enhanced MCMC
for this problem can be solved exactly for any system size. However, calculating the spectral
gap is still limited to small systems accessible numerically. Instead, the bottlenecks of the
quantum-enhanced MCMC were found in the limit of long quantum evolution. The Cheeger
inequality can then be used to bound the mixing time for any system size. The scaling found
numerically for small system sizes remains in the found bounds of the Cheeger inequality
at large system sizes. Importantly, the lower bound on the spectral gap maintains an
advantage over the uniform classical method for all system sizes. This shows that for this
problem, the quantum-enhanced MCMC method with a long evolution time has a faster
mixing time than the uniform classical MCMC. Analyzing the bottlenecks of the chain not
only gave an analytical bond on the spectral gap but also gave insight into the spectral
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gap’s dependence on the parameters of the quantum evolution.

This algorithm has been implemented on superconducting devices, requiring an approx-
imation of the quantum evolution [23]. Therefore, the maximum independent set problem
was considered, as the quantum evolution of this algorithm can be implemented in Ryd-
berg atom arrays without approximation. Here we compared to a classical MCMC method
optimized for this problem and also considered an equivalently modified quantum method.
The number of numerically accessible system sizes with the same problem difficulty is lim-
ited, and from the available data, there is no advantage of the quantum algorithm over its
classical counterparts. Further research is required to understand the spectral gap depen-
dence on the evolution parameters, as this dependence is significantly different than the
other examples considered.

Finally, another simplified model is considered, a system with a gaussian distributed
density of states. When investigating the bottlenecks of the Ising model, it was realized that
the requirement of a proposal governed by a unitary might limit the chain’s performance.
Therefore this simplified model was considered as the optimal unitary can easily be found.
This unitary maximizes the bottleneck ratio, and luckily does not lead to an upper bound
that is exponentially small in the system size. These results show, at least for this model,
that the requirement of a unitary proposal does not immediately discount this algorithm.

In all, this quantum-enhanced MCMC method was tested on four different classical
problems and showed varying performance. There are still many avenues of investigation
necessary in order to understand both the nature of the speedup found and for which
problems this algorithm is beneficial. It is still unknown if a classical “quantum-inspired”
version of this algorithm would maintain the same mixing time advantages found. Nu-
merically, short quantum evolutions seem to still lead to large spectral gaps. If these
evolutions can be approximated classically and the speed-up maintained, there is potential
for a classical version of this algorithm.
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Appendix A

Jordan-Wigner Transformation

The exact spectrum of a number of models throughout this thesis can be found using a
Jordan-Wigner transformation [35]. This is a mapping between spin-1/2 degrees of freedom
and spinless fermions which can hop between sites with single orbitals. Let a† create one
of these spinless fermions on the site i. Then we can relate the fermionic Hilbert space to
the spin-1/2 Hilbert space through the operator mapping,

σx
i = 2a†iai − 1. (A.1)

This mapping is sometimes instead defined in terms of σz
i , however a rotation of the spin

variables simplifies the analysis for the models considered. There is an added complication
as fermionic operators on different sites anticommute. These additional minus signs can
be handled in one-dimension where the spins are naturally ordered, through a non-local
string operator,

σ+
i =

1

2
(σz

i + iσy
i ) = eiπ

∑i−1
j=1 a

†
jajai,

σ−
i =

1

2
(σz

i − iσy
i ) = eiπ

∑i−1
j=1 a

†
jaja†i .

(A.2)

Which gives the following form of σz
i ,

σz
i = eiπ

∑i−1
j=1 a

†
jaj(ai + a†i ) =

∏
j<i

(1− 2a†jaj)(ai + a†i ). (A.3)

We will see that in this fermionic representation, the Hamiltonian of these models can be
exactly diagonalized.
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A.1 Transverse Field Ising Model

Consider the one-dimensional transverse field Ising model with periodic boundary condi-
tions,

H = −κ
N∑
i=1

σz
i σ

z
i+1 + η

N∑
i=1

σx
i . (A.4)

We will assume that we have an even number of sites, which isn’t a large restriction but
makes the calculations easier. When transferring into fermionic operators we need keep
track of the boundary term,

σz
Nσ

z
1 =

∏
j<N

(1− 2a†jaj)(aN + a†N)(a1 + a†1)

=
∏
j<N

(1− 2a†jaj)(1− 2a†NaN)(1− 2a†NaN)(aN + a†N)(a1 + a†1)

=
N∏
j=1

(1− 2a†jaj)(1− 2a†NaN)(aN + a†N)(a1 + a†1)

= eiπN̂(aN − a†N)(a1 + a†1).

(A.5)

The system’s Hamiltonian is then,

H = −κ

(
N−1∑
i

(a†i − ai)(ai+1 + a†i+1) + eiπN(a†N − aN)(a1 + a†1)

)
+ η

N−1∑
i

(2a†iai − 1). (A.6)

This Hamiltonian does not conserve the total number of fermions N̂ , but the fermionic
parity p = 1

2
(1 − eiπN̂) is conserved. This symmetry is the Z(2) symmetry evident in the

spin problem. This allows us to consider two subspaces independently, one associated with
p = 0 and one with p = 1. We can then write our Hamiltonian of each subspace as,

Hp = −κ
N∑
i

(a†i − ai)(ai+1 + a†i+1) + η
N∑
i

(2a†iai − 1) (A.7)

with the boundary conditions for our fermionic operators defined as,

aN+1 = (−1)p+1a1. (A.8)

This added complication is a direct consequence of the periodic boundary conditions of our
original problem. In the open boundary conditions case, these two fermionic Hamiltonians
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coincide as the boundary term is the same for both (zero). To further simplify this problem,
define the following momentum space operators

ak =
1√
N

N∑
j=1

e−ikjaj → aj =
1√
N

N∑
k=1

eikjak. (A.9)

The terms in the Hamiltonian then become,∑
i

σx
i =

∑
i

(2a†iai − 1)

=
∑
k

(2a†kak − 1)

=
∑
k

(a†kak − a−ka
†
−k)

(A.10)

∑
i

σz
i σ

z
i+1 =

∑
i

(a†i − ai)(a
†
i+1 + ai+1)

=
∑
i

−aiai+1 + a†ia
†
i+1 − aia

†
i+1 + a†iai+1

=
∑
k

−eika−kak + eika†ka
†
−k − eika−ka

†
−k + eika†kak

=
∑
k

[
− 1

2
eika−kak +

1

2
e−ika−kak −

1

2
e−ik

+
1

2
eika†ka

†
−k −

1

2
e−ika†ka

†
−k +

1

2
e−ik

− 1

2
eika−ka

†
−k +

1

2
e−ika†kak −

1

2
e−ik

+
1

2
eika†kak −

1

2
e−ika−ka

†
−k +

1

2
e−ik

]
=
∑
k

cos(k)
(
a†kak − a−ka

†
−k

)
− i sin(k)

(
a−kak − a†ka

†
−k

)

(A.11)

To account for the different boundary conditions in each parity sector, the set of k values
is then [28],

Kp =

{
k = ±2π

N
×

{
(l − 1/2) with l = 1, 2, ..., N/2 p = 0

l with l = 1, 2, ..., N/2− 1 p = 1
(A.12)
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The Hamiltonian for the two parity sectors can then be written as,

Hp =
∑
Kp

[
(η − κ cos(k))

(
a†kak − a−ka

†
−k

)
+ iκ sin(k)

(
a−kak − a†ka

†
−k

)]
(A.13)

For the p = 1 sector we can separate the k = 0 and k = π terms,

Hk=0,π = (η − κ)
(
a†0a0 − a0a

†
0

)
+ (η + κ)

(
a†πaπ − a−πa

†
−π

)
= (η − κ)

(
2a†0a0 − 1

)
+ (η + κ)

(
2a†πaπ − 1

)
= (η − κ) (2n̂0 − 1) + (η + κ) (2n̂π − 1)

= 2κ(n̂π − n̂0) + 2η(n̂0 + n̂π − 1)

(A.14)

The remaining k values in Kp can now be organized in pairs (k,−k). For the p = 0 sector
this pairing can be done without separating out any terms. Define K+

p to be the set of
positive k values of Eq. A.12, we can then write the Hamiltionian as,

H0 =
∑
K+

0

Hk H1 =
∑
K+

1

Hk +Hk=0,π, (A.15)

with

Hk = 2 (η − κ cos(k))
(
a†kak − a−ka

†
−k

)
+ 2iκ sin(k)

(
a−kak − a†ka

†
−k

)
= 2

(
a†k a−k

)(η − κ cos(k) −iκ sin(k)
iκ sin(k) −η + κ cos(k)

)(
ak
a†−k

)
= 2

(
a†k a−k

)
Hk

(
ak
a†−k

) (A.16)

The task of exactly solving this system now only requires diagonalizing this 2 × 2 matrix
Hk which can be done through a Bogoliubov transformation. This transformation maps
current operators onto a new set of fermionic operators through a unitary transform,

γk = ukak − ivka
†
−k (A.17)

Where uk = cos(θk/2) and vk = sin(θk/2) is chosen to diagonalize Hk under this unitary
transformation. Specifically, take

cos(θk) =
η − κ cos(k)√

(η − κ cos(k))2 + (κ sin(k))2

sin(θk) =
κ sin(k)√

(η − κ cos(k))2 + (κ sin(k))2

(A.18)
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Which by construction diagonalizes Hk,

A†HkA =

(
cos(θk/2) i sin(θk/2)
i sin(θk/2) cos(θk/2)

)(
η − κ cos(k) −iκ sin(k)
iκ sin(k) −η + κ cos(k)

)(
cos(θk/2) −i sin(θk/2)

−i sin(θk/2) cos(θk/2)

)
=
√
(η − κ cos(k))2 + (κ sin(k))2

(
1 0
0 −1

)
(A.19)

Putting this together, we have

Hk = 2
(
a†k a−k

)
Hk

(
ak
a†−k

)
= 2

(
a†k a−k

)
AA†HkAA

†
(
ak
a†−k

)
= 2εk(γ

†
kγk − 1/2)

(A.20)

Where εk is the dispersion relation,

εk = 2
√

(η − κ cos(k))2 + (κ sin(k))2. (A.21)

Since εk ≥ 0 the ground state is the state which annihilates γk for all k, known as the
Bogoliuviov vacuum. It is typically to now think of this as a two-band problem, ±εk,
where higher energy states are created by moving fermions from the lower to the upper
band. From this construction, it is evident that there is a phase transition when κ = η as
ε0 = 0 and the energy bands coincide.

This band structure exists for each parity sector, however the p = 1 has the additional
Hk=0,π term. Due to this term, the global ground state is in the p = 0 sector for finite
system sizes. In the ferromagnetic phase, the energy difference of the ground state in
both sectors closes exponentially in the system size. This is what gives the ferromagnetic
degeneracy in the thermodynamic limit.
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Appendix B

Ising-Chain Parent Hamiltonian

B.1 Parent Hamiltonian Derivation

Recall the form of the parent Hamiltonian,

Hq(β) = N(I− e−βHc/2PeβHc/2). (B.1)

For the one-dimensional Ising model with periodic boundary conditions, if we take local
spin flip updates and Glauber acceptance probability, the transition matrix takes the form,

P =
∑
i

piσ
x
i +

(
I−

∑
i

pi

)
(B.2)

with

pi =
1

2N cosh
(
β(σz

i−1 + σz
i−1)
)e−βσz

i (σ
z
i−1+σz

i−1). (B.3)
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The parent Hamiltonian then becomes,

Hq = N

(
I− e−βHc/2

∑
i

piσ
x
i e

βHc/2 − e−βHc/2IeβHc/2 + e−βHc/2
∑
i

pie
βHc/2

)

= N

(∑
i

pi − e−βHc/2
∑
i

piσ
x
i e

βHc/2

)

= N

(∑
i

pi −
∑
i

1

2n cosh
(
β(σz

i−1 + σz
i−1)
)σx

i

)
=

1

2

∑
i

1

cosh
(
β(σz

i−1 + σz
i+1)
) (e−βσz

i (σ
z
i−1+σz

i+1) − σx
i

)
(B.4)

We can simplify this form further using the following expansions.

1

cosh
(
β(σz

i−1 + σz
i+1)
) =

1

2

[
1

cosh(2β)
(I + σz

i−1σ
z
i+1) + (I − σz

i−1σ
z
i+1)

]
=

1

2

[(
1

cosh(2β)
+ 1

)
I +

(
1

cosh(2β)
− 1

)
σz
i−1σ

z
i+1

] (B.5)

e−βσz
i (σ

z
i−1+σz

i+1) = e−βσz
i σ

z
i−1e−βσz

i σ
z
i+1

= cosh2(−β)I + sinh2(−β)σz
i−1σ

z
i+1 +

1

2
sinh(−2β)(σz

i σ
z
i−1 + σz

i σ
z
i+1)

(B.6)
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Putting these results together we obtain,

Hq =
1

2

∑
i

1

cosh
(
β(σz

i−1 + σz
i+1)
) [e−βσz

i (σ
z
i−1+σz

i+1) − σx
i

]
=

1

4

∑
i

[(
1

cosh(2β)
+ 1

)
I+

(
1

cosh(2β)
− 1

)
σz
i−1σ

z
i+1

] [
cosh2(−β)I + sinh2(−β)σz

i−1σ
z
i+1

+
1

2
sinh(−2β)(σz

i σ
z
i−1 + σz

i σ
z
i+1)− σx

i

]
=

1

4

∑
i

[
2I+

1

2
sinh(−2β)

(
1

cosh(2β)
+ 1

)
(σz

i σ
z
i−1 + σz

i σ
z
i+1)

+
1

2
sinh(−2β)

(
1

cosh(2β)
− 1

)
(σz

i+1σ
z
i + σz

i−1σ
z
i )

−
(

1

cosh(2β)
+ 1

)
σx
i +

(
1− 1

cosh(2β)

)
σz
i−1σ

x
i σ

z
i+1

]

=
N

2
I− 1

4

∑
i

[
2 tanh(2β)σz

i σ
z
i+1 +

(
1

cosh(2β)
+ 1

)
σx
i −

(
1− 1

cosh(2β)

)
σz
i−1σ

x
i σ

z
i+1

]
=
N

2
I−

∑
i

(
J1(β)σ

z
i σ

z
i+1 + h(β)σx

i − J2(β)σ
z
i−1σ

x
i σ

z
i+1

)
(B.7)

With h(β) = 1
4
(1 + 1/ cosh(2β)), J1(β) =

1
2
tanh(2β), and J2(β) =

1
4
(1− 1/ cosh(2β)).

B.2 Exact Solution of the Parent Hamiltonian

The above Hamiltonian, Eq. B.7, has terms only of σx and σz and thus can be diagonalized
with a Jordan-Wigner transformation. Following the same procedure outlined for the
transverse field Ising model, see Appendix A, we can rewrite Hq as,
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Hq =
N

2
I+

∑
Kp

[
(−h− J1 cos(k)− J2 cos(2k))

(
a†kak − a−ka

†
−k

)
+ i (J1 sin(k) + J2 sin(2k))

(
a−kak − a†ka

†
−k

) ]
=
N

2
I+

∑
Kp

[
Ak

(
a†kak − a−ka

†
−k

)
+ iBk

(
a−kak − a†ka

†
−k

)] (B.8)

with Ak = −h − J1 cos(k) − J2 cos(2k) and Bk = J1 sin(k) + J2 sin(2k). As above we can
separate the k = 0, π terms from the p = 1 sector,

Hk=0,π = (h− J1)
(
a†0a0 − a0a

†
0

)
+ (h+ J1)

(
a†πaπ − a−πa

†
−π

)
= 2J1(n̂π − n̂0)− 2h(n̂0 + n̂π − 1).

(B.9)

We get the form of the parent Hamiltonian in the two sectors,

H0 =
N

2
I+

∑
K+

0

Hk H1 =
N

2
I+

∑
K+

1

Hk +Hk=0,π, (B.10)

with

Hk = 2Ak

(
a†kak − a−ka

†
−k

)
+ 2iBk

(
a−kak − a†ka

†
−k

)
= 2

(
a†k a−k

)(Ak −iBk

iBk −Ak

)(
ak
a†−k

)
= 2

(
a†k a−k

)
Hk

(
ak
a†−k

) (B.11)

Diagonalizing, in the same way, using a Bogoliubov transformation,

Hk = 2εk(γ
†
kγk − 1/2) (B.12)

with

εk =
√
A2

k +B2
k. (B.13)
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B.3 Spectral Gap Scaling

With the exact solution to the parent Hamiltonian, we can solve for the spectral gap of
the mixing matrix and analyze its scaling. The ground state of Hq is in the p = 0 sector
with −εk for each k. The energy is then,

Ep=0
0 =

N

2
− 2

∑
K+

0

√
A2

k +B2
k

=
N

2
− 2

∑
K+

0

√
(−h− J1 cos(k)− J2 cos(2k))

2 + (J1 sin(k) + J2 sin(2k))
2

(B.14)

For the p = 1 to get an odd number of fermions, we need an odd contribution from k = 0, π.
The configuration that gives the lowest energy has n̂0 = 1 and n̂0 = 0 which gives energy
−2J1 (as J1 > 0). So then we have,

Ep=1
0 =

N

2
− 2

∑
K+

1

√
A2

k +B2
k − 2J1

=
N

2
− 2

∑
K+

1

√
(−h− J1 cos(k)− J2 cos(2k))

2 + (J1 sin(k) + J2 sin(2k))
2 − 2J1

(B.15)

These two energies’ differences match the numerical gap from diagonalizing the mixing
matrix (divided by N since this Hamiltonian has an extra N compared to the mixing
matrix). As β → ∞ and N → ∞ the gap closes in the p = 0 sector, but for these size
simulations, the gap between the two sectors is much smaller. We can simplify the above
result by making use of the periodicity of −2εk which has the property that −2εa−2επ−a =
−1. As {K+

0 } is an even number of points equally spaced between zero and π. We can
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pair up these points to give,

Ep=0
0 =

N

2
− 2

∑
K+

0

εk

=
N

2
− 2

∑
K+

0 /{k1,kN/2}

εk − 2(εk1 + εkN/2
)

=
N

2
− 2

∑
K+

0 /{k1,kN/2}

εk − 1

=
N

2
− N

2
= 0

(B.16)

For the p = 1 sector, a similar pairing can be made as the middle point falls on −1,

Ep=1
0 =

N

2
− 2

∑
K+

1

εk − 2J1

=
N

2
− N

2
+ 1− 2J1

= 1− tanh(2β)

(B.17)

Then our gap of the mixing matrix is (recall the 1/N is need to cancel the N in the
definition of Hq)

δ =
1

N
(Ep=1

0 − Ep=0
0 ) =

1

N
(1− tanh(2β)) (B.18)

Consider the gap δ1 between the ground state and first excited state in the p = 0 sector.
From the form of εk, the k to flip to the upper band to get the first excited state is the
largest k in K+

0 . The energy of this first excited state is then,

Ep=0
1 = Ep=0

0 + 4εkN/2

= 4επ−π/N

(B.19)

In the large β limit, then we have h ∼ 1
4
, J1 ∼ 1

2
, J2 ∼ 1

4
and εk = cos2

(
k
2

)
. In this limit,

Ep=0
1 = 4 sin2

( π

2N

)
. (B.20)
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The gap δ1 is then,

δ1 =
1

N
(Ep=0

1 − Ep=0
0 )

=
4

N
sin2

( π

2N

)
=

2− 2 cos(π/N)

N

∼ π2

N3
+O(1/N5)

(B.21)

This matches δ1 found by diagonalizing. Critically this scaling with N shows that for large
systems, this gap will determine the mixing time of the chain.

B.4 Adiabatic Evolution Fidelity Calculation

Above the fermionic Hamiltonian was diagonalized with a Bogoliubov transformation. Fol-
lowing [45], it is convenient to map it to non-interacting spins instead.

τxk = a†ka
†
−k + a−kak

τ yk = −i
(
a†ka

†
−k − a−kak

)
τ zk = a†ak − a−ka

†
−k

(B.22)

These operators are defined for 0 < k < π, and commute for different k values. The special
cases of k = 0, π are not relevant in the p = 0 sector. Since we start the adiabatic evolution
in this sector and the evolution maintains parity, we only need to consider the p = 0 sector.

Hp=0
q =

∑
0<k<π

2εk (cos(θk)τ
z
k + sin(θk)τ

y
k ) (B.23)

Where εk is the same as in the Bogoliubov transformation,

εk =
√
A2

k +B2
k, (B.24)

with Ak = −h− J1 cos(k)− J2 cos(2k) and Bk = J1 sin(k) + J2 sin(2k). The angles θk are
defined as,

εk cos θk = Ak,

εk sin θk = Bk.
(B.25)
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As we saw, the ground state of the fermionic model is at half-filling, we will denote this
ground state |0⟩. In this spin notation this ground state can be written as,

|0⟩ =
∏

0<k<π

eiθkτ
x
k /2 |vac⟩ . (B.26)

Here |vac⟩ is the vacuum state of the fermions a. The excited states, with energy 4εk+E0,
can be constructed by flipping a spin at momentum k,

|k⟩ = τxk |0⟩ . (B.27)

B.4.1 Adiabatic Metric Derivation

With this formulation in place, we can now evolve the system on different adiabatic paths.
All paths are parameterized in terms of s ∈ [0, 1] giving J1(s), J2(s), and h = 1. We require
this evolution to be adiabatic, which gives the constrain of Eq. 3.5, restated here,

dt

ds
=

1

ϵ

√∑
µ,ν

gµν(s)
dλµ
ds

dλν
ds

. (B.28)

In this parametrization, we have λ1 = J1 and λ2 = J2. Recall the definition of the adiabatic
metric,

gµν =
∑
n>0

1

E2
n

⟨∂µ0 |n⟩ ⟨n |∂ν0⟩ . (B.29)

In the definition of the ground state, the only term with λ dependence is θk, leading to the
following derivatives,

∂µ |0⟩ =
i

2

∑
0<k<π

∂µθk |k⟩ . (B.30)

This gives the following simplification of the adiabatic metric.

gµν =
∑
n>0

1

E2
n

⟨∂µ0 |n⟩ ⟨n |∂ν0⟩

=
∑
k

1

64ε2k
(∂µθk) (∂νθk)

(B.31)
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From the definition of θk we have,

∂θk
∂λi

=
1

Bk

(
∂εk
∂λi

Ak

εk
− ∂Ak

∂λi

)
,

=
1

ϵ2k

(
Ak
∂Bk

∂λi
−Bk

∂Ak

∂λi

)
.

(B.32)

With this form, we can now calculate the metric for λ1 = J1 and λ2 = J2,

g =
∑

0<k<π

1

64E6
k

sin2(k)

(
(J2 − h)2 (h− J2)(2h cos(k) + J1)

(h− J2)(2h cos(k) + J1) (2h cos(k) + J1)
2

)
(B.33)

For some parameterized path, like those listed in Table. 3.1, we now how a explicit form
of dt/ds,

dt

ds
=

1

ϵ

√∑
µ,ν

gµν(s)
dλµ
ds

dλν
ds

,

=
1

ϵ

√
g11(s)

(
dJ1(s)

ds

)2

+ g12(s)
dJ1(s)

ds

dJ2(s)

ds
++g21(s)

dJ2(s)

ds

dJ1(s)

ds
+ g22(s)

(
dJ2
ds

)2

.

B.4.2 Adiabatic Evolution

In the above section, we derived dt/ds, which describes the rate of change of parameters
required for the adiabatic condition to hold. In order to compare the time needed to
traverse a path, we will consider the fidelity after evolution,

F = | ⟨ψ(β)|ϕ(ttot)⟩|2. (B.34)

In order to obtain ϕ(ttot), we will numerically integrate the time-dependent Schrodinger
equation. Since τk commute on different sites, we can do this for each τk individually. Let
Hk be the section Eq. B.23 acting on the spin with momentum k,

Hk = 2εk (cos(θk)τ
z
k + sin(θk)τ

y
k )

= 2εk

[
cos(θk) −i sin(θk)
i sin(θk) − cos(θk)

]
(B.35)

90



This Hamiltonian has eigenstates,

∣∣χ−
k (s)

〉
=

1√
2(cos(θk) + 1)

[
i sin(θk)

cos(θk) + 1

]
,
∣∣χ+

k (s)
〉
=

1√
2(cos(θk) + 1)

[
cos(θk) + 1
i sin(θk)

]
,

(B.36)
with eigenvalues,

λ− = −2εk, λ+ = 2εk. (B.37)

Consider a general state parameterized in terms of s,

|ψk(s)⟩ = ck(s)
∣∣χ−

k (s)
〉
+ dk(s)

∣∣χ+
k (s)

〉
.

Evolving this state in time gives,

i
d

dt
|ψ(t)⟩ = H(t) |ψ(t)⟩ ,

i
d

ds

ds

dt
|ψ(s)⟩ = H(s) |ψ(s)⟩ ,

i
d

ds

(
ck(s)

∣∣χ−
k (s)

〉
+ dk(s)

∣∣χ+
k (s)

〉)
=
dt

ds

(
−2εkck(s)

∣∣χ−
k (s)

〉
+ 2εkdk(s)

∣∣χ+
k (s)

〉)
.

(B.38)

Expanding the left hand side gives,

i
d

ds

(
ck(s)

∣∣χ−
k (s)

〉
+ dk(s)

∣∣χ+
k (s)

〉)
=

i

(
dck(s)

ds

∣∣χ−
k (s)

〉
+ ck(s)

d

ds

∣∣χ−
k (s)

〉
+
ddk(s)

ds

∣∣χ+
k (s)

〉
+ dk(s)

d

ds

∣∣χ+
k (s)

〉) (B.39)

Where from the form of the eigenstates,

d

ds

∣∣χ−
k (s)

〉
=

d

ds

1√
2(cos(θk) + 1)

[
i sin(θk)

cos(θk) + 1

]
=
dθ

ds

1√
2(cos(θk) + 1)

[
i
2
(cos(θk) + 1)
−1

2
sin(θk)

]
= − i

2

dθ

ds

∣∣χ+
k (s)

〉
(B.40)

d

ds

∣∣χ+
k (s)

〉
=
i

2

dθ

ds

∣∣χ−
k (s)

〉
(B.41)
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Combining these results together, we get the form of the Schrodinger equation presented
in [45],

i
d

ds

[
ck
dk

]
=

[
−2εk(s)

dt
ds

− i
2
dθk
ds

i
2
dθk
ds

2εk(s)
dt
ds

] [
ck
dk

]
.

With the result of the previous section as well as,

dθk
ds

=
1

E2
k

(
Ak
dBk

ds
−Bk

dAk

ds

)
, (B.42)

dAk

ds
= − cos(k)

dJ1(s)

ds
− cos(2k)

dJ2(s)

ds
, (B.43)

dBk

ds
= sin(k)

dJ1(s)

ds
+ sin(2k)

dJ2(s)

ds
, (B.44)

all terms in this Schrodinger equation are found and it can be numerically integrated. Since
the adiabatic evolution begins in the ground state, the initial conditions of this integration
are ck(0) = 1 and dk(0) = 0. The final fidelity is then the overlap with the ground state,

F =
∏

0<k<π

|ck(1)|2. (B.45)
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Appendix C

Bottleneck Ratio Derivations

C.1 Ising-Chain Ground State Overlap

Recall in Chapter 4, to calculate the bottleneck ratio of the set A1 = {x10} we required the
probability to move between the two classical ground states, | ⟨x10|U |x20⟩ |2. These states
were then written in terms of the lowest energy states of the p = 0 and p = 1 sectors, |gs0⟩
and |gs1⟩. We need to find the four terms of Eq. 4.24, repeated here,

|
〈
x10
∣∣U ∣∣x20〉 |2 = 1

4

[
| ⟨gs0|U |gs0⟩ |2 + | ⟨gs1|U |gs1⟩ |2

− ⟨gs0|U |gs0⟩ ⟨gs1|U † |gs1⟩ − ⟨gs1|U |gs1⟩ ⟨gs0|U † |gs0⟩
]
.

(C.1)

The free fermion solution to the transverse field Ising model, seen in Appendix A, trans-
forms the full Hamiltonian into a sum over 2×2 blocksHk, labelled by the allowed k values.
This process of writing the spin variables in terms of Fourier-transformed fermionic oper-
ators is the same for any values of κ and η. It is only the diagonalization of these 2 × 2
blocks that depend on the specific parameter values. We can then write this evolution
U = e−Ht in this same basis, labelled as Uk.

C.1.1 p = 0 Sector

We can write the classical ground state in the p = 0 sector as the TFIM ground state
with κ = 1 and η = 0. I will label this state as |gs0⟩ =

∏
K+

0
|∅⟩ck. Recall the matrix Hk
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was diagonalized with the transformation unitary A(θck) to the Bogoliubov fermions. Our
goal is to evolve our classical ground state under different κ and η parameters. We will
do this by writing |∅⟩ck in terms of the Bogoliubov fermions specified for these κ and η. In
this basis, our U will be diagonal and we can easily calculate this overlap. Let’s begin by
undoing the transformation A(θck) which was used to get |∅⟩ck.

A(θck)A(θ
c
k)

† |∅⟩ck = A(θck)

(
0
1

)
=

(
cos(θck/2) −i sin(θck/2)

−i sin(θck/2) cos(θck/2)

)(
0
1

)
=

(
−i sin(θck/2)
cos(θck/2)

) (C.2)

Now transform this state into the new Bogoliubov fermions, γk, where θk is defined with
κ and η.

A(θk)
†
(
−i sin(θck/2)
cos(θck/2)

)
=

(
cos(θk/2) i sin(θk/2)
i sin(θk/2) cos(θk/2)

)(
−i sin(θck/2)
cos(θck/2)

)
=

(
−i sin(θck/2) cos(θk/2) + i cos(θck/2) sin(θk/2)
sin(θck/2) sin(θk/2) + cos(θck/2) cos(θk/2)

)
=

(
−i sin((θck − θk)/2)
cos((θck − θk)/2)

) (C.3)

Now we are now in the diagonal basis of our desired evolution.

⟨∅|ck Uk |∅⟩ck =
(
i sin((θck − θk)/2) cos((θck − θk)/2)

)(e−iεk 0
0 eiεk

)(
−i sin((θck − θk)/2)
cos((θck − θk)/2)

)
= sin2((θck − θk)/2)e

−iεk + cos2((θ2k − θk)/2)e
iεk

(C.4)

We can simplify by solving for θck where κ = 1 and η = 0,

cos(θck) =
η − κ cos(k)√

(η − κ cos(k))2 + (κ sin(k))2

= − cos(k)

= cos(−k + π)

(C.5)
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sin(θck) =
κ sin(k)√

(η − κ cos(k))2 + (κ sin(k))2

= sin(k)

= sin(−k + π)

(C.6)

Take θck = −k + π then we have cos(θck/2) = sin(k/2) and sin(θck/2) = cos(k/2).

⟨gs0|U |gs0⟩ =
∏
K+

0

[
sin2((−k + π − θk/2)e

−2iεk + cos2((−k + π)− θk/2)e
2iεk
]

=
∏
K+

0

[
cos2((k + θk)/2)e

−2iεk + sin2((k + θk)/2)e
2iεk
]

=
∏
K+

0

[
cos(2εk)−

i(η cos(k)− κ)

ϵk
sin(2εk)

] (C.7)

C.1.2 p = 1 Sector

Things are quite similar in the p = 1 sector except we need to worry about k = 0, π terms.
Recall the TFIM Hamiltonian in this sector can be written as H1 =

∑
K+

1
Hk + Hk=0,π,

where
Hk=0,π = 2κ(n̂π − n̂0) + 2η(n̂0 + n̂π − 1) (C.8)

Any of the other k contributes an even number of fermions, therefore we need an odd
contribution from k = 0, π. The configuration that gives the lowest energy has n̂0 = 1
and n̂0 = 0 which gives energy −2κ. Following the same procedure as above, the classical
ground state in this sector is,

|gs1⟩ = a†k=0

∏
K+

1

(
−i sin((θck − θk)/2)
cos((θck − θk)/2)

)
(C.9)
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This extra k = 0 fermion adds an extra term to the evolution,

⟨gs1|U |gs1⟩ = e2iκ
∏
K+

1

[
sin2((−k + π − θk)/2)e

−2iεk + cos2((−k + π)− θk)/2)e
2iεk
]

= e2iκ
∏
K+

1

[
cos2((k + θk)/2)e

−2iεk + sin2((k + θk)/2)e
2iεk
]

= e2iκ
∏
K+

1

[
cos(2εk)−

i(η cos(k)− κ)

εk
sin(2εk)

]
(C.10)

With these results from the two sectors, all terms of Eq. 4.24 can be found.

C.2 Ising-Chain Excited State Overlap

The other subset considered was A2 = S1. As seen in Eq. 4.31 this calculation required
the following overlaps.

∑
x∈S1,y∈S0

| ⟨y|U |x⟩ |2 =
∑

x∈Sp=0
1

⟨gs0|U |x⟩ ⟨x|U † |gs0⟩+
∑

x∈Sp=1
1

⟨gs1|U |x⟩ ⟨x|U † |gs1⟩ (C.11)

For both sectors, the N(N −1)/2 first excited states are found by exciting a single fermion
at momentum k from the bottom band to the top band. We will follow the same method
as above, where we first consider the classical excited state in a single k block, |x⟩k.

A(θck)A(θ
c
k)

† |x⟩k = A(θck)

(
1
0

)
=

(
cos(θck/2)

−i sin(θck/2)

) (C.12)
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As above, transform this state into the new Bogoliubov fermions, γk, where θk is defined
with κ and η.

A(θk)
†
(

cos(θck/2)
−i sin(θck/2)

)
=

(
cos(θk/2) i sin(θk/2)
i sin(θk/2) cos(θk/2)

)(
cos(θck/2)

−i sin(θck/2)

)
=

(
− cos(θck/2) cos(θk/2) + sin(θck/2) sin(θk/2)
i cos(θck/2) sin(θk/2)− i sin(θck/2) cos(θk/2)

)
=

(
cos((θck − θk)/2)

−i sin((θck − θk)/2)

) (C.13)

We need to overlap between the classical ground state evolved under U with this classical
excited state derived above. Say we are considering the excited state where the fermion at
site k1 is excited, labelled as |es⟩k1 ,

|es⟩k1 = |x⟩k1
∏
k ̸=k1

|∅⟩k . (C.14)

Let us first consider the overlap in this k1 block,

⟨x|k1 Uk1 |∅⟩k1 = i
(
e2iεk1 − e−2iεk1

)
sin
(
(θck1 − θk1)/2

)
cos
(
(θck1 − θk1)/2

)
= − sin(2εk1) sin

(
θck1 − θk1

)
= − sin(2εk1)

[
sin(k1)

η − κ cos(k1)

εk1
+ cos(k1)

κ sin(k1)

εk1

]
= −η sin(2εk1) sin(k1)

εk1

(C.15)

The overlap for the entire state is then,

⟨es|k1 U |gs0⟩ =
∏
k ̸=k1

⟨∅|k ⟨x|k1
∏
q

Uq

∏
k

|∅⟩k

=
∏
k ̸=k1

⟨∅|k Uk |∅⟩k ⟨x|k1 Uk1 |∅⟩k1

=
∏
k ̸=k1

[
cos2((k + θk)/2)e

−2iεk + sin2((k + θk)/2)e
2iεk
](

−η sin(2εk1) sin(k1)
εk1

)
(C.16)
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Luckily this can be further simplified.

| ⟨es|k1 U |gs0⟩ |2 =
∏
k ̸=k1

[
1− η2 sin2(k)

ε2k
sin2(2εk)

](
η2 sin2(2εk1) sin

2(k1)

ε2k1

)

=
∏
k

[
1− η2 sin2(k)

ε2k
sin2(2εk)

] [
1− η2 sin2(k1)

ε2k1
sin2(2εk1)

]−1(
η2 sin2(2εk1) sin

2(k1)

ε2k1

)

=
∏
k

[
1− η2 sin2(k)

ε2k
sin2(2εk)

](
η2 sin2(2εk1) sin

2(k1)

ε2k1 − η2 sin2(2εk1) sin
2(k1)

)

= | ⟨gs0|U |gs0⟩ |2
(

η2 sin2(2εk1) sin
2(k1)

ε2k1 − η2 sin2(2εk1) sin
2(k1)

)
(C.17)
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