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Abstract

Finite mixture models are a staple of model-based clustering approaches for distinguish-
ing subgroups. A common mixture model is the finite Gaussian mixture model, whose
degrees of freedom scales quadratically with increasing data dimension. Methods in the
literature often tackle the degrees of freedom of the Gaussian mixture model by sharing pa-
rameters between the eigendecomposition of covariance matrices across all mixture compo-
nents. We posit finite Gaussian mixture models with alternate forms of parameter sharing
by imposing additional structure on the parameters, such as sharing parameters with other
components as a convex combination of the corresponding parent components or by impos-
ing a sequence of hierarchical clustering structure in orthogonal subspaces with common
parameters across levels. Estimation procedures using the Expectation-Maximization (EM)
algorithm are derived throughout, with application to simulated and real-world datasets.
As well, the proposed model structures have an interpretable meaning that can shed light
on clustering analyses performed by practitioners in the context of their data.

The EM algorithm is a popular estimation method for tackling issues of latent data, such
as in finite mixture models where component memberships are often latent. One aspect
of the EM algorithm that hampers estimation is a slow rate of convergence, which affects
the estimation of finite Gaussian mixture models. To explore avenues of improvement, we
explore the extrapolation of the sequence of conditional expectations admitting general EM
procedures, with minimal modifications for many common models. With the same mindset
of accelerating iterative algorithms, we also examine the use of approximate sketching
methods in estimating generalized linear models via iteratively re-weighted least squares,
with emphasis on practical data infrastructure constraints. We propose a sketching method
that controls for both data transfer and computation costs, the former of which is often
overlooked in asymptotic complexity analyses, and are able to achieve an approximate
result in much faster wall-clock time compared to the exact solution on real-world hardware,
and can estimate standard errors in addition to point estimates.
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Chapter 1

Introduction

This thesis comprises five works, with the first three describing finite Gaussian mixture
models with structured parameters and the latter two describing accelerations of existing
algorithms. In the first three works, the theme of adding structure on top of finite Gaussian
mixture models can be seen from two perspectives; we may either specify a model with a
more parsimonious representation or share parameters between mixture model components.
By positing a specific relationship between components of the mixture model, we may be
able to find a more efficient representation of datasets whose structure is not captured by
conventional specifications. Moreover, these structures can represent relationships in the
intercluster sense that can be interpreted in the context of the data, providing additional
value to analyses performed by practitioners.

We work with the finite Gaussian mixture model framework, often used in the model-
based clustering of multivariate data, where traditional methods of parameter sharing and
representations of intercluster structure exploit geometric redundancies such as volume,
shape, and orientation in the covariance matrix (Celeux and Govaert, 1995; McNicholas
and Murphy, 2008). Sharing parameters between multivariate normal distributions in
other manners can be found in mixed and partial membership models (Airoldi et al., 2014).
This family of models assigns observations to multiple clusters, possibly in varying degrees,
and can implicitly define hybrid cluster components that are dependent on other cluster
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parameters. We draw upon a motivating example from biology whereby hybrid species
tend to exhibit a mixture of parent characteristics. As well, we extend this example in that
species are often members of a larger overarching genus containing many other species. In
this context, there are shared attributes that define the genus but idiosyncratic attributes
distinguish species. When a dataset spans multiple genera, we posit in the a finite Gaussian
mixture model framework that a subspace of the data captures features of a genus, and
another orthogonal subspace captures within-genus variation of the constitutent species.

A popular method for fitting finite Gaussian mixture models to data where the multi-
variate normal distribution parameters of the components are unknown is the Expectation-
Maximization (EM) algorithm (Dempster et al., 1977). This procedure is often used to
estimate the unknown parameters of a finite Gaussian mixture model. When objective func-
tions such as the Gaussian mixture model log-likelihood is intractable and not amenable to
direct maximization, then the introduction of latent variables representing unobserved clus-
ter memberships allows the application of the EM algorithm. As the EM algorithm is an
iterative procedure that alternates between computing the conditional expectation of the
latent data and the maximization/majorization in the model parameters, the estimation
can be slow to converge which hampers estimation.

Other causes of slow estimation include very large dataset sizes, which can render
algorithms typically considered fast such as Newton-Raphson too slow for practical usage.
As an exploratory foray into alternate methods of accelerating algorithms, we also explore
finding approximate solutions for generalized linear models (GLM) with massive datasets
by applying randomized sketching (Ahfock et al., 2022) in the context of real-world data
infrastructure and computer systems. Here, the backbone of GLM parameter estimation
is the Iteratively Re-weighted Least Squares algorithm, to which quadratic convergence is
often ascribed.

In Chapter 2, we provide a brief overview of a collection of common concepts used
throughout this thesis; more specific concepts pertinent to each chapter are introduced in
the corresponding sections within the chapter. In Chapter 3, we introduce Chimeral Clus-
tering; a model which captures cluster hybridization in the form of chimeral components
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whose distributions parameters are convex combinations of prototype distribution param-
eters. In Chapter 4, we introduce Factor-Hybrid Clustering, an altenate take on the ideas
of Chimeral Clustering by using the more practitioner-friendly moment parameterization
instead of the mathematically convenient canonical parameterization. In Chapter 5, we
introduce Nested Gaussian Clusters to capture a hierarchy of nested class labels. In Chap-
ter 6, we introduce a method of accelerating the EM algorithm by extrapolating in the
conditional expectation of the missing data, with application to finite Gaussian mixture
models. Finally, in Chapter 7 we introduce a randomized sketching method to estimate
GLM parameters with massive datasets on a range of computational infrastructures.
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Chapter 2

Background

We describe finite mixture models in Section 2.1 to set the stage for the literature. We nar-
row our focus to exemplar models using multivariate normal distributions for components,
a family of models that flexibly models multivariate data. We describe this distribution
in two common parameterisations in Section 2.2. We then consider some mixture models,
and discuss the number of parameters and the curse of dimensionality in with mitigation
strategies in Section 2.2.1. The central estimation method is the Expectation-Maximization
algorithm (Dempster et al., 1977), overviewed in Section 2.3. Generalized linear models
and the Iteratively Re-weighted Least Squares algorithm are described in Section 2.5.

2.1 Finite Mixture Models

Consider a population distribution consisting of multiple sub-populations, each of which
exhibits different behaviours in some common set of variables. For example, among a pop-
ulation of light-bulbs with three sub-populations of incandescent, fluorescent, and LED, we
might expect their power consumption to be typically 60 W, 12 W, and 4 W, respectively.
From a distributional perspective, we have a population distribution that is hierarchical.
Firstly, a categorical variable represents the sub-population to which a unit belongs. Sec-
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ondly, conditional on being in a sub-population, the unit’s variables follows a distribution
specific to that sub-population.

Notationally, let there be a population with K ≥ 1 such sub-populations. For a unit
in sub-population k = 1, 2, ..., K with probability πk > 0 such that ∑K

k=1 πk = 1, let the
variates follow a distribution with density fk and parameters θk. Then, the distribution of
the whole population is

f(x) =
K∑

k=1
πkfk(x; θk). (2.1)

Different choices of component density fk yield different families of mixture models.

2.2 Multivariate Normal Distribution

A common choice for the sub-population component density is the multivariate normal
distribution. The d-multivariate normal distribution generalizes the univariate normal dis-
tribution to d dimensions and can be parameterised by central moment parameters (µ,Σ)
or natural parameters (η,Λ), for Σ or Λ positive-definite, with one-to-one correspondance
η = −1

2Σ−1µ and Λ = −1
2Σ−1. Without loss of generality, we omit the constant factor by

referring to η = Σ−1µ and Λ = Σ−1 equivocally as the natural parameterization. The
multivariate normal log-density function with moment parameters can be written as

log ϕ(x; µ,Σ) = −d2 log 2π − 1
2 log det Σ− 1

2 Tr
[
Σ−1(x− µ)(x− µ)⊤

]
,

and in canonical parameters as

log ϕ(x; η,Λ) = −d2 log 2π + 1
2 log det Λ− 1

2η⊤Λ−1η + η⊤x− 1
2 Tr(Λxx⊤),

where Tr(X) is the trace of a square matrix X; i.e., the sum of the diagonal elements of
X. In canonical form, the log density is linear in parameters η and Λ and has a convex
log-partition function.
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Mixture models with multivariate normal component distributions are also referred to
as finite Gaussian mixture models (Banfield and Raftery, 1993; Symons, 1981; Wolfe, 1963),
and are useful for their flexibility in representing multivariate data and their mathematical
properties. A theoretical guarantee for finite Gaussian mixtures is that they are identifiable
(Teicher, 1961; Yakowitz and Spragins, 1968; Holzmann et al., 2006).

2.2.1 Curse of Dimensionality

In both the (µ,Σ) and (η,Λ) parameterisations of the multivariate normal there are
d+ d(d+ 1)/2 free parameters. This increases quadratically with dimension d, leading to es-
timation difficulties and a lack of parsimony. Without further restrictions, a K-component
mixture model with multivariate normal components has K times the number of parame-
ters, compounding upon the issue.

One way of reducing the effective dimensionality of finite Gaussian mixtures is exploiting
redundancies in geometry across multiple covariance matrices Σ, such as a common shape,
orientation, and/or size (Celeux and Govaert, 1995; Fraley and Raftery, 2002; McNicholas
and Murphy, 2008; Browne and McNicholas, 2014).

2.3 Expectation-Maximization Algorithm

The EM algorithm (Dempster et al., 1977) is a method for performing optimization on an
objective function, often a log-likelihood, with observed data X and missing data Z. In such
a case, taking a conditional expectation of the complete-data log-likelihood ℓcom(θ; X,Z)
with respect to missing data Z can yield a tractably maximizable/majorizable surrogate
function. Theoretical results indicate that an improvement in the value of the surrogate
function yield guarantee an increase in the original log-likelihood of interest, which permits
maximum likelihood estimation of complicated objective functions such as (2.1). Variations
on the EM algorithm exist (Dempster et al., 1977; Celeux and Diebolt, 1986) that yield
different behaviours such as faster estimation or escaping local modes.
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As a general procedure, for some complete-data log-likelihood, the surrogate function
as of iteration t can be written as

Q(θ; θ(t)) = E
[
ℓcom(θ; X,Z) | X; θ(t)

]
whose maximizer (or majorizer) θ∗ becomes the parameter θ(t+1) for the subsequent itera-
tion. The construction of the surrogate function is considered the expectation step due to
the conditional expectation in latent data Z, and finding the maximizer is considered the
maximization step. By iteratively alternating between these two steps, the EM procedure
is able to attain monotonic ascent in the objective function.

2.4 Model Metrics

In the context of estimating finite mixture model parameters, a common problem is the
determination of the number of clustering components K applicable to the data. In the
absence of a priori information on K, a practical approach is to perform model selection
using a penalized goodness-of-fit metric such as the Bayesian Information Criterion (BIC)
(Schwarz, 1978). This metric is defined as

BIC = k logN − 2ℓ(θ; X),

where k is the number of free parameters of the model, N is the number of observations,
and ℓ is the observed log-likelihood for model parameters θ. This parameterization of BIC
implies lower values are considered better as excessive parameters yield an increase in this
quantity while improved observed log-likelihood yields a decrease.

In addition to quantifying the goodness-of-fit, we may also measure the degree of con-
cordance between the fitted cluster indices and a set of available class labels by evaluating
the adjusted Rand index (ARI) metric of Hubert and Arabie (1985). This quantity is
defined as

ARI = Rand Index− Expected Rand Index
Maximum Rand Index− Expected Rand Index
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which can be expanded into the form

ARI =
∑

i,j

(
nij

2

)
−∑i

(
ni·
2

)∑
j

(
n·j
2

)
/
(

n
2

)
1
2

[∑
i

(
ni·
2

)
+∑

j

(
n·j
2

)]
−∑i

(
ni·
2

)∑
j

(
n·j
2

)
/
(

n
2

)
for nij being the cross-tabulation between class i of the first classification and class j of
the second classification, ni· and n·j are the corresponding marginal counts, and n is the
overall total count.

2.5 Generalized Linear Models

Generalized linear models are a popular regression model for non-normally distributed
response variables that are often found in practice, such as binary outcomes or count
data (McCullagh and Nelder, 1989). These models typically specify the distribution of
the observed response Yi = yi for i = 1, 2, ..., n as having a regular exponential family
distribution with probability mass/density function of the form

f(yi; θi, ϕ) = exp
[
yiθi − b(θi)

a(ϕ) + c(y;ϕ)
]
,

where a, b, and c are known functions, θi is the canonical parameter, and ϕ are any nuisance
parameters assumed known. The canonical is a function of the linear predictor ηi = x⊤

i β

for covariate vector xi ∈ Rd. GLMs often do not admit a closed-form solution for the
regression coefficients β nor their standard errors; a desirable value for hypothesis testing.
A common iterative method is that of Iteratively Reweighted Least Squares (IRLS), which
relies on both first- and second-order derivative information of the objective log-likelihood
to find a fixed-point. The IRLS update has asymptotic complexity O(nd2). In massive
data settings, not only does the complexity of a dataset with high-dimension d have an
impact on wall-clock estimation times, the number of observations n can be large enough
to make IRLS too slow for practical usage.

8



Chapter 3

Chimeral Clustering

3.1 Introduction

In Greek mythology, chimeras are beings with the head of a lion, the body of a goat,
and the tail of a snake. In biological studies, we may find genotypes and phenotypes of
hybrid species are expressed in a similarly intermediate way. A well-recognized example
of this is the iris dataset (Anderson, 1936; Fisher, 1936) whereby Iris setosa and Iris
virginica hybridize to form Iris versicolor with intermediate sepal and petal dimensions.
In a clustering context, we may find some clusters to exhibit parameters that are a mixture
of those of other clusters. Two extant methods capture this notion of chimerality; Heller
et al. (2008) describes a Bayesian method of assigning partial memberships to multiple
clusters and Zhang (2013) describes an epistatic clustering method whereby observations
may be assigned to more than one cluster. We consider these two methods to be on
opposing sides of the spectrum in terms of flexibility; the former grants a large quantity of
freedom, whereas the latter provides a rigid structure in which data must fit. To advance
a middle ground, we introduce the chimeral clustering model as an extension of finite
Gaussian mixture models by parameterizing chimeral clusters using convex combinations
of non-chimeral (prototype) cluster parameters.

The present work postulates the chimeral clustering model and provides a theoretical

9



treatment of identifiability of chimeral clustering. We prove a sufficient condition for iden-
tifiability and extend the reasoning to show that epistatic clusters are not identifiable to
the extent specified by Zhang (2013). We provide an estimation procedure based on the
expectation-maximization algorithm (Dempster et al., 1977) and demonstrate its efficacy
on multiple datasets with comparison to existing parsimonious Gaussian mixture models.
Our evaluation datasets are the well-known iris dataset (Anderson, 1936; Fisher, 1936), a
morphometric dataset describing species of hawks(Cannon et al., 2019), and a morphome-
tric dataset describing water striders from the limnoperus genus (Klingenberg and Spence,
1993). Additionally, we craft a dataset which demonstrates the difference in style of re-
dundancy not captured by parsimonious covariance matrices in finite Gaussian mixtures.
Finally, we assess goodness of fit and parsimony using the Bayesian information criterion
(Schwarz, 1978) and the adjusted Rand index (Rand, 1971; Hubert and Arabie, 1985).

3.1.1 Intercluster Structure

The idea of an individual being a hybrid of multiple sub-populations can be found in
biological literature. In other words, these hybrids can be described as admixtures of other
sub-populations. An example by Anderson (1936) demonstrates the hybridisation in the
genus iris by interpolating between geometric dimensions of the flowers. Battle et al. (2005)
and Pritchard et al. (2000) describe this kind in the distributions of genotype data. These
approaches using genotypes consider individuals as potentially being an admixture of many
groups instead simply a single group.

Moving from domain descriptions to model specifications that capture this sort of inter-
cluster structure, we consider the mixed membership or partial membership models (Airoldi
et al., 2014). The distinction between mixed and partial membership models can be re-
solved with the appropriate introduction of latent variables (Erosheva et al., 2007). These
models permit individual observations to belong to multiple clusters simultaneously either
by being assigned to an intermediate cluster with weighted combinations of parameters or
assigned fractionally to multiple clusters.

Models falling under this umbrella include the pioneering Grade of Membership (Wood-
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bury et al., 1978), Bayesian partial membership (Heller et al., 2008), and epistatic cluster-
ing (Zhang, 2013). When observed variables are categorical in nature, a viable option for
modelling individual observations as a mixture of a collection of pure types is the Grade
of Membership (GOM) model. This model is based on a clinical need to model patients
as having degrees of multiple illnesses, and attributes them fractionally to these charac-
teristic subpopulations using a question relevance factor. The GOM model behaves in a
manner similar to fuzzy sets and permits membership labels to take values in [0, 1]. In
GOM, each observation n is granted an intergrade representation as non-negative weights
gn1, gn2, ..., gnK with unit sum. These weights determine the probability pij(l) of manifest-
ing an outcome associated with a pure type 1, 2, ..., K in each categorical variable. Pure
types are characterised by a set of unconditional probabilities λkjl of manifesting outcomes
in each variable. There are also extensions of the GOM model to rank data in place of
categorical data (Gormley and Murphy, 2009).

A distant relationship to this concept is that of Latent Dirichlet Allocation Blei et al.
(2003) with documents being a mixture of topics. This model is appropriate for count data
or frequency data such as the number of occurrences of a word or event. Observations
of text documents are the tabulation of word occurrences, which in turn are considered
manifestations of a mixture of topics. In the LDA model, a topic distribution θ is drawn
from a prior Dirichlet(α). From this distribution, a specific topic zn is drawn according to
Multinomial(θ). Finally, a word is drawn given that it is from topic zn according to yet
another multinomial probability distribution. In this sense, for a fixed dictionary of words,
the observations are also categorical; however, this dictionary can be chosen to encompass
all observed words over the entire document corpus.

Another distantly related model applicable to networks and their interactions is the
Mixed Membership Stochastic Blockmodel (MMSB) (Airoldi et al., 2008), which describes
a network over time as a mixture of roles; an individual in the network may act in multiple
distinct capacities.

From the model-based clustering methods that apply to continuous variates as in finite
Gaussian mixtures, we draw inspiration from two specific models: epistatic clustering
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Zhang (2013) and Bayesian partial membership Heller et al. (2008). These are discussed
in more detail in Section 3.1.1 and Section 3.1.1, respectively.

Epistatic Clustering

Epistatic clustering supposes a finite Gaussian mixture model to be decomposed into two
types of clusters; a set of parent clusters and a set of epistatic clusters. Each parent compo-
nent p follows the multivariate normal distribution, specified either in moment parameters
as N(µp,Σp) or canonical form as N(ηp,Λp). Epistatic components are also multivariate
normal; however, they parameters that are the average of parent component parameters.

In moment parameters, an epistatic cluster’s mean and variances are equal to the
arithmetic average of a subset of matrix-weighted parent means and weighted matrix-
harmonic parent covariances. In canonical form, it is the simple arithmetic average of
parent parameters. Specifically, if an epistatic cluster has parents denoted by index set P ,
then

µepistatic = Σepistatic
∑

p∈P Σ−1
p µp

Σepistatic =
(

1
|P|
∑

p∈P Σ−1
p

)−1 ⇔
ηepistatic = 1

|P|
∑

p∈P ηp

Λepistatic = 1
|P|
∑

p∈P Λp

Otherwise, non-epistatic clusters have the same density and parameters as a multivari-
ate normal distribution. This means that epistatic clusters no longer have any effectively
free parameters; the model includes all combinations of epistatic clusters up to a pre-
specified degree. For example, degree 2 represents all two-parent epistatic clusters, degree
3 all three-parent, and so forth. This results in a reduction in the number of parameters
in the model, in addition to potentially using parsimonious parent covariance matrices as
in Fraley and Raftery (2002).

Bayesian Partial Membership

Heller et al. (2008) gives a Bayesian Partial Membership framework where each observation
has membership weights drawn from a Dirichlet distribution. Here, like in the GOM,
LDA, and MMSB models, the Bayesian Partial Membership (BPM) model describes each
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observation as a weighted parameter combination of a set of exponential family distribution
clusters, effectively allowing an observation to be part of a hybrid distribution.

Like the GOM, LDA, and MMSB models, the BPM model permits each individual
observation to have idiosyncratic weightings.

When applied in the context of multivariate normal distributions, the canonical pa-
rameterisation requirement of the BPM model is in terms of a precision matrix and a
matrix-weighted mean.

3.1.2 Motivation

We motivate our model using the the well-known iris dataset of Anderson (1936) and Fisher
(1936), which describes three related species of flower from the genus iris. Inspecting the
plots in Figure 3.1 reveals a distinct intercluster structure; the intermediate cluster of
iris versicolor is positioned in between the clusters for iris setosa and iris virginica. The
shapes of each species’ data points is also approximately multivariate normal, and the
shape of the putative hybrid iris versicolor could also be described as an interpolation of
the shapes of the parent species. Indeed, Anderson (1936) provides an argument for a 2:1
ratio hybridisation based on their morphological dimensions and chromosomal analysis. As
such, we posit a hierarchical Gaussian mixture model whereby some clusters have means
(locations) and covariances (shapes) derived from other clusters.

In relation to the existing EC and BPM models, we consider them to be two opposing
extremes in treating hybridization. The former imposes epistatic cluster parameters as
a fixed average of interacting primary clusters; there is no degree to which the clusters
interact, only that they do. By contrast, the latter’s full uncountable continuum of possible
weights between prototypes renders mixing coefficients difficult to interpret meaningfully.

We distinguish this model from both mixed and partial membership models by not
assigning each observation its own weightings but rather shifting the mixing into the cluster
level. We pose the model under the mixture model framework by allocating observations
to a single cluster; however, the cluster may be a prototype or chimeral cluster. The key
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Figure 3.1: A collection of pair-wise scatterplots of the iris dataset. Labels and cluster
means are from the factor/hybrid model in Chapter 4. Note the intermediacy of the central
green cluster, primarily corresponding to iris versicolor.

difference is that a prototype cluster has the full flexibility of the multivariate normal
distribution while a chimeral cluster is parameterized solely by a set of mixing proportions
relative to the prototypes. A detailed comparison against the proposed model is made in
Section 3.2.

The key distinction here is that the weighting occurs at the component-level instead
of the observation-level. Like the BPM model, the EC model acts in the canonical pa-
rameterisation of the multivariate normal. Unlike the BPM model, the mixing weights for
epistatic components are restricted to being averages; for example, weights of 1

2 for a two-
parent epistatic component, 1

3 for a three-parent, and so forth. The BPM and EC models
could be considered extensions to Gaussian mixture models (Wolfe, 1963; Symons, 1981;
Banfield and Raftery, 1993) that use mixing parameters to describe an hybrid/epistatic
cluster instead of a complete moment (µ,Σ) or canonical

(
Σ−1µ,Σ−1

)
parameterisation.

A different approach to reducing the number of model parameters in finite Gaussian
mixtures are to use parameter sharing via parsimonious covariance matrices that exploit
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geometric shape, orientation, and volume redundancies (Celeux and Govaert, 1993; Fra-
ley, 1998; McNicholas and Murphy, 2008; Browne and McNicholas, 2014). Compared to
BPM and EC, these methods do not account for parameters shared by the means of the
components.

3.2 Model Specification

With chimeral clustering, we use the canonical parameters of the multivariate normal dis-
tribution as described in Section 2.2. Herein, we denote the multivariate normal distribu-
tion as N(η,Λ). The chimeral clustering model takes a middle ground with respect to the
aforementioned epistatic clustering (Zhang, 2013) and Bayesian partial membership (Heller
et al., 2008) works by allowing for a finite number of chimeral clusters with parameters
defined by a convex combination of prototype clusters.

We propose a K-component finite Gaussian mixture with an alternate parameterisation
for some components. That is, we partition the K components into a prototype set P and
a chimeral set C with sizes KP and KC , respectively. The model density is given by

f(x | θ) =
K∑

k=1
πkϕd(x | ηk,Λk)

=
∑
p∈P

πpϕd(x | ηp,Λp) +
∑
c∈C

πcϕd(x | ηc,Λc)

=
∑
p∈P

πpϕd(x | ηp,Λp) +
∑
c∈C

πcϕd

x

∣∣∣∣∣∣ηc =
∑
p∈P

αcpηp,Λc =
∑
p∈P

αcpΛp

 (3.1)

where a prototype cluster p follows a N(ηp,Λp) distribution with natural parameters ηp and
Λp and a chimeral cluster c is instead parameterized by a vector of mixing coefficients αc

in the standard KP -simplex, implying a N(ηc,Λc) distribution with ηc = ∑
p∈P αcpηp and

Λc = ∑
p∈P αcpΛp. As positive-definite matrices are closed under convex combinations, Λc

is positive-definite. Figure 3.2 illustrates the mixing procedure for two prototype clusters
and a single chimeral cluster in the natural parameter space. Furthermore, we require that
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Figure 3.2: Two prototypes (solid) mixing in 10% increments (grey, dotted) and a particular
30%/70% mix (dashed). This figure resembles that of Heller et al. (2008); however, the
proposed model contains an explicit and finite number of realizations of this continuum.

a cluster must be chimeral if it can be chimeral; this prevents chimeral clusters from being
formed from convex combinations of other chimeral clusters.

By comparison, in epistatic clustering an observation can be assigned to multiple clus-
ters, whose multivariate normal distribution is parameterized according to a weighted sum
of natural parameters (Zhang, 2013, Eq. 2.2). Under the above presented framework, we
may understand epistatic clustering as restricting αc to a fixed set of possibilities that
average a subset of parameters such as ⟨1

3 ,
1
3 ,

1
3⟩ or ⟨1

2 ,
1
2 , 0⟩.

In Bayesian partial membership, Heller et al. (2008) propose a Dirichlet distribution
for the weights πnk over the K-simplex. As a similarity, this model can be understood by
replacing the Dirichlet distribution for the weights πn with a draw from a finite set of pos-
sible vectors {α1, ...,αKC

} contained within the K-simplex. Indeed, Figure 3.2 parallels a
related concept, though we only permit a finite number of such interpolated distributions
and grant them an explicit realization to which observations may be assigned. As a dif-
ference, the Dirichlet distribution remains fixed but the set of vectors is dynamic in the
chimeral clustering estimation procedure; this set itself will vary over the KP -simplex.

As well, the distribution of a chimeral component coincides with the weighted Kullback-
Leibler average (KLA) of the prototype component distributions (Battle et al., 2005). In-
deed, the KLA for a collection P of multivariate normal distributions weighted by αc

yields the same convex combination ηc and Λc as for a chimeral component with the same
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hybridization weights.

3.2.1 Identifiability

A finite Gaussian mixture has been shown to be identifiable (Teicher, 1961; Yakowitz
and Spragins, 1968; Holzmann et al., 2006) up to a permutation of indices. Suppose
a K-component finite Gaussian mixture is parameterized by {π,η1, ...,ηK ,Λ1, ...,ΛK}.
We show that there exists a unique chimeral clustering reparameterisation of the model.
We first assign indices P = {P1, ..., PKP

} and C = {C1, ..., CKC
} such that P ∪ C =

{1, 2, ..., K}. We also make a one-to-one representation of each cluster’s parameters using
vk = ⟨ηk, vech Λk⟩. We use the terms parameters and vertices interchangeably using this
relation. Then, we require some definitions and results from convex geometry.

Definition 1 Let V be a vector space. A set S ⊂ V is convex if x, y ∈ S implies λx+ (1−
λ)y ∈ S for all λ ∈ [0, 1].

Definition 2 For a set V ⊆ V, the convex hull S = conv(V ) is the smallest convex set
containing V . If V is a finite set of vertices, then S is a convex polytope.

Definition 3 For a convex polytope S ⊆ V, the extremal vertices ext(S) are points of S
which do not lie in any open line segment joining two distinct points in S. The complement
of ext(S) within S is the relative interior relint(S).

There are two standard and equivalent (Grünbaum, 2003) ways to represent a convex
polytope S. The V-representation defines S as a convex combination of ext(S). The
H-representation defines S as the finite intersection of half-spaces forming facets of the
polytope S.

Lemma 1 The convex hull conv(V ) of a finite set of vertices V ⊂ Rd (i) forms a convex
polytope, (ii) is unique, and (iii) can be characterized by a set of extremal vertices ext(S)
which are a unique subset of V .
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Proof 1 (i) From Section 3.1 and 3.6 of Grünbaum (2003), the convex hull conv(V ) is
a polytope whose V-representation is a set of vertices. A similar result can be found in
Section 14.1 of Gruber (2007).

(ii) Uniqueness of conv(V ) is given by the fact that intersection of convex sets is convex.
If A and B are two different smallest convex hulls of V then A ∩B contains V and so is
a smaller convex hull; a contradiction.

(iii) Finally, Section 14.1 of Gruber (2007) provides us with the result that the extreme
points of conv(V ) are a subset of the vertices in V .

Theorem 1 A chimeral clustering model given by (3.1) with parameters
{π,ηP1 , ...,ηPKP

,ΛP1 , ...,ΛPKP
,αC1 , ...,αCKC

} is identifiable provided there is a sufficient
condition for identifiability of each αc, such as minimizing α⊤

c αc.

Proof

As a finite Gaussian mixture, a chimeral clustering model is identifiable as normal distri-
bution parameters (ηk,Λk) for k = 1, 2, ..., K and marginal probabilities π.

Let vk = ⟨ηk, vech Λk⟩ represent the distribution parameters of cluster k as vertices in
Rd+d(d+1)/2, and let V be the set of these vertices over k = 1, 2, ..., K. Lemma 1 provides a
unique partition of V into extremal vertices ext(V) and relative interior vertices relint(V),
indexed by P and C of sizes KP and KC respectively.

If all clusters are prototypes, the model coincides with the finite Gaussian mixture
model and is thus identifiable. Suppose there is at least one chimeral cluster. Given
prototype parameters vp for p ∈ P, we show that each vc has a unique representation as
αc in the KP -simplex for each c ∈ C. By definition, each vc for c ∈ C can be written as a
convex combination of vP1 , ...,vPKP

. This implies there exists an αc = ⟨αcP1 , ..., αcPKP
⟩ in

the KP -simplex that satisfies the linear system
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| |

vP1 · · · vPKP

| |

αc = Vαc = vc. (3.2)

Any chimeral cluster or relative interior point vc ∈ relint(S) has this characterization. By
definition of relint(S), the system (3.2) is always consistent regardless of the shape of V
and has a solution even if overdetermined. However, (3.2) may also have infinite solutions.

As such, it remains to determine a condition under which αc is uniquely identifiable. A
natural constraint is to minimize the ℓ2-norm of αc constrained to the standard KP -simplex.
This can be interpreted as minimizing the deviation from equal weighting or spreading out
the weights over prototypes. Imposing this condition, we find αc to be that which satisfies
the quadratic program

minimize
αc

α⊤
c αc

subject to αc ≥ 0, 1⊤αc = 1, Vαc = vc.
(3.3)

It remains to show uniqueness. We note that the standard KP -simplex and the solution
space to (3.2) are convex; hence, the constraint set formed by their intersection is convex.
Additionally, the objective function is strictly convex as the quadratic form is positive-
definite. Since the solution to a convex program (3.3) with a strictly convex objective is
unique, this procedure yields a unique representation αc for each chimeral cluster c ∈ C.
Hence, the given condition for identifiability of chimeral clustering is sufficient. QED

Remark 1 Epistatic clustering (Zhang, 2013) may be seen as a special case of chimeral
clustering whereby αc is restricted to specific values averaging parameters over a subset
of prototypes. Since epistatic clustering does not require a condition on the equivalent
representation of αc, it is not identifiable in the given formulation. It is susceptible to the
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3

4

C

Figure 3.3: A chimeral cluster C with more than one αC representation in terms of two or
four prototype clusters. For simplicity, all covariances are the identity matrix. This system
can be characterized by (3.4).

example posed below in Figure 3.3 with the corresponding linear system given by

1 0 −1 0
0 1 0 −1
1 1 1 1
0 0 0 0
1 1 1 1




αc1

αc2

αc3

αc4

 =



0
0
1
0
1


. (3.4)

An infinite number of solutions to (3.4) exist with three possible solutions being ⟨1
2 , 0,

1
2 , 0⟩,

⟨0, 1
2 , 0,

1
2⟩, and ⟨1

4 ,
1
4 ,

1
4 ,

1
4⟩.

Remark 2 Impositions of an implicit condition to obtain identifiability can be found in fac-
tor analysis (Shapiro, 1985) and in finite Gaussian mixtures with parsimonious covariance
matrices (Celeux and Govaert, 1995). In the former case, one may consider the varimax
(Kaiser, 1958) or the oblimin (Clarkson and Jennrich, 1988) rotations, among others. In
the latter case, one may restrict the determinant of the shape matrix Ak to unity.
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3.2.2 Number of Parameters

In the proposed model, the prototypes ηp and Λp contribute d and d(d+ 1)/2 respectively
and the πk values contribute KP + KC − 1 parameters. The remaining parameters in
αc require some deeper consideration. In particular, they are represented by KP values
with an equality constraint 1⊤

KP
αc = 1. At first glance, this seems to yield KP − 1 free

parameters. However, considering the characteristic system presented in (3.2) for KP larger
than d+d(d+1)/2+1, there are redundancies in αc. Hence, when enumerating the number
of parameters, we consider each αc to contribute min{KP − 1, d+ d(d+1)

2 } parameters.

3.3 Parameter Estimation

The central process applies an expectation-maximization (EM) type algorithm by reformu-
lating the problem into one of missing data; the cluster assignments are unobserved. As in
Gaussian mixture models, the EM algorithm turns an intractable maximum likelihood prob-
lem into a tractable iterative solution of alternating expectation and maximization steps.
In chimeral clustering, we further decompose the maximization step using expectation-
conditional-maximization (Meng and Rubin, 1993) with multi-cycle updates. We opt to
improve the objective function rather than maximize in some steps using the minorization-
maximization algorithm (Ortega and Rheinboldt, 2000; De Leeuw and Heiser, 1977; Hunter
and Lange, 2004), which qualifies the algorithm as generalized EM (Dempster et al., 1977).
Of particular note is an application of the solution to the continuous-time algebraic Riccati
equation of control theory (Laub, 1979).

3.3.1 Model Likelihood

We proceed as in finite Gaussian mixture models, defining the observations as xn for n =
1, 2, ..., N with corresponding cluster assignment indicator znk for xn belonging to cluster k.
As each chimeral cluster c ∈ C follows a N(ηc,Λc) distribution with a convex combination
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of prototype multivariate normal parameters: ηc = ∑
p∈P αcpηp, Λc = ∑

p∈P αcpΛp. The
complete data log-likelihood is given by

ℓc(θ; X,Z) =
N∑

n=1

∑
p∈P

znp log ϕ(xi | ηp,Λp) +
∑
c∈C

znc log ϕ(xi | ηc,Λc)


and the incomplete data log-likelihood is given by

ℓ(θ; X) =
N∑

n=1
log

∑
p∈P

πpϕ(xi | ηp,Λp) +
∑
c∈C

πcϕ(xi | ηc,Λc)
;

we have expanded the sum into prototype terms and chimeral terms to emphasize the
distinction.

Here, the set of parameters θ is {π, {ηp}p∈P , {Λp}p∈P , {αc}c∈C}. We perform maximum
likelihood estimation by maximizing with respect to the prototype ηp and Λp multivariate
normal parameters, the chimeral cluster mixing coefficients αcp, and the marginal proba-
bilities πk for k ∈ P ∪ C.

3.3.2 Initialization

We present a heuristic for initializing the estimation procedure for pre-specified values of
KP and KC by approximating a chimeral clustering model using an mclust model or a
k-means model. For a given parsimonious covariance matrix specification, we perform a
K = KP +KC cluster model fit. Consider each of the K multivariate normal parameters
(η̂k, Λ̂k). Let η̄ = 1

K

∑K
k=1 η̂k and distk = ∥η̂k − η̄∥. Let P index the KP largest distk and

C the remainder.

For each c ∈ C, find the best approximation to η̂c using convex combinations of {η̂p}p∈P .
That is, find αc satisfying

minimize
αc

∥∥∥∥∥∥η̂c −
∑
p∈P

αcpη̂p

∥∥∥∥∥∥
2

subject to αc ⪰ 0, 1⊤αc = 1.
(3.5)
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In addition to the fourteen choices of parsimonious covariance matrices, we allow an
additional k-means initialization with a common weighted average of cluster covariances
as Σg = Σ and the KP +KC centroids taking the role of µ. Finally, in the mclust case,
π is initialized by permuting the corresponding π values from the mclust model fit into P
and C indices. In the k-means case, the proportion of observations assigned to each cluster
g ∈ C ∪ P is used to initialize πk.

This results in up to fifteen starter models yielding initial parameter estimates η(0)
p = η̂p,

Λ(0)
p = Λ̂p, α(0)

c and π(0). We then populate the conditional probability estimates ẑnk

using these parameters and the expression in Section 3.3.4. For some number of initial
iterations, we hold the initially estimated ẑnk fixed. We then perform mini-EM by running
a small number of iterations of the EM algorithm for each, and considering the highest
log-likelihood among them to be the initialization (Biernacki et al., 2003). To exclude
some degenerate cases, we may disqualify starter models that have a very small ∑N

n=1 ẑnk,
or those that have a component with a covariance having a very small eigenvalue.

3.3.3 Alternate Initialization

We present a rough heuristic for a random initialization of the procedure and pre-specified
values of KP and KC . We sample half of the data and fit a fully-varying covariance Gaussian
mixture with K = KP +KC components. We extract the K fitted centroids µ̂1, ..., µ̂K and
the overall centroid µ̂· and compute distk = ∥µ̂k − µ̂·∥2. We classify the KP clusters with
largest distk as prototype clusters and the remaining KC as chimeral clusters. We convert
the fitted moment parameters (µk,Σk) to (ηk,Λk) for all k ∈ P ∪ C; however, this does not
guarantee compatible mixing proportions αc for any chimeral cluster c ∈ C. We loosely
approximate a valid αc for initialization by solving (3.6), though we re-initialize if any
αcp ≈ 1 to prevent a chimeral cluster from coinciding with a prototype at the outset.
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minimize
αc

∥∥∥∥∥∥
 η̂c

vech Λ̂c

−∑
p∈P

αcp

 η̂p

vech Λ̂p

∥∥∥∥∥∥
2

subject to
∑
p∈P

αcp = 1,

αcp ≥ 0 and p ∈ P .

(3.6)

After estimating a valid αc for each c ∈ C, we update ηc and Λc using the definition
thereof to produce a valid initial set of parameters ηp, Λp, and αc. We approximately
initialize π using the proportion of observations assigned to each cluster by the Gaussian
mixture model.

3.3.4 Expectation Step

As in finite Gaussian mixtures, we obtain a formula at iteration t for ẑ(t)
nk of the form

ẑ
(t)
nk = π

(t)
k ϕ (xn | η(t)

k ,Λ(t)
k )∑

j∈P∪C π
(t)
j ϕ (xn | η(t)

j ,Λ(t)
j )

. (3.7)

The surrogate objective function from the expectation step of the EM algorithm is

Q(θ | θ(t)) =
N∑

n=1

∑
k∈P∪C

ẑ
(t)
nk [log πk + log ϕ(xn | ηk,Λk)]. (3.8)

3.3.5 Maximization Step

For simplicity, we first defineN (t)
k = ∑N

n=1 ẑ
(t)
nk , y

(t)
k = ∑N

n=1 ẑ
(t)
nkxn and W(t)

k = ∑N
n=1 ẑ

(t)
nkxnx⊤

n .
We decompose the maximization step into multiple conditional maximization steps, run-
ning the expectation step as necessary after each.

Maximization in πk is as in finite Gaussian mixtures; we obtain the maximizer π̂k,ML =
N

(t)
k /N for both types of clusters. This maximizer is independent of the other estimable

parameters and is easy to compute, so we recompute this immediately after the expectation
step during the other conditional maximization steps as well.
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Next, we maximize in all ηp for p ∈ P simultaneously by solving the following linear
system

[
R(t) + diag

(
N1Λ(t)−1

1 , ..., NKP
Λ(t)−1

KP

)] 
η1
...

ηKP

 =


y

(t)
1 +∑

c∈C α
(t)
c1 y(t)

c
...

y
(t)
KP

+∑
c∈C α

(t)
cKP

y(t)
c


where R(t) =

∑
c∈C

N (t)
c (α(t)

c α(t)⊤
c ⊗ Jd×d)⊙ (JKP ×KP

⊗Λ(t)−1
c ).

Subsequently, we maximize in Λp for each p ∈ P . We note the intractability of solving
the matrix derivatives for the simultaneous maximizer of all Λp, and resort to conditionally
maximizing in each Λp. Additionally, we employ minorization-maximization (Hunter and
Lange, 2004; Hansen and Pedersen, 2003) to obtain a feasibly solvable equation for a
minorizer of Λp

−N (t)
p Λ−1

p −Λ−1
p M(t)

p Λ−1
p +

(
W(t)

p +
∑
c∈C

αcpW(t)
c

)
= 0

where M(t)
p = N (t)

p η(t)
p η(t)⊤

p +∑
c∈C αcpN

(t)
c Λ(t)

p

(
Λ−(t)

c η(t)
c η(t)⊤

c Λ−(t)
c + Λ−(t)

c

)
Λ(t)

p . This equa-
tion is the form of the continuous-time algebraic Riccati equation, for which a symmetric
positive-definite solution of Λ−1

p can be found in Laub (1979).

Finally, we maximize in each αc for each c ∈ C. Due to the complexity of the objective
function, we perform the soft-max reparameterization to obtain an unconstrained problem,
and perform a single Newton-Raphson step each iteration starting from the previous value.
We perform up to 100 Newton-Raphson iterations for each αc maximization step, and
assess convergence by the ℓ1-norm of successive iterations in the soft-max transformed
space being below 10−12. If the updated value of αc yields a lower value of the surrogate
objective function, we revert the update.
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3.4 Expectation Maximization Procedure

3.4.1 Expectation Step

As in finite Gaussian mixtures, we obtain a formula at iteration t of znk of the form 3.9.

ẑ
(t)
nk = π

(t)
k ϕ (xn | η(t)

k ,Λ(t)
k )∑

j∈P∪C π
(t)
j ϕ (xn | η(t)

j ,Λ(t)
j )

(3.9)

The surrogate objective function from the expectation step of the EM algorithm follows:

Q(θ | θ(t)) =
N∑

n=1

∑
k∈P∪C

ẑ
(t)
nk [log πk + log ϕ(xn | ηk,Λk)] (3.10)

3.4.2 Sampling Step

We mitigate the presence of local extrema using an initial regime of stochastic EM (Celeux
and Diebolt, 1986) for a preset number of iterations, followed by standard EM until con-
vergence. If Stochastic EM (Celeux and Diebolt, 1986) applies to the current iteration,
then after each Expectation step we generate a pseudosample based on the ẑ(t)

nk values. We
perform a hard assignment of each observation n to a cluster k ∈ P ∪ C according to the
Categorical(ẑ(t)

n1 , ..., ẑ
(t)
nK) distribution.

If Stochastic EM (Celeux and Diebolt, 1986) applies to the current iteration, we perform
sampling based on the ẑ(t)

nk calculated in the previous step. To generate the pseudosample
Z(t), we draw an assignment for each observation n to a cluster using the categorical
distribution z̃(t)

n ∼ Categorical(ẑ(t)
n1 , ..., ẑ

(t)
nK). We incorporate this pseudosample into the

maximization step by altering ẑ
(t)
nk = 1(z̃(t)

n = k) and retaining the same notation and
steps.

As part of the investigation into initializing the EM algorithm, we applied the random
start initialization procedure described below. The slight random perturbations in initial
parameters afforded by subsampling the data before fitting a Gaussian mixture model lead
to considerably different local optima.
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An additional Stochastic EM sampling step (Celeux and Diebolt, 1986) was added to
the EM algorithm to escape local optima with varying degrees of success. This step lead to
more of the random starts reaching a better optima for some datasets. More concerningly
however, it would also often miss viable optima by falling into a degenerate state with very
small covariance eigenvalues or no responsibility allocated to a cluster.

While this procedure occasionally produced slightly better BIC values compared to
the current deterministic estimation procedure, it required a very large number of random
starts to achieve this.

3.4.3 Maximization Step

We decompose Equation (3.10) into prototype and chimeral sums at this point and substi-
tute in the multivariate normal density to form (3.11). To reduce notational load, define
N

(t)
k = ∑N

n=1 ẑ
(t)
nk , y

(t)
k = ∑N

n=1 ẑ
(t)
nkxn and W(t)

k = ∑N
n=1 ẑ

(t)
nkxnx⊤

n to represent the effective
number of observations, weighted centroid of assigned observations, and weighted non-
central scatter matrix for cluster k ∈ P ∪ C, respectively.

Q(θ | θ(t)) = −d2N log 2π

+
∑
p∈P

[
Np

(
log πp + 1

2 log det Λp −
1
2η⊤

p Λ−1
p ηp

)
+ η⊤

p yp −
1
2 Tr (ΛpWp)

]

+
∑
c∈C

[
Nc

(
log πc + 1

2 log det Λc −
1
2η⊤

c Λ−1
c ηc

)
+ η⊤

c yc −
1
2 Tr (ΛcWc)

]
(3.11)

Maximizing Q(θ | θ(t)) over θ = {ηp,Λp,αc,π} is highly intractable due to the mixing
parameters αc being nearly omnipresent; hence, we switch to multi-cycle EM and perform
conditional maximizations over each set of parameters {ηp,Λp,αc,π} separately.
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Maximizing in π

As in standard Gaussian mixture models, we note in Equation (3.11) the πk term is sepa-
rable and that there is a constraint ∑k∈P∪C πk = 1. As such, we formulate problem using
Lagrange multipliers as Q(θ | θ(t)) − λ (∑k∈P∪C πk − 1) for λ ∈ R. We solve to find the
standard Gaussian mixture model solution π̂k,ML = N

(t)
k /N .

Maximizing in ηg

We differentiate (3.11) in ηg for g ∈ P and obtain Equation (3.12); by equating each
∂Q/∂ηg to zero, we obtain a blockwise defined linear system solvable for all ηp simultane-
ously or a sequence of systems solvable for each ηp using multi-cycle updates.

∂Q

∂ηg

= y(t)
g −N (t)

g Λ−1
g ηg +

∑
c∈C

αcgy(t)
c −

∑
c∈C

αcgN
(t)
c Λ−1

c ηc (3.12)

∑
c∈C


N1Λ−1

1 +Ncαc1αc1Λ−1
c · · · Ncαc1αcKpΛ−1

c
... . . . ...

NcαcKP
αc1Λ−1

c · · · NKP
Λ−1

KP
+NcαcKP

αcKP
Λ−1

c


∑
c∈C

Nc(αcα
⊤
c ⊗ Jd×d)⊙ (JKP ×KP

⊗Λ−1
c ) + diag

(
N1Λ−1

1 , ..., NKP
Λ−1

KP

)

Maximizing in Λp

To maximize in each prototype Λg, we would like to compute the derivative of Equa-
tion (3.11) with respect to Λg. While the differentiation itself is tractable, attempting to
solve for the roots is not; thus, we resort to the minorization-maximization algorithm to
produce an increase in Q rather than a maxima. Effectively, this renders the estimation
process into a generalized EM algorithm.

We derive here an appropriate minorization for η⊤
c Λ−1

c ηc; to do so, we apply the oper-
ator Jensen inequality (Hansen and Pedersen, 2003, Theorem 2.1). The statement for an
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operator convex function f , elements x1, x2, ..., xn, and operators A1,A2, ...,An satisfying∑n
i=1 A∗

i Ai = 1 is as follows:

f

(
n∑

i=1
A∗

ixiAi

)
≤

n∑
i=1

A∗
i f(xi)Ai (3.13)

In particular, the matrix inverse is an operator convex function; let f(X) = X−1. We
now derive an appropriate minorization for the inverse of Λc by multiplying with an ap-
propriate expansion of identity matrices.∑

p∈P
αcpΛp

−1

= Λ− (t)
2

c

∑
p∈P

αcpΛ− (t)
2

c ΛpΛ− (t)
2

c

−1

Λ− (t)
2

c

= Λ− (t)
2

c

∑
p∈P

√
αcpΛ− (t)

2
c Λ

(t)
2

p Λ− (t)
2

p ΛpΛ− (t)
2

p Λ
(t)
2

p Λ− (t)
2

c

√
αcp

−1

Λ− (t)
2

c

Define Ap = √αcpΛ
(t)
2

p Λ− (t)
2

c so that A∗
pAp = A⊤

p Ap = Λ− (t)
2

c

(∑
p∈P αcpΛ(t)

p

)
Λ− (t)

2
c = I.

Let Xp = Λ− (t)
2

p ΛpΛ− (t)
2

p for convenience.
∑

p∈P
αcpΛp

−1

= Λ− (t)
2

c

∑
p∈P

A⊤
p XpAp

−1

Λ− (t)
2

c

= Λ− (t)
2

c f

∑
p∈P

A⊤
p XpAp

Λ− (t)
2

c

We now apply Equation (3.13) to f .∑
p∈P

αcpΛp

−1

≤ Λ− (t)
2

c

∑
p∈P

A⊤
p f(Xp)Ap

Λ− (t)
2

c

= Λ− (t)
2

c

∑
p∈P

A⊤
p f(Xp)Ap

Λ− (t)
2

c

=
∑
p∈P

αcpΛ−(t)
c Λ(t)

p Λ−1
p Λ(t)

p Λ−(t)
c (3.14)
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Indeed, at Λp = Λ(t)
p for all p ∈ P we have equality as required of a minorizing surrogate.

From the convexity of the log-determinant and the operator Jensen inequality, we arrive
at the minorizations (3.15) and (3.16).

log det Λc ≥ log det Λ(t)
c + Tr

[
Λ−1

c

(
Λc −Λ(t)

c

)]
(3.15)

−η⊤
c Λ−1

c ηc ≥ −
∑
p∈P

αcpη⊤
c Λ−(t)

c Λ(t)
p Λ−1

p Λ(t)
p Λ−(t)

c ηc (3.16)

We may further apply (3.16) to (3.15) to obtain a more useful minorizer (3.17).

log det Λ(t)
c + Tr

[
Λ−1

c

(
Λc −Λ(t)

c

)]
= log det Λ(t)

c + d− Tr
(

Λ
(t)
2

c Λ−1
c Λ

(t)
2

c

)

≥ log det Λ(t)
c + d− Tr

∑
p∈P

αcpΛ
(t)
2

c Λ(t)
p Λ−1

p Λ(t)
p Λ

(t)
2

c


(3.17)

Applying minorizations (3.16) and (3.17) to Equation (3.11), we obtain the minorized
surrogate (3.18) and corresponding derivative (3.19).

Qm = Ng

2
(
log det Λg − η⊤

g Λ−1
g ηg + Tr (ΛgWg)

)
−
∑
c∈C

Nc

2 Tr
∑

p∈P
αcpη⊤

c Λ− (t)
2

c Λ(t)
p Λ−1

p Λ(t)
p Λ− (t)

2
c ηc


−
∑
c∈C

Nc

2
∑
p∈P

αcpη⊤
c Λ−(t)

c Λ(t)
p Λ−1

p Λ(t)
p Λ−(t)

c ηc


− 1

2
∑
c∈C

Tr (ΛcWc) + constant

(3.18)

∂Qm

∂Λg

= Ng

2
(
Λ−1

g −Λ−1
g ηgη⊤

g Λ−1
g

)
− 1

2Wc

+ Λ−1
g


∑
c∈C

αcg
Nc

2 Λ(t)
g

(
Λ−(t)

c ηcη
⊤
c Λ−(t)

c + Λ−(t)
c

)
Λ(t)

g︸ ︷︷ ︸
M(t)

cg

Λ−1
g −

1
2
∑
c∈C

αcgWc

(3.19)
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Setting (3.19) to zero, we can re-arrange the equation to obtain the Continuous-time
Algebraic Riccati Equation (CARE):

−NgΛ−1
g −Λ−1

g

(
Ngηgη⊤

g +
∑
c∈C

αcgNcM(t)
cg

)
Λ−1

g +
(

Wg +
∑
c∈C

αcgWc

)
= 0 (3.20)

While the specifics are beyond the scope of this work, we state here the form and solu-
tions available in the literature. In optimal control theory, the Continuous-time Algebraic
Riccati Equation (CARE) characterizes the stabilizing solution of a infinite-time horizon
linear-quadratic regulator (3.21) as an unknown symmetric matrix X with constant real-
valued matrices A, B, Q, and R. A method of solving (3.21) for X is given by Laub
(1979).

A⊤X + XA−XBR−1B⊤X + Q = 0 (3.21)

We obtain an updated estimate Λ̂
(t+1)
g by solving (3.20) for Λ−1

g and inverting. While
this step can be iterated until convergence to reach a maxima before continuing to the next
CM step, we perform only one iteration.

Maximizing in αc

To maximize over mixing parameters αc for each chimeral cluster c ∈ C, we would like
set the gradient to zero. However, we are bound by the convex constraint ∑p∈P αcp = 1.
We perform the soft-max reparameterization in order to obtain an unconstrained problem.
Define βcp for c ∈ C and p ∈ P such that:

αcp = exp βcp∑
p∈P exp βcp

Hence, we may choose βc ∈ Rp up to an additive constant while satisfying the convexity
constraint on αc:

αcp = exp βcp∑
p∈P exp βcp

= exp (βcp + λ)∑
p∈P exp (βcp + λ) ∀λ ∈ R
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This maximization is an intractable problem as posed; thus, we resort to the Newton-
Raphson numerical optimization algorithm to maximize with respect to αcg by working in
the soft-max transformed space βc. The derivative of Equation (3.11) with respect to βcg

is:

∂Q

∂βcg

= αcg

{
η⊤

g yc − η⊤
c yc + 1

2 Tr (ΛcWc)−
1
2 Tr (ΛgWc) + Nc

2 [Tr (Λ−1
c Λg)− d]

− Nc

2
(
2η⊤

c Λ−1
c ηg − η⊤

c Λ−1
c ηc − η⊤

c Λ−1
c ΛgΛ−1

c ηc

)} (3.22)

The system of equations given by Equation (3.22) for g ∈ P is intractably difficult to
solve for βc in a closed form. Thus, we switch to the numeric Newton-Raphson method for
root finding on the derivative. To do so, we require the second derivative as given below:

∂2Q

∂βcg ∂βch

= 1(g = h) ∂Q
∂βcg

+ αcgαch

{
η⊤

g yc − η⊤
c yc

+ 1
2 [Tr (ΛcWc)− Tr (ΛgWc)]

+ 1
2
[
Tr (Λ−1

c Λg)− Tr (Λ−1
c ΛgΛ−1

c Λh)
]

− η⊤
g Λ−1

c ηh + η⊤
g Λ−1

c ΛhΛ−1
c ηc + η⊤

c Λ−1
c ηh

− 1
2η⊤

c Λ−1
c ηc −

1
2η⊤

c Λ−1
c ΛhΛ−1

c ηc

+ η⊤
h Λ−1

c ΛgΛ−1
c ηc

− η⊤
c Λ−1

c ΛgΛ−1
c ΛhΛ−1

c ηc

}

(3.23)

We define the matrix H and matrix L row-wise as follows:

H =


— η1 —

...
— ηKP

—

 L =


— vec Λ1 —

...
— vec ΛKP

—
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Hence, the matrix equivalent of Equation (3.22) is the following:

∇βc
Q = αc ⊙

{
H(yc −NcΛ−1

c ηc)

+ 1
2L vec (NcΛ−1

c −Wc +NcΛ−1
c ηcη

⊤
c Λ−1

c )

+
[1
2 Tr (ΛcWc)− η⊤

c yc + Nc

2 η⊤
c Λ−1

c ηc −
Nc

2 d
]

JKP ×1

} (3.24)

For convenience, define the symmetric part of a matrix A as Asymm = A+A⊤

2 . The
matrix equivalent of Equation (3.23) is the following:

∇∇⊤
βc
Q = αcα

⊤
c ⊙

{[
2η⊤

c yc − Tr (ΛcWc)−Ncη
⊤
c Λ−1

c ηc + Nc

2 d
]

JKP ×KP

+ 2
[
H
(
NcΛ−1

c ηc − yc

)
J1×KP

]
symm

+
[
L vec

(
Wc −NcΛ−1

c ηcη
⊤
c Λ−1

c

)
J1×KP

]
symm

−NcL
(
Λ−1

c ⊗Λ−1
c ηcη

⊤
c Λ−1

c

)
L⊤

− Nc

2 L
(
Λ−1

c ⊗Λ−1
c

)
L⊤

−NcHΛ−1
c H⊤

+ 2Nc

[
H
(
Λ−1

c ⊗ η⊤
c Λ−1

c

)
L⊤
]

symm

}
+ diag∇βc

Q

(3.25)

Thus, using Equation (3.24) and Equation (3.25), we compute a Newton-Raphson up-
date for αc. We note that the Hessian matrix is guaranteed to have zero eigenvalue in the
direction 1KP

= ⟨1, 1, ..., 1⟩ since the objective function in βc is invariant to an additive
constant λ1KP

. This makes a strictly standard Newton-Raphson update impossible due
to a singular Hessian; however, we may project to the subspace formed by the orthogonal
complement of 1KP

where the Hessian has full rank. After updating in this space, we
return to the full βc space by setting the 1KP

component to have zero magnitude. Since
the objective is invariant in this direction, choosing zero is optimal as it also improves
numerical stability.
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Figure 3.4: Pair-wise scatterplot matrix for the iris dataset

3.5 Applications

3.5.1 Iris dataset

The ubiquitous Iris dataset (Anderson, 1936; Fisher, 1936) describes three species of iris
flowers. Figure 3.4 depicts the dimensions of Iris versicolor as intermediate to Iris se-
tosa and Iris virginica. This data is a suitable candidate for chimeral clustering; in fact,
Anderson (1936) offers a genotypical and phenotypical argument for hybridization.

To evaluate the performance of the proposed method, we evaluate each combination
of KP +KC ≤ 6. Using the initialization procedure in Section 4.4.1, we run all 15 starter
models in mini-EM for 1000 iterations holding ẑnk fixed for 500 of them. We discard starter
models that have Nk ≤ 10−8 or any covariance with an eigenvalue ≤ 10−4. Subsequently, we
run EM for up to 10,000 iterations on the best starter model. The BIC for each combination
of KP and KC is presented in Figure 3.5 with the best BIC at (KP , KC) = (2, 1).

Table 3.1 lists the performance metrics of the fitted chimeral clustering model and the
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Figure 3.5: Bayesian information criterion for multiple choices of prototype clusters KP

and chimeral clusters KC for the iris dataset.

best finite Gaussian mixture model of mclust with and without parsimonious covariance
matrices. We note that mclust will choose a two cluster model for the iris dataset; for
comparison purposes, three to six component models were evaluated for finite Gaussian
mixtures. The chimeral model has the fewest parameters at 31; however, we see a corre-
sponding trade-off in BIC that is partially mitigated by the reduction in complexity. BIC
also indicates an improvement over the VVV model, but falls somewhat short of the best
parsimonious covariance matrix model. Furthermore, the ARI with chimeral clustering is
slightly better than both Gaussian mixture models and is reflected by the confusion matrix
in Table 3.2.

Finally, the fitted αc for the single chimeral cluster of the best BIC run above is
⟨0.0783, 0.9217⟩. This suggests that Iris versicolor is much closer to Iris virginica than
Iris setosa. This conclusion is consistent with the scatterplot in Figure 3.4, but is at odds
with the ratio of (Anderson, 1936). We attribute this difference to the warping of the
interpolated chimeral cluster caused by the differences in covariance shapes. In particular,
Figure 3.2 exhibits this phenomenon as well; as αc varies, the chimeral cluster appears
more often near the lower prototype.
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Table 3.1: Fitted model metrics for iris dataset using chimeral clustering, finite Gaussian
mixtures, and finite Gaussian mixtures with parsimonious covariance matrices. Best values
in bold.

mclust

Chimeral Clustering VVV VEV

Number of Clusters 3 (KP = 2) 3 3
Number of Parameters 31 44 38

Log-Likelihood −206.0511 −180.1858 −186.0740
BIC 567.4320 580.8396 562.5522
ARI 0.9410 0.9039 0.9039

Table 3.2: Confusion matrix for iris dataset comparing chimeral clustering and the mclust
VVV model with three clusters.

Chimeral Clustering mclust VVV

Prototype 1 Chimeral Prototype 2 Cluster 1 Cluster 2 Cluster 3

setosa 50 0 0 50 0 0
versicolor 0 47 3 0 45 5
virginica 0 0 50 0 0 50
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Figure 3.6: Pair-wise scatterplot matrix for the Hawks dataset.

3.5.2 Hawks dataset

The Hawks dataset (Cannon et al., 2019) describes some measurements for three different
species of hawks. The dataset contains 908 observations with a multitude of variables; we
consider only the four mostly-complete variables Wing, Weight, Culmen, and Tail. We
further omit 16 incomplete cases. From the data scatterplot in Figure 3.6, we observe the
morphometric measurements for three different species of hawks: Cooper’s Hawks (CH),
Red-Tailed (RT), and Sharp-Shinned (SS).

We search through parameters KP + KC ≤ 9, with 1000 iterations of mini-EM. We
restrict the minimum covariance eigenvalue for starter models to be ≥ 10−4 and require
Nk ≥ 10−8. We run EM on the best starter for another 50,000 iterations afterwards.
The results for each combination of KP and KC are presented in Figure 3.7. The best
chimeral clustering and mclust model values are presented in Table 3.3, with associated
confusion matrix in Table 3.4. Note that mclust selected the fully-varying VVV model
over a parsimonious covariance structure. Finally, the chimeral cluster has hybridization
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Figure 3.7: Bayesian information criterion for multiple choices of prototype clusters KP

and chimeral clusters KC for the hawks dataset.

weights ⟨0.051, 0.017, 0.928, 0.003, 0.000⟩ corresponding to the five prototypes.

3.5.3 Limnoperus dataset

The water strider dataset (Klingenberg and Spence, 1993) measures the dimensions of
genus Limnoperus over six different species. The measured variables for each specimen
are eight morphometric dimensions comprising four antennae segment lengths and four
different leg lengths.

We search through parameters KP ≤ 10 and KC ≤ 10, with 5000 iterations of mini-EM,
holding ẑnk fixed for 1000 of them. We then run EM on the best starter for another 50,000
iterations afterwards. The results for each combination of KP and KC are presented
in Figure 3.8. The best chimeral clustering and mclust model values are presented in
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Table 3.3: Fitted model metrics for hawks dataset using chimeral clustering, finite Gaussian
mixtures, and finite Gaussian mixtures with parsimonious covariance matrices. Best values
in bold. Note that mclust selects the VVV model over a parsimonious covariance model.

Chimeral Clustering mclust VVV

Number of Clusters 6 (KP = 5) 6
Number of Parameters 79 89

Log-Likelihood −14 189.43 −14 172.78
BIC 28 915.54 28 950.18
ARI 0.7620 0.4589

Table 3.4: Confusion matrix for hawks dataset comparing chimeral clustering and the
mclust VVV model with six clusters.

Chimeral Clustering

Prototype 1 Prototype 2 Prototype 3 Prototype 4 Prototype 5 Chimeral

CH 2 0 10 2 53 2
RT 0 0 46 520 2 0
SS 125 110 1 1 3 15

mclust VVV

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

CH 0 53 2 1 13 0
RT 193 2 0 335 38 0
SS 1 7 130 0 6 111
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Figure 3.8: Bayesian information criterion for multiple choices of prototype clusters KP

and chimeral clusters KC for the water strider dataset.

Table 3.5. For the chimeral clustering model with the best BIC, the hybridization weights
for the chimeral clusters are visualized in Figure 3.9.

3.5.4 Yeast dataset

The yeast stress dataset (Gasch et al., 2000) is used as a real-world dataset in the prior
epistatic clustering work by Zhang (2013). It describes the changes in gene expression of
the yeast Saccharomyces cerevisiae in response to changes in the environmental conditions
experienced by the cells. We attempt to replicate the same dataset by following the data
pre-processing step described therein (Zhang, 2013, Section 5.1).

We begin with the dataset of Gasch et al. (2000) containing 6152 observations repre-
senting genes and 173 variables representing environmental conditions. We use the same
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Figure 3.9: Chimeral mixing proportions αc for each of the nine chimeral clusters over the
six prototype clusters for the water striders dataset.

Table 3.5: Fitted model metrics for the water strider dataset using chimeral clustering,
finite Gaussian mixtures, and finite Gaussian mixtures with parsimonious covariance ma-
trices via mclust. Best values in bold.

mclust

Chimeral Clustering VVV VEE

Number of Clusters 15 (KP = 6) 6 17
Number of Parameters 323 269 204

Log-Likelihood 3507.46 3074.73 3334.70
BIC −4982.75 −4457.02 −5385.92
ARI 0.1391 0.0264 0.1304
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15 variables as described by Zhang (2013), titled with the prefix “Heat Shock” and suffixed
“hs-1” or “hs-2” as found in columns 4 through 19, inclusive. There are missing values in
this subset of dataset and it is unclear how Zhang (2013) treats these cases; we leave incom-
plete observations in the dataset at this point. Subsequently, we remove noisy observations
as done so by Zhang (2013), calculating a sample variance over each row. Due to data miss-
ingness, we compute the sample variance σ̂i over the non-missing columns for each gene i.
There is a single observation (YDL208W) with 14 missing values, leading to an undefined
sample variance; we remove this observation. Let S1 = {σ̂i | i = 1, 2, ..., 6151} denote the
set of sample variances. We select the subset of S1 “within three-folds of the minimum sam-
ple variance” (Zhang, 2013) to form S2 = {σ̂ | σ̂ ∈ S1, σ̂ ≤ 3×mins∈S1 s} with |S2| = 169.
We define σ̂0 as the sample average over S2, and construct the sample variability index vi

over the 6151 genes as vi = σ̂i/σ̂0 for i = 1, 2, ..., 6151. Finally, we choose all genes i such
that vi > 9; this leaves 2294 genes. Since there are still missing values for these genes, we
retain only complete cases for a final number of 1364 genes. By contrast, Zhang (2013)
claim to have 496 genes at the end of the procedure. If we remove incomplete cases after
selecting the 15 desired variables, we obtain 1361 genes at the end. If we remove incomplete
cases from the entire dataset of 173 variables, we obtain 258 genes at the end. We approx-
imately verify that our choice of 15 variables is correct by noting similar characteristics in
the pairwise scatterplot (Zhang, 2013, Figure 1). Overlooking this discrepancy, we proceed
with the application of chimeral clustering using the dataset of 1364 genes.

We evaluate for KP +KC ≤ 13, running mini-EM for 5000 iterations and holding ẑnk

fixed for 1000 of them. We exclude models that have covariances with eigenvalues ≤ 10−8

and Ng ≤ 10−8 for any g ∈ C ∪ P. We then run an additional 5000 iterations on the best
starter model. The resultant BICs for each combination of KP sand KC are presented in
Figure A.6.

Zhang (2013) obtains an epistatic clustering result with four primary clusters, three
epistatic clusters, and a miscellaneous cluster. By contrast, we obtain three prototypes and
eight chimeral clusters. The fitted model metrics are given in Table A.1 without ARI due
to a lack of class labels. Again, we compare against the best fully varying covariance matrix
Gaussian mixture and the best parsimonious covariance matrix Gaussian mixture fitted by
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Figure 3.10: Minimum Bayesian Information Criterion for multiple choices of prototype
clusters KP and chimeral clusters KC over 100 runs each of the Saccharomyces cerevisiae
dataset. Graph truncated to KP ≤ 8 for presentation.
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Table 3.6: Fitted model metrics for yeast dataset with up to 13 clusters, best value in bold.
mclust

Chimeral Clustering VVV VEE

Number of Clusters 10 (KP = 3) 4 10
Number of Parameters 428 543 288

Log-Likelihood −9840.69 −9855.30 −10 489.53
BIC 22 770.76 23 630.07 23 057.90

mclust. Figure A.7 shows the αc quantities for each chimeral cluster. We can see the ability
of chimeral clustering to better adapt to varying number of parents and unbalanced mixing
proportions compared to the pre-specified values in epistatic clustering. With this dataset,
we note that the chimeral clustering BIC outperforms both the parsimonious Gaussian
mixture model and covariance VVV model.

3.5.5 Clams dataset

We demonstrate the efficacy of chimeral clustering beyond the simplest two prototype, one
chimeral configuration using the data of Kitada et al. (2013b,a) which describes a collection
of Manila clams (Ruditapes philippinarum) obtained from seas in Japan and China using
the variables shell height (SH), shell width (SW), shell length (SL), and number of radial
ribs found on the shell. As in the Iris dataset, the available variables are morphometric
and thus could be expected to hybridize in the parameter space. Figure 3.12 depicts some
examples of Ruditapes philippinarum. Kitada et al. (2013b) describes the historical import
and cultivation practices which has led to present-day hybridized species taking root in
different ecological niches found in different parts of the ocean. The data spans eleven
geographical locations and three species, and is presented in Figure 3.13.

We evaluate for number of prototypes and chimeral clusters KP +KC ≤ 9. For each
combination of KP and KC , we run mini-EM for 1000 iterations, select the best starter
model, and then run the EM algorithm for an additional 10,000 iterations. The best BIC
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Figure 3.11: Mixing proportions αc for each of the eight chimeral clusters over the three
prototype clusters for the Saccharomyces cerevisiae dataset. Both two and three parent
clusters are visible.

Figure 3.12: Examples of Ruditapes philippinarum (Takahashi, 2006)
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Figure 3.13: Pair-wise scatterplot matrix for the Manila clams dataset (Kitada et al.,
2013a)

within each parameter combination is given in Figure 3.14. We find the best chimeral
clustering model occurs at KP = 3 and KC = 3; the corresponding metrics are given in
Table 3.7. Comparative finite Gaussian mixture models using mclust are also provided
with and without parsimonious covariance matrices, and the model with the best BIC up
to 9 clusters is displayed for both.

3.6 Simulation Study

3.6.1 Simulation Study

We describe a family of artificial datasets based on the proposed model to demonstrate
the degree of parameter recovery of the weights αc. We term members of this family the
“d-radioactive” dataset, where the parameter d determines the dimension of the data. An
example in two dimensions is presented in Figure 3.16; the data resembles a triangular
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Figure 3.14: Bayesian Information Criterion for multiple choices of prototype clusters KP

and chimeral clusters KC for the Manila clams dataset.

Table 3.7: Fitted model metrics for Manila clams dataset (Kitada et al., 2013a) with best
models selected over 3 to 9 cluster models.

mclust

Chimeral Clustering VVV VEE

Number of Clusters 6 (KP = 3) 4 7
Number of Parameters 53 59 50

Log-Likelihood −5172.01 −5196.38 −5182.32
BIC 10 678.44 10 765.05 10 680.13

ARI (Location) 0.2722 0.2767 0.3472
ARI (Species) 0.2895 0.3313 0.2140
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Figure 3.15: Chimeral mixing proportions αc for each of the three chimeral clusters over
the three prototype clusters for the Manila clams dataset.
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radioactive sign, after which the family of datasets is named. For a general d ≥ 2, the
prototype means µp are placed on the regular d-simplex centred at the origin with radius√

200d in Rd. This process yields the means of d+ 1 prototype clusters. The covariance
matrix Σp is constructed such that it has 0 < r ≪ 100 eigenvalue in the direction of µp and
100 for the remaining eigenvalues. A formula for Σp is 100Id − (100− r)µpµ⊤

p /∥µp∥2. The
parameter r controls the sphericity of the prototype clusters; smaller values r represent
more flattened multivariate normal distributions.

Each prototype Pi has a corresponding chimeral cluster Ci with weight αCiCi
= 3

d+3 ,
and weight αCiq = 1

d+3 on all other prototypes q. Finally, there is an additional central
chimeral cluster Cd+2 with equal weights on all prototypes. This yields d + 2 chimeral
clusters. From each prototype/chimeral cluster, we draw n observations to compose the
dataset. Further details on the dataset construction are given in Appendix A.2.

We perform a simulation study using the described family of datasets varying three
different parameters d, n, and r. We vary the data dimension d from 2 to 10, the number
of observations per cluster n from 20 to 100 in steps of 20, and the eigenvalue r being 1, 5,
or 10. For each of these parameter combinations, we perform ten replications. We perform
mini-EM initialization with 1000 iterations, of which 500 hold ẑnk constant, followed by
1000 further EM iterations on the best starter model. To reduce computation time, we
specify KP and KC to be their true values to avoid a combinatoric search. A finite Gaussian
mixture with parsimonious covariance matrices is fitted using mclust for each replication
as comparison.

We measure the degree of parameter recovery for αc using cosine similarity. By ex-
pressing the hybridization weights in a vectorized form ⟨α1, ...,αd+2⟩, we may compute
the cosine of the angle between the true and estimated values. This metric provides a
consistent comparison across different numbers and dimensions of αc as it varies with data
dimension d. Since the estimation procedure arranges the indices haphazardly, we apply a
brute-force algorithm to match the true indices by finding the permutation that maximizes
the metric.

For brevity, a table summarizing some selected parameter values is presented in Ta-
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shown demonstrating the difference in cluster shapes.
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ble 3.8 with extended results available in Appendix A.2.1. We observe that as r increases
and the clusters begin to overlap, mclust models suffer a greater decrease in ARI than
chimeral clustering. Conversely, we see that BIC’s relative performance when parsimo-
nious covariance matrices improves as r increases; indeed, Figure 3.16 shows the clusters’
shapes becoming more spherical. In turn, this makes parameter sharing feasible and demon-
strates the two different styles of parsimony found by chimeral clustering and parsimonious
covariances. For both types of mixture models, ARI improves with larger n and/or d. Fi-
nally, we see that chimeral clustering has good recovery of αc except for high d and low n;
the data sparsity; the lack of observations has a deleterious effect on the estimated αc.

3.6.2 d-Radioactive Dataset

We describe here the method for generating the d-Radioactive dataset used in the simula-
tion study. Here, d represents the dimension of the data. In two dimensions, we find that
the data distribution resembles the radioactivity sign and is so named. In higher dimen-
sions, the sketch of the mixture density is a regular d-simplex (triangle, tetrahedron, and so
forth) with the prototypes densities roughly forming the d− 1 dimension facets. Chimeral
clusters are formed by taking three parts of one prototype and one part of all other pro-
totypes for each prototype, with an extra cluster being equal parts of all prototypes. A
constructive description follows.

For d ≥ 2, define d+ 1 prototype clusters with their means being vertices of a regular
d-dimensional simplex centered at the origin in Rd with radius

√
200d (distance of each

vertex to the origin, equivalently radius of the circumscribed d-sphere). Define µi =
⟨µi,1, µi,2, ..., µi,d⟩ and construct successive vertices as follows.

• Set µ1,1 = 1 and µi,1 = −1
d

for i = 2, 3, ..., d+ 1.

• For i in 2, ..., d+ 1:

– Set µi,i =
√

1−∑i−1
j=1 µ

2
i,j.

– Set µi+1,i, ..., µi,d = − 1
µi,i

(
1
d

+∑i−1
j=1 µi,j

)
.
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Table 3.8: Average BIC, ARI, and cosine similarity values for selected simulation param-
eters in the d-radioactive dataset over fifty replications. Chimeral clustering and finite
Gaussian mixtures with parsimonious covariances via mclust are compared by BIC and
ARI. Cosine similarity values are provided for chimeral clustering to measure recovery of
αc. Sample standard deviations in given in the brackets.

Parameters BIC ARI Cosine Sim.

r d n Chimeral mclust Chimeral mclust Chimeral

1 2 20 1869 (52) 1913 (32) 0.986 (0.069) 0.990 (0.043) 0.974 (0.040)
1 2 100 8840 (56) 8905 (56) 0.999 (0.002) 0.999 (0.002) 0.997 (0.004)
1 10 20 34807 (218) 32748 (81) 0.993 (0.024) 0.997 (0.004) 0.613 (0.143)
1 10 100 158289 (197) 158020 (201) 1.000 (0.000) 1.000 (0.001) 0.988 (0.009)

5 2 20 2177 (25) 2185 (19) 0.803 (0.097) 0.561 (0.095) 0.915 (0.085)
5 2 100 10412 (48) 10484 (46) 0.880 (0.039) 0.799 (0.090) 0.983 (0.046)
5 10 20 38413 (128) 35818 (101) 0.924 (0.049) 0.893 (0.027) 0.576 (0.096)
5 10 100 175513 (236) 173727 (239) 0.983 (0.003) 0.926 (0.009) 0.988 (0.005)

10 2 20 2237 (20) 2227 (21) 0.562 (0.083) 0.454 (0.039) 0.907 (0.067)
10 2 100 10779 (39) 10808 (38) 0.676 (0.036) 0.503 (0.051) 0.991 (0.009)
10 10 20 39289 (113) 36606 (100) 0.725 (0.057) 0.706 (0.039) 0.573 (0.066)
10 10 100 180546 (211) 177897 (223) 0.880 (0.010) 0.803 (0.012) 0.976 (0.015)
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For each prototype, define the covariance matrix Σi = 100I− (100− r)µiµ
⊤
i for some

parameter 0 < r < 100. In order to preserve the separation of the clusters, r should be
considerably lower than 100. Let the natural parameterization of the prototype distribu-
tions be (ηi,Λi). Define d + 2 chimeral clusters, with the first j = 1, 2, ..., d + 1 being
parameterized by αj = 1

d+31d+1 + 2
d+3ej for standard basis vectors ej. The last chimeral

cluster is parameterized by αj = 1
d+11d+1.

For d = 2, the parameters in numerical form are:

ηP1 = ⟨20, 0⟩

ηP2 = ⟨−10, 17.3205⟩

ηP3 = ⟨−10,−17.3205⟩

ΛP1 =
1 0
0 0.1


ΛP2 =

 0.2575 −0.4287
−0.4287 0.7525


ΛP3 =

0.2575 0.4287
0.4287 0.7525


αC1 = ⟨0.6, 0.2, 0.2⟩

αC2 = ⟨0.2, 0.6, 0.2⟩

αC3 = ⟨0.2, 0.2, 0.6⟩

αC4 = ⟨0.3̄, 0.3̄, 0.3̄⟩

A plot of 1000 observations drawn from each cluster is given in Figure A.1. A three-
dimensional version is visualized in Figure A.2 with 200 observations per cluster. In both
figures, r = 1.
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Figure 3.17: 2-dimensional radioactive dataset, 1000 observations per cluster. r = 1.
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Figure 3.18: 3-dimensional radioactive dataset, 200 observations per cluster. r = 1.
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3.6.3 Extended Simulation Results

A selection of these results are given in tabular form in the main work. We present here
the full simulation results for d = 2, 3, ..., 10, n = 20, 40, ..., 100, and r = 1, 5, 10.

Cosine Similarity

The cosine similarities are defined for chimeral clustering as follows. Let αc be the true
hybridization weights for cluster c ∈ C and let α̂c be the estimated hybridization weights
from the estimation procedure. Then, the cosine similarity of the entire fitted model could
be computed as


αC1

...
αCKC


⊤ 

α̂C1
...

α̂CKC


∥∥∥∥∥∥∥∥∥


αC1

...
αCKC


∥∥∥∥∥∥∥∥∥

2

∥∥∥∥∥∥∥∥∥


α̂C1

...
α̂CKC


∥∥∥∥∥∥∥∥∥

2

.

If the two sets of weights {αc}c∈C and {α̂c}c∈C coincide, then the angle formed in
between them is zero and so their cosine similarity is one. As the estimated vector deviates,
the similarity metric decreases towards zero. However, this process requires the estimated
indices C1, ..., CKC

to match the true indices, something not guaranteed by the estimation
procedure. Thus, we permute the estimated weights to maximize this quantity.
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0.974 (0.040) 0.990 (0.010) 0.995 (0.004) 0.995 (0.006) 0.997 (0.004)
0.966 (0.031) 0.988 (0.012) 0.993 (0.006) 0.995 (0.004) 0.995 (0.004)
0.931 (0.063) 0.974 (0.037) 0.991 (0.006) 0.993 (0.005) 0.994 (0.005)
0.857 (0.098) 0.968 (0.022) 0.985 (0.012) 0.990 (0.007) 0.994 (0.004)
0.796 (0.131) 0.945 (0.033) 0.983 (0.009) 0.988 (0.009) 0.992 (0.004)
0.736 (0.124) 0.948 (0.033) 0.976 (0.024) 0.988 (0.008) 0.994 (0.004)
0.691 (0.142) 0.909 (0.061) 0.971 (0.017) 0.984 (0.012) 0.991 (0.006)
0.648 (0.127) 0.909 (0.045) 0.961 (0.028) 0.982 (0.014) 0.991 (0.005)
0.613 (0.143) 0.885 (0.076) 0.943 (0.034) 0.976 (0.017) 0.988 (0.009)

0.915 (0.085) 0.955 (0.066) 0.961 (0.060) 0.968 (0.055) 0.983 (0.046)
0.853 (0.112) 0.945 (0.085) 0.979 (0.044) 0.994 (0.005) 0.996 (0.004)
0.837 (0.118) 0.956 (0.064) 0.983 (0.040) 0.983 (0.037) 0.994 (0.004)
0.779 (0.127) 0.948 (0.079) 0.981 (0.050) 0.985 (0.038) 0.992 (0.006)
0.710 (0.125) 0.962 (0.064) 0.979 (0.044) 0.989 (0.006) 0.991 (0.005)
0.669 (0.107) 0.939 (0.078) 0.978 (0.038) 0.981 (0.046) 0.991 (0.005)
0.606 (0.099) 0.920 (0.073) 0.976 (0.015) 0.986 (0.007) 0.990 (0.005)
0.573 (0.084) 0.919 (0.040) 0.968 (0.019) 0.984 (0.007) 0.990 (0.004)
0.576 (0.096) 0.846 (0.104) 0.964 (0.017) 0.982 (0.007) 0.988 (0.005)

0.907 (0.067) 0.958 (0.061) 0.979 (0.022) 0.984 (0.020) 0.991 (0.009)
0.838 (0.093) 0.929 (0.061) 0.963 (0.046) 0.975 (0.034) 0.986 (0.023)
0.780 (0.079) 0.901 (0.078) 0.945 (0.063) 0.963 (0.050) 0.986 (0.019)
0.728 (0.076) 0.840 (0.106) 0.943 (0.074) 0.984 (0.012) 0.991 (0.008)
0.705 (0.075) 0.860 (0.117) 0.962 (0.048) 0.983 (0.013) 0.988 (0.007)
0.665 (0.088) 0.824 (0.120) 0.948 (0.072) 0.980 (0.026) 0.988 (0.008)
0.653 (0.069) 0.790 (0.110) 0.931 (0.079) 0.974 (0.019) 0.985 (0.009)
0.583 (0.063) 0.739 (0.115) 0.913 (0.059) 0.963 (0.031) 0.981 (0.012)
0.573 (0.066) 0.675 (0.106) 0.892 (0.064) 0.956 (0.025) 0.976 (0.015)
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Figure 3.19: Cosine similarity values measuring the αc parameter recovery in the d-
radioactive dataset over a range of data dimensions d, number of observations n, and
prototype sphericity r. Higher values are better. Standard deviations over fifty replica-
tions in brackets.
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Figure 3.20: Bayesian Information Criterion values for the d-radioactive dataset over mul-
tiple parameter combinations. Both chimeral clustering (CC) and finite Gaussian mixtures
with parsimonious covariances via mclust are presented; lower values are better. Standard
deviations over fifty replications in brackets.
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Figure 3.21: Adjusted Rand index values for the d-radioactive dataset over multiple pa-
rameter combinations. Both chimeral clustering (CC) and finite Gaussian mixtures with
parsimonious covariances via mclust are presented; higher values are better. Standard de-
viations over fifty replications in brackets.
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Chapter 4

Factor and Hybrid Components for
Model-Based Clustering

4.1 Introduction

Our proposition in this model is an improvement over Chimeral Clustering in area of param-
eterization; this model uses the more interpretable moment parameters of the multivariate
normal. This can be considered more useful for analyses where the hybridisation in the
mean and covariances have a more palatable interpretation.

4.2 Relation to Existing Models

The above proposed model resembles the Epistatic Clustering model of Zhang (2013). Of
the models described in the literature, this is the only model to hybridize at the compo-
nent level. The remaining models produce a distinct set of hybridisation weights for each
observation. Between these two paradigms, the former claims that there is a cluster of
hybrids while the latter claims that individuals are hybrids of clusters.
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The EC model describes epistatic clusters as multivariate normal distributions with
parameters being an average of other parent cluster parameters. However, the EC model
also imposes constraints on the weights. In the factor-hybrid notation, if an epistatic cluster
h has p ≤ F parents, the p values of αh corresponding to parent cluster indices take value
1/p with remaining weights being zero. This restriction is lifted in the proposed model.

Moreover, both the BPM and EC models treat their distributions in the canonical
parameters of the multivariate normal distribution instead of the moment parameters.
While both parameterisations fully describe a multivariate normal distribution, moment
parameters are more easily interpreted as measures of central tendency and spread.

The factor-hybrid stochastic relationship (4.1) is reminiscient of factor analysis models.
In factor analysis, each observation is described in terms of loadings on some latent factors
and an error term. The proposed model applies this concept to component distributions; a
hybrid component realisation Yh has convex loading weights αh on some factor components
Yf for f ∈ F . Indeed, the estimation procedure bears resemblance to that of mixtures of
factor analyzers in Ghahramani et al. (1996).

It is known that finite mixtures of multivariate normal distributions are identifiable
(Yakowitz and Spragins, 1968; Teicher, 1961; Holzmann et al., 2006) up to a permutation
of component indices. The mixture density is identifiable in terms of parameters

{
µf ,Σf

}
for f ∈ F and {µh,Σh} for h ∈ H so long as they are unique. As µh is identifiable, αh is
identifiable with the condition that α⊤

h αh is minimized. Identifiability of Ψh follows from
the implied Σh.

4.3 Model Specification

The model proposed in the present work is an evolution upon the idea of hybridisation of
pure types or parent clusters from Section 3.1.1.

Suppose we have a real-valued dataset with N observations x1, ...,xN , each a d-length
vector. Let zng be the indicator for the membership of observation n = 1, 2, ..., N to
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component g = 1, 2, ..., G, with each observation being a member of exactly one component.
Finally, let π1, ..., πG > 0 with ∑G

g=1 πg = 1 be the mixing proportions of the components.
Instead of all G components being treated symmetrically with one another as in finite
Gaussian mixtures, we partition the set G = {1, 2, ..., G} into two index sets F and H
denoting factors and hybrids, respectively. We let the number of factor components be
F = |F| and the number of hybrid components be H = |H|.

A factor component, indexed by f ∈ F , is identical to a finite Gaussian mixture
component; it is parameterised by a mean µf and a covariance Σf . Thus, znf = 1 for
f ∈ F means xn ∼ N(µf ,Σf ).

However, hybrid components indexed by h ∈ H are substantially different. When an
observation xn belongs to component h ∈ H; that is, znh = 1, we assert that it is drawn
from the stochastic relation

Yh =
∑
f∈F

αhfYf + Eh, (4.1)

for some latent factor representations Yf ∼ N(µf ,Σf ) and noise term Eh ∼ N(0,Ψh) with
diagonal covariance Ψh. Thus, a hybrid component h ∈ H is said to be parameterised
by the factor loadings αh = ⟨αh1, ..., αhF ⟩ ⪰ 0 with 1⊤

F αh = 1 and a diagonal covariance
matrix Ψh. From the stochastic relation (4.1), we obtain

xn | znh = 1 ∼ N

∑
f∈F

αhfµf︸ ︷︷ ︸
µh

,
∑
f∈F

α2
hfΣf + Ψh︸ ︷︷ ︸

Σh

, (4.2)

which paves the way to an efficient estimation procedure in the style of the mixture of
factor analyzers model of Ghahramani et al. (1996). The mixture density is

f(x; θ) =
∑
f∈F

πfϕd

(
x; µf ,Σf

)
+
∑
h∈H

πhϕd

x;
∑
f∈F

αhfµf ,
∑
f∈F

α2
hfΣf + Ψh

 . (4.3)

The hybrid clustering model described above contains the parameters θ =
{
µf ,Σf ,Ψh, αhf ,π

}
for f ∈ F and h ∈ H.
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4.3.1 Parsimonious Noise Distribution Specifications

The model presented above specifies a general positive diagonal matrix Ψh distinct for each
h ∈ H to allow for idiosyncratic error distributions for each hybrid component. However,
this flexibility adds d parameters per hybrid cluster. Hence, we consider some alternate
specifications that share parameters across hybrid components.

• EV: Ψh = Ψh; idiosyncratic diagonal error covariance.

• EE: Ψh = Ψ; shared diagonal error covariance.

• IV: Ψh = ψhId; idiosyncratic spherical error covariance.

• IE: Ψh = ψId; shared spherical error covariance.

• C: Ψh = εId; constant error covariance for some fixed ε > 0.

We may also interpret these error covariance types; when the hybrid components are
expected to have a common error term, EE or IE errors are appropriate. When the errors
have similar magnitude such as the measurement units being consistent across variables,
then IV or IE errors are appropriate. To approximate the effect of Ψh = 0, we may choose
Ψh = εId with a very small ε such as 10−10.

In the case of a single hybrid component, IV and EV are redundant and equivalent to
IE and EE, respectively. To avoid confusion, we exclude IV and EV from the potential
noise covariance specifications when H = 1.

4.3.2 Parsimonious Covariance Specifications

In the same manner of parsimony achieved by Celeux and Govaert (1995), we may share
parameters between the factor component covariance matrices Σf for f ∈ F . In these
methods, geometric redundancies in shape, size, and/or orientation are exploited to rep-
resent these covariance matrices with fewer parameters. We consider the 14 covariance
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Table 4.1: List of Parsimonious Covariance Matrices Types
Model Specification of Σg Factor Covariance Parameters

EII λI 1
VII λgI F

EEI λA d

VEI λgA d+ F − 1
EVI λAg dF − F + 1
VVI λgAg dF

EEE λDAD⊤ d (d+ 1) /2
EEV λDgAD⊤

g Fd (d+ 1) /2− d (F − 1)
VEV λgDgAD⊤

g Fd (d+ 1) /2− (d− 1) (F − 1)
VVV λgDgAgD⊤

g Fd (d+ 1) /2
EVE λDAgD⊤ d (d+ 1) /2 + (d− 1) (F − 1)
VVE λgDAgD⊤ d (d+ 1) /2 + d (F − 1)
VEE λgDAD⊤ d (d+ 1) /2 + (F − 1)
EVV λDgAgD⊤

g Fd (d+ 1) /2− (F − 1)

decompositions (Celeux and Govaert, 1995) in Table 4.1. Of note is that performing pa-
rameter sharing in the factor covariances does not guarantee that hybrid covariances can be
decomposed in the same way; parameter sharing for Σh is done through the interpolation
coefficients αh. This combines the parameter reducing effect of hybrid clusters with the
same effect of parsimonious covariance matrices.

We may continue to interpret the eigen-decomposition and parameter sharing for factor
covariances in the same way as Celeux and Govaert (1995). Moreover, with some choices
of parsimonious factor covariance specifications, these parameter sharing traits extend to
the hybrid components arizing therefrom, if we ignore the contribution of the error term.
For example, selecting VEE for factors will induce the same DAD⊤ in hybrids, though the
size λh will differ. By choosing a noise term of type C and ε ≈ 0, this holds approximately.
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4.4 Estimation

We define here an Expectation-Maximization algorithm for the factor-hybrid clustering
model. As alluded to in Section 4.3, the estimation procedure bears resemblance to that of
Ghahramani et al. (1996). The estimable parameters are comprised of factor component
parameters

(
µf ,Σf

)
, interpolation coefficients αhf , error distribution covariances Ψh and

the mixing coefficients π. The complete data likelihood function for the mixture density
(4.3) is thus

L(Θ; X,Z) =
N∏

n=1

∏
f∈F

[
πfϕd

(
xn; µf ,Σf

)]znf


∏

h∈H
[πhϕd (xn; µh,Σh)]znh

 . (4.4)

To ease the estimation procedure, we decompose the hybrid components into their
latent representation in terms of factor components. Specifically, we treat these latent
representations as missing data in addition to missing membership labels zng, and as-
sume independence of factor random variables. We may then replace the hybrid density
ϕd (xn; µh,Σh) for observation n with the product of the conditional density of the latent
values {ynf}f∈F and the corresponding marginal densities ϕd

(
ynf ; µf ,Σf

)
. As a short-

hand, we abbreviate the condition of being given {ynf}f∈F as being simply given yn. Thus,
we have that

ϕd (xn | znh = 1; µh,Σh) = ϕd (xn | yn, znh = 1; µh,Σh)
∏

f∈F
ϕd

(
ynf | Yh = xn, znh = 1; µf ,Σf

)
.

The conditional distribution of xn | yn, znh = 1 is N
(∑

f∈F αhfynf ,Ψh

)
, and the

marginal density in factors decomposes into the product due to the assumed independence
of factors. We may then re-write the complete likelihood (4.4) with this substitution to
obtain
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L(Θ; X,Z) =
N∏

n=1

∏
f∈F

[
πfϕd

(
xn; µf ,Σf

)]znf

∏
h∈H

πhϕd (xn | yn; µh,Σh)
∏

f∈F
ϕd

(
ynf ; µf ,Σf

)znh

. (4.5)

We are now ready to perform the EM algorithm of Dempster et al. (1977). For brevity,
an abridged version of the corresponding expectation and maximization steps is provided
herein. A full derivation is available in Appendix C.

4.4.1 Initialization

This section outlines a heuristic for initializing the factor-hybrid clustering model param-
eters. To generate randomised starting values, we start with a random subset of half of
the data and fit a finite Gaussian mixture with G = F +H components and the specified
covariance type using the mclust package. When mclust with the chosen covariance type
fails, we resort to searching over all 14 covariance types and select the best BIC among
them. We treat the estimated mean vectors

{
µg

}G

g=1
as a set of vertices in Rd, and find the

convex hull of these points using the V-representation (Gruber, 2007; Grünbaum, 2003). If
the number of extremal points of the convex hull is less than F , increment G by one and
refit the Gaussian mixture. Repeat these steps until there are at least F vertices compris-
ing the convex hull of mean vectors. Let the set of vertices defining the convex hull be Ĉ.
If there are more than F vertices in the convex hull, search through all subsets of these
extremal points of size F , and determine:

arg min
F⊆Ĉ,|F|=F

∑
h∈Ĉ,h/∈F

min
αh

∥∥∥∥∥∥µh −
∑
f∈F

αhfµf

∥∥∥∥∥∥
2

subject to αh ⪰ 0 and 1⊤αh = 1

 .
Effectively, this searches for the lowest sum square error for approximating extremal

points in Ĉ \ F as a convex combination of extremal points in F . The subset F that mini-
mizes this error will be used to index the factor components. Among the G− F remaining
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components (which may be more than H due to the incrementing process above), select
the H components with the largest membership πh. These components Ĥ will represent
the hybrid components. We initialize the factor means µf and covariances Σf from the
parameters of the fitted Gaussian mixture model. Armed with the factor component pa-
rameters, we initialize αh for each h ∈ Ĥ by solving arg minαh

∥∥∥µh −
∑

f∈F αhfµf

∥∥∥2
subject

to αh ⪰ 0 and 1⊤αh = 1. We then initialize Ψh as a diagonal matrix 10−10Id. Finally, π

is initialised by computing ẑng and using the maximizer in the following expectation and
maximization steps, respectively.

We augment the above initialization procedure with mini-EM as described in Biernacki
et al. (2003) with multiple random starts from the sampled halves of the data. We then
run the following EM algorithm on each of these random starts for a pre-defined number of
iterations and pick the start that has the best ensuing log-likelihood. The EM algorithm
continues on this initialised model.

4.4.2 Expectation Step

Given the current iteration’s parameter values of µf ,Σf ,Ψh, αhf ,π, we apply Bayes the-
orem to obtain the conditional distribution of membership probabilities zng. We let ẑng

denote the conditional expected value of the probability that observation n is assigned to
a factor or hybrid cluster g ∈ F ∪H at the current iteration, so that

ẑng: =
πgϕd

(
xn; µg,Σg

)
∑

g∈H∪F πgϕd

(
xn; µg,Σg

) .
When g ∈ F , µg and Σg are the fully-parameterised factor distribution parameters. When
g ∈ H, µg and Σg are the mean and covariance implied by the loadings αg and noise
covariance Ψg as in (4.2).

Taking a logarithm and the expectation of (4.5) with respect to the latent variables
ynf and zng, we obtain the expected incomplete data log-likelihood. Substituting in the
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appropriate multivariate normal densities, we find this surrogate function

Q (θ) =
N∑

n=1

∑
f∈F

ẑnf log πf +
∑
h∈H

ẑnh log πh


+ 1

2

N∑
n=1

∑
f∈F

ẑnf

{
log

∣∣∣Σ−1
f

∣∣∣− Tr
[
Σ−1

f

(
xn − µf

) (
xn − µf

)⊤
]}

+
∑
h∈H

ẑnh

log
∣∣∣Ψ−1

h

∣∣∣− Tr

Ψ−1
h

xn −
∑
f∈F

αhf ȳnfh

xn −
∑
f∈F

αhf ȳnfh

⊤

+Ψ−1
h

∑
f∈F

∑
q∈F

αhfαhqShfq


+
∑
f∈F

(
log

∣∣∣Σ−1
f

∣∣∣− Tr
[
Σ−1

f

(
ȳnfh − µf

) (
ȳnfh − µf

)⊤
+ Σ−1

f Shff

])
 .

Here, we have defined for notational convenience the expressions for h ∈ H, f, q ∈ F ,
and n = 1, 2, ..., N .

4.4.3 Maximisation Step

We now maximize the surrogate function Q in the model parameters
{
π,µf ,Σf ,Ψh,αh

}
.

The corresponding maximizers for π,µf ,Σf are

π̂g = 1
N

N∑
n=1

ẑng,

µ̂f =
∑N

n=1 (ẑnfxn +∑
h∈H ẑnhȳnfh)∑N

n=1 (ẑnf +∑
h∈H ẑnh)

,

Σ̂f =

∑N
n=1

{
ẑnf

(
xn − µf

) (
xn − µf

)⊤
+∑

h∈H ẑnh

[(
ȳnfh − µf

) (
ȳnfh − µf

)⊤
+ Shff

]}
∑N

n=1 (ẑnf +∑
h∈H ẑnh)

.

With respect to Σ̂f , we apply the updates found in Celeux and Govaert (1995) and the
improved updates in Browne and McNicholas (2014) when a covariance type other than
VVV is specified.
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Table 4.2: Maximizers for the Factor/Hybrid error distribution Ψh.
Name Ψh Maximizer

EV Ψh Ψ̂h = diag
∑N

n=1 ẑnh

[(
xn−

∑
f∈F αhf ȳnfh

)(
xn−

∑
f∈F αhf ȳnfh

)⊤
+
∑

f∈F

∑
q∈F αhf αhqShfq

]
∑N

n=1 ẑnh

EE Ψ Ψ̂ =
∑N

n=1

∑
h∈H ẑnh

[(
xn−

∑
f∈F αhf ȳnfh

)(
xn−

∑
f∈F αhf ȳnfh

)⊤
+
∑

f∈F

∑
q∈F αhf αhqShfq

]
∑N

n=1

∑
h∈H ẑnh

IV ψhId ψ̂h =
∑N

n=1 ẑnh

{(
xn−

∑
f∈F αhf ȳnfh

)⊤(
xn−

∑
f∈F αhf ȳnfh

)
+
∑

f∈F

∑
q∈F αhf αhq Tr[Shfq]

}
∑N

n=1 ẑnh

IE ψId ψ̂ =
∑N

n=1

∑
h∈H ẑnh

[(
xn−

∑
f∈F αhf ȳnfh

)⊤(
xn−

∑
f∈F αhf ȳnfh

)
+
∑

f∈F

∑
q∈F αhf αhq Tr[Shfq]

]
∑N

n=1

∑
h∈H ẑnh

C εId ε > 0 specified and held constant.

Depending on the specified error distribution covariance, the maximizers in Ψh are listed
in Table 4.2. Finally, the maximizer in each αh can be obtained by using the solution of
Goldfarb and Idnani (1983) to the constrained quadratic programming problem

min
αh

1
2α⊤

h

(
N∑

n=1
ẑnhA⊤

nhΨ−1
h Anh + Bh

N∑
n=1

ẑnh

)
αh +

(
N∑

n=1
ẑnhA⊤

nhΨ−1
h xn

)
αh

subject to αh ⪰ 0 and 1⊤αh = 1.

Again, we define for simplicity the expressions

Anh =
[
ȳn1h · · · ȳnF h

]
,

Bh =


Tr
[
Ψ−1

h Sh11
]
· · · Tr

[
Ψ−1

h Sh1F

]
... . . . ...

Tr
[
Ψ−1

h ShF 1
]
· · · Tr

[
Ψ−1

h ShF F

]
 .

We note that the optimisation in Ψh depends on αh and vice-versa, with no tractable
way of finding the simultaneous solution to the system. Hence, we resort to the multi-cycle
EM algorithm of Meng and Rubin (1993) and maximize in

{
µf ,Σf ,Ψh,π

}
and αh in

alternate iterations.
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4.4.4 Convergence

The convergence of the EM algorithm is assessed using Aitken acceleration (McNicholas
et al., 2010). Let t denote the iteration count of the EM algorithm, and let ℓ(t) be the
log-likelihood for that iteration. For a sequence of log-likelihoods ℓ(1), ℓ(2), ..., we define the
Aitken acceleration at iteration t as

a(t) = ℓ(t+1) − ℓ(t)

ℓ(t) − ℓ(t−1)

and an estimate of the asymptotic log-likelihood ℓ∞ (Böhning et al., 1994) as

ℓ(t+1)
∞ = ℓ(t) + 1

1− a(t)

(
ℓ(t+1) − ℓ(t)

)
.

The convergence criteria for stopping the EM algorithm is

0 ≤ ℓ(t+1)
∞ − ℓ(t) ≤ ε

for some ε > 0 (McNicholas et al., 2010). We have chosen ε = 10−8 throughout.

We only apply this convergence criterion in the main EM algorithm; during the mini-
EM procedure described in Section 4.4.1, we run the full number of specified mini-EM
iterations for each random start.

4.5 Applications

4.5.1 Iris dataset

The iris dataset is described in Fisher (1936) with 150 observations of flowers from iris
classified into three species: setosa, versicolor, and virginica. There are four variables
denoting the sepal width/length and petal width/length of each sampled flower, and a
class label for the species with a fifty observations of each. We evaluate up to a total of
five components for both models, and present the best parameter combination in Table
4.3. Of note is that mclust selects a two-component model using BIC; we have presented
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Table 4.3: Results for the iris dataset. Factor/Hybrid clustering and mclust are evaluated
up to 6-component models. Epistatic Clustering is evaluated up to a total of 7-components,
one of which is a miscellaneous cluster. Note that Epistatic Clustering uses a different
nomenclature for covariance types. Best values in bold.

Factor/Hybrid mclust Epistatic Clustering

Best BIC Best ARI Best BIC Best ARI Best BIC Best ARI

# Factor 2 2 2 3 3 4
# Hybrid 1 1 - - 1 3

Cov. Type VEV EEV VEV EEE EEE EVE
Err. Dist. Type C (10−10) C (10−10) - - - -
Log-Likelihood -206.71 -238.57 -215.73 -256.35 -224.18 -180.19

Free Parameters 28 31 26 24 35 62
BIC 553.72 632.46 561.73 632.96 604.08 671.03
ARI 0.9222 0.9410 0.5681 0.9410 0.5681 0.9039
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a three-component model as well for complete exploration of the iris dataset. The ARI is
computed against the species variable in the dataset.

From Table 4.3, we can see that factor-hybrid clustering results in the best BIC and
better ARI compared to mclust. Epistatic Clustering does not perform well since the hybrid
cluster is not located at the midpoint between factors. Indeed, by examining the fitted
αh values for the solitary hybrid cluster, we find that the hybrid component representing
46 iris versicolor instances is composed of 73.7% factor component 1 (50 iris virginica
and 4 mis-classified iris versicolor) and 26.3% factor component 2 (50 iris setosa). By
comparison to Plate 23 of Anderson (1936), which states that the hybrid iris versicolor is
composed of two parts iris virginica and one part iris setosa, the purported interpolation
of multivariate normal parameters is three-to-one here. Figure 3.1 demonstrates the fitted
model and the parameter hybridisation visually.

4.5.2 Penguin dataset

The penguins dataset (Horst et al., 2020) is similar to the iris dataset, describing three
species of penguin, Adélie (n = 146), Chinstrap (n = 68), and Gentoo (n = 119), in terms
of bill length/depth, flipper length, and body mass. The data also includes variables for the
island on which each observation was taken. We evaluate up to a total of six components
for factor-hybrid and mclust models and up to seven components for EC, and present the
best parameter combination in Table 4.4. An ARI is computed against the species variable,
as well as the island variable and their concatenation.

In this dataset, we find that mclust outperforms on ARI (species) and slightly on BIC.
Indeed, inspection of the scatterplots of the penguin data shows interpolation behaviour be-
tween species less clearly than in the iris dataset. However, factor/hybrid clustering shows
a marginal improvement in ARI when the island variable is added to the mix. Epistatic
Clustering also produces the best species ARI when selecting for the best BIC.

Of note is that both the Factor-Hybrid and mclust models tend to select for equal
orientation. However, the Factor-Hybrid model improves species ARI by simultaneously
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Table 4.4: Results for the penguin dataset. Factor/Hybrid clustering and mclust are eval-
uated up to 6-component models. Epistatic Clustering is evaluated up to a total of 7-
components, one of which is a miscellaneous cluster. Note that Epistatic Clustering uses
a different nomenclature for covariance types. Best values in bold. Here, the best ARI is
with respect to the species variable.

Factor/Hybrid mclust Epistatic Clustering

Best BIC Best ARI Best BIC Best ARI Best BIC & ARI

# Factor 4 3 4 3 4
# Hybrid 1 1 - - 3

Cov. Type EEE VVE VEE EEE EVE
Err. Dist. Type IE C - - -
Log-Likelihood -5029.68 -5033.12 -5025.09 -5055.16 -5016.59

Free Parameters 34 35 32 24 62
BIC 10256.83 10269.53 10236.04 10249.71 10393.27

ARI (species) 0.7591 0.9623 0.8217 0.9591 0.9590
ARI (island) 0.4030 0.3689 0.2105 0.3683 0.3708

ARI (species × island) 0.6996 0.6739 0.4736 0.6645 0.6717
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Table 4.5: Results for the olive oil dataset. Factor/Hybrid clustering and mclust are
evaluated up to 14-component models. Epistatic Clustering is evaluated up to a total of
16-components, one of which is a miscellaneous cluster. Note that Epistatic Clustering
uses a different nomenclature for covariance types. Best values in bold.

Factor/Hybrid mclust Epistatic Clustering

Best BIC Best ARI Best BIC Best ARI Best BIC Best ARI

# Factor 4 3 10 3 6 4
# Hybrid 2 1 - - 10 3

Cov. Type VVV VVV VVE EEE EVE EVE
Err. Dist. Type EE EE - - - -
Log-Likelihood -20235.42 -20793.94 -20448.03 -21997.31 -20391.97 -21022.98

Free Parameters 195 145 197 62 279 182
BIC 41708.92 42508.51 42146.84 44348.27 42555.35 43201.51
ARI 0.4594 0.9640 0.3145 0.9163 0.5798 0.9976

removing a factor component and constraints on the factor covariances, suggesting that
species information is captured by the volume and shape of the factor components. The
mclust model exhibits a similar behaviour in volume only.

4.5.3 Olive oil dataset

This dataset (Forina et al., 1983) describes 572 observations of olive oil using eight measured
fatty acid levels. Specifically, the levels of palmitic, palitoleic, stearic, oleic, linleic, linolenic,
arachidic, and eicosenoic acid were measured for olive oils taken from nine different regions
of Italy. We evaluate up to a total of 14 components for factor-hybrid and mclust and 16
components for EC, and present the best parameter combination in Table 4.5. An ARI is
computed against the region variable.

Here we can see considerable gains from the factor/hybrid model; both BIC and ARI
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Table 4.6: Results for the wine dataset. Factor/Hybrid clustering and mclust are evaluated
up to 6-component models. Epistatic Clustering is evaluated up to a total of 7-components,
one of which is a miscellaneous cluster. Note that Epistatic Clustering uses a different
nomenclature for covariance types. Best values in bold.

Factor/Hybrid mclust Epistatic Clustering

Best BIC Best ARI Best BIC Best ARI Best BIC Best ARI

# Factor 3 3 3 3 3 4
# Hybrid 1 1 - - 1 3

Cov. Type VVI VEI EVI EEE EVI EVD
Err. Dist. Type EE C (10−10) - - - -
Log-Likelihood -11458.92 -11764.99 -11557.21 -10884.00 -11078.86 -11892.70

Free Parameters 194 115 162 461 464 521
BIC 23923.10 24125.89 23953.87 24159.80 24562.06 26485.12
ARI 0.8343 0.9404 0.8301 1.0000 0.0000 0.9976

perform better than only parsimonious covariance matrices despite the apparent gain in
free parameters.

Examining the covariance structures, we see that both Factor-Hybrid and Epistatic
Clustering selects for the most flexibility in factor (parent) cluster shapes using both BIC
and ARI. Moreover, the error distribution here suggests hybrid components are better
represented with an enlarged covariance.

4.5.4 Wine dataset

The Italian wines dataset (von Weinen, 1986) describes 178 observations of wines using 27
different physical and chemical properties. We have used the 27-variable dataset in lieu of
the more common 13-variable dataset. There is an associated categorical variable for the
type of wine for each observation. Table 4.6 displays the results for this dataset.
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We can see here that the factor/hybrid model slightly outperforms mclust on BIC, but
does not perform as well for ARI. It may be the case that the three types of wine are
mostly factors; the estimated hybrid component contains only fifteen observations, which
may suggest a small intermediate cluster of mixed nature. By inspecting αh from the best
BIC fit, we see that the hybridisation proportions are 55% factor 1 (all 57 are Grignolino)
and 44% factor 3 (all 56 are Barolo). The remaining 1% belongs to factor 2, (48 Barbera,
2 Grignolino). Moreover, both mclust and EC can recover class labels well with an optimal
parameter choice, but EC’s best BIC model completely fails to recover class labels.

In this dataset, we observe a wide selection of covariance types. This is also the widest
dataset at 27 variables, potentially producing a large number of free parameters in the
covariance matrices. Indeed, most of the models seem to prefer the much more economical
diagonal covariance. This likely is due to sparsity in the 27-dimensional space.

4.6 Simulation Study

4.6.1 Factor-Hybrid Data

To assess the parameter recovery and model performance, we perform a simulation study
with a family of generated datasets from the proposed model. These datasets are drawn
from the proposed model distribution with cluster memberships known a priori. With
respect to the number of free parameters in the model, we opt to test the worst case of
VVV covariance and EV error distribution. We term the family of datasets used here in
the d-hypercube dataset as it can be scaled to arbitrary dimension d ≥ 2.

We consider a factor-hybrid data generating model with three parameters; the data
dimension d, the number of observations n, and a tunable degree of component overlap
λ. For d ≥ 2, we place 2d factor components centred at the vertices of the d-dimensional
hypercube {−1,+1}d and denote the means µf1 ,µf2 , ...µf2d

. To each of these µf , we
associate a parity value pf equal to the sign of the product of µf elements. The covariance
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Figure 4.1: Scatterplots of the hypercube dataset in 2D with 200 observations per cluster.
λ is set to 1 (left), 3 (middle), and 5 (right) to demonstrate increasing overlap.

of each factor f is given by

Σf =


0.025λId if pf = +1
0.018λ
µ⊤

f
µf

µfµ⊤
f + 0.002λId if pf = −1

and can be scaled up/down by λ to represent greater/lesser overlap.

With each factor component fi for i ∈ 1, 2, 3, ..., 2d having mean µfi
we associate a

hybrid component hi such that µhi
= 1

3µfi
also with the same parity phi

= pfi
. For each

µh, we back out a corresponding αh by solving the quadratic program

min
αh

α⊤
h αh subject to 1⊤αh = 1,αh ⪰ 0,

∑
f∈F

αhfµf = µh.

Finally, we define the noise covariance for each hybrid component by

Ψh =

0.001λ diag(10, 1, 10, 1, ...) if ph = +1

0.001λ diag(1, 10, 1, 10, ...) if ph = −1

again scaled by λ.

This completes the specification of 2d factor and 2d hybrid component densities. Figure
4.1 provides a visualisation of the dataset in two-dimensions.

We consider all combinations of dataset parameters with d = 2, 3, 5, n = 20, 200,
and λ = 1, 5, and perform 10 replications at each parameter combination. We use the
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estimation procedure defined in Section 4.4, with the assumption that parameters F , H,
and both covariance types are correctly-specified for computational simplicity. Moreover,
we skip mini-EM and initialise with the full dataset and proceed directly to a maximum
of 10000 EM iterations, with convergence criterion 0 ≤ ℓ(t+1)

∞ − ℓ(t) ≤ 10−8.

Similarly, we also run epistatic clustering with the correct specification of EVE par-
ent clusters corresponding to VVV factor covariances. We restrict epistatic clustering to
two-parent clusters only; otherwise, the number of potential epistatic clusters becomes
computationally difficult. Lastly, we run parsimonious Gaussian mixture models using
mclust with the correct number of iterations, selecting covariance type using BIC.

We summarise these parameter combinations in Tables 4.7, 4.8 and 4.9 in terms of ARI
and BIC for all three models, and α parameter recovery for the factor-hybrid model. We
note that the number of possible two-parent clusters exceeds the number of actual hybrid
clusters, which poses a problem for epistatic clustering as this inflates the parameter count
and BIC value. Additionally, epistatic clustering fails computationally for this family of
datasets when d = 5 as there are 25 = 32 parents with 496 potential two-parent clusters.

To assess parameter recovery of α for hybrid components, we need to permute the
component indices to best match the original indices. Firstly, we solve the assignment
problem to minimise the sum of L2 norms between true and fitted factor µf to permute
factor indices. Next, we use that µhi

is closest to µfi
by design and so permute hybrid

indices such that αhifi
has maximum weight within αhi

. Finally, we may calculate a cosine
similarity measure as the cosine of the angle formed between each true and fitted αh and
average over the h hybrid components.

4.6.2 Epistatic Data

We now consider the case of model misspecification; the data actually comes from the
epistatic clustering model instead of the factor-hybrid clustering model. We modify the
d-hypercube dataset slightly to reflect the epistatic clustering model by instead placing
parent clusters at the vertices {−2,+2}d of a d-dimensional hypercube, and using parent
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Table 4.7: Simulation results for the d-hypercube dataset over multiple parameter combi-
nations fitted using the proposed factor-hybrid model. Data is generated from the factor-
hybrid model. Average results with standard deviations in brackets over ten replications.

d λ n BIC (sd) ARI (sd) α Cos. Sim. (sd)

2 1 20 344.53 (19.90) 0.9971 (0.0061) 0.9009 (0.0661)
2 1 200 1647.49 (77.62) 0.9987 (0.0011) 0.9720 (0.0279)
2 5 20 760.96 (19.18) 0.6673 (0.0400) 0.8437 (0.0596)
2 5 200 5892.69 (59.04) 0.7729 (0.0171) 0.8737 (0.0811)

3 1 20 771.75 (53.28) 0.9851 (0.0296) 0.6840 (0.0345)
3 1 200 431.61 (74.72) 0.9999 (0.0003) 0.7181 (0.0281)
3 5 20 2223.50 (82.92) 0.6861 (0.0582) 0.6503 (0.0342)
3 5 200 14613.45 (110.92) 0.8622 (0.0074) 0.7248 (0.0357)

5 1 20 8348.50 (105.35) 1.0000 (0.0000) 0.3986 (0.0298)
5 1 200 -20577.11 (185.00) 1.0000 (0.0001) 0.4274 (0.0205)
5 5 20 18416.16 (120.77) 0.8419 (0.0196) 0.3859 (0.0190)
5 5 200 79646.51 (279.13) 0.9198 (0.0119) 0.4138 (0.0283)
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Table 4.8: Simulation results for the d-hypercube dataset over multiple parameter combi-
nations fitted using epistatic clustering with two-parent clusters. Data is generated from
the factor-hybrid model. Average results with standard deviations in brackets over ten
replications. For d = 5, epistatic clustering encountered computational troubles.

d λ n BIC (sd) ARI (sd)

2 1 20 414.98 (34.40) 0.8162 (0.0627)
2 1 200 2677.67 (323.37) 0.8580 (0.1140)
2 5 20 709.17 (17.76) 0.6104 (0.0870)
2 5 200 5914.48 (61.72) 0.5925 (0.0366)

3 1 20 925.32 (116.10) 0.7227 (0.0875)
3 1 200 3357.58 (581.95) 0.8070 (0.0457)
3 5 20 1995.86 (38.11) 0.6101 (0.1020)
3 5 200 15160.05 (195.06) 0.6719 (0.0461)

5 1 20 - -
5 1 200 - -
5 5 20 - -
5 5 200 - -
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Table 4.9: Simulation results for the d-hypercube dataset over multiple parameter com-
binations fitted using mclust. Data is generated from the factor-hybrid model. Average
results with standard deviations in brackets over ten replications.

d λ n BIC (sd) ARI (sd)

2 1 20 310.79 (19.72) 0.9971 (0.0061)
2 1 200 1658.27 (57.83) 0.9984 (0.0016)
2 5 20 746.14 (20.14) 0.6625 (0.0545)
2 5 200 5917.24 (70.10) 0.7627 (0.0145)

3 1 20 677.37 (40.59) 0.9993 (0.0022)
3 1 200 252.07 (155.09) 0.9999 (0.0003)
3 5 20 2076.26 (37.89) 0.7634 (0.0386)
3 5 200 14657.37 (105.02) 0.8617 (0.0070)

5 1 20 4503.35 (121.14) 0.9990 (0.0011)
5 1 200 -25663.34 (351.50) 1.0000 (0.0000)
5 5 20 14415.35 (153.75) 0.7865 (0.0231)
5 5 200 74564.66 (338.26) 0.9111 (0.0093)
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Figure 4.2: Scatterplots of the modified epistatic hypercube dataset in 2D with 200 obser-
vations per parent/epistatic cluster and 100 observations in a miscellaneous cluster. λ is
set to 1 (left), 3 (middle), and 5 (right) to demonstrate increasing overlap.

covariances (denoted Σf for consistency) given by

Σf =


0.2λ

µ⊤
f

µf
µfµ⊤

f + 0.05λId if pf = +1
0.1λ

µ⊤
f

µf
µfµ⊤

f + 0.1λId if pf = −1

with λ and pf playing the same roles as in the unmodified d-hypercube dataset. This co-
variance specification is VVV in factor-hybrid and mclust, and EVE in epistatic clustering.

An epistatic cluster is now constructed for every edge between two vertices of the
hypercube; the two clusters at these vertices are considered the two parents of the epistatic
cluster. This produces d× 2d−1 epistatic clusters. Epistatic cluster means and covariances
are computed as in Zhang (2013); specifically, they are effectively averaged as canonical
parameters rather than moment parameters. Finally, a miscellaneous cluster centred at the
origin with covariance 3Id is added with ⌊n

2 ⌋ observations. Figure 4.2 shows the modified
epistatic d-hypercube dataset in two-dimensions for multiple values of λ.

We fit the proposed factor-hybrid model, epistatic clustering, and mclust to the dataset
for d = 2, 3, n = 20, 200, and λ = 1, 5, and perform 10 replications at each parameter
combination. As in the unmodified d-hypercube dataset, we avoid fitting d = 5 for epistatic
clustering. Additionally, there are no parameters in epistatic clustering corresponding to
αh or Ψh in the factor-hybrid model; thus, we exclude parameter recovery of αh from
consideration and set the hybrid noise covariance to type EV to accommodate epistatic

82



Table 4.10: Simulation results for the modified epistatic d-hypercube dataset over multiple
parameter combinations fitted using the proposed factor-hybrid model. Data is generated
from the epistatic clustering model. Average results with standard deviations in brackets
over ten replications.

d λ n BIC (sd) ARI (sd)

2 1 20 1217.32 (23.28) 0.8667 (0.0348)
2 1 200 10104.01 (92.77) 0.8867 (0.0088)
2 5 20 1495.08 (26.35) 0.3670 (0.0564)
2 5 200 12870.39 (61.81) 0.4407 (0.0146)

3 1 20 4356.53 (51.76) 0.9110 (0.0244)
3 1 200 33155.30 (127.30) 0.9461 (0.0036)
3 5 20 5631.82 (73.04) 0.3726 (0.0707)
3 5 200 45355.78 (223.21) 0.4145 (0.0523)

clusters being hybridisations of canonical parameters instead of moment parameters. ARI
and BIC results are presented in Tables 4.10, 4.11, and 4.12.

We note that despite the data being drawn from the EC model, the EC procedure
fails to yield as high an ARI as one may expect. The EC model does not allow selecting
an exact number of epistatic clusters, only the number of parents each epistatic cluster
may have. Thus, by specifying that we want two-parent clusters (for the d-hypercube,
there are 2d(2d−1)/2 possible such epistatic clusters), we have specified more than are
actually present (d × 2d−1). As a result, a better log-likelihood is attained by splitting
or redistributing observations between epistatic clusters, leading to a loss of ARI. Indeed,
we see Epistatic Clustering obtains worse ARI as the dimension increases; the number of
parents and possible epistatic clusters grows as well.
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Table 4.11: Simulation results for the modified epistatic d-hypercube dataset over multiple
parameter combinations fitted using epistatic clustering with two-parent clusters. Data is
generated from the epistatic clustering model. Average results with standard deviations in
brackets over ten replications.

d λ n BIC (sd) ARI (sd)

2 1 20 1142.07 (21.58) 0.8263 (0.0325)
2 1 200 10082.56 (80.93) 0.8272 (0.0111)
2 5 20 1394.43 (25.48) 0.3191 (0.0501)
2 5 200 12735.80 (88.10) 0.3959 (0.0410)

3 1 20 3985.36 (43.76) 0.7106 (0.0530)
3 1 200 34510.37 (721.04) 0.7904 (0.0574)
3 5 20 4915.93 (49.93) 0.3039 (0.0250)
3 5 200 44423.89 (140.06) 0.4219 (0.0222)

Table 4.12: Simulation results for the modified epistatic d-hypercube dataset over multiple
parameter combinations fitted using mclust. Data is generated from the epistatic clustering
model. Average results with standard deviations in brackets over ten replications.

d λ n BIC (sd) ARI (sd)

2 1 20 1194.43 (21.88) 0.8441 (0.0651)
2 1 200 10023.56 (61.81) 0.8866 (0.0051)
2 5 20 1436.84 (34.02) 0.3345 (0.0865)
2 5 200 12852.55 (102.04) 0.3922 (0.0203)

3 1 20 4174.58 (37.34) 0.8741 (0.0377)
3 1 200 32825.72 (97.52) 0.9465 (0.0049)
3 5 20 5291.78 (25.32) 0.3111 (0.0215)
3 5 200 45088.35 (179.43) 0.3624 (0.0167)
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Chapter 5

Model-Based Clustering with Nested
Gaussian Clusters

5.1 Introduction

For some datasets, class labels can exhibit multiple levels of hierarchy. As an example,
a dataset with observational units of cities across the globe can have as class labels the
nation and province/state to which a city belongs. Some of the variation in the data can be
attributed to national behaviours, and others to provincial/state behaviours. Continuing
the analogy in a mixture modelling context, we consider the case of finite Gaussian mixture
models. Assuming each cluster characterises a province, we can posit that these are nested
within the nation to which they belong. To this end, we extend the finite Gaussian mixture
model to capture this type of nested behaviour.

In the literature, Vermunt (2003) provides a framework for tackling multiple levels of
latent classes with a nested structure. Galimberti and Soffritti (2007) propose a related
model for multiple clusterings in disjoint subsets of the manifest variables. Here, these
subsets are treated independently by fitting two distinct Gaussian mixture models. In
Galimberti and Soffritti (2010), the model of Galimberti and Soffritti (2007) is extended
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to cover a more complex layering of simultaneous and independent clusterings. A followup
extends this by adding a regression framework whereby the second clustering is modelled as
a mixture of regressions using the first set of clustering variables as covariates (Galimberti
et al., 2018). The remaining variables are considered noise, which are also related to
the clustering subspaces through a regression model. This approach is reminiscient of
Bouveyron and Brunet (2012), which fits a Gaussian mixture model in a subspace of
the observed data with unrelated and independent noise in the orthogonal complement.
Moreover, Marbac and Vandewalle (2019) proposes a multiple partitions model (MPM)
with a similar two-clustering structure. In both cases, the collection of class labels are
simultaneous while the realizations in the observed variables may exhibit a dependence
structure. Both Marbac and Vandewalle (2019) and Galimberti et al. (2018) include a
variable selection step to partition the data into their respective clusterings.

Building upon the literature, we propose a nested model that allows successive tiers of
clusterings that are nested within parent clusterings. The proposed model-based cluster-
ing method models a tree-like class structure and captures class labels with dependency,
whose manifestation occurs in different directions and subspaces for different levels of the
hierarchy. In lieu of a variable selection or partitioning the variable set, we rotate the data
using an orthogonal linear transformation. This allows variables to fractionally participate
in each level of clustering by being rotated to partially project into the corresponding in-
trinsic subspace. As a special case, the proposed model framework can perform variable
selection or partitioning as in the existing literature (Galimberti and Soffritti, 2007; Gal-
imberti et al., 2018; Marbac and Vandewalle, 2019) by restricting the rotation to be a
permutation matrix. Moreover, the nesting specification allows the total effective number
of clusters to no longer be product of two positive integers. We provide the model specifi-
cation for the nested Gaussians model with estimation via the Expectation-Maximization
algorithm (Dempster et al., 1977) and some applications and simulation results.
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5.2 Nested Gaussian Mixture Clusters Model

We propose each observation n = 1, 2, ..., N to have a latent intrinsic representation rn ∈
Rp which we observe in the manifest variables vn ∈ Rp through the orthogonal rotation
matrix Γ such that vn = Γ⊤rn. We specify rn to have a block structure ⟨xn,yn,un⟩
representing sequentially nested levels of clustering occuring in the primary, secondary,
and noise intrinsic subspaces having dimensions px ≥ 1, py ≥ 1, and pu ≥ 0, respectively,
totalling px + py + pu = p.

An observation n in primary cluster g = 1, 2, ..., G can have secondary subclustering
g:h = 1, 2, ..., Hg conditional on the primary clustering g. The primary clustering occurs
in the intrinsic variables xn ∼ N(µg,Σg), and the secondary clustering occurs in the
intrinsic variables yn ∼ N(ηg:h + Bg:hxn,Λg:h). We use the notation g:h to denote the
secondary cluster h of primary cluster g in a sequential structure akin to a tree. For
example, cluster 3:4 is the fourth secondary subcluster of the third primary cluster. An
extension to tertiary subcluster i could be written as g:h:i. Any remaining manifest variable
dimensions pu = p − px − py are considered noise; as in Bouveyron and Brunet (2012),
we assume the noise variables un follow N(ξ,Ψ) for diagonal Ψ, irrespective of cluster
membership and uncorrelated to other intrinsic variables. Without loss of generality, we
order the intrinsic dimensions as ⟨xn,yn,un⟩ by permuting the columns of Γ. This rotation
matrix Γ serves the same purpose as the rotation matrix in a principal components analysis
(PCA); consequently, we may interpret the intrinsic subspace as the collection of principal
components in which a clustering takes place. The same caveat from PCA applies; the
linear combination of manifest variables may not have a contextual meaning, but could
be useful for purposes such as data visualization or input into other statistical models as
extracted features. The resulting model density is

f(Γv; θ) =
G∑

g=1

Hg∑
h=1

πgτg:hϕpx(x; µg,Σg)ϕpy(y; ηg:h + Bg:hx,Λg:h)ϕpu(u; ξ,Ψ), (5.1)

with constraints ∑G
g=1 πg = 1, ∑Hg

h=1 τg:h = 1 and πg, τg:h > 0. The parameter set θ is
comprised of

{
πg,µg,Σg, τg:h,ηg:h,Bg:h,Λg:h, ξ,Ψ,Γ

}
for valid combinations of g and g:h.
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In terms of the intrinsic data r = Γv, the model density can be expressed in terms of a
finite Gaussian mixture model density with structured parameters of the form

f(Γv; θ) =
G∑

g=1

Hg∑
h=1

πgτg:hϕp


Γv;


µg

ηg:h + Bg:hµg

ξ


︸ ︷︷ ︸

µ̄g:h

,


Σg ΣgB⊤

g:h 0
Bg:hΣg Bg:hΣgB⊤

g:h + Λg:h 0
0 0 Ψ


︸ ︷︷ ︸

Σ̄g:h


.

(5.2)
We may also express the model density in terms of the manifest variables v = Γ⊤r =
⟨x,y,u⟩ as

f(v; θ) =
G∑

g=1

Hg∑
h=1

πgτg:hϕp

(
v; Γ⊤µ̄g:h,Γ⊤Σ̄g:hΓ

)
.

(5.3)

5.2.1 Model Variations

A multitude of variations on the model presented in Section 5.2 are presented in this section
with a brief description of their behaviour. A graphical representation of the model’s
dependency structure and the variations listed in this section are presented in Figure 5.1.

Conditionally Independent

As another alternate variation, if we assume the secondary clustering does not depend on
the membership in the primary clustering, then we replace the index for secondary clusters
g:h by h alone for h = 1, 2, ..., H secondary clusters. This leads to the model density

f(Γv; θ) =
G∑

g=1

H∑
h=1

πgτhϕpx(x; µg,Σg)ϕpy(y; ηh + Bhx,Λh)ϕpu(u; ξ,Ψ). (5.4)

This coincides with the relation found in the two independent clusterings formulation of
Galimberti et al. (2018), with the difference that the intrinsic noise variables are indepen-
dent. Practically speaking, this means that the two sets of class labels occur independently
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Figure 5.1: Plate diagram for the proposed model. The dashed segment represents the
optional conditional dependence. Similarly, the dotted segment represents the regression
dependence; if Bg:h is constrained to be zero, it is also not present.
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rather than in a nested relationship with one set being primary and the other secondary.
However, a hierarchy within the intrinsic subspaces is still present with yn dependent on
xn through the regression terms Bg:h.

Intrinsically Independent

As another alternative specification, we may assume yn to be independent of xn by con-
straining Bg:h to be zero, effectively removing this dependence from the model. This means
the intrinsic variables themselves are uncorrelated and removes a sizable quantity of free
parameters from the model. In this case, the model density is

f(Γv; θ) =
G∑

g=1

Hg∑
h=1

πgτg:hϕpx(x; µg,Σg)ϕpy(y; ηg:h,Λg:h)ϕpu(u; ξ,Ψ). (5.5)

Most notably, in this variation the covariance matrices across all rotated intrinsic variables
forms a block-diagonal structure diag(Σg,Λg:h,Ψ).

Conditionally and Intrinsically Independent

We may also simultaneously specify both variations, in which case we have two independent
finite Gaussian mixtures in two different orthogonal subspaces of the rotated data space.
Composing the two modifications, the model density is

f(Γv; θ) =
G∑

g=1

H∑
h=1

πgτhϕpx(x; µg,Σg)ϕpy(y; ηh,Λh)ϕpu(u; ξ,Ψ). (5.6)

This variation resembles the earlier Galimberti and Soffritti (2007) with two independent
clusterings occurring in variable subsets and is a considerably simpler model. In this case,
the total independence within intrinsic variables xn and yn in addition to class labels zn,g

and wn,h effectively mean there is no nesting; however, for convenience we will continue to
use the primary and secondary nomenclature simply to address the two different sets of
clusterings.
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Permutation Matrix as Rotation

The matrix Γ is specified as a general orthogonal matrix, representing a rotation in the
space. If we were to restrict Γ to be a permutation matrix, we get as a special case the
variable selection behaviour found in Galimberti and Soffritti (2007) and Galimberti et al.
(2018). For the purposes of this work, we omit this case due to the difficulty in searching
over the set of permutation matrices.

5.2.2 Identifiability

By inspecting Equation (5.3), the proposed model is a special case of a finite Gaussian
mixture model with additional structure imposed on the mean and covariance parame-
ters. This means the mean and covariance parameters are identifiable as their Γ⊤µ̄g:h and
Γ⊤Σ̄g:hΓ expressions (Yakowitz and Spragins, 1968; Teicher, 1961; Holzmann et al., 2006).
We show in this section sufficient conditions for the identifiability of the decomposed pa-
rameters Γ,µg,ηg:h,Σg,Λg:h,Ψ. We use without proof that the finite Gaussian mixture
model with density

f(x; θ) =
G∑

g=1
πgϕp(x; µg,Σg) (5.7)

is identifiable in parameters πg,µg,Σg (Yakowitz and Spragins, 1968; Teicher, 1961; Holz-
mann et al., 2006).

Lemma 2 A finite Gaussian mixture model with model density

f(x; θ) =
G∑

g=1
πgϕp(x; Γ⊤µg,Γ⊤ΣgΓ) (5.8)

where Γ is an orthogonal rotation matrix is identifiable up to a permutation of variables if
one covariance matrix is diagonal with all distinct (eigen)values. Without loss of generality,
we index the cluster with such a covariance matrix by index 1.
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Proof 2 Define µ′
g = Γ⊤µg and Σ′

g = Γ⊤ΣgΓ, so that we may re-write the model density
in the form of a finite Gaussian mixture as in (5.7)

f(x; θ) =
G∑

g=1
πgϕp(x; µ′

g,Σ′
g)

for general mean vectors µ′
g ∈ Rp and general symmetric positive-definite matrices Σ′

g.
Since Γ and Γ⊤ are orthogonal matrices, Σ′

g has the same eigenvalues as Σg. In particular,
this means that Σ′

1 has a unique eigendecomposition into PDP⊤ for an (invertible) orthog-
onal matrix P and diagonal matrix D is unique up to an re-ordering of the columns. Thus,
from Σ′

1 we may define Γ = P and recover Σ1 = D. From the identifiability of finite Gaus-
sian mixture density parameters in this form, we can invert the transformations to uniquely
recover the Γ,µg and Σg parameters up to a permutation of variables. As well, we observe
that the model in (5.8) has p(p− 1)/2, Gp, p, (G− 1)p(p+ 1)/2, and G− 1 free parameters
in Γ, {µg}G

g=1,Σ1, {Σg}G
g=2, and {πg}G

g=1 respectively, which totals G(p + 1)(p + 2)/2 − 1,
matching the free parameter count of (5.7).

Corollary 1 The finite Gaussian mixture model with model densities as in Equations (5.1)
to (5.3) is identifiable if Σ̄g:h is a diagonal matrix with distinct values for at least one g:h,
up to a permutation of variables.

Proof 3 From Lemma 2, we have that the composed component parameters µ̄g:h and Σ̄g:h

are identifiable, in addition to mixing parameters πg and τg:h. By definition, µ̄g:h and Σ̄g:h

is a bijective transformation using their constituent µg,Σg,ηg:h,Λg:h,Bg:h, ξ and Ψ param-
eters.

More specifically, ξ and Ψ are identified by marginalizing the density in the correspond-
ing intrinsic noise subspace (Kent, 1983). µg and Σg are obtained in the same manner.
By non-singularity of Σg, solving the off-diagonal blocks ΣgB⊤

g:h or Bg:hΣg uniquely yields
Bg:h. Finally, by re-arranging the corresponding blocks of µ̄g:h and Σ̄g:h, we also uniquely
obtain ηg:h and Λg:h as required.

92



For identifiability of the model’s intrinsic subspace dimensions ⟨px, py, pu⟩, we require fur-
ther uniqueness constraints on the parameters. This prevents multiple possible choices of
intrinsic subspace dimensions ⟨px, py, pu⟩ yield identical model densities by minimizing the
dimensions of px and py. As an illustrating example, we assume a intrinsically indepen-
dent but conditionally dependent model with p = 4, G = 2, and Hg = ⟨2, 2⟩ while ignoring
covariance matrices such that some Γ yields the component parameters

µ1 =
1
1

 , µ2 =
−1
−1

 , and

η1:1 =
2
1

 , η1:2 =
2
2

 , η2:1 =
−2

3

 , η2:2 =
−2

4

 ,

then we disallow the choice of subspace ⟨px, py, pu⟩ = ⟨2, 2, 0⟩ in favour of ⟨px, py, pu⟩ =
⟨1, 3, 0⟩ instead, with parameters

µ1 =


1
1
2

 , µ2 =


−1
−1
−2

 ,


η1:1

η1:2

η2:1

η2:2

 =


1
2
3
4

 .

Similarly, if primary subspaces have common parameters in µg across all g = 1, 2, ..., G,
then the common parameter would instead be associated with the noise subspace ξ.

Remark 3 When an eigenvalue λ appears more than once in a matrix Σ, then it’s di-
agonalization as PDP⊤ is no longer unique as the eigenspace corresponding to λ has an
infinite number of basis. As an example, if the first eigenvalue λ1 has multiplicity 2, then
for an arbitrary 2× 2 rotation matrix R and a block-diagonal matrix

Q =
R 0

0 I


we obtain another valid diagonalization Σ = (PQ)D(PQ)⊤. This is akin to the identifia-
bility problem in factor analysis whereby introducing an arbitrary rotation matrix does not
change the model density.
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Remark 4 The identifiability results in this section assumes that the number of primary
and secondary clusters G and Hg are known a priori. As well, we assume that the dimen-
sions of the intrinsic subspaces ⟨px, py, pu⟩ are known a priori.

5.2.3 Model Parameters

Due to the complexity of the parameter space and the nested hierarchy of clusters, we enu-
merate the model parameters explicitly in this section. Firstly, the set of πg parameters
contribute G − 1 free parameters due to the unit sum constraint; similarly, each set of
τg:h for each g contributes Hg − 1 free parameters. Each primary clustering g contributes
px + px(px + 1)/2 parameters from µg and Σg. Each secondary clustering g:h contributes
py + py(py + 1)/2 from ηg:h and Λg:h, with an additional pxpy if a regression Bg:h is present.
In the conditionally independent variation, each secondary cluster h contributes the afore-
mentioned quantities once overall instead of once for each g. Finally, the intrinsic noise
variables ξ and Φ contribute 2pu total.

In a general p × p rotation matrix, there are p(p − 1)/2 free parameters. In the case
of Γ, the first px columns span the intrinsic subspace of the primary clustering. If we re-
define this subspace in terms of a new set of px orthonormal basis vectors, we may re-write
all µg and Σg in this new basis to re-obtain the same density function by cancelling out
the rotation. This parameterization ambiguity means there are px(px − 1)/2 redundant
parameters in Γ. By the same argument, there are py(py − 1)/2 redundant parameters for
the secondary clustering subspace as well. This results in a net total of p(p− 1)/2− px(px−
1)/2− py(py − 1)/2 free parameters in Γ.

As the number of parameters changes with the choice of model variation, a tabular
listing of the variations and their associated number of free parameters is provided in
Table 5.1.
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Table 5.1: List of model variations and the number of free parameters for nested Gaussians.
As a shorthand, we use nx = px + px(px + 1)/2, ny = py + py(py + 1)/2, and nΓ =
pxpy +pxpu +pypu−pu/2+p2

u/2 to denote the number of free parameters in primary cluster
component parameters {µg,Σg}, secondary cluster non-regression parameters {ηg:h,Λg:h},
and rotation matrix Γ, respectively.

Intr. Indep. Cond. Indep. Free Parameters

No No G(nx) +∑G
g=1 Hg(ny + pxpy + 1) + 2pu − 1 + nΓ

No Yes G(nx + 1) +H(ny + pxpy + 1) + 2pu − 2 + nΓ

Yes No G(nx) +∑G
g=1 Hg(ny + 1) + 2pu − 1 + nΓ

Yes Yes G(nx + 1) +H(ny + 1) + 2pu − 2 + nΓ

5.3 Estimation

We provide an Expectation-Maximization EM algorithm (Dempster et al., 1977) for esti-
mation of the proposed model’s parameters including the aforementioned variations. Let
class membership indicators be denoted by zn,g and wn,g:h for primary and secondary clus-
terings, respectively. In a clustering context, we consider these values to be unobserved
and latent. For observed manifest data variables vn composed row-wise to form a data
matrix V, we have the expected complete data log-likelihood

Q(V; θ) =
N∑

n=1

G:∑
g=1

Hg∑
h=1

ẑn,gŵn,g:h
[
log πg + log τg:h + log ϕpx

(
xn; µg,Σg

)
+ log ϕpy

(
yn; ηg:h + Bg:hxn,Λg:h

)
+ log ϕpu (un; ξ,Ψ)

]
.

Alternatively, we may write this explicitly in terms of the manifest variables vn = Γ⊤rn

by expressing Γ as a block-matrix with row-blocks

Γ =


Γx

Γy

Γu
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such that Γx,Γy,Γu are of sizes px × p, py × p, pu × p respectively. Thus, we may write

Q(V; θ) =
N∑

n=1

G:∑
g=1

Hg∑
h=1

ẑn,gŵn,g:h
[
log πg + log τg:h + log ϕpx

(
Γxvn; µg,Σg

)
+ log ϕpy

(
Γyvn; ηg:h + Bg:hxn,Λg:h

)
+ log ϕpu (Γuvn; ξ,Ψ)

]
.

We use ẑn,g here to denote the probability of observation n being in primary cluster
g given the parameters θ. Similarly, we use ŵn,g:h for the same observation’s probability
of being in secondary cluster g:h. We also note the estimate for the joint membership
P(zn;g,h = 1 | vn) is the product of the marginal ẑn,g and conditional ŵn,g:h. In this
estimation procedure, we treat the parameter set θ as specified in Section 5.2, and take
the intrinsic subspace dimensions px, py, pu, number of clusters G, Hg, and the choice of
intrinsic and conditional independence as fixed. We search over these parameters outside
of the EM algorithm as part of the model selection procedure.

5.3.1 Initialization

We employ different strategies to obtain starting values for conditionally dependent and
conditionally independent models. In all cases, we initialize Γ using the right-singular
vectors from a singular value decomposition (SVD) of the scaled observed manifest data.
The implied intrinsic subspace ordering provides the directions of greatest variation to the
primary clustering. This effect is consistent with an intuition that primary clustering would
exhibit greater variation than the nested secondary clustering; for example, variation over
nations could be expected to be larger than variation in provinces/states.

To generate starting values for a conditionally dependent fit, we first fit a finite Gaussian
mixture model using the mclust package (Scrucca et al., 2016) on the data rotated by the
initial Γ with ∑G

g=1 Hg clusters to obtain cluster probabilities, which we assign to the joint
membership probability ẑn,gŵn,g:h in an arbitrary order. As a second starting value, we
also search through all permutations of the first px dimensions of the mclust fitted means
to distinguish G primary clusters by minimizing the total within-cluster sum square error;
in effect, this is akin to k-means fit except the cluster sizes are pre-specified by Hg.
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To generate starting values for a conditionally independent fit, we use the intrinsic
variables xn given by the above-initialized Γ to fit a finite Gaussian mixture model with
G clusters, and likewise for yn with H clusters. The second starting value is again to
fit a G × H mclust model, and find not only the best permutation of G groups on the
leading px dimensions of the fitted means to generate a primary clustering but also the
best permutation of H groups on the subsequent py dimensions to generate a secondary
clustering.

To combat a multimodal and divergent likelihood landscape, we generate multiple ran-
dom starting values to perform Mini-EM (Biernacki et al., 2003), where we repeatedly
generate starting values using a randomly subsampled fraction of the data and select the
best log-likelihood after performing a modest number of EM updates on each such ini-
tialization. Unless otherwise specified, we perform 100 random starts using this Mini-EM
procedure each receiving 100 EM updates. The corresponding best parameters are consid-
ered the actual initial parameters for the remainder of the EM procedure. When Mini-EM
is not desired for computational complexity reasons, we initialize without subsampling with
both methods and use the best log-likelihood after 100 EM updates.

Altogether, the initialization provides the primary and secondary cluster probabilities
ẑn,g and ŵn,g:h (or ŵn,h for the conditionally independent model). In turn, these initial
probabilities are sufficient for the maximization step defined in Section 5.3.2 to produce
initial parameter estimates for the primary and secondary clusterings. If some observations
have known class labels, we use the corresponding semi-supervised mclust model with the
available class information in generating starting values.
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5.3.2 Expectation-Maximization Algorithm

Expectation Step

Using the parameters at the current iteration, we update the expectations for memberships
using

ẑn,g =
πgϕ(xn; µg,Σg)∑G
l=1 πlϕ(xn; µl,Σl)

, ŵn,g:h =
τg:hϕ(yn; ηg:h + Bg:hxn,Λg:h)∑Hg

l=1 τg:lϕ(yn; ηg:l + Bg:lxn,Λg:l)
.

To extend the proposed estimation procedure to cover semi-supervised and fully super-
vised contexts, we may adjust the expectation step to reflect known cluster assignments.
For example, if the cluster assignment for an observation n is known to be in primary
cluster g and secondary cluster h, then we take zn,g = 1 and wn,g:h = 1 with all other z and
w values zero. Then the above expectation step update is applied for all other observations
for which the assignment is not known. In a fully supervised context, the expectation step
can be skipped in its’ entirety due to all z and w values being known.

Additionally, it is possible to perform semi-supervised clustering when only the primary
labelling is known. This can be useful if primary class labels are available but a secondary
clustering is assumed or suspected. In this case, we take zn,g = 1 as fixed for the observation
with known primary cluster g and only allow wn,g:h to be estimated by the above update.
The reverse scenario where a secondary clustering is known but a primary clustering is
suspected is more convoluted due to the need to assign the a priori secondary clusters to
unknown primary clusters. We omit the consideration of this latter case in this work.

Maximization Step

Given the current iteration’s Γ, the updates for the remaining parameters can be computed.
The marginal and conditional cluster probabilities are computed using

πg = 1
N

N∑
n=1

ẑn,g, τg:h = 1
N

N∑
n=1

ŵn,g:h.
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Within the primary clustering, the component distributional parameters updates are up-
dated with

µg =
∑N

n=1
∑Hg

h=1 ẑn,gŵn,g:hxn∑N
n=1

∑Hg

l=1 ẑn,gŵn,g:l
,

Σg =
∑N

n=1
∑Hg

h=1 ẑn,gŵn,g:h(xn − µg)(xn − µg)⊤∑N
n=1

∑Hg

l=1 ẑn,gŵn,g:l
.

For the secondary clustering parameters in the intrinsically dependent case, we treat ηg:h

and Bg:h together as intercepts and slopes, respectively. This leads to the simultaneous
updates[

ηg:h Bg:h

]
= (X̃⊤ diag(zg:h)X̃)−1X̃⊤ diag(zg:h)Y,

Λg:h =
∑N

n=1 ŵn,g:h(yn − (ηg:h + Bg:hxn))(yn − (ηg:h + Bg:hxn))⊤∑N
n=1 ŵn,g:h

,

where
[
X Y U

]
= VΓ⊤, X̃ =

[
1 X

]
, and zg:h is a vector of ẑn,gŵn,g:h estimates. In the

non-regression case, where Bg:h is constrained to be zero, ηg:h and Λg:h updates become
the weighted mean and covariance using intrinsic variables Y, respectively. In other words,

ηg:h =
∑N

n=1 ŵn,g:hyn∑N
n=1 ŵn,g:h

, Λg:h =
∑N

n=1 ŵn,g:h(yn − ηg:h)(yn − ηg:h)⊤∑N
n=1 ŵn,g:h

.

If diagonal covariance matrices are assumed in the model specification, we set off-diagonal
values of Λg:h to zero.

Finally, in the intrinsic noise variables, we use the updates

ξ =
∑N

n=1 un

N
, Ψ = diag

∑N
n=1 (un − ξ)(un − ξ)⊤

N
,

where the diag operator sets all values off the main diagonal to zero. In practice, we
pre-center the data so that ξ ≡ 0 during the estimation procedure, which simplifies the
process.

After updating the above parameters, we update Γ under the orthogonality constraint
Γ⊤Γ = I using the Majorization-Minimization (MM) procedure in Kiers (2002). The
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surrogate function of the EM algorithm in terms of Γ only is

Q(Γ; V) = constant + 2 Tr
 G∑

g=1

Hg∑
h=1

(
N∑

n=1
ẑn,gŵn,g:hvn

)
µ̄⊤

g:hΣ̄−1
g:hΓ


−

G∑
g=1

Hg∑
h=1

Tr
[
Σ̄g:hΓWg:hΓ⊤

]
, (5.9)

where Wg:h = ∑N
n=1 ẑn,gŵn,g:hvnv⊤

n . The expression (5.9) here follows the form of expres-
sion (1) in Kiers (2002) with Γ being the parameter in which to optimize. Moreover, since
the desired constraint is orthonormality Γ⊤Γ = I and the matrices Σ̄g:h and Wg:h are
positive semi-definite we may take the majorizing function on page 164 of Kiers (2002) as
our surrogate objective function with the associated F matrix identified from the above
(5.9) as

F = 2
G∑

g=1

Hg∑
h=1

(
N∑

n=1
ẑn,gŵn,g:hvn

)
µ̄⊤

g:hΣ̄−1
g:h − 2

G∑
g=1

Hg∑
h=1

[
Wg:hΓ⊤

old

(
Σ̄−1

g:h + λg:hI
)]
,

where λg:h is the maximum eigenvalue of Wg:h. The update for Γ is Γnew = QP⊤ with P
and Q from the singular value decomposition svd(−F) = PDQ⊤.

We observe we may also rearrange Equation (5.9) to be a function of Γ⊤ with the same
form of objective function of Kiers (2002) by transposing the arguments of the traces and
applying cyclic permutation, neither of which affect the value of the trace operator. This
yields a slightly different MM algorithm for Γ. We apply these two MM algorithm updates
in pairs up to 100 times or until the average element-wise change in Γ is less than 10−8. A
complete derivation of this parameter update is given in Appendix C.1.

5.3.3 Computational Considerations

Convergence

To assess convergence of the model during the estimation procedure, we compute the
log-likelihood for the parameters at each EM iteration. If the improvement is below the
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defined threshold of 10−4 or if the number of iterations exceeds 100,000, we terminate the
estimation procedure.

In order to aid identification of the primary and secondary clustering subspaces, we
first run the estimation procedure on a scaled version of the initial data. This prevents the
initialization for Γ from assigning the variables with the largest range and capturing dif-
ferences in measurement scale. Using the parameters from this first estimation as starting
values, we run the next estimation procedure on the unscaled data. We hold the cluster
probabilities ẑn,g and ŵn,g:h fixed at the previous values until convergence, at which point
we allow updates to them until final convergence.

Model Metrics

Over the set of pre-specified models as specified by px, py, G, and {Hg}G
g=1, we may run the

estimation procedure for each combination thereof. Moreover, we may also select over the
three different types of model variations: conditional independence, intrinsic independence,
and isotropic covariance matrices. This yields a further factor of eight possible models.
Among these, we select the best model using the Bayesian Information Criterion (BIC)
(Schwarz, 1978) defined as

BIC = k logN − 2ℓ(θ; V),

where k is the number of free parameters of the model from Section 5.2.3 and ℓ is the log-
likelihood for the parameters θ. In this parameterization of BIC lower values are considered
better.

In addition, we apply the adjusted Rand index (ARI) of Hubert and Arabie (1985) to
examine the degree of similarity with observed class labels. In the proposed model, we have
restricted ourselves to only a primary and a secondary clustering. When the data allows,
we will compare both levels of nested labels against available class labels and present the
ARI for each comparison. For completeness, we note that the recovered labels may not
necessarily align with a single extant observable class label.
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5.4 Simulation Study

In this section, we perform a simulation study to examine the performance of the model
under a variety of situations. To that end, we define the honeycomb family of datasets
as examples of the proposed model. We investigate different values of intrinsic subspace
dimension, the well-separatedness of the clusters, and the number of observations.

5.4.1 Synthetic Honeycomb Dataset

In this section, we describe the synthetic honeycomb dataset generated from the proposed
model. In each dataset, we prescribe G = 3 primary clusters with Hg = ⟨2, 3, 2⟩ secondary
clusters. We place the three primary clusters in the corresponding intrinsic subspace at
{−10, 0, 10} × 1px with covariance Σg defined element-wise as [Σg]ij = λ2−|i−j| for some
variance scaling parameter λ > 0. In the secondary clustering, we specify the means in the
secondary intrinsic subspace as {−5, 5} × 1py , {−10, 0, 10} × 1py , and {−5, 5} × 1py for the
three primary clusters, respectively. The secondary covariances Λg:h are defined in the same
manner as Σg. The regression coefficients are given between [Bg:h]ij = (−1)i+j × 2−|g−h|.
In the noise subspace, we specify an isotropic noise subspace covariance Ψ = λIpu×pu

for simplicity, whereas the model posits a diagonal Ψ throughout. The rotation Γ is a
randomly generated orthogonal matrix, and rotates the resulting data to form the dataset.
A visualization of this dataset in its observed rotated and original unrotated forms is given
in Figure 5.2.

5.4.2 Intrinsic Subspace and Class Label Recovery

We explore the effect of data dimensionality by varying the intrinsic subspace dimensions
px, py, pu simultaneously from one to three. Additionally, we examine the effect of the
number of observations N by sampling 100, 1000, and 2000 observations from each cluster.
Lastly, we vary the degree of separation and overlap of the clusters by varying the variance
scaling parameter λ over the values 1, 2, and 3.
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Figure 5.2: An example of the simulation dataset presented as a scatterplot, with dataset
parameters px = py = pu = 1, 100 observations, and λ = 1. The observed manifest
variables (left) are a rotation of the intrinsic variables (right).
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The behavior of interest is the recovery of the intrinsic subspaces of X, Y, and U
given by the fitted Γ matrix. This is accomplished by using the Grassmann distance
between the columns of the fitted and true Γ matrices corresponding to the bases of the
respective intrinsic subspaces. As the decomposition of the rotation matrix Γ yields three
different subspaces; one for each of X, Y, and U, we may wish to compare the similarity
of these subspaces. Noting that a distance must be invariant to a change of basis within
a subspace, we turn to the Grassmann distance for this invariance. This distance arises
over a metric space over finite dimensional linear subspaces (Lee, 2012). For orthogonal
matrices M1 and M2 of dimension d× k where columns represent an orthonormal basis of a
k-dimensional subspace of Rd, the Grassmann distance can be calculated as ∑k

i=1 arccosσi

for σi being a singular value of M⊤
1 M2. Consequently, we obtain three Grassmann distances

dX , dY , dU , one for each of the intrinsic subspaces. We combine these into a unified distance
d = (d2

X + d2
Y + d2

U)1/2 and use this distance throughout the remainder of this section. For
each simulated dataset, we fit the conditionally and intrinsically dependent model with
G = 3 and Hg = ⟨2, 3, 2⟩. The simulation results in terms of ARI and the combined
Grassmann distance are presented in Table 5.2.

A graphical representation for each of the generating model specifications as in Table 5.2
is provided in Figure 5.3, marginalizing over the effects of the other parameters.

From this simulation study, we find that the clustering becomes more inconsistent in
both the ARI and combined Grassmann distance as the number of dimensions px, py, pu

increases. The effect of overlap controlled by parameter λ seems to play a minimal role
in the classification and rotation parameter Γ recovery. We remark that the initialization
process is only a heuristic; the initial rotation Γ(0) is obtained via an SVD decomposition
and allocates variation in decreasing order to the primary, secondary, and noise subspaces.
In this synthetic dataset, as seen in Figure 5.2, the dataset does not conform to this
assumption.
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Table 5.2: Model metrics for simulated dataset over multiple parameter combinations.
Each value is the average over 100 replications, with standard deviation in parentheses.

px, py, pu N λ ARI Grassmann distance

1 100 1 0.5254 (0.0376) 0.5870 (0.7245)
1 100 2 0.4713 (0.0107) 0.6219 (0.7197)
1 100 3 0.4649 (0.0135) 0.8557 (0.7708)
1 1000 1 0.4158 (0.0463) 1.2477 (0.4106)
1 1000 2 0.4718 (0.0124) 1.5000 (0.6684)
1 1000 3 0.4738 (0.0006) 0.6710 (0.9548)
1 2000 1 0.4513 (0.0605) 1.3371 (0.4801)
1 2000 2 0.4599 (0.0181) 1.4375 (0.6943)
1 2000 3 0.4654 (0.0109) 0.9663 (0.8832)
2 100 1 0.5136 (0.0465) 1.5135 (0.5054)
2 100 2 0.4731 (0.0434) 1.6990 (0.5206)
2 100 3 0.4499 (0.0304) 1.9428 (0.4552)
2 1000 1 0.4466 (0.0291) 2.2800 (0.3384)
2 1000 2 0.4431 (0.0264) 2.2707 (0.2994)
2 1000 3 0.4407 (0.0300) 2.2778 (0.2665)
2 2000 1 0.4232 (0.0712) 2.2698 (0.3564)
2 2000 2 0.4223 (0.0411) 2.2845 (0.3385)
2 2000 3 0.4120 (0.0320) 2.2278 (0.3111)
3 100 1 0.5613 (0.1684) 2.7724 (0.3053)
3 100 2 0.4700 (0.0859) 2.8348 (0.2758)
3 100 3 0.4368 (0.0824) 2.8280 (0.2722)
3 1000 1 0.5381 (0.1509) 2.6910 (0.3412)
3 1000 2 0.4979 (0.1236) 2.7572 (0.3554)
3 1000 3 0.4327 (0.1147) 2.6519 (0.3636)
3 2000 1 0.5580 (0.1813) 2.4970 (0.3408)
3 2000 2 0.4484 (0.2001) 2.5284 (0.4079)
3 2000 3 0.4112 (0.1117) 2.6363 (0.3776)
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Figure 5.3: ARI, and Γ Grassmann distances for the simulated dataset across multiple
parameter configurations.
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5.4.3 Intrinsic Subspace Dimension Recovery

We define a synthetic dataset to investigate the recovery of the intrinsic subspace dimen-
sions with G = 3 and Hg = ⟨2, 3, 2⟩ as in the synthetic honeycomb data, and fixed
px = py = pu = 2, λ = 1, and N = 1000. We fix dataset component parameters such
that

µ1 =
3
5

 , µ2 =
0
0

 , µ3 =
−5

3

 ,

η1:1 =
−1

2

 , η1:2 =
 1
−2

 ,

η2:1 =
3
4

 , η2:2 =
0
0

 , η2:3 =
 4
−3

 ,

η3:1 =
−2
−1

 , η3:2 =
2
1

 ,

Σg = Λg:h = Ψ = I2, Bg:h = 0,

and draw a random Γ uniformly from the space of orthogonal matrices. This dataset guar-
antees that the three primary components utilize the full px = 2 dimensions by not being
collinear, with a similar imposition on the secondary cluster components. We evaluate
a model space over all combinations of 1 ≤ px, py ≤ 3 for each of 100 such dataset to
determine the model selection effectiveness of BIC in an exhaustive search. The remain-
ing model space is restricted to be conditionally dependent but intrinsically independent,
with G = 3 and Hg = ⟨2, 3, 2⟩. Table 5.3 shows the average BIC across 100 replications
at each tried px, py, pu combination as well as the proportion of replications that selected
the corresponding intrinsic subspace dimension. Indeed, we see that the class labels are
best recovered under the correct model, which in turn is also selected by BIC in 94 of 100
dataset replications.
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Table 5.3: Model selection results under the simulated dataset for px = py = pu = 2. BIC
averages are computed average over 100 replications, with ∆BIC being the difference in
averages against the best value. The frequency of replicated datasets selecting a particular
model and the average ARI is also given. All values in parentheses are standard deviations.

px py Freq. BIC ∆BIC ARI

1 1 0 25294 (734) +1896 0.426 (0.047)
1 2 0 24436 (478) +1039 0.657 (0.057)
1 3 2 23479 (545) +82 0.961 (0.064)
2 1 0 24362 (102) +964 0.662 (0.026)
2 2 94 23398 (114) 0 0.970 (0.008)
2 3 3 23448 (117) +51 0.965 (0.026)
3 1 0 24061 (863) +664 0.700 (0.085)
3 2 0 23672 (306) +274 0.859 (0.129)
3 3 1 23488 (145) +90 0.958 (0.046)

5.5 Real-World Datasets

In this section, we apply the proposed clustering model and its variations to real-world
datasets. Specifically, we examine the Leptograpsus crabs dataset (Campbell and Ma-
hon, 1974) and the olive oil dataset (Forina et al., 1983) in both unsupervised and semi-
supervised clustering contexts, and also examine the Cars93 dataset (Lock, 1993) and
handwritten digits dataset (van Breukelen et al., 1998; van Breukelen and Duin, 1998; Jain
et al., 2000) in an unsupervised manner. For comparison, we compare against a baseline fi-
nite Gaussian mixture model with parsimonious covariance matrices as fitted by mclust. To
include parsimony in this case, we allow mclust to estimate and select over all 14 covariance
matrix specifications (Celeux and Govaert, 1995). For understandability and consistency,
we use the covariance type abbreviations as specified in mclust. We also only consider
comparable models with multivariate normal distributions to maintain consistency in clus-
ter densities; alternatives such as multivariate-t or the skew-normal may exhibit better

108



performance on the datasets. When results or code are available from related works in the
literature, the fitted model summaries are presented as well. To simplify estimation, we
pre-process the manifest variables by centering the data, which yields ξ ≡ 0; simplifying
estimation slightly.

5.5.1 Crabs Dataset

This dataset describes 200 observations of Leptograpsus crabs spanning two sexes and two
species (Campbell and Mahon, 1974). The observed manifest variables are five morphome-
tric measurements of the crab itself. As an initial observation, some careful rotation of the
dataset reveals the two clusterings essentially occur on independent subsets of the data.

We evaluate the proposed model for all combinations of parameters of px ≤ 4, py ≤ 4,
G ≤ 3, Hg ≤ 3 in conjunction with the variations of regression and conditional dependence.
Among these, we select the best model parameters using BIC. We also discard fitted models
with a covariance eigenvalue below 10−3 to exclude models with degenerate solutions with
near-singular covariance parameters and a divergent log-likelihood. As such, BIC selects
px = 2, py = 2, G = H = 2; including regression but without conditional dependence.
For simplicity, we have only presented this model from the four possible independence
configurations; the remaining models produce particularly unreasonable results featuring
empty clusters or near-singular covariance matrices, and do not have optimal BIC. As well,
we allow for primary and secondary covariances Σg and Λg:h to be either fully-varying
or diagonal, akin to the mclust VVV and VVI models, respectively. Model metrics are
presented in Table 5.4 with comparisons to some models from the literature. We find
a better BIC with the proposed model on the Leptographsus crabs data primarily due
to the reduction in the number of parameters compared to Model 5 of (Galimberti et al.,
2018). The ARI is slightly decreased but demonstrates similar behaviour in that the species
variable is fully recovered. Accordingly, we can visualize the data in the resultant rotated
directions in Figure 5.4. In this figure, we find and depict the intrinsic variables in which
the primary clustering appears, which may be used to enhance further graphical analyses or
aid understanding within the Leptographsus context. From the selected model of Table 5.4,
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Table 5.4: Fitted model metrics for Leptograpsus dataset using the proposed model, finite
Gaussian mixtures using mclust, and the model of Galimberti et al. (2018). The best model
is selected from each family by selecting the best BIC, where lower is better.

Nested Gaussians mclust Galimberti et al. (2018), M5

Number of Clusters G = 2, H = 2 4 K1 = 2, K2 = 2
Dimensions px = 2, py = 2 5 3, 2
Number of Parameters 40 68 68
Intrinsic Independence No – No
Conditional Independence Yes – Yes
Covariance Type Full EEV –
BIC 2771.066 2842.30 2808.3
ARI (overall) 0.8143 0.7939 0.873
ARI (sex) 0.3504

Primary 0.7211 0.8091
Secondary -0.0040 -0.0051

ARI (species) 0.5004
Primary -0.0051 -0.0044
Secondary 1.0000 1.0000

we obtain the rotation matrix which rotates the data into the form seen in Figure 5.4

Γ =



0.2858 −0.1803 0.8214 −0.4530 −0.0767
−0.3896 −0.8769 0.0836 0.2314 0.1369
−0.1346 0.3234 0.4165 0.4185 0.7271
−0.7795 0.3058 0.3002 0.0080 −0.4568
0.3752 −0.0220 0.2340 0.7523 −0.4878


.

In a semi-supervised context, we assume the class label for the first observation in each
of the four groups is known. As the nesting structure of species and sex is not known a
priori, both possibilities are considered in this case. The results are presented in Table 5.5.
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Figure 5.4: A scatterplot of the Leptograpsus crabs dataset in the primary intrinsic sub-
space (left) and secondary intrinsic subspace (right) based on the fitted model in Table 5.4.
Points are labelled by the true class labels. In the secondary intrinsic subspace, the points
are adjusted by subtracting B⊤

h xn, where h is the secondary clustering component to which
the observation is assigned.

In the semi-supervised situation, we find similar behaviour as in Table 5.4, albeit with
slightly better recovery of the sex class label but slightly worse recovery of the species class
label. The BIC metric continues to outperform the finite Gaussian mixture model with
parsimonious covariance matrices as estimated by the mclust package primarily due to the
reduction in the number of parameters.

5.5.2 Olive Oil Dataset

The olive dataset from Forina et al. (1983) describes the chemical composition of 572
different olive oils for three areas of Italy with multiple constituent regions. There are
eight variables representing different fatty acids found in olive oil. As class labels, we have
as the first area of Northern Italy the three regions Umbria, East Liguria, and West Liguria.
The second area is Sardinia divided into two regions: Inland Sardinia and Coastal Sardinia.
Lastly, the Southern Italy area has four regions: North Apulia, Calabria, South Apulia,
and Sicily.
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Table 5.5: Fitted model metrics for Leptograpsus dataset using the proposed model and
finite Gaussian mixtures using mclust in a semi-supervised setting. The best model is
selected from each family by selecting the best BIC, where lower is better.

Nested Gaussians mclust

Number of Clusters G = 2, H = 2 4
Dimensions px = 2, py = 2 5
Number of Parameters 40 68
Intrinsic Independence No –
Conditional Independence Yes –
Covariance Type Full EEV
BIC 2775.97 2903.31
ARI (overall) 0.8230 0.8032
ARI (sex) 0.3701

Primary 0.7733
Secondary -0.0046

ARI (species) 0.4672
Primary -0.0046
Secondary 0.9602
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Table 5.6: Fitted model metrics for the Italian olive oil dataset using the proposed model
and finite Gaussian mixtures using mclust. The best model is selected from each family by
selecting the best BIC, where lower is better.

Nested Gaussians mclust

Number of Clusters G = 4, H = 3 10
Dimensions px = 6, py = 2 8
Number of Parameters 176 197
Intrinsic Independence No –
Conditional Independence Yes –
Covariance Type Full VVE
BIC 41855.23 42146.84
ARI (area) 0.3701

Primary 0.9273
Secondary 0.5164

ARI (region) 0.8032
Primary 0.0444
Secondary 0.0555

For this dataset, we search over models having px, py ≤ 7 with G,Hg ≤ 4. We skip the
Mini-EM process from Section 5.3.1 due to the high computational burden for a dataset of
this size and the number of potential model variations. Again, we exclude models with a
covariance eigenvalue below 10−3. Using BIC to perform model selection, the best model
is presented in Table 5.6 along with the best mclust clustering model. We find better BIC
using the proposed nested Gaussian model, with good recovery of the primary clustering
of area but not the secondary clustering of region. As well, the conditionally dependent
model expected given the context of the dataset is not selected by BIC.

We also consider the best BIC among models with G and Hg correctly specified as
G = 3 and ⟨H1, H2, H3⟩ = ⟨4, 2, 3⟩, respectively, in Table 5.7. A comparison is mclust
with correctly specified number of clusters G = 9. In this case, the area class labels are
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Table 5.7: Fitted model metrics for the Italian olive oil dataset using the proposed model
and finite Gaussian mixtures using mclust, both with the correct number of clusters speci-
fied. Lower BIC is better.

Nested Gaussians mclust

Number of Clusters G = 3, ⟨H1, H2, H3⟩ = ⟨4, 2, 3⟩ 9
Dimensions px = 4, py = 4 8
Number of Parameters 336 180
Intrinsic Independence No –
Conditional Independence No –
Covariance Type Full VVE
BIC 43184.24 42195.75
ARI (area) 0.3481

Primary 1.0000
Secondary 0.4776

ARI (region) 0.6490
Primary 0.3984
Secondary 0.5065

well-recovered by the proposed model at the detriment of region class label recovery. It is
possible that region behaviours do not fit neatly within the same dimensions for each area.
A plot of the primary clustering subspace is provided in Figure 5.5; while it may seem that
some observations ought to be misclassified in this view, they are also partially informed
by the secondary clustering g:h whose subspace is not seen.

Semi-Supervised Setting

In addition to the fully unsupervised approach, we also examine the olive oil dataset in
a semi-supervised setting. Specifically, we assume the primary and secondary class labels
of the first observation in each region are known. Effectively, this also restricts the model
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Figure 5.5: A scatterplot of the Italian olive oil dataset in a projection of the primary
intrinsic subspace (top-left) and secondary intrinsic subspaces (top-right, bottom) based
on the fitted model in Table 5.7 with the correct number of specified clusters. Points
are labelled by the true class labels. In the secondary intrinsic subspace, the points are
adjusted by subtracting Bhxn, where h is the secondary cluster to which the observation
is assigned.

115



Table 5.8: Fitted model metrics for the Italian olive oil dataset using the proposed model
and finite Gaussian mixtures using mclust in a semi-supervised context. The first observa-
tion in each of the nine regions has known class labels. Lower BIC is better.

Nested Gaussians mclust
Number of Clusters G = 3, ⟨H1, H2, H3⟩ = ⟨4, 2, 3⟩ 9
Dimensions px = 2, py = 3 8
Number of Parameters 188 180
Intrinsic Independence No –
Conditional Independence No –
Covariance Type – VVV
BIC 43820.68 42471.20
ARI (area) 0.3416

Primary 1.0000
Secondary 0.4776

ARI (region) 0.4581
Primary 0.4089
Secondary 0.4154

selection procedure to the true number of primary and secondary clusters, leaving only
the choice of px, py, and model variations to be searched over. The results of the semi-
supervised procedure are given in Table 5.8. While the BIC is higher than the semi-
supervised mclust model, the proposed model is able to fully recover the area class labels.
Interestingly, introducing a small number of observed class labels observations causes the
BIC-selected model to use much fewer dimensions for the primary and secondary intrinsic
subspaces.

Additionally, since there is a primary and secondary hierarchy in the class labels, we
also investigate the application when the primary labelling is known but the secondary
clustering is completely unknown. For the first observation in each of the three areas, we
assume their area membership zn,g to be known. Aside from fixing the primary cluster
count G = 3, we use the same estimation procedure as previously. This yields the results
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Table 5.9: Fitted model metrics for the Italian olive oil dataset using the proposed model
and finite Gaussian mixtures using mclust in a semi-supervised context with a portion
of primary clustering labels known. The first observation in each of the nine regions has
known area class labels. Lower BIC is better.

Nested Gaussians
Number of Clusters G = 3, H = 2
Dimensions px = 3, py = 5
Intrinsic Independence Yes
Conditional Independence No
Number of Parameters 99
Covariance Type Diagonal
BIC 42857.46
ARI (area)

Primary 0.5406
Secondary 0.4288

ARI (region)
Primary 0.0657
Secondary 0.1528

in Table 5.9. As there is no equivalent concept in mclust, we have opted to present the
proposed model alone. Here, we see that both the primary and secondary clusterings tend
to recover the area variable.

5.5.3 93 cars Dataset

In this dataset, we examine the Cars93 dataset from the MASS R package (Venables
and Ripley, 2002). This dataset covers 27 parameters of 93 cars from the year 1993,
covering a range of qualitative and quantitative variables. For the present analysis, we
take as manifest variables Price, MPG.city, MPG.highway, EngineSize, Horsepower, RPM,
Rev.per.mile, Fuel.tank.capacity, Length, Wheelbase, Width, Turn.circle, and Weight. The
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numerical variables Min.Price and Max.Price are omitted to reduce redundancy with the
Price variable, and the Cylinders variable was treated as categorical. The two variables
Rear.seat.room and Luggage.room were dropped due to missingness. As potential class
labels, we have Manufacturer, Type, AirBags, DriveTrain, Cylinders, Man.trans.avail, and
Origin. For further description of these variables, refer to the dataset description in the
MASS package or the underlying work (Lock, 1993). Due to the contextual complexity of
the data, we allow for more complicated relationships between the fitted class memberships
and observed class labels. Specifically, there is a variety of available observed class labels,
namely Manufacturer, Model, Type, AirBags, DriveTrain, Cylinders, Man.trans.avail, and
Origin. There is no strict hierarchical relationship nor an unambiguous selection of pri-
mary/secondary clusterings. As well, we do not expect each categorical level to be a
distinct fitted cluster. Thus, we opt to cross-tabulate the fitted class labels against more
than one set for inspection as the adjusted Rand index is not very insightful.

As a pre-processing step, we have performed PCA on the 13 variables and taken the first
five principal components (PCs). The first three PCs account for 99.92% of total variation;
we consider the fourth and fifth PCs we have included under the potential assumption that
they are noise. In total these five PCs comprise 99.992% of total variation. For model
selection, we search over model specifications having px, py ≤ 5 with G,Hg ≤ 4. We again
skip the Mini-EM process for computational reasons due to the expansive model space.
After estimation, we continue to exclude fitted models with a covariance eigenvalue below
10−3 and select the best model via BIC. As there are no definitive corresponding class labels,
we perform a more detailed analysis of the clustering labels within the context of vehicles
by presenting a cross-tabulation of clustering labels against selected observed labels. The
summary table of the fitted model and a baseline mclust model is provided in Table 5.10.
The mclust comparison spans all 14 covariance types and is also run on the pre-processed
data.

The cross-tabulations of the primary clustering labels against a select subset of observed
class variables in the dataset is given in Table 5.11. We cross-tabulate the fitted primary
clustering classes against the Cylinder, Type, and AirBags variables. n the first primary
cluster g = 1, we see a mix of 4- and 6-cylinder vehicles and a range of larger vehicle types.
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Table 5.10: Fitted model metrics for 93 cars dataset using the proposed model and finite
Gaussian mixtures using mclust on the first 5 principal components of the data. The best
model is selected from each family by selecting the best BIC, where lower is better.

Nested Gaussians mclust

Number of Clusters G = 3, H = 2 2
Dimensions px = 2, py = 2 5
Number of Parameters 43 17
Intrinsic Independence No –
Conditional Independence Yes –
Covariance Type Diagonal VEI
BIC 5776.77 5796.84

In g = 2, the dominant vehicle type are small vehicles with almost exclusively 3- and
4-cylinders with front-wheel drive. Finally, g = 3 is also comprised of 8-cylinder vehicles
sporty or midsize vehicles with mostly driver-only airbags; interestingly, the sole rotary
engine car fell into this cluster. Turning our attention to secondary clustering labels in
Table 5.12, we have two clusters that are evaluated against the Type and Cylinder variables.
We observe that the secondary cluster h = 2 captures almost exclusively 6-cylinder vans.
A large table representing the joint cross-tabulation against all three classes is given in
Appendix C.3.

5.5.4 Handwritten Digits Dataset

In this section, we apply the proposed method to a dataset representing handwritten digits
0 through 9 in various features (van Breukelen et al., 1998; van Breukelen and Duin, 1998;
Jain et al., 2000) as retrieved from the UCI datasets repository (Dua and Graff, 2017).
Across 2000 observations, the dataset contains 200 of each digit with known class labels.
Among the variety of available features, we select the three continuous morphological
features as the data of interest.
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Table 5.11: Primary clustering labels for 93 cars dataset using the proposed model from
Table 5.10. A selected subset of available class information from the dataset is presented
here; particularly, the number of cylinders, type of vehicle, and type of airbag configuration.

Cylinder g = 1 g = 2 g = 3 Type g = 1 g = 2 g = 3

3-cyl 0 3 0 Compact 11 5 0
4-cyl 27 22 0 Large 11 0 0
5-cyl 1 1 0 Midsize 15 5 2
6-cyl 29 1 1 Small 9 12 0
8-cyl 4 0 3 Sporty 7 4 3
rotary 0 0 1 Van 8 1 0

AirBags g = 1 g = 2 g = 3

Driver & Passenger 15 0 1
Driver only 30 9 4
None 16 18 0

Table 5.12: Secondary clustering labels for 93 cars dataset using the proposed model from
Table 5.10. A selected subset of available class information from the dataset is presented
here.

Type h = 1 h = 2 Cylinder h = 1 h = 2

Compact 16 0 3-cyl 3 0
Large 10 1 4-cyl 48 1
Midsize 22 0 5-cyl 1 1
Small 21 0 6-cyl 23 8
Sporty 11 3 8-cyl 6 1
Van 1 8 rotary 0 1
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Table 5.13: Fitted model metrics for the handwritten digits dataset using the proposed
model and finite Gaussian mixtures using mclust. The best model is selected from each
family by selecting the best BIC, where lower is better.

Nested Gaussians mclust

Number of Clusters G = 5, H = 3 7
Dimensions px = 2, py = 1 3
Number of Parameters 45 69
Intrinsic Independence No –
Conditional Independence Yes –
Covariance Type – VVV
BIC 45530.76 44889.69
ARI (digit) 0.3452

Primary 0.3007
Secondary 0.0629

We explore the model space for px, py ≤ 2 with G,Hg ≤ 5, and perform a single ini-
tialization without Mini-EM. Again, we discard fitted models with a covariance eigenvalue
below 10−3. A comparison against mclust models up to 15 clusters is made. In both cases,
we select the best model by BIC. The summary table of values is given in Table 5.13.

Indeed, while neither the BIC nor ARI outperform the mclust model, an interesting
phenomenon appears in the actual nested clustering results. In Table 5.14, the cross-
tabulations between the true digit class label and the primary/secondary clustering labels
is presented. In the primary clustering, the first cluster g = 1 captures zeros and eights;
two symmetric digits with loops. The second cluster g = 2 captures a mix of ones, sixes
and nines; the latter two being very similar digits with a single loop. The third cluster
g = 3 seems to capture mostly fours and sevens, rather angular digits. The fourth cluster
g = 4 seems to be a small miscellaneous cluster. The fifth cluster g = 5 mostly captures
the digits two, three, and five; generally curved digits without a loop. We note that both
one and seven is seemingly out of place in the primary cluster to which they tend to be
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Table 5.14: Clustering labels for the digits dataset for the proposed model in both the
primary and secondary clusterings.

Digit g = 1 g = 2 g = 3 g = 4 g = 5 Digit h = 1 h = 2 h = 3

0 195 2 0 1 2 0 20 152 28
1 13 125 62 0 0 1 10 69 121
2 0 0 23 0 177 2 52 117 31
3 0 1 48 0 151 3 51 115 34
4 0 3 174 4 19 4 55 130 15
5 0 0 8 0 192 5 20 46 134
6 0 142 49 0 9 6 61 104 35
7 0 3 161 1 35 7 170 30 0
8 176 8 12 3 1 8 14 148 38
9 0 146 45 1 8 9 48 118 34

assigned. To resolve this, we turn to the secondary clustering, in which the first cluster
h = 1 has a much higher proportion of sevens. Similarly, ones are somewhat distinguished
by the third secondary cluster h = 3. In this manner, we see that the primary clustering
tends to separate digits based on whether or not they have loops and their symmetry (e.g.,
0 and 8 versus 6 and 9), and the secondary clustering mostly distinguishes the one and
seven digits.

For this dataset, the best proposed model fit yielded a rotation matrix estimate

Γ =


0.0063 −0.9526 −0.3041
0.0294 0.3041 −0.9522
0.9995 −0.0029 0.0300

 .

Indeed, from this rotation on the data and the observed cross-tabulation table Table 5.13,
we can observe the separating out of different groups in the intrinsic subspaces in Figure 5.6.
In particular, the scatterplot of the two-dimensional primary intrinsic subspace shows
separation of the 0/8, 1/6/9, 4/7, and 2/3/5 clusters and the kernel density estimate
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Figure 5.6: A scatterplot and kernel density estimate of the handwritten dataset in the
primary intrinsic subspace (left) and secondary intrinsic subspace (right) based on the
fitted model in Table 5.13. Points are labelled by the true class labels. In the secondary
intrinsic subspace, the points are adjusted by subtracting B⊤

h xn, where h is the secondary
clustering component to which the observation is assigned.

of the one-dimensional secondary intrinsic subspace shows the separation of the 1 and 7
clusters.

5.6 Discussion

The proposed model demonstrates in the Leptographsus crabs dataset an ability to isolate
relevant subspaces in which clusterings appear. In the Italian olive oil dataset, the primary
subspace recovers the area class labels when the correct number of clusters is specified.
With comparison to the family of finite Gaussian mixtures fitted by mclust, the BIC metric
sees some improvement despite using fully-varying covariance matrices for both the primary
and secondary clusterings.

As in Galimberti et al. (2018), the proposed method identifies the appropriate subspace
variables in which the species variable separates for the Leptographsus crabs dataset. In the
intrinsic subspace separating the sex class labels, the effect is seen to a lesser extent as there
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remains a degree of overlap. A similar occurrence is seen with the Italian olive oil dataset
under the correct cluster specification, whereby the relevant subspace for separating the
area classes is identified, with moderate separation in the secondary region subspace.

5.6.1 Future Work

Regularization could be applied to the rotation matrix Γ to obtain a permutation matrix.
This would produce as a special case the behaviour of variable selection in lieu of estimating
intrinsic subspaces.

Moreover, the need to select both the number of primary and secondary cluster greatly
enlarges the model space. In the conditionally dependent case, Hg is specified by G differ-
ent integers; a combinatorial expansion in the number of possibilities. This is compounded
by the selection of intrinsic subspace dimensions. Potential remedies include genetic algo-
rithms as in Galimberti et al. (2018) or automatic model selection methods.

Primary and secondary cluster covariance matrices could be specified as parsimonious
covariance matrices (Celeux and Govaert, 1995; Browne and McNicholas, 2014; McNicholas
and Murphy, 2008) to improve model flexibility and allow for more parsimony. However,
this further increases the model space and compounds upon the model selection challenges
described above.

Finally, we can consider the cases beyond two stages of clustering, whereby the data
exhibits tertiary clusters g:h:k for secondary cluster g:h. The intrinsic subspaces may also
have different dimensionalities py for secondary clusters, leading to additional parsimony
and allowing clusters to separate into their informative subspaces at different depths.

124



Chapter 6

Extrapolating Conditional
Expectations to Accelerate EM
Procedures

6.1 Introduction

The Expectation-Maximization (EM) procedure (Dempster et al., 1977) is a popular method
for maximizing intractable objective functions such as in maximum likelihood estimation.
However, the algorithm suffers from slow convergence in many cases; particularly, it often
experiences a linear rate of convergence in the vicinity of a local optima. While switching
to second-order methods that make use of the local curvature information can be much
faster, determining an expression for or numerically computing the Hessian may be difficult.
As a result, methods for accelerating the EM procedure have been investigated (Meng and
Rubin, 1993; Liu and Rubin, 1994; Liu et al., 1998; Varadhan and Roland, 2008; He and
Liu, 2012) to help amend some of the drawbacks with EM itself.

The EM procedure, so named for its iterative and alternating use of an expectation step
(E-step) and maximization step (M-step), is often understood from one of two perspectives
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(Berlinet and Roland, 2007). The first treats the procedure as a sequence of fixed-point
iterations. Approaches to accelerating the EM procedure under this paradigm often acts
within the parameter space of the problem, whereby the parameters θ are extrapolated
as a vector-valued sequence in a Euclidean vector-space Rp. The second emphasizes the
alternating nature of E-steps and M-steps, and understand the output of the E-step as
a surrogate function to be maximized in the M-step. This second mode makes stronger
use of the missing data’s distribution, explicitly identifying and computing the required
expected values within each EM iteration.

The EM algorithm has enjoyed broad application in a variety of subjects and has
itself been the subject of much study. We provide here a brief technical recap of the
framework of EM with associated discussion and leave other details to the original work of
Dempster et al. (1977) and texts such as McLachlan and Krishnan (2008). For problems
with missing data, or problems where missing data could be intentionally introduced, the
direct maximization of the log-likelihood function can be intractable. In some of these
cases, we may turn to the EM algorithm to decompose the central problem into a sequence
of simpler, tractable problems. In particular, we define the complete-data log-likelihood
ℓcom(θ; X,Z) to be a function of both the observed data X and latent data Z. Since the
latent data is by definition unobservable, we use the conditional distribution of Z given
observable X with parameters θ(t) as of iteration t obtain the expected complete-data
log-likelihood Q(θ; θ(t)) = E(t)

Z [ℓcom(θ; X,Z)].

Many extensions to the EM algorithm have been implemented to help improve upon its
convergence speed; a selection of examples are given here. In the Expectation-Conditional-
Maximization (ECM) algorithm (Meng and Rubin, 1993), the M-step is decomposed into
multiple conditional maximization steps (CM-steps) whereby the parameter set is parti-
tioned, with each subset maximized conditional on the previous subsets until all parameters
are updated, at which point the procedure returns to the E-step. In the Expectation-
Conditional-Maximization-Either (ECME) (Liu and Rubin, 1994) extension to ECM, a
CM-step may also optimize the observed log-likelihood directly instead of the surrogate.
In SQUAREM (Varadhan and Roland, 2008), vector extrapolation methods are used ev-
ery few EM iterations to skip ahead in the parameter space; this method can be used to
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accelerate EM, ECM, and ECME as it considers a single parameter update as including
both the E-step and the M-step. In Parameter-Expanded EM (PX-EM) Liu et al. (1998)
augment the complete-data parameter space to achieve faster convergence. In DECME,
He and Liu (2012) extend the parameter update to searching over the subspaces spanned
by the past one (DECME-1) and two (DECME-2) parameter update differences. Other
acceleration schema include Polyak’s heavy-ball method (Polyak, 1964) and Nesterov’s
accelerated gradient descent (Nesterov, 1983).

We propose an acceleration scheme for the EM algorithm that acts upon the sequence of
surrogate functions as the object of extrapolation from iteration to iteration. Suppose the
problem at hand is the maximization of a log-likelihood function ℓ(θ; X,Z) with observed
data X and latent/missing data Z. In standard EM at iteration t, the M-step acts upon
the E-step surrogate Q(θ; θ(t)). In the proposed method, the M-step acts upon the α-
accelerated surrogate (1− α) Q(θ; θ(t))− αQ(θ; θ(t−1)). For many problems, this has the
benefit of requiring minimal changes to the M-step optimization and is independent of the
parameterization of the problem. In the present work, we define the acceleration schema
with a general optimization in the acceleration factor α, with a practical choice of taking
α to be the Aitken’s acceleration factor on the observed log-likelihood. In effect, this
method performs leapfrogging in the surrogate function for faster parameter estimation as
evaluated by wall-clock elapsed time.

6.2 Methodology

Suppose we intend to perform maximum likelihood estimation where direct maximization
is intractable but an EM procedure is feasible. Let X denote the observed data, Z the latent
data, and θ the model parameters to be estimated. We denote the observed log-likelihood
by ℓobs(θ; X) and the complete-data log-likelihood by ℓcom(θ; X,Z). Let a superscript of
(t) denote the value of the variable at iteration t of the estimation procedure, and let E(t)

be the expectation under model parameters θ(t).

As part of the E-step of the EM procedure at iteration t, we take the expectation of the
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complete-data log-likelihood to yield the surrogate function Q(θ; θ(t)) which is fed-forward
into the M-step. This surrogate invariably contains expectations of functions of the latent
data Z, which are in turn distributions parameterized by θ(t). We insert an accelerated
LM-step here maximizing an alternative function with an acceleration factor α acting in
the span of the current and one-iteration-before surrogate functions. In other words, define

R(θ, α; θ(t),θ(t−1)) = (1 + α) Q(θ; θ(t)) + (−α) Q(θ; θ(t−1)) (6.1)

for α ≥ 0. Equivalently, we may re-write this in the form

R(θ, α; θ(t),θ(t−1)) = Q(θ; θ(t)) + α[Q(θ; θ(t))−Q(θ; θ(t−1))];

i.e., we perform a line-search in the function space spanned by Q(θ; θ(t)) − Q(θ; θ(t−1)).
We propose a leapfrog maximization step (LM-step) based on this accelerated-surrogate R
that replaces the M-step. In full generality, the LM-step solves the maximization

arg max
α∈R≥0,θ∈Θ

R(θ, α; θ(t),θ(t−1)) (6.2)

for both the acceleration factor α and the parameter update θ(t+1) simultaneously. As a
special case, when α = 0, R reduces to the surrogate Q, and so the LM-step becomes an
M-step. As this joint maximizer is invariably difficult, we define

θ(t+1)(α) = arg max
θ∈Θ

R(θ, α; θ(t),θ(t−1))

as the conditional maximizer in θ for a given α at iteration t. In many practical applications,
the expected complete-data log-likelihood can be re-written in the form

Q(θ; θ(t)) =
∑

i

E(t)[fi(Z,X) | X]gi(X; θ)

for some set of functions f and g, and E(t) being the expectation with parameters θ(t).
Thus, accelerated surrogate function can be recast into leapfrogging in the expectations of
latent data Z

R(θ, α; θ(t),θ(t−1)) =
∑

i

{(1 + α) E(t)[fi(Z,X) | X]− αE(t−1)[fi(Z,X) | X]}gi(X; θ).
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Examples of such are provided in Section 6.3. In effect, the LM-step acts upon the extrap-
olated expected complete-data likelihood Equation (6.1), which leapfrogs over the need to
wait for multiple E- and M-steps. A stylized representation is given in Figure 6.1, with the
general form of the proposed procedure is given in Algorithm 1.

An important observation is that the leapfrog-accelerated parameters θ(t+1) from (6.2)
may result in a decrease in the observed log-likelihood, whereupon we perform a standard
M-step with Q(θ; θ(t)). An additional remark is that the maximizer θ of R may be unde-
fined for certain values of α, though for fixed α = 0 the LM-step coincides with the M-step,
where it invariably exists. Indeed, for cases such as finite mixture models, an excessively
large value of α can yield accelerated maximizers for the covariance matrices that are no
longer positive-definite by rendering all of the corresponding cluster probabilities negative.

Algorithm 1 Leapfrog-Expectation Acceleration Procedure
initialize θ(0), θ(1), t← 2
while t ≤ tmax do

perform E-step to determine Q(t)(θ; θ(t))
perform LM-step to determine

(α(t+1),θ(t+1))← arg max
α∈R≥0,θ∈Θ

R(t)(θ, α; θ(t),θ(t−1))

if ℓobs(θ(t+1); X) ≤ ℓobs(θ(t); X) or θ(t+1) invalid then
perform M-step to determine

θ(t+1) ← arg max
θ∈Θ

Q(t)(θ; θ(t))

end if
t← t+ 1
if convergence then

break
end if

end while
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Figure 6.1: A stylized representation of the leapfrog-expectation acceleration procedure.
The two (blue) surrogate functions Q based on parameters θ(t−1) and θ(t) respectively are
accelerated to form the (red) accelerated surrogate function R, whose parameter update
θ

(t+1)
Leapfrog-EM is accelerated compared to θ

(t+1)
EM .
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6.2.1 Aitken’s acceleration guided backtracking line search

The argmax problem (6.2) in both α and θ simultaneously is difficult in both theory and
practice. In the former case, any potential closed-form maximizers in θ alone as used in
the regular M-step are often unusable. In the latter case, numerical optimization requires
evaluating the objective function, its gradient, and potentially its Hessian repeatedly which
is also computationally expensive. We propose in this section a heuristic for performing
conditional majorization in LM-step using Aitken’s acceleration factor on the observed
log-likelihoods ℓobs(θ; X) as a stand-in for α.

Specifically, at iteration t ≥ 3 define the Aitken’s acceleration factor as in McNicholas
and Murphy (2008) and Böhning et al. (1994) by

aaitken = ℓobs(θ(t); X)− ℓobs(θ(t−1); X)
ℓobs(θ(t−1); X)− ℓobs(θ(t−2); X)

and define the putative leapfrog acceleration factor αaitken = 1/(1− aaitken). As αaitken may
be negative at certain iterations, we start the line search with the previous starting α(t−1)

aitken.

We perform a line-search with backtracking in α guided by the quantity αaitken in the
span of the current and one-iteration-behind surrogate functions. We impose an upper-
bound αmax on α, the backtracking fraction b ∈ (0, 1), and the number of backtrack-
ing attempts nb ≥ 0. We initialize the line-search by fixing α = min{αaitken, αmax} so
the maximizer θ(t+1)(α) of (6.2) can be found in isolation. The observed log-likelihood
ℓobs(θ(t+1)(α); X) is checked against the current ℓobs(θ(t); X) to verify an improvement. If
ℓobs has decreased, shrink α by a factor of b and retry again up to nb times, at which
point we fall-back to performing a regular M-step. By design, the reversion of invalid or
bad updates and falling back to EM/ECME allows the proposed procedure to inherit the
monotonic increase property of the underlying EM/ECME procedure (Dempster et al.,
1977). This particular implementation of the leapfrog procedure is given in full detail in
Algorithm 2.

The α search parameters can be tuned to improve the efficiency and reliability of the
procedure. The αmax upper-bound limits the maximum amount of extrapolation that can
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Algorithm 2 Leapfrog-Expectation Acceleration Procedure with Aitken’s acceleration
guided backtracking line search

initialize θ(0), θ(1), t← 2
specify αmax > 0, b ∈ (0, 1), nb ≥ 0
while t ≤ tmax do

perform E-step to determine Q(t)(θ; θ(t))
compute α = min{α(t)

aitken, αmax}
for α(t) = α, bα, b2α, ..., bnbα, 0 do

perform LM-step to determine

θ(t+1) ← arg max
θ

R(t)(θ, α(t); θ(t),θ(t−1))

if ℓobs(θ(t+1); X) ≥ ℓobs(θ(t); X) and θ(t+1) valid then
break

end if
end for
t← t+ 1
if convergence then

break
end if

end while
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occur, which can otherwise be so large as to dramatically overshoot the valid parameter
region. The backtracking fraction b and the retry count nb can help mitigate this by
increasing the search granularity at the cost of wall-clock time cost of evaluating ℓobs(θ; X)
and the maximizer θ(t+1) more often per iteration. When the compute cost of these are
relatively smaller than the compute cost of the E-step, then the line-search can be made
more granular. We may also warm-up the process by performing the underlying the EM
(or ECME) procedure for a number of iterations; i.e., by constraining α = 0 during this
warm-up phase. The examples in Section 6.3 use αmax = 100 and nb = 0 with 100 iterations
of warm-up throughout.

6.2.2 Theoretical Results

In this section, we show under some assumptions about the log-likelihood and its surrogate
function that the LM-step update yields a leapfrog-acceleration factor α > 0; that is, the
leapfrog-expectation acceleration yields an improvement over EM at the same iteration.
Particularly, we show this near the vicinity of the MLE where the EM procedure often
underperforms second-order methods such as Newton-Raphson and slows down to it’s oft-
quoted linear convergence rate.

Lemma 3 Let θ(t+1)(α) = arg maxθ∈Θ R(θ, α; θ(t),θ(t−1)) be the maximizer of R for the
given α ≥ 0, and assume mild regularity conditions on Q. Then, at an LM-step, the
derivative of ℓobs with respect to the leapfrog-acceleration factor α evaluated at α = 0 is
given by [

dℓobs(θ(t+1)(α))
dα

]
α=0

= S(θ(t+1)
EM )⊤ H(t)

Q (θ(t+1)
EM )−1 S(t−1)

Q (θ(t+1)
EM ),

where S and H are the score function and Hessian matrix corresponding to the observed
log-likelihood ℓ, respectively, and SQ and HQ those corresponding to the surrogate function
Q, and θ

(t+1)
EM = θ(t+1)(0) is the unaccelerated EM parameter update.

Proof 4 In this proof, we follow the general framework of Samuel and Tappen (2009) in
differentiating through an argmax function. To reduce notational burden, define Q(t)(θ) =
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Q(θ; θ(t)) and R(t)(θ, α) = R(θ, α; θ(t),θ(t−1)). For Q with sufficient regularity, then we
have that

[
∂ R(t)(θ,α)

∂θ

]
θ=θ(t+1)(α)

= 0 for all α ≥ 0 by definition of m(t) as the maximizer of

R. Differentiating both sides by α yields[
∂2 R(t)(θ, α)
∂θ ∂α

]
θ=θ(t+1)(α)

+
[
∂2 R(t)(θ, α)
∂θ ∂θ⊤

]
θ=θ(t+1)(α)

∂θ(t+1)(α)
∂α

= 0

whereupon substituting in the corresponding derivatives, we get

[
S(t)

Q (θ(t+1)(α))− S(t−1)
Q (θ(t+1)(α))

]
+
[
(1 + α) H(t)

Q (θ(t+1)(α))− αH(t−1)
Q (θ(t+1)(α))

] dθ(t+1)(α)
dα = 0.

Re-arranging, we obtain

dθ(t+1)(α)
dα =

[
(1 + α) H(t)

Q (θ(t+1)(α))− αH(t−1)
Q (θ(t+1)(α))

]−1 [
S(t−1)

Q (θ(t+1)(α))− S(t)
Q (θ(t+1)(α))

]
.

This expression is found in the derivative of the observed log-likelihood ℓobs with respect to
leapfrog-acceleration factor. Specifically,

dℓobs(θ(t+1)(α))
dα = S(θ(t+1)(α))⊤∂θ(t+1)(α)

∂α
.

We note that at α = 0, R(t) reduces to the standard EM surrogate Q(t) whose maximizer we
denote by θ

(t+1)
EM as it would be the parameter update for the next iteration of EM. By the

regularity of the surrogate Q, the gradient at it’s maximum is zero; that is, S(t)
Q (θ(t+1)

EM ) = 0.
Thus, we have that[

dℓobs(θ(t+1)(α))
dα

]
α=0

= S(θ(t+1)
EM )⊤ H(t)

Q (θ(t+1)
EM )−1 S(t−1)

Q (θ(t+1)
EM ).

Theorem 2 For parameters θ(t),θ(t−1) obtained in a small neighbourhood around the max-
imum likelihood estimate, and whose observed log-likelihood ℓobs and surrogate functions Q
can be approximated by a quadratic form characterised by positive-definite matrices Iobs and
Icom, then the optimum leapfrog-acceleration factor α is positive.
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Proof 5 From Lemma 3, we use the expression[
dℓobs(θ(t+1)(α))

dα

]
α=0

= S(θ(t+1)
EM )⊤ H(t)

Q (θ(t+1)
EM )−1 S(t−1)

Q (θ(t+1)
EM ).

and the assumption of θ(t),θ(t−1) being near the maximum likelihood estimate θ∗ to apply
the approximations

ℓobs(θ; X) = −1
2(θ − θ∗)⊤Iobs(θ − θ∗) and

Q(θ,θ(t)) = −1
2(θ − θ∗)⊤Icom(θ − θ∗).

We substitute in the associated derivatives into the expression[
dℓobs(θ(t+1)(α))

dα

]
α=0

=(θ(t+1)
EM − θ∗)⊤IobsI−1

comIcom(θ(t+1)
EM − θ∗)

=(θ(t+1)
EM − θ∗)⊤Iobs(θ(t+1)

EM − θ∗)

whereupon the assumption of Iobs and Icom being positive-definite implies the above is a
positive quantity. Hence, increasing α above zero and performing an LM-step yields a
better observed log-likelihood than α = 0, which corresponds to an M-step.

6.3 Examples and Simulations

In this section, we apply the proposed method to three families of models often estimated
by EM-type procedures: the variance components in linear mixed-effects model (Laird and
Ware, 1982), the factor analysis model (Rubin and Thayer, 1982; Jöreskog, 1967), and
the finite Gaussian mixture model (Banfield and Raftery, 1993). Throughout this section,
we reference the parameterization and EM/ECME steps given in McLachlan and Krish-
nan (2008). When ECME procedures are available, we include them and their leapfrog-
acceleration as well. Across all procedures, we assess convergence for the unaccelerated
and leapfrog-accelerated procedures by checking the difference in observed log-likelihood
ℓobs(θ; X) from iteration-to-iteration, and stopping if ℓobs(θ(t); X)− ℓobs(θ(t−1); X) ≤ 10−10.

135



Throughout, we compare the leapfrog-accelerated procedures against the corresponding
SQUAREM acceleration procedure (Varadhan and Roland, 2008), an acceleration scheme
that admits a general fixed-point optimization procedure such as EM or ECME. We dis-
tinguish the leapfrog-accelerated and SQUAREM-accelerated methods from unaccelerated
procedures by the prefixes Leapfrog- and SQUAREM-, respectively. As the SQUAREM
acceleration acts on the parameters θ, which is often subject to constraints, we benchmark
using the usual constrained parameterization flattened into a vector θcons as well as using
a transformation into an unconstrained version θunc. For the latter parameterization, we
denote procedure with a suffix -T. For SQUAREM-accelerated procedures, we use the de-
fault convergence criteria with tolerance 10−7 and require monotone convergence (Du and
Varadhan, 2020). We assess the resulting parameter estimates by evaluating the observed
log-likelihood at the final iteration, determined by either the aftorementioned convergence
criteria or reaching the maximum alloted number of iterations tmax = 10000. We avoid
comparing parameter estimates due to identifiability issues in the examples, such as cluster
index permutation in the finite Gaussian mixture model and rotational invariance in the
factor analysis model.

As we generate multiple datasets from the assumed model in the simulation study,
each dataset may have a different maximum observed log-likelihood. Thus, we compare
the deviations ∆max from the best observed log-likelihood across all procedures within each
dataset, and classify procedures into four different possible groups. We consider procedures
which have converged with ∆max ∈ [0, 10−8), [10−8, 10−4), [10−4,∞) to be near-optimal, sub-
optimal, and very sub-optimal, respectively. We also datasets where all tested procedures
converge to highlight the relative performance when procedures produce significantly dif-
fering results. Finally, when a procedure does not converge within the alloted iterations,
we consider it as a distinct class regardless of its ∆max.

6.3.1 Variance Components Model

The variance components model is a linear mixed effects model useful for analyzing repeated
measurements across multiple groups. The observed data are yj ∈ Rnj for observational
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unit j = 1, 2, ...,m with the assumption that

yj = Xjβ + Zjbj + ej

for fixed effect covariate matrix Xj ∈ Rnj×p, random effect covariate matrix Zj ∈ Rnj×q,
fixed effects β ∈ Rp, latent random effects bj ∼ N(0,D), and noise component ej

i.i.d∼
N(0, σ2Rj). Here, Rj are known constants and β, D, and σ2 are parameters to be esti-
mated. The observed log-likelihood for the parameters is given by

ℓobs(θ,Y) =
m∑

j=1
log ϕ(yj; Xjβ,ZjDZ⊤

j + σ2Rj),

where ϕ is the multivariate normal density function. The complete-data log-likelihood for
observations (yj, bj) is then

ℓcom(θ; Y,B) =
m∑

j=1
log ϕ

yj

bj

 ;
Xjβ

0

 ,
ZjDZ⊤

j + σ2Rj ZjD
DZ⊤

j D

.

Taking expectations, we obtain the surrogate function

Q(θ,θ(t)) =− 1
2

m∑
j=1

nj∑
i=1

[
(p+ q) log 2π + log detσ2Rj + log det D

+ (yj −Xjβ)⊤D−1(yj −Xjβ)

+ 2(yj −Xjβ)⊤D−1Zj E(t)[bj]

+ Tr(E(t)[bjb
⊤
j ](Z⊤

j D−1Zj + σ−2R−1
j ))

]
,

where Tr(·) is the matrix trace operator. By linearity of Q(θ,θ(t)) in the expectations of
bj and bjb

⊤
j , the leapfrog-accelerated surrogate R(θ, α; θ(t),θ(t−1)) is equivalent to extrap-

olating in these expected values.

Simulation Study

In this section, we investigate the estimation procedure on the variance components model
with a full-factorial design over the number of observational units m = 2, 3, 4, number of
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measured responses nj ≡ 100, number of fixed effects p = 2, number of random effects
q = 2, and noise magnitude σ2 = 0.5, 1, 2. We sample the fixed effect Xj and random
effect Zj matrix elements from i.i.d. Unif(−1, 1) distributions, D ∼ Wishart(I, q), and
β ∼ N(0, I). For simplicity, we assume Rj = I throughout and initialize the estimation
procedure with parameters σ2(0) = 1, D(0) = I, and β(0) = 0. We perform 100 replications
at each parameter combination and estimate parameters using the EM procedure and
two ECME procedures, henceforth ECME1 and ECME2 named as per Section 5.9.4 of
McLachlan and Krishnan (2008), along with their leapfrog-accelerated and SQUAREM-
accelerated procedures. For CM-step 3 in ECME2, we perform Newton-Raphson with
numerical derivatives on the observed log-likelihood to obtain the parameter update for
σ2. As the parameters σ2 and D must be positive(-definite), we consider the vectorized
parameter representations θcons = ⟨β, diag D, σ2⟩ and θunc = ⟨β, log diag D, log σ2⟩, where
diag(·) extracts the main diagonal and log (·) acts element-wise, as their constrained and
unconstrained forms for SQUAREM.

In Table 6.1, we observe the degree of convergence to the maximum observed log-
likelihood for each of the twelve procedures. For this data model, we see that the leapfrog-
accelerated EM/ECME1/ECME2 procedures out-perform both the unaccelerated proce-
dures and SQUAREM-accelerated procedures in both frequency of convergence within tmax

iterations and arriving in the neighbourhood of the best maximum log-likelihood. Indeed,
Figure 6.2 shows the rates of non-convergence being consistently lower across all leapfrog-
accelerated procedures. Simultaneously, we observe that the SQUAREM acceleration is
susceptible to the choice of parameterization across all three underlying EM-type proce-
dures as the proportion of very sub-optimal log-likelihoods is dramatically higher when
using the constrained parameters θcons. In terms of computation time, we see in Figure 6.3
that the leapfrog-accelerated ECME1 and EM procedures have the lowest average compute
times compared to their unaccelerated variants.
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Table 6.1: Variance Components example, convergence frequency across 10800 simulated
dataset replications. For simplicity, we present the table marginally without distinguishing
the model parameters m,nj, p, q, σ

2. Figure 6.2 provides a more detailed graphical break-
down by these parameters. Leapfrog and SQUAREM are abbreviated to LF and SQ for
brevity.

EM LF-EM SQ-EM SQ-EM-T

1) All Near-Optima 419 419 419 419
2) Near-Optima 315 365 105 117
3) Sub-Optimal 6 114 16 116
4) Very Sub-Optimal 0 0 153 38
5) Did Not Converge 160 2 207 210

ECME1 LF-ECME1 SQ-ECME1 SQ-ECME1-T

1) All Near-Optima 419 419 419 419
2) Near-Optima 315 371 99 116
3) Sub-Optimal 6 106 16 119
4) Very Sub-Optimal 0 0 152 36
5) Did Not Converge 160 4 214 210

ECME2 LF-ECME2 SQ-ECME2 SQ-ECME2-T

1) All Near-Optima 419 419 419 419
2) Near-Optima 314 376 272 291
3) Sub-Optimal 6 103 19 134
4) Very Sub-Optimal 0 0 150 24
5) Did Not Converge 161 2 40 32
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Figure 6.2: Variance Components example, stacked barplot of convergence frequency for
each parameter combination of m and σ2 with nj ≡ 100 and p = q = 2. Estimation
procedures are sorted from decreasing frequency of near-optima across the simulation study.
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Figure 6.3: Variance Components example, violin plot of the compute time taken across
twelve estimation procedures. Results are marginal across all model parameters. Proce-
dures are sorted from top-down and shaded by increasing average wall-clock time.
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Figure 6.4: Variance Components example, violin plot of the difference in maximum log-
likelihood achieved across twelve estimation procedures. Results are marginal across all
model parameters. Procedures are sorted from top-down and shaded by increasing average
∆max.
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Figure 6.5: Variance Components example, scatterplot of all simulated datasets conver-
gence results by ∆max from the best log-likelihood within each dataset and the total wall-
clock compute time. ECME2 methods are omitted for simplicity, and points towards the
top-left are better.
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6.3.2 Factor Analysis

The factor analysis model is a dimension-reduction method whereby the observed data
is assumed to be a noisy manifestation of variation within a lower-dimensional subspace.
Specifically, if we observe xn ∈ Rp for n = 1, 2, ..., N , and suppose that each xn is deter-
mined by q < p latent factors fn, we let

xn = µ + Lfn + εn

for some mean vector µ, loading matrix L ∈ Rp×q to be estimated, and independent noise
component εn. We suppose fn

i.i.d.∼ N(0, Iq) and εn
i.i.d.∼ N(0,D) for some unknown diagonal

matrix D. Here, the observed log-likelihood is

ℓobs(θ; X) =
N∑

n=1
log ϕ(xn; µ,LL⊤ + D),

and the complete-data log-likelihood for latent data F is

ℓcom(θ; X,F) =
N∑

n=1
[log ϕ(fn; 0, Iq) + log ϕ(xn; µ + Lfn,D)] ,

where ϕ is the multivariate normal density function. Without loss of generality, we may
assume the observed data to be centred and µ = 0. This factor analysis model lends
itself directly to applying EM-type procedures (Rubin and Thayer, 1982). Conveniently,
the complete-data log-likelihood can also be re-written in terms of the sufficient statistics
(McLachlan and Krishnan, 2008)

Cxx = X⊤X,Cxf = X⊤F,Cff = F⊤F,

the latter two of which are linear in latent data F. As such, the leapfrog-acceleration
surrogate can be re-arranged to perform acceleration on the expected values of Cxf and
Cff from iteration to iteration. However, for large values of acceleration factor α, the
leapfrog-accelerated expectation of Cff may not necessarily be positive-definite. As well,
the parameter D must be a (diagonal) positive-definite matrix. When either requirement
is violated, we consider the parameters invalid and reject the LM-step update in favour of
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a backtracking step or an M-step update. Furthermore, we use the constrained parameters
θcons = ⟨vec L, diag D⟩ and its unconstrained transformation θunc = ⟨vec L, log diag D⟩ for
SQUAREM acceleration.

Simulation Study

To examine the behaviour of the proposed procedure, we generate simulated data from the
specified factor analysis and perform parameter estimation. We use a full-factorial design
over the number of observations n = 500, 1000, 2000, observed data dimension p = 8, 10,
latent factor dimension q = 4, 6, and noise diagonal matrix D = σ2Ip = 0.5Ip, 1Ip, 2Ip.
Both the loading matrix and latent factor elements are drawn from i.i.d. standard normal
distributions N(0, 1) with the true mean µ chosen to be 0. We run 100 replications at each
parameter combination, with an iteration limit of tmax = 10000. We evaluate the EM and
ECME procedure of Liu and Rubin (1994) with their leapfrog and SQUAREM accelerated
versions. Initial parameter values are determined by a principal components analysis.

In Table 6.2, we see that among the accelerated procedures the leapfrog-accelerated
ECME procedure yields the greatest proportion of near-optimal solutions, while the leapfrog-
accelerated EM has the lowest proportion. Interestingly, for SQUAREM acceleration the
proportion of near-optima is reversed compared to leapfrog-acceleration. In terms of Hey-
wood cases in Section 6.3.2, we see that leapfrog-accelerated EM produces a dispropor-
tionately high number thereof whilst leapfrog-accelerated ECME only has a slightly higher
number compared to the SQUAREM procedures. Moreover, the number of non-convergent
solutions is also lowest for leapfrog-accelerated ECME, suggesting that it is the most re-
liable among the eight methods. Conversely, using Figures 6.7 to 6.9 we observe that
leapfrog-accelerated EM has the fastest average compute time, and tends to be faster
consistently at the cost of a greater deviation from the maximum observed log-likelihood.
SQUAREM acceleration exhibits a more extreme bimodal distribution on the convergence
times than the other methods compared to leapfrog acceleration. From Figure 6.6, we
see that leapfrog acceleration’s performance remains more consistent with increased noise
variance σ2 than SQUAREM.
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Table 6.2: Factor Analysis example, convergence frequency across all simulated dataset
replications. For simplicity, we present the table marginally without distinguishing the
factor analysis model parameters n, p, q. Figure 6.6 provides a graphical breakdown by
these parameters. SQUAREM is abbreviated to SQ for brevity.

EM Leapfrog-EM SQ-EM SQ-EM-T

1) All Near-Optima 1783 1783 1783 1783
2) Near-Optima 34 205 867 779
3) Sub-Optimal 698 1082 499 4
4) Very Sub-Optimal 14 21 30 1
5) Did Not Converge 1071 509 421 1033

ECME Leapfrog-ECME SQ-ECME SQ-ECME-T

1) All Near-Optima 1783 1783 1783 1783
2) Near-Optima 213 914 528 592
3) Sub-Optimal 1340 794 885 798
4) Very Sub-Optimal 67 96 77 66
5) Did Not Converge 197 13 327 361

Finally, we note that the SQUAREM-acceleration of EM with the unconstrained pa-
rameterization either performs well or fails to converge with little in between, which is
dramatically different from the same method with the untransformed constrained parame-
ters. The same effect is much less apparent with ECME and SQUAREM acceleration.

6.3.3 Finite Gaussian Mixture Models

Finite Gaussian mixture models are a common method for clustering and classification
tasks with continuous data. The model purports the data to follow a finite mixture of
multivariate normal distributions, whereby each observation xn for n = 1, 2, ..., N comes
from class g = 1, 2, ..., G with probability πg and observed data distribution xn ∼ N(µg,Σg).
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Figure 6.6: Factor Analysis example, stacked barplot of convergence frequencies marginal-
ized across p and q for each estimation procedure. Near-optimality is as defined in Sec-
tion 6.3. Estimation procedures are organized from top-down by decreasing total frequency
of near-optima.
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Figure 6.7: Factor Analysis example, violin plot of the compute time taken across eight
estimation procedures. Results are marginal across all model parameters. Procedures are
sorted from top-down and shaded by increasing average wall-clock time.
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Figure 6.8: Factor Analysis example, violin plot of the difference in maximum log-likelihood
achieved across twelve estimation procedures. Results are marginal across all model pa-
rameters. Procedures are sorted from top-down and shaded by increasing average ∆max.
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Figure 6.9: Factor Analysis, scatterplot of all simulated datasets convergence results by
∆max from the best log-likelihood within each dataset and the total wall-clock compute
time.
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Table 6.3: Factor Analysis example, Heywood case frequency across all simulated dataset
replications. Heywood cases are defined as those with a fitted variance below 10−8, includ-
ing negative values.

Non-Heywood Case Heywood Case

EM 3600 0
Leapfrog-EM 2753 847
SQUAREM-EM 3596 4
SQUAREM-EM-T 3600 0
ECME 3596 4
Leapfrog-ECME 3588 12
SQUAREM-ECME 3593 7
SQUAREM-ECME-T 3597 3

The problem can be formulated as a maximum likelihood problem directly on the observed
log-likelihood

ℓobs(θ; X) =
N∑

n=1
log

 G∑
g=1

πgϕ(xi; µg,Σg)
,

where ϕ is the multivariate normal density function. However, it is more tractable to
introduce missing data Z where zng = 1 if observation n belongs to cluster g. This allows
use of the EM procedure on the complete-data log-likelihood

ℓcom(θ; X,Z) =
N∑

n=1
zng

[
log πg + log ϕ(xn; µg,Σg)

]
.

As indicated in Section 6.2, we note that ℓcom(θ; X,Z) is linear in the latent data zng, and
so the leapfrog-expectation accelerated surrogate can be written as

R(θ, α; θ(t),θ(t−1)) =
N∑

n=1

[
(1 + α) E(t)[zng]− αE(t−1)[zng]

] [
log πg + log ϕ(xn; µg,Σg)

]
so as to apparently permit the same M-step as in EM. However, the leapfrog-accelerated
expected value (1 + α) E(t)[zng]− αE(t−1)[zng] may be negative for one or many n at some
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α. While this cannot cause an invalid parameter estimate for µg ∈ Rd, it can no longer
guarantee a positive-definite estimate for Σg ∈ Rd×d. When a Σg is not positive-definite,
we consider the parameters to be invalid and reject the LM-step update in favour of an
M-step update. Similarly, we consider πg ≤ 0 as invalid parameters for any g.

Here, for SQUAREM we consider the alternate parameterization by transforming the
typical constrained parameterization

θcons = ⟨π,µ1, ...,µg, vech Σ1, ..., vech Σg⟩

into the unconstrained parameterization

θunc = ⟨log π1 − log πg, ..., log πg−1 − log πg,µ1, ...,µg, vech chol Σ1, ..., vech chol Σg⟩,

where chol(·) is the Cholesky decomposition operator and vech(·) is the half-vectorization
operator. The inverse transformation is to apply the soft-argmax function to recover π

and multiplying out the Cholesky factorization to recover Σg.

Simulation Study

To examine the behaviour of the proposed procedure, we generate simulated data from
the finite Gaussian mixture model and perform parameter estimation. The simulation
study is a full-factorial design across number of observations n = 1000, 2000, 3000, data
dimension d = 2, 3, 4, and component covariance matrices Σg = σ2I ∈ {0.5I, I, 2I, 4I}. The
cluster centres µg are placed at the corners of the d-hypercube {−1,+1}p so as to yield 2d

clusters. The cluster probabilities πg are chosen to be equal at 2−d. 100 replications are
performed at each parameter combination, with datasets drawn from the true model. Both
the EM and its leapfrog accelerated procedures are fitted on each dataset replication with
an upper-bound on the maximum number of iterations tmax = 10000 for both procedures.
Initial parameter values θ(0) are determined by a k-means start with the correct number
of clusters.

For the SQUAREM accelerated procedure, we consider an alternative parameterization
that frees the constraints on π and Σg. We define the constrained parameterization θcons =
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⟨π,µ1, ...,µg, vech Σ1, ..., vech Σg⟩ and the unconstrained transformation thereof

θunc = ⟨log π1 − log πg, ..., log πg−1 − log πg,µ1, ...,µg, vech chol Σ1, ..., vech chol Σg⟩

, where chol(·) is the Cholesky decomposition operator and vech(·) is the half-vectorization
operator.

In Table 6.4, we examine the different convergence behaviours of the four tested pro-
cedures over all model parameter combinations. The leapfrog-accelerated EM procedure
seems to converge to a near-optimal solution more often than either of the SQUAREM
variations. Moreover, we also see that the SQUAREM-accelerated EM procedure can fail
to converge slightly more often, and the transformed parameterization of the same fails to
converge much more often.

In Table 6.4, we observe the convergence frequency of all four tested procedures. We see
that SQUAREM- and leapfrog-accelerated EM both show a significant improvement over
unaccelerated EM, which exhibits very slow time to convergence. In this case, SQUAREM
is more reliable in terms of approaching the best observed log-likelihood, but has a slightly
higher frequency of non-convergence. Similar behaviour is seen in Figures 6.11 to 6.13,
where an improvement over unaccelerated EM is seen. In Figure 6.10, we see that all
methods experience increasing difficulty for greater σ2, signifying greater cluster overlap,
and larger d, meaning more dimensions and exponentially more mixture components.

6.4 Discussion

The leapfrog-expectation acceleration is a novel approach towards accelerating EM-type
algorithms by moving along the implicit landscape defined by the surrogate function, yield-
ing notable speed increases compared to unaccelerated methods without being constrained
by the need to choose a specific problem parameterization. We provide the leapfrog-
acceleration as a general framework, and a specific applied procedure with Aitken’s ac-
celeration guidance for backtracking line-search. In simulation studies over a selection of
popular statistical models often estimated slowly with the EM (and ECME) procedures,
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Figure 6.10: Finite Gaussian Mixture Model example, stacked barplot of convergence fre-
quencies marginalized across p and q for each estimation procedure. Near-optimality is as
defined in Section 6.3. Estimation procedures are organized from left-to-right by decreas-
ing total frequency of near-optima.
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Figure 6.11: Finite Gaussian Mixture Model example, violin plot of the compute time
taken across eight estimation procedures. Results are marginal across all model parameters.
Procedures are sorted from top-down and shaded by increasing average wall-clock time.
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Figure 6.12: Finite Gaussian Mixture Model example, violin plot of the difference in max-
imum log-likelihood achieved across twelve estimation procedures. Results are marginal
across all model parameters. Procedures are sorted from top-down and shaded by increas-
ing average ∆max.
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Figure 6.13: Finite Gaussian Mixture Model, scatterplot of all simulated datasets con-
vergence results by ∆max from the best log-likelihood within each dataset and the total
wall-clock compute time.
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Table 6.4: Convergence frequencies for the Finite Gaussian Mixture model, marginally
over all model parameters n, d, σ2. Near-optimality is defined as converging to a solution
within 10−8 of the best log-likelihood across all procedures for that simulation replication.
Sub-optimal is defined similarly between 10−4 and 10−8, and very sub-optimal contains all
remaining convergent solutions. For brevity, SQUAREM is abbreviated to SQ.

EM Leapfrog-EM SQ-EM SQ-EM-T

1) All Near-Optima 1045 1045 1045 1045
2) Near-Optima 435 885 1553 1472
3) Sub-Optimal 805 686 6 1
4) Very Sub-Optimal 1018 982 983 907
5) Did Not Converge 297 2 13 175

and in comparison to the SQUAREM acceleration framework (Varadhan and Roland, 2008),
we see that the leapfrog-acceleration produces comparable estimation speeds with greater
reliability. In particular, for the Variance Components model in Section 6.3.1 and the Fac-
tor Analysis model in Section 6.3.2 we see that the performance of SQUAREM can change
dramatically based on the chosen parameterization; performing a change of variables into
an unconstrained space can yield either major improvements or major detriments to the
estimation procedure.
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Chapter 7

Generalized Linear Models for
Massive Data via Doubly-Sketching

7.1 Introduction

In the contemporary age, large-scale data gathering can produce datasets with millions
or billions of observations. Generalized linear models (GLMs) (McCullagh and Nelder,
1989) form the mainstay of many analyses, providing a framework capable of handling
more response variable distributions compared to ordinary least squares regression. As
datasets grow in size, previously tractable methods can consume infeasible amounts of
time and computational resources. Estimating GLM parameters often requires the Itera-
tively Reweighted Least Squares (IRLS) procedure that can run aground on such datasets.
In particular, infrastructure constraints such as machine memory, storage medium, and
disk/network transfer speeds can all pose bottlenecks for effective analysis of larger datasets.
Stochastic methods offer a solution by trading off accuracy in the answer for reduced com-
putational burden.

In broad strokes, existing methodologies tackling computational tractability on large
datasets can be considered data engineering approaches or stochastic approximation ap-
proaches, or a combination of the two. In the former case, parallelization techniques from
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numerical linear algebra can be used on a multi-threaded CPU (Dagum and Menon, 1998;
Blackford et al., 1997; Chapman et al., 2007) or across multiple computers (Leskovec et al.,
2020) in a split-apply-combine approach. Yu et al. (2022a) extends this paradigm to com-
puting maximum quasi-likelihood estimates in a distributed fashion. Other techniques
include leveraging GPU computational capabilities (Suchard et al., 2013; Kylasa et al.,
2019). We focus our efforts on the latter mode of achieving computational speed. In this
approach, stochastic approximation relies on some probabilistic data reduction method to
bring the problem into a tractable regime. In Newton-Raphson, subsampling the data to
form the Hessian/information matrix and/or gradient/score vector for a (quasi-)Newton’s
method approach are possible (Pilanci and Wainwright, 2017; Byrd et al., 2011; Bollapra-
gada et al., 2018; Xu et al., 2016; Roosta-Khorasani and Mahoney, 2019; Lacotte et al.,
2020). As a special case, sketching the gradient/score only can be considered a variation
on stochastic gradient descent. For ordinary least squares regression, there are a variety
of approximate linear algebra methods (Sarlos, 2006), (Dhillon et al., 2013; Drineas et al.,
2011; Kleiner et al., 2014), leverage scores (Wang et al., 2019; Ma and Sun, 2015), and
stochastic approximations (Cormode, 2011; Mahoney, 2011; Ahfock et al., 2020). In the
context of logistic regression, Munteanu et al. (2021) provides a method for logistic re-
gression with probabilistic guarantees on the sketched estimate. An alternative method to
reduce the computational burden is by subsampling the dataset in an informed way, such
as the OSMAC method of (Wang et al., 2018), which is compared against in Section 7.4.1.
A variation of IRLS using leverage scores across the whole dataset is found in Dahiya et al.
(2018).

We propose a stochastic approximation to the IRLS procedure using two sequential
sketching steps to control both data transfer and computation cost, respectively. We focus
on the computational tractability problem under the wall-clock time paradigm as opposed
to a computational complexity analysis of long-run performance and show the value of
the proposed method under practical infrastructure constraints, particularly when data
transfer time is dominant and local memory is constrained. The central proposition is
the generation of a smaller and more tractable surrogate dataset to be used in lieu of the
full dataset at each iteration of the IRLS algorithm. Moreover, we avoid evaluating the
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objective log-likelihood, gradient, or Hessian at any iteration, which improves performance
for massive datasets stored off-site whose retrieval is bottlenecked by data transfer speeds.
By comparison, data-aware methods that use leverage scores for every observation in the
dataset such as Wang et al. (2018, 2019); Ma and Sun (2015); Yu et al. (2022b); Drineas et al.
(2012) require passing through the entire dataset at least once. To put this comparison into
perspective, to retrieve 100 gigabytes of data across a pedestrial gigabit network connection
requires approximately 13 minutes under ideal conditions. As well, the proposed method is
independent of the model specification and can fit multiple models simultaneously, greatly
aiding model selection; statistical leverage score methods produce sampling weights which
apply to a single model specification and so the weighted subsamples are only valid for
that model.

In Section 7.2, the proposed model is described and theoretical properties are shown.
To evaluate the probabilistic and computational properties, we perform a simulation study
in Section 7.3 over a variety of dataset magnitudes and infrastructures. In Section 7.4.1,
we use the SUSY dataset comprising 5 million observations in comparison to the OS-
MAC Wang et al. (2018), Optimal Distributed Sampling (ODS) (Yu et al., 2022b), Fast
A-Optimal Subsampling Probability Approximation (FASA), stochastic gradient descent
(SGD), and single subsamples. In Section 7.4.3, we investigate the performance at a scale of
1.7 billion observations under adverse dataset conditioning and obtain approximate GLM
parameter estimates and standard error estimates in 25 minutes compared to a full IRLS
approach taking over 20 hours.

7.2 Generalized Linear Models via Doubly-Sketching

In the present work, we propose a method of approximately fitting generalized linear model
regression models with sketching to mitigate two distinct sources of computational burden.
We apply sketching at each iteration of the IRLS procedure to update the estimates of
regression coefficients and standard errors for large datasets with computational infrastruc-
ture constraints. A central consideration is that at no iteration is a complete traversal of
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the dataset used to calculate either the log-likelihood, gradient, or Hessian; this tackles the
challenges of large-scale data transfer simultaneously with the usual computational com-
plexity. Specifically, larger datasets impose storage constraints and infrastructure limits;
storing the entirety of the data within random-access memory (RAM) yields the best per-
formance but is often infeasible due to unavailability. More spacious storage can be found
in non-volatile local storage such as solid-state disks (SSD) and mechanical hard drives
(HDD) at substantial performance detriment (Foong and Hady, 2016). Datasets can also
be stored across the network in a remote database or data warehouse which can exacer-
bate slowness especially when accessed simultaneously by multiple users or under poor
network conditions. We intend to control the cost of both data transfer and computational
complexity through the surrogate dataset sizes in a two-stage sketch design.

7.2.1 Preliminaries

Generalized linear models are an extension of ordinary least squares regression models
whereby the response variable Y can assume a variety of distributions. The particular
subclass of GLMs that we are interested in are those whose response variables Yi follow
a regular exponential family (REF) distribution; that is, the probability mass/density
function has the form

f(yi; θi, ϕ) = exp
[
yiθi − b(θi)

a(ϕ) + c(y;ϕ)
]
,

where a, b, and c are known functions that characterize the response distribution, θi is
the canonical parameter, and ϕ are any nuisance parameters assumed to be known. The
covariates xi corresponding to observation i enter the model by way of a linear predictor
ηi = x⊤

i β, which in turn is associated with the expected value µi of yi via a link function
g such that g(µi) = ηi. When g is the canonical link function, ηi and θi coincide. While
a variety of possible response distributions and link functions are possible, we select three
common examples; the binomial with logit link, the binomial with complementary log-log
(cloglog) link, and the Poisson with log link.

162



We are often interested in the parameter vector β, representing the effects of each
covariate, which is commonly estimated by maximum likelihood methods. For a dataset
with n observations the parameter of interest is

β̂MLE = arg max
β

n∑
i=1

log f(yi; θ(x⊤
i β), ϕ). (7.1)

As the maximization (7.1) is often intractable, β̂MLE can be estimated iteratively using the
IRLS algorithm (McCullagh and Nelder, 1989). Let X be the n× d matrix of covariates
and y be the n× 1 vector of responses. The corresponding IRLS update, sometimes known
as Fisher Scoring, can be expressed as

β̂
(t+1) = β̂

(t) + (X⊤W(t)X)−1X⊤W(t)z(t) (7.2)

where W(t) is a diagonal matrix with elements wi = 1
a(ϕ)

∂θi

∂µi

(
∂µi

∂ηi

)2
and zi = (yi − µi) ∂ηi

∂µi
is

known as the adjusted response variable. The superscripts on W(t) and z(t) here emphasize
that they are functions of β̂

(t); for reduced notational burden we will usually omit these
in the remainder of the work. As an iterative algorithm, this update is repeated until
some convergence criterion is met. Asymptotically for n > d, the update (7.2) has time-
complexity O(nd2).

For sufficiently large datasets, previously viable approaches may be inadequate under
practical constraints such as wall-clock time or hardware budget. The O(nd2) complex-
ity of IRLS can become intractable for both large n and large d. Sketching (Cormode,
2011; Mahoney, 2011; Ahfock et al., 2020) is a method for tackling the former situation
by using a surrogate dataset with a reduced number of observations to increase computa-
tional tractability. In data engineering disciplines, this practice falls under the umbrella of
approximate query processing (Cormode, 2011).

A linear sketch can be characterized by a stochastic matrix S ∈ Rk×n that projects
the data from n observations down to k < n, and can be data-aware or data-oblivious
(Ahfock et al., 2020). The former is a function of the data, such as weighting by leverage
scores (Ma and Sun, 2015). The latter draws S independently of the data. Four notable
data-oblivious linear sketches (Pilanci and Wainwright, 2017; Ahfock et al., 2022) are

163



the Uniform, Gaussian, Hadamard (Ailon and Chazelle, 2009), and Clarkson-Woodruff
(Clarkson and Woodruff, 2017) sketches.

In a regression context with covariates X and response y, we may draw a sketched surro-
gate dataset (X̃, ỹ) = (SX,Sy). Normally, the fitted regression coefficients β̂ have closed-
form solution (X⊤X)−1X⊤y. Applying sketching to approximate this solution (Sarlos,
2006; Drineas et al., 2006) yields two approaches: partial sketching where only the Gram
matrix X⊤X is sketched, and complete sketching where X⊤y is also sketched (Drineas
et al., 2006; Pilanci and Wainwright, 2016; Dhillon et al., 2013). In particular, the com-
plete sketching estimate is written as

β̂Sketch = (X⊤S⊤SX)−1X⊤S⊤Sy (7.3)

for a random sketch matrix S. As S is a random variable, this induces a distribution on
β̂Sketch, whose asymptotic distributional properties are discussed in Ahfock et al. (2020)
for select sketches.

7.2.2 Methodology

Herein, we propose a doubly-sketched approximate method for finding the maximum like-
lihood estimate of a GLM problem of the form (7.1). We define our sketch to be the
composition of a uniform sketch with a Clarkson-Woodruff sketch, with each sketch tack-
ling a different facet of the computational tractability problem (Figure 7.1). For datasets
in great excess of available system memory, we use the uniform sketch size to control the
data transfer cost from the storage medium on which the data resides. For situations with
restricted compute power or parameter update speed deadlines, the Clarkson-Woodruff
sketch size can be used to control the local compute cost after retrieving the uniformly
sketched data.

We define a doubly-sketching random matrix by S = SCWSUniform where SUniform is a
uniform sketch matrix and SCW is a Clarkson-Woodruff sketch matrix. Indeed, the matrix
product is also a sketch matrix; the doubly-sketching nature arises due to two distinct
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Figure 7.1: Stylized diagram depicting the flow of data from source to update for the IRLS
procedure and where the respective sketches control computational speed. Data sources
can be local to the machine on various storage mediums or on a remote machine; in either
case, the data link represents the limitations on data transfer speed.

surrogate sketch size parameters. Let m be the Uniform sketch size and k be the Clarkson-
Woodruff sketch size such that k < m < n. We draw rows of SUniform ∈ {0,

√
n/m}m×n

by sampling with replacement from rows of
√
n/mIn×n where I is the identity matrix.

Independently, we draw columns of SCW ∈ {−1, 0, 1}k×m by sampling with replacement
from columns of the columns of −Ik×k and Ik×k. This has the effect of sequentially applying
a Uniform sketch followed by a Clarkson-Woodruff sketch. In practice, the initial Uniform
sketch can be realized by drawing and retrieving a random sample from the data storage
medium. In sketches such as Clarkson-Woodruff or a randomized Hadamard transform,
there is a need to scan over the entire dataset. The secondary Clarkson-Woodruff sketch
is used for its simplicity of execution; it can be re-interpreted as adding/subtracting each
observation to/from a random accumulator representing a sketched observation, which can
be of benefit to computationally constrained devices. In situations where only the data
retrieval or transfer speed is the bottleneck, we consider m = k as a special case where
the proposed method omits the second Clarkson-Woodruff sketch and reduces to Uniform
sketching only.
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Taking the Fisher Scoring update (7.2) and re-writing it with the substitutions X(t)
W =√

W(t)X and z
(t)
W =

√
W(t)z, we obtain

β̂
(t+1) = (X⊤W(t)X)−1X⊤W(t)z(t)

=
(

X(t)
W

⊤
X(t)

W

)−1
X(t)

W

⊤
z

(t)
W (7.4)

for which we propose an iterative stochastic approximation of the form

β̂
(t+1) = β̂

(t) + at

∑t
i=1 h̃

(i)H̃(i)−1

∑t
i=1 h̃

(i)
g̃(t) (7.5)

with approximate sketched Hessian matrices

H̃(t) = X(t)
W

⊤
S(t)⊤S(t)X(t)

W + ẑ√
t
Id×d

having determinant h̃(t), sketched gradient vector g̃(t) = X(t)
W

⊤
S(t)⊤S(t)z

(t)
W , a damping

factor at = t−1, and a regularization constant ẑ > 0. We apply the determinantal averaging
(Derezinski and Mahoney, 2019) estimate of the inverse Hessian here to mitigate both the
inversion bias for matrix-valued random variates as well as the effect of a single poorly-
conditioned sketched Hessian estimate H̃(t). This yields an approximate iterative procedure
for estimating β̂MLE.

Intuitively, since the IRLS procedure can be viewed as alternating between updating the
weights W(t) and the regression coefficients β(t), performing a partially informative update
on β using a portion of the data can be less wasteful as further iterations are required
regardless. Moreover, the sparse structure of the uniform sketch avoids computing wi, µi,
and ηi for observations not selected by the sketch. Finally, the Clarkson-Woodruff sketch
controls the computational complexity of the update after retrieving the data by reducing
the surrogate dataset further to a size k < m. This step can also be used to compensate
for datasets where the uniform sketch size m must be large enough to capture rare events
in categorical covariates.

From a practitioner’s point of view, the choice of m and k tunes the performance charac-
teristics of the doubly-sketched procedure based on the specific use-case and computational
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infrastructure bottlenecks as illustrated in Figure 7.1. When accessing the data is very slow
but matrix operations are relatively fast, we may take k < m ≪ n; for example, a fairly
fast local computer can be bottlenecked by a slow Internet connection to a remote database.
Similarly, on many commodity personal computers, system memory is insufficient to retain
the entire dataset, and so at any given time only a small fraction of data is visible to the
system before more data must be retrieved from slower storage media, meriting a m≪ n

situation. Conversely, if accessing the data is fast but matrix operations are very slow, we
make take k ≪ m < n; a use-case may be a low-power system attached to fast storage.
In cases where the cost of forming the Gram matrix estimate X(t)

W

⊤
S(t)⊤S(t)X(t)

W with com-
plexity O(md2) is acceptable, then the Clarkson-Woodruff sketch can be omitted, leaving
only SUniform as a special case.

7.2.3 Theoretical Properties

In this section, we discuss some theoretical properties of the proposed methodology. We
show in Section 7.2.3 some basic properties at the maximum likelihood estimate. In Sec-
tion 7.2.3 we derive the moments of S⊤S, and show convergence behaviour in Section 7.2.3.

Asymptotic Properties

In this section, we discuss the behaviour of the proposed method near the maximum
likelihood estimate as the number of iterations t → ∞. We assume throughout that a
canonical link function is used so that the log-likelihood objective (7.1) is strictly concave
in β and a unique maximizer exists (Wedderburn, 1976; Haberman, 1977). While a non-
canonical link function does not enjoy these properties in general, we include an example
in simulation studies for completeness.

Let the maximum likelihood estimate (MLE) for a GLM with data (X,y) be denoted
βMLE. At this MLE, we have that the score/gradient vector is zero, and so the update
terms in Equation (7.2) are trivially zero. Thus, we are finding the root to the equation
(X⊤

W XW )−1X⊤
W zW = 0. Considering that the approximate update (7.5) is stochastic due to
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the randomness of S, we apply an algorithm reminiscent of Robbins-Monro; a convergence
analysis is presented in Section 7.2.3. Robbins and Monro (1951) is a root-finding method
for systems of the form M(θ) = α where the M can only be observed stochastically as
some random variable N(θ) such that E[N(θ)] = M(θ) and α is a constant. Blum (1954)
generalizes the method to multivariate parameters θ. The iterative updates take the form

θ(t+1) = θ(t) − at(N(θ)− α)

for a damping sequence {at}∞
t=1 ⊂ R such that ∑∞

t=1 at =∞ and ∑∞
t=1 a

2
t <∞. A common

example of such a sequence is at = t−1, which is assumed throughout the present work.

We first show that the update term in (7.5) converges in distribution for a fixed β to
H−1g̃(t) as t → ∞. Let XW and zW be fixed by W computed using β. By Theorem 1
of Derezinski and Mahoney (2019) and noting that ẑ√

t
Id×d → 0 in H̃(t) as suggested in

Section 1.2 of the same work, the expression

∑t
i=1 h̃

(i)H̃(i)−1

∑t
i=1 h̃

(i)
a.s.−→

t→∞
H−1 =

(
X⊤

W XW

)−1
.

Trivially, g̃(t) → g̃(t) in distribution and so by Slutsky’s theorem we have that their
product demonstrates convergence in distribution of the form

∑t
i=1 h̃

(i)H̃(i)−1

∑t
i=1 h̃

(i)
g̃(t) d−→

t→∞
H−1g̃(t) = (X⊤

W XW )−1X⊤
W S⊤SzW .

Expected Values and Covariances

Since S is a matrix-valued random variate, we are interested in the moments of the derived
expression S⊤S due to its appearance in (7.5). We compute in the following lemmas the
moments of elements of the matrix product S⊤S for double-sketch matrix S as defined in
Section 7.2 for later use in the convergence analysis.
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Lemma 4 Let R = S⊤
CWSCW where SCW is a Clarkson-Woodruff sketch matrix of dimen-

sion k ×m. For elements rab, rcd of R such that a, b, c, d ∈ {1, 2, ...,m}, we have that

E[rab] = 1a=b, E[rabrcd] = 1a=b1c=d + 1
k
1a̸=b(1a=c1b=d + 1a=d1b=c).

Alternatively, the expectation of the products are non-zero for indices a ̸= b taking values

E[raaraa] = 1, E[raarbb] = 1, E[rabrab] = E[rabrba] = 1
k

.

Proof 6 Element rab can be expressed as s⊤
a sb, where s are the rows of SCW. Elements of

SCW are skm = Dm1m→k where Dm are IID Rademacher random variables and 1m→k is the
assignment random variable for surrogate observation k sampling observation m such that
exactly one of 1m→k = 1 for each m. We use throughout that D2

m = +1 and 1
2
m→k = 1m→k

and Dm is independent of 1m→k. Hence, we may expand the expectation

E[rab] = E
[
DaDb

∑
k

1a→k1b→k

]
= E[DaDb] E

[∑
k

1a→k1b→k

]
.

Suppose first that a = b so that

E[raa] = E
[
D2

a

∑
k

1
2
a→k

]
= E

[∑
k

1a→k

]
= 1.

Conversely, suppose a ̸= b so that Da is independent of Db, yielding

E[rab] = E[Da] E[Db] E
[∑

k

1a→k1b→k

]
= 0× 0× E

[∑
k

1a→k1b→k

]
= 0.

For the expectation of the product, the expanded expression is

E[rabrcd] = E
[
DaDbDcDd

∑
k

1a→k1b→k

∑
k

1c→k1d→k

]
.

We partition the a, b, c, d indices into three cases and consider them separately. First, sup-
pose that a = b and c = d so that

E[raarcc] = E
[
D2

aD
2
c

∑
k

1
2
a→k

∑
k

1
2
c→k

]
= 1.
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Secondly, suppose that either (a, b) = (c, d) or (a, b) = (d, c) but a ̸= b so that

E[rabrab] = E
D2

aD
2
b

(∑
k

1a→k1b→k

)2
 = E[rabrba].

Observe that the sum can only take values in {0, 1} so that it is equal to its own square.
By linearity of the expectation and independence of the assignments of observations a and
b, we have

E[rabrab] =
∑

k

E[1a→k] E[1b→k] =
∑

k

1
k2 = 1

k
.

Finally, in all remaining cases, there is at least one index appearing exactly once among
a, b, c, d; without loss of generality, let this index be a. By independence, we have that

E[rabrcd] = E[Da] E
[
DbDcDd

∑
k

1a→k1b→k

∑
k

1c→k1d→k

]
= 0.

Lemma 5 Let Q = S⊤S for S = SCWSUniform with uniform sketch size m and Clarkson-
Woodruff sketch size k, and let n be the original number of observations. For elements
qst, quv of Q such that s, t, u, v ∈ {1, 2, ..., n}, we have that

E[qst] = 1s=t,

Cov[qst, quv] = m− 1
km

(1s=u1t=v + 1s=v1t=u) + n

m
1s=t=u=v −

1
m
1s=t1u=v.

Equivalently, the expectation is the identity matrix and the non-zero indices of the covari-
ance with s ̸= t take the values

Cov[qss, qss] = k(n− 1) + 2(m− 1)
km

,

Cov[qss, qtt] = − 1
m

,

Cov[qst, qst] = Cov[qst, qts] = m− 1
km

.

Proof 7 We first re-write Q = S⊤
UniformS⊤

CWSCWSUniform = S⊤
UniformRSUniform and use

Lemma 4. Let sij =
√

n
m
1j→i denote the (i, j)th element of SUniform, where 1ij is the indi-

cator random variable for sampled observation i being observation j. Let indices a, b, c, d ∈
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{1, 2, ...,m} index elements of R, and indices s, t, u, v ∈ {1, 2, ..., n} index elements of Q.
We express elements of Q as qst = ∑

a,b sasrabsbt to compute expectations and covariances.

Consider the expectation

E[qst] =
∑
a,b

E[sasrabsbt] s⊥r=
∑
a,b

E[rab] E[sassbt] lem.=
∑
a,b

1a=b E[sassbt]

=
∑

a

E[sassat] = n

m

∑
a

E [1as1at]

for cases s = t and s ̸= t. When s = t, the expectation simplifies to

E[qss] = n

m

∑
a

E[12
as] = n

m

∑
a

1
n

= 1.

Otherwise, when s ̸= t the product 1as1at is zero as observation a cannot be assigned to both
sketched observation s and t simultaneously under uniform sketching, and so E[qst] = 0.
Therefore, E[qst] = 1s=t for all s, t.

The covariance between two entries qst and quv can be written as

Cov[qst, quv] = Cov
∑

a,b

sasrabsbt,
∑
c,d

scurcdsdv


=

∑
a,b,c,d

Cov (sasrabsbt, scurcdsdv)

=
∑

a,b,c,d

(E[sasrabsbtscurcdsdv]− E[sasrabsbt] E[scurcdsdv])

s⊥r=
∑

a,b,c,d

(E[rabrcd] E[sassbtscusdv]− E[rab] E[sassbt] E[rcd] E[scusdv])

lem.=
∑

a,b,c,d

(E[rabrcd] E[sassbtscusdv]− 1a=b E[sassbt]1c=d E[scusdv]).

Observe that 1a=b E[sassbt] = n
m
1a=b E[1as1at] and that exactly one of 1as is one for any

given a; hence, 1as1at = 1 only if s = t, which occurs with probability 1
n
. Hence, 1a=b E[sassbt] =

1
m
1a=b1s=t with an equivalent result for 1c=d E[scusdv] by symmetry. Thus,

Cov[qst, quv] =
∑

a,b,c,d

(
E[rabrcd] E[sassbtscusdv]−

1
m21a=b1c=d1s=t1u=v

)
=

∑
a,b,c,d

E[rabrcd] E[sassbtscusdv]− 1s=t1u=v.
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To simplify the summation over a, b, c, d, we treat four distinct cases as in the proof of
Lemma 4. First, when a = b = c = d we have that E[raaraa] lem.= 1, E[sassatsausav] =

n
m21s=t=u=v, and

∑
a,b,c,d

a=b=c=d

E[rabrcd] E[sassbtscusdv] = n

m21s=t=u=v

∑
a

1 = n

m
1s=t=u=v.

Second, when (a, b) = (c, d) but a ̸= b we have that E[rabrab] lem.= 1
k

and E[sassbtsausbv] ind.=
E[sassau] E[sbtsbv] = 1

m21s=u1t=v so that

∑
a,b,c,d

a=c,b=d,a̸=b

E[rabrcd] E[sassbtscusdv] = 1
km21s=u1t=v

∑
a,b
a̸=b

1 = m− 1
km

1s=u1t=v.

By symmetry, when (a, b) = (d, c) but a ̸= b we obtain m−1
km

1s=v1t=u. Third, we consider
a = b and c = d but a ≠ c so that E[raarcc] lem.= 1, E[sassatscuscv] ind.= E[sassat] E[scuscv] =

1
m21s=t1u=v and

∑
a,b,c,d

a=b,c=d,a ̸=c

E[rabrcd] E[sassbtscusdv] = 1
m21s=t1u=v

∑
a,c
a̸=c

1 = m− 1
m

1s=t1u=v.

Finally, the remaining cases features at least one index appearing exactly once among
a, b, c, d; thus, E[rabrcd] lem.= 0 and so the entire sum is zero. We reconstitute the sum
with the simplified expressions to obtain

Cov[qst, quv] = m− 1
km

1s=u1t=v + m− 1
km

1s=v1t=u

+ m− 1
m

1s=t1u=v + n

m
1s=t=u=v − 1s=t1u=v

= m− 1
km

(1s=u1t=v + 1s=v1t=u) + n

m
1s=t=u=v −

1
m
1s=t1u=v.

Cases Cov[qss, qss], Cov[qst, qst], Cov[qst, qts] and Cov[qss, qtt] for indices s ̸= t can be
obtained by evaluating the indicator functions at the desired values.

172



Proposition 1 Let β ∈ Rp be a parameter vector and let W be the corresponding diagonal
weight matrix. Let XW =

√
WX and zW =

√
Wz, and so that the gradient of the log-

likelihood is g(β) = X⊤
W zW . If the doubly-sketched gradient is g̃(β) = X⊤

W S⊤
UniformS⊤

CWSCWSUniformzW

with uniform sketch size m and Clarkson-Woodruff sketch size k, then

E
[
∥g(β)− g̃(β)∥2

2

]
= n

m
∥X⊤ diag z∥2

F + m− k − 1
km

∥X⊤z∥2
2 + m− 1

km
∥X∥2

F∥z∥2
2

where ∥·∥F is the Frobenius norm, and diag(·) composes a diagonal matrix with the vector-
valued argument as the main diagonal.

Proof 8 To reduce notational burden, we drop the argument β and the W subscript on
X and z in this proof and define Q = S⊤

UniformS⊤
CWSCWSUniform to apply Lemma 5. Let

s, t, u, v ∈ {1, 2, ..., n} and xn be the nth row of X so that

E
[
∥g − g̃∥2

2

]
=

∑
s,t,u,v

Cov[qst, quv]ztzvxsx
⊤
u

=
∑

s

Cov[qss, qss]z2
sxsx

⊤
s +

∑
s,t
s ̸=t

Cov[qss, qtt]zsztxsx
⊤
t

+
∑
s,t
s̸=t

Cov[qst, qst]zsztxsx
⊤
t +

∑
s,t
s ̸=t

Cov[qst, qts]z2
sxtx

⊤
t

We observe that the covariances are constant within each summation’s indices and can be
taken out of the summation to obtain

E
[
∥g − g̃∥2

2

]
= Cov[q11, q11]

∑
s

z2
sxsx

⊤
s + Cov[q11, q22]

∑
s,t
s ̸=t

zsztxsx
⊤
t

+ Cov[q12, q12]
∑
s,t
s ̸=t

zsztxsx
⊤
t + Cov[q12, q21]

∑
s,t
s ̸=t

z2
sxtx

⊤
t
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whereupon we perform the substitutions∑
s

z2
sxsx

⊤
s = ∥X⊤ diag z∥2

F∑
s,t
s ̸=t

zsztxsx
⊤
t = ∥X⊤z∥2

2 − ∥X⊤ diag z∥2
F

∑
s,t
s ̸=t

z2
sxtx

⊤
t = ∥X∥2

F∥z∥2
2 − ∥X⊤ diag z∥2

F

to obtain the simplification

E
[
∥g − g̃∥2

2

]
= (Cov[q11, q11]− Cov[q12, q12]− Cov[q12, q21]− Cov[q11, q22])∥X⊤ diag z∥2

F

+ (Cov[q12, q12] + Cov[q11, q22])∥X⊤z∥2
2 + Cov[q12, q21]∥X∥2

F∥z∥2
2

lem.= n

m
∥X⊤ diag z∥2

F + m− k − 1
km

∥X⊤z∥2
2 + m− 1

km
∥X∥2

F∥z∥2
2.

Convergence

We now show convergence of the algorithm for a GLM with canonical link to the global
optimum as the number of iterations t goes to infinity. Let F1 ⊂ F2 ⊂ · · · be a filtration
on the probability space, where the randomness at each iteration t is in the sketch matrix
S(t). In this section, we parameterize the problem as one of minimization to be consistent
with the optimization literature; i.e., we define the objective function f(β) = −ℓ(β) and
seek its minima.

For convenience, we let A(t) =
∑t

i=1 h̃(i)H̃(i)−1∑t

i=1 h̃(i) and observe that it is a constant symmetric
positive-definite matrix given F1,F2, ...,Ft. Thus, the update (7.5) can be written as

β̂
(t+1) = β̂

(t)
− at(A(t−1)g(t) + ε(t+1))

where ε(t) = A(t−1)(X(t−1)
W

⊤
S(t)⊤S(t)z

(t−1)
W −g(t−1)) is a Ft-measurable random variable with

E[ε(t) | Ft−1] = 0 and E[∥ε(t)∥2 | Ft−1] = σ2(t)
<∞.

We define for h(t)(β) = A(t−1)g(t) an associated Lyapunov function V (β) = f(β) −
infβ f(β). We proceed to examine some properties of V . By definition, V is non-negative
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and is strictly convex as the associated GLM log-likelihood is strictly concave, giving
V a unique minima βML. We assume the trajectories {β(t)}∞

t=1 lie within some domain
B = {δ ≤ ∥β − βML∥ ≤ δ−1} ⊂ Rp for some δ ∈ (0, 1). Under this assumption, we have
that a variety of common GLMs satisfy V being continuously differentiable and having L-
Lipschitz-continuous gradients on B. For GLMs with canonical link functions, this latter
condition can be simplified to

∥V (β)− V (α)∥ def.=
∥∥∥∥∥− 1

a(ϕ)

n∑
i=1

(b′(x⊤
i β)− b′(x⊤

i α))xi

∥∥∥∥∥
≤ Constant×max

i
∥xi∥

n∑
i=1
|b′(x⊤

i β)− b′(x⊤
i α)|

= Constant×
n∑

i=1
|b′(x⊤

i β)− b′(x⊤
i α)|

≤ L∥β −α∥.

Hence, it suffices to verify that b′(x⊤β) is L-Lipschitz for β ∈ B. For Binomial-Logit
models, we have that b′′(θ) ≤ 0.25. For Poisson-Log models, we have that b′′(x⊤β) = exp(θ)
is bounded for β ∈ B.

In terms of the search direction, we have that there exists λ(t) > 0 such that h(t)(β)⊤V ′(β) ≥
λ(t)∥V ′(β)∥2. As A(t−1) is symmetric positive-definite, we have that

h(t)(β)⊤V ′(β)
∥V ′(β)∥2 = g(β)⊤A(t−1)g(β)

g(β)⊤g(β) ≥ λmin(A(t−1))
pos.def.
> 0.

Finally, we examine the control of h(t) by checking ∥h(t)(β)∥2 ≤ C(t)(1 + V (β)) for some
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C(t) > 0 and for all β ∈ B. We rearrange

∥h(t)(β)∥2 = ∥A(t−1)g(β)∥2

≤ ∥A(t−1)∥2∥g(β)∥2

= Constant×
∥∥∥∥∥ 1
a(ϕ)

n∑
i=1

(yi − b′(x⊤
i β))xi

∥∥∥∥∥
2

≤ Constant×max
i
∥xi∥2

n∑
i=1
|yi − b′(x⊤

i β)|2

= Constant×
n∑

i=1
(yi − b′(x⊤

i β))2

≤ C(t)(1 + V (β)).

For the Binomial-Logit model, we have that |yi − b′(x⊤
i β)|2 ≤ 1 for all i so that it suffices

to take C(t) ∝ n. For Poisson-Log, we inspect the magnitudes of the gradients of the left
and right-hand sides of the inequality with the fact that a(ϕ) = 1 and b = b′ = b′′ = exp
to obtain

Constant×
∥∥∥∥∥2×

n∑
i=1

(yi − exp(x⊤
i β))xi

∥∥∥∥∥ ≤ C(t) ×
∥∥∥∥∥2×

n∑
i=1

(yi − exp(x⊤
i β))xi

∥∥∥∥∥
and notice that C(t) = 2/Constant suffices.

Applying the definition and properties of V on the domain B, we obtain

V (β(t+1)) ≤ V (β(t)) + V ′(β(t))⊤(β(t+1) − β(t)) + L

2 ∥β
(t+1) − β(t)∥2

= V (β(t))− a(t)g(t)⊤A(t−1)X(t)
W

⊤
S(t+1)⊤S(t+1)z

(t)
W

+ L

2 a
(t)2∥X(t)

W

⊤
S(t+1)⊤S(t+1)z

(t)
W ∥2.

Taking expectations conditional on Ft we have that

E[V (β(t+1)) | Ft] ≤ V (β(t))− a(t)g(t)⊤A(t−1)g(t) + L

2 a
(t)2
σ2(t)

is a positive super-martingale for which we apply the theorem of Robbins and Siegmund
(1971) to obtain convergence. The theorem requires that ∑∞

t=1
L
2 a

(t)2
σ2(t)

< ∞ almost
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surely. Indeed, Proposition 1 gives us that σ2(t) ≤ ∥A(t−1)∥2
F E [∥g(β)− g̃(β)∥2

2]. For
β ∈ B, the weight matrix W is bounded and hence so are the norms found in Proposition 1.
Moreover, A(t−1) is symmetric positive-definite with bounded norm on B by construction.

Thus, limt→∞ V (β(t)) exists and is finite and that ∑∞
t=1 a

(t)g(t)⊤A(t−1)g(t) <∞ almost
surely. Since ∑∞

t=1 a
(t) = ∞ by assumption, we have that g(t)⊤A(t−1)g(t) a.s.−→

t↑∞
0 with

positive-definiteness of A implying g(t) a.s.−→
t↑∞

0. The strict convexity of f for a GLM with

canonical link gives that β(t) a.s.−→
t↑∞

βML, as required.

7.2.4 Standard Errors

Considering the update (7.5), we note that initially the sketched Hessians represent the
curvature of the log-likelihood away from βMLE and so are detrimental for the estimate in
practice. This can slow convergence at early iterations by contaminating the inverse Hes-
sian estimate with convexity from distant prior parameters. We can expedite convergence
by periodically resetting the memory of the summations in the determinantal averaging
step; i.e., we would substitute the sums at iteration (t)

t∑
i=1

h̃(i)H̃(i)−1
→

t∑
i=bt

h̃(i)H̃(i)−1
and

t∑
i=1

h̃(i) →
t∑

i=bt

h̃(i)

for some integer sequence bt ≤ t. An equally asymptotic choice would be bt = maxj∈N(∑j
i=1 i |∑j

i=1 i < t); in other words, the interval between resets increases by one after each suc-
cessive reset. A cruder but simpler choice could be b′

t = 100× ⌊t/100⌋; a reset every 100
iterations. Going forward, we opt to use the former choice as it provides much needed
flexibility at early iterations.

We also note that

Ĥ−1 =
∑t

i=bt
h̃(i)H̃(i)−1

∑t
i=bt

h̃(i)
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is an asymptotically consistent estimator for the inverse Hessian when β̂ is βMLE, which
is also an appropriate estimator for the covariance matrix Var[βMLE]. This simultaneously
yields an estimate for the GLM standard errors. Given the issue of resetting at iteration
bt, to obtain a reasonable approximation of the standard errors, the stopping iteration
should immediately precede a reset bt to maximize the accuracy of determinantal averaging.
Explicitly, bt takes values in the sequence of triangular numbers, whose values near the first
few powers of ten are

{bt}∞
t=1 ⊂ {1, 3, 6, 10, ..., 990, 1035, ..., 9870, 10011, ..., 99681, 100128, ...}. (7.6)

For GLM families with a dispersion parameter, such as the Gamma family, we introduce
an additional dispersion estimation sub-step using the Uniform sketch intermediary at each
iteration. In particular, we use the dispersion estimate

d =
n∑

i=1
wi

(
yi − µi

∂µi/∂ηi

)2

to be consistent with the glm() implementation in R (R Core Team, 2019). By defining
the residuals vector r = z with elements ri = yi−µi

∂µi/∂ηi
= zi and the weight matrix W, we

may re-write this dispersion expression in matricial form as

d = r⊤Wr = (
√

Wr)⊤(
√

Wr) = z⊤
W zW .

This expression immediately admits the use of sketching as well. Hence, we compute at
each iteration

d(t+1) = d(t) + at(z⊤
W S⊤SzW − d(t))

to produce an estimate of the dispersion, which will be used to estimate the standard errors
se(βMLE) for GLM families that require it.

7.2.5 Initialization and Convergence

While the crux of the proposed method is in the estimation procedure, it is book-ended by
a need to initialize β̂

(0) and a need to assess convergence as the iteration t increases. For

178



initialization, a straight-forward method would be to draw a small pilot sample of size m
and use the coefficients from a fitted GLM model using IRLS as the starting value. To
avoid conflating the estimation behaviour with the initialization scheme, we opt to initialize
β̂

(0) = 0 throughout the remainder of the present work.

When assessing convergence of the proposed method, we may either assess convergence
of the log-likelihood objective (7.1) or convergence of the parameter estimates β̂

(t). We
note that calculating the log-likelihood over all n observations requires transferring the
entire dataset; defeating the efficiency gained from the proposed method. Hence, we opt
to assess convergence in the parameter estimates. As such, we may specify a tolerance
εtol where we may consider the procedure converged if ∥β̂(t+1)

Sketch − β̂
(t)
Sketch∥1 < εtol, though

we may opt to continue if t is near the previous reset bt to ensure a good estimate for
the standard error as per Section 7.2.4. By the stochastic nature of the iterative update,
it is possible that the convergence condition is spuriously satisfied; hence, an alternate
convergence condition is impose a threshold on the average change in parameter values
over some number of iterations.

In the following simulation and real-world dataset sections, we take the rudimentary
approach of specifying an exact number of iterations tmax as is common for stochastic
methods such as simulated annealing. This value will generally be a element of the sequence
{bt}∞

t=1. A crude rule-of-thumb guide for choosing this can be a value of tmax that transfers
approximately n observations; tmax ≈ ⌈n/m⌉, representing the intuition that the entire
dataset has a high probability of participating in the procedure. Moreover, by retaining
the determinantal averaging values ∑t

i=bt
h̃(i) and ∑t

i=bt
h̃(i)H̃(i)−1

, we may resume the
doubly-sketching procedure should a desired convergence criteria at originally chosen tmax

not be met by simply drawing additional sketches and continuing the updates.

7.3 Simulation Study

In this section, we study the behaviour of the proposed method in silico across a variety
of simulated datasets. We investigate both the parameter recovery aspect as well as the
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practical computational efficiency in two separate simulation studies.

7.3.1 Comparison to IRLS

We test the parameter recovery of the proposed doubly-sketched method in a full-factorial
simulation design over the following configurations:

• Sample size: n ∈ {1× 105, 4× 105, 7× 105, 1× 106}

• Uniform sketch size: m ∈ {1000, 10000}

• Clarkson-Woodruff sketch size: k ∈ {100, 500, 1000, 5000}

• Covariate Dimension: d ∈ 5, 10, 50, 100

• Covariate Distribution: xi ∼ N(0, 1
d
), 1

d
t10,Uniform(−1

d
, 1

d
)

• Response-Link: Binomial-Logit, Poisson-Log, Binomial-cloglog

• True Parameters: βi = (−1)i+1

We exclude configurations where k ≥ m as it is non-sensical to take a larger sketch
after a smaller sketch. To evaluate the asymptotic behaviour of β̂Sketch, we run a large
number of iterations tmax = 10011 chosen as per (7.6). We perform 10 replications at each
configuration, generating a new dataset each time, and also run the IRLS algorithm with
convergence condition ∥β̂(t+1)

IRLS − β̂
(t)
IRLS∥1 ≤ 10−10. Finally, we compare the estimated β̂Sketch

and β̂IRLS against each other in addition to the true β in terms of mean square error. For
vectors a, b ∈ Rd, we denote their mean square error to be MSE(a, b) = ∑d

i=1(ai − bi)2.

Figure 7.2 depicts the ratio of mean square errors MSE(β̂Sketch,β)/MSE(β̂IRLS,β) over
a selected subset of simulation configurations with d = 100, m = 10000, and binomial re-
sponse with logit link. We recognize that the situation d = k = 100 represents a boundary
case where the Hessian H(t) is likely rank-deficient at each iteration if the ridge regulariza-
tion term ẑ√

t
Id×d is omitted. Indeed, Figure 7.2 shows poor finite iteration behaviour at
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k = 100 even though convergence is provided by Section 7.2.3. As coverage of the dataset
by a surrogate sketch decreases from m/n = 0.1 to 0.01, we find β̂Sketch deviates from
the true parameter values more so than β̂IRLS. As k increases beyond 100, the behaviour
significantly improves and the parameter recovery capabilities of β̂Sketch increasingly coin-
cides with that of β̂IRLS. The covariate distribution appears to have a small impact when
k > 100; when k = 100, the doubly-sketched estimator attains the best median MSE ratio
for uniformly distributed X.

The error between the doubly-sketched and IRLS estimates are explored in Figure 7.3.
We again see poor performance at d = k = 100, though the effect of dataset size n

diminishes greatly. This suggests that the choice of m and k is not dramatically affected by
the size of the entire dataset. The effect of the covariate distribution appears to be reversed
when β̂Sketch is compared against β̂IRLS, with the uniformly distributed X performing the
worst among the three.

7.3.2 Wall-Clock Time and Storage Medium

In this section we examine the performance of the proposed method and IRLS in terms of
wall-clock time. A single simulated dataset comprising 108 observations with 102 covariates
is used throughout; this dataset stored as a CSV takes approximately 10 GiB of space. For
simplicity, the covariates are N(0, 1) and the response variable is binomial with logistic
link with true regression coefficients βi = (−1)i+1. To emulate real-world scenarios, we run
the proposed doubly-sketched algorithm and IRLS on four different data infrastructures
described briefly below.

1. Fully in-memory (RAM): The entire dataset is stored in memory, representing the
ideal case where the practitioner has sufficient memory for the analysis.

2. Solid-State Drive (SSD): The dataset is stored in a SQLite database on a solid-state
drive, selected rows are loaded as needed. This represents a dataset too large for
system memory.
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Figure 7.2: Ratio of coefficient parameter MSEs of the doubly-sketched and IRLS estima-
tion procedure against the true parameters, with line segments joining group-wise medians.
The doubly-sketched estimate approaches the quality of the IRLS estimate as k increases
and uniformly distributed X behaving better than normally and t10 distributed X.
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estimate’s recovery of the IRLS coefficients appear robust to changes in dataset sizes n for
a given m and k.
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3. Hard Drive (HDD): The dataset is stored in a SQLite database on a mechanical hard
drive as in the SSD case. This represents a dataset too large for system memory, but
also restricted to slower and lower-cost storage media.

4. Network Storage (NET): The dataset is stored in a PostgreSQL database on a server
across a local network. This represents a case where the data is not available locally
but stored on another machine, possibly shared among multiple practitioners.

We assume here that m = 1000 and k = 500; for further examination of the sketch
sizes, see Section 7.4.1. Due to the sparse nature of the Uniform sketch, we only request
the rows sampled by SUniform at each iteration of the doubly-sketched procedure from the
storage device; this is where we expect to see wall-clock time savings due to the cost of
data transfer.

Figure 7.4 demonstrates the performance of the proposed doubly-sketched method com-
pared to IRLS on these four storage infrastructures from iteration to iteration. For the
faster MEM and SSD storage media we choose tmax = 10011, for the slower HDD and NET
we choose a smaller tmax = 1035. We observe that as the iteration t increases, the sketched
estimate β̂

(t)
Sketch shows convergence behaviour as expected from Section 7.2.3. Moreover,

the curves show potential wall-clock time savings by trading-off some accuracy for speed.
We also note the effect of sketching on NET is more pronounced than that of sketching
on HDD. From a technical standpoint, we explicitly flush the operating system’s cache in
the SSD and HDD cases as there was sufficient system memory to cache the entire SQLite
database in-memory; defeating the measurement. This was not done in the NET case as
not enough memory was allocated to the database for the same phenomenon to occur. Fur-
ther on a technical level, we note that transferring the data in a contiguous manner is more
efficient than retrieving fragmented observations. This effect becomes more pronounced
going from memory to solid state disks to mechanical hard drives.
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7.4 Real-world Datasets

In this section, we evaluate the proposed method against other methods in the literature,
particularly OSMAC (Wang et al., 2019), FASA (Lee et al., 2021), and Optimal Distributed
Subsampling (ODS) (Yu et al., 2022b) in addition to stochastic gradient descent (SGD)
and drawing a single subsample. We treat SGD as a special case of the proposed doubly-
sketching method without using any Hessian information, and as in doubly-sketching, we
ignore cases where m < k and treat cases where m = k as uniform sketching only which
corresponds to conventional SGD. To assure convergence, we continue to use the prefac-
tor at = t−1 for SGD (Robbins and Monro, 1951; Blum, 1954). Additionally, while the
examples provided in this work assume a single pre-defined model specification, an added
benefit of the method’s data-oblivious nature is that each sketched surrogate dataset is
valid for any model specification, allowing multiple proposed GLMs to be estimated in
one set of iterations and aiding model selection. For ODS, which is a distributed method
assuming multiple workers, we run five workers on the same local device each with access
to one-fifth of the dataset. A single subsample consists of a simple random sample without
replacement from the data; for simplicity, we ignore any local memory constraints for this
method and allow subsamples with size far exceeding the uniform sketch size m.

7.4.1 Supersymmetric Particles Dataset

We evaluate the proposed method in comparison to the OSMAC method of Wang et al.
(2018) and basic subsampling. The data of interest is a real-world dataset; the supersym-
metric benchmark dataset (SUSY) (Baldi et al., 2014) available from the UCI Machine
Learning Repository (Dua and Graff, 2017). This dataset comprises n = 5× 106 observa-
tions with d = 18 real-valued covariates and a single binary response variable, which we
will model using a binomial GLM with logit link as in Wang et al. (2018).

We evaluate the proposed method on this dataset in comparison to multiple compet-
ing methods. We perform doubly-sketching with m, k ∈ {1000, 2000, 5000} with tmax ∈
{1035, 2080, 3004} against 1) the full data IRLS, 2) a single subsample of size m ∈
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{5× 104, 105, 5× 105, 106} from the data and fitting with IRLS, 3) the OSMAC method
(Wang et al., 2018) with r0, r ∈ {104, 5 × 104, 105, 5 × 105} in both the mVc and mMSE
modes, 4) the FASA method (Lee et al., 2021) for pilot sample and subsample sizes
∈ {10000, 50000, 100000} and r2 ∈ {10, 20, 30}, 5) the Optimal Distributed Subsampling
(ODS) method (Yu et al., 2022b) with r0, r ∈ {100000, 500000} and ϱ ∈ {0.25, 0.5, 0.75}
in the uniform, mVc, and mMSE modes, and 6) stochastic gradient descent. For FASA,
we use the logistic regression (Binomial-Logit) method for datasets with non-power-of-2
number of observations.

In the absence of true coefficients β, the evaluated methods are compared against IRLS
values with MSE as a metric. The performance in terms of both coefficient parameters β̂

and the standard errors are shown as a function of execution time in Figure 7.5. Table 7.1
and Table 7.2 provide the fitted coefficients and standard errors obtained across a selection
of tested methods and configurations, chosen to have approximately the same wall-clock
execution time in memory on the efficient frontier outlined in Figure 7.5.

We observe in Figure 7.5 that the doubly-sketching produces results comparable to most
methods in terms of coefficient MSE, though the uniform-only sketch produces the most
wall-clock time efficient frontier across all tested methods. FASA and OSMAC yield similar
performance in their best configurations, though in both methods the mvc subsamples
outperform the mmse subsamples. Interestingly, the ODS method with five parallel workers
does not seem to yield a dramatic benefit in this comparative study, though we ascribe
this to the unrealistic implementation of all five ’distributed’ workers being simulated on
the same computer and using the same pool of memory to store their respective dataset
partitions. The stochastic gradient descent method is less efficient overall due to the lack
of curvature information given by the Hessian and suffers slow convergence; indeed, it
appears the diminuitive size of each sketch means that the relatively fixed overhead of
each iteration dominates the incremental cost of computing the Hessian. In the lower
half of Figure 7.5 and interpreting the MSE on the standard errors ŝe(βMLE), the single
subsample does stand out in terms of efficiency though both double and uniform sketching
yield competitive MSEs at a slower wall-clock time.
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In the fitted coefficients of Table 7.1, we see that for the chosen settings, doubly-
sketching and uniform-only sketching both retrieve a total of 2.07 million rows of the
data. For ODS, while a total of 600 thousand rows are retrieved for use in the actual
estimation, all 5 million observations are also retrieved temporarily in order to calculate
the weights. A similar situation occurs for OSMAC and FASA. In the single subsample
we disregarded any constraints on how much data can be retained in order to compute
IRLS on the subsample; moreover, a subsample of size 106 already retrieves and stores
one-fifth of the full dataset. In the standard errors of Table 7.2, we note that these values
are of interest during GLM model fitting as they allow for hypothesis testing on the point
estimates of the GLM coefficients, which in turn yield oft-desired p-values.

The design of the OSMAC, FASA, and ODS methods all draw an initial pilot subsample
from the full dataset, upon which a set of GLM coefficients are estimated. This pilot set of
coefficients is used to compute µi = g−1(ηi) which is in turn used to calculate the sampling
probabilities {πi}n

i=1 across the full dataset; a very computationally expensive proposition
under the assumption of slow data transfer. Indeed, for larger choices of the second-stage
subsample size as weighted by {πi}n

i=1, the large fixed cost of determining these weights
can be better amortized. Indeed, as this weighted subsample size increases, we can see
that the performance of these methods becomes more competitive in Figure 7.5.
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189



Table 7.1: Fitted coefficients for the SUSY dataset for multiple methods with a selected set of parameters
that have similar execution time and are on the efficient coefficient frontier of Figure 7.5. Values are averaged
over 10 replications with standard deviations in brackets.

Covariate IRLS Doubly-Sketching Uniform Only ODS mvc OSMAC mvc FASA Single Subsample

(Intercept) −1.659 −1.650 (0.033) −1.660 (0.016) −1.659 (0.041) −1.644 (0.060) −1.635 (0.162) −1.665 (0.020)
X1 2.326 2.308 (0.032) 2.323 (0.009) 2.306 (0.047) 2.312 (0.066) 2.363 (0.119) 2.335 (0.031)
X2 0.317 0.316 (0.019) 0.315 (0.004) 0.306 (0.023) 0.313 (0.030) 0.324 (0.075) 0.319 (0.011)
X3 0.204 0.156 (0.161) 0.204 (0.047) 0.327 (0.215) 0.215 (0.250) 0.132 (0.536) 0.213 (0.100)
X4 −1.601 −1.572 (0.068) −1.597 (0.026) −1.589 (0.100) −1.590 (0.080) −1.692 (0.258) −1.602 (0.050)
X5 −1.714 −1.715 (0.025) −1.710 (0.015) −1.708 (0.032) −1.730 (0.073) −1.750 (0.141) −1.719 (0.019)
X6 0.098 0.088 (0.017) 0.097 (0.011) 0.086 (0.020) 0.092 (0.038) 0.124 (0.073) 0.102 (0.027)
X7 −2.038 −1.990 (0.151) −2.034 (0.042) −2.145 (0.198) −2.047 (0.197) −1.961 (0.511) −2.047 (0.095)
X8 0.533 0.542 (0.031) 0.533 (0.017) 0.538 (0.026) 0.532 (0.078) 0.510 (0.090) 0.533 (0.040)
X9 −0.623 −0.623 (0.013) −0.623 (0.006) −0.627 (0.027) −0.619 (0.023) −0.620 (0.090) −0.617 (0.013)
X10 1.106 1.122 (0.043) 1.109 (0.013) 1.077 (0.032) 1.126 (0.089) 1.154 (0.202) 1.119 (0.042)
X11 0.000 0.001 (0.003) −0.001 (0.002) 0.000 (0.009) −0.001 (0.004) 0.001 (0.022) 0.001 (0.003)
X12 −0.002 −0.003 (0.005) −0.001 (0.002) −0.003 (0.008) −0.002 (0.007) −0.001 (0.018) −0.003 (0.004)
X13 0.470 0.474 (0.012) 0.471 (0.006) 0.466 (0.015) 0.466 (0.045) 0.446 (0.066) 0.466 (0.014)
X14 0.001 0.001 (0.005) 0.001 (0.002) 0.001 (0.007) 0.001 (0.009) 0.012 (0.016) 0.000 (0.005)
X15 0.000 0.001 (0.002) 0.000 (0.001) −0.001 (0.008) −0.002 (0.006) −0.004 (0.013) 0.000 (0.004)
X16 4.683 4.650 (0.078) 4.675 (0.019) 4.692 (0.062) 4.672 (0.057) 4.751 (0.179) 4.680 (0.025)
X17 0.004 0.005 (0.004) 0.004 (0.003) 0.005 (0.008) 0.003 (0.008) 0.000 (0.021) 0.002 (0.003)
X18 −0.410 −0.405 (0.026) −0.412 (0.007) −0.410 (0.020) −0.400 (0.024) −0.398 (0.049) −0.412 (0.013)

Settings

m = 2000

k = 1000

tmax = 1035

m = 1000

tmax = 2016

r0 = 105

r = 5× 105

ϱ = 0.50

r0 = 105

r = 104

r0 = 104

r1 = 104

r2 = 10

m = 106

Time (s) 23.53 2.468 (0.357) 2.226 (0.326) 2.756 (0.072) 2.618 (0.088) 2.796 (0.555) 3.067 (0.021)
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7.4.2 Airline Delays Dataset

In this section, we investigate the airline delays dataset (Bureau of Transportation Statis-
tics, 2008) using a Gamma family generalized linear model. The full dataset features
118,914,458 observations and 29 variables. We restrict the dataset to flights that have an
arrival delay greater than one minute and an absolute difference between the departure
and arrival delays no greater than twelve hours. This is done to remove apparent outliers
such as departures being delayed 23 hours but arriving 23 hours early. We construct as the
response variable y the natural logarithm of the arrival delay in minutes with covariates
x1 being the standardized distance of the flight, x2 an indicator variable for whether the
flight departed between 0700 and 1800 in the local time zone, x3 an indicator for weekends,
and x4 an indicator for the departure delay exceeding 15 minutes. On these five variables,
we retain only complete cases, leaving 52,691,955 observations for the analysis which in
CSV form consumes 2.17 GiB of disk space. To this data, we fit a Gamma GLM with the
canonical inverse link function with the above four covariates and an intercept term. Here,
in lieu of the starting value β(0) = 0 which is invalid for Gamma GLMs, we initialize with
the intercept-only estimate β(0) = ⟨1/ȳ, 0, ..., 0⟩ across the entire dataset.

Here, we compare doubly-sketching against a single subsample as well as the ODS
method (Yu et al., 2022b), again using the IRLS fit as a baseline. In order for doubly-
sketching to produce standard errors comparable to the glm() function of the R language
(R Core Team, 2019), we also estimate the dispersion using the additional sub-step de-
scribed in Section 7.2.4. The doubly-sketching method is the same as in Section 7.4.1.
The ODS tested ODS setup is also as in Section 7.4.1 with five workers on the same local
computer, each with one-fifth of the full dataset. Due to the larger size of this dataset, we
have increased the tested range of the pilot sample size r0 and second-stage subsample size
r to {105, 106, 5 × 106, 107}. Again, the uniform, mVc, and mMSE modalities are tested
with ϱ ∈ {0.25, 0.5, 0.75}.

Figure 7.6 shows the mean square error of the coefficients and standard errors with the
efficient frontier highlighted. We see that sketching with m = k yields the best coefficient es-
timates on average. ODS with uniform sampling weights provides competitive performance
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Table 7.2: Fitted standard errors (x100) for the SUSY dataset for the methods and param-
eters found in Table 7.1. Values are averaged over 10 replications with standard deviations
in brackets.

Covariate IRLS Doubly-Sketching Uniform Only Single Subsample

(Intercept) 0.763 0.777 (0.006) 0.771 (0.005) 0.764 (0.002)
X1 0.856 0.868 (0.007) 0.862 (0.003) 0.857 (0.001)
X2 0.457 0.463 (0.003) 0.460 (0.002) 0.457 (0.001)
X3 3.647 3.684 (0.025) 3.675 (0.031) 3.645 (0.009)
X4 1.396 1.414 (0.012) 1.405 (0.004) 1.396 (0.004)
X5 0.781 0.793 (0.007) 0.787 (0.006) 0.782 (0.002)
X6 0.500 0.505 (0.004) 0.504 (0.003) 0.501 (0.001)
X7 3.385 3.418 (0.025) 3.410 (0.035) 3.382 (0.010)
X8 0.909 0.920 (0.007) 0.916 (0.003) 0.910 (0.002)
X9 0.465 0.472 (0.003) 0.469 (0.002) 0.465 (0.001)
X10 1.156 1.172 (0.010) 1.161 (0.007) 1.157 (0.002)
X11 0.126 0.127 (0.000) 0.127 (0.000) 0.126 (0.000)
X12 0.123 0.124 (0.000) 0.124 (0.000) 0.123 (0.000)
X13 0.463 0.470 (0.003) 0.467 (0.003) 0.463 (0.001)
X14 0.126 0.128 (0.001) 0.127 (0.001) 0.126 (0.000)
X15 0.120 0.121 (0.000) 0.121 (0.000) 0.120 (0.000)
X16 1.000 1.010 (0.008) 1.008 (0.005) 0.999 (0.002)
X17 0.119 0.120 (0.001) 0.119 (0.000) 0.119 (0.000)
X18 0.415 0.420 (0.005) 0.419 (0.003) 0.416 (0.001)

Settings
m = 2000

k = 1000

tmax = 1035

m = 1000

tmax = 2016
m = 106

Time (s) 23.53 2.468 (0.357) 2.226 (0.326) 3.067 (0.021)
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using five distributed workers with taking a single subsample without replacement, whereas
ODS with non-uniform sampling weights suffers a large up-front performance penalty due
to the need to compute said sampling weights across the entire dataset’s n = 52, 691, 955
observations. Doubly-sketching performs comparably to ODS in this regard. In terms of
the standard errors, a single subsample performs best, followed by uniform-only sketching,
and doubly-sketching, though all three methods are numerically comparable.

7.4.3 New York Yellow Taxicab Dataset

In this section we apply the proposed method to a much larger real-world dataset describing
taxicab trips in New York (NYC Taxi and Limousine Commission, 2022). We utilise
the entirety of the Yellow Taxi Trip Records dataset available as of writing, spanning
from January 2009 to January 2023 inclusive. After pre-processing and importing into a
PostgreSQL database with an additional index column, the table consumed 160 GiB of
disk space holding a total of 1,669,852,068 observations. A complete technical description
of the data cleaning and import process is given in Appendix D.3.

This dataset is of particular interest for multiple reasons. First, as a real-world dataset
with less than ideal cleanliness, it contains heterogeneous data with major outliers caused
by data entry errors; we have chosen to keep these in the dataset to challenge the proposed
method. For example, the trip record with distance recorded as 134,619,063 miles and
a trip time of 49 seconds, with roughly 14 times the speed of light, participates in the
estimation procedure with probability

(
1− m

n

)tmax . Second, the data contains many cate-
gorical covariates, adding to the difficulty induced by uniform sketching, especially as some
events are relatively rare. The use of categorical variables also introduces the caveat that
factor levels must be known a priori to form the regressor matrix X. Third, the monetary
amounts exhibit high multi-collinearity, compounding upon the second point by further
reducing the conditioning of the Hessian matrix.

We construct a generalized linear model of the passenger count as a Poisson response
with log-link with the following covariates derived from the available set of variables. An
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Figure 7.6: Coefficient and standard error MSE of multiple methods compared against
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combinations for each method; envelopes toward the bottom-left are more efficient. The
horizontal axis is square-root transformed and the vertical axis is log-transformed to in-
crease visual separation; the reference IRLS with zero MSE is shown as a vertical line.
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intercept is included and no interaction terms are considered. For simplicity, the first
element in each categorical variable is taken to be the reference level.

• Vendor ID: Factor with three levels: 1, 2, 3.

• Rate Code: Factor with six levels: 1 through 6.

• Payment Type: Factor with five levels: 1 through 5.

• Day of Week: Factor with seven levels: Monday, Tuesday, ..., Sunday.

• Time of Day: Factor level with four levels: Twilight [00:00, 06:00), Morning [06:00,12:00),
Afternoon [12:00,18:00), Night [18:00, 00:00).

• Duration: Time elapsed between pickup and drop-off in minutes.

• Distance, Fare Amount, Tip Amount, Tolls Amount, Total Amount: As specified in
the data dictionary.

Due to the categorical nature of many of these covariates and the possibility of omitting
a factor level entirely during the Uniform sketch, we can mitigate this by selecting larger
sketch sizes; here, we choose m = 10000 with corresponding Clarkson-Woodruff sketch size
k = 5000. We perform tmax = 1035 iterations of the proposed procedure with ten replica-
tions, noting that sometimes a particularly pathological sketch can cause numerical issues.
Possible measures to detect pathological sketches include checking the (reciprocal) condi-
tion number of the sketched Hessian H̃(t) or controlling the regularization by increasing the
constant ẑ. For this dataset, we apply the following heuristic to revert bad updates. Let
∆(t) = ∥β̂(t)

− β̂
(t−1)
∥2 be the length of the update from iteration t− 1 to t. If the proposed

update is such that ∆(t) ≥ 10× 1
t−1

∑t−1
i=1 ∆(i), then revert the update on β̂

(t) for this itera-
tion. Comparison is made against sketching with uniform-only sketches of size m = 10000
as well as using a single subsample from the data at sizes m ∈ {104, 105, 106, 107} The
largest subsample size 107 approximates the total data transfer quantity of the doubly-
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and uniform-only sketching procedures at 1035× 10000 = 10350000. As in the supersym-
metric and airline delays datasets, we ignore any local system memory constraints that
may prevent storage of a large subsample.

With reference to the technical remark in Section 7.3.2, and considering the scale of the
dataset, we take advantage of an approximate sampling method available in PostgreSQL
in place of the Uniform sketch. This query method is called TABLESAMPLE in the SQL
standard and produces an approximation to simple random sampling without replacement
by performing one-stage cluster sampling over blocks of rows for a considerable speedup
in data retrieval. We use this in-place of a simple random sample in all tested methods
for performance reasons. A brief technical description of this sampling method is given in
Appendix D.3.1.

The GLM model coefficients and standard errors fitted via sketching with ten repli-
cations is presented in Table 7.3 and Table 7.4 with comparison to a model fitted using
IRLS with the same convergence condition as in Section 7.3.1. Figure 7.7 depicts the MSE
values of each of the ten replications against execution time. Due to the lack of a true β,
we compare against the fitted IRLS estimate β̂IRLS to obtain an MSE value.

We draw attention to the almost 21 hour long procedure needed to fit the IRLS conven-
tionally at 2.5 hours per iteration, whereas sketching only required 25 minutes; a fifty-fold
improvement. While the choice of tmax = 1035 was considerably conservative with a to-
tal data transfer comprising approximately 0.6% of the complete dataset, fairly accurate
results were still obtained despite the multi-collinearity and categorical nature of the covari-
ates. Indeed, ten replications of sketching at 25 minutes apiece run in serial sequence would
require approximately four hours of wall-clock time, running all ten replications simulta-
neously yielded a total execution time of approximately one hour, suggesting potential for
parallelism in the tested computational infrastructure.
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Table 7.3: Fitted regression coefficients for the NYC Yellow Taxicab data using a PostgreSQL database
across the network. Averages and standard deviations in round brackets over ten replications are shown
with reference to the IRLS fitted coefficients, for which a single replication was performed.

Covariate IRLS Doubly-Sketching Uniform Only Sample 104 Sample 105 Sample 106 Sample 107

(Intercept) 0.319 0.325 (0.007) 0.320 (0.018) 0.319 (0.039) 0.333 (0.009) 0.328 (0.004) 0.318 (0.022)
vendor_id2 −0.044 −0.041 (0.001) −0.042 (0.001) −0.026 (0.056) −0.047 (0.020) −0.042 (0.005) −0.044 (0.004)
vendor_id3 −0.048 −0.045 (0.003) −0.045 (0.002) −0.038 (0.038) −0.048 (0.021) −0.045 (0.005) −0.048 (0.005)
payment_type2 −0.047 −0.044 (0.002) −0.044 (0.002) −0.056 (0.032) −0.049 (0.019) −0.045 (0.003) −0.047 (0.005)
payment_type3 −0.044 −0.041 (0.003) −0.040 (0.001) −0.064 (0.034) −0.047 (0.018) −0.043 (0.004) −0.044 (0.005)
payment_type4 −0.027 −0.024 (0.003) −0.024 (0.001) −0.019 (0.047) −0.033 (0.017) −0.023 (0.005) −0.026 (0.005)
payment_type5 0.007 0.008 (0.002) 0.008 (0.000) 0.010 (0.049) 0.006 (0.018) 0.009 (0.005) 0.008 (0.002)
duration 0.000 0.002 (0.006) 0.004 (0.004) 0.005 (0.006) 0.003 (0.001) 0.001 (0.002) 0.000 (0.000)
timeofday[6,12) 0.000 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
timeofday[12,18) 0.039 0.049 (0.003) 0.049 (0.002) 0.053 (0.015) 0.050 (0.004) 0.049 (0.001) 0.040 (0.021)
timeofday[18,24] 0.046 0.036 (0.002) 0.034 (0.009) 0.035 (0.027) 0.036 (0.007) 0.039 (0.002) 0.042 (0.006)
dayofweek2 −0.049 −0.059 (0.006) −0.057 (0.004) −0.056 (0.152) −0.071 (0.035) −0.061 (0.013) −0.053 (0.008)
dayofweek3 −0.159 −0.165 (0.020) −0.167 (0.012) −0.217 (0.300) −0.225 (0.040) −0.178 (0.013) −0.164 (0.026)
dayofweek4 0.060 0.050 (0.018) 0.061 (0.015) −0.071 (0.443) −0.025 (0.072) 0.065 (0.045) 0.060 (0.023)
dayofweek5 −0.035 −0.036 (0.004) −0.033 (0.005) −0.028 (0.043) −0.030 (0.015) −0.039 (0.004) −0.035 (0.004)
dayofweek6 −0.001 0.000 (0.002) 0.003 (0.005) 0.010 (0.035) 0.003 (0.020) 0.000 (0.004) −0.001 (0.002)
dayofweek7 −0.080 −0.083 (0.003) −0.081 (0.005) −0.079 (0.054) −0.083 (0.015) −0.084 (0.003) −0.080 (0.010)
distance 0.039 0.046 (0.001) 0.044 (0.006) 0.050 (0.013) 0.047 (0.005) 0.047 (0.001) 0.038 (0.021)
fare_amount 0.039 0.051 (0.001) 0.048 (0.009) 0.056 (0.018) 0.054 (0.004) 0.052 (0.002) 0.042 (0.020)
tip_amount −0.039 −0.049 (0.001) −0.048 (0.001) −0.053 (0.014) −0.050 (0.004) −0.049 (0.001) −0.039 (0.021)
tolls_amount 0.453 0.455 (0.001) 0.455 (0.001) 0.453 (0.014) 0.450 (0.010) 0.453 (0.002) 0.453 (0.003)
total_amount 0.031 0.026 (0.005) 0.026 (0.004) 0.024 (0.099) 0.031 (0.010) 0.028 (0.007) 0.032 (0.008)

Settings

m = 10000

k = 5000

tmax = 1035

m = 10000

tmax = 1035
m = 104 m = 105 m = 106 m = 107

Time 20h35m40s 25m08s (1m50s) 22m38s (2m18s) 5s (3s) 24s (3s) 3m35s (12s) 21m43s (30s)
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Table 7.4: Standard errors (x10000) for the NYC Yellow Taxicab data using a PostgreSQL database across
the network. Estimates for doubly-sketching with (m, k) = (10000, 5000) and uniform-only sketching with
m = 10000 for tmax = 1035 iterations and single sub-sample with sizes m = 104, 105, 106, 107. Averages
and standard deviations in round brackets over ten replications are shown with reference to the IRLS fitted
coefficients, for which a single replication was performed.

Covariate IRLS Doubly-Sketching Uniform Only Sample 104 Sample 105 Sample 106 Sample 107

(Intercept) 0.785 0.872 (0.038) 0.853 (0.045) 0.862 (0.069) 0.850 (0.019) 0.838 (0.012) 0.823 (0.017)
vendor_id2 0.749 0.775 (0.035) 0.784 (0.031) 0.768 (0.060) 0.751 (0.023) 0.747 (0.008) 0.750 (0.001)
vendor_id3 0.734 0.761 (0.026) 0.755 (0.037) 0.771 (0.066) 0.743 (0.017) 0.731 (0.009) 0.734 (0.001)
payment_type2 0.727 0.745 (0.039) 0.745 (0.041) 0.748 (0.060) 0.732 (0.012) 0.727 (0.007) 0.727 (0.002)
payment_type3 0.720 0.749 (0.015) 0.750 (0.043) 0.768 (0.079) 0.717 (0.014) 0.717 (0.009) 0.720 (0.002)
payment_type4 0.711 0.732 (0.027) 0.747 (0.039) 0.735 (0.070) 0.714 (0.016) 0.710 (0.006) 0.712 (0.002)
payment_type5 0.701 0.713 (0.040) 0.717 (0.054) 0.739 (0.061) 0.703 (0.017) 0.701 (0.008) 0.702 (0.002)
duration 0.000 0.077 (0.037) 0.093 (0.032) 0.117 (0.017) 0.107 (0.018) 0.040 (0.051) 0.000 (0.000)
timeofday[6,12) 0.000 0.005 (0.001) 0.005 (0.000) 0.005 (0.002) 0.005 (0.000) 0.003 (0.002) 0.001 (0.002)
timeofday[12,18) 0.213 0.231 (0.026) 0.219 (0.010) 0.230 (0.017) 0.223 (0.007) 0.218 (0.003) 0.173 (0.089)
timeofday[18,24] 0.387 0.491 (0.011) 0.490 (0.007) 0.506 (0.027) 0.489 (0.013) 0.486 (0.006) 0.473 (0.007)
dayofweek2 3.992 4.049 (0.232) 3.849 (0.183) 3.962 (0.333) 3.987 (0.191) 4.031 (0.050) 4.003 (0.013)
dayofweek3 6.479 6.742 (1.049) 6.253 (0.539) 7.126 (1.909) 6.514 (0.475) 6.440 (0.143) 6.488 (0.030)
dayofweek4 7.983 7.639 (0.987) 8.213 (1.214) 11.467 (7.293) 8.211 (0.722) 7.818 (0.324) 7.980 (0.135)
dayofweek5 0.649 0.672 (0.034) 0.663 (0.029) 0.692 (0.053) 0.657 (0.021) 0.648 (0.004) 0.650 (0.002)
dayofweek6 0.638 0.650 (0.037) 0.651 (0.024) 0.672 (0.050) 0.644 (0.021) 0.634 (0.004) 0.639 (0.002)
dayofweek7 0.688 0.710 (0.033) 0.708 (0.019) 0.720 (0.061) 0.694 (0.021) 0.687 (0.005) 0.688 (0.004)
distance 0.213 0.269 (0.023) 0.256 (0.008) 0.270 (0.020) 0.259 (0.007) 0.256 (0.003) 0.220 (0.061)
fare_amount 0.213 0.283 (0.030) 0.280 (0.015) 0.293 (0.015) 0.283 (0.018) 0.265 (0.020) 0.207 (0.064)
tip_amount 0.213 0.228 (0.026) 0.215 (0.008) 0.224 (0.016) 0.219 (0.007) 0.216 (0.002) 0.173 (0.090)
tolls_amount 0.397 0.400 (0.004) 0.401 (0.002) 0.405 (0.013) 0.398 (0.006) 0.397 (0.002) 0.397 (0.001)
total_amount 2.253 2.348 (0.311) 2.258 (0.330) 2.722 (0.981) 2.349 (0.176) 2.273 (0.052) 2.252 (0.011)

Settings

m = 10000

k = 5000

tmax = 1035

m = 10000

tmax = 1035
m = 104 m = 105 m = 106 m = 107

Time 20h35m40s 25m08s (1m50s) 22m38s (2m18s) 5s (3s) 24s (3s) 3m35s (12s) 21m43s (30s)
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7.5 Discussion

In the above sections, we propose and evaluate an approximate iterative solution to the
problem of generalized linear models using a sequence of surrogate datasets generated by
sketching. We find that the method demonstrates computational tractability especially in
regards to massive datasets and across a variety of commodity computational infrastructure
that are readily accessible to most statistics practitioners.

For both simulation studies and real-world datasets, we find desirable numerical prop-
erties that support the theoretical properties that support the proposed model’s usage in
practical situations where estimation of GLM coefficient parameters and standard errors
are desired. Potential future work includes finding a heuristic for determining appropriate
sketch sizes m and k for different contexts, while balancing runtime and accuracy using
a priori information on dataset peculiarities such as categorical covariates, rare event dis-
tributions, and degree of multi-collinearity. A dynamic approach to selecting m and k

during the estimation procedure could also increase efficiency of the algorithm by avoiding
unnecessary data transfer when not needed at a particular iteration. Conversely, when
a pathological sketch is obtained, such as in the New York Yellow Taxicab dataset, the
Hessian and gradient estimates could be retained instead of discarded and amalgamated
with the subsequent sketch to avoid wasting the data transfer cost. Finally, strategies for
deciding whether to take a large number of iterations tmax or perform multiple shorter
replications and combining the results may yield interesting extensions of the proposed
method.
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Figure 7.7: Coefficient MSE of the sketched coefficients for the New York Yellow Taxicab
dataset against β̂IRLS, compared against wall-clock execution time. Doubly-sketching per-
formed with (m, k) = (10000, 5000), uniform-only sketching performed with m = 10000.
each sketching and IRLS replication is indicated by a MSE trace. Points omitted for
sketched traces for clarity, and IRLS MSE is truncated to 10−6 to improve axis scaling.
Single subsamples count the total query time and assumes the entire retrieved sample can
fit into working memory.
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Chapter 8

Conclusion

This thesis explored a range of structured finite Gaussian mixture models whose parame-
ters correspond to a variety of real-world data relationships, with application to datasets
both simulated and real. Methods were proposed to accelerate the EM procedure and
GLM model fitting via IRLS. Chapters 3 to 5 provide an investigation into parameter hy-
bridization and hierarchical parameter sharing, reducing the impact of dimensionality and
adding an additional aspect of interpretability to the mixture model. Chapter 6 provided a
means to accelerate the EM procedure by extrapolating the conditional expectations, with
attention to finite Gaussian mixture models. Chapter 7 details a faster but approximate
method of estimating GLM coefficients and standard errors, with emphasis on practical
data infrastructures. The conclusion of this thesis is by no means an end to the potential
avenues of future exploration; food for future thought has been left for future generations
of scholars in the corresponding chapter.
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Appendix A

Chimeral Clustering

A.1 Proof of Lemma 1

(i) From Section 3.1 and 3.6 of Grünbaum (2003), the convex hull conv(V ) is a polytope
whose V-representation is a set of vertices. A similar result can be found in Section 14.1
of Gruber (2007).

(ii) Uniqueness of conv(V ) is given by the fact that intersection of convex sets is convex.
If A and B are two different smallest convex hulls of V then A ∩B contains V and so is a
smaller convex hull; a contradiction.

(iii) Finally, Section 14.1 of Gruber (2007) provides us with the result that the extreme
points of conv(V ) are a subset of the vertices in V .

A.2 d-Radioactive Dataset

We describe here the method for generating the d-Radioactive dataset used in the simula-
tion study. Here, d represents the dimension of the data. In two dimensions, we find that
the data distribution resembles the radioactivity sign and is so named. In higher dimen-
sions, the sketch of the mixture density is a regular d-simplex (triangle, tetrahedron, and so
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forth) with the prototypes densities roughly forming the d− 1 dimension facets. Chimeral
clusters are formed by taking three parts of one prototype and one part of all other pro-
totypes for each prototype, with an extra cluster being equal parts of all prototypes. A
constructive description follows.

For d ≥ 2, define d+ 1 prototype clusters with their means being vertices of a regular
d-dimensional simplex centered at the origin in Rd with radius

√
200d (distance of each

vertex to the origin, equivalently radius of the circumscribed d-sphere). Define µi =
⟨µi,1, µi,2, ..., µi,d⟩ and construct successive vertices as follows.

• Set µ1,1 = 1 and µi,1 = −1
d

for i = 2, 3, ..., d+ 1.

• For i in 2, ..., d+ 1:

– Set µi,i =
√

1−∑i−1
j=1 µ

2
i,j.

– Set µi+1,i, ..., µi,d = − 1
µi,i

(
1
d

+∑i−1
j=1 µi,j

)
.

For each prototype, define the covariance matrix Σi = 100I− (100− r)µiµ
⊤
i for some

parameter 0 < r < 100. In order to preserve the separation of the clusters, r should be
considerably lower than 100. Let the natural parameterization of the prototype distribu-
tions be (ηi,Λi). Define d + 2 chimeral clusters, with the first j = 1, 2, ..., d + 1 being
parameterized by αj = 1

d+31d+1 + 2
d+3ej for standard basis vectors ej. The last chimeral

cluster is parameterised by αj = 1
d+11d+1.

For d = 2, the parameters in numerical form are:
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ηP1 = ⟨20, 0⟩

ηP2 = ⟨−10, 17.3205⟩

ηP3 = ⟨−10,−17.3205⟩

ΛP1 =
1 0
0 0.1


ΛP2 =

 0.2575 −0.4287
−0.4287 0.7525


ΛP3 =

0.2575 0.4287
0.4287 0.7525


αC1 = ⟨0.6, 0.2, 0.2⟩

αC2 = ⟨0.2, 0.6, 0.2⟩

αC3 = ⟨0.2, 0.2, 0.6⟩

αC4 = ⟨0.3̄, 0.3̄, 0.3̄⟩

A plot of 1000 observations drawn from each cluster is given in Figure A.1. A three-
dimensional version is visualized in Figure A.2 with 200 observations per cluster. In both
figures, r = 1.

A.2.1 Extended Simulation Results

A selection of these results are given in tabular form in the main work. We present here
the full simulation results for d = 2, 3, ..., 10, n = 20, 40, ..., 100, and r = 1, 5, 10.

Cosine Similarity

The cosine similarities are defined for chimeral clustering as follows. Let αc be the true
hybridization weights for cluster c ∈ C and let α̂c be the estimated hybridization weights
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Figure A.1: 2-dimensional radioactive dataset, 1000 observations per cluster. r = 1.
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Figure A.2: 3-dimensional radioactive dataset, 200 observations per cluster. r = 1.
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from the estimation procedure. Then, the cosine similarity of the entire fitted model could
be computed as


αC1

...
αCKC


⊤ 

α̂C1
...

α̂CKC


∥∥∥∥∥∥∥∥∥


αC1

...
αCKC


∥∥∥∥∥∥∥∥∥

2

∥∥∥∥∥∥∥∥∥


α̂C1

...
α̂CKC


∥∥∥∥∥∥∥∥∥

2

.

If the two sets of weights {αc}c∈C and {α̂c}c∈C coincide, then the angle formed in
between them is zero and so their cosine similarity is one. As the estimated vector deviates,
the similarity metric decreases towards zero. However, this process requires the estimated
indices C1, ..., CKC

to match the true indices, something not guaranteed by the estimation
procedure. Thus, we permute the estimated weights to maximize this quantity.

A.3 Extra Datasets

In this section, we include some datasets investigated as part of the process. They are
provided as information only.

A.3.1 Yeast dataset

The yeast stress dataset (Gasch et al., 2000) is used as a real-world dataset in the prior
epistatic clustering work by Zhang (2013). It describes the changes in gene expression of
the yeast Saccharomyces cerevisiae in response to changes in the environmental conditions
experienced by the cells. We attempt to replicate the same dataset by following the data
pre-processing step described therein (Zhang, 2013, Section 5.1).
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Figure A.3: Cosine similarity values measuring the αc parameter recovery in the d-
radioactive dataset over a range of data dimensions d, number of observations n, and
prototype sphericity r. Higher values are better. Standard deviations over fifty replica-
tions in brackets.
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Figure A.4: Bayesian Information Criterion values for the d-radioactive dataset over mul-
tiple parameter combinations; lower values are better. Standard deviations over fifty repli-
cations in brackets. Red indicates better mclust, blue indicates better chimeral clustering
performance.
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Figure A.5: Adjusted Rand index values for the d-radioactive dataset over multiple pa-
rameter combinations; higher values are better. Standard deviations over fifty replications
in brackets. Red indicates better mclust, blue indicates better chimeral clustering perfor-
mance.
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We begin with the dataset of Gasch et al. (2000) containing 6152 observations repre-
senting genes and 173 variables representing environmental conditions. We use the same
15 variables as described by Zhang (2013), titled with the prefix “Heat Shock” and suffixed
“hs-1” or “hs-2” as found in columns 4 through 19, inclusive. There are missing values in
this subset of dataset and it is unclear how Zhang (2013) treats these cases; we leave incom-
plete observations in the dataset at this point. Subsequently, we remove noisy observations
as done so by Zhang (2013), calculating a sample variance over each row. Due to data miss-
ingness, we compute the sample variance σ̂i over the non-missing columns for each gene i.
There is a single observation (YDL208W) with 14 missing values, leading to an undefined
sample variance; we remove this observation. Let S1 = {σ̂i | i = 1, 2, ..., 6151} denote the
set of sample variances. We select the subset of S1 “within three-folds of the minimum sam-
ple variance” (Zhang, 2013) to form S2 = {σ̂ | σ̂ ∈ S1, σ̂ ≤ 3×mins∈S1 s} with |S2| = 169.
We define σ̂0 as the sample average over S2, and construct the sample variability index vi

over the 6151 genes as vi = σ̂i/σ̂0 for i = 1, 2, ..., 6151. Finally, we choose all genes i such
that vi > 9; this leaves 2294 genes. Since there are still missing values for these genes, we
retain only complete cases for a final number of 1364 genes. By contrast, Zhang (2013)
claim to have 496 genes at the end of the procedure. If we remove incomplete cases after
selecting the 15 desired variables, we obtain 1361 genes at the end. If we remove incomplete
cases from the entire dataset of 173 variables, we obtain 258 genes at the end. We approx-
imately verify that our choice of 15 variables is correct by noting similar characteristics in
the pairwise scatterplot (Zhang, 2013, Figure 1). Overlooking this discrepancy, we proceed
with the application of chimeral clustering using the dataset of 1364 genes.

We evaluate for KP +KC ≤ 13, running mini-EM for 5000 iterations and holding ẑnk

fixed for 1000 of them. We exclude models that have covariances with eigenvalues ≤ 10−8

and Nk ≤ 10−8 for any g ∈ C ∪ P. We then run an additional 5000 iterations on the best
starter model. The resultant BICs for each combination of KP sand KC are presented in
Figure A.6.

Zhang (2013) obtains an epistatic clustering result with four primary clusters, three
epistatic clusters, and a miscellaneous cluster. By contrast, we obtain three prototypes and
eight chimeral clusters. The fitted model metrics are given in Table A.1 without ARI due
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Figure A.6: Minimum Bayesian Information Criterion for multiple choices of prototype
clusters KP and chimeral clusters KC over 100 runs each of the Saccharomyces cerevisiae
dataset. Graph truncated to KP ≤ 8 for presentation.
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mclust

Chimeral Clustering VVV VEE

Number of Clusters 10 (KP = 3) 4 10
Number of Parameters 428 543 288

Log-Likelihood −9840.69 −9855.30 −10 489.53
BIC 22 770.76 23 630.07 23 057.90

Table A.1: Fitted model metrics for yeast dataset with up to 13 clusters, best value in
bold.

to a lack of class labels. Again, we compare against the best fully varying covariance matrix
Gaussian mixture and the best parsimonious covariance matrix Gaussian mixture fitted by
mclust. Figure A.7 shows the αc quantities for each chimeral cluster. We can see the ability
of chimeral clustering to better adapt to varying number of parents and unbalanced mixing
proportions compared to the pre-specified values in epistatic clustering. With this dataset,
we note that the chimeral clustering BIC outperforms both the parsimonious Gaussian
mixture model and covariance VVV model.
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Figure A.7: Mixing proportions αc for each of the eight chimeral clusters over the three
prototype clusters for the Saccharomyces cerevisiae dataset. Both two and three parent
clusters are visible.
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Appendix B

Factor and Hybrid Components for
Model-Based Clustering

B.1 Expectation

We obtain the expected incomplete data log-likelihood (B.1).

E [ℓ (θ; X,Z)] =
N∑

n=1

∑
f∈F

ẑnf [log πf + log ϕf (xn)]

+
∑
h∈H

ẑnh {log πh + E [log ϕh (xn) | xn, znh = 1]

+ E
∑

f∈F
log ϕf (ynf ) | Yh = xn, znh = 1




Substituting in the appropriate multivariate normal densities produces the necessary
surrogate function Q. We omit expressing the condition to reduce notational load. While
Q appears unpalatable, it fortunately results in a tractable subsequent maximization step.
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Q (θ) = constant +
N∑

n=1

∑
f∈F

ẑnf

{
log πf −

1
2 log |Σf | −

1
2 Tr

[
Σ−1

f

(
xn − µf

) (
xn − µf

)⊤
]}

+
∑
h∈H

ẑnh

{
log πh −

1
2 log |Ψh|

− 1
2 Tr

Ψ−1
h E


xn −

∑
f∈F

αhfynf

xn −
∑
f∈F

αhfynf

⊤



+
∑
f∈F

(
−1

2 log |Σf | −
1
2 Tr

[
Σ−1

f E
[(

ynf − µf

) (
ynf − µf

)⊤
]])


It remains to evaluate the two expectations on latent ynf ’s, namely

E


xn −

∑
f∈F

αhfynf

xn −
∑
f∈F

αhfynf

⊤
 and E

[(
ynf − µf

) (
ynf − µf

)⊤
]
,

which can be expanded into an expression involving expectations on ynf and ynfy⊤
nq for

f, q ∈ F . Hence, conditional on assignment znh = 1, we first obtain the joint distribution
(B.1) of each ynf and the hybrid Yh.


Yh

Yf1
...
YfF

 | znh = 1 ∼ N





∑
f∈F αhfµf

µf1
...

µfF

 ,


∑
f∈F α

2
hfΣf + Ψh αhf1Σf1 · · · αhfF

ΣfF

αhf1Σf1 Σf1 0
... . . .

αhfF
ΣfF

0 ΣfF




(B.1)

Given that we observe Yh = xn, we use standard properties of the multivariate normal
distribution to obtain the conditional distribution of the latent prototype parameters ynf |
Yh = xn, znh = 1:
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E



Yf1
...
YfF

 | Yh = xn, znh = 1



=


µf1
...

µfF

+


αhf1Σf1

...
αhfF

ΣfF


∑

f∈F
α2

hfΣf + Ψh

−1xn −
∑
g∈F

αhgµg



Var



Yf1
...
YfF

 | Yh = xn, znh = 1



=


Σf1 0

. . .
0 ΣfF

−

αhf1Σf1

...
αhfF

ΣfF


∑

f∈F
α2

hfΣf + Ψh

−1 [
αhf1Σf1 · · · αhfF

ΣfF

]

We note that the expectation breaks apart nicely to give for each f ∈ F , which we
assign the shorthand ȳnfh for convenience:

E [Yf | Yh = xn, znh = 1] = µf + αhfΣf

∑
g∈F

α2
hgΣg + Ψh

−1xn −
∑
g∈F

αhgµg


However, the variance does not decompose into a block-diagonal matrix, and so we

must handle the expectation of the cross-term E
[
YfY

⊤
q | Yh = xn

]
for f, q ∈ F in a more

tedious way:

E
[
YfY

⊤
q | Yh = xn, znh = 1

]
= 1(f=q)Σf − αhfαhqΣf

∑
g∈F

α2
hgΣg + Ψh

−1

Σq︸ ︷︷ ︸
:=Shfq

+ ȳnfhȳ⊤
nqh

Hence, we expand may re-write the two expectations in question in the following form:
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E


xn −

∑
f∈F

αhfynf

xn −
∑
f∈F

αhfynf

⊤
 =

xn −
∑
f∈F

αhf ȳnfh

xn −
∑
f∈F

αhf ȳnfh

⊤

+
∑
f∈F

∑
q∈F

αhfαhqShfq

E
[(

ynf − µf

) (
ynf − µf

)⊤
]

=
(
ȳnfh − µf

) (
ȳnfh − µf

)⊤
+ Shff

We thus obtain a final expression suitable for the maximization step of the EM algorithm
after making the above substitution, simplifying the expression somewhat, and dropping
additive constants:

Q (θ) =
N∑

n=1

∑
f∈F

ẑnf log πf +
∑
h∈H

ẑnh log πh


+1

2

N∑
n=1

∑
f∈F

ẑnf

{
log

∣∣∣Σ−1
f

∣∣∣− Tr
[
Σ−1

f

(
xn − µf

) (
xn − µf

)⊤
]}

+
∑
h∈H

ẑnh

log
∣∣∣Ψ−1

h

∣∣∣− Tr

Ψ−1
h

xn −
∑
f∈F

αhf ȳnfh

xn −
∑
f∈F

αhf ȳnfh

⊤

+ Ψ−1
h

∑
f∈F

∑
q∈F

αhfαhqShfq


+
∑
f∈F

(
log

∣∣∣Σ−1
f

∣∣∣− Tr
[
Σ−1

f

(
ȳnfh − µf

) (
ȳnfh − µf

)⊤
+ Σ−1

f Shff

])
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B.2 Maximization

B.2.1 Maximizing in Factor Means

∂Q

∂µf

= 1
2
∂

∂µf

N∑
n=1

[
ẑnf

{
−Tr

[
Σ−1

f

(
xn − µf

) (
xn − µf

)⊤
]}

+
∑
h∈H

ẑnh

(
−Tr

[
Σ−1

f E
[(

ynf − µf

) (
ynf − µf

)⊤
]])

= 1
2

N∑
n=1

ẑnf

{
2Σ−1

f

(
xn − µf

)}
+
∑
h∈H

ẑnh

{
2Σ−1

f

(
ȳnfh − µf

)}
=

N∑
n=1

ẑnfΣ−1
f

(
xn − µf

)
+
∑
h∈H

ẑnhΣ−1
f

(
ȳnfh − µf

)
⇒ 0 =

N∑
n=1

ẑnfΣ−1
f

(
xn − µf

)
+
∑
h∈H

ẑnhΣ−1
f

(
ȳnfh − µf

)
0 =

N∑
n=1

ẑnf

(
xn − µf

)
+
∑
h∈H

ẑnh

(
ȳnfh − µf

)
µ∗

f =
∑N

n=1

(
ẑnfxn +∑

h∈H ẑnhȳnfh

)
∑N

n=1 (ẑnf +∑
h∈H ẑnh)
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B.2.2 Maximizing in Factor Covariances

∂Q

∂Σ−1
f

= 1
2

∂

∂Σ−1
f

N∑
n=1

[
ẑnf

{
log

∣∣∣Σ−1
f

∣∣∣− Tr
[
Σ−1

f

(
xn − µf

) (
xn − µf

)⊤
]}

+
∑
h∈H

ẑnh

(
log

∣∣∣Σ−1
f

∣∣∣− Tr
[
Σ−1

f E
[(

ynf − µf

) (
ynf − µf

)⊤
]])

= 1
2

N∑
n=1

[
ẑnf

{
Σf −

(
xn − µf

) (
xn − µf

)⊤
}

+
∑
h∈H

ẑnh

(
Σf − E

[(
ynf − µf

) (
ynf − µf

)⊤
])

= 1
2

N∑
n=1

[
ẑnf

{
Σf −

(
xn − µf

) (
xn − µf

)⊤
}

+
∑
h∈H

ẑnh

(
Σf −

[
Shff +

(
ȳnfh − µf

) (
ȳnfh − µf

)⊤
])

⇒ 0 =
N∑

n=1

[
ẑnf

{
Σf −

(
xn − µf

) (
xn − µf

)⊤
}

+
∑
h∈H

ẑnh

(
Σf −

[
Shff +

(
ȳnfh − µf

) (
ȳnfh − µf

)⊤
])

Σ∗
f =

∑N
n=1

{
ẑnf

(
xn − µf

) (
xn − µf

)⊤
+∑

h∈H ẑnh

[
Shff +

(
ȳnfh − µf

) (
ȳnfh − µf

)⊤
]}

∑N
n=1 (ẑnf +∑

h∈H ẑnh)

B.2.3 Maximizing in Hybrid Error

Diagonal, Varying Error Distributions

In the most general case where Ψh, we obtain the following maximization for a specific
h ∈ H:
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∂Q

∂Ψ−1
h

= 1
2

∂

∂Ψ−1
h

N∑
n=1

ẑnh

log
∣∣∣Ψ−1

h

∣∣∣− Tr

Ψ−1
h E


xn −

∑
f∈F

αhfynf

xn −
∑
f∈F

αhfynf

⊤




= 1
2

N∑
n=1

ẑnh

Ψh − E


xn −

∑
f∈F

αhfynf

xn −
∑
f∈F

αhfynf

⊤



= 1
2

N∑
n=1

ẑnh

Ψh −


xn −

∑
f∈F

αhf ȳnfh

xn −
∑
f∈F

αhf ȳnfh

⊤

+
∑
f∈F

∑
q∈F

αhfαhqShfq




⇒ 0 =
N∑

n=1
ẑnh

Ψh −


xn −

∑
f∈F

αhf ȳnfh

xn −
∑
f∈F

αhf ȳnfh

⊤

+
∑
f∈F

∑
q∈F

αhfαhqShfq




Ψ∗
h = diag

∑N
n=1 ẑnh

[(
xn −

∑
f∈F αhf ȳnfh

) (
xn −

∑
f∈F αhf ȳnfh

)⊤
+∑

f∈F
∑

q∈F αhfαhqShfq

]
∑N

n=1 ẑnh

Spherical, Varying Error Distributions

In the case where Ψh = ψhId we obtain the following maximization in ψh for a specific
h ∈ H:
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Q =
N∑

n=1
ẑnh

log
∣∣∣ψ−1

h Id

∣∣∣− Tr

ψ−1
h Id E


xn −

∑
f∈F

αhfynf

xn −
∑
f∈F

αhfynf

⊤




=
N∑

n=1
ẑnh

d logψ−1
h − ψ−1

h Tr


xn −

∑
f∈F

αhf ȳnfh

xn −
∑
f∈F

αhf ȳnfh

⊤

+
∑
f∈F

∑
q∈F

αhfαhqShfq


=d logψ−1

h

(
N∑

n=1
ẑnh

)
− ψ−1

h

N∑
n=1

ẑnh


xn −

∑
f∈F

αhf ȳnfh

⊤xn −
∑
f∈F

αhf ȳnfh


+
∑
f∈F

∑
q∈F

αhfαhqShfq


Differentiating in ψ−1

h :

∂Q

∂ψ−1
h

=ψhd

(
N∑

n=1
ẑnh

)

−
N∑

n=1
ẑnh


xn −

∑
f∈F

αhf ȳnfh

⊤xn −
∑
f∈F

αhf ȳnfh

+
∑
f∈F

∑
q∈F

αhfαhqShfq


Hence, the maximizer is:

ψ∗
h =

∑N
n=1 ẑnh

{(
xn −

∑
f∈F αhf ȳnfh

)⊤ (
xn −

∑
f∈F αhf ȳnfh

)
+∑

f∈F
∑

q∈F αhfαhqShfq

}
d
(∑N

n=1 ẑnh

)

Diagonal, Equal Error Distributions

In the case where Ψh = Ψ we obtain the following maximization in Ψ:
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Q =
N∑

n=1

∑
h∈H

ẑnh

log
∣∣∣Ψ−1

∣∣∣− Tr

Ψ−1 E


xn −

∑
f∈F

αhfynf

xn −
∑
f∈F

αhfynf

⊤




= log
∣∣∣Ψ−1

∣∣∣
 N∑

n=1

∑
h∈H

ẑnh

− N∑
n=1

∑
h∈H

ẑnh Tr

Ψ−1 E


xn −

∑
f∈F

αhfynf

xn −
∑
f∈F

αhfynf

⊤



Taking derivative in Ψ−1:

∂Q

∂Ψ−1 = Ψ

 N∑
n=1

∑
h∈H

ẑnh

− N∑
n=1

∑
h∈H

ẑnh E


xn −

∑
f∈F

αhfynf

xn −
∑
f∈F

αhfynf

⊤


Hence the maximizer is:

Ψ∗ =

∑N
n=1

∑
h∈H ẑnh

[(
xn −

∑
f∈F αhf ȳnfh

) (
xn −

∑
f∈F αhf ȳnfh

)⊤
+∑

f∈F
∑

q∈F αhfαhqShfq

]
∑N

n=1
∑

h∈H ẑnh

Spherical, Equal Error Distributions

In the case where Ψh = ψId we obtain the following maximization in ψ:

Q =
N∑

n=1

∑
h∈H

ẑnh

log
∣∣∣ψ−1Id

∣∣∣− Tr

ψ−1Id E


xn −

∑
f∈F

αhfynf

xn −
∑
f∈F

αhfynf

⊤




= log
∣∣∣ψ−1Id

∣∣∣
 N∑

n=1

∑
h∈H

ẑnh


−ψ−1

N∑
n=1

∑
h∈H

ẑnh Tr

E

xn −

∑
f∈F

αhfynf

xn −
∑
f∈F

αhfynf

⊤
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Taking derivative in ψ−1:

∂Q

∂ψ−1 =ψd
 N∑

n=1

∑
h∈H

ẑnh

− N∑
n=1

∑
h∈H

ẑnh


xn −

∑
f∈F

αhf ȳnfh

⊤xn −
∑
f∈F

αhf ȳnfh


+
∑
f∈F

∑
q∈F

αhfαhqShfq


Hence the maximizer is:

ψ∗ =

∑N
n=1

∑
h∈H ẑnh

[(
xn −

∑
f∈F αhf ȳnfh

)⊤ (
xn −

∑
f∈F αhf ȳnfh

)
+∑

f∈F
∑

q∈F αhfαhqShfq

]
d
∑N

n=1
∑

h∈H ẑnh

B.2.4 Quadratic Programming Derivation

We must optimize Q with respect to αh for h ∈ H and subject to the constraints that
αh ≥ 0 and ∑f∈F αhf = ∥αh∥1 = 1⊤αh = 1. We first show that Q is in fact quadratic in
αh; consider that, with respect to αh for a specific h ∈ H and holding all others constant,
we have the following expression:

Q =constant− 1
2

N∑
n=1

ẑnh Tr

Ψ−1
h E


xn −

∑
f∈F

αhfynf

xn −
∑
f∈F

αhfynf

⊤



=constant− 1
2

N∑
n=1

ẑnh Tr

Ψ−1
h


xn −

∑
f∈F

αhf ȳnfh

xn −
∑
f∈F

αhf ȳnfh

⊤

+
∑
f∈F

∑
q∈F

αhfαhqShfq


In order to recast these summations over F into an expression more suitable for matrix-

oriented algebra, we define the following helper matrices:
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Anh =
[
ȳn1h · · · ȳnF h

]

Bh =


Tr
[
Ψ−1

h Sh11
]

Tr
[
Ψ−1

h Sh11
]

Tr
[
Ψ−1

h Sh11
]

Tr
[
Ψ−1

h Sh11
]


We make the appropriate substitutions and re-arrange into a suitable quadratic form.

Q = const− 1
2

N∑
n=1

ẑnh Tr
[
Ψ−1

h

[
xnx⊤

n − xn (Anhαh)⊤ − (Anhαh) x⊤
n + Anhαhα⊤

h A⊤
nh

+
∑
f∈F

∑
q∈F

αhfαhqShfq


We now re-arrange into a suitable quadratic form:

Q = const− 1
2


N∑

n=1
ẑnh

Tr
[
Ψ−1

h Anhαhα⊤
h A⊤

nh

]
+
∑
f∈F

∑
q∈F

αhfαhq Tr
[
Ψ−1

h Shfq

]
− 2

N∑
n=1

ẑnh Tr
[
Ψ−1

h Anhαhx⊤
n

]
+

N∑
n=1

ẑnh Tr
[
Ψ−1

h xnx⊤
n

]}

Q = const− 1
2

{
N∑

n=1
ẑnh

(
Tr
[
α⊤

h A⊤
nhΨ−1

h Anhαh

]
+ α⊤

h Bhαh

)

− 2
N∑

n=1
ẑnhA⊤

nhΨ−1
h xnαh + const

}

Dropping constants:

Q = −1
2

{
α⊤

h

(
N∑

n=1
ẑnhA⊤

nhΨ−1
h Anh + Bh

N∑
n=1

ẑnh

)
αh +

(
−2

N∑
n=1

ẑnhA⊤
nhΨ−1

h xn

)
αh

}
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Multiply through by −1 to convert the maximization problem into a minimization
problem:

Q = 1
2α⊤

h

(
N∑

n=1
ẑnhA⊤

nhΨ−1
h Anh + Bh

N∑
n=1

ẑnh

)
︸ ︷︷ ︸

Fh

αh +
(

N∑
n=1

ẑnhA⊤
nhΨ−1

h xn

)
︸ ︷︷ ︸

q⊤
h

αh

Here, we see that Q was indeed a quadratic form, so we postulate the following quadratic
programming problem:

min
αh

1
2α⊤

h Fhαh + q⊤
h αh subject to αh ≥ 0 and 1⊤αh = 1

245



Appendix C

Model-Based Clustering with Nested
Gaussian Clusters

C.1 Majorization-Minimization update for rotation Γ

The expected complete-data log-likelihood for the data under the proposed model in the
conditional expression is given by

Q(V; θ) =
N∑

n=1

G:∑
g=1

Hg∑
h=1

ẑn,gŵn,g:h
[
log πg + log τg:h + log ϕpx

(
xn; µg,Σg

)
+ log ϕpy

(
yn; ηg:h + Bg:hxn,Λg:h

)
+ log ϕpu (un; ξ,Ψ)

]
.

We can re-write the product of marginal and conditional densities as the joint density
with structured parameters of the form

ϕpx

(
xn; µg,Σg

)
ϕpy

(
yn; ηg:h + Bg:hxn,Λg:h

)
ϕpu (un; ξ,Ψ)

= ϕp

vn; Γ⊤


µg

ηg:h + Bµg

ξ

 ,Γ⊤


Σg ΣgB⊤

g:h 0
Bg:hΣg Bg:hΣgB⊤

g:h + Λg:h 0
0 0 Ψ

Γ


= ϕp

(
vn; Γ⊤µ̄g:h,Γ⊤Σ̄g:hΓ

)
.
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Thus, we can re-write the expected complete-data log-likelihood as

Q(V; θ) =
N∑

n=1

G:∑
g=1

Hg∑
h=1

ẑn,gŵn,g:h
[
log(πgτg:h) + log ϕp

(
vn; Γ⊤µ̄g:h,Γ⊤Σ̄g:hΓ

)]
.

To update Γ, we treat the other parameters as fixed. We can expand the log-density as

log ϕp

(
vn; Γ⊤µ̄g:h,Γ⊤Σ̄g:hΓ

)
= −p2 log 2π − 1

2 log det Γ⊤Σ̄g:hΓ− 1
2 Tr

[
(Γ⊤Σ̄g:hΓ)−1(vn − Γ⊤µ̄g:h)(vn − Γ⊤µ̄g:h)⊤

]
= −p2 log 2π − 1

2 log det Σ̄g:h −
1
2 Tr

[
Γ−1Σ̄−1

g:hΓ⊤−1(vnv⊤
n − Γ⊤µ̄g:hv⊤

n − vnµ̄⊤
g:hΓ

+ Γ⊤µ̄g:hµ̄⊤
g:hΓ)

]
∝ constant− Tr

[
Γ−1Σ̄−1

g:hΓ⊤−1
vnv⊤

n

]
+ 2 Tr

[
Γ−1Σ̄−1

g:hΓ⊤−1Γ⊤µ̄g:hv⊤
n

]
− Tr

[
Γ−1Σ̄−1

g:hΓ⊤−1Γ⊤µ̄g:hµ̄⊤
g:hΓ

]
= constant− Tr

[
Γ⊤Σ̄−1

g:hΓvnv⊤
n

]
+ 2 Tr

[
Γ⊤Σ̄−1

g:hµ̄g:hv⊤
n

]
= constant + 2 Tr

[
vnµ̄⊤

g:hΣ̄−1
g:hΓ

]
− Tr

[
Σ̄−1

g:hΓvnv⊤
n Γ⊤

]
.

Substituting this into the surrogate function and interchanging linear operators with
finite summations, we obtain

Q(V; θ) ∝ constant

+ 2 Tr
 G∑

g=1

Hg∑
h=1

(
N∑

n=1
ẑn,gŵn,g:hvn

)
µ̄⊤

g:hΣ̄−1
g:h

Γ


−

G∑
g=1

Hg∑
h=1

Tr
[
Γ⊤Σ̄−1

g:hΓ
(

N∑
n=1

vnv⊤
n

)]
.
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In the form of (1) in (Kiers, 2002), we re-write this as the matrix minimization problem

g(Γ) = Tr AΓ +
∑
g:h

Tr Bg:hΓCg:hΓ⊤, where

A = 2
G∑

g=1

Hg∑
h=1

(
N∑

n=1
ẑn,gŵn,g:hvn

)
µ̄⊤

g:hΣ̄−1
g:h,

Bg:h = −Σ̄−1
g:h, and

Cg:h =
N∑

n=1
vnv⊤

n .

By making Cg:h positive definite, we can make use of the better majorizing function (Kiers
and ten Berge, 1992) given by

mc(Γ) = constant + Tr FΓ +
G∑

g=1

Hg∑
h=1

λg:h Tr Cg:hΓ⊤Γ

where Γ⊤Γ = I by definition of Γ, and the matrix

F = A +
G∑

g=1

Hg∑
h=1

(Cg:hΓ⊤
old(Bg:h + B⊤

g:h)− 2λg:hCg:hΓ⊤
old)

= 2
G∑

g=1

Hg∑
h=1

Σ̄−1
g:hµ̄g:h − 2

G∑
g=1

Hg∑
h=1

Cg:hΓ⊤
old(Σ̄

−1
g:h + λg:hI).

From this, we perform the indicated update in Kiers (2002) by taking the singular value
decomposition of F = PDQ⊤ and updating Γnew = QP⊤. Since the factor of two in F
does not change the matrices P and Q, it can be dropped without changing the solution
for Γnew.

As well, by the invariance of the trace under cyclic permutation of the matrix product
and invariance under transposition, we can define Ω = Γ⊤ with the orthogonality constraint
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Ω⊤Ω = I and re-write the minimization objective g as

g′(Ω) = Tr A⊤Ω +
∑
g:h

Tr Cg:hΩBg:hΩ⊤, where

= Tr A′Γ +
∑
g:h

Tr B′
g:hΩC′

g:hΩ⊤, where

A′ = A⊤,

B′
g:h = −Cg:h, and

C′
g:h = −Bg:h.

so that C′
g:h is positive definite again, allowing the better majorizing function to be used.

In this case,

F′ = A +
G∑

g=1

Hg∑
h=1

(Cg:hΓ⊤
old(Bg:h + B⊤

g:h)− 2λg:hCg:hΓ⊤
old)

= 2
G∑

g=1

Hg∑
h=1

Σ̄−1
g:hµ̄g:h − 2

G∑
g=1

Hg∑
h=1

Cg:hΓ⊤
old(Σ̄

−1
g:h + λg:hI]).

C.2 Real-World Dataset Estimated Parameters

In this section, we provide the parameters for all of the fitted models selected by BIC as
shown in the main manuscript.

C.2.1 Crabs dataset

Unsupervised

Recalling that BIC selected a model with conditional independence but not intrinsic inde-
pendence with G = 2 and H = 2, we have that

π =
π1

π2

 =
0.4997
0.5003

 , τ =
τ1

τ2

 =
0.5600
0.4400

 .
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The primary and secondary clustering mean parameters are given by

µ1 =
0.3297
1.1374

 , µ2 =
−0.4196
−1.4476

 , η1 =
2.2603
0.8762

 , η2 =
−2.2007
−0.8044

 .

The regression matrices are given by

B1 =
−0.8599 −0.2927

1.7079 0.9070

 , B2 =
−0.7744 −0.5208

1.9450 0.8867

 .

The covariance matrices are given by

Σ1 =
 6.3006 −8.9754
−8.9754 13.4708

 , Σ2 =
 3.5831 −8.2122
−8.2122 19.6559

 ,

Λ1 =
0.3962 0.1130
0.1130 0.1450

 , Λ2 =
0.7289 0.3304
0.3304 0.3046

 .

The rotation matrix is given by

Γ =



−0.2228 0.5468 −0.2524 −0.7624 0.0795
0.9044 0.3427 −0.2109 0.0369 −0.1373
−0.1340 −0.3007 −0.5990 −0.0541 −0.7279
0.2870 −0.6752 −0.2414 −0.4406 0.4575
−0.1792 0.1929 −0.6890 0.4694 0.4854


.

Semi-Supervised

Recalling that BIC selected a model with conditional independence but not intrinsic inde-
pendence with G = 2 and H = 2, we have that

π =
π1

π2

 =
0.4999
0.5001

 , τ =
τ1

τ2

 =
0.5370
0.4630

 .
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The primary and secondary clustering mean parameters are given by

µ1 =
 0.4588
−0.9254

 , µ2 =
−0.5322

1.0734

 , η1 =
 2.3753
−0.3878

 , η2 =
−2.4241

0.4469

 .

The regression matrices are given by

B1 =
0.8978 −0.1965
2.2005 −0.2458

 , B2 =
1.0516 0.0212
1.8723 −0.2951

 .

The covariance matrices are given by

Σ1 =
6.3808 8.4419
8.4419 11.7865

 , Σ2 =
4.2960 9.1759
9.1759 20.3848

 ,

Λ1 =
 0.9039 −0.1401
−0.1401 0.1566

 , Λ2 =
 0.6269 −0.0264
−0.0264 0.0916

 .

The rotation matrix is given by

Γ =



−0.1107 −0.3514 0.3553 −0.8555 0.0786
0.8699 −0.4060 0.2081 0.1281 −0.1369
−0.1624 0.2441 0.6103 0.1073 −0.7281
0.3385 0.7180 0.3742 −0.1413 0.4581
−0.3001 −0.3694 0.5639 0.4693 0.4849


.

C.2.2 Olive Oil Dataset

Unsupervised

Recalling that BIC selected a model with conditional independence but not intrinsic inde-
pendence with G = 4 and H = 3, we have that

π =


π1

π2

π3

 =


0.1543
0.5647
0.1731
0.1080

 , τ =


τ1

τ2

τ3

τ4

 =


0.3924
0.0726
0.5350

 .
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The primary and secondary clustering mean parameters are given by

µ1 =



−28.9153
227.5089
221.6169
−114.5314
−208.0146
−34.8238


, µ2 =



3.7179
−86.1419
−39.6550
−4.4542
23.6603
14.6131


,

µ3 =



52.1938
−10.1990
−116.6432
121.7839
156.4276
5.3307


, µ4 =



−61.7838
141.7932
77.7046
−8.2628
−77.2556
−35.2118


,

η1 =
6.2399
7.4205

 , η2 =
44.4287
−4.6681

 ,

η3 =
−3.8371
−2.5258

 .

The regression matrices are given by

B1 =



−0.4539 −0.3894
1.7909 0.3050
0.7359 0.5112
0.5724 0.5338
0.4043 0.5731
−2.7105 0.4559


, B2 =



−1.0674 0.1422
2.0961 −0.0090
0.7799 1.1501
0.4053 1.4176
0.3430 0.3098
−0.2478 0.0990


, B2 =



−0.0631 −0.5023
1.6452 0.2872
1.1412 0.5952
1.7234 0.7403
−0.1424 0.5668
−1.7054 0.3976


.
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The covariance matrices are given by

Σ1 =



440.6502 −837.6397 −974.6520 470.6914 488.7108 238.3555
−837.6397 2709.1462 3021.3604 −1383.7775 −1169.1515 −684.6526
−974.6520 3021.3604 3954.8088 −1717.1222 −1534.3128 −781.5812
470.6914 −1383.7775 −1717.1222 972.7261 878.3539 299.7057
488.7108 −1169.1515 −1534.3128 878.3539 1107.5628 273.0765
238.3555 −684.6526 −781.5812 299.7057 273.0765 195.2260


,

Σ2 =



496.6858 −997.8638 −1188.8008 1049.9881 1969.3574 155.4274
−997.8638 22666.2063 13418.5349 −7085.3169 −16375.5283 −5622.3652
−1188.8008 13418.5349 10771.1775 −6235.4205 −12216.2856 −3124.0482
1049.9881 −7085.3169 −6235.4205 4377.0516 8328.0910 1569.0545
1969.3574 −16375.5283 −12216.2856 8328.0910 17117.4840 3790.7315
155.4274 −5622.3652 −3124.0482 1569.0545 3790.7315 1454.2978


,

Σ3 =



224.2354 −404.5342 −611.1761 427.0222 588.5578 77.4043
−404.5342 2587.1254 3658.9929 −2233.9834 −3130.4829 −432.4653
−611.1761 3658.9929 5764.8167 −3657.7987 −5011.1844 −541.0220
427.0222 −2233.9834 −3657.7987 2415.7610 3301.5483 303.6785
588.5578 −3130.4829 −5011.1844 3301.5483 4646.1970 439.2035
77.4043 −432.4653 −541.0220 303.6785 439.2035 86.6288


,

Σ4 =



315.0019 −264.4656 −685.8318 747.6558 1283.3587 −12.3680
−264.4656 3813.9625 3670.6804 −2014.9200 −3696.1474 −786.4141
−685.8318 3670.6804 8609.8556 −5565.7481 −7754.9139 −316.4647
747.6558 −2014.9200 −5565.7481 4213.5024 6198.9563 14.6824
1283.3587 −3696.1474 −7754.9139 6198.9563 9958.0470 210.5271
−12.3680 −786.4141 −316.4647 14.6824 210.5271 217.1968


,

Λ1 =
3434.8112 −218.7220
−218.7220 14.3208

 ,

Λ2 =
4756.1141 607.1258

607.1258 898.7417

 ,

Λ3 =
2259.8418 −92.1147
−92.1147 64.7717
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The rotation matrix is given by

Γ =



−0.1351 0.0199 0.3437 −0.2907 −0.4602 0.0153 −0.6364 0.4022
−0.1977 −0.8923 −0.0581 −0.1857 −0.1267 0.2343 0.2198 0.0870
−0.2452 0.1448 −0.7487 0.1302 −0.5816 −0.0562 0.0069 −0.0080
−0.0522 0.2595 0.2418 −0.0968 −0.2388 −0.0695 0.7094 0.5450
0.0801 −0.1073 −0.3414 0.3173 0.4387 −0.0121 −0.2076 0.7274
0.2432 0.1927 −0.3661 −0.7981 0.2093 0.2916 0.0154 0.0610
0.8892 −0.1465 −0.0057 0.1843 −0.3740 0.1146 0.0101 0.0278
0.1538 −0.2121 −0.0943 −0.2883 0.0277 −0.9158 0.0002 0.0014



.

Semi-Supervised

Recalling that BIC selected a model with conditional independence but not intrinsic inde-
pendence with G = 3 and ⟨H1, H2, H3⟩ = ⟨4, 2, 3⟩, we have that

π =


π1

π2

π3

 =


0.1543
0.5647
0.1731
0.1080

 , τ =


τ1

τ2

τ3

τ4

 =


0.3924
0.0726
0.5350

 .
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The primary and secondary clustering mean parameters are given by

µ1 =



−28.9153
227.5089
221.6169
−114.5314
−208.0146
−34.8238


, µ2 =



3.7179
−86.1419
−39.6550
−4.4542
23.6603
14.6131


,

µ3 =



52.1938
−10.1990
−116.6432
121.7839
156.4276
5.3307


, µ4 =



−61.7838
141.7932
77.7046
−8.2628
−77.2556
−35.2118


,

η1 =
6.2399
7.4205

 , η2 =
44.4287
−4.6681

 ,

η3 =
−3.8371
−2.5258

 .

The regression matrices are given by

B1 =



−0.4539 −0.3894
1.7909 0.3050
0.7359 0.5112
0.5724 0.5338
0.4043 0.5731
−2.7105 0.4559


, B2 =



−1.0674 0.1422
2.0961 −0.0090
0.7799 1.1501
0.4053 1.4176
0.3430 0.3098
−0.2478 0.0990


, B2 =



−0.0631 −0.5023
1.6452 0.2872
1.1412 0.5952
1.7234 0.7403
−0.1424 0.5668
−1.7054 0.3976


.
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The covariance matrices are given by

Σ1 =



440.6502 −837.6397 −974.6520 470.6914 488.7108 238.3555
−837.6397 2709.1462 3021.3604 −1383.7775 −1169.1515 −684.6526
−974.6520 3021.3604 3954.8088 −1717.1222 −1534.3128 −781.5812
470.6914 −1383.7775 −1717.1222 972.7261 878.3539 299.7057
488.7108 −1169.1515 −1534.3128 878.3539 1107.5628 273.0765
238.3555 −684.6526 −781.5812 299.7057 273.0765 195.2260


,

Σ2 =



496.6858 −997.8638 −1188.8008 1049.9881 1969.3574 155.4274
−997.8638 22666.2063 13418.5349 −7085.3169 −16375.5283 −5622.3652
−1188.8008 13418.5349 10771.1775 −6235.4205 −12216.2856 −3124.0482
1049.9881 −7085.3169 −6235.4205 4377.0516 8328.0910 1569.0545
1969.3574 −16375.5283 −12216.2856 8328.0910 17117.4840 3790.7315
155.4274 −5622.3652 −3124.0482 1569.0545 3790.7315 1454.2978


,

Σ3 =



224.2354 −404.5342 −611.1761 427.0222 588.5578 77.4043
−404.5342 2587.1254 3658.9929 −2233.9834 −3130.4829 −432.4653
−611.1761 3658.9929 5764.8167 −3657.7987 −5011.1844 −541.0220
427.0222 −2233.9834 −3657.7987 2415.7610 3301.5483 303.6785
588.5578 −3130.4829 −5011.1844 3301.5483 4646.1970 439.2035
77.4043 −432.4653 −541.0220 303.6785 439.2035 86.6288


,

Σ4 =



315.0019 −264.4656 −685.8318 747.6558 1283.3587 −12.3680
−264.4656 3813.9625 3670.6804 −2014.9200 −3696.1474 −786.4141
−685.8318 3670.6804 8609.8556 −5565.7481 −7754.9139 −316.4647
747.6558 −2014.9200 −5565.7481 4213.5024 6198.9563 14.6824
1283.3587 −3696.1474 −7754.9139 6198.9563 9958.0470 210.5271
−12.3680 −786.4141 −316.4647 14.6824 210.5271 217.1968


,

Λ1 =
3434.8112 −218.7220
−218.7220 14.3208

 ,

Λ2 =
4756.1141 607.1258

607.1258 898.7417

 ,

Λ3 =
2259.8418 −92.1147
−92.1147 64.7717
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The rotation matrix is given by

Γ =



−0.1351 0.0199 0.3437 −0.2907 −0.4602 0.0153 −0.6364 0.4022
−0.1977 −0.8923 −0.0581 −0.1857 −0.1267 0.2343 0.2198 0.0870
−0.2452 0.1448 −0.7487 0.1302 −0.5816 −0.0562 0.0069 −0.0080
−0.0522 0.2595 0.2418 −0.0968 −0.2388 −0.0695 0.7094 0.5450
0.0801 −0.1073 −0.3414 0.3173 0.4387 −0.0121 −0.2076 0.7274
0.2432 0.1927 −0.3661 −0.7981 0.2093 0.2916 0.0154 0.0610
0.8892 −0.1465 −0.0057 0.1843 −0.3740 0.1146 0.0101 0.0278
0.1538 −0.2121 −0.0943 −0.2883 0.0277 −0.9158 0.0002 0.0014



.

C.2.3 93 Cars Dataset

Recalling that BIC selected a model with conditional independence but not intrinsic inde-
pendence with G = 3 and H = 2, we have that

π =
π1

π2

 =
0.8673
0.1327

 , τ =


τ1

τ2

τ3

 =


0.6489
0.2974
0.0538

 .

The primary and secondary clustering mean parameters are given by

µ1 =
 −4.6984
−125.7398

 , µ2 =
 31.1875
380.1100

 , µ3 =
−115.7834
−584.6934

 ,

η1 =
−3.1018

19.2254

 , η2 =
 27.0032
−358.8575

 .

The regression matrices are given by

B1 =
 0.4083 8.5755
−0.4933 0.3102

 , B2 =
 0.7568 −0.8025
−0.5013 −0.3371

 .
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The covariance matrices are given by

Σ1 =
545.7705 0.0000

0.0000 30894.2732

 , Σ2 =
37.2384 0.0000

0.0000 93570.2397

 ,

Σ3 =
142.3097 0.0000

0.0000 1962.7674

 ,

Λ1 =
53.7494 0.0000

0.0000 39641.8026

 , Λ2 =
24.0091 0.0000

0.0000 27184.6035

 .

The rotation matrix is given by

Γ =



−0.0114 −0.1543 0.0752 −0.2249 0.9591
−0.0586 −0.5706 0.2579 −0.7243 −0.2825
0.0071 −0.6855 0.3280 0.6498 0.0165
0.8845 0.1696 0.4318 −0.0485 −0.0074
−0.4627 0.3898 0.7961 0.0145 −0.0018


.

C.2.4 Handwritten Digits Dataset

Recalling that BIC selected a model with conditional independence but not intrinsic inde-
pendence with G = 5 and H = 3, we have that

π =



π1

π2

π3

π4

π5


=



0.1876
0.2035
0.2905
0.0068
0.3115


, τ =


τ1

τ2

τ3

 =


0.3235
0.4262
0.2503

 .
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The primary and secondary clustering mean parameters are given by

µ1 =
1856.5336
−130.3318

 , µ2 =
3470.8475
−138.8670

 , µ3 =
5961.5899
−163.0458

 ,

µ4 =
6775.9996
−173.8813

 , µ5 =
10658.3140
−209.0189

 ,


η1

η2

η3

 =


−0.8262
−1.0759
−0.7641

 .

The regression matrices are given by

B1 =
0.0308
0.3229

 , B2 =
0.0308
0.3207

 , B3 =
0.0309
0.3233

 .

The covariance matrices are given by

Σ1 =
55224.5560 −687.2779
−687.2779 18.8778

 , Σ2 =
243268.4210 −2483.0248
−2483.0248 33.4820

 ,

Σ3 =
3131740.9966 −23299.6526
−23299.6526 195.5277

 , Σ4 =
2768020.7865 −63193.7137
−63193.7137 1452.2865

 ,

Σ5 =
5934825.0438 −50317.0775
−50317.0775 453.0749

 ,


Λ1

Λ2

Λ3

 =


0.0044
0.0038
0.0028

 .

The rotation matrix is given by

Γ =


0.0063 −0.9526 −0.3041
0.0294 0.3041 −0.9522
0.9995 −0.0029 0.0300

 .

C.3 Cross-Tabulations

C.3.1 93 Cars dataset

We provide in Table C.1 the cross-tabulation of the best fitted model against the joint class
of the observable class labels Cylinder, Type, and AirBags. Each class label is expressed
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as a tuple (Cylinder, Type, Airbags), and the fitted class labels are expressed as g:h.

C.4 Computation Time

Due to the scope of the model space of the proposed model and the use of exhaustive
search with the Bayesian Information Criterion to perform model selection, we used a
120-core server to perform the estimation procedure in parallel. For example, in the crabs
dataset, evaluating 2520 different models takes approximately 15 minutes, in the olive
oil dataset 57792 models takes approximately 8 hours, in the cars dataset 41280 models
takes approximately 1 hour, and in the handwritten digits dataset 73840 models takes
approximately 3 hours. Each individual model specification can be estimated in a few
minutes, though this depends on the complexity implied by px, py, pu, G,Hg and the type
of independence.

260



Table C.1: Clustering labels for 93 cars dataset using the proposed model tabulated against
the Cylinder, Type, and AirBags simultaneously. Missing combinations of class labels are
omitted.

(Cylinder, Type, AirBags) 1:1 1:2 2:1 2:2 3:1 3:2
(3, Small, None) 0 0 3 0 0 0
(4, Compact, Driver & Passenger) 2 0 0 0 0 0
(4, Compact, Driver only) 6 0 2 0 0 0
(4, Compact, None) 2 0 3 0 0 0
(4, Midsize, Driver only) 2 0 3 0 0 0
(4, Midsize, None) 1 0 1 0 0 0
(4, Small, Driver only) 3 0 2 0 0 0
(4, Small, None) 6 0 7 0 0 0
(4, Sporty, Driver & Passenger) 1 0 0 0 0 0
(4, Sporty, Driver only) 3 0 2 0 0 0
(4, Sporty, None) 0 0 2 0 0 0
(4, Van, Driver only) 0 1 0 0 0 0
(5, Midsize, Driver & Passenger) 1 0 0 0 0 0
(5, Van, None) 0 0 0 1 0 0
(6, Compact, Driver only) 1 0 0 0 0 0
(6, Large, Driver & Passenger) 2 1 0 0 0 0
(6, Large, Driver only) 4 0 0 0 0 0
(6, Midsize, Driver & Passenger) 5 0 0 0 0 0
(6, Midsize, Driver only) 5 0 0 0 0 0
(6, Midsize, None) 1 0 1 0 0 0
(6, Sporty, Driver & Passenger) 2 0 0 0 0 0
(6, Sporty, Driver only) 0 0 0 0 1 0
(6, Sporty, None) 0 1 0 0 0 0
(6, Van, Driver only) 0 2 0 0 0 0
(6, Van, None) 1 4 0 0 0 0
(8, Large, Driver & Passenger) 1 0 0 0 0 0
(8, Large, Driver only) 3 0 0 0 0 0
(8, Midsize, Driver & Passenger) 0 0 0 0 1 0
(8, Midsize, Driver only) 0 0 0 0 1 0
(8, Sporty, Driver only) 0 0 0 0 0 1
(rotary, Sporty, Driver only) 0 0 0 0 0 1
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Appendix D

Generalized Linear Models for
Massive Data via Doubly-Sketching

D.1 Comparison to IRLS

Within this simulation, a large variety of configurations were tested with the highlights
of the results distilled into the main work. The less interesting and banal results are
presented here. Figure D.1 shows the recovered parameter MSE grouped by all of the
simulation parameter configurations and summarized as an average. Based on this figure,
we can observe that the general shape of the trend is the same for many of the parameter
choices. Moreover, the MSE values for both IRLS and the doubly-sketched method are of
similar magnitude and so is visualized as a ratio in the main work.

Overall, we see reasonable recovery against the true β by both IRLS and the proposed
sketching method except in the case of k = 100, where the sketched surrogate dataset size
is very aggressively chosen. As noted previously, the case of d = k = 100 is a case where
each sketched Hessian matrix is at most rank 100 and at risk of being poorly-conditioned.
This is exacerbated by the choice of Clarkson-Woodruff sketch; it is possible SCW does not
allocate any first-sketch observations 1, 2, ...,m to a second-sketch surrogate observation,
causing X̃ ∈ R100×100 to have a zero row and thus X̃⊤X̃ to be singular.
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Figure D.1: Coefficient MSE of the doubly-sketched and IRLS estimation procedure against
the true parameters. MSE values are indicated individually by points, with group-wise
averages across replications joined by line segments.
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Figure D.2: Coefficient MSE of the doubly-sketched parameters against the IRLS fitted
parameters. MSE values are indicated individually by points, with group-wise averages
across replications joined by line segments.
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In addition to the recovery of the true β, we also examine the result of the doubly-
sketched estimate against the IRLS estimate in Figure D.2. This is again measured using
the MSE, and quantifies how well the proposed doubly-sketched method approximates the
full data IRLS solution in the long-run. We find the effects of sketch sizes m and k to have
the greatest effect on the distance between the estimates βSketch and βIRLS.

D.2 Testing Hardware

Computation time was calculated on a personal laptop computer with an Intel Core i7-
3720QM, 32GB of RAM, a 500GB SSD and a 500GB 7200RPM hard drive attached via
wired gigabit Ethernet to a network shared by the network server. All timed simulation
runs were run sequentially; only the parameter recovery simulation was run in parallel and
untimed.

When testing data stored across the network, we stored the data in a PostgreSQL 14.2
database hosted on a TrueNAS server on the same local network. The server is equipped
with an AMD Athlon 3000G, 16GB of RAM and four 8TB 7200RPM hard drives in a ZFS
pool with RAIDZ2 redundancy. No L2ARC is enabled, and the TrueNAS dataset holding
the PostgreSQL server has a record size of 16 KiB.

D.3 New York Yellow Taxicab Dataset

The dataset was obtained from NYC Taxi and Limousine Commission (2022) for the dates
from January 2009 to January 2023 inclusive. For months with more than one type of
taxicab data, only the yellow taxicab data was used. Each month of data is provided in
a single Parquet file. Unfortunately, the data columns are not consistent across months,
nor are the contents consistent with the provided data dictionary. The following section
describes how the dataset was pre-processed before usage. For each month, we load the
CSV into R R Core Team (2019) and edit column names using the following patterns:
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1. Convert column names to lowercase.

2. Remove leading trip_ or tpep_.

3. Rename any column containing vendor to vendor_id.

4. Replace leading start_ with pickup_.

5. Replace leading end_ with dropoff_.

6. Replace substring amt with amount.

We adjust the column contents as follows:

1. Despite the data dictionary only listing two possible choices for Vendor ID, there are
multiple possibilities listed in the data. We code factor levels 1 and 2 in accordance
with the data dictionary, and use 3 for any other value including missing values.

2. The payment type in some months is provided as text with a variety of spellings
and abbreviations of the intended payment type. The data dictionary encodes the
intended values as numerical values. To be consistent with the latter, we interpreted
and recoded the text as lowercase with the mapping:

• crd, cre, and credit → 1

• cas, cash, and csh → 2

• no, no charge, and noc → 3

• dis, dispute, and credit → 4

• unk → 5

All other values were recoded as missing. No instance of voided trips was found in
months requiring recoding.
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3. When payment type is provided as an integer as specified in the data dictionary, there
are values beyond the valid levels of 1 through 6. These were also recoded as missing.
This resulted in no occurrences of the level 6 and so only factor levels 1 through 5
were used in the final analysis.

We retain the covariate columns vendor_id, payment_type, duration, pickup_datetime,
dropoff_datetime, distance, fare_amount, tip_amount, tolls_amount, total_amount,
and the response column passenger_count. This is done due to the quantity of missing
data in other columns, and inconsistent availability across months. The resulting month’s
complete cases are written out to a new CSV file. This procedure is repeated for all 180
months of data.

A table was created in PostgreSQL with the following schema:

CREATE TABLE yellowtaxi (
id serial8 not null,
passenger_count int2,
vendor_id int2,
payment_type int2,
pickup_datetime timestamp,
dropoff_datetime timestamp,
distance float8,
fare_amount float8,
tip_amount float8,
tolls_amount float8,
total_amount float8,
primary key (id)
)
WITH (fillfactor=100)

A serial8 column was used to assign a unique identifier to each row for use during
sketching; in principle, the first Uniform sketch will specify the rows to retrieve. This
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simultaneously doubles as a primary key for indexing, which can speed data retrieval.
However, due to the way PostgreSQL functions, among other SQL databases, retrieving a
single row requires retrieving the entire page in which it is stored from disk. This page can
contain a varying number of other rows, the majority of which are discarded as it is unlikely
that the page contains another sampled index. As a result, this is incredibly inefficient by
magnifying the necessary amount of reads, compounded upon by the fact that spinning
mechanical hard drives perform poorly under random access.

D.3.1 Sampling via TABLESAMPLE

In lieu of using a true simple random sample with replacement, we leverage a function built
into PostgreSQL to approximately sample from the database with greater performance.
Again, data in a PostgreSQL table is stored in pages which can contain many different
rows; moreover, pages may not hold a consistent number of rows. Reading one row from
a page requires reading the entire page anyway, so one may simply opt to sample over
the set of pages. From a technical perspective, reading in one page of 100 rows is much
faster than reading in 100 rows across 100 pages. The TABLESAMPLE operation defined in
PostgreSQL returns a percentage of pages in the table as an approximation to sampling
rows within the table and offers a very large performance benefit in the context of Uniform
sketching; however, there is a trade-off. In the case where rows are stored in some sort of
sequence or with some degree of clustering, such that a single page will tend to store similar
rows, then TABLESAMPLE may be less effective as the variation in the sampled data is lower
than would be under true SRSWOR. From a sampling point of view, this is effectively
Poisson sampling over the set of pages in the dataset, which we treat as an approximation
to uniform sketching for large n. Due to the sequential manner in which data is loaded,
pages are filled with sequential rows from the dataset.
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