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Abstract

Graph neural networks (GNNs) have emerged as a state-of-the-art approach to model
and draw inferences from large scale graph-structured data in various application settings
such as social networking. The primary goal of a GNN is to learn an embedding for each
graph node in a dataset that encodes both the node features and the local graph structure
around the node.

Prior work has shown that GNNs are prone to model extraction attacks. Model ex-
traction attacks and defenses have been explored extensively in other non-graph settings.
While detecting or preventing model extraction appears to be difficult, deterring them via
effective ownership verification techniques offers a potential defense. In non-graph set-
tings, fingerprinting models, or the data used to build them, have shown to be a promising
approach toward ownership verification.

We hypothesize that the embeddings generated by a GNN are useful for fingerprints.
Based on this hypothesis, we present GROVE, a state-of-the-art GNN model fingerprinting
scheme that, given a target model and a suspect model, can reliably determine if the
suspect model was trained independently of the target model or if it is a surrogate of
the target model obtained via model extraction. We show that GROVE can distinguish
between surrogate and independent models even when the independent model uses the
same training dataset and architecture as the original target model.

Using six benchmark datasets and three model architectures, we show that GROVE con-
sistently achieves low false-positive and false-negative rates. We demonstrate that GROVE
is robust against known fingerprint evasion techniques while remaining computationally ef-
ficient.
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Chapter 1

Introduction

Graph data is ubiquitous and used to model networks such as social networks, chemical
compounds, and financial transactions. However, the non-euclidean nature of graph data
makes it difficult to analyze using traditional Machine Learning (ML) algorithms. Unlike
Euclidean datasets, where the data points are independent, graph data follows homophily,
where similar nodes share an edge. To analyze such graph data, a special type of Deep

Neural Network (DNN) called GNN has been introduced [30, 19, 81, 68]. These models

learn an embedding for each node in the graph that encodes the node features and local

graph structure. They can perform node classification [30, 19, 81, (8], link prediction [/,
, &4, 85], visualization [74], and recommendations [35, 57, 72, 82].

Model builders spend significant time and resources to prepare the training data, per-
form hyperparameter tuning, and optimize the model to achieve state-of-the-art perfor-
mance. This makes the deployed GNNs a critical intellectual property for model own-
ers. For instance, Amazon Neptune! provides a framework to train and use GNNs; Face-
book [31] and Twitter [51] extensively use graph-based ML models. This broad adop-
tion of GNNs makes them vulnerable to model extraction attacks where an adversary
tries to train a local surrogate model with similar functionality as the deployed target
model |65, 49, 46, 24, 6, 2].

Model extraction attacks use the input-output pairs from the target model to train
the surrogate model. The goal is to achieve similar utility on the primary task for a frac-
tion of the cost. These attacks can potentially violate the company’s intellectual property
and allow further attacks such as evasion using adversarial inputs and membership in-
ference [19]. While prior work has indicated the feasibility of model extraction attacks

Thttps://aws.amazon.com /neptune/machine-learning/



on various domains [19, 2, 61, 17], recent work introduced such attacks against GNNs as
well [10, 77, 55].

Current approaches to address model extraction attacks rely on post-hoc ownership
verification in which the model owner requests a trusted verifier to decide whether a
suspect model was stolen from their target model. Ownership verification is done using
either fingerprinting or watermarking. Watermarking has been shown to degrade model
accuracy [33, 206, 29] and can be evaded [39, 10]. Hence, we identify fingerprinting as a
potential scheme that can be used for model ownership verification. Model fingerprinting
uses inherent features of the model to distinguish between surrogates and independent

models. [90, 39, 5, 70, 50, 92]. On the other hand, dataset fingerprinting uses the training
data as a fingerprint, such that any model trained on the same data as the target model
is classified as stolen [10]. Such fingerprinting schemes have been proposed for non-graph

DNNSs, but there is currently no such work for GNNs.

The state-of-the-art fingerprinting schemes in non-GNN settings use specially crafted
inputs to gauge the decision boundary of a model by analyzing the output [10, 39, 50].
The fingerprint, thus, is the set of specially crafted inputs used to query the model. Since
GNNs output an embedding for each node, we ask whether the embeddings themselves
can be used as a fingerprint. If this works, the benefit of this approach is that the model
owner does not generate their own fingerprint. Any data from the same distribution as the
model’s training data can be used to generate fingerprints.

This thesis presents the first fingerprinting scheme for GNNs. We claim the
following main contributions:

1. identify GNN embeddings as a potential fingerprint and show that they are useful for
verifying model ownership but not dataset ownership (Chapter 4).

2. present GROVE, embedding-based fingerprinting for GNN model ownership verification
(Chapter 5).

3. extensively evaluate GROVE on six datasets and three architectures (Chapter 7) show-
ing that GROVE is:

o cffective at distinguishing between surrogate and independent models with close
to zero false positives or false negatives (Section 7.1),
e robust against known fingerprint removal techniques (Section 7.2), and

e computationally efficient (Section 7.3).



Chapter 2

Background

We describe some preliminaries for Graph Neural Networks (GNNs) and notations used in
this thesis (Section 2.1), followed by an overview of model extraction attacks and defenses
(Section 2.2).

2.1 Graph Neural Networks

Several real-world applications can be modeled as graphs that include nodes representing
different entities in the graph (e.g., authors in citation networks or users in social net-
works) and edges representing the connections between nodes. Formally, a graph can be
represented as G = (V,€), where V is a set of nodes and £ is a set of edges connecting
these nodes. We represent a single node as v € V and an edge between nodes u and v as
ew € €. The entire graph structure, including all the nodes and corresponding edges, can
be represented using a binary adjacency matrix A of size |V| x |[V|: Ay = 1,V(ey,) € E.

Machine Learning (ML) on Graphs. Due to the large scale of these graph datasets,
ML approaches for analyzing them have gained significant attention. Specifically, GNNs
have shown tremendous performance in analyzing graph data for node and edge classifi-
cation, clustering, and other tasks. Following prior work [55, 10, 77], we consider node
classification tasks in this work.

Each node has a feature vector x € X and corresponding classification label y € Y
where X and ) are the set of features and labels across all nodes respectively. We can
denote the graph dataset as D = (A, X', )) which is a tuple of the adjacency matrix, the
set of node features, and the set of labels respectively.

3



GNNs are trained to take the graph’s adjacency matrix and the features as input and
map it to the corresponding classification labels. Once trained, GNNs output a node em-
bedding h € H. Embeddings are low-dimensional representations of each node and the
graph structure. They can be used for downstream tasks such as classification, recom-
mendations, etc. We note that since H is dependent on the graph structure and the node
features, two GNNs trained on different datasets should differ in their output of H [19, 65].
Formally, the mapping for a GNN is written as: F : Ax X — H.

There are two training paradigms for GNNs:

e Transductive where the model trains on mapping some graph nodes to classification
labels but uses the remaining graph nodes for prediction during testing. Here, the
underlying graph structure A, passed as input to the model, remains the same. This is
useful for labeling a partially-labeled graph.

e Inductive where the model is trained on a training graph dataset but evaluated on an
unseen and disjoint testing dataset.

While the transductive setting is useful for analyzing graphs and labeling partially-
labeled graphs, it is less useful for ML-as-a-service applications on graph data. Thus,
following prior work [55], we consider the more practical setting of inductive training,

GNN Computation. A GNN aggregates information from neighboring nodes to compute
the embeddings for a specific node. Formally, each layer of a GNN performs the following
operation:

hl = AGG(RLH, MSG (ALY ALY u e N (v))) (2.1)

N (v) denotes the nodes that share an edge with v. h! denotes the embedding of node v at
layer [. h? is initialized as the feature vector z for node v. MSG(-) gathers information from
the neighbouring nodes of v, and AGG(-) aggregates this information with h{~! to produce
hl. The primary difference between different GNN architectures is the implementation of
these two functions.

Graph Sample and Aggregate (GraphSAGE) [19] was the first GNN architecture
that uses inductive training. It uses the mean aggregation operation:

hl, = CONCAT (K, MEAN(R ! 1w € N(v))) (2.2)

where CONCAT is the concatenation operation, and MEAN is the mean operation.

Graph Attention Network (GAT) [68] includes masked self-attention layers in the
GNN, which allows the model to assign a different weight to each neighbor of a node. This

4



captures the variation in the contribution of different neighboring nodes. The aggregation
function is:
= CONCAT{ o( Y o, WFRLT) (2.3)
ueN (v)
where CONCAT is the Concatenation operation, K is the total number of projection heads
in the attention mechanism, o is the attention coefficient in the k" projection head, W*
is the linear transformation welght matrix, and o(+) is the activation function.

Graph Isomorphism Network (GIN) [81] extends GraphSAGE and uses the aggre-
gation function:
hl = MLP'((1+¢€)-hi' 4 Z it (2:4)
ueN (v
where MLP is a multi-layer perceptron and € is a learnable parameter to adjust the weight
of node v. This treats h!7! : u € N(v) as a multiset, i.e., a set with possible repeating
elements.

2.2 Model Extraction Attacks and Defences

Model extraction attacks consider an Adversary (Adv) who trains a local surrogate model
(Fs) to mimic the functionality of a target model (F;) [65]. These attacks have been

extensively studied in many domains including images [10, 19, 24|, text [32, 47|, and
graphs [55, 77, 10] and across different types of models including generative models 61, 23],
and large language models [69]. This attack has been identified as a realistic threat that vi-

olates the confidentiality of the company’s proprietary model and thereby their intellectual
property |[2].
We denote the training dataset of F; (respectively Fs) as D; (D;). Additionally, we

refer to models trained independently on a dataset D; (in the absence of model extraction
attack) are called independent models (F;).

Non-Graph Model Extraction Attacks. Adv, given query access to F;, sends queries
and obtains corresponding predictions. Adv then uses these input-prediction pairs to train
Fs. Most attacks train F; using specially crafted adversarial examples as inputs to F;
[65, 46, 49, 24]. This helps to ensure that the decision boundary of F is similar to F;.
After a successful attack, Adv can use F, to generate effective transferrable adversarial
examples [19] or perform membership inference attacks [56].

Non-Graph Model Extraction Defenses. Preventing model extraction attacks with-
out affecting model performance is difficult |2, 6, 32|. However, ownership verification as a




post-hoc approach helps identify whether a suspect model (F7) is stolen via model extrac-
tion. Normally, this involves a Third-Party Verifier (Ver) that verifies ownership. There
are currently two main schemes for ownership verification:

e watermarking |66, 71, 1, 43, 18, 52, 94, 8, 22, 60] where some secret information is
embedded into the model during training which is extracted later during verification.

e fingerprinting [39, 10, 50, 5, 90, 92] where inherent features are extracted from a model,
without affecting the training process.

Prior work has shown watermarking is brittle and can be easily evaded [38]. Hence, fin-
gerprinting is currently the most promising technique for ownership verification. In this
work, we focus on fingerprinting.

Prior work has explored two fingerprinting schemes based on whether the fingerprint
is for dataset ownership or model ownership. The subtle difference between them is how
a different model trained from scratch on the same dataset as F; is treated. Dataset-
ownership-based fingerprinting classifies such a model as a surrogate. However, model-
ownership-based fingerprinting classifies such a model as independent. Here, only models
derived (e.g., transfer-learning, model extraction) from F; are classified as a surrogate. We
describe the main prior works for fingerprinting below.

For dataset ownership-based fingerprinting, Maini et al. [1(] propose dataset inference
on the following intuition: the distance of the training data points from the model’s decision
boundary is increased during training. Hence, the distance of a data point from the decision
boundary can help infer its membership in D;. Ver queries F; with data points from D,
and unseen public data to compute their distances from the decision boundary. F» is
classified as a surrogate if the distances corresponding to D; are large, and the distances
corresponding to unseen public data are small.

Most prior work on model ownership-based fingerprinting identifies adversarial exam-
ples that can transfer from F; to Fs but not to F; [39, 90, 5, 70]. They vary in how to
identify such adversarial examples. For instance, data points close to the decision boundary
can be used to differentiate between F, and F; models |5, 70]. Alternatively, untargeted
adversarial examples can be used as well [90]. However, these works consider F; derived
using transfer-learning and fine-tuning but do not consider model extraction attacks [39].

Two prior model ownership-based fingerprinting works are evaluated explicitly with
respect to model extraction attacks. We describe them below.

Lukas et al. [39] use an ensemble of models to generate conferrable adversarial exam-
ples, i.e., adversarial examples that are misclassified by F; and F, but are not misclassified



by F;. During verification, Ver computes the difference between the predictions of F; and
F> on the conferrable examples. If the difference exceeds a certain threshold, it is classified
as independent, and surrogate otherwise.

Peng et al. [50] use Universal Adversarial Perturbations (UAPs), small imperceptible
perturbations which, when added to any image, result in misclassification. They compute
a fingerprint by adding the UAP to some data points and compute the change in output
before and after adding the UAP. They train an encoder to project the fingerprints into a
latent space, such that the fingerprints of F; and F; are similar but distinct from F;.

Note that both schemes rely on adversarial examples that cause misclassification. We
describe in Section 3.4 why applying these schemes to GNNs is not trivial.

Model Extraction Attacks on GNNs. There is limited literature on model extraction
attacks in GNNs. One approach is to use adversarial examples to perform model extraction
attacks, similar to the work in non-graph settings [10]. However, the input perturbation
for adversarial examples in graph setting is too high to be stealthy. Wu et al. [77] presented
seven attacks with different Adv background knowledge. However, these works are limited
to transductive training, impractical in ML as a service setting [55].

This thesis focuses on the more practical case of inductive learning where the training
and testing graph datasets are disjointed. Shen et al. [55] presented the first work on
model extraction against inductive GNNs. Here, Adv has access to a query dataset Dy =
(As, Xs, V) and the query response (a set of embeddings (H;) corresponding to the node
features (X)) it receives from F;. Using H, and the ground-truth labels ()s), Adv trains
F to mimic the behavior of F;. They propose two attacks depending on Adv’s background
knowledge: in Type I attack, Adv has access to Xy, Vs, and the adjacency matrix (Ay)
for Dy; in Type II attack, Adv only has access to X, ), and uses an edge-estimation
algorithm to compute A;.

In their attack, the architecture for JF, consists of two components:

e a GNN that takes X, and A, as input and outputs H,. While training, this module
minimizes the Mean Squared Error (MSE) loss between H, and H;:

Hs = Gnn(Xs, As) (2.5)
1
Lr= | Hs — Hell21 (2.6)
Nps

where np, is the number of nodes in D,.

e an MLP classifier (C) which takes H, as input and outputs a class. This is trained to
minimize the prediction loss between )/, and the predicted labels.
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In each epoch, the GNN is first optimized using Lg; then, the parameters are fixed while
parameters corresponding to C are optimized. Both modules are combined to form F;.

The same training strategy is used to train J; using Type I and Type II attacks. How-
ever, for Type II attacks, Adv first estimates A;. A graph structure is initialized by creating
a k-nearest neighbors graph from X;. This initial graph structure is further optimized us-
ing IDGL framework proposed by Chen et. al. [77]. The graph structure is obtained by
minimizing a joint loss function that combines prediction loss for node classification and a
graph regularization loss that controls the graph’s smoothness, connectivity, and sparsity.
Additional details about the model extraction attack can be found in [55].

Model Extraction Defenses For GNNs. To the best of our knowledge, there are only
two prior works on ownership verification in the context of GNNs [30, 91]|. Zhao et al. [91]
embed randomly generated subgraphs with random feature vectors as a key. These can be
used later to extract the watermark. However, they only focus on node classification tasks.
Xu et al. [30] extend the prior work by including graph classification tasks. However,
both of these schemes are watermarking schemes. The current literature has no known
fingerprinting schemes for GNNs.




Chapter 3

Problem Statement

An effective fingerprinting scheme allows Third-Party Verifier (Ver) to identify whether F;
is a surrogate of F; or an independent model. To this end, we outline a system model that
defines the interactions between model owners and Ver (Section 3.1), an adversary model
describing Adversary (Adv)’s capabilities and goals (Section 3.2), requirements to design an
ideal fingerprinting scheme (Section 3.3) and the limitations of prior fingerprinting schemes
against Graph Neural Network (GNN) model extraction (Section 3.4).

3.1 System Model

We consider a setting where a proprietary GNN model (F;) has been developed and de-
ployed as a service. However, F; is susceptible to model extraction. An ownership verifica-
tion system, intended to thwart model extraction, consists of three actors: an Accuser (the
owner of F;), a trusted third party Ver, and a Responder (the owner of a suspect model
F») who is accused of stealing F; by Accuser. The role of the Ver is to verify whether F;
was obtained through a model extraction attack on F;. We refer to a malicious Responder
as Adv.R and a malicious Accuser as Adv.A.

System Design Goals. An ideal system must be robust against both Adv. R and Adv.A.

Case 1 Adv.R wants its model F-, extracted from Accuser’s F;, to evade detection.

Case 2 Adv.A wants to maliciously claim that Responder’s F; is extracted from F;.



To address both scenarios, similar to prior work [92, 60], we assume that all model
owners are required to securely timestamp their models in a registration step before de-
ployment. This will address Adv.A since Accuser cannot successfully make an ownership
claim against J; unless F; was registered prior to ;. In Chapter 9, we explore possible
incentives for model owners to register their models. The rest of this thesis focuses on
robustness against a Adv.R.

Model Registration. Model owners are required to:

1. generate a cryptographic commitment ¢ of their model such that any subsequent
modification to the model can be detected. One way to compute such a commitment
is using a cryptographic hash function.

2. obtain a secure timestamp ¢ on ¢ that Ver can later verify, e.g., by adding ¢ to a
blockchain, or utilizing a publicly verifiable timestamping service!, or receiving a
signature from Ver binding ¢ to the current time.

We use subscripts to associate timestamps and commitments to the respective models
(e.g., t; is the secure timestamp on the commitment ¢, of F;)

Dispute Initiation. Accuser initiates a dispute by submitting ¢; and ¢; to Ver, and
identifying a suspect Responder. Ver then asks Responder to submit ¢; and ¢; to begin
the verification process.

Verification Process. Ver does the following:

1. verifies that t;, ¢;, and F; are consistent; and ¢, ¢;, and F> are consistent.
2. confirms that ¢, < t;. If this condition is not met, the claim is rejected.

3. checks that F; and F» are well-formed (see below).

4. samples a verification dataset D, from the same distribution as D;.

5. queries F; and > with D, and passes the outputs to a verification algorithm which
decides whether F; is a surrogate of F; or trained independently.

Step 3 requires Ver to check that a model does not have any non-standard layers. In
Chapter 7.2, we explain why this check is necessary.

'E.g., https:/ /www.surety.com/digital-copyright-protection
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The simplest way for Ver to conduct the checks in the first three steps is for the model
owners to send their models (F; and F>) to Ver. This may not be feasible for confidentiality
or privacy reasons. Thus, the checks can be done either via cryptographic techniques like
oblivious inference [36, 27| in conjunction with zero-knowledge proofs |28, 3] or by using
hardware-based trusted execution environments [64, 12]. The specific implementation of
such protocols is out of the scope of this thesis. For ease of explanation, we limit our
discussion to the case where the model owners in a dispute are willing to share their
models with Ver. Note that it is still necessary to check that the models sent to Ver are
indeed the models that were deployed. Ver can do this via a fidelity check [21].

3.2 Adversary Model

Adv.R’s goal is to train F; such that its utility is comparable to F;. Additionally, Adv.R
wants high fidelity for F,, i.e., that its inferences match F;’s. This is useful for mounting
subsequent evasion or membership inference attacks against F; [19]. Shen et al.’s [55]
attack satisfies both these requirements. Adv.R may also take additional steps to evade
detection.

Attack Setting. Following [55], we consider the black-box setting where Adv.R has no
knowledge of F;’s hyperparameters or architecture and can only observe F;’s outputs for
given inputs. Adv.R has access to a training dataset that is from the same distribution as
Fi. As in prior work [55], we assume that the output contains node embeddings (H), useful
for downstream tasks such as classification, recommendation engines, visualizations, etc.
We assume that Adv.R has access to a disjoint non-overlapping dataset D, from the same
distribution as F;’s training data D,. We revisit the details of dataset splits in Chapter 6.

3.3 Requirements for Ownership Verification

We list desiderata for ideal GNN ownership verification schemes that Ver can use to decide
if F; is stolen from F;:

R1 Minimize Utility Loss of F;.
R2 Effective in differentiating between F; and F; with low false positive/negative rates.
R3 Robust in remaining effective against Adv.R.

R4 Efficient by imposing a low computational overhead.
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3.4 Limitations of Prior Work

We now discuss how the prior works described in Section 2.2, applicable to non-graph and
graph datasets, do not satisfy the above requirements.

Non-Graph Datasets. Focusing only on approaches tested against model extraction at-
tacks, we discuss how the three prior fingerprinting approaches for the image domain are
not directly applicable to GNNs. We describe the limitations of prior non-graph finger-
printing schemes below.

Maini et al. [10] compute the distance of a data point to the decision boundary by
adding noise to the data points, which is not clear for inter-connected graph nodes [10)].
Moreover, prior works have indicated that dataset inference incurs false positives [94, 62].
Lukas et al. [39] and Peng et al. [50] rely on adversarial examples as fingerprints. However,
unlike images, generating adversarial examples is not trivial for graphs [96, 9]. The related
works on generating adversarial examples are described in detail in Chapter 8, but the key
takeaway is that the best attack rate achieved by state-of-the-art schemes is only 35%. In
the image domain, close to 100% attack rate has been achieved in the current literature.

In summary, adapting non-graph fingerprinting approaches to graph datasets is not
trivial, as data records in the image domain are independent. In contrast, nodes in graphs
are related and satisfy homophily.

Graph Datasets. Watermarking schemes have been proposed previously for GNNs [91,

|. However, watermarks in non-graph datasets can be easily removed by model extraction
attacks and are hence not robust R3 [35]. Their effectiveness R2 against state-of-the-art
model extraction attacks is not clear. Finally, watermarks require modifying how the
model is trained, violating the non-invasive requirement R1. Hence, in this work, we focus
on using fingerprints for ownership resolution in GNNs instead of watermarking, which
satisfies all the desirable requirements.

12



Chapter 4

Motivation

We now explore the use of Graph Neural Network (GNN) embeddings as a potential fin-
gerprinting scheme for GNNs against model extraction attacks. We then evaluate whether
embeddings are helpful for model fingerprinting or dataset fingerprinting.

Embeddings as Fingerprint for GNNs. Recall from Section 2.1 that two indepen-
dently trained GNNs (differing in the random seed) should differ in their output of H.
Furthermore, the state-of-the-art model extraction attack against GNNs [55] focuses on
optimizing fidelity, i.e., ensuring alignment in predictions between F, and F;. Hence, F; is
likely to generate embeddings more similar to F; on the same input graph than ;. This
intuition forms the basis of using embeddings as a fingerprint to distinguish between F;
and F; for ownership verification. Note that H is inherent to GNN model computation.
Hence, they do not affect the utility of F;, satisfying requirement R1.

Model Ownership vs. Dataset Ownership. Having identified graph embeddings as a
potential fingerprint, we want to verify whether they are helpful for model or dataset
ownership. Recall from Section 2.2 that the difference in fingerprinting for model own-
ership and dataset ownership is in how models trained on the same training dataset are
classified. If embeddings generated from two GNNs trained on the same dataset cannot
be distinguished, then embeddings are useful as fingerprints for dataset ownership. On
the other hand, if embeddings generated from F;, regardless of the training data, can be
distinguished, they are helpful as fingerprints for model ownership. We test this using
t-SNE projections of the embeddings to visualize them for different model architectures
and datasets [07, 50]. We refer to embeddings generated from F;, Fs, and F; as Hy, Hs,
and H;, respectively.

We describe our experimental setup to infer whether embeddings can be used for data
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or model ownership verification.

Dataset Ownership. We train two models using either different or the same architecture
and training dataset. When the training datasets are different, we split the dataset into
three sets: D; and D,, and a verification dataset D,. We use three different architectures
for each model, leading to nine pair-wise combinations. We use six datasets, resulting in
54 model pairs with the same training datasets and 54 model pairs with differing training
datasets.

We pass D, to both models to generate embeddings and visualize their t-SNE projec-
tions. The graphs for COAUTHOR are shown in Figure 4.1, and the rest of the graphs are
in Appendix A.1. We found that in every case, the t-SNE projections of the embeddings
generated from D, are distinguishable, even when the two models use the same dataset
and architecture. This shows us that embeddings cannot be used as a dataset fin-
gerprint.

Model Ownership. To check for model ownership, we use three models: F;, Fy, F;, which
may or may not share the same architecture and training data as ;. We set up a similar
experiment to the one before. We split the dataset into two training datasets: D; and Ds.
D; is used to train both F; and F; since this is the worst-case scenario for triggering false
accusations using the fingerprinting scheme. F; is derived from F; using Dy with Shen et
al.’s [50] state-of-the-art GNN model extraction attack described in Section 2.2. Similar
to the previous experiment, we build multiple combinations of the three models. We use
three architectures for F;, and F;, and two for Fy, resulting in 108 model combinations
across six datasets.

We plot the embeddings of D, from each of the three models and show the graphs for
each dataset in Figure 4.2. We found that regardless of the architecture or the training
data, the t-SNE projections of H; and H, are similar but distinct from ;. This motivates
our choice to use embeddings as a fingerprint for model ownership.
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Figure 4.1: t-SNE projections of the embeddings from two models trained on COAUTHOR
using both the same and different architecture. The embeddings are distinguishable even
when the architecture is the same.. The graphs for the other datasets can be found in
Appendix A
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Figure 4.2: t-SNE projections of the embeddings from F, and F; overlap, while those from
F; are distinct. The models in this plot are all trained with the GAT architecture.
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Chapter 5

GROVE: Graph Embeddings for Model
Ownership Verification

We now describe the design of GROVE, which uses embeddings as fingerprints.

Recall that Third-Party Verifier (Ver) aims to identify whether F; was obtained via a
model extraction attack on F; (Section 3.1). As shown in Chapter 4, we know that the
embeddings generated by JF; and F; are similar. Our verification scheme relies on this
observation and identifies whether the distances between H- (generated by F») and H; are
close enough to suggest a model extraction attack.

The simplest way to identify this is to calculate a distance metric between H, and H;.
If the aggregated distances are smaller than a tuned threshold, we can classify JF; and
Fs, and F; otherwise. However, our experiments found that the distances between (F;,
Fi) pairs and (F;, F;) pairs overlapped, leading to high error rates. This phenomenon is
visualized in the distance plots in Appendix B. Another simple approach is to compare
the distributions of #H; and H- using a Kolmogorov-Smirnov test (KS test) [11]. The
KS test calculates the likelihood that two samples are drawn from the same probability
distribution. However, we found that hypothesis testing also leads to high false positive
rates for some datasets, and high false negative rates for other datasets.

Thus, similar to the intuition used for Siamese Networks [31], we use an Machine
Learning (ML) classifier to classify a pair of embeddings as similar or not similar. An
ML-based approach compresses the distance between similar data points and stretches the
distance between dissimilar data points. The ML classifier is a multi-layer perceptron,
denoted as Cs;,,. Our verification scheme is divided into two phases: Phase 1 involves
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training Cg;,,; Phase 2 includes querying C;,, with pairs of embeddings generated by F
and F; on D, to classify F as either a surrogate or independent model.

- —_ Cglculate
Distance |—

Vector

/
[ Calculate

> Distance |—
—> Vector

Positive Data Points

Negative Data Points

\fﬂ/\T/\ﬁ/

Verification Graph D, Embeddings

from each model

Figure 5.1: To generate training data for Cg;,,, D, is passed to F;, Fs and F;. We then
compute the distance vectors between the embeddings obtained from each of the models,
namely, (F;, Fs) and (F;, F;) which act as positive and negative data points respectively.

Csim Training. Figure 5.1 shows the process of generating training data for C;,,. For
each F;, we train multiple sets of F, and F; using different architectures. Ver queries
Fi, Fs and F; with D, to generate embeddings. Each node in D, will thus have three
corresponding embeddings from each Graph Neural Network (GNN), denoted as hy, hy,
and h;, respectively. Ver generates a distance vector between h; and h,, representing
a positive (similar) data point. In contrast, the distance vector between h; and h; is
represented as a negative (not similar) data point. The distance vector is the element-wise
squared distance between the two embeddings. This allows Ver to generate many data
points from one pair of models equal to the size of D,. Ver then uses this data to optimize
Csim to classify whether a pair of embeddings is similar.

Verification. Once C,;,, has been trained Ver can use it to make inferences about F,. Ver
queries both F; and F; with D, to generate embeddings. The distance vector is calculated
between corresponding embeddings and passed to Cg;,,, which outputs whether the pair is
similar. If more than 50% of the pairs of embeddings are classified as similar, Ver classifies
F7 as a surrogate, and independent otherwise. In our experiments, we found that the
precise threshold does not matter. In general, for (F;, Fs) pairs, =~ 90% of the embeddings
are similar, while for (F;, F;) pairs, only ~ 10% embeddings are classified as similar. That
being said, the threshold can be tuned using additional training data if needed.
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Chapter 6

Experimental Setup

We evaluate GROVE using six datasets, three model architectures, and two model extrac-
tion attacks. We describe the datasets and their splits (Section 6.1), model architectures
(Section 6.2), metrics for evaluation (Section 6.3), and the model extraction attacks (Sec-
tion 6.4).

6.1 Datasets

Following prior work [55], we consider six benchmark graph datasets representing different
types of graph networks. We describe the details of each of these datasets below.

DBLP [!8] is a citation network where the 17,716 nodes represent publications and 105,734
edges indicate citations between different publications. Each node has 1,639 features based
on the keywords in the paper. This is a node classification problem with four classes
indicating the publication category.

CITESEER |!7] is a citation network where the 4,120 nodes represent publications and
5,358 edges indicate citations between different publications. Each node has 602 features
indicating the absence/presence of the corresponding word from the dictionary. This is a
node classification task where the publications are categorized into six classes.

PUBMED [53] is a citation network where the 19,717 nodes represent publications and
88,648 edges indicate citations between different publications. Each node has 500 features
described by a TF/IDF weighted word vector from a dictionary which consists of 500
unique words. This is a node classification task where the publications are categorized into
three classes.
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COAUTHOR |[51] is a co-authorship network where the 34,493 nodes represent different
authors, which are connected with 495,924 edges if they coauthored a paper. Here, the 8,415
node features represent paper keywords for each author’s papers. This node classification
task is to predict the most active field of study out of five possibilities for each author.

ACM [73] is a heterogeneous graph that contains 3025 papers published in KDD, SIG-
MOD, SIGCOMM, MobiCOMM, and VLDB. Papers that the same author publishes have
an edge between them, resulting in 26,256 edges. Each paper is divided into three classes
(Database, Wireless Communication, Data Mining), and the 1,870 features for each node
are the bag-of-words representation of their keywords.

AMAZON |[12] is an abbreviation for Amazon Co-purchase Network for Photos. The 7,650
nodes represent items, and the 143,663 edges indicate whether the two items are bought
together. Each of the 745 nodes features are bag-of-words encoded product reviews. Each
of the items is classified into one of eight product categories.

Dataset Splits for Model Extraction. We split the dataset into two disjoint sets, each
40% of the dataset. One chunk is used to train F;, and the other chunk is used to train F;.
While the original model extraction attacks use overlapping and non-overlapping training
data for Fs, we choose a non-overlapping dataset since that is the most challenging case for
Third-Party Verifier (Ver), as F; is distinct from F;. For the same reason, F; and JF; are
trained on the same set. We evaluate F, and F, on a test set that is 10% of the dataset.
Finally, D, is the remaining 10%. The dataset sizes are shown in Table 6.1

Dataset F; Train | F, Train | Test | D,
COAUTHOR 13797 13797 3449 | 3449
PUBMED 7887 7887 1972 | 1972
DBLP 7086 7086 1772 | 1772
AMAZON 3060 3060 765 | 765
CITESEER 1648 1648 412 | 412
ACM 1210 1210 303 | 303

Table 6.1: Data splits for training and evaluating different models.

6.2 Model Architectures

Following prior work [55], we use the Graph Attention Network (GAT), Graph Isomor-
phism Network (GIN), and Graph Sample and Aggregate (GraphSAGE) architectures
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(Section 2.1). For all architectures, the hidden layer size is 256, and the final hidden
layer is connected to a dense layer for classification. The embeddings are extracted from
the last hidden layer. We use the cross-entropy loss as the node classification loss, the
ReLU activation function, and the Adam optimizer with an initial learning rate of 0.001.
All models are trained for 200 epochs with early stopping based on validation accuracy.

GIN. We use a three-layer GIN model. The neighborhood sample size is fixed at ten
samples at each layer.

GAT. We use a three-layer GAT model with a fixed neighborhood sample size of 10 at
each layer. The first and second layers have four attention heads each.

GraphSAGE. We use a two-layer GraphSAGE model. The neighborhood sample sizes are
set to 25 and 10, respectively. Following prior work [19], the MEAN aggregation function
is used at each layer, and the dropout is set to 0.5 to prevent overfitting.

Similarity Model. We use the Scikit-Learn implementation of an MLPClassifier to train
Csim. Using the three architectures, we train three versions of F; for each dataset. Each
F; has its own Cg;,,,. We train three versions of F; and two versions of F; for each F; using
different architectures. We use these models to generate the positive and negative data
points as explained in Chapter 5. We use a two-layer MLLP and find the best hyperparam-
eters using a grid search. The hidden layer sizes in the search are either 64 or 128, and
the activation function is either Tanh or ReLLU. We select the best model based on 10-fold
cross-validation. Unless otherwise stated, we only train C;,, on Type 1 attacks.

To evaluate Cj;,,,, we train nine different versions of F; and Fj, i.e., 45 test models
with different architectures and random initialization. These additional models are used
to ensure the statistical significance of the results. We ran each experiment five times and
reported the average with a 95% confidence interval.

6.3 Metrics

Following prior work [55, 24|, we use two metrics for evaluating the effectiveness of model
extraction attacks: accuracy and fidelity.

Accuracy measures the number of predictions F; classifies correctly, compared to the
ground-truth.

Fidelity measures the agreement between F; and F;.

To evaluate the effectiveness of GROVE, we use two additional metrics:
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False Positive Rate (FPR) is the ratio of false positives to the sum of false positives
and true negatives. This indicates the fraction of independent models incorrectly classified
as surrogate.

False Negative Rate (FINR) is the ratio of false negatives to the sum of false negatives
and true positives. This indicates the fraction of surrogate models incorrectly classified as
independent.

6.4 Model Extraction Attack

We use Shen et al.’s [55] model extraction attack against inductive Graph Neural Net-
works (GNNs) from their source code'. The details of the attack have been explained in
Section 2.2. As mentioned in Section 6.1, we train F, on D, that is disjoint from D;. All
the hyperparameters are set to the default values presented in the original paper. The
performance of F; and F; is summarized in Table 6.2 and the performance of the surrogate
models is summarized in Table 6.3. Our results are similar to those reported in the original
attack paper.

Table 6.2: Average accuracy (with 95% confidence intervals) of F; and F; used in the
evaluation. Values are averaged across multiple architectures (Section 6.2).

Dataset F; Accuracy | F; Accuracy
ACM 0.906 £ 0.025 | 0.919 + 0.021
AMAZON 0.879 £ 0.064 | 0.876 £ 0.050
CITESEER | 0.804 £ 0.047 | 0.809 £ 0.028
COAUTHOR | 0.926 +0.005 | 0.928 £ 0.011
DBLP 0.696 £ 0.028 | 0.693 £ 0.030
PUBMED 0.846 +0.022 | 0.846 + 0.021

thttps://github.com /xinleihe/ GNNStealing
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Table 6.3: Average accuracy and fidelity (with 95% confidence intervals) of Fy derived from
Type 1 and Type 2 attacks. Values are averaged across multiple architectures (Section 6.2).

Attack Type Dataset Fs Accuracy | F, Fidelity
ACM 0.888 +0.019 | 0.931 = 0.019

AMAZON | 0.861 #+0.022 | 0.870 4 0.051

CITESEER 0.757 £0.014 | 0.907 & 0.041

Type L Attack | ) x (rhor | 0,919+ 0.019 | 0.949 + 0.034
DBLP 0.674 4+ 0.009 | 0.833 & 0.018

PUBMED 0.829 £ 0.007 | 0.923 £0.016

ACM 0.896 + 0.010 | 0.954 = 0.020

AMAZON | 0.842 4+ 0.007 | 0.848 4 0.009

CITESEER | 0.796 +0.000 | 0.902 4 0.012

Type 2 Attack | - x irpor | 0,919 40,004 | 0.948 + 0.003
DBLP 0.680 4 0.008 | 0.851 & 0.017

PUBMED 0.832 +£0.005 | 0.937 £0.014
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Chapter 7

Evaluation of GROVE

We show that GROVE satisfies the requirements outlined in Section 3.3. To this end,
we evaluate GROVE’s effectiveness (requirement R2) in differentiating between Fj, de-
rived from the two types of model extraction attacks, and F; (Section 7.1). We evaluate
GROVE’s robustness (requirement R3) to Adv.R’s attempts at evading verification (Sec-
tion 7.2). Finally, we evaluate GROVE’s efficiency (requirement R4) (Section 7.3).

7.1 Effectiveness

Dataset FPR Type 1 FNR | Type 2 FNR
ACM 0.022 £ 0.022 | 0.000 £ 0.000 | 0.000 =£ 0.000
AMAzZON | 0.034 £0.029 | 0.000 £ 0.000 | 0.000 £ 0.000
CITESEER | 0.000 £ 0.000 | 0.000 £ 0.000 | 0.000 =£ 0.000
COAUTHOR | 0.000 & 0.000 | 0.000 = 0.000 | 0.000 % 0.000
DBLP 0.000 £ 0.000 | 0.000 £ 0.000 | 0.000 =£ 0.000
PuBMED | 0.002 4+ 0.002 | 0.000 +0.000 | 0.000 % 0.000

Table 7.1: Performance of GROVE against Type 1 and Type 2 attacks. Average FPR and
FNR values are reported across 5 experiments with 95% confidence intervals.

We first show that GROVE is effective at distinguishing between F; and F; (requirement
R2). We train three F; models and two F, models using the Type 1 attack to train Cy;,,.
During the testing phase of C,;,,, we train additional /; models to compute the FPR and
Fs models from both Type 1 and Type 2 attacks to compute the FNR.
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[deally, we expect GROVE to have low FPR and FNR while differentiating between
F; and F;, using Cg,. As seen in Table 7.1, we find that GROVE indeed has zero false
negatives against both model extraction attacks. We observe close to zero false positives
across four datasets (DBLP, PUBMED, CITESEER, and COAUTHOR). For the AMAZON
and ACM datasets, we note a low false positive rate of 3.4% and 2.2%, respectively.

These results show that GROVE is effective at distinguishing between F, and F; across
different datasets and different architectures, satisfying R2.

7.2 Adversarial Robustness of GROVE

We now discuss the robustness of GROVE against attempts to evade detection by Adv. R
(requirement R3). Adv.R can evade detection by differentiating F, from F; via (1) simple
evasion or (2) model retraining,.

Simple evasion techniques can be used by Adv.R to evade detection without retraining
Fs: (a) model replacement and (b) post-processing. These are described below.

Model replacement occurs when during the verification process, Ver intends to query
the model that Responder has deployed (F;), but Adv.R replaces it by an independent
model F; to deceive Ver. Our system model (Section 3.1) pre-empts this by requiring
Responder to register F, before deployment. During verification, Ver conducts a fidelity
check between the outputs of the registered and deployed models (i.e., both outputs should
match perfectly) to confirm that they are the same. As both models should be identical,
the fidelity score between embeddings of the same input should be perfect.

Post-processing occurs when Adv. R applies a (linear) transformation on H, to change
its distribution while maintaining utility. If the distances between the embeddings of any
two nodes of an input graph remain relatively the same after the transformation, it will not
affect the result of any downstream task. Our system model pre-empts this by requiring
Adv. R to send F, to Ver, who verifies whether the outputs are generated directly from
Fs without being post-processed. Furthermore, Ver can inspect F; to ensure there are
no non-standard layers that arbitrarily transform the output (Step 3 of the Verification
Process in Section 3.1).

Model retraining. We identify three possible techniques from prior work to evade detec-
tion via model retraining [39, 50]: (a) fine-tuning, (b) double extraction, and (c) pruning.

Fine-tuning retrains a previously trained model on a new dataset to improve model
performance or change the classification task by replacing the model’s final layer. While

25



this is popular in prior work [39, 50, 10|, we argue that it cannot be used by Adv.R to
evade detection of extracted GNN models. Recall from Section 6.4 that F, consists of
two independent components: the first outputs embeddings, and the second outputs class
labels. Recalling (2.6), the embeddings are updated using an Mean Squared Error (MSE)
loss with embeddings from F;. Traditional fine-tuning based on different class labels will
only update the classifier, not affecting the embeddings.

Thus, we only test GROVE against end-to-end fine-tuning, where Adv.R updates both
the described components while fine-tuning on a separate dataset from the same distribu-
tion. The average performance of the models is reported in Table 7.2. We found that F;
accuracy improves slightly after end-to-end fine-tuning while the fidelity slightly decreases.
Despite this change, GROVE still achieves zero false negatives across all datasets, showing
GROVE is effective in mitigating end-to-end fine-tuning attacks across different datasets.

Attack Type Dataset Fs Accuracy | F, Fidelity
ACM 0.899 + 0.030 | 0.927 + 0.041

AMAZON | 0.875 + 0.018 | 0.874 + 0.029

CITESEER | 0.787 + 0.018 | 0.838 + 0.018

Type 1 Attack | )\ rhor | 0.935 + 0,005 | 0.939 + 0.005
DBLP | 0.706 & 0.010 | 0.706 + 0.021

PUBMED 0.832 £+ 0.010 | 0.924 4+ 0.007

ACM 0.902 + 0.013 | 0.939 + 0.021

AMAZON | 0.866 + 0.021 | 0.863 + 0.032

CITESEER | 0.765 £ 0.017 | 0.834 4+ 0.031

Type 2 Attack | ) x (rhor | 0.937 + 0,006 | 0.940 + 0.003
DBLP | 0.708 & 0.011 | 0.724 + 0.033

PUBMED 0.841 £ 0.007 | 0.935 £+ 0.011

Table 7.2: Performance of end-to-end fine-tuning. In many cases F accuracy is higher,
but the fidelity is lower. For COAUTHOR the accuracy of F, surpassed F; after fine-tuning.

Double extraction involves Adv.R running two model extraction attacks to obtain the
final F;: first against F; to get an intermediate model, followed by another attack against
the intermediate model to obtain JF,. This additional attack is to make the F, distinct
from F;. We refer to such surrogates as F,2

To satisfy the robustness experiment, GROVE should achieve low FNR against double
extraction even if F,2 accuracy drops by up to 5% points. An accuracy drop greater
than 5% points greatly reduces model utility. We use the previously trained C,;,, directly
and build additional F,2 models on the previously trained F; models. We use the same
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attack for both extractions since the difference between the two attacks is the knowledge
of Adv.R, and it is unrealistic for Adv.R to have differing knowledge when running two
attacks sequentially. As before, we use two architectures for each F,2 per F;, and create
nine versions using random initialization (a total of 18 test models per F;). We repeat
each experiment five times.

We evaluated GROVE against F,2 models reported in Table 7.3. We find that while
the adversary experiences a significant loss in utility (at least 3% points in accuracy) on
ACM, AMAZON, and CITESEER datasets, GROVE still achieves zero false negatives across
all datasets. This shows that GROVE is effective in mitigating double extraction attacks
against both Type 1 and Type 2 attacks and across different datasets.

Attack Type Dataset Fs Accuracy | F, Fidelity
ACM 0.843 £ 0.059 | 0.882 + 0.060
AMAZON 0.776 £ 0.050 | 0.781 £ 0.063
CITESEER | 0.551 £0.140 | 0.627 £ 0.159
COAUTHOR | 0.924 +0.005 | 0.947 £0.012
DBLP 0.686 == 0.011 | 0.783 £0.011
PUBMED 0.830 = 0.007 | 0.912 £ 0.007
ACM 0.882 £ 0.017 | 0.930 £ 0.020
AMAZON 0.698 £ 0.216 | 0.695 + 0.219
CITESEER | 0.679 £ 0.064 | 0.736 4+ 0.093
COAUTHOR | 0.916 +0.009 | 0.943 £ 0.004
DBLP 0.678 =0.019 | 0.784 £+ 0.036
PUBMED 0.831 £0.004 | 0.930 £ 0.005

Type 1 Attack

Type 2 Attack

Table 7.3: Performance of F,2. The model utility is comparable to F, in most cases, but
drops by ~ 8% points for AMAZON and ~ 12% points for CITESEER.

Pruning removes model weights to reduce computational complexity while maintaining
model utility. This alters the output distribution (in our case, embeddings), which could
potentially affect the success of GROVE.

We experiment with prune ratios (ratio of weights set to 0) ranging from 0.1 to 0.7 as
pruning beyond resulted in a high accuracy loss (>20% points for all datasets). As before,
GROVE is robust if it achieves low FNR against F, models with less than a 5% point
drop in accuracy. We use the same experimental setup of training nine versions of F; and
pruning each one with the ratios above (a total of 18 test models per prune ratio).

We report our results in Figure 7.1. We observe that F; accuracy falls significantly
after 0.4 (>5% points for all datasets). Only the FNR for COAUTHOR stays small until a
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ratio of 0.6. We conjecture this is due to COAUTHOR being the largest dataset, it has 1.8
times more nodes and 5 times more edges than the second largest dataset. For the rest of
the datasets the FNR increases around a ratio of 0.2 to 0.3. This shows that GROVE in
its basic form fails against pruning.

Effect of Prune Ratio on FNR and Utility
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Figure 7.1: GROVE performance against pruning. Dotted lines represent F accuracy, and
solid lines represent FNR. As the pruning ratio increases, the accuracy decreases, and the
FNR increases. By default, GROVE fails against prune ratios of 0.3-0.4 for most datasets.

GROVE can be made robust against pruning attacks by using data augmentation
techniques while training Cg;,, (Chapter 5). We do this by including the output from
pruned models up to a ratio of 0.4 into the training data. Beyond a prune ratio of 0.4, the
accuracy drop is large enough (> 5% points) to deter Adv.R. Using the same experimental
setup, we evaluate the success of the more robust GROVE to mitigate pruning.

We observe that GROVE still achieves zero false negatives against the basic and double
extraction attacks mentioned before. Additionally, it achieves a lower FPR, with only a

1.4% FPR for AMAZON, 0.7% FPR for PUBMED, and a 0% FPR for the other datasets.
We report the results for pruning in Figure 7.2. It achieves nearly zero FNR for all datasets
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up to a prune ratio of 0.4. Noting the success of robust optimization, we conjecture that
this can be used to make GROVE robust against future evasion techniques.

Effect of Prune Ratio on FNR and Utility
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Figure 7.2: A more robust GROVE performs better against pruning. Dotted lines represent
Fs accuracy, and solid lines represent FNR. GROVE detects F, without false negatives up
to a prune ratio of 0.4. Beyond that, F, utility decreases more than 5% points, thereby
removing the incentive for rational attackers to steal the model.

We, therefore, conclude that GROVE remains effective (R2) even in the presence of
adversaries (R3). Furthermore, data augmentation allows Ver to choose between resource
utilization and performance. The larger and more diverse the training data for Cg;,,, the
longer it would take to train GROVE, and the more robust it would be. We have shown
the minimum training data required to perform well against the evasion techniques we

identified.
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Architectures
Dataset GAT GIN GraphSAGE
COAUTHOR | 10562 &£ 1548 | 10668 4 1205 | 10550 4= 1237
PUBMED 3961 + 492 3845 + 257 3856 + 288
DBLP 4182 4 462 4011 + 498 3730 + 202
AMAZON 3312 £ 218 3273 + 171 3473 + 323
CITESEER 3312+ 124 3142 + 204 2970 4+ 186
ACM 2985 + 165 2943 + 223 2876 + 134

Table 7.4: Average total time over five runs in seconds (with 95% confidence intervals)
taken to generate training data and train Cg,,.

7.3 Efficiency of GROVE

We now evaluate the efficiency of GROVE (requirement R4). We want to ensure the
computation overhead of GROVE is reasonable.

To this end, we measure the execution time to generate the training data for Cg;,, and
train it. Recall from Section 6.2 that we train multiple versions of F; and F; to generate
the training data for Cs;,. For GROVE, this involves building six versions of F; (two
models per architecture with different random initializations) and two versions of F; along
with their pruned variants (10 versions of F;). These models can be trained in parallel,
making it faster. However, we train them sequentially to accurately measure the total time
taken, assuming just one available machine. The models were trained on a machine with
two AMD EPYC 7302 16-Core CPUs and eight Nvidia A100 GPUs with 40GB VRAM per
GPU.

We summarize the results for each target model in Table 7.4. It generally takes less
than 3 hours to train GROVE. The time taken to train GROVE includes the time taken to
train the additional surrogate and independent models to generate the training data and to
train Cy;,,,. The size of the dataset influences the time taken to train the additional models.
COAUTHOR is the largest dataset, with the longest training times, followed by DBLP and
PUBMED. The variation in time taken within datasets is caused by the optimization of
Csim. For instance, for AMAZON, the time taken to train C;,, for GAT-based F; was 187
seconds on average, while for GIN-based F; it took 340 seconds on average. There is no
trend for which architecture takes the longest time; it is affected by the combination of
dataset and architecture. GROVE built for ACM-based models was the fastest to train,
with C;, training taking less than 100 seconds. For COAUTHOR, however, Cg;,, training
took much longer, between 1561 to 2103 seconds.
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Recall that in the practical setting we describe in Section 3.1, Ver only trains GROVE
when Accuser initiates a dispute with Responder. Considering most models will not
encounter ownership disputes, we consider the numbers in Table 7.4 to be reasonable.

In conclusion, we show that GROVE satisfies the requirement of being an effective (R2)
robust (R3) and efficient (R4) fingerprinting scheme.
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Chapter 8

Related Works

In addition to the prior work directly related to GROVE (Section 2.2), we broadly discuss
other related work pertaining to privacy and security in GNNs, and model extraction
attacks in other domains.

8.1 Robustness Attacks against GNNs

These attacks find adversarial examples modifying the adjacency matrix to perturb the
input, which results in misclassification [78, 9, 15, 96, 97]. Against image-based Machine
Learning (ML) models, this is often divided into targeted and untargeted attacks [13|. The
goal of the adversary is to perturb a target node such that it is misclassified to any class
(untargeted attack) or to a target class (targeted attack). As mentioned in Section 3.4,
finding adversarial examples for graphs is not trivial. Since graph data is relational, any
perturbation applied to either a node or an edge affects multiple nodes [96]. This is both
a challenge and an opportunity; an attacker can influence the prediction of a target node
without directly perturbing that node [96], but staying stealthy is difficult since many
nodes might be affected by a single change. In the current literature, directly perturbing
the edges of the target node is considered the most viable approach [96, 9, 78, 15].

The primary challenge in perturbing edges is that the adjacency matrix is a binary
matrix. Thus, an attacker can only make discrete changes by adding or removing an edge
(changing a 1 to 0 or vice versa). Finding the most effective perturbations in a discrete
search space is difficult compared to a continuous search space (such as in images) |78, 9, 96].
Furthermore, adversarial perturbations are constrained to be imperceptible. This is easily
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achieved in images by ensuring the difference between the perturbed image and the original
image is small. In the discrete graph domain, this is achieved by preserving the degree
distribution of the graph [96, 97|. Despite this progress, the best attack rate in these prior
works is only 35%. For comparison, image-based robustness attacks can reach nearly 100%
attack success rate [13].

8.2 Defenses against Robustness Attacks

Most defenses limit the effect of perturbed edges on the GNN [86, 11, 15, 44, 78, 87, 93] or
use adversarial training (training with adversarial examples) to make the model robust [25,
.

To limit the effect of perturbed edges, some defenses prune edges in the adjacency ma-
trix to minimize the effect of adversarial perturbations on edges. Since homophily ensures
nodes and the edges connecting them are similar, any non-similar edges are potentially
adversarial and can be pruned |78, 86]. A similar approach is to compute the low-rank
approximation of the adjacency and features matrix and then train the GNN on this ap-
proximation [15]. This can also be extended to cases where homophily is not satisfied by
learning a reduced-rank estimation of the input graph [I1]. RobustGCN [93] trains the
model such that the embeddings follow a Gaussian distribution to reduce the effect of
perturbed edges.

Adversarial training for GNNs is also more challenging than the image domain. Since
the perturbations are discrete, finding the most effective perturbations is NP-hard [25].
Thus, one approach is to perturb the embeddings rather than the nodes while training
adversarially [25]. Another approach is to include an additional loss function while train-
ing the GNN that penalizes potentially perturbed edges and reduces their weight in the
final prediction [63]. However, this approach has not been tested on the state-of-the-art
robustness attack [97]. In general, research on robustness attacks and defenses for GNNs
is still in its early phases and is limited in applicability.

8.3 Privacy Attacks against GNNs

Given some background information and access to the model, adversaries can infer sensitive
unobservable information pertaining to the training dataset. Membership inference attacks
infer whether a node/sub-graph was used to train the model [15, 21, 14, 76]. Olatunji
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et al. [15] present a node-level membership inference attack using the 2-hop subgraph
of the target node. He et al. [21] achieve a similar goal, except they use only the 0-hop
subgraph. Wu et al. [76] present the first work on graph-level membership inference attack.
They use a shadow model approach to train an attack model for graph-level membership
inference. Zhang et al. introduce a subgraph inference attack using a similar shadow model

technique [89]. Membership inference attacks are, however, not the only privacy concern
for GNNs.

Adversaries can also mount property inference attacks to extract information about the
training data of the GNN. General properties of the training graph, such as the number
of nodes, number of edges, graph density, etc., can be extracted through a multi-task
classification model trained using shadow models [39]. More specific property inference
attacks include identifying edges between two query nodes [20, 11|, or extracting sensitive
attributes of a node (such as gender) [11]. Prior work has also shown that entire graphs
can be reconstructed from the embeddings using an encoder-decoder architecture |14, 89].
Property inference attacks designed for traditional Deep Neural Networks (DNNs) may
also be used on GNNs [58, 59]. Considering the widespread use of graphs for storing
sensitive information, such as social networks or medical data, these attacks show that
model deployers should be cognizant of the privacy leakage in GNNs.
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Chapter 9

Discussion

We discuss some implications of our system model assumptions and design choices as well
as potential limitations of GROVE.

9.1 Low-Fidelity Model Extraction Attacks

Recall that Shen et al.’s [55] attack aims to maximize fidelity between F; and F,. Con-
sequently, GROVE relies on the fact that the embeddings of F; and F, are similar. Low-
fidelity extraction attacks will not necessarily result in F; being close to F;, and can be
potentially missed by GROVE. However, there are no low-fidelity GNN extraction attacks
in the current literature. Thus, finding a low-fidelity model extraction attack could be an
important direction for future work.

9.2 Evasion using Distribution Shift

Recall from Section 7.2 that our system model preempts simple attempts to induce a
distribution shift on the output embeddings via model replacement. However, Adv. R can
adversarially train F; to change the output distribution to make the embeddings distinct
from F;’s embeddings. This is constrained to minimize degradation of F, accuracy.

We designed an experiment to reproduce this by training F, with an adversarial au-
toencoder that shifts the output distribution of F, to a Gaussian distribution. In this, F;
is treated as a generator and is trained simultaneously with a discriminator that detects
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the Gaussian distribution. While this should work in theory, we could not successfully
modify the output distribution of F,. Our experiment found that GROVE could success-
fully classify the surrogate models. Furthermore, we found that the output distribution did
not change a lot, as shown in Figure 9.1. We conjecture that the high-fidelity requirement
forces the output distribution of F; to be similar to F;. Thus, we could not find a successful
F, in the trade-off between evasiveness and utility.

- [ Simple Extraction Embeddings

i [ Distribution Shift Embeddings
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Figure 9.1: The mean of each embedding vector generated from surrogate models either
trained via the basic extraction technique from [55], or through the distribution shift
method. The embeddings are all on models trained on the PUBMED dataset using the
GAT architecture. While the histograms of the mean values are slightly different, showing
the distribution does change slightly, but not by much.

We further hypothesize that since we use an ML-based approach for GROVE, the best
way of evading detection is to shift the distribution of the embeddings from F;, such that
it matches the distribution of the embeddings from F;. However, an adversary would
need to train their own independently trained models to achieve this. If an adversary can
independently train a GNN that works just as well as F;, there is no incentive to use a
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model extraction attack in the first place. We leave this exploration to future work.

9.3 Requirement for Model Registration

Following prior work [60, 1, 37], in our system model (Section 3.1), all model owners are
required to obtain secure certified timestamps for their models before deployment to protect
against different types of adversarial behavior. Model owners can be incentivized to do so
because:

e registration serves as a direct means of protecting models against theft,

e it may be necessary to meet regulatory requirements for deployed models (e.g., EU
guidelines'),

e in the future, a model insurance mechanisms may be used to mitigate the effects of
model theft, and model registration may become a requirement for insurance.

9.4 Revisiting Adv.A

In Section 3.1, we argued that Adv.A is thwarted by the model registration requirement.
An alternative approach is to generate the fingerprint in such a way that it triggers false
positives against all independent models [37]. In all prior model ownership schemes (both
fingerprinting and watermarking) [39, 50], this is potentially feasible since it is the Accuser
who generates the fingerprint /watermark. Thus, if the Accuser generates adversarial fin-
gerprints, they can abuse the verification scheme to profit from false claims. This is not
the case in GROVE: the fingerprint is chosen by Ver, rendering GROVE immune to any
such adversarial fingerprint generation attacks.

9.5 Shen et al.’s [55] Prediction-based Attack

In our adversary model (Section 3.2), we consider that F; outputs embeddings as done in
Shen et al. [55]. This allows us to use GROVE over the outputs of F;, making it a black-
box scheme. However, Shen et al.’s [55] also suggest a prediction-based model extraction

thttps://artificialintelligenceact.eu/
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attack for cases where F; only outputs classification labels. In such a setting, GROVE is
still applicable if Ver is given white-box access to F;. We tested GROVE in this setting by
carrying out a prediction-based model extraction attack and extracting the penultimate
layer embeddings from F;. We found that GROVE still achieved a low FNR without any
retraining; a max of 0.042 on the AMAZON dataset, and 0.012 on the DBLP dataset.

9.6 Post-processing Embeddings

The system model described in Section 3.1 prevents the adversary from applying arbitrary
transformations to the embeddings. Prior work has shown adding Gaussian noise is effective
at mitigating property inference attacks that use embeddings [39]. Thus, it would be
interesting to see whether similar techniques can be used to thwart GROVE. Note that
while these techniques might thwart GROVE, they would do so at the risk of adversely
affecting the utility of the model. The tradeoff between evasiveness and utility is yet to be
explored.
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Chapter 10

Conclusion

This thesis focuses on the challenges of ownership verification for GNNs.

Problem setup. We hypothesized that node embeddings generated by GNNs might
be useful for ownership verification. We listed the desiderata for an effective ownership
verification technique and identified the potential adversaries. Adversaries that wish to
steal a model and evade detection are well-studied in prior work. We further identified
adversaries that may abuse the verification process to maliciously accuse innocent model
owners of stealing their models. Thus, we presented a system model that protects innocent
model owners against both types of adversaries.

Potential solution. We identified why prior fingerprinting schemes that use adversarial
examples are difficult to apply to GNNs. To motivate our hypothesis, we visualized the
embeddings generated from the target model (F;), the surrogate model derived from a
model stealing attack against F; (Fs), and an independently trained model (F;). The
visualizations showed that embeddings from F; and F; form a cluster different from JF;,
even when F; uses the same training data and architecture as F;. Using this insight, we
designed an ML-based fingerprinting scheme, GROVE, that utilizes the distance between
pairs of embeddings from F; and F; to identify whether F; is a surrogate of F; or an
independently trained model.

Evaluating the solution. We evaluated GROVE’s effectiveness against the state-of-
the-art model extraction attacks for GNNs [55] and against possible evasion techniques.
We found that GROVE is effective, robust to attempts at evasion, and computationally
efficient. GROVE does not require retraining models to protect them, and the verification
process only begins once a dispute is initiated. Furthermore, since Ver generates the
fingerprints, it is immune to malicious accusers that try to abuse the verification process.
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Lastly, while we only tested data augmentation against pruning, we believe that data
augmentation has the potential to make GROVE more robust as more model extraction
attacks are introduced in the literature.

Future work. As pointed out in Section 9.2, it is theoretically possible for an adver-
sary to evade GROVE by shifting the distribution of the embeddings generated by F;.
Furthermore, there is still little work on model extraction attacks against GNNs. Thus,
exploring the boundaries of GROVE is an important direction for future work. Some poten-
tial methods include low-fidelity model extraction attacks, a surrogate training mechanism
that shifts the distribution of the output without requiring another independently trained
GNN, or exploring how post-processing the embeddings impacts the verification process.
Finally, implementing the privacy-preserving mechanisms to share models with Ver is also
left to future work.
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Appendix A

Dataset Ownership Graphs

The difference in the two models is most easy to see using COAUTHOR since that is the
largest dataset. However, the same trend is seen in the rest of the plots, as shown in
Figure A.1. Due to space constraints, we only show the graphs for models trained with
GAT. The same trend is seen across all architectures.
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Figure A.1: t-SNE projections of the embeddings from two models trained using the same
architecture on are distinguishable for all datasets.
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Appendix B

Distance Graphs

We calculate the Euclidean distance between pairs of embeddings from (F;, Fs) and (F,
F:) and plot the histogram of the distances in Figure B.1. While the distribution of the
distances is different, the distributions overlap significantly. Thus, a simple approach based
on distance calculation and hypothesis testing did not work.
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Figure B.1: Histograms of the Euclidean distances between pairs of embeddings from (F;,
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