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Abstract

This thesis is dedicated to the study of spacetimes surrounding black holes within the
context of cosmology, high energy physics and modified theories of gravity. We do this by
applying and adapting modern numerical relativity techniques to probe the inhomogeneous
and strong field regime in a number of different scenarios.

The first application we consider is the nonlinear evolution of unstable flux compactifi-
cations in a low-energy limit of string theory. Going beyond stationary solutions and their
perturbations, we find rich dynamics, in some cases finding that the evolution from an
unstable homogeneous state to a stable warped compactification can serve as a toy-model
for slow-roll inflation, while in other cases finding solutions that eventually evolve to a
singular state.

We then apply the methods for numerically evolving scalar fields coupled to the Ein-
stein field equations to address several problems in early universe cosmological scenarios.
We study the conditions under which inflation can arise from very inhomogeneous initial
conditions. To do so, we introduce and compare several different ways of constucting ini-
tial data with large inhomogeneities in both the scalar field and time derivative profiles,
by solving for the coupled Einstein constraint equations. We then study the evolution of
various classes of initial conditions in both single- and two-field inflationary models. In
some of the cases studied, the initial gradient and kinetic energy are much larger than
the inflationary energy scale such that black holes can form. Taken together, our results
suggest inflation can arise from highly inhomogeneous conditions.
Using the same numerical techniques, we study the nonlinear classical dynamics and evo-
lutions of black holes in a particular nonsingular bouncing cosmology. We find that for
sufficiently large black holes the black hole apparent horizon can disappear during the
contraction phase. Despite this, we show that most of the local cosmological evolution
remains largely unaffected by the presence of the black hole. For all the cases explored,
the black hole’s event horizon persists throughout the bounce, suggesting the nonsingular
bouncing model under study is fairly robust to large perturbations.

Finally, we use and further develop a novel formulation of the Einstein field equations
for evolving a large class of modified theories of gravity. We use this formulation to study
the nonlinear dynamics of binary black hole mergers in a specific class of theories, where
the black holes acquire a scalar charge. We consider quasi-circular inspirals with different
mass-ratios, varying the coupling parameter introducing deviations from General Relativity
and quantifying the impact on the emitted scalar and gravitational waveforms. We also
compare our numerical results to analytic post-Newtonian calculations of the radiation
emitted during the inspiral.
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Chapter 1

Introduction

1.1 Motivation

The theory of General Relativity (GR) is one of the greatest achievements of modern
physics. More than a century after its formulation, the theory remains to date the most
accurate description of gravitational physics at all scales. GR fits observations from our
solar system to the entire cosmological model of the universe and more recently Gravita-
tional Waves (GW) from astronomical sources (see [333] for a review of experimental tests
of GR before the detection of GWs).

Yet, there are both theoretical and observational reasons to believe that GR is incom-
plete. On the theoretical side, GR itself is not consistent with quantum mechanics because
it breaks down at very small length scales. In particular, the theory is non-renormalizable
but also exhibits physical singularities such as those inside black holes and at the big bang.
It is believed that GR and Quantum Field Theory should be limits of a, yet to be deter-
mined, complete fundamental theory of quantum gravity. On the experimental side, there
are open problems that could be associated with deviations from GR, the most important
ones regard cosmology: observations have shown that ∼ 25% of the mass-energy content
of the universe is in the form of a pressureless dark matter component that does not in-
teract electromagnetically, and ∼ 70% of the energy content of the universe is filled with
dark energy which accounts for the observed late time acceleration of our universe. These
observations together with GR as a mathematical foundation gave birth to the current
standard model of cosmology, also known as the ΛCDM model, where ‘CDM’ stands for
‘Cold Dark Matter’ and Λ the inclusion of a cosmological constant associated with dark en-
ergy. Although this theory describes much of what we observe, including the existence and
structure of cosmic microwave background as well as the large-scale structures we observe
in distribution of galaxies, the origin of dark matter and energy within this model is still
currently unknown. Further assuming that the universe satisfies the cosmological princi-
ple, which states that at least on large scales the universe is homogeneous and isotropic,
the ΛCDM model makes use of the Friedmann-Lemaitre-Robertson-Walker (FLRW) met-
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ric (which we will introduce in more detail below) to describe the expanding universe.
While the ΛCDM model fits all cosmological observations to their current precision, it
does not predict or even just explain why the universe began with nearly homogeneous,
spatially flat and isotropic conditions. It turns out that if one assumes a FLRW metric
all the way to the Big Bang, then observations of the cosmic microwave background and
large-scale structures would require very special and finely-tuned initial conditions. This
is often referred to as the homogeneity and flatness problem in cosmology or simply the
problem of initial conditions. The question that early universe cosmologies would then
like to address is: can we find a physical mechanism that generically explains the initial
flatness and homogeneity of the universe? It is also worth pointing out that the inclusion
of the cosmological constant gives rise to the cosmological constant problem: why is the
observed value of the cosmological constant so small compared to the one predicted from
quantum field theory?

These open questions have prompted many researchers to consider deviations from GR
or at the very least continue to test our theory of gravity. The study of extreme regimes,
naturally encountered in early universe cosmology, high energy physics and spacetimes
surrounding compact objects is a particularly promising target to probe for deviations
of GR. The discovery of gravitational waves in 2015 provided us with a new very pow-
erful tool to test GR in the highly relativistic strong field regime previously inaccessible
to other experiments and observations. Since then LIGO and Virgo have detected over
ninety black hole mergers [8], two binary neutron star mergers [3, 7] and two neutron-star
black hole binary mergers [9], all testing Einstein’s gravity in regimes never tested before
[2, 346, 36, 5, 199, 10, 198, 296, 329, 227, 271]. So far no deviation from GR has been
detected. The continued improvement in sensitivity of current GW observatories, and plan-
ning of the future generation of ground- and space-based GW observatories conceived to
begin operations in the 2030s, will resolve signals with a far greater precision and open up
new observational windows, revealing invaluable information about the underlying theory
that describes their generation and propagation. Together with highly precise observa-
tions across the electromagnetic spectrum we are in an unprecedented position to detect a
deviation from GR.

There are two distinct approaches that have been developed to test for departures
from GR in the strong field regime 1. In the top-down approach, we modify the theory
at the fundamental level and make predictions that can be tested observationally. In the
bottom-up approach, we use a phenomenological description of the observations in an
attempt to discover clues for how to modify the theory at the fundamental level. Both
approaches have strengths and weaknesses. The former approach to testing gravity is very
attractive because it not only guarantees testing predictions of a fundamental modification
to gravity, but also allows for the parameters of the same theory to be constrained by a
wide range of observations in the electromagnetic and gravitational wave spectrum as well
as covering small and large scales. However, there is a clear non-technical drawback in this

1Note these approaches to testing a theory are very general and in fact the bottom-up approach was
used when constructing the standard model of elementary particles
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approach, namely it requires choosing one fundamental theory out of the many possibilities.
Moreover, ideally one would like to maximize the amount of information we obtain from
the data, in order to not miss any unexpected physics. But maybe more importantly, the
real technical challenge with following this approach to test gravity in the highly dynamical
strong field regime (where linear treatments fail) is that it requires numerically solving the
Einstein field equations or modifications thereof. In fact, there are very few alternative
theories of gravity that are on an equal theoretical footing to GR, in the sense of being able
to give a full prediction of what happens given some initial data or in other words many
modified theories of gravity do not have a well-posed initial value formulation2. Given
this, one might wish to follow the bottom-up approach instead, where one parameterize
the deviations from GR in a generic way, simplifying the modelling drastically. However, if
one does detect a deviation from GR using the bottom-up approach, then one will still need
the top-down approach to understand which theory can lead to such deviation. Clearly,
both approaches are then worth pursuing. In this thesis, we follow the top-down approach.
In particular, we study black holes both in early universe scenarios and string inspired
modified theories of gravity. The use of black holes instead of other compact objects such
as neutron stars is particularly important, as one does not need to deal with uncertainties
associated with astrophysical matter. This allows us to probe the highly dynamical and
relativistic regime of gravity in a clean way.

In the remainder of this chapter, we first briefly review the Einstein equations along
with the form they take in homogeneous and isotropic spacetimes. We then review the
formulation of the Einstein equations we use in our numerical simulations of GR and
extensions thereof. We close this chapter with an outline of the remainder of the thesis.

Throughout this thesis, unless stated otherwise, we make use of geometric units where
G = c = 1. For the exception of chapter 2 we work in four spacetime dimensions, with
metric signature (−+ ++). When working in four spacetime dimensions, we use lower-case
Greek letters (µ, ν, ...) to denote spacetime indices and Latin letters (i, j, k, ..., although t
is reserved for the time coordinate index) to denote spatial indices. The Riemann tensor
is Rα

βγδ = ∂γΓ
α
βδ − · · · .

We sometimes use the same notation to refer to different quantities and explicitly say
so when this is the case. In general H is always used to refer to the Hubble parameter
and a the scale factor, but depending on the context it might be computed differently.
The notation we use is always fully consistent within a single chapter. Derivatives with
respect to coordinate time, harmonic time, proper time and when applicable scalar fields
are usually denoted by a dot or prime. Similarly the notation is fully consistent within a
particular chapter.

2A theory admits a well-posed initial value formulation if given initial data that satisfies the constraint
equations, there exists a unique solution to the equations of motion that depends continuously on the
initial data. A sufficient condition for a theory to be well-posed is that there should exist a formulation
of the equations of motion which is strongly hyperbolic (see e.g. [232, 141, 305] for further details on
well-posedness and hyperbolicity).
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1.2 The Einstein equations

In GR, spacetime is a four-dimensional curved manifold with a Lorentzian metric gµν and
the dynamics of gµν are prescribed by the Einstein equations

Gµν = 8πTµν , (1.1)

where Tµν is the stress-energy tensor of the matter and Gµν is the Einstein tensor

Gµν ≡ Rµν −
1

2
Rgµν . (1.2)

Here Rµν ≡ Rα
µαν is the Ricci tensor and R ≡ gαβRαβ the Ricci scalar, both obtained from

the Riemann tensor Rα
βγδ which encodes the curvature of spacetime and can be computed

from
Rα
βγδ = ∂γΓ

α
βδ − ∂δΓαβγ + ΓαγµΓµδβ − ΓαδµΓµγβ (1.3)

where Γαβγ are the Christoffel symbols

Γαβγ =
1

2
gαµ (∂βgµγ + ∂γgβµ − ∂µgβγ) . (1.4)

It is sometimes useful to rewrite the field equations in the equivalent form

Rµν = 8π

(
Tµν −

1

2
Tgµν

)
, (1.5)

where T ≡ gµνTµν is the trace of the stress-energy tensor. Written in their most general
form, in an arbitrary coordinate system, the Einstein equations are thus a set of ten
coupled, non-linear, second-order partial differential equations for the metric.

The field equations (1.1) can also be derived from a variational principle where the
Lagrangian for the gravitational field is simply the Ricci scalar. The GR action with a
cosmological constant then reads

SGR =

∫
d4x
√−g

[
R− 2Λ

16π
+ LM

]
, (1.6)

where g is the determinant of the metric tensor g ≡ detgµν and LM is the matter Lagrangian
density. Variation of the action (1.6) with respect to the metric gives the Einstein field
equations above (1.1) where the stress-energy tensor is defined as

Tµν ≡ −
2√−g

δLM
δgµν

(1.7)

where LM =
√−gLM is the matter Lagrangian. Modifications to GR in the top-down

approach are introduced at the level of the action and therefore this will be the starting
point for any theoretical model we consider in this thesis.
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1.2.1 The homogeneous background cosmology

Contemporary cosmological models, the ΛCDM model included, are based on the cos-
mological principle which states that our universe is essentially the same everywhere at
least on sufficiently large scales, where local variations in density are averaged over. The
validity of this very simple assumption has been confirmed by a number of different ob-
servations, such as number counts of galaxies and observations of the diffuse X-ray and
γ-ray backgrounds, but perhaps more importantly by observations of the cosmic microwave
background [281, 317, 14]. Although we know that the cosmic microwave background is
not perfectly smooth, the deviations from homogeneity are of the order of 10−5. There-
fore, much of what we understand about the cosmic evolution from very early times to
the current stages of the universe as we observe it today comes from FLRW models plus
cosmological perturbation theory. We now briefly review the zeroth order approximation
to the evolution of the real, lumpy universe.

Assuming the cosmological principle or equivalently assuming that the universe is ho-
mogeneous and isotropic on large scales one is lead to the FLRW metric line element to
describe geometry of spacetime [87],

ds2 = −dτ 2 + a2(τ)

(
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

))
(1.8)

where τ is the proper (physical) time, a(τ) is the time-dependent scale factor representing
the relative size of spacelike hypersurfaces at different times, and k ∈ {−1, 0,+1} deter-
mines the geometry of these spatial surfaces: negatively curved, flat and positively curved,
respectively. r is the comoving radius, related to the proper (physical) distance through
the relation R = a(τ)r.

Provided we assume a FLRW metric, the dynamics of the universe is completely de-
termined by the evolution of the scale factor. The form the scale factor takes is dictated
by the matter content of the universe via the Einstein field equations (1.1). Assuming a
perfect fluid description of the universe, the stress-energy tensor is

Tµν = (ρ+ P )uµuν + Pgµν , (1.9)

where uµ is the four-velocity of fluid (normalized so that uµuµ = −1) and ρ and P the
energy density and pressure in the rest frame of fluid. In particular, in a frame that is
comoving with fluid we may take uµ = (1, 0, 0, 0) such that for the FLRW metric T µν =
diag(−ρ, P, P, P ). The Einstein field equations, assuming the FLRW metric and a perfect
fluid energy-momentum source with equation of state P (ρ), then take the form of two
coupled, non-linear ordinary differential equations, also known as the Friedmann equations

H2 =
8πρ

3
− k

a2
(1.10)
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and
ä

a
= −4π

3
(ρ+ 3P ) (1.11)

where an overdot denotes a derivative with respect to proper time and H ≡ ȧ
a

is the Hubble
parameter and denotes the expansion rate of the FLRW spacetime.

In the standard Big Bang model of cosmology, the universe has been expanding as
described by the FLRW model since t = 0. However, as was already mentioned earlier,
if we assume a FLRW model all the way to the initial singularity then this leads to the
homogeneity and flatness problem. The horizon problem arises from the fact that if one
solves for the evolution of the scale factor using the Friedmann equations, then one can show
that the comoving horizon3 grows monotonically with time which implies that comoving
scales entering the horizon today were far outside the horizon at the time of last scattering.
The question is then, how does one explain the near-homogeneity of the CMB temperature
on scales containing a priori many causally independent regions? The flatness problem
arises from the observation that the universe is geometrically nearly flat, yet assuming a
FLRW cosmology the departure from flat Euclidean space diverges with time. Therefore, in
the standard Big Bang cosmology the near-flatness observed today would require extremely
fined-tuned initial conditions.
The goal of early universe cosmologists is to then come up with a theory that explains the
near inhomogeneity and flatness on the period of last scattering dynamically or in other
words without fine tuning.

Cosmic inflation, a period of accelerated expansion in the early universe, [320, 177,
246, 19, 247] has been proposed as a solution to the horizon and flatness problems. Both
problems of the standard Big Bang cosmology arise because in a FLRW universe the co-
moving Hubble radius (aH)−1 is strictly increasing. Since H is approximately constant
while a grows exponentially during inflation we find that the comoving Hubble radius de-
creases as required (see e.g. [44] for a review of inflationary cosmology). Besides solving
the problem of initial conditions in cosmology, inflation also explains the origin of the
large-scale structures in the universe. The inflationary paradigm, is embedded in many
theories, the predictions of which can then be tested against the large amount of observa-
tional data on the cosmic microwave background. However, although inflation has become
widely accepted as the theory that explains the nearly scale-invariant, Gaussian and adi-
abatic scalar perturbations in the cosmic microwave background, it remains a hypothesis
and many open questions remain (see e.g. [71] for some of the conceptual problems of
inflationary cosmology). We will challenge the conditions under which inflation can begin
in chapter 3 of this thesis. A proposed alternative to cosmic inflation is the idea that
the universe underwent a bounce: a transition from a stage of contraction to expansion

3The comoving horizon, also referred to as particle horizon, describes the maximum distance that light
could have travelled to an observer in the age of the universe. It represents the furthest distance from
which we can retrieve information from the past and so defines the size of the observable universe at the
present epoch. The physical size of the particle horizon is given by the scale factor multiplied by the
elapsed conformal time.
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[161, 72, 268, 43, 70]. In contrast to inflation, in bouncing models the Hubble radius typ-
ically shrinks ultra-rapidly during the contracting phase while the scale factor is nearly
constant, resolving the smoothness problem. The flatness problem is resolved because the
curvature of the universe is exponentially suppressed during the contracting phase (see
e.g. [194] for more details on how bouncing cosmologies resolve the problems of initial
conditions). In bouncing cosmologies the nature of the structure formation mechanism
depends on the specific bouncing model being considered. In chapter 4 we focus on a
specific bouncing model where the transition from contraction to expansion happens at
sub-Planckian energies, and study its robustness to the presence of black holes.

1.2.2 Formulation of the Einstein equations

The particular formulation (by which we mean the choice of gauge and inclusion of appro-
priate gauge-fixing terms in the equations of motion) of the Einstein equations that we use
in the first three chapters of this thesis is the generalized harmonic formulation [157, 292].
In this formulation, the gauge degrees of freedom are specified by introducing the source
functions which determine the covariant d’Alembertian of the coordinates, Hµ = �xµ.
Promoting the source functions to independent quantities one can rewrite the Einstein
field equations (1.1) as

gµν∂µ∂νgαβ + ∂βg
µν∂µgαν + ∂αg

µν∂µgβν + ∂αHβ + ∂βHα − 2HνΓ
ν
αβ + 2ΓµνβΓνµα

= −8π (2Tαβ − gαβT ) . (1.12)

Since the source functions Hµ are four independent functions, one needs to specify four
additional equations for them. In this thesis, we only consider gauge conditions where
the source functions are some function of the metric and spacetime coordinates, such that
the evolution equation for the metric is manifestly hyperbolic. In this formulation, the
evolution equations are reduced to first order in time so that there are 28 fundamental
variables {gµν , Hµ, ∂tgµν , ∂tHµ}. Introducing the constraint functions Cµ

Cµ ≡ Hµ −�xµ, (1.13)

which are identically zero for any solution of the Einstein field equations (1.1), one can
show using the contracted Bianci identity and conservation of stress-energy tensor, that
Cµ obeys the following homogeneous wave equation

�Cµ = −Rµ
νC

ν . (1.14)

This means that if one begins with initial data satisfying both Cµ = 0 (which we ensure by
setting Hµ = �xµ on initial time slice) and ∂tC

µ = 0, then while evolving gµν with (1.12),
(1.14) guarantees that Cµ = 0 will be satisfied for all time or in other words gµν will solve
the Einstein field equations (1.1). When evolving the equations numerically, this statement
will only be true up to truncation error. In practice, we ensure that Cµ converges to zero
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(by evolving a given simulation run at different resolutions) for any particular evolution
system we use. Such a convergence test provides a nontrivial check that our numerical
solution is indeed converging to a solution of the Einstein field equations. When evolving
black hole spacetimes, we add constraint damping terms to the equations as in [176, 293].
Equivalent to enforcing ∂tC

µ = 0 at t = 0 is to make sure that the usual Hamiltonian
and momentum constraint equations are satisfied on the initial time slice. To summarize,
evolving the Einstein equations in the generalized harmonic formulation consists of: first
constructing initial data for {gµν , ∂tgµν} that satisfies the constraint equations to then
evolve the metric according to (1.12) and the source functions according to an appropriate
choice of gauge. In this thesis, we will also include matter which we evolve according to
its equations of motion.

In the last chapter of the thesis we study a modified theory of gravity, called Einstein-
scalar-Gauss-Bonnet (ESGB) gravity which is a representative example of a Horndeski
theory of gravity. Horndeski theories of gravity are the most general class of classical scalar-
tensor theories that lead to second order equations of motion, making them a particularly
attractive alternative to GR [188]. As was already mentioned above, one technical challenge
that has prevented finding fully nonlinear solutions to many Horndeski theories of gravity,
has been the lack of a well-posed initial value formulation for such theories. However, it was
recently shown that the equations of motions for Horndeski theories of gravity possess a
well-posed initial value formulation when using the so-called modified generalized harmonic
(MGH) formulation, so long as the coupling parameter introducing beyond-GR corrections
is much smaller than all the other length scales in system under study, which is also referred
to as the weakly-coupled regime [230, 229]. We briefly review the MGH formulation and
refer the reader to [230, 229] for more details.

Assuming a Lorentzian spacetime, one starts by introducing two auxiliary (inverse)
Lorentzian metrics g̃µν and ĝµν such that the causal cone of the inverse of physical metric
gµν is strictly inside the causal cone of g̃µν , and the latter is strictly inside the causal cone
of ĝµν . Raising and lowering indices is always performed with the spacetime metric gµν , so
e.g. ĝµν ≡ gµαgνβ ĝαβ. We also define g̃ ≡ g̃µνgµν and ĝ ≡ ĝµνgµν .

The MGH formulation imposes the following gauge condition on the coordinates xµ:

Cµ ≡Hµ − g̃αβ∇α∇βx
µ

=Hµ + g̃αβΓµαβ = 0. (1.15)

Just like in the generalized harmonic formulation, Hµ are the (as-yet unspecified) source
functions that, along with g̃αβ, determine the gauge degrees of freedom, and Cµ (which
remember will generally not be exactly zero in a given numerical solution) the constraint
functions.

One next defines the modified generalized harmonic equations of motion

Eµν − P̂βαµν∇αC
β − 1

2
κ (nµCν + nνCµ + ρnαCαg

µν) = 0, (1.16)
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where Eµν are the equations of motion derived from varying the metric (i.e. the equations
of motion before gauge fixing), nµ is a timelike vector (with respect to gµν , g̃µν , and ĝµν),
and

P̂β
αµν ≡ 1

2

(
δµd ĝ

να + δνβ ĝ
µα − δαβ ĝµν

)
. (1.17)

We here include the constraint damping terms with the constants κ and ρ [176]. Note
Eq. 1.16 is slightly different from Ref. [229] where ∇αC

β is replaced by ∂αC
β. We choose

the form used here for consistency with the standard generalized harmonic formulation
introduced earlier, but either way the principal part, and therefore the hyperbolicity results
are the same.

In the MGH formulation the coordinates xµ obey a hyperbolic equation with character-
istics determined by g̃µν as opposed to the physical metric in generalized harmonic formu-
lation (1.13). Furthermore, if one takes the divergence of (1.16) and assumes ∇µE

µν = 0,
we obtain the modified version of (1.14)

− 1

2
ĝµα∇µ∇αC

ν − ĝανRβαC
β −

(
∇µP̂

αµν
β

) (
∇αC

β
)
− 1

2
κ∇µ (nµCν + nνCµρnαCαg

µν) = 0.

(1.18)
This implies that the constraint violating modes Cµ satisfy a hyperbolic equation with
characteristics determined by ĝµν instead of physical metric. If we set g̃ab = ĝab = gab,
one can show that the MGH formulation reduces to the generalized harmonic formulation.
In the context of Horndeski theories of gravity, the latter does not admit a well-posed
initial value formulation [277, 276]. The reason for this can be traced to the fact that in
the generalized harmonic formulation the unphysical pure gauge and constraint violating
modes both propagate at the speed of light i.e. are degenerate with the characteristic
speed of physical solutions. Introducing a modification of the usual generalized harmonic
formulation such that the pure gauge modes propagate along the null cone of g̃µν and
the gauge-condition violating modes along the null cone of ĝµν instead of the null cone
of physical metric, and choosing the auxiliary metrics such that the three null cones do
not intersect, we ensure that the three different types of solutions propagate with different
speeds. One can show that this formulation of GR is strongly hyperbolic and remains so
when turning on Horndeski terms [229]. Finally, we note that picking a gauge in the MGH
formulation is equivalent to choosing the functional form of the auxiliary metrics g̃µν and
ĝµν , as well as choosing the source functions Hµ.

1.3 Summary and outline of thesis

The rest of the thesis is as follows.
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In chapter 2 we consider string theory as a candidate theory of quantum gravity. Key
to this program is explaining why we cannot experimentally probe the extra spatial dimen-
sions invoked to make string theory a consistent theory. Despite many advances, including
systematic linear treatments of perturbations of the solutions in such compactifications,
there remain many open problems regarding the rich dynamics of these solutions. It is
known that some of these solutions are sometimes perturbatively unstable but determin-
ing the endpoint of such instabilities requires a fully nonlinear treatment of the equations,
a daunting task given the difficulty of solving the Einstein equations in four dimensions, let
alone ten. We describe an evolution code to probe the strong field regime and determine
the end state of such linear instabilities. In some cases we show that initially homoge-
neous compactifications are unstable to forming stable inhomogeneous solutions. In other
scenarios, we show that the transition to a dynamically more favored state can serve as
a toy-model for inflation, suggesting that perhaps our universe arose from the dynamical
re-adjustment of the shape of a compactification. We also find a regime where unstable so-
lutions overshoot perturbatively stable solutions to evolve towards a singular state, forming
trapped regions in the process and resulting in a crunch of the effective four-dimensional
spacetime.

As mentioned earlier the inflationary paradigm, invoked to explain the flatness and
nearly isotropic nature of the universe we observe today, has so far been consistent with
observational tests. However, while it is true that if inflation begins it will smoothen out
and flatten any inhomogeneities, it is less understood whether inflation can start from
general initial conditions. In order to study whether inflation can occur for arbitrary
anisotropic and inhomogeneous initial conditions, one needs to carry numerical simula-
tions. This question has been studied in the past using general relativistic simulations in
full 3+1D with large initial inhomogeneities in the scalar field profile and gravity sector,
but ignoring inhomogeneities in the velocity profile of the inflaton for simplicity of the
numerical implementation. In chapter 3 we extend the methods and software for con-
structing initial data describing a universe dominated not only by the gradient but also
kinetic energy of the inflaton. Numerically evolving these initial conditions, we find that
even when the wavelength of the perturbations is of the order of the initial Hubble length
such that overdense regions collapse to form black holes, these are quickly inflated out by
the expanding spacetime and inflation eventually begins. We discover that large gradients
can mitigate the disruptive effects of a non-zero initial velocity profile, rendering inflation
more robust than one would naively expect from homogeneous calculations.

As mentioned in the first part of this introduction, a proposed alternative to inflation is
that the universe underwent a transition from contraction to expansion at sub-Planckian
energies, a nonsingular bounce. One outstanding question is the viability of such mod-
els in the inhomogeneous and non-perturbative regime. In particular, what is the fate of
black holes, if present, in nonsingular bouncing cosmologies. One might worry that the
bounce, requiring general relativity coupled to exotic matter or modifications to gravity,
will reverse gravitational collapse possibly leading to a naked singularity. Alternatively
the bounce could fail to happen in the vicinity of the black hole. In chapter 4, we adapt
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the techniques from numerical relativity and consider the first numerical evolution of black
holes through a nonsingular bouncing cosmology. We find that for sufficiently large black
holes in comparison to the minimum Hubble radius, the black hole and cosmological hori-
zons collide and temporarily disappear during the contracting phase. Regardless, we show
that most of the local cosmological evolution remains largely unaffected by the presence of
the black hole, making nonsingular bouncing models robust to large inhomogeneities.

A common feature of many proposed modifications to GR is that they show the
strongest effects in the presence of the shortest curvature lengths. Gravitational waves
emitted during the merger of compact objects, neutron stars and black holes, are therefore
a particularly promising target to find corrections to GR. Despite the potential for dis-
covery, high-precision inspiral-merger-ringdown waveform models are currently lacking in
theories introducing modifications to gravity. In chapter 5 we use the modified generalized
harmonic formulation described earlier to perform a detailed study of binary black hole
mergers in a specific theory, Einstein-scalar-Gauss-Bonnet gravity, introducing deviations
from general relativity at small curvature length scales. Different variants of this particular
theory give rise to black hole solutions with scalar charge, the merger of which produces
gravitational signals that differ qualitatively from GR, while still passing weak field tests.
We quantify the dephasing of the gravitational signal as compared to GR, the latter being
a promising feature to be compared with current GW observations. We find that analytic
predictions of the waveform, currently used for model dependent tests of general relativity
in the weak field regime, are lacking the accuracy to place meaningful constraints on our
theory of gravity, emphasizing the need for fully nonlinear evolutions as a benchmark for
analytic approaches.

Finally, we conclude in chapter 6 and discuss some directions for future work.
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Chapter 2

Nonlinear dynamics of flux
compactification

2.1 Introduction

As mentioned in Chapter 1, the standard cosmological model invokes accelerated expansion
of the Universe at late times, in the current epoch of dark energy domination and at
early times when including an inflationary era. Determining the physical mechanism(s)
responsible for the accelerated expansion of the Universe is among the most important
challenges in modern cosmology. One proposed framework for tackling this is string/M-
theory, where the mechanisms responsible for dark energy and inflation would ideally just
be one feature of a complete description of gravity and the standard model of particle
physics.

A major complication in developing these phenomenological connections are the ex-
tra spatial dimensions invoked to make string theory a consistent quantum theory of
gravity. There are two dominant paradigms for explaining why we cannot experimen-
tally probe extra spatial dimensions: they are small (compactification [217, 226]) or the
standard model degrees of freedom are constrained to move in only four dimensions (the
braneworld scenario [26, 298, 299]). The specific choice of compactification or realization of
the braneworld scenario has implications for phenomenology, dictating the particle content
and vacuum structure, as well as the types and strengths of interactions, in the effec-
tively four-dimensional theory that results. The proliferation of four-dimensional theories
(known as the string theory landscape [322]) intertwines string theory with cosmology in
many fundamental ways. In this chapter, our main point of contact will be the evolution of
the size and shape of a compactification, which (in this picture) are part of our cosmological
history, and can provide the physical mechanism for inflation and dark energy.

What dynamics might be associated with extra dimensions? In the simplest scenario,
the Universe remains effectively four-dimensional and small deformations of the extra di-
mensions correspond to a set of fields known as Kaluza Klein (KK) modes. Even this is
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highly non-trivial, requiring the addition of various sources of energy momentum (such as
q-form gauge fields, branes, etc.) to stabilize the size and shape of the compactification,
and verifying that the resulting four-dimensional effective theory has the desired proper-
ties. Beyond studying linear perturbations of such static stable configurations, very little is
known about the dynamics associated with extra dimensions. This is not surprising given
the difficulties in solving Einstein’s equations in four dimensions, let alone ten. Neverthe-
less, a better understanding is necessary to fully understand cosmology in theories with
extra dimensions, and in particular address questions such as: How was the Universe we
observe selected from the many possibilities? What features of our Universe are accidental,
and which are inevitable (e.g. fixed by special initial conditions or symmetries)? Why are
there only three large spatial dimensions?

To make progress in this direction, we focus on a simple model that retains many of
the important features of the low-energy limit of string theory: Einstein-Maxwell the-
ory in D-dimensions with a positive cosmological constant and a q-form gauge field 1.
Freund and Rubin [149] showed that this theory admits solutions in which the extra di-
mensions are compactified on a sphere, stabilized against collapse by the positive cur-
vature of the compactification and a homogeneous configuration of the gauge field over
the sphere. If a positive bulk cosmological constant is included [63], it is possible to find
solutions in D = p + q dimensions that are a product space of p-dimensional anti-de Sit-
ter, Minkowski or de Sitter space and a q-dimensional sphere. The size of the compact
sphere and the magnitude of the four dimensional cosmological constant are adjusted with
the number of units of flux of the q-form gauge field wrapping the q-sphere. This sim-
ple model figures prominently in the AdS/CFT correspondence [256], serves as a simple
example of flux compactifications in string theory [123, 116], and has been employed to
study the cosmological constant problem [116, 88, 77, 28], flux tunneling [15, 57, 75, 56],
and dimension-changing transitions [106, 234, 88, 58], among other phenomena. Another
interesting feature of the Einstein-Maxwell model is that in addition to spherical com-
pactifications, it also admits stable solutions where the compact space is inhomogeneous,
or “warped” [223, 224, 242, 114]. In string constructions, warped extra dimensions are
essential in models that address the hierarchy between the gravitational and electroweak
scales [165], dark energy [209], and cosmic inflation (e.g. [208]). A complete understanding
of the dynamical generation of such structure is an important missing component of the
cosmology of these models.

In the Einstein-Maxwell model, the linear stability and mass spectrum of the Freund-
Rubin solutions were studied in refs. [118, 223, 224, 242, 76, 186]. Their analysis showed
that the stability of the solution to small perturbations depends on the relative value of
the flux density or Hubble parameter compared to the cosmological constant as well as on
the dimension of the internal manifold. There are two types of dynamical instabilities:

• The total volume instability can be attributed to homogeneous perturbations (` = 0

1see Appendix A.3 for a comparison of the theory considered here to the more realistic 10 dimensional
type IIB supergravity (SUGRA)
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modes) of the internal space and arises whenever the density of flux lines warping the
q-sphere is too small, or equivalently, when the Hubble expansion rate of the external
de Sitter space is too large causing the internal manifold to either grow or shrink.
The endpoint of this instability was found to be either decompactification to empty
D-dimensional de Sitter space or flow in towards a different configuration where total
flux integrated over the compact space is the same but the volume is smaller hence
flux density larger [234].

• The warped instability arises when q ≥ 4 (in contrast to the volume instability which
already exists when q ≥ 2) and is due to inhomogeneous perturbations. Mathemati-
cally, this instability is due to a mode that couples the metric and flux (with ` ≥ 2
angular dependence) and in turn deforms the internal space. One expects that if some
configuration is unstable for a given total flux, then this may signal the presence of
another more stable configuration with the same flux. Indeed refs. [223, 242, 114]
numerically constructed stationary warped solutions and ref. [224] studied their per-
turbative stability. But their connection to the inhomogeneous instability has not
been determined, so it is not known whether these are the endpoint of the instability.

Note that when q ≥ 5, all of the Freund-Rubin solutions are linearly unstable to one or
both types of instability.

The goal of this chapter is to go beyond studying stationary or homogeneous solutions,
and their linear perturbations, by performing full nonlinear evolutions of perturbed Freund-
Rubin and warped compactifications. We do this by applying modern numerical relativity
techniques to probe the inhomogeneous and strong field regime, as has been done for
a number of different cosmological scenarios, e.g. [159, 330, 127, 126, 105], though here
we study inhomogeneities in a compact extra dimension. We find rich dynamics, in some
cases finding evolution from unstable to stable stationary warped solutions, though in other
cases finding that unstable solutions evolve towards a singular state (even in some cases
overshooting stable stationary solutions). We comment on some features of the cosmology
seen by four-dimensional observers, and motivate the use of the cosmological apparent
horizon as a useful measure of the four dimensional Hubble parameter. The solutions we
study provide an important proof-of-principle that numerical relativity could be a powerful
tool for exploring new phenomena in cosmologies with extra spatial dimensions.

2.2 Flux compactifications in Einstein-Maxwell the-

ory

In this chapter, we focus on solutions to Einstein-Maxwell theory in D = p+ q spacetime
dimensions with a D-dimensional cosmological constant ΛD and a q-form flux that wraps
q compact dimensions, leaving p uncompactified dimensions. The starting point for the
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theory is then the following D = p+ q-dimensional action

S =

∫
dpxdqy

√−g
[

1

2
(D)R− ΛD −

1

2q!
F2
q

]
(2.1)

where unlike in the rest if this thesis we use units with MD = c = 1, where MD ≡
(8πGD)−1/(D−2) is the D-dimensional Planck mass, (D)R is the D-dimensional scalar cur-
vature, and Fq = FM1...Mq is a q-form. Note this choice of units is not conventional, but it
leaves us the freedom to fix ΛD.

The Einstein equations which follow from the action (2.1) are a generalization of the
Einstein equations in four dimensions (1.1) to D dimensions

GMN = (D)RMN −
1

2
(D)RgMN = TMN (2.2)

where the stress-energy tensor is

TMN =
1

(q − 1)!
FMP2...PqF

P2...Pq
N − 1

2q!
F2
qgMN − ΛDgMN (2.3)

with F2
q = FM1...MqF

M1...Mq . The equations governing the q-form in the absence of sources
are

∇[NFMP2...Pq ] = ∇MFMP2...Pq = 0 . (2.4)

Throughout the chapter we will useM , N , . . . to denote indices that run over theD−dimensions,
m, n, . . . for (D − 1)-dimensional spatial indices, µ, ν, . . . for p = 4-dimensional spacetime
indices, and α, β, . . . for q-dimensional spatial indices.

The simplest flux compactifications of Einstein Maxwell theory are the Freund-Rubin
solutions [149]: product spacesMp×Sq, whereMp is a maximally symmetric p-dimensional
spacetime and Sq is a q-dimensional sphere. In this chapter, we investigate solutions that
are warped along a single internal direction, the polar angle θ. That is, we study solutions
such that the p-dimensional external space is homogeneous in the uncompactified spatial
dimensions with a warp factor depending on θ, and the q-dimensional compact space has
the topology of a sphere with q − 1 azimuthal symmetries. With these symmetries, the
metric takes the form:

ds2 = −(N2 − βθβθ)dt2 + γxx(θ, t)d~x
2
p−1 + 2γθθ(θ, t)β

θdtdθ
+γθθ(θ, t)dθ

2 + γφ1φ1(θ, t)dΩ2
q−1

(2.5)

where dΩ2
q−1 = dφ2

1 +sin2 φ1dΩ2
q−1, N(θ, t) is the lapse and βθ(θ, t) is by symmetry the only

non-zero component of the shift vector.

The q-form flux is time-dependent and non-uniformly distributed in the θ-direction,

Fq = QB(θ, t)J(θ, φ1, . . . , φq−1)dθ ∧ · · · ∧ dφq−1

−NQE(θ, t)J(θ, φ1, . . . , φq−1)dt ∧ dφ1 ∧ · · · ∧ dφq−1

(2.6)
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where J(θ, φ1, ..., φq−1) = sinq−1 θ sinq−2 φ1... sinφq−2 and QB(θ, t) and QE(θ, t) represent
the magnetic and electric flux strengths, respectively.

In the remainder of this section, we review a variety of features of flux compactifications
in Einstein-Maxwell theory. In section 2.2.1, we define several quantities that will be useful
in describing solutions. In section 2.2.2, we outline how to describe the cosmology of
the non-compact space. In section 2.2.3, we review the Freund-Rubin solutions and their
stability. Finally, in section 2.2.4, we review the warped compactifications of refs. [223, 224].
The reader interested in going directly to the results can proceed to section 2.4.

2.2.1 Characterizing the solutions

We now define a few quantities which are helpful in describing the solutions presented
below. The compact space is characterized by the volume of the internal q-sphere

VolSq ≡
∫ √

γqd
qy =

∫ √
γqdθ ∧ dφ1 ∧ ... ∧ dφq−1 , (2.7)

the total number of flux units, which is a conserved quantity obtained by integrating the
flux density over the internal q-sphere,

n ≡
∫

Sq

Fq , (2.8)

and the aspect ratio

ε =

∫ π
0

√
γθθ(θ, t)dθ

π
√
γ̃φ1φ1(π/2, t)

, (2.9)

defined such that spherical solutions have ε = 1, oblate solutions have ε < 1 and prolate
solutions have ε > 1.

As a visualisation tool, we also plot the internal metric as an embedding in q + 1
Euclidean dimensions. The internal metric ds2 = γθθdθ

2 + γ̃φ1φ1 sin2 θdΩq−1
2 is the induced

metric on the surface

x1 =
∫ θ
π/2

dθ′
√
γθ′θ′(θ′, t)− [∂θ′ (γ̃φ1φ1(θ

′, t)1/2 sin θ′)]
2

x2 = γ̃φ1φ1(θ, t)
1/2 sin θ cosφ1

x3 = γ̃φ1φ1(θ, t)
1/2 sin θ sinφ1 cosφ2

...

xq = γ̃φ1φ1(θ, t)
1/2 sin θ . . . sinφq−2 cosφq−1

xq+1 = γ̃φ1φ1(θ, t)
1/2 sin θ . . . sinφq−2 sinφq−1 .
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2.2.2 The lower dimensional cosmology

If one hopes to make contact with the observable Universe, it is necessary to determine
the effective four-dimensional cosmology sourced by evolution of the compact extra dimen-
sions. The standard approach is via the procedure of “dimensional reduction”, where one
integrates the action over the compact extra dimensions and identifies a four-dimensional
gravitational sector and a set of moduli fields associated with properties of the compacti-
fication, such as the total volume (see e.g. refs. [119, 165] for an approach most relevant
to the present context). This approach has several limitations. Perhaps most importantly,
because one must identify a set of coordinates to integrate over, dimensional reduction
is intrinsically gauge dependent. Furthermore, gauge dependence arises when identifying
the four-dimensional gravitational sector and moduli fields; it is typically feasible to do so
only in special coordinate systems where the symmetries of the spacetime are manifest.
Without prior knowledge of the “right” coordinate system, it is typically only possible to
study small perturbations (see e.g. refs. [166, 151]). In the context of numerical relativity,
one does not have complete freedom to dictate the coordinate system most convenient
for dimensional reduction: in general, it is necessary to specify the gauge dynamics in a
way that leads to well-posed evolution, while avoiding coordinate singularities. Another
challenge is that in the typical approach to dimensional reduction, the goal is to find a
set of equations of motion for the four-dimensional variables, while our starting point is
the solution itself. Given a solution and not the four-dimensional equations of motion, it
may not be possible to unambiguously identify the appropriate four-dimensional variables.
These subtleties motivate an alternative approach based on the geometrical properties of
the solutions themselves, which we now outline. Note, to make contact with the observable
universe we assume p = 4.

To motivate our approach, let us recall some properties of the standard FLRW solution
in four dimensions:

ds2 = −N2(t)dt2 + a2(t)(dx2 + dy2 + dz2) . (2.10)

The extrinsic curvature of spatial slices is Kii = −a(da/dτ), with d/dτ ≡ (1/N)d/dt, for
i = x, y and z, and the trace is

K = 3Kx
x = −d ln Vol3

dτ
= −3

a

da

dτ
≡ −3H. (2.11)

where H is the Hubble parameter and Vol3 =
√
γ = a3 is the normalized volume enclosed

by a congruence of comoving geodesics. Note that these equalities are contingent on the
time slicing chosen here, which preserves the homogeneity of the FLRW solution. In this
cosmological slicing, the trace of the extrinsic curvature (or equivalently the expansion of
comoving timelike geodesics) determines the Hubble parameter. Another useful geometrical
quantity is the area of the cosmological apparent horizon. We define the cosmological
apparent horizon as a surface where the null expansion vanishes. (This is analogous to how
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apparent horizons can be used to define black hole horizons on a specific timeslice2.) In an
expanding FLRW universe, the coordinate radius of the cosmological apparent horizon is
simply the comoving Hubble radius rH = (aH)−1, yielding an area:

AC = 4πa2r2
H = 4πH−2 (2.12)

Therefore, we see that both the extrinsic curvature and the area of the cosmological ap-
parent horizon can be used as alternative definitions of the Hubble parameter:

H = −K
3

=

√
4π

AC

, (2.13)

where again the equivalence with the usual definition of the Hubble parameter is contingent
on choosing a cosmological slicing.

How does this picture generalize to the present context, where we have compact extra
dimensions? The trace of the intrinsic curvature in this case depends on the position in
the compact space and contains terms associated with the expansion of the volume in the
compact space:

K(θ, t) = 3Kx
x +Kθ

θ + (q − 1)Kφ1
φ1 = −

(
d ln Vol3
dτ

+
d ln Volq
dτ

)
(2.14)

where for a general slicing, d/dτ ≡ (1/N)(∂t − Lβ), where the last term is the Lie deriva-
tive with respect to the shift vector. The observers associated with a general time slicing
will not necessarily follow geodesics in the full D-dimensional spacetime, and restricting
to geodesic slicing can be problematic due to the appearance of coordinate singularities.
This aside, there are other subtleties associated with finding an effective four-dimensional
Hubble parameter from the extrinsic curvature. If we were to use the trace of the extrinsic
curvature, note that this includes expansion of both the compact and non-compact space.
Should one simply use −Kx

x, which characterizes the expansion in the non-compact di-
mensions, or some combination of the expansion in the compact and non-compact space?
In addition, the expansion is not homogeneous in the extra dimensions, so one must define
the correct measure of integration over the compact space to obtain the expansion seen by
an “average” cosmological observer.

Some insight to these questions can be gained by investigating the properties of the
cosmological apparent horizon, which as we outlined above, can be used to define the
Hubble parameter in a four-dimensional FLRW Universe. For surfaces of constant time
and (uncompactified) radius r ≡

√
x2 + y2 + z2 with unit inward (outward) normal sm̄ the

inward (outward) null expansion

Θ± = Dm̄s
m̄ +Km̄n̄s

m̄sn̄ −K (2.15)

2We define various quasi-local notions of black hole and cosmological horizons in appendix C.2.
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vanishes on the surface

rH =
±2√
γxx

1

(Kx
x −K)

. (2.16)

A marginally inner trapped surface with Θ− = 0 and Θ+ > 0 is a generalization of the de
Sitter horizon, while the marginally outer trapped surface with Θ+ = 0 and Θ− < 0 that
occurs for contracting spacetimes is more similar to that of a black hole apparent horizon3.

The area of the cosmological apparent horizon is obtained by integrating over the
compact space

AC(t) =

∫
dθdφ1 · · · dφq−1

√
γq 4πr2

Hγxx (2.17)

=

∫
dθdφ1 · · · dφq−1

√
γq 4π

(
2

Kx
x −K

)2

. (2.18)

Note that this is a q+ 2 dimensional area with units of Lq+2 where L is some length scale.
One can also use this area as a measure of entropy:

S ≡ 2πAC , (2.19)

where we recall that in our units MD ≡ (8πGD)−1/(D−2) = 1. The connection between the
area of the apparent horizon and gravitational entropy is related to the thermodynamic
interpretation of Einstein’s equations [200, 274] and has been considered for black holes
(e.g. ref. [184]) and cosmological spacetimes (e.g. refs. [152, 81, 154]). In ref. [224], it was
shown that for a subset of the solutions we consider below, the entropy as defined above
is a useful indicator of stability. In particular, for solutions at fixed conserved flux, the
stable solution has the highest entropy. Note that since this analysis is entirely classical,
one could simply use the area of the cosmological horizon as a measure of stability. As for
a purely four-dimensional FLRW Universe, a Hubble parameter can be defined by

H

M4

≡ ±
√

4π

AC

(2.20)

where we take the positive (negative) sign when the inward (outward) null expansion
vanishes. In our results below where we wish to examine the effective four-dimensional
cosmology, we will use this definition of the Hubble parameter. Finally, we define the
four-dimensional Planck mass as

M2
4 ≡

∫
dθdφ1 · · · dφq−1

√
γq(t = 0, θ) , (2.21)

3Though we note that the usual definition of apparent horizon in the context of dynamical black hole
spacetimes typically includes an extra condition specifying that the surface be outermost, or be at the
boundary between a trapped and untrapped region, that excludes the cosmological setting we study here.
See appendix C.2 for more details

19



where γq refers to the background solution.

It is useful to examine the Hamiltonian constraint equation in order to make a more
direct connection with the effective four-dimensional theory. This is given by

K2 −Km̄n̄K
m̄n̄ = 2ρ− (D−1)R (2.22)

where ρ = nNnMTMN and (D−1)R is the intrinsic curvature on spatial slices. The extrinsic
curvature term decomposes as follows

Km̄n̄K
m̄n̄ −K2 = −6

(
Kx

x −K
2

)2

+
1

2
(Kθ

θ)
2 +

(q + 3)(q − 1)

4
(Kφ

φ)2 (2.23)

+

(
Kθ

θ +
q − 1

2
Kφ

φ

)2

.

Note that choosing to isolate the factor of (Kx
x−K)/2, which appeared in the expression

for the cosmological apparent horizon, nicely splits the extrinsic curvature term into neg-
ative definite and positive definite components. Re-arranging the Hamiltonian constraint
equation we obtain: (

Kx
x −K
2

)2

=
1

3M2
4

ρeff(θ, t) (2.24)

where we have defined

ρeff(θ, t)/M2
4 ≡ ρ− 1

2
(D−1)R +

1

4
(Kθ

θ)
2 +

(q + 3)(q − 1)

8
(Kφ

φ)2 (2.25)

+
1

2

(
Kθ

θ +
q − 1

2
Kφ

φ

)2

.

Equation (2.24) has the form of the Friedmann equation. The expression for the apparent
horizon area eq. (2.17) can be used to define the measure of integration over the Hamilto-
nian constraint equation to give a four-dimensional Friedmann equation. In particular,

H(t)2 =
1

3M2
4

〈ρeff(t)〉 =
4πM2

4

AC(t)
, (2.26)

where H is defined as in eq. (2.20) and

〈ρeff(t)〉 ≡M2
4

[∫
dθdφ1 · · · dφq−1

√
γq (ρeff(θ, t))−1

]−1

. (2.27)

Note that with these definitions, the square of the Hubble parameter is inversely pro-
portional to the entropy, so a stability criterion based on maximizing the entropy (or
synonymously, the area) is equivalent to one that minimizes this definition for the Hubble
parameter.
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For completeness, and because it will be useful in characterizing the properties of the
solutions presented below, we sketch the standard procedure of dimensional reduction;
further details can be found in appendix A.1. We begin with the D-dimensional action in
ADM form:

S =
1

2

∫
d4xdqy

√−g
[
Km̄n̄K

m̄n̄ −K2 + (D−1)R− 2ΛD −
1

q!
F2
q

]
. (2.28)

The goal is to find an effective action for the four-dimensional metric variables and moduli
fields, which can be identified with integrals of combinations of metric functions over the
compact space (e.g. the volume). Schematically, for spacetimes that are homogeneous in
the three large dimensions, the various terms in the action contribute as follows:

• Km̄n̄K
m̄n̄−K2: The extrinsic curvature term contains time derivatives of the metric

functions, and therefore contains the 4-D Ricci scalar and kinetic terms for moduli
fields.

• (D−1)R: The Ricci scalar on spatial slices contains spatial derivatives of the metric
functions on the compact space. With our assumption that the metric is independent
of the three large dimensions, there are no contributions to the 4-D Ricci scalar. This
term therefore contributes only to the potential for moduli fields.

• 2ΛD + F2
q/q!: The cosmological constant and flux terms contribute to the potential

for moduli fields.

Here, we focus on the extrinsic curvature term; additional details for specific examples can
be found in appendix A.1. Factoring the extrinsic curvature term as in Eq. (2.23), we have

S =
1

2

∫
d4xdqy

√
γqNγ

3/2
xx

[
−6

(
Kx

x −K
2

)2

+ . . .

]
(2.29)

Comparing this to the action for four dimensional FLRW solutions, one can try to equate:

√
−g(t) M2

4H(t)2 =

∫
dqy
√
γqNγ

3/2
xx

(
Kx

x −K
2

)2

(2.30)

For a convenient metric ansatz, one can explicitly identify
√
−g(t), M2

4 and H(t)2; we
outline several examples in appendix A.1. A nice feature of the decomposition of the
extrinsic curvature we have chosen is that it contains the combination of metric functions
that yield a dimensionally reduced action in the four dimensional Einstein frame (e.g.
the conformal frame where M4 is constant). For solutions with warping there are some
subtleties in finding a unique four-dimensional metric determinant and Hubble parameter
which we discuss in appendix A.1. In the more general cases we consider below, where
we do not have complete freedom to specify a gauge where the metric functions take a
convenient form, it is not possible to unambiguously identify the four dimensional Hubble
parameter. We therefore utilize the geometrical definition of the Hubble parameter based
on the area of the apparent horizon in Eq. 2.20.
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2.2.3 Freund-Rubin branch

In this chapter, we consider the nonlinear evolution of perturbations to two classes of
stationary solutions of the theory described above. Namely, we consider the homogeneous
Freund-Rubin solutions and warped solutions with a θ-dependence. In the symmetric
Freund-Rubin solution, a q-form flux uniformly wraps the extra dimensions into a q-sphere,

Fq = ρBvolSq (2.31)

where ρB is the magnetic flux density and volSq = ε is the volume element on the internal
q-sphere. The direct product condition guarantees that the p extended dimensions form
an Einstein space. Restricting to the trivial case of a maximally symmetric extended de
Sitter spacetime,

ds2 = −dt2 + e2Htd~x2
p−1 + L2dΩ2

q (2.32)

where L is the radius of q-sphere, H is the Hubble parameter (2.20) and in the particular
case where p = 4, d~x2

p−1 = dx2 + dy2 + dz2 is the usual 3-Cartesian element.

The Maxwell equations are trivially satisfied, while the Einstein equations (2.2) enforce
algebraic relations between the parameters {ρb, H, L}

ΛD =
(p− 1)2

2
H2 +

(q − 1)2

2
L−2 (2.33)

ρ2
B = −(p− 1)H2 + (q − 1)L−2 (2.34)

such that if we fix units with ΛD = 1, we are left with one free parameter describing the
Freund-Rubin solutions. This parameter can be taken to be the total number of flux units
(2.8)

n ≡
∫

Sq

Fq = ρbVolSq , (2.35)

where the latter equality is specific to the Freund-Rubin solution. From (2.33) and (2.34),
we can see that there can be more than one solution for a given value of n. Figure 2.1
shows these different solutions in (H/M4, n) space. Focusing on the spherical solutions
with aspect ratio ε = 1, the figure indicates that below some value nmax, there exists two
solutions, a small and a large volume branch. As we will see below, the former is stable
to the total-volume instability (` = 0), but may be unstable to the warped instability
(` ≥ 2), while the latter is unstable to the total-volume instability, with the end point
being decompactification or flow towards the small volume solution. For n ≥ nmax, there
is no solution.

The effective potential

In order to give some intuition for the stability of the flux compactification solutions, we
can go back to the dimensional reduction procedure of section 2.2.2, and considering the
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Figure 2.1: A cartoon of the Freund-Rubin and ellipsoidal solutions in the (H/M4, n)
plane for ΛD = 1 and q = 4. For each value of the conserved flux number (2.8), there are
two solutions: a symmetric solution where the compact space is spherical with an aspect
ratio ε = 1 (indicated in brown), and a warped solution where the internal manifold is
oblate with ε < 1 (yellow) or prolate with ε > 1 (orange). We find three critical values of
n. First, for nMink < n < nmax there are two Freund-Rubin and two warped solutions: On
the Freund-Rubin branch there is a small and a large volume branch perturbatively stable
or unstable to the volume instability (m2

l=0 > 0 or m2
l=0 < 0) respectively. At n = nmax the

two branches merge and annihilate. On the warped branch there is one solution on the large
Hubble warped branch, perturbatively unstable to the warped instability (m2

l=2 < 0) and a
solution on the small Hubble warped branch. At n = nc the small Hubble warped branch
intersects the small volume Freund-Rubin branch and the two branches are marginally
stable to the warped instability (m2

l=2 = 0). Whenever the ellipsoidal solution has ε > 1 it
is also perturbatively unstable. Arrows indicate the specific nonlinear solutions we discuss
in section 2.4. They all point towards a solution with smaller effective Hubble rate and
higher entropy (area). For a small range nMink ≤ n < nI , solutions tend to a state where
H/M4 < 0, the cosmological implications of which are discussed in section 2.4.2
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source terms in eq. (2.28), think of the radius L of the sphere as a four-dimensional radion
field, living in an effective potential given by

V (L)

M4
4

=
1

2

(
L0

L

)q (
−q(q − 1)

L2
+ 2ΛD +

1

M4
4

n2

L2q

)
(2.36)

The details of the derivation can be found in appendix A.1.1. From left to right, the
three terms represent the spatial curvature, the higher dimensional vacuum energy, and
the energy density of the flux, respectively. The flux term is repulsive, and tends to push
the sphere to larger radius, but the curvature of the compact space is attractive, such that
the interaction of these two terms can form a minimum of the potential where the radius
of the q-sphere can be stabilized, yielding a four-dimensional vacuum.

Each allowed value of n, p and q defines a set of allowed radion potentials or landscape
of lower dimensional theories. The potential for fixed q = p = 4 and ΛD > 0 is sketched
in figure 2.2 for a number of values of n. As we saw in the previous subsection, the
number of extrema depends on the value of n. For small enough n, the effective potential
has a minimum and a maximum corresponding to the small and large volume branches,

respectively. The extrema merge at n = nmax = 81π2/
(√

2Λ
3/2
8

)
and above this value

there is no solution. Note that for small enough n the four-dimensional vacua are negative,
but as n increases, they eventually become positive, which is important for cosmological
solutions. To derive this effective potential, we assumed the shape of the compact space is
fixed. However, we will see below that minima of the effective potential in figure 2.2 can
be unstable maxima in other directions of the field-space that correspond to shape mode
fluctuations.

Stability

We now briefly review linear perturbations around Freund-Rubin solutions, restricting
to scalar-type perturbations with respect to, not only the p-dimensional external de Sitter
space, but also the SO(q) symmetry of the background internal space. The full perturbative
spectrum was studied in refs. [76, 186], and we defer the reader to those references for a
more complete analysis. We write the perturbed metric as

δgµν = − 1

p− 2
gµν h̄Y`(θ) , δgαβ =

1

q
gαβh̄Y`(θ) (2.37)

which tells us that the q-sphere is deformed with the shape of a m = 0 spherical harmonic
Y`(θ) and some amplitude h̄.

The perturbed field strength is

δFα1...αq = −āρBεα1...αqλ`Y`(θ) , δFββ2...βq = ∇βāρBε
α
β2...βq

∇αY`(θ) (2.38)

where λ` = `(` + q − 1)/L2 > 0 is the eigenvalue of the spherical harmonic, �yY`(θ) =
−λ`Y`(θ) (recalling that y refers to the q-dimensional coordinates) and ā is a dimensionless

24



L

0

V
eff
/M

4 4
increasing n

nMink
nc
nmax

ε

0

V
eff
/M

4 4

n < nc

ε

0

V
eff
/M

4 4

nc < n < nmax

Figure 2.2: Left: The effective radion potential eq. (2.36) for ΛD > 0 and successively
larger values of n from bottom to top, assuming the compact space is spherically symmetric.
The extrema correspond to the Freund-Rubin solutions. For small n, the effective potential
has a maximum (m2

`=0 < 0 and always de Sitter) and minimum (m2
`=0 > 0 and de Sitter

or anti-de Sitter). At n = nmax the solutions disappear. Right: Schematic of the effective
potential for a fixed radius (minimum of Veff(L)), but changing ellipticity. We find that
the effective potential tends to +∞/ −∞ as the internal manifold becomes increasingly
oblate or prolate, respectively. The Freund-Rubin solution is at a maximum (m2

`=2 < 0)
when the corresponding warped solution is oblate, and a minimum (m2

`=2 > 0) when the
warped solution is prolate. Some solutions escape the potential well of oblate solution to
roll in the prolate direction.

function. Note that the equations require that h̄ and ā shift in opposite directions (sign ā =
−sign(h̄)), which physically means that whenever the internal radius gets larger, the flux
density also gets larger (sign δFα1...αq = −sign δgαβ). Linearizing the Einstein-Maxwell
system, we obtain a set of ordinary, coupled, second-order differential equations for the
fluctuations, the spectrum of which can be found by diagonalization. We find two channels
of instabilities, the first due to the homogeneous mode, the so-called volume-instability,
and the second due to the inhomogeneous mode, the so-called warped instability.

We first consider homogeneous (` = 0) fluctuations in the total volume of the internal
manifold. The equation of motion is

�xh̄(x) =
1

L2

(
−2(q − 1) +

q(p− 1)

p+ q − 2
ρB

2L2

)
h̄(x) (2.39)

(recalling that x refers to the p-dimensional coordinates), which implies that the mode has
positive mass when

ρB
2L2 >

2(q − 1)(p+ q − 2)

q(p− 1)
(2.40)

or alternatively, using eqs. (2.33)–(2.34), when

H2 ≤ 2ΛD(p− 2)

(p− 1)2(p+ q − 2)
, or ρ2

B ≥
2ΛD

(p− 1)(q − 1)
. (2.41)
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This implies that if the density of the flux lines wrapping the extra dimensions is too small,
or the Hubble parameter of the external space is too large, then there can be an instability
where the total volume of the internal manifold uniformly grows or shrinks, but the shape
of the compactified sphere is fixed. Stable de Sitter solutions are on the small-volume
branch, while unstable ones are on the large volume branch and correspond to a maximum
of the effective potential.

Now looking at the coupled scalar sector, which will be the main focus of this chapter,
then when q ≥ 4, perturbations with polar number ` ≥ 2 can be unstable. Mathematically,
this instability arises from the coupling of the metric and flux perturbations, their equations
of motion being

�x

(
h̃
ã

)
=

[
1
L2

(−q q−1
p+q−2

ρB
2L2 0

0 0

)
+M

](
h̃
ã

)
(2.42)

where M is a 2× 2 matrix given by

M =
1

L2

(
−L2λ− 2(q − 1) + qρB

2L2 − 2 q−1
q
L2λ −4

ρB2L2
q−1
q
L2λ(L2λ+ q)

q−1
q
ρB

2L2 −L2λ+ 2 q−1
q
L2λ

)
(2.43)

where h̃ = h̄− 2λ`a and ã = ρBā.

The mode will be stable provided the eigenvalues of M are positive, which for ` ≥ 2
implies

ρB
2L2 <

`(`+ q − 1)− 2q + 2

2(q − 2)

p+ q − 2

p− 1
, (2.44)

or equivalently when

H2 ≥ 2ΛD ((p− 1)q2 − (3p− 1)q + 2)

q(q − 3)(p− 1)2(p+ q − 2)
, or ρ2

B ≤
4ΛD

q(q − 3)(p− 1)
. (2.45)

Taking p = 4, one finds that for q = 2 or q = 3, de Sitter vacua are only unstable to the
` = 0 mode. For q = 4, the only excited mode to develop a negative mass is ` = 2. For
q ≥ 5, all de Sitter solutions are unstable to ` = 0 or ` = 2 fluctuations. Note that the case
of q = 4 is interesting because it has a window of stability in the range of fluxes allowed
by eqs. (2.40) and (2.44). The warped instability signals the presence of a new branch of
deformed solutions, which we describe next.

2.2.4 Warped branch

In the previous section, we described the symmetric Freund-Rubin solutions, and saw that
there is a critical value of n above which inhomogeneous perturbations develop a tachyonic
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mass. This suggests that there may be other warped solutions obeying the Einstein-
Maxwell system of equations. References [223, 242, 114] constructed stationary prolate
or oblate topological spheres numerically, and ref. [224] studied their linear stability. One
way to describe such warped solutions is by the following metric ansatz

ds2 = e2φ(θ̃)
[
−dt2 + e2htd~x2

p−1

]
+ e−

2p
q−2

φ(θ̃)(dθ̃2 + a(θ̃)2dΩ2
q−1) (2.46)

and flux

Fq(θ̃) = b a(θ̃)q−1e−
2p(q−1)φ(θ̃)

(q−2) sin−(q−1)(θ̃) J(θ̃, φ1, ..., φq−1) dθ̃ ∧ ... ∧ dφq−1 (2.47)

where the internal coordinate θ̃ lies in the finite interval θ̃− < θ̃ < θ̃+, with θ̃−/+ designating
the two poles [223], and where b and h are constants such that b = ρB and h = H
whenever one recovers the Freund-Rubin solution with φ(θ̃) = 0 and a(θ̃) = L. Note
that eq. (2.46) can be put in the form of eq. (2.5), provided one performs the following
coordinate transformation

θ → θ̃

L
+
π

2
(2.48)

where L = 2θ̃+/π. The inhomogeneous flux, eq. (2.47), automatically satisfies Maxwell’s
equations and the Bianchi identity. Plugging in our ansatz, the Einstein equations give us
two equations involving second derivatives of the metric

φ′′ = (p− 1)h2e−
2(D−2)φ
q−2 − (q − 1)

a′

a
φ′ + e−

2pφ
q−2

1

(D − 2)

(
−2ΛD + (q − 1)b2e−2pφ

)
(2.49)

a′′

a
= −φ′2p(D − 2)

(q − 2)2
− a−2 +

a′2

a2
(2.50)

and one equation involving first derivatives

(q − 1)(q − 2)
a′2

a2
= (q − 2)(q − 1)a−2 +

p(D − 2)

q − 2
φ′2 + p(p− 1)h2e−

2(D−2)φ
q−2 − 2e

−2p
q−2

φΛD

+b2e
−2p(q−1)
q−2

φ , (2.51)

where the prime denotes the derivative with respect to θ̃. Using the procedure outlined
in ref. [224], we solve these equations, and hence construct warped solutions. We refer
the reader to ref. [224] for more details. Note that we assume that the internal space
is symmetric about the equator since the linear analysis shows that the first mode to
become tachyonic is quadrupolar (` = 2). Figure 2.3 shows the two one-parameter families
of solutions, namely the trivially warped Freund-Rubin solutions, and the non-trivially
warped solutions, in the (b2/ΛD, h

2/ΛD) (left) and (ε, n) (right) planes. This figure shows
that the two branches intersect at a single point (bcr

2/ΛD, hcr
2/ΛD) = (0.36, 0.052) where

the only solution is the trivial one, and the compact space is a perfect sphere. For values
of b < bcr, the internal compact space is prolate, while for values b > bcr, it is oblate. This
is particularly important as, according to eq. (2.45), this critical point coincides with the
point at which the ` = 2 mode of the Freund-Rubin branch becomes massless. In other
words, the warped branch emanates from the marginally stable Freund-Rubin solution, as
one would expect.
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reflects the perturbatively unstable modes for the two branches. See figure 2.1 for more
details.

Stability

The spectrum for scalar perturbations of the warped solutions was studied in [224]. Com-
puting the eigenspectrum in a similar way to the Freund-Rubin solutions, one finds that
the marginal stability of the warped solutions coincides with the marginal stability of the
Freund-Rubin branch. In particular, for the ` = 2 mode, when h2 satisfies the first in-
equality given by eq. (2.45), then the eigenvalue of the warped branch is positive, while
the eigenvalue of the Freund-Rubin solution becomes negative. In other words, in the low
Hubble regime, where the Freund-Rubin branch is unstable to inhomogeneous excitations,
the warped branch is perturbatively stable. Conversely, the warped branch is unstable
to inhomogeneous perturbations in the regime where the Freund-Rubin branch is stable.
Additionally, the mass squared of the warped branch is larger than that of the symmetric
branch in the regime where the latter is unstable, which in turn implies that the warping
of the internal compact space stabilizes the shape mode of the compact space.

Alternatively, one can use a thermodynamic argument. Recall that the entropy is
defined by eq. (2.19), where H is defined by the cosmological apparent horizon (see ap-
pendix A.1 for an explicit derivation for the warped metric ansatz). As shown in [224],
the thermodynamic stability of these solutions agrees with their dynamical stability. In
other words, when nc < n < nmax, where nc = 32

√
3π2/Λ

3/2
8 = 0.97nmax, the small volume

Freund-Rubin branch has a smaller Hubble parameter, or larger entropy (area), and hence
is thermodynamically preferred. On the other hand, when n < nc, the warped branch has
smaller Hubble or larger entropy and is thermodynamically preferred. This is shown in
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figure 2.1. At the linear level, the dynamical and thermodynamic stability of the Freund-
Rubin solutions determine the shape and stability of the warped solutions. Reference [114]
sketched an effective potential that neatly encapsulates this behaviour. In the effective
theory described by eq. 2.36, only the radius of the solution is treated as a dynamical
radion field. If we now allow the shape of the compact space to vary as well, we must treat
the aspect ratio as a dynamical field, and extend the effective potential to be a function
of L and ε. Minima of the potential in the L direction are now minima or maxima in the
ε direction depending on whether the solution is stable or unstable to shape fluctuations
which in turn depends on its conserved flux number. Reference [114] argued that this
effective potential is captured by a cubic potential schematically drawn in figure (2.2), and
that the effective potential asymptotes to V → +∞ in the oblate direction and V → −∞
in the prolate direction. Intuitively, one would expect that in the direction of decreasing
ε, the equatorial radius is increasing, and flux is concentrating there such that the solu-
tion eventually settles to a minimum. On the other hand, as ε increases, the equatorial
radius will decrease and the flux concentrates at the poles. Having no flux to support the
equator, the sphere collapses to zero radius and the potential (2.36) tends to V → −∞.
What happens to the solution as it rolls down the potential is unclear. In the next section,
we verify this general picture nonlinearly and study the endpoint of the solutions. The
evolution and endpoints of the unstable solutions are summarized in figure 2.1.

2.3 Numerical implementation

We evolve the Einstein equations using the generalized harmonic formulation introduced
in 1.2.2. We choose our evolution variables according to a space-time decomposition of the
metric. See appendix A.2 for the evolution variables and equations of motion.

To numerically evolve the system, we discretize in time and θ. To avoid solving the
equations directly on the poles we use a shifted grid

θj =
j + 1/2

Nθ

π, j = 0, 1, . . . , Nθ − 1 . (2.52)

We expand the evolution variables as a sum of sines or cosines, depending on the parity
of the function around the pole, and use pseudospectral methods to calculate the spatial
derivatives. The variables are evolved in time using fourth-order Runge-Kutta time step-
ping. High-frequency spectral noise is reduced by applying an exponential filter [255]. This
filter is applied to the coefficients of every derivative function and directly to the coefficients
of the solution at the end of each time step. The coordinate freedom is fixed by choosing
the source functions. These are set to be such that the shift is driven to zero and the
lapse remains approximately constant when the solution remains close to the background
solution. This avoids extra dynamics coming solely from gauge transitions (as opposed to
physical instability).
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During the evolution, we search for, and in some cases find, trapped regions: points
where both (i.e. the nominally “inward” and “outward”) null geodesics moving in the θ
direction must have the same sign for the derivative with respect to the affine parameter
dθ/dλ. In such cases, we excise a causally disconnected region bounded by such a point
where the null geodesics are both ingoing, and instead use fourth order finite difference
stencils to calculate derivatives, and Kreiss-Oliger dissipation to reduce the high-frequency
noise [233]. In this way, we continue to evolve the spacetime outside the trapped regions.

We construct initial data describing perturbed Freund-Rubin or stationary warped
solutions. To do this, we take the background metric on the initial time slice and add the
perturbation given by eq. (2.37) with some specified amplitude. We then solve for the initial
electric and magnetic forms using the Hamiltonian and momentum constraints (hence our
perturbed solutions still exactly satisfy the constraints). This procedure gives rise to a
slightly perturbed flux number, although close enough to background value to not affect
the properties relevant for assessing stability. See appendix A.4 for results illustrating that
we start with sufficiently small perturbations so as to be in the linear instability regime,
as well as numerical convergence.

In the case where the background solution is a warped solution, we construct the
background solution using the procedure described in section 2.2.4. Note that most of the
solutions presented below are for q = 4, where only the ` = 0 or ` = 2 modes can be
perturbatively unstable. We therefore only consider ` = 0 or ` = 2 perturbations, leaving
the investigation higher modes in solutions with more dimensions for future work.

2.4 Results

We now present our numerical solutions, restricting to p = 4 to make contact with cosmol-
ogy.

2.4.1 Total volume instability of Freund-Rubin solutions

We begin with a discussion of the total volume instability, which affects Freund-Rubin
solutions on the large volume branch. We obtain results similar to ref. [234], which studied
the cases where the dimensionality of the q-sphere was two or three. In those cases, the
homogeneous mode is the only one excited, and hence the inhomogeneous perturbations
(` > 0) can be set to zero. Here, our initial conditions are Freund-Rubin solutions on
the large volume branch in theories with q = 4. Note that for q = 4, the small volume
branch is vulnerable to the warped instability, but the large volume branch is not. This
guarantees that, at least initially, time evolution does not break the spherical symmetry of
the compact space.

In the absence of the warped instability, we can understand the time evolution entirely
from the perspective of the four dimensional effective theory (see appendix A.1 for further
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details): Einstein gravity with a scalar field describing the radius of the compact sphere that
evolves in the potential depicted in figure 2.2. Our initial condition lies at the maximum
of the effective potential, and the evolution will take the solution either to the potential
minimum (corresponding to the dSp × Sq solution on the small-volume branch) or to a
solution that decompactifies to D = p+ q dimensional de Sitter space.

We find that the results of the full nonlinear evolution away from the large volume
Freund-Rubin solutions are as expected from the four dimensional effective theory. A
small positive perturbation to the total volume leads to decompactification while a small
negative perturbation evolves toward the stable small-volume dSp × Sq solution. For the
solutions that decompactify, we confirm that the curvature scalar asymptotes to what is
expected for D = p+ q dimensional de Sitter space with a cosmological constant ΛD, i.e.

(D)R =
2DΛD

D − 2
. (2.53)

The evolution does not lead to any significant growth away from homogeneity as the
solution decompactifies, as expected based on the absence of the perturbative warped
instability on the large volume branch.

For a negative total volume perturbation, the solution eventually settles to the small
volume dSp × Sq solution with the same conserved flux n as the initial condition. This
end state has slightly smaller radius and a slightly lower Hubble parameter (as computed
from eq. (2.20)) compared to the initial large volume Freund Rubin solution. In the left
panel of figure 2.4, we show the Hubble parameter as a function of the proper time at the
equator, defined by dτ = α(t, θ = π/2)dt (though here the solutions remain homogeneous
and the value of θ is irrelevant), where it can be seen that the evolution smoothly connects
the large and small volume solutions. A cosmological observer in four dimensions would
observe a brief period of quasi-de Sitter expansion, followed by pure de Sitter evolution.
In the center and right panels of figure 2.4, we plot the slow-roll parameters defined by:

εsl ≡ −
1

H2

dH

dτeq

, ηsl ≡ εsl −
1

2Hεsl

dεsl
dτeq

. (2.54)

Both remain less than one over the duration of N = H0τeq ∼ 5 e-folds. This implies that
the transition from the large to the small-volume branch describes a short bout of slow-roll
inflation. The evolution described here therefore serves as a toy model of inflation as driven
by the volume modulus of a compactification. Solutions for other choices of the flux n are
qualitatively similar.

2.4.2 Warped instability of Freund-Rubin solutions

We now move on to study perturbations that excite the warped instability of Freund-
Rubin solutions on the small volume branch. Recall that the small volume solutions are
stable to the total volume instability (in the four dimensional effective theory they sit at
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Figure 2.4: Sample solution on the large volume branch with p = q = 4, ΛD = 1, H0/M4 =
0.0078 and an initial ` = 0 perturbation. Left: The effective Hubble rate, H/M4, flows
to the solution with the same value of n on the small volume branch. The slow roll
parameters εsl (middle) and ηsl (right) during the transition. All plots are shown as a
function of proper time (in particular as measured at θ = π/2, though here the solutions
remain homogeneous).

a minimum of the effective potential), but when q ≥ 4 they may be vulnerable to the
warped instability. We focus on the case where an 8-dimensional spacetime is compactified
down to four dimensions, and the internal manifold has the topology of a 4-sphere. This
is an interesting scenario because, as we saw in Sec. 2.2.3, it features both a window of
stability nc < n < nmax in the range of fluxes allowed by eqs. (2.40) and (2.44), as well as
perturbatively unstable solutions for n < nc. For initial conditions, we start from a small
volume Freund-Rubin solution with an ` = 2 perturbation; this is the only unstable mode
in the linear regime.

Linearly stable solutions: nc < n < nmax

We first explore the range of fluxes nc < n < nmax where the Freund-Rubin solution is lin-
early stable to both homogeneous and inhomogeneous perturbations. Although sufficiently
small perturbations should decay, we can ask what will happen if one adds a sufficiently
large homogeneous (` = 0) or inhomogeneous (` = 2) perturbation of the form given by
eq. (2.37). In particular, appealing to the effective potential picture, it is not hard to
imagine that the solution, originally sitting at the minimum of the potential well, will be
kicked out, provided the perturbation is sufficiently large.

For large ` = 0 perturbations, we expect the solution to reach the maximum of the
effective potential after which it will decompactify. Indeed we find that when the size of
the perturbation is such that the initial volume of the perturbed solution exceeds its large
volume value it will decompactify.

In the effective potential depicted in the right panel of figure 2.2, one can think of
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the potential maximum as corresponding to the stationary but unstable prolate solution
on the warped branch with the same value of the conserved flux n as the small-volume
Freund-Rubin solution. Adding ` = 2 perturbations of increasing size, one eventually
approaches a configuration close to this unstable prolate solution. Once the size of the
perturbation exceeds this point, we expect the solution to become increasingly prolate.
However, since the effective potential for the aspect ratio ε is only qualitative, we do not
have a concrete prediction for the end-state. Likewise, with no stable warped solution to
flow to, thermodynamic arguments are not of much help in determining the end-state. Note
that we still put in an initial perturbation to the metric of the form given by eq. (2.37) (but
with nonlinear corrections to the q-form through the constraints, as described in section ),
even as we consider large perturbations beyond the linear regime.

In figure 2.5, we show the evolution of the aspect ratio for a stable Freund-Rubin
solution when perturbed with successively larger ` = 2 perturbations. As expected, per-
turbations given by eq. (2.37) with sufficiently small h decay. However, there is a critical
initial amplitude above which the solution evolves to become more and more prolate. As
this threshold is approached (around h̄ ∼ 0.2), the instability timescale (after a brief tran-
sient where the aspect ratio undergoes a few damped oscillations) increases—consistent
with the initial condition approaching a maximum in the effective potential. Beyond the
threshold, as the compactification becomes increasingly prolate, the compactified (but not
uncompactified) volume rapidly decreases, as can be seen in figure 2.5. By adding higher
numerical resolution, we can reach higher aspect ratios and smaller compactified volumes
(which have higher magnitudes of the scalar curvature) before the evolution breaks down,
but at all resolutions we see no evidence that the solution is asymptoting to some non-
singular state. As we will see below, this behaviour seems to be generic for solutions where
the internal space becomes prolate. Note that as the prolate solutions evolve to their
ultimately singular end, the four dimensional effective theory, and the effective potential
depicted in figure 2.2 eventually are no longer valid. The effective potential in the prolate
direction is therefore only indicative of the general direction of evolution.

Linearly unstable solutions: n < nc

We now discuss the evolution of Freund-Rubin solutions that are linearly unstable to ` = 2
perturbations, which have a flux less than the critical value n < nc. As illustrated in
figure 2.1, and outlined in the previous sections, at each flux nMink < n < nc there exists a
linearly unstable Freund-Rubin solution, as well as a corresponding linearly stable oblate
warped solution with the same flux. The warped solution being thermodynamically pre-
ferred (e.g. with a higher entropy/lower Hubble parameter), these solutions are a natural
candidate for the end point of the instability [224, 114]. This expectation is reflected in
the effective potential for the aspect ratio sketched in the middle panel of figure 2.2. The
Freund-Rubin solution is at the maximum of the effective potential, and a negative ` = 2
perturbation would cause the solution to evolve towards the oblate warped solution at the
potential minimum. Sampling initial conditions with a wide range of fluxes, we find that
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Figure 2.5: A sample solution on the small volume branch with p = q = 4, ΛD =
1, H0/M4 = 0.0077 and an ` = 2 perturbation. Left: The relative difference between
the aspect ratio of the sample solution and the background Freund-Rubin solution for
successively larger perturbations. Middle: The q-dimensional volume of the internal space
for successively higher resolutions for initial data with (`, h̄) = (2, 0.3). Right: Several
snapshots of the embedding of internal space for initial data with (`, h̄) = (2, 0.3).

the endpoint of the ` = 2 Freund-Rubin instability (in the −ε direction) is in most cases
the stable warped solution with corresponding flux. The notable exceptions occur in a win-
dow of flux between nMink < n < nI = 435.56, where the end state is instead a crunching
prolate solution. We discuss these solutions in more detail below. The confirmation of the
thermodynamic arguments in previous literature, with interesting exceptions, is one of our
primary results.

To explicitly verify that the endpoints of the Freund-Rubin instability are indeed the
stable warped solutions, in figure 2.6 we show the volume of the compact space (left)
and the aspect ratio (middle) of the numerical solutions at late times (dots) compared
to the corresponding quantities for the warped solutions (dashed line) from section 2.2.4.
The agreement is excellent. Note that the warped solutions have roughly the same internal
volume as the symmetric solution they evolve from. In figure 2.6, we also plot the instability
timescale measured from the linear regime of the numerical evolution, which grows as the
flux is increased. We can understand this as follows. The Hubble parameter for the
Freund-Rubin and warped solution match at nc. Therefore, as n increases, the extrema of
the effective potential in the ε direction merge, and the curvature at the maximum goes to
zero—we therefore expect an increasing instability timescale as n→ nc.

We now focus on the specific example shown in figure 2.7 to illustrate the transition
between an initially unstable spherical solution and its endpoint, a stable oblate solution.
In the left panel we show the entropy, which increases monotonically as expected. There
are interesting step-like features in the evolution which persist at increasing resolution, and
are therefore not likely to be numerical artifacts. In the middle panel we show the Hubble
parameter, which decreases monotonically over the course of ∼ 5 e-folds to its asymptotic
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Figure 2.6: The volume (left), aspect ratio (middle) and ratio of instability timescale to
e-fold period (right) of warped solutions with nI < n < nc on the small volume branch for
the special case p = q = 4. We find that in this regime each unstable symmetric solution
evolves to an ellipsoidal solution with ε < 1, which has roughly the same internal volume
but lower effective potential. The dashed lines represent the interpolation of stationary
solutions constructed as described in section 2.2.4, while the dots represent the end states
of evolving a symmetric solution with an ` = 2 perturbation. For the aspect ratio, the
maximum of the difference is ∼ 10−4.

value. We show the embedding of the compact space in the right panel. Note that the flux
is distributed on the ellipsoid the way you would expect it from the linear analysis. We
found in section 2.2.3 that the unstable mode has inversely correlated flux ā and shape h̄
components, and similarly we find that whenever the radius gets larger, the flux density
does too, such that, for an oblate solution, the flux is concentrated around the equator.
This makes intuitive sense, as a region of larger radius implies higher curvature, and hence
a larger flux density to support the region against collapse.

For the choice of flux in figure 2.7, the transition between the spherical and oblate
solution occurs over the span of ∼ 5 e-folds. As noted above, the instability timescale
increases with n. Therefore, an interesting question is whether the transition period can
persist over a larger number of e-folds. In this case, the four-dimensional effective theory
includes a period of slow-roll leading to an asymptotic regime of pure de Sitter expansion
4. In figure 2.8, we show the maximum value that the slow-roll parameter εsl (defined in
eq. 2.54) takes during the evolution (left) as well as the elapsed number of e-folds during
the transition. To be more precise, we define the number of e-folds between the initial (i)

Freund-Rubin and final (f) stationary warped solution as N =
∫ f
i
H dτeq

5, where the time
at which the slow-roll period starts (ends) is defined as when the Hubble factor differs by
10−4 relative to its initial (final) value (indicated by grey dashed lines in figure 2.7). We see

4Note that one is usually interested in computing the number of e-folds from a de Sitter phase to a
universe with a small or zero cosmological constant, rather than to another de Sitter phase with smaller
but comparable expansion rate.

5Note N is used to refer to the lapse in the rest of the chapter and thesis.
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Figure 2.7: A sample solution on the small volume branch with p = q = 4, ΛD = 1,
H0/M4 = 0.00096, n = 436.13 and an initial ` = 2 perturbation. Left: The effective
entropy which is increasing between the two stationary solutions. Middle: The effective
four-dimensional Hubble rate eq. (2.20), with grey lines indicating the approximate initial
and final times of the transition period, as defined in the text. Right: The three dimensional
projection of the embedding of internal space at τeqH0 = 8.6. The color shows the flux
density.

that it is possible to get ∼ 10–100 e-folds of slow-roll inflation as n→ nc. We conclude that
the evolution of unstable Freund-Rubin solutions provides a viable toy model for slow-roll
inflation in flux compactifications. One interesting application of these solutions is to use
the full higher dimensional picture to explicitly compute the effect of extra dimensions on
the spectrum of linear scalar and tensor perturbations. This would make contact with
phenomenology and cosmological observables such as the cosmic microwave background.
We defer this and other possible explorations to future work.

So far, the linear analysis has been very good at predicting what happens in the full
nonlinear case. But this is not always true. In the range of flux nmink < n < nI = 435.56 we
find that while the solution does transition to the corresponding oblate solution briefly, but
does not settle there. Rather, it oscillates between the oblate and nearly spherical solution
before running away to prolate values. In figure 2.9, we illustrate this behaviour for a
limiting case where the external spacetime is Minkowski. There it can be seen that after a
brief period where the internal space is oblate, the solution transitions to being more and
more elongated, with the flux concentrating around the poles. In this case (in contrast to
the prolate solutions discussed above), we find regions where the characteristics are ingoing,
which allows us to excise a region around the poles and continue the evolution. We find
that the spacetime curvature blows up, and the scale factor and equatorial circumference
both tend to zero, consistent with a crunch.

Note that for the Minkowski spacetime, there are no oblate solutions with the same
value of n, so it is not surprising that the solution goes prolate. However other solutions
with nmink < n < nI have a solution on the oblate branch, and yet show the same be-
haviour as the Minkowski solution. We can understand this as follows. First, recall from
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stable warped end-point (right).

figure 2.6 that as n is decreased to approach nI , the instability timescale decreases. Hence,
in the language of the effective potential picture, the velocity approaching the minimum
of potential will be larger, and there will be a greater tendency to overshoot, and, due
to nonlinear effects, eventually roll back up the potential towards larger ε. The smaller
the flux, the shorter the timescale of instability, and we observe that solutions undergo
fewer oscillations about the oblate solution as the flux is decreased. The Hubble parameter
decreases monotonically, passing through zero as the solutions roll back up the potential
to increasing ε. As H goes through zero, the expanding marginally inner trapped cosmo-
logical horizon becomes infinite and disappears, and a marginally outer trapped horizon
appears and begins contracting. Again, this is consistent with a crunch.

To further probe the validity of the effective potential picture, we consider perturba-
tions around initially oblate solutions in this flux range. As shown in the right panel of
figure 2.10, small perturbations decay (consistent with the linear stability), but modestly
larger perturbations cause the solution to become prolate, undergoing the same fate as the
corresponding initially spherical solutions. This implies the existence of a potential barrier
about the oblate solutions.

Finally, we study initially prolate solutions to determine their fate. We expect that,
in the range of flux where there is a corresponding solution on the small volume branch,
they will undergo the same fate as the solutions that started out spherical or oblate but
were kicked out the potential well. The left and middle panels of figure 2.11 show two
such solutions, which indeed become extremely prolate as the equatorial radius shrinks
to zero. Another interesting regime is the one with n < nMink. As one can see from
figure 2.1, these solutions do not have a Freund-Rubin solution they could have flowed
from, hence they are distinct from the evolutions considered so far. The right panel of
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figure 2.11 shows the embedding of the compact space for such a solution. Those solutions
become not only very oblate but also extremely large in volume. Around the equator,
the flux density approaches zero, and the expansion rate approaches that expected from
the decompactified D-dimensional de Sitter solution. However, the internal space remains
very inhomogeneous. We are unable to continue the evolution indefinitely, as tracking
the distorted shape and differing expansion rates requires higher and higher numerical
resolution. However, we do not find any singular behaviour before then. This distorted
shape is qualitatively different from any of the solutions considered above.

Finally, we briefly report on higher dimensional spaces where q ≥ 5. Exploring a few
cases with q = 5, we find similar behaviour to the case where q = 4. In particular, we
find a range of flux where the Freund-Rubin solution is only unstable to the total volume
instability, and another where it is unstable to the warped instability only. In the latter
case, we again find a range of the parameter space where the unstable solutions flow towards
stable stationary oblate solutions, but outside that range the solutions will, in a similar
way to the solutions shown in figure 2.9, become increasingly prolate forming trapped
regions in the process and eventually crunching. However, it is important to note that for
q ≥ 5, the range of the inequalities in eqs. (2.40) and (2.44) overlap, and hence none of
the Freund-Rubin solutions are stable. For future work, it would thus be interesting to see
which instability dominates in this overlap region of the parameter space. Additionally,
in contrast to q = 4, when q ≥ 5, higher ` modes can be unstable, which in theory would
result into further breaking of the symmetry of the compact sphere.
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Figure 2.10: The aspect ratio (left) and effective Hubble rate (middle) for a few initially
spherical solutions with n < nI . The relative difference in the aspect ratio from the
background value for a sample solution on the small Hubble warped branch with p = q = 4,
ΛD = 1 and H0/M4 = 1.3× 10−5 and successively larger ` = 2 perturbations (right).

2.5 Conclusions

Despite extensive study of the linear stability and mass spectrum of Freund-Rubin like
solutions, very little is known about their nonlinear evolution and dynamical formation. In
this work we have explored how such solutions might be generated and evolve. The starting
point for this flux compactification scenario was the product space of a p-dimensional de
Sitter space and a q-dimensional (in some cases warped) topological sphere. Provided we
fix the higher dimensional constant ΛD and the dimension of the internal manifold, the
properties and stability of the p-dimensional vacua and the compact space, will depend on
the number of flux units of the q-form field strength wrapping the sphere or the Hubble
parameter of the extended dimensions. For each value of the conserved flux number n <
nmax there are four solutions. Homogeneous solutions can be classified into two branches,
a large volume branch, unstable to the ` = 0 scalar sector and a small volume branch
unstable to the ` = 2 mode for n < nc < nmax. On the stationary warped branch one
finds the so-called large Hubble branch, unstable to the ` = 2 mode for n < nmax, and the
small Hubble warped branch which is stable to the ` = 2 mode for n < nc but unstable for
nc < n < nmax.

To gain some understanding of the parameter space and dynamics, we studied the
evolution of initially small perturbations around those stationary solutions. We find, in
agreement with previous studies that, for any dimensionality of the sphere, solutions on
the large volume branch either decompactify to empty D-dimensional de Sitter space with
cosmological constant ΛD or flow to the solution on the small volume branch with the same
number of flux units but a smaller volume, and hence large enough flux density to stabilize
the sphere against collapse.

We show that within the regime where the small volume Freund-Rubin solution is

39



−1 0 1
Xi/L

−10

−5

0

5

10
X

1/
L

0.00

71.08

71.241

τeq/L = 71.321

−1 0 1
Xi/L

−5.0

−2.5

0.0

2.5

5.0

X
1/
L

0.00

24.13
24.65

τeqH0 = 24.91

−50 0 50
Xi/L

−10

−5

0

5

10

X
1/
L

0.00

23.36
24.26

τeqH0 = 24.61

Figure 2.11: Sample solutions on the large Hubble warped branch with p = q = 4, ΛD =
1, (H0/M4, n) = (1.3 × 10−5, 435.23) (left), (H0/M4, n) = (0.0077, 529.29) (middle) and
(H0/M4, n) = (0.0075, 402.11) (right) where recall nMink = 435.16.

unstable to the ` = 2 scalar mode, when nI < n < nc the solutions flow to the corresponding
solution on the small Hubble warped branch. The end point of the instability is a stationary
oblate solution where the flux is concentrated in a band around the equator. We do not
find any other instabilities and conclude this is the final endpoint of the solution, at least
under our symmetry assumptions. However, for n < nI , but still within the regime where
the small volume Freund-Rubin branch is unstable, we find that the solution overshoots the
linearly stable oblate solution, flowing towards an increasing prolate solution, where the
flux concentrates at the poles of the sphere. The equator of the q-sphere is unsupported by
flux, and the equatorial radius shrinks to zero size in finite time, forming trapped regions
around the poles in the process. The four-dimensional spacetime undergoes a crunch.

Finally, regarding the end state of solutions on the large Hubble branch with n < nMink,
we find that the volume of the internal space grows, while the shape become increasingly
oblate, but with cuspy feature at the poles. The expansion rate remains inhomogeneous,
as there is no solution on the small Hubble branch with the same number of flux units.

It follows from the above that the warping of the compact space may stabilize initially
unstable configurations. This spontaneous symmetry breaking of the internal space to
more dynamically favoured configurations is a very natural phenomenon in cosmology.
In the case of the Jeans instability, configurations with high mass density suffer from
a gravitational instability. This symmetry breaking instability is ultimately cut-off by
nonlinear terms leading to structure formation. Other analogous examples include the
Gregory-Laflamme instability [174].

There are a number of directions in which one could expand on this study. While
here we assumed that only one of the spatial degrees of freedom in the internal space were
excited, it would be interesting to allow additional symmetries either in the compactified, or
uncompactified dimensions, to be broken. Another possible avenue would be to study the
case where the external space is anti-de Sitter, with potential applications to the AdS/CFT
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correspondence. Here, we have focused on a simple model in order to gain insight into open
questions surrounding extra dimensions and spherical compactifications. For example,
there has been much debate and conjecture regarding the circumstances under which it is
possible to have periods of exponential expansion in compactified scenarios [100, 275]. The
general methods presented here could be used to explore this issue in scenarios that are
dynamical and inhomogeneous.
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Chapter 3

Starting inflation from
inhomogeneous initial conditions
with momentum

3.1 Introduction

As was mentioned in 1.1 cosmic inflation has been proposed as a solution to some of the
fine-tuning problems of Standard Big Bang cosmology. But in order for inflation to be
a successful explanation for the observed homogeneity of the universe on large scales, it
should be able to arise from generic, inhomogeneous initial conditions. Inhomogeneities will
not necessarily spoil inflation in models where inflation naturally begins at nearly Planckian
densities, [247, 248, 249, 244, 245], though this has not be studied in detail1. The most
recent observations of the cosmological microwave background motivate studying of the
problem of initial conditions in low energy scale inflation, in which the potential energy
density is much below the Planckian scale [16, 13, 244, 215, 245, 212]. Here, we focus
on the effects of large inhomogeneities on the onset of inflation, both in scenarios where
it occurs at nearly Planckian and sub-Planckian energy scales, using evolutions in fully
nonlinear GR.

This question has been studied using tools from numerical relativity in a number of
papers [237, 73, 169, 170, 168, 239, 171, 238, 117, 127, 105, 66, 104, 33, 202], complement-
ing work evolving inhomogeneous fields on homogeneous spacetimes [17, 18, 236, 20, 135],

1The reasoning is as follows (see [244] for more details): Suppose we have a universe with Planckian
density, then the sum of the kinetic, gradient and potential energy density is of the order unity in Planckian
units. There are a priori no constraints on the value the scalar field takes in this domain, but typically one
expects that this value , φp, is such that the potential energy is 2V (φp) = 1. Therefore typical conditions

are such that the initial conditions correspond to φ̇2 ∼ (∂iφ)2 ∼ 2V (φ) = O(1). If φ̇2 ∼ +(∂iφ)2 . 2V (φ)
in domain under consideration then inflation begins and the gradient and kinetic energy become much
smaller than the potential energy which ensures the continuation of inflation. We will confirm this picture
numerically in chapter 3.3 of this thesis.
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and using analytic techniques [40, 225, 113] (see [69] for a short review on the topic).
Focusing on more recent work, [127] showed that large field inflation is robust to simple
inhomogeneous initial conditions even when the initial gradient energy is many orders of
magnitude larger than the vacuum energy density, provided that the universe is initially
expanding everywhere and that the scalar field range remains within the slow-roll regime.
Reference [127] also included cases with large inhomogeneities that give rise to the for-
mation of black holes, but showed that inflation can succeed even then. This happens
because while the overdense scalar field regions collapse into black holes, the underdense
regions evolve into voids that become dominated by the inflationary potential energy at
later times such that inflation may begin. This line of research was then extended in two
ways: [105, 33, 202, 201] expanded the classes of inflationary models under investigation
and [105, 104, 202] the classes of inhomogeneities. In [105], inhomogeneities in both the
scalar field profile and the extrinsic curvature were explored. In particular, the initial
expansion was assumed to take the following simple form K(~x) = −Cφ(~x) + K0 where
C > 0 is a free parameter and K0 is an integration constant and the initial velocity of
scalar field was given by some constant such that the momentum constraint is trivially
satisfied. In this ansatz, the initial hypersurface contains regions of local expansion and
contraction. It was shown that as long as the spacetime is on average initially expanding,
then inflation will occur in some patch even if other parts of the spacetime might collapse.
Reference [104] investigated inhomogeneities in the transverse traceless part of the extrin-
sic curvature, ATTij 6= 0, and found that these initial perturbations, roughly corresponding
to gravitational radiation, initially reduce the total number of e-folds as the amplitude
is increased, but that this reduction saturates and that in general the amplitude of the
scalar perturbations remains the main driver of the onset of inflation. The effect of initial
inhomogeneities in the scalar kinetic energy, but with constant field profile, such that the
scalar momentum density was initially zero, was studied in [202].

In order to carry out such evolutions of various classes of initial conditions to determine
whether they eventually lead to an exponentially expanding spacetime, one must begin with
initial data that satisfies the constraint part of the Einstein equations. In practice, this
requires specifying the values of various metric and matter components on the initial time
slice in such a way that they satisfy the Hamiltonian and momentum constraint equations.
However, all of the abovementioned studies are similar in that they rely on special choices of
initial conditions that ensure the momentum constraint is trivially satisfied. The addition
of momentum in the initial conditions is not only natural, but also interesting to pursue
since, if the initial velocity of the inflaton were large enough, it could prevent the onset of
inflation2. Solving the momentum constraint, in addition to the Hamiltonian constraint is
highly non-trivial, not only because it requires solving three additional coupled non-linear
elliptic equations, but also because it is challenging to separate freely specifiable versus
constrained degrees of freedom in a manner where the underlying physical interpretation

2Note that in simulations of cosmic bubble collisions [203, 330], where inflation starts inside the bubble
(some time after the initial conditions are specified), both the scalar field and its conjugate momentum
are usually non-trivial.
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of the free data is transparent, while also ensuring that a unique solution exists. If we
over-restrict the system, no solutions to the constraint equations will exist, also known as
the problem of existence. On the other hand, if we do not restrict the system sufficiently,
there may be multiple nearby solutions, where even if the solutions are physically the same
(this is not always the case, e.g. [288] for an example) our numerical solver might not
converge to a single one. This so-called problem of local uniqueness is very relevant in
cosmology [160], and has implications for how matter source terms in the momentum and
Hamiltonian constraint are specified, as discussed below. In addition, a standard trick to
choose which variables to set, and which to solve for, while ensuring the solution is unique,
is to perform a conformal decomposition of the energy and momentum density. However,
this does not extend straightforwardly to scalar fields since the energy and momentum
density are functions of the scalar field and its time and spatial derivatives.

In this work, we solve both the Hamiltonian and momentum constraint equations for
non-trivial inhomogeneities in the momentum density of the scalar field, considering sce-
narios where the time derivative of scalar field has a large homogeneous value, as well as
scenarios where it has large spatial variations. We solve the equations using the conformal
thin-sandwich (CTS) formalism [342], making using of the code described in [131], but
without using the usual conformal rescaling of the matter terms. We find that our new
scheme gives greater control over the initial conditions in the matter sector. We then study
the evolution of several classes of initial conditions that have non-trivial inhomogeneities
in the scalar field momentum density and have not been previously studied in the litera-
ture. We consider scenarios where the length scale of the inhomogeneities is comparable
to the initial effective Hubble radius and (i) the initial scalar gradient and kinetic energy
are comparable and much larger than the inflationary energy scale; (ii) the initial scalar
gradient, kinetic energy, and potential energy are all comparable (as might arise in large
field inflationary models where inflation begins at nearly Planckian densities); and (iii) in
two-field inflationary models where the scalar fields are non-interacting. Our results for
(i) are, broadly speaking, in agreement with previous analyses that assumed a vanishing
initial velocity profile for scalar field. However, we also show that when the initial kinetic
energy of scalar field is such that a homogeneous universe will fail to inflate, the addition
of gradient energy can slow the scalar field before it reaches the end of the inflationary
plateau. We attribute this to an increased initial expansion rate and non-negligible pull-
back force due to the presence of gradients in the inflaton. Our results suggest that large
gradients can mitigate the disruptive effect of a non-zero initial scalar velocity profile.
Our results for (ii) show that in cases where the kinetic, gradient, and potential energy
are all comparable, the universe will rapidly transition to exponential expansion, typically
without forming collapsing regions. Finally, we extend our methods to the study of the
effects of adding inhomogeneities to cosmological scenarios where the universe undergoes
two stages of inflation Taken together, our results suggest inflation can arise from highly
inhomogeneous conditions.

The remainder of this chapter is as follows. We discuss the inflationary models we use
in section 3.2. Our approach to solving the constraint equations on the initial time slice
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is outlined in section 3.2.1 and 3.2.2. We comment on the existence and uniqueness of
our solutions in 3.2.3. Our numerical methods and diagnostics for evolving the Einstein
equations and matter are described in section 3.2.4. Our results are presented in section 3.3,
and we conclude in section 3.4. In appendix B.1, we discuss our numerical implementation
in more detail, while in appendix B.2, we provide more details on the construction of our
initial data.

Unlike in Chapters 1, 4 and 5, we use units with MP ≡ 8πG = c = 1.

3.2 Theory

In this chapter, we consider inflationary theories with one or two canonical scalar fields, φ
and θ3, both minimally coupled to Einstein gravity, such that the action is given by

S =

∫
d4x
√−g

(
1

2
R− gµν∂µφ∂νφ− gµν∂µθ∂νθ − 2V (φ, θ)

)
(3.1)

where V (φ, θ) the potential energy function. In most of the cases, we will consider single-
field inflation by setting θ = 0. In all cases, we assume that the scalar fields do not interact,
such that V (φ, θ) = Vφ(φ)+Vθ(θ). The Einstein equations that follow from the action (3.1),
are then given by (1.1) where the stress-energy tensor is

Tµν = T (φ)
µν + T (θ)

µν (3.2)

with
T (φ)
µν = gµν [−∂αφ∂αφ− 2Vφ(φ)] + 2∂µφ∂νφ , (3.3)

and similarly for θ. The equation of motion for each individual field is then

�φ = V ′φ, �θ = V ′θ (3.4)

where ′ is used to denote the partial derivative with respect to corresponding scalar field.
In general, each field will undergo inflation when its potential energy density is greater
than the sum of its kinetic and gradient energy density. Assuming the universe is spatially
homogeneous, φ will undergo inflation if Vφ > 0 and the slow-roll parameters satisfy:

εV =

(
V ′φ
2Vφ

)2

� 1, ηV =
1

2

∣∣∣∣
V ′′φ
Vφ

∣∣∣∣� 1, (3.5)

in which case the field is slowly rolling. The condition εV � 1 implies that the potential
energy density driving inflation is roughly constant, ρVφ ≡ 2Vφ ≈ const., while ηV � 1
ensures that inflation persists for a number of e-folds.

3Note that θ was used to refer to the polar angle on q-sphere in chapter 2
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3.2.1 Initial conditions: metric

We wish to specify initial data on a spacelike hypersurface Σt parameterized by t that is
consistent with the Einstein equations. We formulate the problem using the Arnowitt-
Deser-Misner (ADM) formalism, and decompose the metric into a spatial metric γij, lapse
N , and shift vector βi as

ds2 = −N2dt2 + γij(dx
i + βidt)(dxj + βjdt) , (3.6)

and write the extrinsic curvature as

Kij = −1

2
L~nγij , (3.7)

where the Lie derivative L is taken with respect to the timelike unit normal to slices of
constant coordinate time nµ = (1/N,−βi/N). The initial data for the metric and matter
sector cannot be freely and independently specified, but must satisfy the momentum and
Hamiltonian constraint equations

(3)R +K2 −KijKij = 2 ρ , (3.8)

DjK
ij −DiK = pi , (3.9)

where K = γijKij,
(3)R, and Di are, respectively, the extrinsic curvature scalar, Ricci

scalar, and covariant derivative associated with γij, ρ ≡ nµnνTµν is the energy density,
and pi ≡ −γiµnνTµν is the momentum density as measured by an Eulerian observer with
four-velocity nµ.

In the 3+1 decomposition, initial data for the Einstein and matter equations are then
a set of 20 functions representing N , βi, γij, Kij, ρ, and pi on the initial time slice that
together satisfy the constraint equations.

We use a modified version of the CTS method [342], implemented in [131], as a pre-
scription to separate freely specifiable from constrained degrees of freedom in such a way
that the underlying physical interpretation of the free data is transparent. We outline the
key features below, and refer the reader to [131] for more details. In the CTS formalism,
the approach is to perform a conformal decomposition of the spatial metric and extrinsic
curvature in order to introduce quantities that can be specified in a more well-motivated
way. Introducing the conformal factor Ψ, we can define a number of conformal quantities
as

γ̃ij ≡ Ψ−4γij (3.10)

Âij ≡ Ψ10

(
Kij − 1

3
Kγij

)

=
1

2Ñ

[
˜̇γij + (Lβ)ij

]
(3.11)
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where the time-derivative of the conformal metric ˙̃γij ≡ Ψ4
(
γ̇ij − 1

3
γijγklγ̇

kl
)

is traceless by

construction. The conformal lapse Ñ is related to the lapse by Ñ ≡ Ψ−6N , while R̃ and D̃
are the Ricci scalar and covariant derivative with respect to γ̃ij, and L is the corresponding
conformal Killing operator, defined by

(Lβ)ij ≡ D̃iβj + D̃jβi − 2

3
γ̃ijD̃kβ

k . (3.12)

With these definitions, the constraint equations become an elliptic condition for Ψ, and
three elliptic equations for βi:

D̃iD̃
iΨ− 1

8
R̃Ψ +

1

8
ÂijÂ

ijΨ−7 − 1

12
K2Ψ5 +

1

4
ρΨ5 = 0, (3.13)

D̃jÂ
ij − 2

3
Ψ6D̃iK − Ψ10pi = 0 . (3.14)

In the CTS formalism, one then usually proceeds by specifying initial data for the free
data

γ̃ij, ˙̃γij, K, Ñ , ρ, pi (3.15)

(or some conformally rescaled version of ρ and pi), and solving the four elliptic equations
for the shift βi and conformal factor Ψ. We emphasize that in the CTS method, one is in
principle free to choose any values for the free data for which a solution can be found. We
now outline and motivate our choice of free data for the case of inhomogeneous conditions
in an initially expanding universe filled with two (unless otherwise stated) scalar fields and
periodic boundary conditions 4.

For simplicity, we choose the spatial metric on the initial time slice to be conformally
flat, γij ≡ Ψ4γ̃ij = Ψ4δij, Ñ = 1, and set the trace of the extrinsic curvature K to be
constant, while the transverse-traceless part ˙̃γij is set to zero (loosely this is equivalent to
setting the gravitational wave background to zero). In principle, K is a free parameter,
representing a uniform expansion rate across the initial hypersurface. However, we also
have to satisfy an integrability condition for the Hamiltonian constraint

IH ≡
∫ (

D̃iD̃
iΨ− 1

8
R̃Ψ +

1

8
ÂijÂ

ijΨ−7 − 1

12
K2Ψ5 +

1

4
ρΨ5

)
dV = 0 . (3.16)

For a periodic domain, if we approximate the conformal factor to be roughly unity, this
requires K2/3 to be close to the initial energy density averaged over the initial hypersurface.
For two scalar fields, this reduces to

K = −
[

3

Vol

∫ (
(∂tφ)2 + γ̃ij∂iφ∂jφ+ 2Vφ(φ) + (∂tθ)

2 + γ̃ij∂iθ∂jθ + 2Vθ(θ)
)
dV

]1/2

(3.17)

4Our simulation domain is periodic with coordinate length L5, the largest wavelength of the perturba-
tions in the scalar field, in each direction. This can either be seen as a convenient boundary condition for
an infinite universe, or in scenarios where inflation starts slightly below Planckian densities, as describing
a universe with toroidal topology.
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where φ and θ are the values of scalar fields on the initial time slice and ∂tφ and ∂tθ
are specified up to some conformal factor. The minus sign gives us an initially uniformly
expanding universe with Hubble parameter H0 = −K/3 (a positive K would imply a
contracting universe). In the special case of a homogeneous scalar field profile, this choice
of initial data gives a Friedman-Lemaitre-Robertson-Walker (FLRW) solution.

We now describe the choice of free data in the matter sector. We will restrict the dis-
cussion to a single field, say φ, but keep in mind that the same definitions and assumptions
apply to the other field θ.

3.2.2 Initial conditions: matter

In the case of a scalar field, the quantities to be specified on the three dimensional spatial
hypersurface are the scalar field φ and its time derivative ∂tφ. We thus rewrite the energy
density at some time and any point in the hypersurface as the sum of the kinetic, gradient,
and potential energy densities,

ρ = η2 + γij∂iφ∂jφ+ 2Vφ(φ) (3.18)

and the momentum density as
pi = −2 η γij∂jφ (3.19)

where η is the conjugate momentum 6 defined by

η ≡ nµ∇µφ =
1

N

(
∂tφ− βi∂iφ

)
. (3.20)

Clearly, the technical challenge here is to choose which quantities to specify in such a way
that not only does a unique solution exist, but also such that the values for the quantities
can be physically motivated. The fundamental quantities we freely specify are the initial
scalar field profile and a non-trivial velocity profile defined below. We comment on the
existence and uniqueness of our solutions in section 3.2.3. The inhomogeneous initial
conditions for the scalar field profile are chosen to be such that on the initial time slice,

φ(t = 0, ~x) = φ0 + δφx sin(kx) + δφy sin(ky) + δφz sin(kz) (3.21)

where ~x = (x, y, z) is the spatial coordinate of hypersurface labelled by the time coordinate

t, k = 2π/L is the wavenumber and δ~φ = (δφx, δφy, δφz) is a measure of the amplitude of
the initial inhomogeneities which in general can be different in each direction, but we will
only consider δφ = δφx = δφy = δφz . The maximum total amplitude of the fluctuations
about φ0 is then ∆φ =

√
δφ2

x + δφ2
y + δφ2

z =
√

3δφ. For simplicity, we do not consider
different amplitudes in the different spatial directions, or additional scalar field variations

6The conjugate momentum can be interpreted as the velocity of scalar field as seen by a fiducial observer
whose worldline is orthogonal to the constant time hypersurfaces Σt, i.e., an observer with four-velocity
nµ.
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at smaller wavelengths. In [127], including these was found not to qualitatively affect
the results. We fix the (coordinate) length of the simulation domain in each direction to
be equal to the wavelength L, and consider various ratios of this lengthscale to the initial
Hubble scale (including gradient and all other energy contributions). The initial conditions
of the scalar field depend on the amplitude of the inhomogeneities δφ and the potential
V (φ0) which sets the background inflationary Hubble scale.

We explore the effects of inhomogeneities on both single-field and two-field inflation-
ary models. When studying single-field inflation, we consider two types of inflationary
potentials, both of which are large field models, i.e., the inflaton needs to traverse a super-
Planckian range in field space for there to be a sufficient period of inflation. The first
potential we consider is a simple quadratic potential,

V (φ) = m2φ2 . (3.22)

Although strongly disfavored by the most recent observations [16, 13], we do not expect
our conclusions to be dependent on the shape of the potential, since the key feature is the
flatness of potential and super-Planckian distance in field space to the minimum of potential
(see [33] for a study of the effects of the potential shape on inhomogeneous inflation). To
confirm this, we do, however, also look at the T-shaped potential,

V (φ) = 3m2α tanh2

(
φ√
6α

)
(3.23)

describing a class of so-called α-attractors, motivated by supergravity and string theory
[211, 214] and consistent with the most recent BICEP/KECK data [212]. The two-field
model we will consider is given by

V (φ, θ) = M2φ2 + 3m2α tanh2

(
θ√
6α

)
(3.24)

where M � m. Here, inflation can start at M2φ2 = O(1) if all gradient and kinetic terms
are much smaller than Vφ(φ) [245]. When the period of inflation driven by φ ends, a second
stage of inflation driven by θ begins. Our choice of two-field model is motivated by the
recently proposed α-attractor generalization [213, 68] of the hybrid inflation scenario [250].
Although this scenario describes an inflaton field θ, interacting with a Higgs-type field φ,
one can show that the fields become decoupled in the large field limit, in which case the
inflationary model reduces to the two-field model studied here.

Going back to the initial conditions on the velocity profile the scalar field, we find three
distinct ways of specifying well motivated initial data, which we now describe.

1. Uniform initial time derivative of scalar field.
The first method is to specify the time derivative of the scalar field, which for sim-
plicity we assume to be constant on the numerical domain

∂tφ(t = 0, ~x) = ωδφ (3.25)
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where δφ ∼ O(1). The sign of the parameter ω determines whether the scalar field
moves up or down the inflationary potential. In particular, when ω < 0, the field
is driven towards the minimum of the inflationary potential, which could cause an
early end to inflation. We will thus give particular attention to this scenario.

We emphasize that, although the time derivative of the scalar field is constant, af-
ter the Hamiltonian and momentum constraints are solved for Ψ and βi, the re-
constructed physical energy and momentum density are inhomogeneous. While the
reconstruction of the physical energy densities is unambiguous, the lack of ability to
specify a particular configuration for ρ and its individual components is inconvenient.
This motivates another way of specifying initial data.

2. Spatially varying conjugate momentum: conformal rescaling.
Here, the trick is to specify a rescaled conjugate momentum, defined as

η̃ = Ψ2η. (3.26)

This ensures that if the conformal gradient energy, γ̃ij∂iφ∂jφ and kinetic energy η̃2

have a chosen ratio, then so will the physically reconstructed quantities following
the solution of the constraints. In other words, the ratio of the initial kinetic and
gradient energies is not modified by solving for the shift and conformal factor in CTS
formalism. The ansatz for η̃ is chosen to be spatially varying, although with fixed
negative sign on the entire domain

η̃ = −kδφ
√

cos2(kx) + cos2(ky) + cos2(kz). (3.27)

such that the scalar field initially moves down the inflationary potential. We note
that this initial data breaks the symmetry of the energy density about the origin.

3. Spatially varying conjugate momentum: analytical solution.
Finally, instead of solving the momentum and Hamiltonian constraints using the
CTS formalism, a third approach is to, following [159, 336], choose initial data such
that the momentum constraint is analytically satisfied. We then use the Hamiltonian
constraint to solve for the conformal factor. We outline the main assumptions of this
construction here, and refer the reader to appendix B.2 for more details.

The initial data for the spatial metric and extrinsic curvature scalar is specified the
same way as above, but the lapse and shift are chosen to be N = 1 and βi = 0. The
initial data for the scalar field profile is obtained by specifying φ(t = 0, ~x) according
to (3.29) below, and the conjugate momentum by specifying

η̂ = Ψ6η = Ψ6∂tφ (3.28)

where it is important to note that η̂ has a different scaling with the conformal factor
from η̃ introduced above (3.28) and that the last step assumes N = 1 and βi = 0.
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Given those assumptions, the momentum constraint is then solved by the following
ansatz

η̂(x) =
1√
2

[η̂0 + δη̂x cos(kx) + δη̂y cos(ky) + δη̂z cos(kz)] , (3.29)

φ(x) =
1√
2

[
φ̂0 + δφ̂x cos(kx) + δφ̂y cos(ky) + δφ̂z cos(kz)

]
(3.30)

and a particular solution for Âij given in eqn. (B.4). This allows the reconstructed
∂tφ(t = 0, ~x) to take both positive and negative values in the domain. For this study,
we will further assume δη̂ = δη̂x = δη̂y = δη̂z and δφ̂ = δφ̂x = δφ̂y = δφ̂z.

Figure 3.1 shows two-dimensional spatial slices of the scalar field and time derivative
of scalar field which we typically evolve .

φ φ̇

Figure 3.1: Two-dimensional spatial slices showing the scalar field and its time derivative
on the initial timeslice.

3.2.3 Local uniqueness and existence

We now briefly discuss how the different ways of specifying scalar field initial data relate
to considerations of how the Hamiltonian and momentum constraint couple, and issues of
local uniqueness.7 First, we recall the more familiar case with fluid matter initial data, in

7We do not go into any detail here. See, e.g, [269, 316, 331, 42] for reviews on the uniqueness of
constraint equations.
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order to compare and contrast to the scalar field case. In the former, where the stress tensor
is an algebraic function of the fluid variables, one typically specifies a conformal energy
density ρ̃ ≡ Ψnρ and a conformal momentum density p̃i ≡ Ψ10pi. For the energy density,
a value n > 5 is chosen based on uniqueness considerations, which we discuss below, while
the exponent of the conformal momentum density is chosen to remove the Ψ dependence in
the momentum equation (3.14) [342]. In the special case where K is chosen to be constant,
the momentum constraint then becomes independent of Ψ, and the constraint equations
decouple in the sense that one can first solve the momentum constraint for βi, and then
using the solution for βi, solve the Hamiltonian constraint for the conformal factor.

In contrast, in the scalar field case matters are complicated by the fact that the energy
and momentum depend on the gradient of the scalar field. As can be seen from eq. (3.18),
specifying a conformal energy density would involve solving an additional nonlinear partial
differential equation to determine the scalar field, and we are typically interested in spec-
ifying the initial scalar field profile as the quantity of physical interest anyway. However,
noting that p̃i = −2Ψ6ηγ̃ij∂jφ is fixed by choosing φ (and hence ∂jφ) and say η̂ ≡ ηΨ6 at
t = 0, then this choice of scalar field initial data achieves the same outcome as above, and
(since we always choose K to be constant here) the momentum constraint decouples from
the Hamiltonian constraint. This is the case considered above when constructing initial
data such that the momentum constraints are analytically satisfied (3.28), and is also the
case where there are uniqueness results in the mathematical literature for a scalar field on a
compact manifold [97]. As discussed in Ref. [160], issues with the non-uniqueness of the mo-
mentum constraint can arise in this case when the kernel of the operator ∂jL is non-trivial,
which occurs with typical choices of initial data (e.g. a conformally flat metric). These
are side-stepped with the analytical solution used here. Fixing ∂tφ, as in eq. (3.28), also
removes the dependence of the momentum constraint on Ψ, since Ψ6η = (∂tφ+ βi∂iφ) /Ñ .
However, it introduces an extra term involving βi, so that the previous analyses do not
directly apply. For the conformal rescaling (3.26) that fixes the ratio of kinetic to gradient
energy, the momentum constraint does not decouple and, again, previous analyses do not
apply.

Finally, we consider the local uniqueness of the Hamiltonian constraint. For simplicity,
we will ignore the momentum constraint and restrict to the choices for the metric free data
discussed in Sec. 3.2.1 (e.g. conformally flat, and so on). Say we have some solution Ψ0

to the CTS form of the Hamiltonian constraint (3.13), and we are interested in nearby
solutions Ψ = Ψ0 + u where u is small compared to Ψ0. Linearizing, we have

[
D̃iD̃

i − q(~x)
]
u = 0 (3.31)

where, in terms of the functional derivative of the kinetic energy term,

q(~x) =
7

8
Ψ−8

0 (Lβ)ij(Lβ)ij +
5

12
Ψ4

0K
2− 5

4
Ψ4

0(2Vφ)− 1

4
γ̃ij∂iφ∂jφ−

1

4

δ(η2Ψ5)

δΨ

∣∣∣∣
Ψ=Ψ0

. (3.32)

If q(~x) > 0, then, using the maximum principle, one can show that u = 0 everywhere, and
Ψ0 is (locally) unique [96, 98]. For the case of fluid matter mentioned above, the choice of

52



ρ̃ is motivated by ensuring that ρ̃ makes a positive contribution to q. In the scalar case,
clearly, this will not be true in general. When fixing η̂ or ∂tφ, the functional derivative
term in eq. (3.32) becomes 7Ψ−8

0 η̂2/4, and hence makes a positive contribution to q. When
specifying η̃, the contribution is −η̃2/4, and hence negative (as noted above, in this case
the momentum constraint does not decouple as well). In either case, for the parameters
considered here, we find that q(~x) > 0. In part, this can be attributed to our choice of K
through eq. (3.17). A sufficient condition for q > 0 is that

〈2Vφ + γ̃ij∂iφ∂jφ+ η̂2〉 &
(

2Vφ +
1

5
γij∂iφ∂jφ−

7

5
η2

)
(3.33)

when fixing η̂ or ∂tφ, where here 〈. . .〉 denotes the coordinate volume average. When fixing
η̃ instead, the last term becomes +η2/5. In all the cases we consider in this study, we find
Ψ0 ∼ 1, and the gradient and kinetic energy terms, which appear with smaller prefactor
on the right-hand side of (3.33) compared to the left-hand side, are approximately equal
in magnitude, and either larger, or approximately equal, to the scalar potential energy
term. This argument can also be straight-forwardly extend to multiple non-interacting
scalar fields, in which case the kinetic, gradient and potential energy densities in (3.33)
would simply be the sum of energy densities of individual fields.

Though the above discussion provides some motivation and guidance, in the end there
is no mathematical result guaranteeing the existence and uniqueness of solutions to the
constraint equations for all the cases we consider. However, the important thing for the
purposes of this study is that we find we are able to numerically construct convergent
solutions. In fact, there are several examples in the literature where the constraint equa-
tions have been solved without issue when it was known that more than one solution
exists [343, 173, 340, 288, 45].

3.2.4 Numerical implementation

We construct initial data satisfying the constraint equations by numerically solving the
CTS equations, discretized with second-order accurate finite differences, using a multigrid
algorithm. Details can be found in [131]. We then evolve the Einstein equations in the
generalized harmonic formulation using the code described in [292, 130], and assuming
periodic boundary conditions. See appendix B.1 for more details on our numerical methods.
In order to characterize our results we make use of the following diagnostic quantities. We
compute the total and individual energy densities defined according to (3.18). We define
a fiducial local Hubble expansion rate

HK ≡ −
K

3
(3.34)

which allows us to compute the corresponding local number of e-folds of expansion N as

N ≡
∫
HKdτ , (3.35)
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where the integration is along the integral curve of nµ, and τ is the proper time given by
the lapse through dτ = Ndt (see [336, 127]). Note that in a homogeneous (i.e. FLRW)
spacetime this quantity is related to the initial and final scale factor as N =

∫
Hdτ =

log(a/a0).

The average of a quantity over the spatial volume is denoted by

〈X〉 ≡
∫
d3x
√
γ X∫

d3x
√
γ

(3.36)

where γ = det γij.

In some cases (in particular, for smaller values of k/H0), there is prompt gravitational
collapse in some regions and black holes form. To characterize the boundaries of black
holes in our dynamical setting, we use the concept of an apparent horizon, defined as the
outermost marginally outer trapped surface. We excise a region interior to the black hole
from the computational domain, and do not evolve the equations there (see appendix B.1
for more details on the implementation). From the area of the apparent horizonA we define
the irreducible mass, Mirr =

√
A/16π. We find that the angular momentum of the black

holes is negligible, and hence the irreducible mass closely approximates the Christodoulou
mass. We characterize the parameters we choose for the background cosmological solu-
tions (to which we add large inhomogeneities) by computing the power spectrum of scalar
fluctuations, which restoring Planckian units and assuming slow-roll inflation are given by

∆R
2 =

1

8π2

H2

MP
2

1

εV
, (3.37)

We also quote the scalar spectral index and the tensor-to-scalar ratio (of background so-
lution), which in the slow-roll approximation are given by

ns − 1 = 2ηV − 6εV , rts = 16εV . (3.38)

Note that these definitions no longer apply in the non-perturbative, highly non-linear
regime we consider.

3.3 Results

We examine the conditions under which an initially expanding universe, with either a single
scalar field, or two non-interacting scalar fields (see section 3.2), transitions to exponential
expansion. We construct initial data using the approach described in sections 3.2.1-3.2.2.

We study two regimes of interest, distinguished by the energy scale at which inflation
takes place. We first consider single-field inflationary models where the universe is initially
dominated by the gradient and kinetic energy of scalar field, η2 ∼ γij∂iφ∂jφ ∼ 103V (φ0),
in which case the initial expansion rate is large compared to the inflationary Hubble rate
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(we refer to this as “low energy” or sub-Planckian inflation, see section 3.3.1). We find
that one or more (depending on the symmetry of the total energy density on the initial
time slice) regions of the domain undergo gravitational collapse, leading to the formation
of black holes. Ignoring the interior of the black hole(s), the spacetime is still expanding
on average, and we find that, independently of the type of initial data, the gradient and
kinetic energy dilute away until the numerical domain becomes dominated by inflationary
energy.

We also explore inflationary models where the amount of kinetic, gradient, and potential
energy are all comparable on the initial time slice, and their sum is order unity in units of
the wavelength of the initial homogeneities (which is also comparable to the initial Hubble
radius) ρL2 . O(1) (see section 3.3.2). Here, we refer to this scenario as high energy,
or nearly Planckian energy inflation, though, of course, our analysis is entirely classical
and ignores quantum effects. We first consider single-field inflationary models, where we
find that the solution quickly transitions to exponential expansion. Independently of the
way initial data is constructed, the late-time evolution always consists of an exponentially
expanding universe with a rapidly decreasing gradient energy and kinetic energy that
asymptotes to its corresponding slow-roll value. We then extend our study to a two-field
inflationary model where the energy content is such that the first stage of inflation may
start at nearly Planckian energies, while the second phase will occur at sub-Planckian
energies. For technical reasons discussed below, we are not able to evolve this scenario
past the first stage of inflation. However, already at this stage we find large patches where
gradients have become negligible and the spacetime is well described by a homogeneous
evolution set by the local inflaton values. Extrapolating thusly indicates that these regions
should undergo a prolonged period of inflation driven by the second field.

In the following, we quantify our results using the methods described in section 3.2.4,
by computing, for instance, the ratio of kinetic and gradient energy to the potential energy.
In all the cases we study, we consider perturbations such that the ratio of the wavenumber
of the initial scalar field content to the expansion rate on the initial time slice k/H0 is
of the order of one, meaning our simulations probe the strong-field regime. As here we
focus on models of large-field inflation, where φ0 is large in Planckian units, and consider
fluctuations of the the inflaton that are of order one, we note that we do not consider
scenarios where the perturbations around the average scalar field value that exceed the
distance in field space to the end of inflationary plateau. Previous studies [127, 105, 33]
have found that inflation can fail to happen in such scenarios, depending on the potential.

3.3.1 Low energy inflation

We first consider solutions where the potential energy density is initially subdominant. To
begin with, we describe an illustrative case where the time derivative of the scalar field
is uniform on the initial time slice, i.e. given by eq. (3.25). We choose the potential to
be given by an α-attractor potential eq. (3.23) with φ0 = 3.1, such that, in the absence
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of inhomogeneities (δφ = 0), and if the time derivative of the scalar field were zero, the
combination of parameters (φ0,m, α) would result in 60 e-folds of inflation, a scalar power
spectrum of ∆2

R ∼ O(1), a scalar spectral index of ns = 0.97, and a tensor-to-scalar ratio
of rts = 0.001 for modes that cross the horizon 60 e-folds before the end of inflation.
However, we pick an initial value of ∂tφ such that, in a homogeneous Universe, the scalar
field would evolve off the plateau of the inflationary potential without inflation occurring.
The gradient and kinetic energy are chosen to be comparable on the initial time slice,
but 800 times larger than the potential energy density. Figure 3.2 shows the individual
volume-averaged energy densities (left panel) as a function of the effective scale factor
a = exp(〈N〉). We also plot the kinetic φ̇2

FLRW and potential energy ρVφ,FLRW
densities

when solving the homogeneous FLRW equations in the absence of gradient energy and
specifying the initial value of φ̇FLRW to be the time derivative of the scalar field on the
initial time slice given by eq. (3.25).

We find that in some regions, the maximum energy density quickly increases and black
holes form (at the times indicated by the grey shaded areas in figure 3.2). As was pointed
out in previous studies [127, 105], the formation of black holes can be motivated using
the hoop conjecture [326]. Indeed, the hoop conjecture predicts that, if the mass of an
overdensity exceeds the mass of a black hole of the same size, then the overdensity will
collapse to a black hole. Following this argument, one can expect black holes to form when
4
3
πk−3ρ ∼ k−1/2 which is equivalent to k/H0 ∼ 1, or δφ ∼ 1 in Planck units. Here, since

the total energy density on the initial time slice is symmetric with respect to positive and
negative values of the scalar field, two identical black holes form in the periodic domain.
These black holes only create locally collapsing regions, and, after removing their interior
from the domain of integration, the spacetime is still expanding on average. The gradient
and kinetic energy are diluted until the spacetime is dominated by the potential energy,
after which inflation starts. As the effective scale factor of the spacetime increases, the
proper distance between the black holes also increases, as their density is also diluted by
inflation.

Surprisingly, we find that the addition of gradient energy allows inflation to occur in
cases where it would not in the equivalent homogeneous case. We will now demonstrate
that the reasons are two-fold. On the one hand, there is some resistance from the gradient
pressure, which acts as a restoring force, and hence tends to pull the scalar field up the
potential and away from the minimum. On the other hand, the addition of gradient energy
results in an increase in the initial expansion rate, as a result of which the oscillations of
the inflaton are damped. We now confirm this picture, and propose a simple toy-model
which allows us to reproduce our results and gain some intuition. Let us consider the
Klein-Gordon equation on the background of an FLRW spacetime,

φ̈+ 3Hφ̇− γij∂i∂jφ+ V ′φ = 0 (3.39)

where we have included the gradient terms in addition to the usual friction term, and the
dot here denotes the time derivative with respect to the proper time τ . We further assume
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Figure 3.2: Left : The volume-averaged kinetic η2, gradient ρgrad, and potential ρVφ energy
densities plotted against the averaged measure of the effective scale factor for the case
where the time derivative of the scalar field is uniform on the initial time slice and the
potential has a T-shape (3.23) with (φ0,m, α, ω, δφ) = (3.0916, 0.14, 1/6,−7.1, 0.9). For
comparison, we also show the evolution of the kinetic energy density φ̇2

FLRW, and potential
energy density ρV,FLRW when solving the corresponding homogeneous FLRW equations in
the absence of gradient energy and by specifying the initial value of φ̇FLRW to be the time
derivative of the scalar field on the initial time slice. The energy density for a radiation
dominated universe is shown by the dotted yellow line. Middle: The volume average of
inflaton field value in comparison to the homogeneous solution. Right : The value of scalar
field at the locations ~x1 = L(0,−1/4, 1/4) and ~x2 = L(1/8,−1/4, 1/4) when solving full
equations of motion, and when solving equation for damped harmonic oscillator (3.41).

that the gradient energy can be approximated by a homogeneous energy density initially
equal to the volume average, and that scales with an inverse power p of the scale factor

ρgrad ≈ 2V0r(a/a0)−p , (3.40)

where V0 ≡ Vφ(φ = φ0) is the initial potential in the absence of inhomogeneities, and r gives
the ratio of the initial value of gradient energy density to the inflationary energy density

r ≡ 〈ρgrad,0〉
2V0

. In addition, we assume that the gradient energy redshifts in the same way as
radiation, i.e. p = 4. In order to treat the spatial derivative term, we make the simplifying
approximation that ∂2φ ∼ (ik/a)2∆, where a is the spatially homogeneous scale factor, and
we have introduced the deviation from the background solution ∆ ≡ φ(t, x, y, z) − χ0(t),
where χ0(t) is the solution to the equation of motion (3.39) assuming the third term
vanishes. Writing this in terms of the homogeneous number of e-folds, dN = Hdτ , the
equation of motion (3.39) then becomes

H2 d
2φ

dN 2
+ A

dφ

dN +B∆ = −V ′φ (3.41)
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where, since H2 = ρ/3 with ρ given by (3.18), using (3.40), and further assuming η2 ∼ ρgrad,
the coefficients are

H2 = H2
V

(
V

V0

+ 2re−pN
)
, (3.42)

and

A = 3H2
V

[
V

V0

+ 2re−pN
(

1 +
p

6

)]
, B =

k2

e2N (3.43)

where H2
V = 2V0/3 is the initial inflationary Hubble rate. This expression takes the form of

a damped harmonic oscillator, where H2 is analogous to the mass, A represents the Hubble
friction, B the restoring pullback force, and the potential gradient the driving force pushing
the inflaton down the potential. It is now clear that, for r > 0, the additional gradient
energy not only increases the initial friction as well as the mass term, but also provides
an additional pullback force for points away from the average value of the inflaton. Note
that, as the universe expands, the contribution from the gradient energy to the friction and
restoring terms is exponentially suppressed, such that if the scalar field remains within the
inflationary part of the potential during the initial dynamical phase, then it can transition
into slow-roll inflation.

In the right panel of figure 3.2, we compare the results of numerically integrating the
damped harmonic equation (3.41) to the behavior of the full simulations at two arbitrarily
located points. We find that the results are qualitatively the same and conclude that this
simple toy-model can be used to build intuition about the dynamics of the full solution.
Similarly, the left panel shows that the gradient and kinetic energy of the full evolution
decreases as a−4, as would be expected for a radiation dominated universe. We also note
that the arguments given above suggest that other significant contributions to the expan-
sion rate from inhomogeneities, for example from a gravitational wave energy density, as
studied in [105], should also mitigate the disruptive effect of a small nonzero initial scalar
field velocity.

We find that qualitatively similar results hold when starting from initial conditions
constructed by specifying a rescaled version of the conjugate momentum such that η̃ = Ψ2η
(3.27), or such that the momentum constraint constraint is analytically satisfied η̂ = Ψ6η
(3.29). In both cases, the rescaled conjugate momentum is chosen such that the gradient
and kinetic energy are comparable on the initial time slice, but ∼ 1000 times larger than
the potential energy density. The former is demonstrated in the right panel of figure 3.3,
where we choose the potential given by an α-attractor potential (3.23), and an initial scalar
field profile given by (3.27), with parameters such that, in the absence of inhomogeneities
(δφ = 0), and if the conjugate momentum of the scalar field were zero, the combination
of parameters (φ0,m, α) would result in 60 e-folds of inflation, a scalar power spectrum of
∆2
R ∼ 0.05, a scalar spectral index of ns = 0.97, and tensor-to-scalar ratio of rts = 0.006 for

modes that cross the horizon 60 e-folds before the end of inflation. We find that the gradient
and kinetic energy decrease until the spacetime is dominated by the inflationary energy
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after which inflation may start. Unlike for initial data with a constant velocity profile, here
the energy density on the initial time slice is no longer symmetric with respect to positive
and negative values of the scalar field, and therefore the black holes are no longer symmetric
about the origin. Similarly, the left panel of figure 3.3 shows the individual energy densities
for a solution constructed according to (3.29) and with quadratic potential such that in
the absence of inhomogeneities and conjugate momentum, the combination of parameters
(φ0,m) would result in 60 e-folds of inflation, ∆2

R ∼ 1 × 10−3, ns = 0.97, and rts = 0.13
for modes that cross the horizon 60 e-folds before the end of inflation. Here, again, two
regions collapse to black holes, but the universe keeps expanding, and eventually transitions
to exponential expansion. These results emphasize that our conclusions are generic, and
not sensitive to the particulars of how the scalar field momentum is chosen.

2.5 5.0 7.5
exp(〈N〉)

10−2

10−1

100

101

〈ρ
i〉
L

2

η̂ = Ψ6η

2 4 6
exp(〈N〉)

η̃ = Ψ2η

〈ρgrad〉
〈η2〉
〈ρVφ
〉

BH forms

Figure 3.3: We show the gradient, kinetic, and potential energy contributions to the
average energy density (similar to the left panel of figure 3.2) for two different cases. Gray
regions indicate the formation of black holes. Left : A case with a quadratic potential
given by (3.22) and initial data that automatically satisfies momentum constraint (3.29)
with parameters (φ̂0,m, σ, δφ̂, δη̂) = (

√
211.0, 3.78 × 10−3, 0.1, 0.68, 2.21) Right : A case

with initial data constructed according to (3.27) and with parameters (φ0,m, α, δφ) =
(5.42, 0.029, 1.0, 0.65) for the α-attractor potential (3.23).
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3.3.2 High energy inflation

Single-field inflation

We next consider single-field inflationary models where inflation may naturally begin near
the Planck scale. Thus, solutions where the sum of the kinetic, gradient and potential
energy of the inflaton is order unity in Planck units. We further restrict our study to
initial conditions where the kinetic, gradient, and potential energy are initially comparable,
and the potential is quadratic in the scalar field, Vφ(φ) = m2φ2. In figure 3.4, we show
the volume-averaged total energy density (left panel) and the volume-averaged expansion
rate (right panel) computed from (3.34), as a function of the effective scale factor, for the
three types of initial data described in section 3.2.2. We specify the initial data such that,
in the absence of gradient and kinetic energy, the homogeneous initial value of φ0 = 11
and other parameters would result in 60 e-folds of inflation, ∆2

R ∼ O(1), ns = 0.97,
and rts = 0.13 for modes that cross the horizon 60 e-folds before the end of inflation.
Independent of the type of initial data used, as the scale factor increases, the average
expansion rate and total energy density decreases (although at different rates depending on
the initial data), until the kinetic and gradient energy is subdominant, leading to a universe
dominated by the inflationary potential, hence undergoing exponential expansion. This is
illustrated in figure 3.5, where we show the individual average energy densities. Although
the gradient energy quickly becomes negligible, the kinetic energy asymptotes to a constant
value, consistent with the value the kinetic energy would asymptote to when solving the
homogeneous FLRW equations in the absence of gradient energy and specifying the initial
value of φ̇2

FLRW to be the volume average value of the kinetic energy of inhomogeneous
solution on the initial time slice.

Though we evolve for long enough that the spacetime is dominated by the inflation
potential energy and exponential expansion, we do not evolve to the end of inflation, as
growing gradients from different regions in the domain inflating at different rates eventually
lead to large truncation error.

We confirm that inhomogeneities do not prevent inflation in models of chaotic inflation
occurring near the Planck scale [248, 249, 244]. Although the simplest models of inflation
(including the quadratic potential we study here), are now strongly disfavored by the most
recent observations from BICEP/Keck and Planck [16, 13], they could still appear in the
context of more complicated inflationary models containing more than one scalar field. We
discuss an example of such model in the following section.

Two-field inflation

Up to this point, we have only considered single field models. However, our methods can
be applied equally well to more complicated inflationary models. To give an example, we
consider a simple theory describing two non-interacting scalar fields, θ and φ, such that
the potential is given by (3.24), which combines a quadratic dependence for φ with an
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Figure 3.4: The volume-averaged total energy density (left) and expansion rate (right)
plotted against a volume-averaged measure of the effective scale factor for cases with a
quadratic potential given by (3.22). The quantities 〈ρV,φ〉 and 〈HVφ〉 respectively represent
the volume-averaged measures of the potential energy density and inflationary expansion
rate as a function of time. Both quantities can be seen to asymptote to the values ex-
pected for potential energy dominated inflation. The solid line represents a solution for
initial data constructed using (3.25) and (φ0,m, ω, δφ) = (11.0, 0.23,−5.83, 0.79). The
dashed line represents initial data given by (3.26) with (φ0,m, δφ) = (11.0, 0.13, 0.85). Fi-
nally, the dash-dotted curve represents initial data given by (3.28) and (φ̂0,m, σ, δφ̂, δη̂) =
(
√

2 11.0, 0.12, 0.1, 0.68, 2.21).

α-attractor term for θ. We further assume that M � m. Here, the potential can give rise
to two stages of inflation. The first stage of inflation is driven by the quadratic potential,
and may start at nearly Planckian energies and be relatively short. Once inflation driven
by φ ends, the second stage of inflation driven by the α-attractor potential, and lasting
more than 60 e-folds, may begin. Here we are not able to evolve this model past the
first stage of inflation, likely due to limited numerical resolution and the gauge choice.
However, already at this stage we find that gradient energy has become subdominant, and
by comparing the evolution in different regions to the homogeneous evolution with the
same scalar field values, we can approximately extrapolate their later behavior.

We consider values for φ0 and θ0 such that, in the absence of inhomogeneities (δφ = 0
and δθ = 0) and kinetic energy on the initial time slice, the first stage of inflation would
last one e-fold, and the second stage of inflation would last 60 e-folds and give rise to a
scalar power spectrum with ∆2

R ∼ 0.1, ns = 0.97, and rts = 0.006. The remaining free data
is chosen such that the total energy density is initially on the order of 1/L2, the potential
energy is 1/7 of the total energy, and the remaining fraction is provided by the kinetic and
gradient energy of the fields θ and φ, with each term, for each field contributing equally to
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Figure 3.5: The volume-averaged kinetic η2, gradient ρgrad and potential ρVφ energy den-
sities plotted against the averaged measure of the effective scale factor for the cases shown
in figure 3.4. For comparison, the evolution of the kinetic energy density when solving
the FLRW equations in the absence of gradient energy and specifying the initial value of
φ̇2

FLRW to be the volume average value of the kinetic energy of inhomogeneous solution on
the initial time slice, is also shown (dashed yellow line).

the total energy content. We choose an initially uniform time derivative of the scalar field
for ease of implementation, but based on the previous section we do not expect our results
to depend on the initial velocity profile of the scalar fields. The conjugate momentum on
the initial time slice is such that, if one were to solve the FLRW equations in the absence
of gradient energy, but specifying the initial values for (φ̇FLRW, θ̇FLRW) to be the volume
average of conjugate momenta of the corresponding scalar fields on the initial time slice,
then the first stage of inflation would only last half an e-fold and the second stage 35. The
left panel of figure 3.6 shows the individual contributions to the total energy density for
each scalar field in our simulation compared to when solving the FLRW equations in the
absence of gradient energy and by specifying the initial value for the time derivative of
scalar field to be the volume average value of the conjugate momentum of inhomogeneous
solution on the initial time slice.

We first study the first stage of inflation driven by the quadratic potential, shown in
the left panel of figure 3.6, in detail. In line with our earlier observations, we find that the
average kinetic energy of the scalar field 〈η2

φ〉 (dashed red line) does not decrease as quickly
as in the homogeneous case (dashed orange line). We also note that the average potential
energy of φ (dash-dotted green line) increases at first, as does the average scalar field 〈φ〉
initially, shown in figure 3.7, likely pulled up by the gradients in the field. As the universe
expands, the gradient energy decreases and eventually, when the gradient energy is small
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enough, the potential energy starts decreasing.
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Figure 3.6: The gradient ρgrad, kinetic η2, and potential energy ρVφ contributions to the
volume average energy density as a function of the effective scale factor for each individual
scalar field (φ left panel and θ middle panel) and both scalar fields combined (right panel).
Left : Individual contributions to average energy density for scalar field with quadratic
potential driving first stage of inflation. For comparison, the evolution of the kinetic energy
density η2

FLRW and potential energy density ρV,FLRW when solving the FLRW equations in
the absence of gradient energy, and specifying the initial value for the time derivative of
scalar field to be the volume average value of the conjugate momentum of inhomogeneous
solution on the initial time slice, is also shown. Middle: Same as the left panel, but for a
scalar field with the α-attractor potential driving second stage of inflation. Right : The sum
of the volume-averaged gradient and kinetic energy densities for each scalar field separately
〈ρgrad + η2〉 and the volume-averaged potential energy densities for each scalar field.

Unfortunately, we were not able to able to evolve this scenario past the first stage of
inflation. We attribute this to a lack of resolution to resolve large gradients developing
between different regions of the domain inflating at different rates. We next illustrate
these different regions and conjecture that if we had sufficiently large resolution, then the
effectively causally disconnected Hubble patches will keep inflating, albeit at different rates,
until the second stage of inflation kicks in. Figure 3.7 shows the range of values the scalar
field driving the first stage of inflation and the conjugate momentum take, as a function
of the effective scale factor. This already suggests that different patches will inflate at
different rates, which in turn will lead to the formation of gradients in the field values
across the numerical domain.

In particular, the region where sharp gradients develop in the field values, which we
eventually can no longer resolve due to the finite numerical resolution of our grid, corre-
sponds to where the scalar field φ stops inflating first. Figure 3.8 shows the scalar field φ,
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its conjugate momentum ηφ, the extrinsic curvature K, and the gradient energy ρgrad at
the location where these unresolved features develop (indicated by φ̃0), but shortly before
these become severe enough that the evolution must be halted (indicated by vertical dashed
grey line in figure 3.10). We find that the extrinsic curvature is larger than in the rest
of the domain, and that the gradient energy is negligible, as expected. We also show the
value of the scalar field θ and its conjugate momentum ηθ for the field driving the second
stage of inflation. These quantities indicate that the scalar field driving the second stage
of inflation is still inflating at that location.

As the universe expands, the left and middle panels of figure 3.6 show that the average
gradient energies of φ and θ are quickly diluted until they are negligible compared to the
average inflationary energy of either field. This suggests that when the gradient energy
becomes negligible in a neighbourhood surrounding a point of interest, then one can use
the FLRW equations together with the local value of scalar field and its time derivative to
compute the evolution of scalar field at that location. We first show that this approximation
is valid for the location where unresolved gradients eventually develop. We then use this
to extrapolate the behavior of both scalar fields, at different locations, past the point we
are able to evolve.

In the left panel of figure 3.10, we plot the values of the respective scalar fields at the
location where unresolved features eventually develop (φ̃0, θ̃0) as a function of the local scale
factor (purple dots). The smallest value of the scale factor for which we show the values of
the scalar fields corresponds to the time at which the gradient energy becomes negligible
in a neighbourhood surrounding the point of interest. We also show the evolution of the
scalar field when solving the FLRW equations (dash-dotted lines), ignoring the gradient
terms, and fixing the initial values for the scalar field and its time derivative to be the
corresponding values for the inhomogeneous scalar fields and conjugate momenta at that
spatial point. As expected, we find close agreement between the numerical and FLRW
solution, and make use of the FLRW solution to extrapolate the behavior of scalar fields
past the point we were able to numerically evolve. For the spatial point where φ stops
inflating first, we find that θ will still inflate for ∼ 250 e-folds at that particular point.

As another representative example, we also show the scalar field, its conjugate momen-
tum, the extrinsic curvature, and the gradient energy at the location where φ obtains its
maximum value (indicated by φ̃max in figure 3.9). Similarly, we find that the gradient en-
ergy is negligible in a neighbourhood of that point and plot the scalar field values and their
corresponding FLRW solutions as a function of the local scale factor in the right panel of
figure 3.10. We extrapolate the FLRW solution, and deduce that φ and θ will inflate for
an additional 3 and 250 e-folds respectively. These results suggest that other parts of the
domain will also keep inflating, although at different rates determined by the local value
of the scalar field and its conjugate momentum at that location. We thus conjecture that,
if we were able to continue the evolution, φ would fluctuate around zero in regions where
it has reached the bottom of the potential (just like in the homogeneous case). We leave a
more detailed analysis to confirm this to to future work.
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Assuming the above picture, as the universe keeps expanding, the potential energy of
the α-attractor potential eventually dominates the quadratic potential, after which the
second stage of inflation starts. The middle panel of figure 3.6 shows that the gradient and
kinetic energy of the scalar field driving the second stage of inflation becomes smaller than
the potential energy even before the α-attractor potential dominates over the quadratic
potential. Furthermore, we find that (shortly before large gradients make the evolution in-
accurate) the wavelength of the perturbations ∼ L is about 60 times larger than the volume
averaged Hubble radius of scalar field driving second stage of inflation. This suggests that
by the time the first stage of inflation ends, the universe is effectively made up of patches
that are homogeneous on Hubble scales and, at least in most regions, the second stage of
inflation may generate a nearly-scale invariant spectrum consistent with observations.
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Figure 3.7: Left : The minimum φmin, maximum φmax, and volume-averaged values of the
scalar 〈φ〉 driving the first stage of inflation as a function of effective scale factor for the
case shown in figure 3.6. For comparison, we also show the evolution of φFLRW, the scalar
field when solving the FLRW equations in the absence of gradient energy, and specifying
the initial value for the time derivative of scalar field to be the volume average value of the
conjugate momentum of inhomogeneous solution on the initial time slice. Right : Similar
quantities, but for the conjugate momentum of the scalar.

3.4 Discussion and conclusion

In this chapter, we have undertaken the first study of the robustness of large field models
of inflation to large initial gradients and kinetic terms in the initial scalar field profile. We
proposed three different ways of specifying scalar field configurations with non-vanishing
momentum density when solving the Hamiltonian and momentum constraint equations
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figure 3.6. The first column shows the scalar field (top) driving the first stage of inflation
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using the CTS formalism. Solving the full system of coupled constraint equations allowed
us to examine the effects of several initial conditions not previously studied in the literature.
Our results are summarized as follows:

• We studied the evolution of single-field inflationary models where the initial gradient
and kinetic energy densities of the inflaton are much larger than potential energy.
We demonstrated that the presence of significant gradient energy can actually negate
the effect of a large time derivative in the scalar field, allowing inflation to occur in
cases where, in the homogeneous case, the kinetic energy would drive the scalar field
off the inflationary plateau before exponential expansion occurred. We explained this
in terms of the increased initial expansion rate and restoring pullback force in the
presence of large gradients, deriving a simple toy-model to demonstrate this. This
implies that rather natural initial gradients in the initial conditions will mitigate the
effects of a non-zero initial field velocity of the inflaton.

• We also performed the first study of the impact of inhomogeneities on single-field
inflationary models where inflation may start at nearly Planckian densities. We
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Figure 3.9: Same as figure 3.8, but for the two-dimensional spatial slices where φ is
maximal.

found that, in cases where the gradient, kinetic and potential energy densities are
all comparable at nearly Planckian densities, the universe will rapidly transition to
exponential expansion. In these cases we did not find black hole formation.

• In addition to single-field inflationary models, we performed a preliminary study of
the effects of inhomogeneities on cosmological scenarios where the universe undergoes
two stages of inflation, the first one at nearly Planckian energies and the second one
at sub-Planckian scales consistent with observations. Although we were not able to
evolve the spacetime to the point where the second stage of inflation would start,
and therefore make detailed conclusions, we find at this time large regions where the
gradients are negligible and the spacetime is well approximated by the homogeneous
evolution determined by the local inflaton values. We leave a more detailed study of
these models for future work.

Exploring the two-field inflationary models considered here would require developing
new numerical methods. As mentioned above, we believe one of the main difficulties lies in
being able to resolve large gradients developing between different regions of the numerical
domain inflating at different rates. A better choice of gauge, as well as working with higher
resolution or adaptive mesh refinement may help address this, as well as allow us to evolve
the single-field inflationary models for longer. This would also allow us to make contact
with observations. More precisely, one could apply the methods for extracting cosmolog-
ical observables from cosmological simulations introduced in [204] These methods would
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allow us to predict the comoving curvature perturbation in the single-field inflationary
models studied in this chapter. The leading observable in this case would be a non-zero
contribution to the CMB quadrupole.

In this study, we only considered two families of inflationary potentials out of the
multitude that have proposed in the literature. However, we verified that, starting from
the same initial conditions, these two different potentials gave similar qualitative results
and we do not expect our results to depend strongly on the details of the potential, since the
key features are the flatness of the potential and the super-Planckian distance in field space
that must be traversed to reach the minimum of the potential. For two-field inflationary
models, for simplicity in this first study, we focused on theories where the scalar fields are
non-interacting. It would be interesting to consider the evolution of two-field inflationary
models where the scalar fields do interact and explore whether there are still robust to
generic initial conditions (see e.g. [244] and [201]). Note however, that in the α-attractor
generalization [213, 68] of the hybrid inflation scenario [250], the fields become decoupled in
the large field limit, and the evolution of the initial conditions reduces to the one performed
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in our chapter.

Another direction for future work would be to adapt the methods developed here to
study the robustness inflation in the presence of other types of matter. One particular
class of models of interest would be matter where the speed of sound of the fluctuations,
or equivalently the Jeans length, goes to zero [308], as in, for example, dust. This would
be a case especially prone to the gravitational collapse of initial perturbations.

The methods developed here for constructing general relativistic initial data are rather
generic, and could be applied to a number of other cosmological scenarios where it is
important to include momentum density. It would also be interesting to compare these
methods to those proposed in the recent work of [34], where the authors construct initial
data with non-trivial matter configurations by using a new scheme based on the Conformal
Transverse-Traceless (CTT) formalism to solve for both constraint equations. In this so-
called CTTK approach, rather than choosing a constant value for the trace of the extrinsic
curvature K, one chooses an initial profile for the conformal factor, and solves an algebraic
equation for a spatially varying K.
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Chapter 4

Evolution of black holes through a
nonsingular cosmological bounce

4.1 Introduction

In this chapter, we consider a proposed alternative to cosmic inflation namely the bouncing
model. In a singular bounce, the universe passes through a classical singularity where
the cosmological scale factor becomes small, curvature invariants blow up, and quantum
gravity effects presumably become highly relevant to determining the future dynamics of
the universe [327, 257, 41, 167].

An alternative, which we focus on here, is a nonsingular bounce. For such cosmologies,
so long as the spacetime curvature does not become Planckian, there is the possibility that
quantum gravity effects could be subdominant to classical effects, in which case one may be
able to describe the dynamics of the bounce using classical physics. Nonsingular bouncing
cosmologies require violating the null convergence condition (NCC), which requires that
Rµνk

µkν ≥ 0 for all null vectors kµ, [261, 221, 43, 304, 70]. In Einstein gravity, the NCC is
equivalent to the null energy condition (NEC) 1 which is satisfied by most standard classical
field theories [304]. Nonsingular bouncing cosmologies hence require non-standard matter
terms, or modifications to Einstein gravity, for example, Horndeski theories including ghost
condensation [25, 79] or (cubic) Galileon/Horndeski models [124, 125, 82, 136, 193, 192].
While perturbative studies of these theories suggest they may be free of ghost or gradient
instabilities [125, 193], less is known about which models will remain (strongly) hyperbolic
through a bounce, when the solution is presumably not in the weakly coupled regime
[277, 230, 229]2

1The null energy condition requires that Tµνk
µkν ≥ 0 for all null vectors kµ. Assuming the Einstein

equations, which can be written as Rαβ − 1
2gαβR = 8πTαβ , it is straightforward to show that the NEC is

equivalent to the NCC
2We note that the model proposed in [193] is known to break down shortly after the bounce has ended

[121].
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An important open question is what happens in bouncing cosmologies in the inhomoge-
neous and non-perturbative regime. While there are several analytical and numerical stud-
ies of the dynamics of bouncing cosmologies during their contraction phase [159, 190, 108,
191], there are relatively few studies of the dynamics of the bounce [286, 21, 83, 336, 193],
and none that consider the dynamics of black holes beyond the restriction to spherical
symmetry [142]. Previous studies of black hole–cosmological bounces have either con-
structed initial data for black hole bouncing solutions [101], worked in a perturbative limit
[84, 94, 196, 172], or made use of analytic solutions (e.g. generalizations of the McVittie so-
lutions [283, 282, 284]), that are limited by the fact that the metric evolution is prescribed
ad-hoc, and from that the implied matter type and evolution is derived. The question of
what happens to a black hole in a nonsingular cosmological bounce is particular salient
for several reasons. On the one hand, the bounce necessarily requires a violation of the
assumptions made in black hole singularity theorems and results on black hole horizons
(namely the NCC) [181], so there is a question of whether the black hole will survive the
bounce, or if the bounce mechanism will also reverse gravitational collapse, and if this
will possibly lead to a naked singularity. On the other hand, one might also worry what
the backreaction of the black hole’s gravity will be on the bounce in the neighbourhood
of the black hole. An extreme scenario would be if the bounce failed to happen in the
vicinity of the black hole, possibly leading to a patch of contraction that grows into the
expanding spacetime, as happens, e.g., in scenarios where the Higgs boson is destabilized
during inflation, and goes to its true vacuum at negative energy densities [140, 126].

Here, we address these questions by studying the nonlinear dynamics and evolution of
black holes in a particular nonsingular bouncing cosmology (details of which are described
below). Black holes can be expected to form during the contraction of matter and radiation
dominated universes [37, 94, 297], and will generally be present from previous eras in
cyclic cosmologies [321, 195]. However, it is common to invoke a smoothing phase during
contraction (e.g. ekpyrosis [222, 321, 139]), and argue that Hubble patches containing a
black hole will be rare. Regardless, we view our work as serving two main purposes: (1)
to study the dynamics and robustness of a nonsingular bouncing model when a very large
perturbation, namely a black hole, is introduced, and (2) to explore the dynamics of the
black hole and cosmological horizons during the bounce.

To avoid the difficulties related to finding a motivated theory that can give rise to
bouncing solutions while also having well-posed evolution equations in the inhomogeneous
regime, and thus being suitable for describing black hole dynamics, we will work with a
bouncing cosmology model that incorporates a minimally coupled scalar field with a ghost
field (i.e. a field which contributes to a negative cosmological energy density), to drive the
bounce. While ghost fields are known to give problematic quantum mechanical theories
(for a discussion of this in the context of cosmology see [102, 210]; see also [12]), we take
the point of view of [286, 21, 336] and treat the ghost field as an effective model for NCC
violation. Quantum stability and unitarity is a distinct issue requiring a separate analysis
(see, e.g., [115]). Unlike earlier work with this model, we do not restrict ourselves to cosmo-
logical spacetimes that have planar symmetry [336], or to small linear perturbations about
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a background bouncing spacetime [286, 21]. Instead, we consider contracting cosmological
initial data that contains a black hole, and work in an axisymmetric spacetime. This allows
us to examine the effect that a large inhomogeneity has on the dynamics of the spacetime
near and during the bounce.

Following the growing number of studies making use of techniques from numerical rel-
ativity to study cosmological phenomena involving black hole dynamics (including the one
in the previous chapter) [47, 341, 127, 126, 105, 33, 164, 202, 110], we use numerical solu-
tions to follow the evolution of different size black holes, both non-spinning and spinning,
through a bounce, considering those both bigger and smaller than the minimum Hubble
radius. Our main results are that the black holes persist to the expanding phase, and that
the nonsingular bouncing model under study is fairly robust under large perturbations, in
the sense that the local spacetime expansion around the black hole successfully bounces
for all of the cases we explored. For large enough black holes, we find the black hole ap-
parent horizon collides with the cosmological horizon, and temporarily disappears during
the contraction phase. Nevertheless, the black hole apparent horizon eventually reappears
(with finite radius event horizon throughout) and this does not disrupt the bounce at late
times.

In principle a nonsingular, classical bounce could occur at any characteristic length
scale that is larger than the scale at which quantum gravity effects become important
(presumably the Planck scale: lP ∼ 10−33 cm in geometric units). Given this, the length
scale of a classical nonsingular bounce can still be extremely small compared to the typical
length scale of say, an astrophysical black hole (e.g. in [195] the bounce happens at a typical
length scale of ∼ 10−25cm ∼ 108lP ). One may expect then that if any Hubble patch were
to contain a black hole, that the black hole would be much larger than the minimum size
of the Hubble patch. For example, even a black hole with a mass of mBH ∼ 1015 g3 at
the bounce would still have a size of ∼ 1020lP ; this is orders of magnitude larger than
the example bounce scale mentioned above. For this reason, we will be more interested in
considering black holes whose size is comparable or larger than the bounce scale (which we
take to be 1/|Hmin|, where Hmin < 0 is the maximum contraction rate).

The remainder of this chapter is as follows. We discuss the nonsingular bouncing model
we use in section 4.2. Our numerical methods and diagnostics for evolving the nonsingular
bounce are outlined in section 4.3. Our numerical results are described in section 4.4,
and we conclude in section 4.5. In appendix C.1, we discuss our numerical methodology
in more detail, in appendix C.2, we define various quasi-local notions of black hole and
cosmological horizons, and in appendix C.3, we provide an overview of the McVittie
spacetime, an analytic solution to the Einstein equations of a black hole embedded in a
cosmology, of which our numerical simulations can be seen as a generalization.

3Primordial black hole with masses smaller than mBH ∼ 1015 g would have evaporated by now due to
Hawking evaporation; this is then a reasonable lower bound for the mass of black holes that were present
in the early universe [93, 85].
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4.2 Ghost field model

We consider a theory that has two scalar fields φ and χ coupled to gravity:

S =

∫
d4x
√−g

(
1

16π
R−∇αφ∇αφ− 2V (φ) +∇αχ∇αχ

)
. (4.1)

This model has a canonically normalized scalar field φ with a potential V (φ) = V0e
−cφ,

and a massless ghost field χ.

The covariant equations of motion for (4.1) are

∇α∇αφ−
dV

dφ
=0, (4.2a)

∇α∇αχ =0, (4.2b)

1

8π

(
Rαβ −

1

2
gαβR

)
+ 2∇αχ∇βχ− 2∇αφ∇βφ+

gαβ (2V (φ) +∇cφ∇cφ−∇cχ∇cχ) =0. (4.2c)

Nonlinear, inhomogeneous cosmological solutions to the model (4.1) were studied in
[336]. There, the authors considered a toroidal universe with a planar perturbation in
one of the spatial directions. In this work, we consider an asymptotically bouncing FLRW
universe with an initial black hole; see section 4.3 and appendix C.1 for more details on
our numerical methodology.

Strictly speaking, the ghost field should be stabilized by some mechanism at the quan-
tum level. We choose to ignore this and treat (4.1) as a purely classical theory. As the
equations of motion (4.2) have a well-posed initial value problem4, we expect the model
should admit at least short-time classical solutions from generic initial data.

4.2.1 Homogeneous bouncing cosmology

Here we briefly review homogeneous, isotropic bouncing solutions for the system (4.2) (see
also [336, 21]), and discuss the values used for our asymptotic initial data. We work with
harmonic coordinates (gµνΓαµν = 0), so that the metric line element is

ds2 = −a(t)6dt2 + a(t)2δijdx
idxj. (4.3)

4More specifically, the equations of motion form a strongly hyperbolic system when written in the
generalized harmonic formulation we employ in our code.
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The scalar field equations and Friedmann equations are then

φ′′ =− a6V,φ, (4.4a)

χ′′ =0, (4.4b)

H′ =16πa6V (φ) , (4.4c)

H2 =
8π

3

(
φ′

2 − χ′2 + 2a6V (φ)
)
. (4.4d)

where the ′ is the derivative with respect to the harmonic time coordinate t related to
proper time by dτ ≡ a3dt, and H is the harmonic Hubble parameter

H ≡ a′

a
≡ a3H, (4.5)

where remember H is the Hubble parameter defined with respect to the proper time H ≡
(da/dτ)/a. We define effective energy densities ρ and pressures P for the two scalar fields:

ρφ ≡ φ̇2 + 2V, ρχ ≡ −χ̇2, Pφ ≡ φ̇2 − 2V, Pχ = −χ̇2, (4.6)

where ḟ ≡ df/dτ . The total effective equation of state is

w =
Pφ + Pχ
ρφ + ρχ

= −1 +
16π

3H2

(
φ̇2 − χ̇2

)
, (4.7)

so w < −1 if |χ̇| > |φ̇|. A requirement for having a nonsingular bounce is that w < −1,
which coincides with violation of the NCC. For example, if we consider the null vector
kµ∂µ ≡ ((1/a3)∂t + (1/a)∂x) /

√
2, we then have

Rµνk
µkν = −Ḣ

(
= 8π

(
φ̇2 − χ̇2

))
. (4.8)

When the NCC holds, we see that Ḣ < 0, so that we have cosmic deceleration during
expansion (H > 0), or cosmic acceleration during contraction (H < 0). When the NCC is
violated, Ḣ > 0, and cosmic contraction can be slowed down, and even reversed to make
a bounce.

We also define effective equations of state for the fields φ and χ:

wφ ≡
Pφ
ρφ

=
φ̇2 − 2V

φ̇2 + 2V
, (4.9a)

wχ ≡
Pχ
ρχ

= 1. (4.9b)

From the Friedmann equations (4.4), one can determine that the energy density of the field
f scales as ρf ∝ a−3(1+wf ).
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4.2.2 Initial conditions

For our initial conditions, we first set the free initial data by superimposing the homoge-
neous initial conditions for the cosmological scalar fields and metric with the metric of a
(rotating) black hole spacetime. We then solve the constraint equations for the full metric
using a conformal thin sandwich solver [131] (see appendix C.1 for more details).

For the cosmological free initial data, we consider an initially contracting FLRW uni-
verse dominated by the canonical scalar field φ (that is, with the initial condition ρχ � ρφ).
In this limit, with the potential V = V0e

−cφ, φ can obey a scaling solution such that
the effective equation of state is roughly constant and equal to wφ = c2

3
√

16π
− 1 [21]

(see more generally [252, 178, 80]). For c >
√

96π and V0 < 0, the scaling solution
in a contracting universe is ekpyrotic: the contracting solution is a dynamical attrac-
tor, and density perturbations are smoothed out in each Hubble patch during contraction
[159, 222, 139, 190, 108, 191]. In this limit wφ ≥ 1 = wχ, so if ρφ > ρχ initially during
contraction, it remains so for all remaining time (recall ρf ∝ a−3(1+wf )), and there can-
not be a bounce. We instead consider the scenario where c <

√
96π and V0 > 0 so that

wφ < 1 = wχ, which is required in order to obtain a nonsingular bounce with the massless
ghost field we consider [21, 336]. As a result, the asymptotic, contracting, solution is not an
attractor and the initial condition must be fine-tuned in order to keep wφ constant during
the contracting phase. We justify this by noting that our main goal is to just explore the
bouncing phase, and not to give a completely realistic description of a bouncing cosmology.

Setting c <
√

96π implies wχ > wφ, so the negative energy density of χ—which we
choose to be initially negligible—grows faster than the positive energy density of the canon-
ical field during the contraction. Because of this, the total scalar field energy density ρφ+ρχ
eventually goes through zero, and the sign of ȧ switches from being negative to being pos-
itive. At this point, the universe goes from contraction to expansion. From the Friedmann
equations (4.4), we see that once expansion has begun, the ghost field energy quickly di-
minishes and becomes negligible again compared to the energy density of φ [21, 336, 335].

In (4.10), we present our choice of asymptotic FLRW initial data, which, as discussed
above, is fine-tuned to allow for the asymptotic cosmological value of wφ to remain roughly
constant during contraction up until the bouncing phase. The initial values for φ, φ′, χ,
χ′, a, and a′ are:

φ(0) ≡ φ0 = 0, φ̇0 = −a0
3

√
32πc2V0

96π − c2
, (4.10a)

χ(0) ≡ χ0 = 0, χ̇0 = a0
3

√
12V0

(96π − c2)η0

, (4.10b)

a(0) ≡ a0 = 1, ȧ0 = −a0
4

√
2V0(η0 − 1)

(96π − c2)η0

. (4.10c)
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Here η0 ≡ η(0) is the initial value of the ratio between the energy densities of the two
scalar fields 5

η ≡
∣∣∣∣
ρφ
ρχ

∣∣∣∣ . (4.11)

We compute ρφ, ρχ in the code using formulas (4.12) and (4.14).

In a similar fashion to [336], we choose c =
√

48π so that φ initially behaves like matter
with wφ = 0. Such a matter-like contracting phase can generate scale invariant adiabatic
perturbations that would seed structure formation in the early expansion phase.

4.3 Overview of numerical method and diagnostics

We evolve the system (4.2) nonlinearly using the harmonic formulation, and work with an
axisymmetric spacetime. We spatially compactify our numerical domain, and evolve the
boundary using the homogeneous FLRW equations of motion (4.4). See appendix C.1 for
a more thorough discussion on our numerical methods.

In order to characterize our results, we make use of several diagnostic quantities. We
define the following stress-energy tensors

Tµν
(φ) = 2∇µφ∇νφ− gµν (∇αφ∇αφ+ 2V ) , (4.12a)

Tµν
(χ) = −2∇µχ∇νχ+ gµν∇αχ∇αχ, (4.12b)

so that the Einstein equations read

Rµν −
1

2
gµνR = 8π

(
T (φ)
µν + T (χ)

µν

)
. (4.13)

From Tµν
(φ) and Tµν

(χ) we define the corresponding energy densities

ρ = nµnνTµν (4.14)

where nµ is the time-like unit normal vector to hypersurfaces of constant time. We addi-
tionally compute the local expansion rate

HK ≡ −
K

3
, (4.15)

where K is the trace of the extrinsic curvature on each constant t time slice (as in, e.g.,
[127, 126] or chapter 3). We note that HK asymptotes to H at the boundary of our domain

H = lim
r→∞

HK , (4.16)

5Note that in chapter 3 η was used to refer to the conjugate momentum of scalar field
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where r is the proper circumferential radius 6 (see equation (4.18)). We define an effective
scale factor on each time slice

aeff(t, ~x) ≡ |γ3|1/6 (4.17)

where γ3 is the determinant of the (three-dimensional) metric intrinsic to each constant
time hypersurface. We are mainly interested in computing (4.14) to (4.17) on the black hole
surface, and at different coordinate radii far away from the black hole. For non-rotating
black holes, we track their values as a function of the distance from the center of the black
hole. We compare the values to their homogeneous counterpart given by (4.6) and (4.4d).
In axisymmetric spacetimes, the coordinate radius on the equator rco is related to the
proper circumferential radius r through the relation

r
(
t, θ =

π

2

)
=

√
γzz

(
t, θ =

π

2

)
rco(t). (4.18)

where γzz is the value of the spatial metric along the symmetry axis. In spherical symmetry,
Eq. (4.18) reduces to the areal radius. To characterize the boundaries of black holes in our
dynamical setting, we will consider two surfaces: event horizons and apparent horizons.
The black hole event horizon is the boundary behind which null rays no longer escape to
the asymptotic region. We compute its approximate location by integrating null surfaces
backwards in time [22, 241, 325] (we restrict this to spherically symmetric cases, where it is
sufficient to consider spherical null surfaces). We define the apparent horizon of the black
hole, on the other hand, on each time slice, as the outermost marginally outer trapped
surface, i.e. the surface for which the outgoing null expansion θ(l) vanishes and the inward
null expansion θ(n) is negative and such that θ(l) > 0 immediately outside the black hole
(and θ(l) < 0 immediately inside) 7.

In analogy to black hole apparent horizons, we will also use marginally trapped surfaces
to define the location of the cosmological apparent horizon. We will refer to this simply as
the cosmological horizon, but we note that this is not to be confused with the event horizon
or the particle horizon commonly used in cosmology. During the contracting phase, the
cosmological horizon is defined as the surface for which the outgoing null expansion θ(l)

vanishes, and the inward null expansion θ(n) is negative, but θ(l) > 0 immediately inside
the cosmological horizon. During the expanding phase, the cosmological horizon is defined
as the surface for which the ingoing null expansion θ(n) vanishes and the outward null
expansion θ(l) is positive and such that θ(n) > 0 outside the cosmological horizon.

As was already pointed out in chapter 2.2.2, in a homogeneous spacetime, the cosmo-
logical apparent horizon is simply the sphere with coordinate radius equal to the comoving
Hubble radius, RH = (aH)−1, yielding an area AC = 4πa2RH

2 = 4πH−2. For our black
hole spacetimes, we will always take the cosmological horizon to be centered on the black
hole. This is because we are interested in the dynamics in the vicinity of the black hole,

6Note r is used to refer to the uncompactified coordinate radius in chapters 2 and 5
7In our particular setup, we define the outgoing (ingoing) direction as the direction pointing from the

origin (asymptotically FLRW region) to the asymptotically FLRW region (the origin)
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and it is this surface that is the most relevant to understanding the behavior of the black
hole horizon. Figure 4.1 shows the outward null expansion (left) during the contracting
phase (where H < 0, Ḣ < 0) and the inward null expansion (right) during the expanding
phase (where H > 0, Ḣ < 0). See appendix C.1 for more details on our numerical im-
plementation and appendix C.2 for more details on the various definitions of horizons we
use.
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Figure 4.1: The outward null expansion, Θ(l) at t = 65M0, during the contracting phase
(left) and the inward null expansion, Θ(n) at t = 1350M0, during the expanding phase
(right) for a black hole with initial mass,M0, such that the Hubble radius of the background
cosmology RH ≡ |H−1| shrinks from an initial value of RH,0 = 75rBH,0 to 4.34rBH,0 (here
rBH,0 = 2M0 is the initial black hole radius). The color-scheme is such that white represents
a vanishing expansion and pink (green) a negative (positive) value of corresponding null
expansion.

From the area of the black hole apparent horizon ABH, we define an areal mass MA ≡√
ABH/(16π). The spacetime we study here violates the NCC, and thus we expect to find

instances where MA decreases. Similarly, the second law of black hole thermodynamics
states that so long as the NCC is satisfied, the area of a black hole event horizon must
increase into the future [179]. This can be extended to the cosmological setting assuming
that the universe does not again collapse, and a notion of infinity can be defined [86].
However, here we are evolving a black hole in a spacetime that violates the NCC, and find
that the event horizon does decrease in area.

The cosmological and black hole apparent horizons that we find on each time slice can
also be thought of as foliations of three dimensional surfaces called holographic screens
[62, 64, 65] or Marginally Trapped Tubes (MTTs) [29] in general, and dynamical horizons
[182, 30, 31] if they obey certain extra conditions (we review the definitions of these concepts
in appendix C.2). Though one can formulate area laws for these surfaces, in spherical
symmetry they do not place any constraints on whether the area increases to the future.
We keep track of the MTTs corresponding to the cosmological and black hole apparent
horizons, and in particular, compute when they are spacelike or timelike in nature.

For the black holes, we compute the equatorial circumference of the horizons ceq, and
define their corresponding equatorial radii req = ceq/2π, which in the case of spherical
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symmetry is also equal to the areal radius, rA =
√
ABH

4π
. When studying rotating black

holes we can also associate an angular momentum to the apparent horizons

JAH ≡
1

8π

∫
φ̂iK

ijdAj, (4.19)

where φ̂i is the axisymmetric Killing vector, and, using the Christodoulou formula, we can
define a mass [99]

mBH ≡
(
MA

2 +
J2

AH

4MA
2

)1/2

(4.20)

Since the scalar fields do not carry any angular momentum in axisymmetry, the total
angular momentum of the black hole remains constant throughout the evolution of our
spacetime. Thus, we will only be interested in the total mass and circumferential radius
of the black hole.

4.4 Results

We begin by studying the evolution of non-spinning black holes in an asymptotically bounc-
ing universe (section 4.4.1-4.4.3) using the method described in section 4.3. Though we
do not explicitly enforce spherical symmetry, we find no evidence of any instabilities that
break that symmetry if our initial data respects it. We consider non-spinning black holes
in section 4.4.4.

We find that the qualitative behavior of our solutions can be divided into two regimes,
which can be distinguished by the ratio of the areal radius of the initial black hole
horizon, rBH,0 and the minimum size of the Hubble radius of the background cosmol-
ogy RH,min ≡ mint|1/H| = −1/Hmin (where Hmin < 0 is the maximum contraction
rate). When RH,min/rBH,0 & 3.5, the black holes pass through the bounce freely. When
RH,min/rBH,0 < 3.5, we find that the locally defined cosmological and black hole apparent
horizons merge, and cease to exist for a period of time during the contracting and bounc-
ing phase. We note that the horizons merger at RH,min/rBH,0 > 1, as the black hole grows
in size during the contraction phase (see figures 4.4,4.7; we will discuss this more in the
following subsections).

For every initial data setup we considered, we find that the black hole continues to
exist after the bounce phase ends: the late-time evolution always consists of a black hole
in an expanding universe with the ghost field energy density decreasing at a faster rate
than the canonical scalar field energy. Moreover, we find that the late time black hole mass
remains similar to the initial black hole mass, regardless of the ratio of the initial black
hole radius and minimum Hubble patch radius. In the following sections, we quantify these
observations and extrapolate our findings to the regime where the Hubble radius shrinks
to a much smaller size compared to the radius of the black hole.
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4.4.1 Small black hole regime

We first consider solutions where RH,min/rBH,0 & 3.5 (see above for definitions). In fig-
ure 4.2, we show the Hubble parameter (left panel) computed from (4.15) and the ratio of
scalar fields (right panel) computed from (4.11),(4.12) and (4.14) as a function of harmonic
time for different coordinate radii. We also plot the value these quantities take at spatial
infinity, where we assume homogeneous FLRW boundary conditions (see section 4.2.1).
While the bounce seems to be pushed to slightly earlier harmonic times when the black
hole is present, most of the local cosmological evolution remains unaffected by the presence
of the black hole and follows the same qualitative evolution as the background cosmology
(section 4.2.2). To determine how the cosmology is affected in a region close to the black
hole, in figure 4.3 we plot the spatial dependence of η and HK/|Hmin| as a function of
distance again along the equator at different times. Although the local expansion rate and
the ratio of the energy densities can differ from their background values by up to 15− 60%
and 9 − 16% respectively, beyond r ∼ 10 − 25rBH,0 both quantities quickly asymptote to
their respective background values. Note that the coordinate radius differs from the proper
radius by the local scale factor; see eq. (4.18). The effective scale factor computed from
(4.17) at different coordinate radii is plotted in figure C.2 (see appendix C.1). Again we
find that far enough from the black hole, the value of scale factor remains largely unaffected
by the presence of the black hole. We caution that these quantities will also be subject to
gauge effects—in particular from our choice of the lapse function (see section C.1). As we
describe below, towards the end of the simulations we find strong variation in the rate of
which time advances at different spatial points.
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Figure 4.2: The expansion rate HK/|Hmin| computed from (4.15) (left) and the ratio of
the matter to ghost field η(t) given by (4.11) (right) for a black hole with initial mass such
that the Hubble radius of the background cosmology RH ≡ |H−1| shrinks from an initial
value of RH,0 = 75rBH,0 to 4.34rBH,0 (here rBH,0 is the initial black hole radius). The solid
line shows the corresponding background solution, and the dashed and dash-dotted lines
show the values at different coordinate radii. The vertical grey line is the time at which the
black hole reaches its maximum areal radius as measured by the apparent horizon. Notice
that the black hole reaches its maximum size slightly before the universe at large scales
bounces, as the ghost field begins to dominate at an earlier time the closer one gets to
the black hole horizon. The slight difference in the maximum absolute value of the FLRW
value of HK/|Hmin| at t|Hmin| ∼ 120, 400 is due to numerical error in our integration.

We next present several results regarding the behavior of the area of the black hole, as
measured by either the event or apparent horizon. Naively, one expects the accretion of
the canonical/ghost field to result in an increase/decrease in mass of the black hole [35].
That being said, it is less clear how a black hole embedded in a cosmology driven by a
canonical/ghost field may behave [155, 156].

Figure 4.4 depicts the evolution of the black hole’s areal radius. We find that during the
contracting phase prior to the bouncing/NCC violation phase, the canonical scalar field
energy density exceeds that of the ghost field; see figure 4.2 and the solid purple curve in
figure 4.3. The black hole’s proper area increases during this time; (first region in figure 4.4
where H < 0, Ḣ < 0). Once the bouncing phase starts (t|Hmin| ∼ 120 in figure 4.2), the
black hole starts to shrink as one may expect since the ghost field energy in this regime
is comparable to the canonical scalar field energy density (second region where H < 0
and Ḣ > 0 in figures 4.2 and 4.3). Near the end of the bouncing phase the universe is
expanding (region where H > 0 and Ḣ < 0), yet the black hole’s size is still shrinking
in this region, as the ghost field energy density still dominates over the canonical scalar
field energy density in the region near the black hole (in other words, η < 1 in the region
close to the black hole, see figure 4.3), although at an increasingly slower rate as the ghost
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ŷ

r/rBH,0

Figure 4.3: The expansion rate HK/|Hmin| (top) and the ratio of the energy densities of the
matter to ghost field η(t) given by (4.11) (bottom) for the black hole considered in figure 4.2
as a function of the compactified coordinate radius, ŷ (see equation (C.1)), at different
times during the evolution. Note that ŷ lies along the “equator” of the black holes in our
simulations. Also shown on the top axis is the proper radius of the spacetime computed
from (4.18). The dashed horizontal grey lines indicate the corresponding background values
at spatial infinity, the vertical dash-dotted lines correspond to the coordinate radii shown
in figure 4.2, and the shaded region represents the black hole.

field energy density quickly diminishes in time. After the end of the bouncing phase, the
universe continues to expand, the ghost field decays to dynamically irrelevant values, and
the black hole begins growing in size (fourth region where H > 0 and Ḣ < 0 and the
dotted purple curve).

The left panel of figure 4.4 also shows the areal radius of the cosmological horizon. We
see that during the contracting phase, the cosmological horizon shrinks from rC,0 = 75rBH,0

to a minimum radius of rC,min = 4.34rBH,0 at t ∼ 50rBH,0. This is similar to the value the
Hubble radius (RH ≡ |1/H|), would shrink to in the absence of a black hole. This value
is indicated by the diamond in figure 4.4. From this we conclude that—at least in this
regime—the presence of the black hole does not qualitatively change the dynamics of the
spacetime. Past this point of closest encounter, the cosmological horizon tends to rC → +∞
which defines the location of the bounce (limH→0 1/H = ∞). Once the universe switches
from contraction to expansion, the cosmological horizon is defined as the location where
the ingoing null expansion vanishes and outgoing null expansion is positive. After the
bounce, the cosmological horizon at first shrinks to a minimum size before re-expanding
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Figure 4.4: Left : The areal radii of the black hole (purple) and cosmological (orange)
apparent horizons computed as described in section 4.3 for the black hole in figure 4.2.
The line style reflects the signature of the marginally trapped tube or holographic screen
(solid is timelike, dashed is spacelike). The diamond indicates the time and value to which
the Hubble radius would shrink in the absence of a black hole. Right : The apparent
horizon of the black hole (purple) and the corresponding event horizon (yellow dashed).
The vertical solid line indicates the bounce, while the region between the dashed lines is
the bouncing phase (where the NCC is violated).

to +∞. We note that the areal radius of the cosmological horizon is no longer symmetric
about the bounce once a black hole is present.

We also compute the signature of the MTTs associated with the horizons (see ap-
pendix C.2 for definitions), which we plot in figure 4.4.

First we study the properties of the black hole MTT in more detail. Using the terminol-
ogy of appendix C.2, the black hole is a future marginally trapped tube foliated by future
marginally outer trapped surfaces (alternatively called a future holographic screen). The
area law of dynamical horizons states that if the MTT is spacelike (i.e. if it is a dynamical
horizon), then the area of the black hole should increase in the outward radial direction,
while if the MTT is timelike (i.e. we have a timelike membrane with Θ(n) < 0), then the
area should increase into the past. Looking at figure 4.4 we find that (as expected) these
laws are obeyed at all times, even during the bouncing phase.

We next look at the cosmological horizon. We consider the contracting and expanding
phases separately. During the contracting phase, the cosmological horizon is a MTT foli-
ated by future marginally inner trapped surfaces (alternatively, it is a future holographic
screen). From the area law of future holographic screens [64, 65], we expect the cosmologi-
cal horizon to obey the same area law as the black hole during the contracting phase. Our
findings agree with this expectation: we find that the cosmological horizon is timelike when
it decreases in time and spacelike when it increases in the outward direction. During the
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expanding phase, however, the cosmological horizon ceases to be a MTT. Instead, we find
that it satisfies the definition of a past holographic screen (as the ingoing null expansion
now vanishes). From [64, 65], we still expect its area to increase in the future on timelike
portions and in the outward direction on spacelike portions. Again we find that this is
satisfied at all times during the expanding phase.

We conclude by looking at the event horizon shown in the right panel of figure 4.4. Our
main finding here is that the event horizon no longer lies outside the apparent horizon at all
times. This is a result of the violation of the NCC [181]. Interestingly, this behavior begins
not during the bouncing phase of cosmological evolution (between the two dashed grey
lines) when the NCC is violated, but before the bouncing phase has begun. This is because
the event horizon is not a quasi-local quantity, so it can “anticipate” the bouncing/NCC
violation phase. In general, we find that the event horizon always increase until it crosses
the apparent horizon of the black hole, after which it decreases. Once the bouncing phase
ends, the event horizon crosses the apparent horizon again, after which it starts increasing
and remains larger than it for all future times.

We were not able to evolve the spacetime to arbitrarily large proper times. We ascribe
this to gauge artefacts which impede the stable numerical evolution of the solution. In
particular, the lapse function appears to become distorted in the spacetime region between
the black hole and the asymptotically homogeneous regime, which causes that interior
region to advance in time much faster compared to elsewhere in the simulation. (This is
evident in the rightmost panels of figures 4.2, 4.5, and C.2.) That being said, based on
the simulations we have run, we conjecture that the black hole asymptotes to close to its
initial mass at t → ∞ with no significant gain or loss of energy. That is, the end state is
described by a black hole embedded in an expanding matter like FLRW universe with a
negligible amount of ghost field and matter energy density. This is illustrated in figure C.3
of appendix C.1 where we consider a black hole with half the mass of the one depicted in
figure 4.4, i.e. we consider a black hole such that the ratio of the minimum Hubble radius
to the initial radius of the black hole is RH,min/rBH,0 = 8.69. Figure C.3 shows that, overall,
the black hole’s size changes by a negligible amount. In this particular case, the final size
of the apparent horizon of the black hole is ∼ 6% larger that its initial value, the small
difference being an artefact of the initial data. More importantly, figure C.3 also shows
that the event horizon asymptotes to the apparent horizon at late times.

4.4.2 Large black hole regime

We next consider solutions where RH,min/rBH,0 < 3.5. The nonlinear evolution of one
particular case is shown in figure 4.5. As is the case for the lower initial mass evolutions
(figure 4.2), we see that the cosmological evolution remains unaffected far away from the
black hole. The bounce is pushed to even earlier times, as one may expect since a large
black hole could presumably accelerate the rate of cosmological contraction. Figure 4.6
shows that in the region near the black hole apparent horizon, the local expansion rate
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and the ratio of the energy densities now differ from their background value by up to 15–
75% and 13–60%. Beyond r ∼ 2–12rBH,0, both quantities asymptote to their respective
background values.
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Figure 4.5: Same as figure 4.2, but for a black hole with initial mass such that the
Hubble radius of the background cosmology RH ≡ |H−1| shrinks from an initial value of
RH,0 = 75rBH,0 to 2.17rBH,0 (here rBH,0 is the initial black hole radius).

The behavior of the black hole and cosmological apparent horizons, which is shown
in figure 4.7, is qualitatively different for the large black hole initial data as compared to
the small black hole initial data (RH,min/rBH,0 & 3.5). Similar to the cases studied in the
section 4.4.1, the cosmological horizon shrinks at first. Unlike those earlier cases though, it
eventually merges with the expanding black hole apparent horizon. Following the merger,
the spacetime has no apparent horizons for some time until they re-emerge. After that, the
cosmological and black hole apparent horizons follow a similar trajectory to the horizons
studied in section 4.4.1 during the cosmological expansion phase.

The merging of black hole and cosmological apparent horizons has been observed in
McVittie spacetimes [144, 145] (see also appendix C.3) and can be interpreted the following
way. As the apparent horizon of the black hole grows and the cosmological horizon shrinks
during the contraction of the universe, we reach a point in time at which the black hole
horizon coincides with the cosmological horizon. At this point, one cannot distinguish
between the black hole and the cosmological horizon (recall that during the contraction
the outward null expansion is negative outside of the cosmological horizon). A finite time
later, before the bounce, but after the background Hubble radius reaches its minimum size,
the effective Hubble radius has increased to a sufficiently large value so that the black hole
solution again fits within the cosmological horizon. At this point, the cosmological and
black hole apparent horizons reappear. We note that the black hole event horizon persists
throughout the evolution of the spacetime, so in this sense the black hole never disappears;
see figure 4.7. We next investigate the physical properties of this process in more detail.
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Figure 4.6: Same as figure 4.3, but for the case with RH,min/rBH,0 = 2.17 also shown in
figure 4.5.

We first address the question of whether a naked singularity forms after the black hole
and cosmological horizons collide [155, 145, 144]. The formation of a naked singularity
would signal a breakdown of the theory—either through the formation of a blowup in
curvature, or through necessitating new boundary conditions to be set at the singularity
boundary [280]. Our simulations suggest no naked singularity is formed. More concretely,
the outward null expansion during this period is negative everywhere, so the entire space-
time is essentially trapped, and no new boundary conditions need to be specified. In
particular, we can continue to excise a central region corresponding to the inside of the
black hole. Additionally, considering the event horizon shown in figure 4.7, we see that it
remains finite at all times. Note that just like in the case studied earlier in section 4.4.1,
the event horizon is smaller than the apparent horizon before, and during the bouncing
phase, and turns around when it crosses the apparent horizon.

We next consider the behavior of the marginally (anti-)trapped tubes and their signa-
ture, shown in figure 4.7. Note that while the black hole MTT is spacelike and increasing
in time before it merges with the cosmological horizon, when it reappears from the merger,
its signature remains spacelike even though its area continues to decrease in time. Since
the area of the black hole always increases in the outward radial direction, this implies that
while the outward direction points into the future before the merger, it points into the past
when it reappears. The black hole apparent horizon undergoes another signature change
at the bounce (indicated by the grey vertical solid line) after which it behaves like the
case studied above (i.e. the signature of the horizon becomes timelike, and decreases as we
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Spacelike
Timelike
BH
EH
FLRW

Figure 4.7: Same as figure 4.4 but for a black with initial mass such that the Hubble radius
of the background cosmology RH ≡ |H−1| shrinks from an initial value of RH,0 = 75rBH,0

to 2.17rBH,0 (here rBH,0 is the initial black hole radius). Notice that the location where
H = 0 (that is, where the Hubble radius diverges) does not exactly coincide to where
the cosmological horizon blows up, as the cosmological horizon is measured locally (in
the interior of the computational domain), while H = 0 is determined by the asymptotic
cosmological evolution. For more discussion on how we define the cosmological horizon,
see section 4.3

evolve forwards in time). Similarly, we find that the cosmological horizon follows the same
trend as the case in section 4.4.1, except for a brief period of time just before it merges
with the black hole apparent horizon: here the horizon signature becomes spacelike. We
see that the cosmological horizon and black hole apparent horizons have the same signature
when they annihilate and re-emerge.

A natural question to ask is whether the collision of the apparent horizons during
the contraction phase is an artefact of the particular matter model we use, or is a more
general consequence of a contracting universe. To explore this, we consider the same
initial conditions as the ones used in figure 4.5, but now evolve only with the canonically
normalized scalar field. The results of this are plotted in figure 4.8. We find that during
contraction, the apparent horizons, with and without the presence of a ghost scalar field,
behave in a similar fashion. In both cases, the black hole apparent horizon merges with the
cosmological horizon at the same areal radius. This is in line with our earlier observation
that the black hole horizon’s size exceeds the cosmological horizon before the bouncing
phase starts, (i.e. before the ghost field has a significant impact on the evolution of the
system). The black hole and cosmological apparent horizon merge earlier by around t ∼
2|Hmin| in the case of contraction without the ghost scalar field. This is consistent with the
notion that the accretion of the ghost field should slow down the rate at which the black
hole can grow in size, which would delay the time of merger of the two horizon.
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Finally, we note that the signature of the cosmological horizon becomes spacelike in this
setup just before merging with the black hole horizon for both cases. During this phase
of evolution, the cosmological horizon is a dynamical horizon whose area decreases with
time.
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Figure 4.8: Cosmological and black hole apparent horizons from the contracting phase of
the same case shown in figure 4.7 (labelled χ 6= 0) compared to a similar case without a
ghost field (χ = 0).

4.4.3 Dependence on black hole size

In this section, we explore in more detail how the properties of the spacetime during the
bounce change as a function of RH,min/rBH,0.

As described in section 4.4.1, for initial data where RH,min ≈ 4.34rBH,0 the black hole
apparent horizon persists through the whole bounce, and the spacetime evolution near the
black hole qualitatively resembles the asymptotic cosmological evolution. As this behavior
will hold to an even greater degree for smaller black holes (relative to RH,min), we are
more interested in the opposite regime, considering larger black holes. As mentioned in
section 4.1, for astrophysical black holes we expect RH,min � rBH. We find that, when
RH,min . 3.5rBH,0, (see section 4.4.2), the black hole apparent horizon collides with the
cosmological horizon while the universe is still contracting. In this section, we therefore
explore how this behaviour changes as one increases the initial mass of the black hole. We
note that for numerical reasons8, we will restrict to evolutions where RH,min > 0.86rBH,0.

8In particular, we see a large growth in constraint violation near the outer boundary when we increase
the initial black hole mass to too large a size. This is likely related to the fact that we set our boundary
conditions to be the homogeneous cosmological solutions, and that our runs lacked the resolution near the
boundary to resolved the correct falloff of the fields to their asymptotic values.
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However, as we argue below, we already see some consistent trends as rBH is varied within
this regime.

In the left panel of figure 4.9, we plot the radius of the black hole apparent horizon
normalized by its initial value as a function of time. For evolutions where the black hole
and cosmological MTTs do not collide, we find that although the area of the apparent
horizon always reaches it maximum and minimum values at around the same harmonic
time (t ∼ 110RH,min for the maximum value, and t ∼ 440RH,min for the minimum value),
the value the maximum and minimum take does change as a function of initial black hole
area. Independently of the black hole’s initial size, the area of the apparent horizon is
close to one around the bounce or in other words around the time where the total energy
density of the background cosmology is zero. In the low mass regime, the variation in the
black hole’s size increases with increasing initial black hole area.

However as the initial size of the black hole increases, the maximum change in the
radius of the apparent horizon eventually peaks at a value of rAH,max/rAH,0 ∼ 2.6. In this
case, the ratio of the minimum Hubble radius of background cosmology to initial radius
of the black hole corresponds to the threshold beyond which the horizons merge. Beyond
this peak, although the horizons merge at successively earlier times (and always before
the bouncing phase starts), with increasing initial black hole radius, the relative increase
in the radius of the apparent horizon when the horizons merge saturates at a value of
rAH,max/rAH,0 ∼ 2.5. Within the range of masses we were able to evolve, the apparent
horizons always reappear, from which we conjecture that the presence of black holes in
bouncing cosmologies do not disrupt the bounce. We were not able to evolve the space
time to arbitrarily later proper time but based on all the simulations we have run, we
conjecture that the black hole asymptotes to close to its initial radius as t→∞ .

In the right panel of figure 4.9, we plot the radius of the black hole event horizon
normalized by its initial value as a function of time. We do not compute the evolution of
the event horizon past the bounce for black holes with initial black hole radius such that
the minimum Hubble radius is smaller than RH,min < 2.90rBH,0, as for those cases the event
horizon cannot be located to the desired accuracy (see appendix C.1 for more details on
the computation of the event horizon). For the set of initial radii we do compute, we find
that the area of the event horizon reaches a maximum at successively earlier times with
increasing initial black hole radius, always before the bouncing phase starts and always
when the event horizon crosses the apparent horizon of the black hole. Beyond this point,
the event horizon decreases in size, until it crosses the apparent horizon again, after which
it starts increasing. This minimum happens at successively earlier times with increasing
initial black hole radius. While the maximum size of the event horizon throughout the
evolution increases with increasing initial black hole radius, the minimum decreases.

We next argue that the behavior of the event horizon in the region leading up to the
bounce (where H < 0), can be at least qualitatively captured by studying null rays in the
background FLRW spacetime. The reasoning is as follows: It is reasonable to assume that
in the regime where RH/rBH,0 � 1, the evolution of null rays near the black hole horizon will
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not be greatly influenced by the background cosmological evolution. Likewise, we assume
that in the regime where the black hole is “large” (RH/rBH,0 . 1), the trajectories of null
rays exterior to the black hole are more influenced by the cosmological evolution9, and in
the background FLRW spacetime, during the contraction phase, outward radial null rays
have decreasing proper radius when they are inside the Hubble radius. Following this line of
thought, we integrate null rays backward in time in the background FLRW spacetime given
by eq. 4.3, starting from the latest time for which H < 0 and RH = rBH,0. Figure 4.10 shows
the trajectories of a few such null rays for different ratios of RH,min/rBH,0. We find that the
proper radius of the null rays increases (as we go backwards in time) until the ray crosses
RH, after which it decreases. This is consistent with the behavior of the event horizon in
the right panel of figure 4.9 and suggests that, at least for this part of the evolution, the size
of the black hole is determined by the evolution of the background cosmology. This simple
calculation also shows that as RH,min/rBH,0 decreases, the maximum radius of the null ray
increases. This agrees with what we see in our full numerical simulations. Extrapolating
this trend to arbitrarily small RH,min/rBH,0 suggests that for arbitrarily large black holes
the peak of the event horizon will diverge. However, we are working with a cosmological
solution that has undergone an infinite number of e-folds of contraction to the past (see
section 4.2.2). If one were to consider a bouncing model that had only had a finite period
of contraction (for example if we considered a cyclic cosmology [321]), then the maximum
of the event horizon would always be finite.

Evolving forward in time, into the region where the universe is expanding (H > 0),
we find that the event horizon continues to decrease until it crosses the apparent horizon,
at which point it begins to increase in size. However, this behavior can not be captured
by integrating the null geodesics in the background spacetime, which suggests that the
influence of the black hole on the geometry is more relevant when H > 0, and for radii
less than rBH,0. Due to numerical issues, we are unable to evolve far enough in time to
determine if the minimum of the event horizon keeps decreasing and eventually reaches a
point where the event horizon ceases to exist as RH,min/rBH,0 → 0.

Finally, we note that (as is shown in figure C.3) one expects the apparent and event
horizons to converge to the same value at late times, but for reasons mentioned earlier in
this section, we are not able to evolve long enough in time to show this happens for initial
data with RH,min < 4.34rBH,0.

4.4.4 Spinning black holes

Up to this point, we have only considered non-spinning black holes (spherically symmetric
spacetimes). However, our methods can be applied equally well to spinning black holes
spacetimes. We have considered several such cases, finding the same qualitative behavior

9For example, we find that when the black hole and cosmological apparent horizons merge (and thus
there is no boundary between a trapped and untrapped region), the spacetime dynamics qualitatively
resemble that of the background cosmological evolution.
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Figure 4.9: Radius of the apparent (left) and event (right) horizon of the black hole over
time for different ratios of the minimum Hubble radius to initial black hole radius.

as for non-spinning black hole initial data. We illustrate this with a representative example
case: initial data where the black hole is initially spinning with a dimensionless spin value
of a0 = 0.5. As we find little difference compared to the spacetimes with non-spinning
black holes, here we only present the results for a black hole with RH,min = 2.17rBH,0, and
the same mass as in section 4.4.2. Figure 4.11 compares the circumferential radius of the
black hole along the equator for the spinning and non-spinning cases. We find that the
addition of spin causes the horizons to merge at a slightly later time as compared to a
comparable non-spinning case. We do not plot the behavior of the asymptotic background
cosmology as it is the same regardless of whether the black hole is spinning or not. As was
mentioned in section 4.3, the angular momentum of the black hole is constant since the
scalar field does not carry angular momentum.

4.5 Discussion and conclusion

We have considered the first numerical evolution of black holes through a nonsingular
bouncing cosmology. As in [21, 336], we worked with a model that has two scalar fields:
a canonically normalized field with an exponential potential and a ghost field. We have
additionally considered asymptotically cosmological initial data that is tuned to allow
for a matter-like (effective equation of state w = 0) contraction which is then followed
by a bounce that ends with cosmological expansion. In [336], translational symmetries
were assumed in two spatial directions, which precludes the formation of black holes. By
contrast, in this work we considered axisymmetric spacetimes which allowed us to study
the behavior of black holes through a bounce. While only a small fraction of Hubble
patches are expected to have a black hole during the late stages of ekpyrotic contraction
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Figure 4.10: Proper radius of outward, radial null rays in the background FLRW spacetime
(described in section 4.2.1). The left panel shows an example null ray that begins at a
specified radius rnull,0, increases until it crosses the Hubble radius (during contraction), and
then decreases until it reaches the Hubble radius again at rnull,0. The right panel shows
the same thing for different ratios of the minimum Hubble radius to rnull,0.

[43, 94, 297], our setup allows us to examine the robustness of the ghost-field bounce, which
in turn serves as an effective classical model of NCC violation.

We found two qualitatively different kinds of spacetime evolution, which depended
on the ratio of the minimum Hubble radius of the background cosmology to the initial
radius of the black hole. For black holes with initial radius smaller than ∼ 3.5 times the
minimum size of the Hubble radius of the background cosmology, the black hole passes
through the bounce freely and the background cosmology remains largely unaffected (see
section (4.4.1)). Beyond this limit, we found that while regions far away from the black hole
still bounce freely, regions close to the black hole evolve differently (see section (4.4.2)).
In particular, we found that during the contracting phase, the cosmological horizon and
the black hole apparent horizon merge and cease to exist for a brief period of time. Some
finite time later, before the bounce but after the background Hubble radius reached its
minimum size, the cosmological and black hole apparent horizons separate. Within the
range of masses we considered, we found that the black hole size (as measured by its
horizon radius), varies significantly during its evolution. However, regardless of the initial
mass of the black hole, we found that the late time evolution consists of a black hole in
an expanding universe with a mass similar to its initial value. Although we were not able
to evolve spacetimes where the Hubble radius shrinks to a much smaller size compared to
the radius of the black hole, we conjecture that the black hole always survives through
the bounce. This means that black holes created (or already present) in the contraction
phase [94, 297] can persist to have observational consequences in the post-bounce era.

We found instances where the event and apparent horizons decrease as a result of our
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Figure 4.11: The circumferential radius of the black hole in figure 4.7 with zero spin
(a = 0) compared to dimensionless spin of a = 0.5.

spacetime violating the NCC. Independently of the NCC being violated, we found that
in the regime where the black hole and cosmological apparent horizon collide, the latter
becomes spacelike shortly before merging with the black hole. This is consistent with the
observation that the signature of the marginally (anti-)trapped tubes changes such that
any merging/reappearing pair of horizons always has the same signature.

Finally, we point out a few directions for future research. One would be to study the
dynamics in a setup where the asymptotic cosmology is not prescribed. For example, this
could be accomplished by considering a toroidal/periodic setup, and then considering a
“lattice” of black holes [47, 101]. This setting would allow for the study of the impact
of black holes, as well as other perturbations on the overall dynamics of the bounce.
While small perturbations have not been found to appreciably change the dynamics of a
nonlinear bounce when translational symmetries are assumed [336], it would be interesting
to see if perturbations could be more disruptive in the presence of a black hole, and in
a less-symmetric spacetime that does not preclude large-scale anisotropies. In addition,
if the black holes survive the bounce, these could within this particular model contribute
to a fraction of the total dark matter component in our Universe. A speculative, yet
interesting question is whether their merger could lead to the formation of supermassive
black holes, their origin still currently unknown. Using these simulations we could then
predict observational signatures to confront the data with.

Another direction would be to consider other models of cosmological bounces. While
we believe that the main conclusions we find here do not depend strongly on the details
of the bounce model, it would be interesting to determine what differences would result
from potentially more realistic models of a bounce. As we mention in the Introduction, the
cosmological bounce scale may be many orders of magnitude smaller than the initial size
of a primordial black hole. Due to the numerical instabilities (as described in Sec. 4.4.2),
we were unable to carry out evolutions in the regime RH,min/RBH,0 � 1. It would be
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interesting to see if our results still hold in this limit.

Another interesting question is the degree to which a ghost field, which can reverse
cosmic contraction, may similarly affect gravitational collapse and singularity formation in
a black hole interior. NCC violating fields such as ghost fields have been used to construct
singularity free black hole-like solutions, such as wormholes [262, 328, 251, 89], so it is
not entirely implausible that there could be nontrivial dynamics near the center of a black
hole that accretes a ghost field. In this study, we ignored the dynamics deep inside the
black hole, excising that region from our domain. Exploring this would require coordinates
better adapted to studying the interior of black hole spacetimes, such as null coordinates
[67].
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Chapter 5

Nonlinear studies of binary black
hole mergers in
Einstein-scalar-Gauss-Bonnet gravity

5.1 Introduction

As mentioned in chapter 1.1, GWs observed from the inspiral, merger, and ringdown of
black hole binaries have greatly constrained the landscape of potential deviations from GR.
However, in order to seek physics beyond GR, or to place the most stringent constraints on
deformations of GR, one needs accurate predictions for specific modified gravity theories,
in particular in the strong field and dynamical regime [344, 51, 53, 52]. As we know,
this has been a major theoretical and technical challenge for many theories of interest
[187, 272, 273, 270, 90, 91, 133, 301, 148, 54]. As a result, most tests of GR performed
so far are model-independent or null tests, more commonly classified as consistency and
parametrized tests [5, 6, 10, 11, 162]. Parametrized tests introduce deviations from GR
to the gravitational waveform in a theory-agnostic way, and use the data to constrain the
beyond GR parameters. Most current approaches, however, usually only constrain the
deviations by considering one specific modification at a time and thus the interpretation
of these constraints remains limited.

In this chapter, we study ESGB gravity, which introduces modifications to GR at
small curvature length scales. ESGB gravity is an interesting class of theories to test
against GR for the following reasons: As mentioned in the introduction, ESGB gravity
is a representative example of a Horndeski theory of gravity, the most general class of
scalar-tensor theories that lead to second order equations of motion in four dimensions.
Moreover, ESGB gravity is inspired by the low energy limit of some string theories after
compactification [61, 175, 218]. While we are interested in solving the fully nonlinear
equations of motion of this theory, it is worth poiting out that ESGB gravity can also be
motivated from an effective field theory argument. Variants of ESGB gravity allow for
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scalar-charged black holes [219, 345, 318, 319], and hence can differ qualitatively from GR
in the strong field regime, while still passing weak field tests. Because of all these reasons,
much recent work has gone into modeling compact object mergers in ESGB gravity in both
post-Newtonian (PN) theory [339, 309, 311, 312] and numerical relativity [334, 315, 270,
133, 133, 301, 129].

Perhaps one of the main motivations for studying ESGB gravity is that the equations
of motion are strongly hyperbolic in the MGH formulation introduced in 1.2.2. As a result,
in Ref. [133], the authors introduced a computational methodology to solve the equations
of motion for binary black hole system in ESGB gravity without approximation (beyond
that of numerical truncation error), by making use of this formulation. 1 Here we follow
up on that work, and study the dynamics of the last stages of the inspiral phase of quasi-
circular, non-spinning black holes in shift-symmetric ESGB (sGB) gravity, and investigate
the accuracy of PN approximations [339, 309, 311, 312].

Remember that in general, the equations of motion for ESGB gravity can only be
stably evolved in time for weakly-coupled solutions [302, 230, 229, 133, 301] which roughly
means that the Gauss-Bonnet corrections to the spacetime geometry remain sufficiently
small compared to the smallest curvature length scale in the solution. A binary black hole
system in ESGB gravity can evolve from an initially weakly coupled state to a strongly
coupled state, as the black holes become closer and eventually merge [206, 207]. We find
that in a significant portion of the parameter space, our evolution breaks down as the black
holes become closer, although approaching this limit does not appear to be preceded by
dramatically different spacetime or scalar field dynamics compared to the weakly-coupled
regime. Maintaining a weakly-coupled solution exterior to the black hole horizons through
merger remains a major challenge in the numerical evolution of binary black holes in
numerical relativity. While better addressing this issue remains an important issue for
future work, for many cases here we focus on the properties of the late inspiral phase of
binary evolution. Even when restricting to the inspiral phase, we show that the deviations
from GR are significant in terms of the imprint on the resulting gravitational waves. One
of our main results is that leading order PN approximations are not sufficient to model the
gravitational signal in the late stages of the inspiral. For the cases we were able to evolve
through merger, we find that the effects of ESGB gravity show up primarily in an nonlinear
enhancement of the scalar field at merger, and in the dephasing of the gravitational waves,
while the effect on the peak amplitude of the gravitational wave signal is small. This work
also demonstrates the efficacy of the numerical relativity techniques utilized here—which
should be applicable to any scalar-tensor theory with second order equations of motion—to
quantify the impact on the gravitational wave signal of modified gravity in regimes where
other approximations break down.

The remainder of the chapter is as follows. In Sec. 5.2, we review shift-symmetric
ESGB gravity. In Sec. 5.3, we describe our numerical methods for evolving this theory
and analyzing the results. Results from our study of quasi-circular binary black holes in

1These methods were recently extended to a modified version of the CCZ4 formulation in Ref. [24].
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sGB are presented in Sec. 5.4. We discuss these results and conclude in Sec. 5.5. We
discuss the accuracy of our simulations in Appendix D.1, collect PN results in sGB in
Sec. D.2, outline our initial-data set-up in Appendix D.3, and review the accuracy of the
perturbative approach to solving the equations of motion in Appendix D.4.

5.2 Shift-symmetric ESGB gravity

We briefly review shift-symmetric ESGB (sGB) gravity. The action is:

S =
1

16π

∫
d4x
√−g

(
R− (∇φ)2 + 2λφG

)
, (5.1)

where G is the Gauss-Bonnet scalar:

G ≡ R2 − 4RµνR
µν +RαµβνR

αµβν . (5.2)

Here, λ is a constant coupling parameter that, in geometric units, has dimensions of length
squared. As the Gauss-Bonnet scalar G is a total derivative in four dimensions, we see
that the action of sGB gravity is preserved up to total derivatives under constant shifts in
the scalar field: φ→ φ+ constant. Schwarzschild and Kerr black holes are not stationary
solutions in this theory: if one begins with such vacuum initial data, the black holes will
dynamically develop stable scalar clouds (hair). The end state then is a scalar-charged black
hole, so long as the coupling normalized by the black hole mass m, λ/m2, is sufficiently
small [318, 319, 303, 133]. In particular, regularity of black hole solutions and hyperbolicity
of the theory sets λ/m2 . 0.23 for non-spinning black holes, [319, 303]. In contrast to stars,
where the scalar field around them falls of more rapidly than 1/r, black holes have a scalar
charge, and thus black hole binaries emit scalar radiation, which increases the speed at
which the binary inspirals and merges [338, 339]. The most stringent observational bounds
on the theory come from unequal mass, or black hole-star binaries, as those emit scalar
dipole radiation, which leads to a more rapid dephasing of the gravitational waveform
than would be observed in GR. In PN theory, the scalar dipole radiation enters as a −1PN
effect and can dominate over gravitational radiation at sufficiently wide separations (low
frequencies). In this study, we will focus on late inspiral, where the gravitational waves are
strongest and the scalar radiation is subdominant (the quadrupolar driven inspiral regime).
Another feature of these solutions is that the scalar charge is inversely proportional to the
square of the smallest mass black hole in the system. This suggests that the best way to
probe EsGB gravity is by observing the smallest compact objects. We therefore expect
stronger constraints on the theory will come from observing the merger of stellar mass black
holes with ground-based detectors, as opposed to observations of supermassive black hole
mergers with LISA (although long-duration observations of extreme mass-ratio insipirals
with LISA may provide meaningful constraints [92]). Restoring dimensions, comparisons
of gravitational wave observations from the LIGO-Virgo-KAGRA catalogue to PN results
place constraints of

√
λ . 2.5 km, see Refs. [285, 253].
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5.3 Methods

5.3.1 Evolution equations and code overview

The covariant equations of motion for sGB gravity are

�φ+ λG = 0, (5.3)

Rµν −
1

2
gµνR−∇µφ∇νφ+

1

2
(∇φ)2 gµν + 2λδαβγηρσκ(µgν)ηR

ρσ
αβ∇κ∇γφ = 0, (5.4)

where δαβγηρσκµ is the generalized Kronecker delta tensor. We numerically evolve the full
sGB equations of motion using the MGH formulation introduced in chapter 1.2.2. We use
similar choices for the gauge and numerical parameters as in Ref. [133]. We worked with
box-in-box adaptive mesh refinement as provided by the PAMR library [295]. We typically
worked with eight levels of mesh refinement in our simulations, unless otherwise noted. We
provide details on numerical resolution and convergence in Appendix D.1.

5.3.2 Puncture binary black hole initial data

On our initial time slice, we must satisfy the generalizations of the Hamiltonian and mo-
mentum constraint equations to sGB. Here, we do not implement a method to solve the
equations for general φ, but instead consider initial data for which φ = ∂tφ = 0. With
this choice of φ, the constraint equations of sGB gravity reduce to those of vacuum GR
[133, 301]. Even though φ = ∂tφ =0 on the initial time slice, scalar field clouds sub-
sequently form on a timescale that is short compared with the orbital binary timescale
(within ∼ 100M0). We construct quasi-circular binary black hole initial data via the black
hole puncture method [74], using the TwoPunctures code [23, 279]2.

For puncture binary black hole initial data, we need to specify the initial black hole
positions, and their approximate initial masses m1,2 (with the convention that m1 ≤ m2),
linear momenta P γ

1,2, and spins Sγ1,2 (which we set to zero in this study). Given m1,2 and the
initial puncture (black hole) locations, we use the dynamics for a circular binary to 2PN
order to determine the tangential components to P γ

1,2, and the 2.5PN radiation reaction
term to determine the initial radial component of P γ

1,2 [278]. We review our initial data
setup in more detail in Appendix D.3.

For the first t = 50M0 (where M0 ≡ m1 + m2) of evolution, we evolve the black holes
purely in GR. We found this allowed for the junk radiation from the puncture initial
data to disperse away from the black holes. After that initial evolution time, we turn
on the Gauss-Bonnet coupling λ to a non-zero value. The constraints are satisfied in
this procedure, as we can think of our initial data as starting at t = 50M0 instead, with
φ = ∂tφ = 0 and a metric field that satisfies the constraints such that the initial data

2The particular version of the code we use can be accessed at [1].
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satisfies the constraint equations for sGB gravity [133, 301]. While we use quasi-circular
initial data based on PN approximations for the initial orbital velocities from GR, we found
that the scalarization process does not appreciably impact the eccentricity of our runs, and
instead the eccentricity of our runs is dominated by the truncation error of the simulations.
For more discussion, see Appendix D.1.

5.3.3 Diagnostic Quantities

We use many of the same diagnostics as in Ref. [133], which we briefly review here. We
measure the scalar and gravitational radiation by extracting the scalar field φ and Newman-
Penrose scalar Ψ4 on finite-radius coordinate spheres. Due to the coupling between the
scalar field and metric through the Gauss-Bonnet coupling, in general scalar and gravita-
tional radiation will couple together through the term δ×Riemm×∇∇φ. For asymptoti-
cally flat spacetimes that have an asymptotically flat future null infinity (that is spacetimes
for which the peeling theorem holds, so the Weyl scalar fall of sufficiently fast [264]), this
coupling falls off as 1/r4 as r →∞. For those spacetimes, in the wave zone, we can treat the
gravitational and scalar radiation as two uncoupled quantities (for related discussions, see
[324, 133]). We discuss how we estimate the finite-radius extraction error of our waveforms
in Appendix D.1.

We decompose Ψ4 and φ into their spin-weighted spherical harmonic components

Ψ4,`m(t, r) ≡
∫

S2
−2Ȳ`m (ϑ, ϕ) Ψ4 (t, r, ϑ, ϕ) , (5.5a)

φ`m(t, r) ≡
∫

S2
0Ȳ`m (ϑ, ϕ)φ (t, r, ϑ, ϕ) . (5.5b)

The gravitational wave luminosity is

PGW(t) = lim
r→∞

r2

16π

∫

S2

∣∣∣∣
∫ t

−∞
Ψ4

∣∣∣∣
2

. (5.6)

The scalar wave luminosity is PSF

PSF ≡ − lim
r→∞

r2

∫

S2
Ntµ

(
T SF

)ν
µ
dAν , (5.7)

where N = 1/
√−gtt is the lapse and tµ is the asymptotic timelike Killing vector, the

integral is over a sphere, and

T SF
µν ≡

1

8π

(
∇µφ∇νφ−

1

2
gµν∇αφ∇αφ

)
. (5.8)

We assume the scalar radiation is outgoing, so that Eq. (5.7) reduces to

PSF(t) = lim
r→∞

r2

8π

∫

S2
(∂tφ)2 . (5.9)
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To compare our numerical waveforms, we must estimate the orbital frequency of the
binary Ω. We do so using the approximate relation [287, 49, 254]

Ω ≈ 1

2

dΦ22(t)

dt
, (5.10)

where Φ22/2 is the definition of orbital phase computed from half the complex phase of
Ψ4,22. We track the apparent horizons (AHs) associated with the black holes, and measure
their areas and associated angular momentum JBH. From this, we compute the black hole
mass mBH via the Christodoulou formula (4.20). We note that while the areal mass always
increases in vacuum GR [179], it can decrease in sGB gravity as the theory can violate the
NCC [302, 303]. In our simulations, JAH ≈ 0 to numerical precision for the constituents of
the binary black hole. We measure the average value of the scalar field on the black hole
apparent horizons

〈φ〉AH ≡
1

ABH

∫

AH

φ. (5.11)

5.3.4 Cases considered

We focus on quasi-circular black hole binaries with no spin. We classify our runs by
two dimensionless numbers: their mass ratio q3 and by the relative Gauss-Bonnet scalar
coupling strength ζ1 (compare to Refs. [339, 285, 253]):

q ≡ m1

m2

≤ 1, ζ1 ≡
λ

m2
1

. (5.12)

As m1 is the smaller black hole mass, it roughly quantifies the smallest curvature scale in
our simulations. We consider the mass ratios q = 1, 2/3, and 1/2, with an initial separation
of 10M0, approximately 8 orbits before merger in GR. For the equal mass ratios, we consider
ESGB coupling parameters ζ1 = 0, 0.01, 0.05, and 0.1; while for the mass ratios q = 2/3
and q = 1/2, we consider smaller values of ζ1 = 0, 0.025, 0.05, and 0.075; and ζ1 = 0, 0.05,
and 0.075, respectively. When comparing waveforms (Ψ4,`m or φ`m) with different values
of the coupling, we compute the time talign at which the gravitational wave frequency is
0.01M0, and apply this as a time offset. This alleviates the effect of any dephasing or shift
in frequency due to the scalarization process. We then rotate the waveforms by a constant,
complex phase so that their initial phases align. For comparisons with other works, our
coupling λ corresponds to αGB ≡ λ/

√
8π used in, e.g. [285, 253].4 Restoring physical units,

we have

√
αGB ≈ 3.97 km

(√
λ

m1

)(
m1

6 M�

)
(5.13)

3Note q was used to refer to the number of compactified dimensions in chapter 2
4However, several other studies (e.g. [334, 59, 289, 290]) take conventions leading to a value of αGB

that is 16
√
π× times larger.
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where 6 M� is approximately the value of smallest black hole observed in the LIGO-Virgo-
Kagra third observing run [8]. For reference, Ref. [253] sets a constraint of

√
αGB . 1.2 km

by comparing gravitational wave observations of black hole-neutron star binaries to PN
results of ESGB. In comparison, the largest coupling we consider in our simulations (our
equal-mass ζ = 0.1 run) corresponds to

√
αGB ∼ 1.25 km for a 6 M� black hole, which is

roughly within observational bounds.

5.3.5 Challenges in modeling the merger phase of black hole evo-
lution

As we discuss in Sec. 5.4, we are unable to evolve the binaries through merger for many
of our simulations. For some of our runs, we turned off the scalar Gauss-Bonnet coupling
inside a compact ellipsoidal region centered at the black hole binaries center of mass at a
finite time before merger. This allowed us to evolve through merger, and extract gravita-
tional and scalar radiation from the inspiral up until the causal future of the excised region
intersected where we measured the radiation (typically at r/M0 = 90).

For one case, namely q = 1 and ζ1 = 0.05, we only turn off the Gauss-Bonnet coupling
slightly before finding a common apparent horizon, and only in a localized region that is
encompassed by the final black hole. We have verified that varying the size of this region
has no appreciable impact on the resulting radiation, and so we include the full results from
this case, though a careful tracking of the propagation of information along characteristics
would be needed to more rigorously justify this.

We believe the main difficulty with evolving through merger in our simulations may be
elliptic regions that form around merger. These regions may possibly be hidden behind the
final event horizon, and so could possibly be excised from the computational domain if an
apparent horizon is located quickly enough. Higher resolution runs, with excision surfaces
that lie closer to the apparent horizons of the inspiraling black holes or a different choice
of the auxiliary metrics in the modified generalized harmonic formulation, may allow for
the successful merger of black holes in sGB gravity with unequal mass ratios. We leave a
further investigation of this to future work.

5.4 Results

We present results for binary black holes with several mass ratios, beginning roughly eight
orbits before merger, focusing on how the orbital dynamics and radiation changes as a
function of the sGB coupling. We compare both the scalar radiation, and the modified
gravity induced dephasing of the orbit and gravitational wave signal to the PN prediction.
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5.4.1 Scalar radiation and dynamics

In Fig. 5.1, we compare the leading order scalar waveforms φ`m from our numerical evolu-
tion to the PN formulas given in Eq. (D.5). The PN formulas are accurate to 0.5PN order
for the mode φ11, and to leading PN order for the remaining modes. As in the comparisons
of scalar waveforms computed in Refs. [334, 311, 312], the frequency we use in the PN ex-
pressions are obtained from our numerical evolutions using Eq. (5.10), so our comparison
is measuring the accuracy of the PN approximation in determining the amplitude of the
scalar field, given its frequency. We see that the fractional difference between the 0.5PN
order PN theory for the ` = 1,m = 1 mode, and the numerical scalar waveform is about
30% initially, and grows as the binary inspirals. We also note that the inclusion of higher
PN terms increases the overall amplitude of the scalar waveforms, making the agreement
between the PN and numerical waveforms worse than at leading order at the frequencies
we consider. This result holds for all three mass ratios we considered. Comparing other
values of the coupling constant shows similar behaviour and thus, we do not show the plots
here.

Comparing our results to Fig. 7 of Ref. [334], where the leading order PN scalar wave-
forms were compared to numerical waveforms obtained in a test field approximation (valid
to first order in the coupling parameter ζ1), we find close agreement between our waveforms,
suggesting the test field scalar waveform computed from a prescribed orbital evolution is
fairly accurate at least during the early inspiral phase. This is further emphasized in
Fig. 5.2, where we plot the scalar waveforms, rescaled by ζ1. In the decoupling limit, the
amplitude of the emitted waveforms is directly proportional to ζ1 [339, 334]. From Fig. 5.2,
we see that, at least during the inspiral phase of binary black hole evolution, this relation
holds up well for the full theory. This is to be expected, as nonlinear corrections to φ only
enter at order ζ3

1 in sGB gravity; see Appendix D.4.

In Fig. 5.3, we plot the average value of φ on the black hole apparent horizon for the
two initial black holes, and the final remnant black hole, for runs with (q = 1, ζ1 = 0.01
and 0.05) and (q = 1/2, ζ1 = 0.05). We see that after the black holes have acquired a
scalar charge, the average value of the scalar field on the two black hole horizons increases
as they inspiral towards each other, in general qualitative agreement with the predictions
of Refs. [206, 207]. The remnant black hole for the equal mass runs (BH3 in the left panel)
has a smaller average scalar field value on its horizon than the two original black holes,
as it has a larger mass (so λ/m2

3 < λ/m2
1,2), and it is spinning [133]. As we discuss in

Sec. 5.3.5, we are unable to evolve through merger for any of the unequal mass ratio cases
we consider, so there is no remnant apparent horizon in the right panel.

5.4.2 Gravitational Waves

We next estimate the relative dephasing of the gravitational waveforms, taking into account
various sources of numerical error in our simulations. Accurately computing the phase of
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Figure 5.1: Scalar waveforms as a function of retarded time, t∗− r = t− talign− r, rescaled
by the extraction radius Rex = r/M0 = 90, sourced by nonspinning BH binaries of mass
ratio q = {1, 2/3, 1/2} (clockwise from the top left). The corresponding waveform Ψ4,22 is
displayed in the bottom for comparison. We show the (`,m) = (2, 2) and (4, 4) spherical
harmonic components for the equal mass ratio and the (`,m) = (1, 1), (2, 2), and (3, 3)
components for unequal mass ratios. During the inspiral, we also display the PN waveform
(brown dashed lines), derived to 0.5PN order, and the leading order waveform at -0.5PN
for the (`,m) = (1, 1) mode (red dash-dotted lines). We also show the relative difference
between the amplitude of the PN and numerical waveform ∆lm for the leading order mode.

103



−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

R
ex
φ

22

×
(

0.1
ζ1

)

ζ1 = 0.010
ζ1 = 0.050
ζ1 = 0.100

0 100 200 300 400 500 600 700
(t∗ − r)/M0

−4

−2

0

2

4

R
e(
rM

0
Ψ

4,
22

)

(a) q = 1

−0.01

0.00

0.01

R
ex
φ

11

×
(

0.075
ζ1

)

ζ1 = 0.025
ζ1 = 0.050
ζ1 = 0.075

−0.005

0.000

0.005

R
ex
φ

22

−0.0005

0.0000

0.0005

R
ex
φ

33

0 100 200 300 400 500
(t∗ − r)/M0

−0.2

0.0

0.2

R
e(
rM

0
Ψ

4,
22

)
(b) q = 2/3

−0.01

0.00

0.01

R
ex
φ

11

×
(

0.075
ζ1

)

ζ1 = 0.050
ζ1 = 0.075

−0.0025

0.0000

0.0025

R
ex
φ

22

−0.001

0.000

0.001

R
ex
φ

33

0 100 200 300 400 500 600
(t∗ − r)/M0

−0.2

0.0

0.2

R
e(
rM

0
Ψ

4,
22

)

(c) q = 1/2

Figure 5.2: Scalar waveforms as a function of retarded time,t∗−r = t−talign−r, rescaled by
the extraction radius Rex = r/M0 = 90 and test field dependence on coupling constant λ,
sourced by nonspinning binary black holes of mass ratio q = {1, 2/3, 1/2} (clockwise from
top left) and different coupling constants ζ1. The corresponding gravitational waveforms
Ψ4,22 are displayed in the bottom of each panel for comparison. We show the leading order
(`,m) mode for each mass ratio.

104



200 400 600 800
t/M0

0.00

0.02

0.04

0.06

0.08

0.10

〈φ
〉 A

H
×
( 0.

05 ζ 1

)
BH 1

BH 3

BH 1

BH 3

ζ1 = 0.01

ζ1 = 0.05

(a) q = 1, ζ1 = 0.01 and 0.05

200 400 600 800
t/M0

0.00

0.02

0.04

0.06

0.08

0.10

〈φ
〉 A

H

BH 1

BH 2

(b) q = 1/2, ζ1 = 0.05

Figure 5.3: Average value of the scalar field, rescaled by the test field dependence, over the
black hole horizons for different mass ratios. For the equal mass ratio binary (left panel),
we were able to evolve through merger, and thus determine the average value of the scalar
field on the third, remnant black hole. While we were unable to evolve through merger for
the unequal mass ratio binaries, on the right panel we show the average scalar field for a
q = 1/2 run. The dips in the average scalar field near the end of the evolution for that run
are due to numerical error.

a gravitational signal is crucial, given this will be the most salient effect of sGB gravity
that current gravitational wave detectors are able to measure [346, 53, 253]. Due to the
presence of scalar charge around each black hole in sGB gravity, black holes will emit scalar
radiation as they inspiral each other, so they will inspiral faster as compared to what would
be the case in GR. In Fig. 5.4, we plot the gravitational waveforms Ψ4,22, after matching
their frequency at a time talign, and applying a rotation in the complex plane, so that their
phases align initially. We see that there is a noticeable dephasing of binaries with different
values of ζ1. In Fig. 5.5, we quantify the dephasing for the ` = 2, m = 2 mode of Ψ4 [see
Eq. (D.3)]

δΦ(f) ≡ ΦsGB(f)− ΦGR(f), (5.14)

by comparing the orbital phase [computed from Eq. (D.3)] of the waveforms at a given
frequency smaller than M0f < 0.018 which corresponds to the empirically found transition
from the inspiral to merger-ringdown phase in GR [189, 220], along with the corresponding
PN predictions for a quadrupolar driven inspiral [309, 253] (see also Appendix D.2). We
find δΦ < 0, and the dephasing grows as we increase the coupling λ, which is in general
qualitative agreement with PN predictions for sGB gravity. This being said, at least for
the last few orbits of the inspiral that we study, we find that our results do not agree
quantitatively with PN predictions. A possible reason for this is because we are comparing
to PN theory close to the merger phase of binary evolution, where more orders of the
PN expansion are needed to match to numerical relativity simulations even in GR. These
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differences also need to be compared to the various sources of numerical error in the
simulations, which in some cases exceed the small phase differences, as we discuss below.
In Fig. 5.6, we show the dephasing at consecutive orders up to 2PN for for a range of
gravitational wave frequencies we sample in our simulations (the last few orbits before
merger), yet within the regime where the PN approximation should be valid in GR, M0f <
0.018 [189, 220]. The PN formulas we plot were first presented including terms of up to 2PN
order in Ref. [253]; we review their computation in Appendix D.2. As noted in Ref. [253],
we mention that the dephasing for ESGB gravity has only been computed to 2PN order,
with only partial results at 0.5 PN order onwards. We see that there are still noticeable
differences in the PN approximation with the addition of the highest order terms in the
near-merger regime studied here, and thus the expansion will likely have to be continued to
higher order to achieve a highly accurate prediction in that regime, although we cannot rule
out that the inclusion of the currently missing terms to the 0.5 through 2 PN contributions
in the phase may lead to a faster convergence in the PN expansion than observed here.

Finally, we compare the orbital dephasing to the numerical errors in the simulations.
A detailed error analysis is given in Appendix D.1, which we briefly summarize here. The
error in the Richardson extrapolated phase is ∼ 0.25 radians, which is comparable to the
ESGB dephasing, and larger than the relative error in the 2PN computation. However, if
the dominant truncation error in our simulations does not depend strongly on the value of
ζ1, and thus partially cancels out when calculating the difference δΦ in the phase between
the sGB and GR simulations using the same resolution, this will lead to noticeable smaller
truncation error in this quantity compared to the overall phase. We see evidence that this
is the case, for example, by comparing a measure of the truncation error in δΦ, computed
by comparing a q = 1/2 GR simulation to an equivalent sGB simulation with ζ1 = 0.075
at two different resolutions, to an estimate of the overall truncation error in Φ for the same
sGB case. We find the former to be ∼ 50× smaller than the latter (see Appendix D.1). We
also find similar results for the GW amplitude. Thus, for a number of cases (see Fig. 5.5),
the difference in errors is smaller than the dephasing δΦ we measure.

Lastly, we note that the dephasing between the sGB and GR simulations may be caused
by small differences in the eccentricity of our simulations, which would be caused by the
orbit being slightly perturbed by the rapid development of the scalar field around the black
holes at early times, as an artifact of using initial conditions with φ = ∂tφ = 0. If this were
the case, one would expect the eccentricity of the modified waveforms to increase with
coupling. We estimate the orbital eccentricity in our simulations to be . 0.01, and we
find that it decreases with increasing resolution, with only a mild dependence on coupling.
This suggests that residual eccentricity from the initial data is subdominant to finite-
resolution numerical errors, and does not significantly affect the dephasing of the binary.
The eccentricity of the binary system is not much affected by the value of the Gauss-
Bonnet coupling, as even for the largest couplings we consider the energy contained in the
scalar cloud is only a small fraction of the total binary binding energy, and an even smaller
fraction of that energy is radiated away during the scalarization process.
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Figure 5.4: The radially rescaled value of Ψ4,22 as a function of retarded time, t∗ − r =
t − talign − r, for different values of ζ1. The top, middle, and bottom panels show the
waveforms for the q = 1, 2/3, and 1/2 mass ratio binaries. Here we measure Ψ4,22 at a
radius of Rex = r/M0 = 90.
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Figure 5.7: Gravitational wave radiation (left) and scalar radiation (right) for equal mass
ratio binaries with coupling ζ1 = 0, 0.01, and 0.05. We show the real part of the ` = m = 2
spherical harmonics of the Newman-Penrose scalar Ψ4 and φ. Time is measured with
respect to the time where the complex amplitude of Ψ4,22/φ22 peaks. We add an overall
phase so that the waveforms are real and positive at t = tpeak.

5.4.3 Merger dynamics

Lastly, we mention the effects of ESGB on the merger dynamics of equal mass binaries with
couplings ζ1 = 0.01 and 0.05, compared to GR. Figure 5.7 shows the gravitational wave
emission starting slightly before merger, and including the ringdown, for different values
of ζ1. We find that while the ESGB waveforms have a noticeable dephasing relative to
GR, consistent with the fact that ESGB binaries should merge faster due to the additional
energy loss through scalar radiation, the peak amplitude of the gravitational wave at
merger depends only very weakly on ζ1. The effect of modified gravity on the frequency
and decay rate of the quasinormal modes is also too small to reliably quantify with our
current numerical data, so we defer a more detailed study of the ringdown to future work.

In the right panel of Fig. 5.7 we show the leading ` = m = 2 mode of the scalar
waveform after rescaling for the test-field dependence on the coupling, which implies that
the amplitude of φ scales linearly with ζ1. For the ζ1 = 0.05 case, we find an additional
nonlinear enhancement in the scalar field amplitude at merger, with |φ|/λ roughly 5%
higher compared to the ζ1 = 0.01 case.

The negligible effect on the GW amplitude with varying ESGB coupling that we find
here contrasts with the large effect found in order-reduced simulations. In particular, the
correction to Ψ4, which scales quadratically with ζ1 in the perturbative approach taken in
Ref. [270], gives an order-one correction to the amplitude for the highest couplings used here
(see Fig. 2 of Ref. [270]); though we note that Ref. [270] also uses a slightly different mass-
ratio (q = 0.82) and non-zero spins for the constituent black holes. We speculate that this
qualitative difference behavior in the waveform is due to the presence of secularly growing
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errors terms, which are known to be present in such a perturbative approach to evolving
modifications to GR. For more discussion of this phenomena, see Refs. [273, 270, 153].

5.5 Discussion and Conclusion

In this work, we have performed the first systematic study of the nonlinear dynamics of
binary black hole inspiral and merger in sGB gravity. We considered several values of the
sGB coupling and the binary mass ratio, and compared our results to PN theory. Solving
the full equations of motion allowed us to directly measure the increased dephasing of the
inspiral due to the emission of scalar radiation, and to determine the relative effects of
nonlinearity on the scalar and gravitational waveforms. We argue that, at least in the last
few orbits of the inspiral phase before merger, PN theory is currently not accurate enough
to determine the dephasing of the binary due to the modified gravity, even taken as a
correction to a more accurate to GR waveform.

In addition to measuring the dephasing of binary black holes, we find that leading
order PN theory (in the GB coupling λ) does well in matching the amplitude of scalar
radiation emitted during the inspiral phase, given the frequency of observed gravitational
radiation. This is in general qualitative agreement with earlier numerical relativity work
that compared simulations of sGB gravity in the decoupling limit to PN predictions [334].
The success of leading order PN theory in matching the scalar waveform can be partially
explained by the fact that corrections to the scalar field amplitude in the GB coupling
enter at order ζ3

1 for sGB gravity (see Appendix D.4).

We have studied the dynamics of the merger for a limited number of cases, where we
found that when the black holes merge the effect due to the ESGB modifications on the
peak amplitude of the gravitational wave signal is small, in contrast to what results using
perturbative treatments of the merger would suggest. We leave a detailed study of the
detectability of these effects and their degeneracy with different intrinsic parameters to
future work.

In this first study, for computational expediency, and given that the ESGB equations of
motion are more complicated to solve than the GR ones, we have focused on the roughly
last 8 orbits before merger. However, an obvious direction for future work is to con-
sider binaries that start at wider separations (and hence lower orbital and gravitational
wave frequencies), in order to determine at what point leading order PN theory becomes
accurate. Modeling the merger is arguably the most important contribution numerical
relativity can make to our understanding of binary black hole evolution. As we were un-
able to evolve through merger for larger coupling values understanding this limitation of
our code/methods remains an important task for future work. Different choices of gauge
or auxiliary metrics, as well developing better diagnostics for monitoring the breakdown
of hyperbolicity may help address this. As mentioned above, we believe one of the main
difficulties lie in being able to excise elliptic regions near merger, around the time the final
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remnant black hole forms from the merger. Our algorithm may be improved by implement-
ing a more complicated excision surface (currently we only excise an ellipsoidal region), and
working with higher resolution, to more stably excise closer to the surface of the apparent
horizons. We note that recent work [24] reports evolutions of non-spinning, equal mass
ratio black hole binaries through merger using a modified CCZ4 formulation of the equa-
tions of motion with puncture-like coordinates, for ζ1 values as large as ζ1 = 0.1/

√
2 ∼ 0.07

(converting to our conventions). In that work, the authors make use of an effective excision
algorithm by letting the modified gravity coupling go to zero at small values of the spatial
metric conformal factor, as in Refs. [146, 147]; such a method may be useful in conjunction
with our direct excision method to stabilize the evolution near the excision boundary.

In this work, we only considered binary black hole systems where the individual black
holes were initially nonspinning. As black hole spin can significantly impact the dynamics
of binaries in GR, a natural next step to this work would be to consider black hole spin.
Furthermore, introducing spin may lead to novel gravitational wave signatures as, for
example, in black hole spin-induced spontaneous scalarization [120, 185, 50].

We have only simulated the dynamics of arguably the simplest of the ESGB gravity
theories that gives scalar hairy black holes. Other kinds of scalar Gauss-Bonnet couplings
(i.e. more general terms of the form β(φ)G in the action) can allow for a rich range of
phenomena, most notably the effect of spontaneous (de)scalarization, which so far has
only been studied either perturbatively [315, 137], or in symmetry-reduced settings [122,
314, 259, 313, 120, 185, 50, 132]. As well, including a term of the form f (φ)X2 in the
action is also “natural” from an effective-field theoretic point of view, as this is another four
derivative term that is also parity-invariant [332, 230], and may have some effect on the
binary evolution. Simulating nonlinear effects such as spontaneous black hole scalarization
requires understanding the backreaction of the scalar field on the background geometry,
as that affects the saturation of the instability and end state black hole, and determines
which effects occur in the regime where the theory remains hyperbolic [132]. Accurately
simulating theories with high precision that exhibit spontaneous black hole scalarization
will additionally require the development of initial data solvers that solve the constraint
equations in sGB gravity that have an initially nontrivial scalar field profile [228, 301].
It would also be interesting to extend recent work on binary neutron star mergers [129]
to study black hole–neutron star binaries in ESGB gravity (earlier work on spontaneous
scalarization in ESGB gravity for single neutron star solutions include Ref. [235]).
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Chapter 6

Conclusions and further outlook

In this thesis, we used and developed the tools of numerical relativity to test our un-
derstanding of gravity in the strong field regime which would otherwise be inacessible.
We used numerical simulations as a theoretical laboratory for gravity, addressing several
problems in early universe cosmologies, high energy physics and spacetimes surrounding
black holes. We explored the possible role of extra dimensions in determining the physical
mechanisms responsible for the accelerated expansion of the Universe within the context
of string theory and presented the first study of the dynamics associated with extra dimen-
sions. Of course, here we only studied a very simple model but that retains many of the
important features of the low energy limit of string theory and figures prominently in the
AdS/CFT correspondence [256], has been employed to study the cosmological constant
problem [116, 88, 77, 28], and dimension-changing transitions [106, 234, 88, 58], among
other phenomena. More importantly, this study showed the power of using numerical
techniques to probe the inhomogeneous and strong field regime in high energy physics.
The general methods developed in this work could be used and extended to explore other
higher dimensional string inspired scenarios as well as black holes in higher dimensions
[138, 300]. One particular avenue which would be interesting to pursue would be to ex-
tend this study to the case where the external space is anti-de Sitter as this would have
applications to the AdS/CFT correspondence.

In this thesis, we also applied numerical relativity techniques to study early universe
paradigms that could account for the observable universe and solve the problem of initial
conditions in cosmology. We focused on studying the robustness of inflation and nonsin-
gular bouncing models. It would be interesting and extremely useful to our understanding
of the early universe if our numerical methods could be further developed to make predic-
tions that can be confronted with observations of the cosmic microwave background and
large-scale structure datasets. The code used in our investigations (as well as many others
cosmology codes in the literature e.g. [103]) is limited by gauge dynamics. A better gauge,
as well as working with higher resolution or adaptive mesh refinement may help allow us to
run cosmology codes for longer than is currently possible when starting from generic initial
conditions. One could also use a different formulation of the Einstein equations such as
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the tetrad formulation, which is better suited to follow the evolution of spacetime across
many e-folds in both contracting and inflating spacetimes [159, 108, 158, 190, 191, 197]. A
particularly promising avenue for future work would be to extend the methods developed
for computing cosmological observables from numerical relativity simulations of bubble
collisions in one space and one time dimension [205] to the spacetimes studied here. Suc-
cesfully applying this procedure would be an important step towards making quantitative
constraints on various early universe paradigms. The predictions obtained could be used
to forecast the ability of cosmological datasets to place constraints on the mechanism that
operated in the early universe and explains the large scale structure we observe today.

Finally, in this thesis we used a new formulation of the Einstein equations to study
the nonlinear dynamics of binary black hole mergers in ESGB gravity. In this first study,
we have taken a crucial first step towards using GWs emitted during the merger of com-
pact objects to test the strong field limit of GR, fulfilling the promise of GW astronomy.
However, there are still a lot of challenges to overcome before one can confidently claim a
deviation from GR with GWs, and fully leverage the science potential of these exquisite de-
tections. Clearly, the modeling of merger of compact objects in modified theories of gravity
represents one of the most important challenges for present and future numerical studies,
still it is essential to make contact between theoretical models and upcoming observations.
Several areas of focus for follow-up work were already identified in the conclusion of the
previous chapter, some of which are already underway. Ultimately, all of them are geared
towards computing faithful and accurate theoretical models of the predicted gravitational
waveforms in a large class of modified theories of gravity and covering a significant portion
of the parameter space of potential binaries.

As was mentioned several times already, the main technical challenge when attempting
to predict the GW signal in alternative theories of gravity is to formulate a well-posed
initial value formulation. As a result, most groups have so far mainly focused: (i) on a very
limited number of theories that preserve the mathematical structure of the field equations
in GR e.g subclass of scalar-tensor theories that lead to neutron stars developing a scalar
charge [310, 38] (ii) on treating the modifications to GR perturbatively [272, 270], (iii) or
on reformulating the field equations in the spirit of Israel-Stewart theory in hydrodynamics
[90, 91]. One particularly iteresting work which is already underway, is to compare our
solutions to the full equations to these less computationally challenging aproaches.
The focus of this thesis was black hole spacetimes as they provide a very clean and elegant
way of probing the highly dynamical regime of gravity. However, in the next few years,
both the sensitivity and size of current ground-based GW detectors will increase. With a
five-site GW network operating at design sensitivity, we expect 10-180 binary neutron star
and black hole-neutron star (BHNS) detections per year with a significant fraction localized
to within a few square degrees facilitating follow-up observations in the electromagnetic
spectrum [4]. It is therefore interesting to consider whether the electromagnetic and GW
transients of these sources can be used as an alternative and potentially more powerful
probe to test our theory of gravity. The code used for our study of binary black holes is
also able to numerically evolve hydrodynamics coupled to the Einstein equations. Work is
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currently underway to study BHNS mergers in ESGB gravity. From an observational point
of view, an interesting aspect of EsGB gravity is that unlike black holes, neutron stars do
not carry scalar charge. Since the amount of scalar emission leading to a phase-shift in the
gravitational signal as compared to GR in such theories scales with the difference between
the scalar charges of component masses in binary, GW detections from BHNS binaries will
give the strongest constraints on these theories. This shows the potential for discovery if
one were to accurately model the gravitational signal emitted by these systems.
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[202] Cristian Joana and Sébastien Clesse. Inhomogeneous preinflation across Hubble
scales in full general relativity. Phys. Rev. D, 103(8):083501, 2021.

[203] Matthew C. Johnson, Hiranya V. Peiris, and Luis Lehner. Determining the outcome
of cosmic bubble collisions in full General Relativity. Phys. Rev. D, 85:083516, 2012.

[204] Matthew C. Johnson, Carroll L. Wainwright, Anthony Aguirre, and Hiranya V.
Peiris. Simulating the Universe(s) III: Observables for the full bubble collision space-
time. JCAP, 07:020, 2016.

[205] Matthew C. Johnson, Carroll L. Wainwright, Anthony Aguirre, and Hiranya V.
Peiris. Simulating the universe(s) III: observables for the full bubble collision space-
time. Journal of Cosmology and Astroparticle Physics, 2016(07):020–020, jul 2016.
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Appendix A

Nonlinear dynamics of flux
compactification

A.1 Dimensional reduction

In this section, we illustrate the properties of dimensional reduction with several examples.
Recall that in our units MD ≡ (8πGD)−1/(D−2) = 1.

A.1.1 Time-dependent Freund-Rubin Solution

We start with a simple example, where identifying scale factor and moduli fields in the
four-dimensional effective theory is straightforward. Consider solutions of the form:

ds2 = −N(t)2dt2 + a(t)2d~x2
p−1 + L(t)2dΩ2

q . (A.1)

This metric ansatz encompasses the static Freund-Rubin solutions of section 2.2.3, as well
as the time-dependent solutions resulting from total-volume (` = 0) perturbations of the
static Freund-Rubin solutions. For such solutions, we have

K −Kx
x

2
=

ȧ

Na
+
q

2

L̇

NL
. (A.2)

Defining
Ñ = (L/L0)q/2N, ã = (L/L0)q/2 a , (A.3)

where L0 ≡ L(t = 0) we have that

∫
dqy
√
γqNγ

3/2
xx

(
Kx

x −K
2

)2

=

(
Lq0

∫
dΩq

)
Ñ ã3

( ˙̃a

Ñã

)2

. (A.4)
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From this expression we can identify Ñ as the four dimensional lapse, ã as the four dimen-
sional scale factor and therefore:

M2
4 = Lq0

∫
dΩq,

√
−g(t) = Ñ ã3, H2 =

( ˙̃a

Ñã

)2

. (A.5)

Note that the change of variables defined by eq. (A.3) is precisely the conformal transforma-
tion of the four-dimensional metric that brings us to the four-dimensional Einstein frame
(e.g. the conformal frame in which the Planck mass is constant in time); for comparison,
see, e.g., refs. [88, 114].

Evaluating the area of the cosmological apparent horizon using eq. (2.17), we obtain:

AH = 4π

∫
dΩqL

q
0

(
Ñ ã

˙̃a

)2

= M2
4

4π

H2
. (A.6)

The entropy, eq. (2.19), is given by S = 16πM2
4/H

2, which is the value one would have
assigned based purely on the four dimensional effective theory.

For the time-dependent Freund-Rubin solutions, it is possible to derive the full dimen-
sionally reduced action. This can be found, e.g., in refs. [88, 114], which we reproduce here
for completeness. Expanding the terms in the action we obtain

S =
1

2

∫
d4xdqy
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[
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1

2
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φ)2 (A.7)

+ (D−1)R− 2ΛD −
1

q!
F2
q

]
.

Evaluating the various terms in the action for the metric ansatz eq. (A.1) we have:

1

2
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, (A.8)

(D−1)R =
q(q − 1)

L2
(A.9)

and
1

q!
F2
q =

Q2
B

L2q
=

1

M4
4
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L2q
. (A.10)

Using the relations eqs. (A.3) and (A.5), we have

S =

∫
d4x Ñã3

[
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2
4

2
6H2 +

M2
4
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where we have defined the effective potential

V (L)

M4
4

≡ 1

2

(
L0

L

)q (
−q(q − 1)

L2
+ 2ΛD +

1

M4
4

n2

L2q

)
. (A.12)

We see that the dimensionally-reduced theory is that of an FLRW Universe with a scalar
field L (with a non-canonical kinetic term) evolving in the effective potential V (L) (plotted
in figure 2.2).

A.1.2 Factorizable warped metrics

Another illustrative example is given by solutions of the form:

ds2 = e2A(y,t)
[
−
(
N(t)2 − e−

2(q+2)
(q−2)

A(y,t)g̃γδβ
γ(y, t)βδ(y, t)

)
dt2 + a(t)2d~x2

p−1

]
(A.13)

+ 2e−
8
q−2

A(y,t)g̃γδ(y)βγ(y, t)dtdyδ + e−
8
q−2

A(y,t)g̃γδ(y)dyγdyδ . (A.14)

For q = 6, this ansatz is characteristic of warped solutions to Type IIB string theory [165,
166, 151]. We have that

Kx
x −K

2
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e−A

N

(
ȧ

a
− q + 2

q − 2
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4
g̃γδLβ g̃γδ
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(A.15)

where ∂0 ≡ ∂t − Lβ. Defining

Ñ(y, t) = e−
q+2
q−2

A(y,t)N(t), ã(y, t) = e−
q+2
q−2

A(y,t)a(t) (A.16)

we have

∫
dqy
√
γq Nγ

3/2
xx
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+ F (β)

]
. (A.17)

Although the change of variables proposed above allows one to decompose the action
in a suggestive form, it is not immediately clear how to identify the four-dimensional
Planck mass, scale factor and lapse. This is due both to the presence of terms involving
the shift (written above as F (β)), as well as the average of a product of y-dependent
factors over the compact space. The latter problem arises because eq. (A.16) defines a
conformal transformation of the four dimensional metric that depends on both time and
the coordinates on the compact space. This can be contrasted with the standard approach
to dimensional reduction in the presence of warping, where one defines a purely time
dependent conformal transformation to the four-dimensional metric.

Ignoring terms evolving the shift for the remainder of the calculation (i.e. setting βγ = 0
and denoting the neglected terms with an ellipsis) for simplicity, we can make contact with
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the standard approach as follows. First, we decompose the action as follows:

√−g4M
2
4H

2 =

∫
dqy
√
g̃ Na3

[
ȧ
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(∫
dqy
√
g̃e−

4q
q−2

A(y,t=0)

)[
˙̄a

N̄ā
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where we have made the following definitions:
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and
N̄(t) ≡ N(t)eφ(t)/2, ā(t) ≡ a(t)eφ(t)/2 (A.20)

and
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where
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dqy
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To the extent that ∆ is small (and again, we are neglecting terms involving the shift), we
can identify

M2
4 =

∫
dqy
√
g̃ e−

4q
q−2

A(y,t=0),
√−g4 = N̄ ā3, H2 =

[
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N̄ā
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. (A.23)

This definition for M4 is not the same as in previous literature [165, 166, 151], but rather
chosen to be consistent with our convention eq. (2.21). Note that eq. (A.20) defines the
conformal transformation typically used in the literature to transform to the Einstein frame.

Evaluating the cosmological apparent horizon area using eq. (2.17)

AH = 4π
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In the case where we make the approximation that Ȧ ' 〈Ȧ〉 (and neglecting terms involving
the shift) we find:

AH = 4π
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Though, for general warped metrics of the form eq. (A.13), the cosmological apparent
horizon cannot be precisely associated with the Hubble parameter as defined by dimensional
reduction in previous literature. However, we note that for the static warped solutions
discussed in the text, Ȧ = βγ = 0, and the correspondence does hold.

A.2 (D − 1) + 1 equations

A.2.1 Maxwell equations

Plugging in our metric and flux ansatz into the Maxwell equations (2.4), the evolution
equations for the electric and magnetic fluxes become

Q̇E = βθQE

(
Q′E
QE

+ (q − 1) cot θ

)
+NKQE + 2N(q − 1)Kφ1

φ1
QE −Nγ−1

θθ Q
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B

+Nγ−1
θθ QB

(
− (p− 1) γ′xx

2γxx
+

γ′θθ
2γθθ

+ (q − 1)
γ̃′φ1φ1
2γ̃φ1φ1

)
− γ−1

θθ (∂θN)QB

(A.26)

and

Q̇B = βθQB

(
Q′B
QB

+ (q − 1) cot θ

)
+QB∂θβ

θ −N (Q′E + (q − 1)QE cot θ)

−(∂θN)QE

(A.27)

where the dot represents differentiation with respect to time.

A.2.2 Generalized harmonic equations

We evolve the solutions using a space-time decomposition of the generalized harmonic
formulation [157, 292]. Here we write down the field equations for completeness. In this
formulation, the lapse and shift are evolution variables, in addition to the spatial metric
and extrinsic curvature. We also introduce the auxiliary fields π and ρm̄ that are directly
related to the time derivative of N and βm̄. We fix the coordinate degrees of freedom by
specifying a so-called source vector, HM such that the constraint vector

CM ≡ HM +
(

(D)ΓMNK −(D) Γ̄MNK
)
gNK = 0 (A.28)

vanishes. Here (D)Γ̄MNK denotes a background connection which we set to zero in the usual
generalized harmonic formulation (1.13). The generalized harmonic equations are

(D)RMN −∇(MCN) = −κ
[
n(MCN) − 1

(D−2)
gMNn

LCL

]
+
[
TMN − 1

D−2
gMNT

]
. (A.29)
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As was mentioned in 1.2.2, these are hyperbolic, provided the source functions are specified
directly as a function of the spacetime coordinates xM and the metric gMN .

We evolve the (D− 1) + 1 form of the generalized harmonic evolution equations [78] as
follows

∂tγxx = −2NKxx + γ′xxβ
θ (A.30a)

∂tγθθ = −2Kθθ + 2γθθ∂θβ
θ + βθγ′θθ (A.30b)

∂tγ̃φ1φ1 = −2NK̃φ1φ1 + βθ(γ̃′φ1φ1 + 2 cot θγ̃φ1φ1) (A.30c)

∂tKxx = − γ′xx
2γθθ

∂θN +N
(

(D−1)Rxx − 2Kx
xKxx +KKxx

)
+N

(
1

D − 2
γxx(S − ρ)− Sxx

)

+βθ∂θKxx −NC⊥Kxx −N
1

2
γ′xxC

θ − κNγxxC⊥/2 (A.31a)

∂tKθθ = −∂2
θN +

γ′θθ
2γθθ

∂θN +N
(

(D−1)Rθθ − 2Kθ
θKθθ +KKθθ

)
+N

(
1

D − 2
γθθ(S − ρ)− Sθθ

)

+βθ∂θKθθ + 2Kθθ∂θβ
θ −NC⊥Kθθ −N

1

2
γ′θθC

θ −Nγθθ∂θCθ − κNγθθC⊥/2 (A.31b)

∂tK̃φ1φ1 = −
(

cot θ
γ̃φ1φ1
γθθ

+
γ̃′φ1φ1
2γθθ

)
∂θN +N

(
(D−1)Rφ1φ1

sin2 θ
− 2γ̃φ1φ1(K̃φ1φ1)

2 +KK̃φ1φ1

)

+
1

p+ q − 2
Nγ̃φ1φ1

(
−2ΛD + γ̃

−(q−1)
φ1φ1

(p− 1)
[
Q2
E − γ−1

θθ Q
2
B

])
(A.31c)

+

(
∂θK̃φiφi −

γ̃′φ1φ1
γ̃φ1φ1

K̃φiφi

)
βθ −NC⊥K̃φ1φ1 −N

[
cot θγ̃φ1φ1 +

1

2
γ̃′φ1φ1

]
Cθ − κNγ̃φ1φ1C⊥/2

∂tN = N2π −N2H⊥ + βθ∂θN (A.32a)

∂tβ
θ = βθ∂θβ

θ +N2ρθ −Nγθθ∂θN +N2Hθ (A.32b)

and

∂tπ = −N
(
(p− 1)KxxK

xx +KθθK
θθ + (q − 1)Kφ1φ1K

φ1φ1
)

+Dm̄D
m̄N

+Cθ∂θN −
(D − 3)

(D − 2)
κNC⊥ −N

1

D − 2
((D − 3)ρ+ S) + βθ∂θπ (A.33a)

∂tρ
θ = γn̄l̄D̄n̄D̄l̄β

θ̄ +Nγθθ∂θπ − πγθθ∂θN − 2Kθθ∂θN

+2N

[
−(p− 1)

γ′xx
2γθθ

Kxx +
γ′θθ
2γθθ

Kθθ + (q − 1)

[
− (cot θ

γ̃φ1φ1
γθθ

+
γ̃′φ1φ1
2γθθ

) + cot θ

]
K̃φ1φ1

]

+κNCθ − 2Njθ + (βθ∂θρ
θ − ρθ∂θβθ) + (q − 1)βγ̃−1

φ1φ1

(A.33b)
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with the non-trivial constraints

C⊥ ≡ π +K = 0 (A.34a)

Cθ = −ρθ − (p− 1)
γ′xx
2γθθ

γxx +
γ′θθ
2γθθ

γθθ = 0

+(q − 1)

[
− (cot θ

γ̃φ1φ1
γθθ

+
γ̃′φ1φ1
2γθθ

) + cot θ

]
γ̃φ1φ1 (A.34b)

H = (D−1)R− 3KxxK
xx −KθθK

θθ − (q − 1)KφiφiK
φiφi +K2 − 2ρ = 0 (A.34c)

Mθ = Dm̄K
m̄
θ −DθK − jθ = 0 (A.34d)

where K ≡ γm̄n̄Km̄n̄, (D−1)R = γm̄n̄Rm̄n̄, D̄m̄ denotes the covariant derivative associated
with the background metric ḡMN which we assume to have a lapse of one, shift of zero
and a time-independent spatial metric under (D − 1) + 1 splitting. We also define H⊥ ≡
nMHM , Hm̄ ≡ γm̄NH

N and the various projections of stress-energy tensor TMN as Sm̄n̄ =
γMm̄ γ

N
n̄ TMN , ρ = nMnNTMN and jm̄ = −γKm̄TKNnN .

We find that our solutions are more stable if we choose a gauge such that the shift
vector is driven to zero, and the lapse is constant in time for the stationary background
solutions,

Hθ = − η

N2
βθ, H⊥ = −K0 (A.35)

where K0 is the initial value of the trace of the extrinsic curvature and η is some constant
controlling the rate at which the shift is driven to zero. We typically set κ = 15 and η = 10
in units where ΛD = 1, although their exact values are not too important.

A.3 Type IIB supergravity

In this section, we review the action of the low energy limit of type IIB string theory,
namely 10-dimensional type IIB supergravity (SUGRA). We refer the reader to [150, 291]
for a more detailed review. The fields of type IIB SUGRA are the higher dimensional
metric gMN , the dilaton-axion (complex) scalar τ = C0 + i exp−φ, two 2-form potentials
C2 = CMN and B2 = BMN with 3-form field strengths F3 = dC2 and H3 = dB2, and a self-
dual 5-form field strength F5 = dC4 = ?F5. It is often convenient to introduce the 5-form
F̃5 = dC4 −C2 ∧H3, where self-duality ?F̃5 = F̃5 must be imposed as an added constraint
on the solutions. It cannot be imposed on the action or else the wrong equations of motion
result. Working in the 10-dimensional string frame, the action for type IIB SUGRA is,

S =
1

2κ2
10

∫
d10x
√−g

{
exp−2φ

[
R + 4 (∂φ)2 − 1

2
|H3|2

]
−1

2
(∂C)2 − 1

2

∣∣∣F̃3

∣∣∣
2

− 1

4

∣∣∣F̃5

∣∣∣
2
}

+
1

4κ2
10

∫ (
C4 −

1

2
B2 ∧ C2

)
∧ F3 ∧H3, (A.36)
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where the last term only contributes as a boundary term and 2κ2
10 = (2π)7α′4 where α′

is the Regge slope [291]. Similarly to the theory studied in Chapter 2, type IIB SUGRA
consist of q-forms to stabilize the extra dimensions. However, the action we considered
in Chapter 2 does not contain a dilaton. Clearly, Freund-Rubin compactifications are too
simple to be realistic candidates for any string theory, yet they serve as a good illustration
of the kind of dynamics one may expect in string theories with flux compactifications.

A.4 Convergence tests

As mentioned in 1.2.2, ensuring that the constraints converge to zero with increasing
numerical resolution, and at the expected order, provides a consistency check that the
numerical solution obtained is converging to a solution of the field equations. Our numerical
scheme converges at fourth order with temporal resolution and exponentially with spatial
resolution. Figure (A.1) shows the integrated norm of the constraint violation given by
eq. (A.28) for several resolutions, demonstrating that this quantity is converging to zero
at the expected rate. The highest temporal resolution used in the resolution study is
equivalent to the resolution we use for the other solutions. The spatial resolution required
depends on whether the solution has inhomogeneous features that needs to be resolved or
not. For homogeneous solutions we typically use Nθ ∼ 20, for stationary oblate solutions
Nθ ∼ 72 and finally the prolate solutions typically require up to Nθ ∼ 152. For unstable
solutions, we perturb the solutions with a sufficiently small amplitude to ensure that we
are in the linear regime. In figure A.1, we plot the evolution of the metric variable γθθ for
a Freund-Rubin solution unstable to the warped instability, and perturbed with an initial
amplitude of h̄ = 10−5 and h̄ = 5 × 10−5. Both solutions undergo a clear exponential
growth phase before entering the nonlinear regime, with the time of saturation being set
by the amplitude of the initial perturbation.
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Figure A.1: Integrated norm of the constraint violation eq. (A.28) for different tempo-
ral (left) and spatial (middle) resolutions as a function of proper time (in units of the
background Hubble expansion) for q = 4, ΛD = 1, H/M4 = 0.0078 and an initial ` = 2
perturbation. The medium and high temporal resolutions have 2× and 4× the resolution
of the low resolution run. Nθ in the middle indicates the number of collocation points used.
We find that the constraint violations converge at fourth order in time and exponentially
in space. (Right) The time evolution of spatial average of relative difference of γθθ from
its background solution for q = 4, H/M4 = 0.0050 and an initial ` = 2 perturbation of
magnitude h̄ = 10−4 and h̄ = 5× 10−4. The linear warped instability is evident.
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Appendix B

Starting inflation from
inhomogeneous initial conditions
with momentum

B.1 Numerical methodology

We solve the equations of motion (1.1) and (3.4) using the generalized harmonic formu-
lation, as described in chapter 1.2.2. The numerical scheme we use follows that of [130],
which we briefly summarize here. We discretize the partial differential equations in space,
using standard fourth-order finite difference stencils, and in time, using fourth-order Runge-
Kutta integration. We control high frequency numerical noise using Kreiss-Oliger dissipa-
tion [231]. We use constraint damping to control the constraint violating modes sourced by
truncation error, with damping parameter values similar to those used in black hole forma-
tion using the generalized harmonic formulation [292]. We fix the gauge freedom through
specifying the source functions Hα, choosing damped harmonic coordinates [95, 243], as
in [128, 127]. During the expansion phase, we dynamically adjust the time step size in
proportion to the decreasing global minimum of 1/N where N is the lapse (this would
be N = 1/a3 in a homogeneous FLRW universe with harmonic time) in order to avoid
violating the Courant-Friedrichs-Lewy condition [127, 134, 111].

Following [292], we track the evolution of any apparent horizons by finding the surfaces
where the outer null expansion vanishes, and excise an ellipsoid-shaped region interior to
the horizon. We typically set the ratio of the maximum ellipsoid axis to the maximum
black hole radial value to be 0.78.

The simulation domain is three dimensional with length D in each direction. The
simulations are performed with between 384 and 512 points across each linear dimension.
Each single-field inflationary model run typically requires ∼ 12 core years. The two-
field inflationary scenario takes ∼ 21 core years. We construct initial data describing an
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inhomogeneous cosmology as described in section 3.2.2 and 3.2.1 using the the conformal
thin sandwich formalism, as described in [131]. The elliptic equations are solved using a
second-order accurate multigrid scheme with a typical resolution of 384 points across each
linear dimension.

Finally, we present a convergence test of our code and setup. In figure B.1, we show the
time evolution of the norm of the constraint violation Cα ≡ �xα −Hα for the strong-field
case considered in figure 3.3 for different numerical resolutions. For this case, the lowest
resolution is 256 across each linear dimension for the evolution and 192 for the initial data
code. The medium and high resolutions correspond, respectively, to an increased resolution
of 3/2 and 2× that of the lowest resolution, both in the initial data and evolution code.
We find that the constraints initially converge to zero at roughly second order and then
eventually transition to fourth order convergence. This is because the truncation error is
dominated by the second order convergence of the initial data code at first, but eventually
the truncation error of fourth order evolution code takes over. The high resolution in the
convergence study is equivalent to the resolution we use for most of the cases studied here.

0.0 0.1 0.2 0.3
t/L

10−6

10−5

10−4
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〈|C
a
|〉/
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2

Low res.

Med. res.
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Figure B.1: Volume integrated norm of the constraint violation as a function of time for
the case shown in right panel of figure 3.3. The medium and high resolution have 3/2×
and 2× the resolution of the low resolution. We observe second order convergence at first,
followed by fourth order convergence, which is consistent with the second order convergence
of our initial data code and fourth order convergence of our evolution code.

B.2 Modified CTS formalism

In some cases studied here, instead of solving both the momentum and Hamiltonian con-
straint using the the CTS formalism [131], we construct initial data by following a similar
approach to [159, 336], generalized to three dimensions, and choosing initial data such that
the momentum constraint is automatically satisfied. We then solve for the conformal factor
using the Hamiltonian constraint. Starting from the constraint equations in the CTS form
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(3.10), choosing conformally flat initial data γ̃ij = δij, choosing the lapse and shift vector
to be N = 1 and βi = 0, and letting the extrinsic curvature scalar be a constant given
by (3.17), the Hamiltonian and momentum constraint equations for a stress energy tensor
given by (2.3) become

∂i∂
iΨ = −

(
1

8
ÂijÂ

ij +
1

4
η̂2

)
Ψ−7 +

(
1

12
K2 − 1

2
V

)
Ψ5 +

1

4
∂iφ∂

iφΨ,

∂jÂ
ij = −2η̂δij∂jφ (B.1)

where
η̂ = Ψ6η = Ψ6∂tφ (B.2)

and in last step we assumed N = 1 and βi = 0. Let us consider the case where we have
inhomogeneities along all spatial dimensions. Then the momentum constraint is solved by
the following ansatz:

η̂(x) =
1√
2

[η̂0 + f0 cos(kx) + e0 cos(ky) + d0 cos(kz)] ,

φ(x) =
1√
2

[
φ̂0 + f1 cos(kx) + e1 cos(ky) + d1 cos(kz)

]
, (B.3)

and the particular solution

Âij =



Â11(x, y, z) Â12(x, y) Â13(x, z)

Â12(x, y) σÂ11(x, y, z) Â23(y, z)

Â13(x, z) Â23(y, z) −(1 + σ)Â11(x, y, z)


 , (B.4)

where f0, f1, e0, e1, d0, d1, and σ are parameters to choose and

Â11(x, y, z) = −η̂0f1 cos(kx)− 1

4
f0f1 cos(2kx)− η̂0

e1

σ
cos(ky)− 1

4

e0e1

σ
cos(2ky)

+η̂0
d1

1 + σ
cos(kz) +

1

4

d0d1

1 + σ
cos(2kz) (B.5)

Â12(x, y) = e0f1 sin(kx) sin(ky), where e0f1 = e1f0 (B.6)

Â13(x, z) = d0f1 sin(kx) sin(kz), where d0f1 = d1f0 (B.7)

Â23(x, z) = d0e1 sin(ky) sin(kz), where d0e1 = d1e0 (B.8)

The conditions on the constants f0, f1, e0, e1, d0, and d1 come from substituting the
ansatz into (B.1).
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Appendix C

Evolution of black holes through a
nonsingular cosmological bounce

C.1 Numerical methodology

We solve the equations of motion (4.2) using the generalized harmonic formulation as
described in chapter 1.2.2. The numerical scheme we use is the same as in chapter 3
and follows that of [130]. We fix the gauge freedom by working in harmonic coordinates,
�xα = 0. Just like in chapter 3 and [127, 134], we dynamically adjust the time step size in
proportion to the decreasing global minimum of 1/α during the expanding phase (where
α = 1/a3 in a homogeneous FLRW universe, see eq. (4.3)).

We dynamically track the outer apparent horizon of the black hole, and excise an
ellipsoid-shaped region interior the horizon. We typically set the ratio of the maximum
ellipsoid axis to the maximum black hole radial value to be 0.6.

We compute the event horizon by integrating null surfaces backwards in time [22, 241,
325] (we restrict this to spherically symmetric cases, where it is sufficient to consider
spherical null surfaces). Since we are not able to evolve the spacetime to infinite proper
time (at which point the event and apparent horizon would coincide), we cannot precisely
determine the final position of the event horizon. Instead, we use the apparent horizon as
the approximate location of the event horizon and choose a range of initial guesses around
this value. For two surfaces initially separated by 2.5rBH,0, we find that their separation
decreases to 0.1rBH,0 within ∼ 4× 10−3|Hmin|−1 when evolving the null surfaces backwards
in time, after which we consider the location of the event horizon to be accurate to the
desired accuracy. Note that the separation rapidly decreases when integrating backwards
in time, a direct consequence of the divergence of the null geodesics going forward in time
[241].

We additionally make the use of compactified coordinates so that physical boundary
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conditions can be placed at spatial infinity [292]:

xi = tan

(
πx̂i

2

)
, (C.1)

so that x̂i = 1 corresponds to xi =∞. Unlike in [292] though, we work in an asymptotically
FLRW spacetime instead of an asymptotically flat spacetime, similar to what is done in
[126]. That is, at our spatial boundary we set

gtt = −α(t)2, gti = 0, gij = a(t)2δij, (C.2)

where the lapse α(t) = a(t)3; and the scale factor a(t) satisfies the Friedmann equations,
eq. (4.4).

We use Berger-Oliger [48] style adaptive mesh refinement (AMR) supported by the
PAMR/AMRD library [294, 295]. Typically our simulations have 9–12 AMR levels (using
a 2 : 1 refinement ratio), with each nested box centered on the initial black hole and between
128 and 256 points across the x-direction on the coarsest AMR level. The interpolation in
time for the AMR boundaries is only third-order accurate, which can reduce the overall
convergence to this order in some instances. As we restrict to axisymmetric spacetimes, we
use the modified Cartoon method to reduce our computational domain to a two-dimensional
Cartesian half-plane [292]. Each of our production runs typically takes one core year to
complete.

We construct initial data describing a black hole of mass M(t = 0) = M0 in an initially
contracting FLRW spacetime described in section 4.2.2. We solve the constraint equations
using the conformal thin sandwich formalism, as described in [131]. More precisely, we
choose the initial time slice to have constant extrinsic curvature K = −3H0 where H0 =
H0a0

−3 is given by (4.4d), and the initial values for {φ, φ′, χ, χ′, a, a′} are fixed by (4.10)
(a similar approach was employed in [127, 126]). Without loss of generality, we choose the
initial value of the ratio between the energy density of the φ and χ fields and V0 to be
such that during the contraction phase, the Hubble radius of the background cosmology
RH ≡ |H−1| shrinks from an initial value of RH(t = 0) = 75rBH,0 to 4.34rBH,0 (here rBH,0 is
the initial black hole radius). We considered a range of initial black hole masses, keeping
the initial ratio of Hubble to black hole radius to be 75, but changing the minimum Hubble
to initial black hole radius ratio from 4.34rBH,0 all the way to 0.87rBH,0. We also study
some black holes with an initial dimensionless spin of a0 = 0.5.

Finally, we present a convergence test of our code and setup. In figure C.1, we present
the time evolution of the apparent horizon of the black hole and the norm of the constraint
violations Cα ≡ �xα integrated over the coordinate radius r ≤ 265M0, for a non-spinning
black hole with initial mass such thatRH,min = 1.45rBH,0, for different numerical resolutions.
For this case, the lowest resolution is 128 points across the x-direction on the coarsest AMR
level with 10 levels of mesh refinement and a spatial resolution of dx/M0 ≈ 0.004 on the
finest level. The medium and high resolutions correspond, respectively, to an increased
resolution of 3/2 and 2× that of the lowest resolution run. We find that the constraints
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converge to zero at roughly third order. This is because the convergence is dominated by
the third order time interpolation on the AMR boundaries. The medium resolution in the
convergence study is equivalent to the resolution we use for all the other cases studied here.
We place the mesh refinement such that the radius of the black hole resides inside the finest
AMR level initially. During the evolution, the mesh refinement is adjusted according to
truncation error estimates to maintain roughly the same level of error.
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Figure C.1: The integrated norm (left) of the constraint violations Cα ≡ �xα integrated
over the coordinate radius r ≤ 265M0 and the apparent horizon (right), for a black hole
with initial radius such that RH,min = 1.45rBH,0, for different resolutions. The medium
(high) resolution case has 1.5× (2×) the resolution of the low resolution, and the conver-
gence is consistent with third order.

C.2 Various notions of black hole and cosmological

horizons

C.2.1 General definitions and properties

Nonsingular classically bouncing cosmologies require the violation of the NCC [261, 221, 21,
43, 70]. The NCC plays a fundamental fundamental role in the classical area law for black
holes [181, 39]. Given this, we pay particular attention to the dynamics of the black hole
horizon in our simulations. In addition to the event horizon (which can only be computed
once the whole spacetime is known [325]), there are several other quasi-local definitions of
black hole horizons which we measure: dynamical horizons [32, 31, 30], apparent horizons
[32, 60, 182, 31, 30, 306, 142], and holographic screens [62, 64, 65] (also called marginally
trapped tubes [29]).

For completeness, we collect the definitions and some of the basic properties of these
horizons in this appendix. Wherever applicable, we also discuss how these definitions can
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Figure C.2: The effective scale factor |γ3|1/6 computed from (4.17) for a black hole with
initial mass such that the Hubble radius of the background cosmology RH ≡ |H−1| shrinks
from an initial value of RH,0 = 75rBH,0 to 4.34rBH,0 (left)/2.17rBH,0 (right). The solid line
shows the corresponding background solution and the dashed and dash-dotted lines the
values at different coordinate radii. The vertical grey line is the time at which the black
hole reaches its maximum mass as observed by the apparent horizon.

be extended to define cosmological horizons. We refer the reader to [32, 60, 182, 31, 30,
306, 142, 62, 64, 65] for more thorough reviews on this subject.

Trapped surfaces and apparent horizons
Let S be a smooth, closed, orientable spacelike two-dimensional submanifold in a four-
dimensional spacetime (M, gab). We then define two linearly independent, future-
directed, null vectors normal to S, normalized1 such that

gαβl
αnβ = −1 (C.3)

where by convention lα and nβ are respectively the outgoing and ingoing2 null nor-
mals. The two-metric induced on S is

q̃αβ = gαβ + lαnβ + nαlβ, (C.4)

and the null expansions are defined as

Θ(l) ≡ q̃αβ∇αlβ, Θ(n) ≡ q̃αβ∇αnβ. (C.5)

1This convention varies across the literature. We follow [306], which is different from [30].
2In asymptotically flat or AdS spacetimes, the notions of outward and inward are the intuitive ones but

in cosmological spacetimes–where an independent notion of “outward” such as conformal infinity do not
exist–this is no longer true. In the context of our numerical simulations, we naturally define the outgoing
(ingoing) direction as the direction from the origin (spatial infinity) to spatial infinity (the origin).
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Figure C.3: The apparent horizon of the black hole (purple) and the corresponding event
horizon (yellow dashed) for a black hole with initial mass such that the Hubble radius of
the background cosmology RH ≡ |H−1| shrinks from an initial value of RH,0 = 75rBH,0 to
8.69rBH,0. The vertical solid line indicates the bounce, while the region between the dashed
lines is the bouncing phase (where the NCC is violated). The line style of the apparent
horizon reflects the signature of the marginally trapped tube or holographic screen (solid
is timelike, dashed is spacelike).

The closed two-surface S is a trapped surface if the outgoing and ingoing expansions
are strictly negative i.e. if {Θ(l) < 0,Θ(n) < 0} and a marginal trapped surface if the
outgoing null expansion vanishes i.e if {Θ(l) = 0,Θ(n) < 0}. Conversely, the closed
two-surface S is am anti-trapped surface if the outgoing and ingoing expansions are
strictly positive i.e. if {Θ(l) > 0,Θ(n) > 0} and a marginal anti-trapped surface if the
ingoing null expansion vanishes i.e if {Θ(l) > 0,Θ(n) = 0}.
A marginal trapped surface (Θ(l) = 0) is future if Θ(n) < 0, past if Θ(n) > 0, outer if
L(n)Θ(l) < 0 and inner if L(n)Θ(l) > 0. Conversely, a marginal anti-trapped surface
(Θ(n) = 0) is future if Θ(l) < 0, past if Θ(l) > 0, outer if L(l)Θ(n) < 0 and inner if
L(l)Θ(n) > 0.

A black hole apparent horizon is a future marginally outer trapped surface. Within
the context of cosmology, the cosmological apparent horizon of an expanding FLRW
spacetime is a past marginally inner anti-trapped surface. For a contracting FLRW
spacetime, the cosmological apparent horizon is a future marginally inner trapped
surface.

Dynamical horizons and holographic screens
We now have all the ingredients to introduce the concept of a Marginally Trapped
Tube (MTT): A MTT is a smooth, three-dimensional submanifold that is foliated
by MTSs. If a MTT is everywhere spacelike, it is referred to as a dynamical horizon

156



[30, 31]. If it is everywhere timelike, it is called a timelike membrane (TLM)3. Finally,
if it is everywhere null then we have an isolated horizon.

We next outline the various ingredients that go into the area law of dynamical hori-
zons (the quasi-local horizon that appears the most frequently in our numerical so-
lutions). It is straightforward to derive an area law for purely spacelike or purely
timelike dynamical horizons. Consider first the spacelike case. Let H be a dynamical
horizon and S be a member of the foliation of future marginally trapped surfaces.
Since H is spacelike, we can define a future-directed unit timelike vector normal to
H, τ̂a and a unit outward pointing spacelike vector tangent to H and normal to the
cross-sections of H, r̂α. A suitable set of null normals is then

lα =
1√
2

(τ̂α + r̂α), nα =
1√
2

(τ̂α − r̂α). (C.6)

Then since (by the definition of a dynamical horizon) Θ(l) = 0 and Θ(n) < 0, it follows
that the extrinsic curvature scalar of S is

K̃ = q̃αβDαr̂β = −Θ(n)√
2
> 0, (C.7)

where Dα is the covariant derivative operator on H. This shows that the area of
the cross-sections of a spacelike dynamical horizon increases along r̂α. We emphasize
that this does not necessarily imply that the area increases in time. In spherical
symmetry, we explicitly show below (section C.2.2) that the outward vector points in
the future when the area increases in time and in the past when the area decreases
in time. For a timelike dynamical horizon, the roles of τ̂α and r̂α are interchanged.
In this case, r̂α is no longer tangential to H, and is instead the unit spacelike vector
normal to H. Additionally, τ̂α is instead the unit timelike vector tangent to H and
orthogonal to the cross-sections of H. The area law then becomes

K̃ = q̃αβDατ̂β = +
Θ(n)√

2
< 0, (C.8)

i.e. the area of a timelike dynamical horizons decreases along τ̂α. Note this law does
not rely on any energy conditions, such as the NCC.

Finally, we note that the area law defined in [30, 31] only applies to dynamical
horizons and timelike membranes. The definition does not include marginally anti-
trapped tubes, which are often present in cosmological settings, or marginally trapped
tubes which may not have a definite signature at a given time. To remedy this, Bousso
and Engelhardt [64, 65] formulated and proved a new area theorem applicable to
an entire hypersurface H of indefinite signature. The area theorem is based on a
few technical assumptions but should be applicable to most hypersurfaces foliated
by marginally trapped or anti-trapped surfaces S, called leaves. In this context,

3More recently this surface has also been called a timelike dynamical horizon; see appendix B of [31].
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marginally (anti-)trapped tubes are referred to as future (or past) holographic screens.
More precisely, the Bousso-Engelhardt area theorem is: the area of the leaves of any
future (past) holographic screen, H, increases monotonically along H. The direction
of increase along a future (past) holographic screen is the past (future) on timelike
portions of H or exterior on spacelike portions of H. Thus H only evolves into the
past (future) and/or exterior of each leaf.

C.2.2 Dynamical horizons and timelike membranes in spherical
symmetry

As most of our simulations are performed in an essentially spherically symmetric spacetime,
here we consider the properties of dynamical horizons for these spacetimes in more detail.
The main purpose of this section is to illustrate how the area law for dynamical horizons
[30, 31] reduces to an essentially tautological statement about the dynamics of the horizon
area.

We use r to denote the areal radius, and we will work with a gauge such that r is also
a coordinate of the spacetime, that is we will consider a metric of the form

ds2 = αabdx
adxb + r2

(
dϑ2 + sin2 θdϕ2

)
, (C.9)

where αab is a two-dimensional metric that is function of (t, r) (here t is the timelike
coordinate). We recall that in spherical symmetry the expansion for a null vector vµ is [46]

Θ(v) =
1

4πr2
vα∂α

(
4πr2

)
=

2

r
vr. (C.10)

The last expression follows from our imposing a gauge such that the areal radius is also a
coordinate of our spacetime.

We consider the level sets of a function

F (t, r) ≡ r(t)− r. (C.11)

Case 1: the level sets of F are spacelike.

We define a unit timelike vector orthogonal to the level set of F :

τ̂α ≡
1√

−∇βF∇βF
∇αF =

1

Nτ̂
(ṙ,−1, 0, 0) , (C.12)

where we have defined Nτ̂ ≡
√−∇αF∇αF . We next find the unit spacelike vector

orthogonal to τ̂α, r̂αr̂
α = 1, r̂ατ̂

α = 0. We write r̂α as

r̂α =
1

Nr̂

(
1

ṙ
, 1, 0, 0

)
, (C.13)
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where Nr̂ is the normalization. Defining the null vectors according to (C.6), a surface
r(t) is trapped if Θ(l) = 0,Θ(n) < 0, and it is anti-trapped if Θ(l) > 0,Θ(n) = 0. The
area law for dynamical horizons states that the area of the dynamical horizon must
increase in the direction of r̂α as we evolve along r̂α [30, 31]. From the form of r̂α, we
see that this reduces to: if ṙ > 0, then the dynamical horizon area increases in the
direction of increasing time, and if ṙ < 0, then the dynamical horizon areas increases
in the direction of decreasing time.

Case 2: the level sets of F are timelike.

Analogous to the case when the level set is spacelike, we define a unit spacelike vector
orthogonal to the level set of F :

r̂α ≡
1√

−∇βF∇βF
∇αF =

1

Nr̂
(ṙ,−1, 0, 0) , (C.14)

and a unit timelike vector orthogonal to r̂α,

τ̂α =
1

Nτ̂

(
1

ṙ
, 1, 0, 0

)
, (C.15)

where Nt̂ is the normalization. Again, a surface r(t) is trapped if Θ(l) = 0,Θ(n) < 0,
and it anti-trapped if Θ(l) > 0,Θ(n) = 0. The area law for timelike membranes states
that the area of the timelike membrane must decrease in the direction of τ̂α as we
evolve along τ̂α [30, 31]. From the form of τ̂α, we see that this statement then reduces
to: if ṙ > 0, then the membrane area increases in the direction of increasing time,
and if ṙ < 0, then the membrane area increases in the direction of decreasing time.

C.3 The McVittie spacetime

Here we briefly review the McVittie spacetime [258] (see also [266, 265, 267, 240, 143, 216,
144]), which is an analytic solution to the Einstein equations that describes a spherically
symmetric black hole embedded in an asymptotically cosmological spacetime provided the
cosmology asymptotes (in time: t → ∞) to a de-Sitter cosmology–for more discussion on
this point, see [216]4. The two most salient properties of the McVittie spacetime are that
the spacetime is spherically symmetric and satisfies the no-accretion condition, Gr

t = 0,
which in turn implies that the stress-energy component T rt = 0. Thus, there is no radial
flow of cosmic fluid in the McVittie solution (this assumption can be dropped for some
generalizations of the McVittie spacetime [143]). We relax all of these assumptions in
our numerical simulations, in addition to working in a set of coordinates that allows us

4We note that while other spacetimes that describe black holes embedded within an asymptotically
FLRW universe have been proposed [307, 323, 163], here we only focus on the McVittie spacetime as it
remains the most widely studied exact spacetime of this form.
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to extend our spacetime past the black hole horizon, which to our knowledge has not yet
been accomplished for the McVittie spacetime or its generalizations. While our numerical
solutions differ in many of their properties from the McVittie spacetime, the McVittie
spacetime serves as a useful analytic example to understand some of the properties of
dynamical, apparent, and event horizons in spacetimes that have a black hole and an
asymptotic cosmological expansion (see section C.2).

We consider only spatially flat McVittie solutions. The spacetime metric in isotropic
coordinates is

gαβdx
αdxβ =−

(
1− m(t)

2r̄

)2

(
1 + m(t)

2r̄

)2dt
2 + a2(t)

(
1 +

m(t)

2r̄

)4 (
dr̄2 + r̄2dΩ2

)
. (C.16)

where the McVittie no-accretion condition requires that the mass function m(t) satisfies

ṁ

m
= − ȧ

a
(C.17)

or

m(t) =
mH

a(t)
(C.18)

where a(t) is the scale factor of the FLRW background, an overdot denotes differentiation
with respect to comoving time, and mH ≥ 0 is an integration constant. The Misner-
Sharp [260] (or Hawking-Hayward [180, 183]) quasi-local mass MMS—which is a coordinate
invariant notion of energy for spherically symmetric spacetimes—is defined to be

1− 2MMS

rA
≡ (∇rA)2 , (C.19)

where rA = a (1 +m/2r̄)2 r̄ is the areal radius. From (C.19), one can show that the
Misner-Sharp mass for the McVittie spacetime is (see e.g. [142])

MMS = mH +
1

2
H2r3

A. (C.20)

Here H ≡ 1
a(t)

da(t)
dt

is the asymptotic Hubble expansion. When H is constant, this is the
Schwarzschild-de Sitter metric in coordinates analogous to outgoing Eddington-Finkelstein
coordinates. This metric is a solution to the Einstein equations provided H satisfies the
Friedmann equation

H(t)2 =
8π

3
ρ(t), (C.21)

where ρ(t) ≡ τ̂ατ̂βTαβ is the energy density of background fluid and τ̂α the unit timelike
normal to hypersurfaces of constant t. In principle, one may consider arbitrary FLRW
backgrounds generated by cosmic fluids satisfying any equation of state. However, the
McVittie spacetime only describes a black hole embedded in a cosmology if the spacetime
asymptotes to a de Sitter background as r →∞, t→∞ [216]. With this caveat in mind,
from eq. (C.20) we can think of mH as the mass of the black hole, and 1

2
H2r3

A = (4πr3
A/3)ρ

as the mass of the cosmological fluid encapsulated within a sphere of radius rA.
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C.3.1 Apparent horizons and event horizons in the McVittie
spacetime

Here we briefly review different notions of horizons in the McVittie spacetime [216, 144]
for reference and comparison to our numerical study. To do so, we rewrite the McVittie
line element (C.16) in terms of the areal radius such that the line element becomes

gαβdx
αdxβ =−

(
1− 2mH

rA
−H2r2

A

)
dt2 − 2HrA√

1− 2mH
rA

dtdrA +
1

1− 2mH
rA

dr2
A + r2

AdΩ2,

(C.22)

We now use the notions introduced in section C.2 to derive the location of the black hole
and cosmological apparent horizons in McVittie spacetimes given by (C.22). We define the
following orthonormal timelike and spacelike vectors, (that is r̂αr̂

α = 1, τ̂αr̂α = 0):

τ̂αdx
α ≡

(
1− 2mH

rA

)1/2

dt, (C.23)

r̂αdx
α ≡−HrAdt+

(
1− 2mH

rA

)−1/2

drA. (C.24)

With the unit timelike vector τ̂α and unit spacelike vector r̂α we can define the following
metrics

hαβ ≡ gαβ + τ̂ατ̂β, q̃αβ ≡ gαβ + τ̂ατ̂β − r̂αr̂β, (C.25)

The tensor hαβ can be identified with the spatial Riemannian metric of constant t slices,
and q̃αβ can be identified with the angular metric. In the coordinates eq. (C.22), the null
expansions (C.5) associated with the null vectors (C.6) reduce to

Θ(l) =
1

rA
lα∂αrA =

1

rA
lr̂ =

1

rA

(
HrA +

√
1− 2mH

rA

)
, (C.26)

Θ(n) =
1

rA
nα∂αrA =

1

rA
nr̂ =

1

rA

(
HrA −

√
1− 2mH

rA

)
. (C.27)

At the apparent horizons we have Θ(l)Θ(n) = 0. For the McVittie solution the apparent
horizons are then located at the zeros of

H(t)2r3
A − rA + 2mH = 0. (C.28)

In general, there are at most two real solutions. The smaller root r− = r
(
Θ(l) = 0,Θ(n) < 0

)

is called the black hole apparent horizon, since it reduces to the Schwarzschild horizon
r− = 2mH in the limit where there is no background expansion H → 0, while the larger
root is called the cosmological apparent horizon, as it reduces to the static de Sitter horizon
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r+ = r
(
Θ(n) = 0,Θ(l) > 0

)
= 1/H0 in the limit m → 0 and H = H0 > 0 [216, 144, 142].

In [216], the authors further showed that the surface defined by Θ(l) = 0, t → 0 in fact
defines the surface of the event horizon for a black hole, provided that limt→∞H = H0 > 0
and H > 0 for all t. In this limit the black hole asymptotes to a Schwarzschild de-Sitter
solution as t→∞. However, when the spacetime asymptotes to an FLRW cosmology with
a scale factor obeying a power law, so that limt→∞H = 0, then the authors showed that
the surface defined by Θ(l) = 0 asymptotes to a region with a weak curvature singularity,
essentially due to the divergence of the radial pressure (together with the Ricci scalar)
required to keep the matter density on t = const. slice constant .

Although the Schwarzschild-de Sitter black hole does not change size, it is not unrea-
sonable to expect that in more general FLRW spacetimes, black holes could expand or
contract in size. In particular, if one were to relax the no-accretion condition, then this
would allow for the black hole to accrete matter from the surrounding cosmic fluid. There
are many generalizations of the McVittie spacetime in the literature and we refer the in-
terested reader to [142] for a review. However most generalizations of this spacetime are
limited to either a no-flux condition, or to specific kinds of matter fields. For example,
to work around the no-flux condition, in [143] the authors had to use a fluid model that
includes a “heat” current vector. Because of this, it may be difficult to draw general con-
clusions from the generalized McVittie models. For example, there are conflicting claims
about whether a black hole expands/contracts in a universe filled with matter/phantom
energy, where studies making use of the McVittie model reach the opposite conclusion of
studies that do not make use of the model [35, 155, 156].
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Appendix D

Nonlinear studies of binary black
hole mergers in
Einstein-scalar-Gauss-Bonnet gravity

D.1 Convergence tests and accuracy of our simula-

tions

Here we quantify the main sources of error in our simulations, which include the numerical
truncation error, finite radius extraction effects, and residual orbital eccentricity.

D.1.1 Truncation error and convergence

We first consider the truncation error, which is due to the finite resolution of the simula-
tions. The simulations of the binary black hole systems with mass ratio q = 1 and q = 2/3
presented in this work use eight levels of adaptive mesh refinement with a refinement ratio
of 2 : 1, and have a linear grid spacing of dx = 0.012M0 on the finest level containing
the smallest back hole. The results for the mass ratio q = 1/2 use nine levels of adaptive
mesh refinement and a grid spacing of dx = 0.006M0 around the smallest black hole. Each
binary black hole simulation takes between ∼ 9 and ∼ 13 cpu core years.
In Fig. D.1, we plot the integrated constraint violation for a q = 2/3, ζ1 = 0.075 binary
with grid spacing that is 4/3 and ×2/3 as large as default resolution. We also perform a
resolution study of a q = 1/2, ζ1 = 0.075 binary, where the linear spacing of the medium
resolution is dx = 0.005M0 and covers the smallest black hole. The integrated constraints
shown in Fig. D.1 have grid spacing 4/3 and ×2/3 as large as medium resolution. We
see roughly third order convergence in the constraint violation. Though we use fourth
order finite difference stencils and Runge-Kutta time integration, this level of convergence
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Figure D.1: Volume integrated norm of the constraint violation as a function of time for
a nonspinning q = 2/3 and q = 1/2 binary black hole merger with ζ1 = 0.075 at three
resolutions. The medium and high resolutions have 1.5 × and 2× the resolution of the low
resolution on the coarsest grid. We observe roughly third order convergence of our runs,
which is consistent with the third order in time interpolation used on the boundaries of
adaptive mesh refinement grids [130, 295].

is consistent with the third order interpolation in time used to set values on the boundaries
of adaptive mesh refinement levels.

In Fig. D.2, we plot the self-convergence of the amplitude and phase for Ψ4,22 and φ11

for the q = 1/2, ζ1 = 0.075 run. Unlike the integrated constraint violation, we find that
Ψ4,22 and φ11 converge at roughly fourth order for q = 1/2. For the same run, we show the
Richardson extrapolated error in the phase and amplitude for Ψ4,22 and φ11 (Fig. D.3).

As discussed in Sec. 5.4, because we use the same numerical resolution for carrying
out the GR and sGB simulations, which we then compare to compute the dephasing δΦ,
there is a cancellation which leads to a smaller truncation error in this quantity compared
to the overall truncation error in Φ. This is illustrated in Fig. D.4, where we estimate
the truncation error in δΦ by comparing a q = 1/2 GR simulation to an equivalent sGB
simulation with ζ1 = 0.075 at two different resolutions. We compare this to an estimate of
the overall truncation error in Φ for the same sGB case, and carry out a similar comparison
for the GW amplitude.

D.1.2 Extraction error of waveforms

We next consider the extraction error, that is, the errors in our waveforms due to extracting
them at a finite radius. To estimate the extraction error we compute the complex amplitude
and phase of the (` = 2,m = 2) multipole of Ψ4 defined in Eq. (D.3) and the (` = 1,m =
1) multipole of φ defined in Eq. (5.5b) at several extraction radii, and extrapolate the
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Figure D.2: We show the absolute differences between the low, medium, and high reso-
lutions of the amplitude and phase of the scalar (left) and tensor (right) waveforms for a
nonspinning BH binary with mass ratios q = 1/2 and coupling ζ1 = 0.075. We see that the
waveform converges at between fourth order and fifth order (corresponding to the scaling
used for the dashed and the dashed-dotted lines, respectively). Note that we only show
the scalar waveform from 50M0 onwards as the scalar field is zero before then.
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Figure D.3: Truncation error estimate of the medium resolution obtained from the Richard-
son extrapolation of the phase Φ(t) and amplitude A(t) of the scalar (left) and tensor (right)
waveform extracted at 100M0 for a nonspinning BH binary with mass ratio q = 1/2 and
coupling ζ1 = 0.075.
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Figure D.4: We show the difference between the low and medium resolutions of the ampli-
tude (left) and phase (right) of the gravitational waveform for a nonspinning BH binary
with mass ratio q = 1/2 and coupling ζ1 = 0.075 (solid purple) and the difference of the
difference between the sGB and GR amplitude and phase at low and medium resolutions
(dashed brown line). This provides evidence that the truncation error roughly cancels
between the sGB and GR runs.

quantities to infinity by fitting them to polynomials in 1/r

A(r, tret) =
N∑

n=0

A(n,N)(tret)

rn
, (D.1a)

ξ(r, tret) =
N∑

n=0

ξ(n,N)(tret)

rn
. (D.1b)

where tret = t − r refers to the retarded time, A is the amplitude of the waveform, and ξ
is the phase. The time-dependent n = 0 coefficients are then used as the amplitude and
phase of the asymptotic waveform. The error from computing a field quantity u(tret, r) at
a finite radius ri is then

ε(u, ri, N) = |u(tret, ri)− u(0,N)(tret)|. (D.2)

In Fig. D.5 and D.6, we plot our estimates for the error due to the extraction of the
gravitational and scalar waveforms at a finite radius. Comparing these to the estimate of
the truncation error in Fig. D.3 we conclude that the finite resolution of the code is the
dominant source of error.

D.1.3 Orbital eccentricity

To estimate the orbital eccentricity of the binary system, introduced by imperfect initial
data, we use the gravitational wave phase [263]. We write the (`,m) = (2, 2) component
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Figure D.5: Deviation of the phase, ε(Φ22, ri, 1) (left) and relative deviation of the ampli-
tude, ε(A, ri, 1)/A0,1 (right) of the waveform rΨ4,22(t, r)M0 = A(t, r)eiΦ22(t,r) obtained at
finite extraction radius from the values extrapolated according to Eq. (D.1) for a nonspin-
ning BH binary with mass ratio q = 1/2 and coupling ζ1 = 0.075.
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Figure D.6: Deviation of the phase, e(Φ, ri, 1) (left) and relative deviation of the amplitude,
e(A, ri, 1)/A0,1 (right) of the waveform (r/M0)φ11(t, r) = A(t, r)eiΦ(r,t) obtained at finite
extraction radius from the values extrapolated according to Eq. (D.1) for a nonspinning
BH binary with mass ratio q = 1/2 and coupling ζ1 = 0.075.
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of Ψ4 in the wave zone as:

r M0 ×Ψ4,22 ≡ A22(t, r)e−iΦ22 +O
(

1

r

)
. (D.3)

We fit a 5th order polynomial to the orbit-averaged Φ to obtain Φfit, and define the eccen-
tricity to be the amplitude of the oscillating function

eΦ(t) ≡ Φ22(t)− Φfit,22(t)

4
. (D.4)

We plot the eccentricity [see Eq. (D.4)] of our simulations in Fig. D.7 for different
values of ζ1 and resolution. Ideally, an eccentricity estimator will plot a sinusoidal wave as
a function of time [263]. Our eccentricity measurements have higher harmonics, which we
attribute to the junk radiation from the choice of puncture initial data, and from the black
hole scalarization process, and from the fact that we only measure the eccentricity over a
relatively short inspiral time (t/M0 < 1000). While the eccentricity does slightly increase
with increasing ζ1, we find that our eccentricity is mostly limited by resolution, and not
from perturbations caused by our initial data. This suggests that the dephasing between
the sGB and GR simulations is not dominated by small differences in the eccentricity of
our simulations caused by the rapid development of the scalar field around the black holes
at early times.

D.2 Post-Newtonian results in sGB gravity

Due to the presence of monopole scalar charge around each black hole in sGB gravity, black
hole inspirals can emit scalar radiation, which enters at −1PN order as dipole emission
for unequal mass black hole binaries. The calculation of the leading PN correction to the
gravitational and scalar radiation for binary black holes in sGB gravity was carried out in
Ref. [339]. In the limit of an exactly equal mass, nonspinning binary, the dipole radiation
vanishes. More generally it is straightforward to see that any odd multipole of a scalar is
zero in this case as the spherical harmonics are odd under parity inversion (~r → −~r), but
the spacetime in this case is even under this transformation. Thus, for equal mass black
hole binaries, the scalar waveform enters at higher PN order [339, 311, 312].

The PN calculations initiated in Ref. [339] were recently extended to higher PN order in
Refs. [311, 312]. In those works, the authors additionally considered more general Gauss-
Bonnet couplings f(φ)G. Here we only present the leading-order PN results. To leading
order in ζ1, spherical harmonic components of the scalar radiation of the binary system go
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Figure D.7: Eccentricity estimator of the q = 1, q = 2/3, and q = 1/2 mass ratio inspirals
for several different values of ζ1, and for the q = 2/3 mass ratio at different resolutions.
We see that the eccentricity of the binaries we study is affected by both the form of our
initial data (the formation of scalar charge from vacuum initial conditions), and, to a
greater extent, from the resolution of our runs. We measure the eccentricity using the
radially extrapolated Weyl scalar Ψ4,22. The low and high resolution have 2/3 and 4/3×
the resolution of the medium resolution which has a linear grid spacing of dx = 0.006M0

on finest level.
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as [339, 334, 311, 312])

φ00 ≈
(

2λ

r

)
(8π)1/2 M0

m1m2

, (D.5a)

φ11 ≈ −
(

2λ

r

)(
2π

3

)1/2(
1 +

3m2
1 + 3m2

2 + 4m1m2

M2
0

x

)
∆M0

m1m2

x1/2, (D.5b)

φ22 ≈ −
(

2λ

r

)(
8π
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)1/2
m2

1 −m1m2 +m2
2

M0m1m2

x, (D.5c)

φ33 ≈
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)(
1296π
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0m1m2
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φ44 ≈
(

2λ

r

)(
2048π

315

)1/2
m4

1 −m3
1m2 +m2

1m
2
2 −m1m

3
2 +m4

2

3m1m2M3
0

x2, (D.5e)

where m1,2 are the masses of the two black holes, with the convention m1 ≤ m2 (see
Sec. 5.3.2), Ω is the angular velocity of the binary in the center of mass frame, and

φ`m ≡ lim
r→∞

∫

S2
Ȳlmφ, (D.6a)

M0 ≡ m1 +m2, (D.6b)

∆M ≡ m2 −m1, (D.6c)

x ≡ (M0Ω)2/3 . (D.6d)

Note that the second terms in Eq. (D.5), which are raised to the 1/2 power, come from the
integral over the sphere of Ȳlm. The scalar waveforms Eq. (D.5) are presented to leading
order in the PN expansion, except for the ` = m = 1 waveform, which has been computed
to 0.5PN order [311, 312].

We next consider the dephasing of gravitational waves in PN theory. We write the
orbital phase in the time domain as a function of the PN parameter x,

Φ(x) = ΦGR(x) + δΦ(x). (D.7)

Here, ΦGR is the orbital phase when setting λ = 0, and δΦ is the additional phase shift that
comes from the emission of scalar radiation. In the PN expansion of scalarized compact
objects, there are two limits considered in the literature: the dipole driven regime and
the quadrupole driven regime [309, 312]. In the dipole driven regime, the dipole scalar
emission is the dominant source of radiated energy, while in the quadrupole driven regime,
the dominant source of radiated energy is the gravitational wave emission. The system is
in the quadrupole driven regime when

x &
5

24
S−2 (D.8)
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where we introduced the scalar dipole

S± ≡
α2 ± α1

2
√
ᾱ

, (D.9)

where ᾱ ≡ (1 + α1α2), and αi are the black hole sensitivities for sGB gravity [206, 207] (for
their explicit values, see Eq. (D.10) below). Notice, for equal mass ratio binaries, the system
is always in the quadrupole driven regime as there is no dipole radiation (S− = 0). We see
that the system is in the dipole driven regime only for unequal mass ratio binaries that are
far apart (that is, when x is small). Given the experimental constraints on ζ1 � 1 and S−,
the binary systems of interest for ground- and space-based GW detectors are driven by the
quadrupolar driven regime for sGB gravity. We thus compare our numerical waveforms to
gravitational waveforms for systems in which quadrupolar radiation is dominant.

The leading order contribution to the GW phase in ESGB gravity was computed in
Refs. [339, 337] using the stationary-phase-approximation [254], and later extended to
higher orders in PN theory in Refs. [311, 312, 253]. The highest order PN corrections to
the phase so far have been computed by Lyu et al. [253], who mapped results obtained
partially to 2PN order in scalar-tensor theories [309] to sGB gravity. Here, we review their
calculation, and present results for the time-domain orbital phase δΦ as a function of the
PN parameter x.

The results of Ref. [309] were presented in the Jordan frame, and ESGB gravity is
written in the Einstein frame. Thus, the first step Lyu et al. took was to transform the
results of Ref. [309] to the Einstein frame. After this transformation, Lyu et al. noticed
that the results of Ref. [309] were expressed in terms of the black hole sensitivities αi, and
their derivatives βi. These were computed for black holes in ESGB gravity by Julié et
al. [206, 207], and for non-spinning black holes are given by (here we used the conversion
ϕ→ φ/

√
2, f(ϕ)→ 2

√
16πϕ, and αGB → λ/

√
8π)

αi ≡ −
αGBf

′(ϕ0)

2mi
2

= −
√

2λ

mi
2
, (D.10)

βi ≡
dαi
dϕ
|ϕ0 = −αGB

2f ′(ϕ0)2

2mi
2

= −4λ2

mi
2
, (D.11)

where ϕ0 is the asymptotic value of scalar field at infinity (we set ϕ0 = 0). We see that
βi ∝ λ2, so it is negligible compared to αi. Using these expressions, and keeping terms up
to O(λ2), sGB corrections to the orbital phase in the quadrupolar driven regime can be
expressed as

δΦ(x) =
∑

i

δΦi,PN =
λ2

8πm4
1m

4
2η

∑

i

cix
(−5+2i)/2, (D.12)
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where
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and η ≡ m1m2/M
2
0 is the symmetric mass ratio 1. Our calculation of these coefficients

are presented in an ancillary Mathematica notebook. As noted in Ref. [253], the leading
−1PN term here agrees with the one found in Refs. [339, 337]. We note that we have
not included black hole spin dependence here (in the notation of Ref. [253], we have set
si = 1, although the notebook presents results for general si. The terms at 0.5 PN onwards
contain currently unknown coefficients fST

2n , which represent our ignorance of the new scalar
contributions at relative n = 1.5 and n = 2 PN order in the non-dipolar flux (part of the
flux that does not vanish for an equal mass binary) beyond 1PN order [309]; we see that
fST

2n must scale as λ2+n, n > 0 in order for these terms to not be important as λ → 0.
In the quadrupolar driven regime, experimental constraints on the weak-field parameters
of scalar-tensor gravity suggest that these contributions should be much smaller than the
2PN GR terms [309], so fST

2n is set to zero in Ref. [253] and in this work.

D.3 Puncture initial data for sGB binary black hole

evolution

As we discuss in Sec. 5.3.2, the Hamiltonian and momentum constraint equations in sGB
gravity reduce to those of GR when φ = ∂tφ = 0 on the initial data hypersurface [133, 301],

1η is used to refer to conjugate momentum of scalar field in chapter 3 and ratio of energy densities of
scalar fields in chapter 4
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and we make use of GR puncture initial data in our simulations. While puncture initial
data is well known [107] and the TwoPunctures implementation of that formalism is widely
used [23], to our knowledge it has never been implemented in conjunction with black hole
excision and a (modified) generalized harmonic formulation. Here, we review puncture
initial data, and how we incorporated the TwoPunctures initial data in our MGH code.

First we write the metric in ADM variables:

ds2 = −N2dt2 + γij
(
dxi + βidt

) (
dxj + βjdt

)
. (D.20)

The extrinsic curvature is

Kij = − 1

2N
(∂tγij −Diβj −Djβi) , (D.21)

where Di is the extrinsic curvature with respect to the spatial slice.

Puncture initial data is spatially conformally flat and maximally sliced (K = 0), and
sets γij = ψ4δij, that is the initial spatial metric is conformally flat. The extrinsic curvature
is specified by choosing a set of effective black hole masses m(n), spins Sγ(n), momenta P γ

(n),
and locations. One then solves the Hamiltonian constraint for ψ, which then gives us γij
(the momentum constraint is solved using an analytic formula). Puncture initial data does
not specify the lapse N and shift βi. We set βi = 0, and choose N to be (we set the
initial-lapse parameter to twopunctures-averaged in the TwoPunctures code [23])

N =

(
1 +

m1

2r1

+
m2

2r2

)−1

, (D.22)

where ri is the radial (Euclidean) distance from the ith puncture. To recover the metric
initial data from the ADM variables, we invert the definitions to get

gtt = −N2, gti = 0,

gij = γij, ∂tgtt = −2N∂tN, (D.23)

∂tgti = 0, ∂tgij = −2NKij.

In puncture coordinates, the black hole apparent horizon is located at r = mi/2. We
then initially excise an ellipsoid inside that surface on our t = 0 slice after the TwoPunctures
code has solved for the conformal factor and interpolated the result on the initial Cartesian
grid we use. The MGH parameters ĝµν , g̃µν , and Hµ determine ∂tN and ∂tβi.

We set Sγ(1,2) = 0, so that the black holes are initially nonspinning. We choose quasi-

circular initial data for the momenta P γ
(1,2). In particular, given r and m(n), we set (here

using spherical polar coordinates)

P γ
(n)∂γ = m(n) × (ṙ∂r + rΩ∂φ) . (D.24)
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We choose ṙ to be accurate to 2.5PN order for a quasi-circular binary, that is it incor-
porates the leading-order radiation reaction term, and we choose Ω to be accurate to 2PN
order for a quasi-circular binary [55, 27, 278].

We note that Kovacs [228] has recently constructed a more general set of puncture
initial data for black holes in sGB gravity, which reduces to the original puncture data for
GR that we use here when one chooses the initial values of φ = ∂tφ = 0.

D.4 Perturbative solutions to sGB gravity

Here, we briefly review the perturbative approach to solving the equations of motion in
shift-symmetric ESGB (sGB) gravity. While we do not employ the perturbative method
in this work (instead, we solve the full sGB equations of motion), all previous numerical
relativity work comparing to PN theory has [334, 311, 312]. As in those earlier results,
we find that at a given frequency, the amplitude of our scalar waveforms are very similar
to the scalar waveforms produced in the decoupling limit; however, here we are able to
directly measure the extra dephasing of the binary black holes due to the emission of scalar
radiation. This can be traced to the fact that corrections to the scalar amplitude beyond
the leading order decoupling limit scale as the coupling to the third power, which we show
here.

In the perturbative approach, the scalar field and tensor field are expanded order by
order in a small parameter ε:

gµν =
∞∑

k=0

εkg(k)
µν , (D.25a)

φ =
∞∑

k=0

εkφ(k). (D.25b)

We assume ε ∼ λ/m2
1 = ζ1, and set φ(0) = 0, so that the “background” spacetime is vacuum

GR. To zeroeth order in the coupling, the tensor and scalar equations of motion are

G(0)
µν −∇µφ

(0)∇νφ
(0) +

1

2
g(0)
µν

(
∇φ(0)

)2
= 0, (D.26a)

�(0)φ(0) = 0, (D.26b)

where Gµν is the Einstein tensor. We see that if for initial data we set φ(0) = ∂tφ
(0) = 0,

then φ(0) = 0 for all time, and the metric field satisfies the Einstein equations. From now
on we assume φ(0) = 0. To linear order in ε, the equations of motion are

G(1)
µν = 0, (D.27a)

�(0)φ(1) + λG(0) = 0. (D.27b)

175



We see that the equation of motion for g
(1)
µν is also the vacuum Einstein equations. We can

then consistently set g
(1)
µν = 0. The scalar field φ(1) is no longer zero, even if one initially

sets φ(1) = ∂tφ
(1) = 0 for initial data, as generically G(0) 6= 0. Solving for φ(1) to this order,

while solving for g
(0)
µν from the Einstein equations, is called the decoupling approximation

[334]. To second order in ε, we have

G(2)
µν −∇µφ

(1)∇νφ
(1) +

1

2
g(0)
µν

(
∇φ(1)

)2
+ 2λδαβγηρσκ(µgν)η (Rρσ

αβ)(0)∇κ∇γφ
(1) = 0, (D.28a)

�(0)φ(2) = 0. (D.28b)

The scalar equation follows from g
(1)
µν = 0. Note that the scalar equation for φ(2) would

have corrections if the Gauss-Bonnet coupling was nonlinear in φ; for more discussion see
for example Sec II.B.5 in [334]. We see that we can consistently set φ(2) = 0. To third
order in perturbation theory, we have

G(3)
µν = 0, (D.29a)

�(0)φ(3) +�(2)φ(1) + λG(2) = 0. (D.29b)

We can set g
(3)
µν = 0, but there is a nontrivial correction to φ(3) (there would be corrections

to g
(3)
µν if the scalar Gauss-Bonnet coupling was nonlinear in φ, due to corrections in φ(2);

see the discussion below Eqs .(D.28)). Thus, once one can computed φ(1), corrections to
the scalar waveform do not appear until φ(3). We considered ζ1 ∼ 0.1 at the largest, so
the largest correction due to nonlinear effects to the amplitude would be of relative order
ζ3

1/ζ1 = ζ2
1 ∼ 0.01, a 1% effect. This is consistent with what we see in Figs. 5.1 and 5.2.

While nonlinear effects in ζ1 are not expected to dramatically change the amplitude of
the scalar field during inspiral for sGB gravity, nonlinear effects must be incorporated to
determine the long-time dephasing of the binary due to the emission of scalar radiation.
Nonlinear effects may additionally change the spacetime geometry of the merger in ways
not captured in the perturbative approach. Finally, if the scalar Gauss-Bonnet coupling is
not linear in φ, higher order corrections in the coupling can enter in the scalar waveform
at order ζ2

1 , and so could be more important in determining the properties of black hole
binaries.
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