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Abstract

According to the no-hair theorem, the unique characteristics of astrophysical black holes
are their masses and spins. However, recent observations from the Event Horizon Tele-
scope (EHT) images of M87 and Sgr A* have allowed us to place constraints on possible
deviations from this theory. To interpret these observations and compare them to other
near horizon scale observations, we introduce a model-agnostic framework that explores
deviations while maintaining generality. We start by considering a general spherically sym-
metric metric, which effectively applies for a polar observer in the slow rotation limit and
then follow by relaxing these constraints to axi-symmetric and stationary spacetimes. We
propose a nonperturbative, nonparametric spacetime-domain characterization of shadow
size and related measurements that makes explicit the nature and power (or lack thereof) of
shadow-size-based constraints, and facilitates comparisons among observations and targets.
Furthermore, we demonstrate that relying solely on shadow size measurements does not
impose a direct limitations on the value of the gtt component of the metric. However, in the
case of spherically symmetric spacetime, it can impose a constraint on the radial derivative
of gtt, while a more intricate constraint arises for the axi-symmetric spacetime. Moreover,
the measurement of shadows and potential future observations of multiple photon rings
do not provide any valuable information concerning the ergo-region and frame-dragging in
axi-symmetric spacetime.
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Chapter 1

Introduction

Until approximately a century ago, scientists relied on Newton’s law of universal gravitation
to explain the properties of gravity. However, in 1915, Einstein revolutionized this field
by introducing the general theory of relativity, which remains the prevailing model of
gravitation in modern physics [29].

The purely geometrical perspective of spacetime, has created extensive opportunities
for physicists to describe a wide range of phenomena, from the solar system to the vast
structure of the cosmos. Since this thesis centers around testing theories in the strong
gravity regime, where general relativity is crucial, I will offer a concise summary of GR
followed by a brief overview of recent measurements by the Event Horizon Telescope and
alternative theories that aim to describe gravity.

1.1 General Relativity

One of the fundamental concept in general relativity is the geodesic motion [85]. This
concept is particularly significant in understanding the behavior of light and matter in the
presence of massive objects such as stars and black holes. Since we are going to assume
photons continue to follow the null geodesics in the following chapters , we review this
concept here. A geodesic is defined as,

Pα∇αP
µ = dP µ/dλ+ Γµ

σβP
σP β = 0, (1.1)

where Γ is the Christofell symbol, Pα is the particle’s momentum’s 4-vector and λ is the
affine parameter.
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Moreover, in the context of general relativity, massive objects curve the surrounding
spacetime. The curvature follows the Einstein field equation,

Rµν −
1

2
gµνR = κTµν , (1.2)

where Rµν and R are respectively Ricci tensor and Ricci scalar, and κ is a constant that is
a function of fundamental constants of nature, c and G. It is noteworthy to mention that
alternative theories possess distinct field equations, resulting in diverse spacetime solutions
for various scenarios, which we will briefly mention in Appendix I and Appendix J.

As a result, within GR geodesics no longer appear as straight lines, but are bent, a
phenomena called gravitational lensing. The phenomenon has been observed numerous
times ([51, 59, 80]) and has provided crucial evidence for the existence of massive objects
such as black holes. The images of black holes that were captured using the Event Horizon
Telescope depict the direct impact of this phenomenon which we are going to expand
further later in the introduction [30, 31, 32, 33, 34, 35].

Extreme gravitational lensing is observed in the first horizon-resolving images of black
holes at the centres of Messier 87 (M87*) and the Milky Way (Sgr A*)[30, 31, 32, 33, 34,
35, 36, 37, 40, 39, 41, 38]. Photons coming from the entire universe, but in the case of black
holes mostly from the accretion disk, are deflected around the central massive object. The
angle of deflection is tightly related to the impact parameter of the null ray. To provide
an explanation of this phenomenon, we can begin with the most basic category of black
holes in GR known as Schwarzschild black holes. Within this classification, there exists an
unstable photon circular ring positioned at a distance of rγ = 3M , where M represents a
specific parameter associated with the black hole and in natural units i.e, G = c = 1 1.

This circular orbit is a direct consequence of highly lensed null trajectories. Photons
with a critical impact parameter, precisely equal to bγ =

√
27M get highly deflected around

the black hole and circulate around it (for further details, refer to the Appendix A). The
magnitude of this impact parameter determines the observed size of the shadow visible
in images of the black hole [35, 41]. However, even a slight deviation in these null rays’
impact parameters will result in significantly different trajectories.

Null rays that originate slightly outside of rγ circulate around the black hole a finite
amount of times, denoted as ’n’, before escaping towards infinity. Each of these paths
forms a ring around the black hole. To characterize the behavior of these subsequent rings,
one can define the Lyapunov exponent as,

π
dδr

dϕ
= γδr (1.3)

1we are claiming everything in natural unit, unless otherwise is mentioned
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Here, ϕ corresponds to the azimuthal angle within the plane where the orbit exists and δr
is the distance between the subsequent null ray and rγ. The value of Lyapunov exponent
for Schwarzschild metric is equal to π (see Appendix B for more detail).

The case of spinning black holes is a bit more complex. Similar to the Schwarzschild
spacetime, photons with a specific impact parameters give rise to a critical unstable circular
orbit. However, in the context of Kerr spacetime, the impact parameters on the celestial
sphere of a distant observer are more intricate compared to those in the Schwarzschild
spacetime. Nevertheless, for the purposes of the upcoming chapters, we will focus on
photon orbits observed by polar observers, simplifying the case. In this scenario, it can be
demonstrated that the radius of the photon’s circular orbit and the size of its shadow are
given by,

rγ =M + 2M

√
1− a2

3M
cos

[
1

3
cos−1

(
1− a2/M2

(1− a2/3M)3/2

)]
.

β2 =
(r2γ + a2)2

∆(rγ)

(1.4)

where:
∆ = r2 − 2Mr + a2 (1.5)

and a represents the spin of Kerr black hole. Equation 1.4 is compatible with the results we
saw in the Schwarzschild spacetime in the slow rotating regime (see Appendix C and Ap-
pendix F for more detail). Additionally, the Lyapunov exponent related to the subsequent
null rays encircling a Kerr black hole can be defined. Nonetheless, we choose to address this
topic in section 3.4 when we are probing a general axi-symmetric and stationary spacetimes
(also see Appendix D, for more details).

Hence, according to General Relativity, the observation of a black hole entails the antic-
ipation of a dark region accompanied by a bright area formed by subsequent photons [14].
Nevertheless, while General Relativity stands as the widely accepted theory for gravity, it
is not the only theory attempting to describe this phenomenon. We explore the spherically
symmetric spacetimes briefly in subsection 2.2.2, subsection 2.2.3 and Appendix I and the
axi-symmetric ones in subsection 3.5.2 and Appendix J.

1.2 Observational Tests of GR

Since the emergence of General Relativity a hundred years ago, various observations have
been proposed to explore spacetime. However, only recently have a significant number of
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these become possible. Since, the main aim of this thesis is to present a general formalism
that enables the comparison of these tests, aiding our understanding of spacetime, in this
subsection, we review some well-known observations that actively investigate the properties
of gravity.

1.2.1 Event Horizon Telescope

The event horizon telescope (EHT) is a worldwide network of synchronized radio observato-
ries that collaborate to observe radio sources associated with supermassive objects that are
possible candidates of black holes. Using data from numerous telescopes that use the very-
long-baseline interferometry (VLBI) technique around the earth, the EHT project forms
a combined array with sufficient angular resolution to observe objects with the angular
size of roughly 10 µas [31]. The participating telescopes in this project include ALMA in
Chile, SMT in the USA, IRAM 30m telescope in Spain, James Clerk Maxwell Telescope in
Hawaii, LMT in Mexico, SPT in the south pole, Submillimeter Array in Hawaii, NOEMA
in France, KPNO in the USA, and the Greenland Telescope Project in Greenland. The
primary targets for observation in this project are the black holes with the largest angular
diameter as viewed from Earth, the black hole at the center of the supergiant elliptical
galaxy Messier 87 (M87*), and Sagittarius A* (Sgr A*) at the center of the Milky Way.

In the case of black hole observations, the EHT uses a technique known as very-long-
baseline interferometry (VLBI). In VLBI, the signals received by the telescopes are recorded
and timestamped with extreme precision. The recorded signals are then transported to a
central facility where they are interfered using a supercomputer. Then with the help of
modeling and imaging techniques images can be produced. This technique allows the EHT
to achieve an angular resolution of a few tens of microarcseconds, which is sufficient to
resolve the shadow of a black hole [24, 15].

The shadow of a black hole, as we discussed earlier, is formed by the bending of light
around the black hole due to its strong gravitational field. Therefore, the EHT observations
opend a new window to study GR in the strong gravity limit and explore the existence of
black holes and their properties, such as their mass and spin [35, 41, 16, 15].

The EHT observes frequencies ranging from 230 to 345 GHz. Within this frequency
range, the apparent size of Sgr A* is approximately 50 microarcseconds (µas) [41]. As
it have been mentioned earlier, the EHT possesses the capability to achieve resolutions
as high as 10 microarcseconds, enabling it to resolve the event horizon of Sgr A*. Simi-
larly, for M87, the angular size is approximately 40 µas [35], making it detectable by the
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EHT. Nevertheless, capturing the intricate details of these images would prove impossi-
ble with the current measurements. There are future plans to enhance the data quality
of the EHT measurements by incorporating additional telescopes worldwide, such as the
next generation of EHT telescopes known as ngEHT [25]. Also, there are other plans to
launch telescopes into space in order to improve the resolution, and by conducting obser-
vations at shorter wavelengths. With the addition of these telescopes, it will be possible to
achieve higher-resolution observations and resolve the subsequent photon rings [61]. This
would offer another means to test General Relativity and alternative theories with greater
precision.

1.2.2 Gravitational Waves

Gravitational waves(GWs) were one of the early forecasts of general relativity (GR) [28]
and have recently emerged as a crucial means of investigating the region near a black hole’s
event horizon. This significance became apparent following the discovery of GW150914 [1]
by the Laser Interferometer Gravitational-Wave Observatory (LIGO). According to GR,
when two black holes in a binary system begin merging, they go through three distinct
stages: inspiral, merger, and ring down. During these stages, the binary system emits
detectable gravitational waves, the detectability of which depends on the mass of the
system. The received signal aligns with the waveform predicted by GR for the inspiral and
merger of a black hole pair, as well as the subsequent ringdown of the resulting single black
hole. We probe this concept more on subsection 3.5.3.

There are several other promising projects focused on detecting GWs, one of which is
the International Pulsar Timing Array project. This particular endeavor combines obser-
vations of pulsars from observatories in both the northern and southern hemispheres. Its
primary objective is to detect ultra-low frequency GWs, typically in the range of 10−9−10−8

Hz [55]. Pulsar observations have been useful in numerous physics and astronomy break-
throughs. For instance, the first observational evidence for gravitational waves was derived
from studying a pulsar-neutron star binary system [57], and pulsar observations have pro-
vided the most stringent tests of general relativity in the strong-field limit [68]. These
achievements have heavily relied on a technique known as ”pulsar timing.” Although the
details of this technique are beyond the scope of this thesis, it has been extensively de-
scribed in the literature (see [67] for an overview and [56] for comprehensive methodological
details).
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Chapter 2

General Spherically Symmetric and
Static Spacetime

Attempts to quantify the implications for potential deviations from general relativity have
made use of either parameterized deviations [60, 79, 76] or explicit alternative metrics
[64, 41], that we briefly reviewed them on in the introduction. Both of these approaches
take strong underlying assumptions that impose strong limits on the interpretation of any
results.

Parameterized metric expansions typically suffer from the inherently non-linear nature
of general relativity: near the event horizon all terms in the typical expansions become
similarly important, obscuring what is a limit and what is an assumption regarding the
class of alternative metrics [76, 84]. Wherein these assumptions are explicitly avoided by
construction [79], the resulting parameter constraints are necessarily strongly correlated —
a natural consequence of a large-dimensional parameter space and a single measurement —
and therefore difficult to interpret practically. Armed with strong priors, e.g., from gravita-
tional wave experiments or theoretical arguments, this may not be catastrophic. However,
given the novel nature of the EHT images of M87* and Sgr A*, and the extreme mass-scale
disparity between EHT and current gravitational wave targets, there is significant value in
independent gravitational tests.

Explicit alternative metrics [64] provide a physically motivated set of strong priors
on the metric deviations by design, and in so doing avoid the arbitrariness associated
with a parameterized model. However, these constraints are only meaningful within the
context of the specific alternative metric under construction, for which the Bayesian prior
is unknown and usually assumed to be small. More importantly, there is no guarantee that
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neighboring metrics, i.e., “small” deviations from the alternative under consideration, are
similarly constrained for the same reasons that plague parametric approaches. Hence, the
results from explicit alternatives are typically only interpretable within a narrow context,
requiring the onerous reconstruction of images for every metric under consideration.

Therefore, here we present an alternative scheme in which to characterize shadow size
measurements that restates these in terms of direct measurements of the properties of
the metric in an appropriate gauge. As such, these translate the empirical image-domain
measurements performed at infinity to a gravitational domain. By casting the constraint
as a measurement of the metric properties directly, this scheme has two key features:

1. It is nonparametric, thus avoiding the complications of strongly correlated parameters
while maintaining the general nature of the limit.

2. It is nonperturbative, and therefore does not require any notion of “smallness” and
is more naturally applicable in the highly-nonlinear near-horizon regime.

Importantly, by expressing the constraint from shadow size limits in terms of an appropri-
ately specified metric, these are more useful to the gravitational community. It is no longer
necessary to generate full images to compare with the shadow size; rather the computation
of the metric components within a convenient gauge at a particular location is sufficient to
bring an alternative theory into contact with the EHT and future mm-VLBI constraints.

We begin with laying out the formalism of generating shadow sizes outside of the
limitation of general relativity with a general spherically symmetric metric, in this chapter.
We will further make a number of convenient assumptions regarding the spacetime, each of
which may be ultimately relaxed, including stationarity, axisymmetry, and slow-rotation for
next chapter. We will further assume a polar observer, which is a reasonable approximation
for M87* [35]. Even within this restricted classes of metrics we are able to elucidate which
aspects of the spacetime remain unconstrained by a shadow size measurement.

We will not address the observational problem of measuring the shadow size, which is
complicated by the fact that it is only the surrounding luminous plasma that is visible. [35]
and [41] both calibrate their shadow size measurements with simulated images generated
within general relativity or a narrow set of nearby alternatives, rendering interpretation
of the size constraints rather more complicated. More direct methods to extract higher-
order images, and therefore infer the diameter of the critical curve that bounds the shadow
have been proposed [16, 61]. However, the measurement particulars and their intrinsic
uncertainties are beyond the narrow scope adopted here: what would we learn from such
a measurement?
Unless otherwise specified, we set G = c = 1.
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2.1 Definitions and Properties of a General Metric

We begin with laying out the formalism of generating shadow sizes outside of the limitation
of general relativity with a general spherically symmetric metric. Expressed without loss
of generality in areal coordinates, the metric may be written as,

ds2 = −N(r)2dt2 +
B(r)2

N(r)2
dr2 + r2dΩ2. (2.1)

This metric has two arbitrary real functions of radius, N(r) and B(r), that set the tt and rr
components of the metric. We assume asymptotic flatness, i.e., limr→∞N(r) = 1−O(1/r)
and limr→∞B(r) = 1. By construction, we have enforced a metric signature of (−+++)
throughout the region of the spacetime accessible to external observers; without loss of
generality, we will further assume N(r) > 0 and B(r) > 0 everywhere in this region.

This spacetime admits two killing vector fields, and thus two constants of motion for
null geodesics, which we choose to be the energy and angular momentum,

e = pt = −N2 dt

dτ
and ℓ = pϕ = r2

dϕ

dτ
, (2.2)

and due to the spacetime symmetry, all null geodesics are integrable, with the standard
properties (e.g., the redshift 1 + z = N−1(r), etc.) and live in a two spatial dimensional
plane.1 All black hole spacetimes of this form, by which we mean spacetimes with an event
horizon, have N2(rh) = 0 for some horizon radius rh by definition. Additionally, all such
spacetimes also contain a photon orbit, i.e., a radius at which photons execute a circular
orbit about the black hole, located at rγ that satisfies:

ṙ = 0 and r̈ = 0, (2.3)

which by rearranging (2.1) for null rays (ds2 = 0) gives,

ṙ2 =
1

B2(r)

[
1− b2

r2
N2(r)

]
, (2.4)

where ṙ = dr/dτ . An effective potential, Veff(r) = N2(r)/r2, may be specified in the
normal way, yielding

ṙ2 =
1

B2(r)

[
1− b2Veff(r)

]
. (2.5)

1Henceforth, we will set e = 1 and b = ℓ/e, which due to the assumption of asymptotic flatness is the
impact parameter at infinity.
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Turning points occur when Veff(r) = 1/b2. If Veff(r) has a maximum, there will be a b for
which all null geodesics with smaller b will have no turning points between the event horizon
and the observer at infinity. The collection of such trajectories comprise the shadow. As
we mentioned before at a photon orbit, two conditions apply: ṙ = 0 (i.e., the orbit is
circular) which we already discussed and r̈ = 0 (i.e., it stays circular), and thus:

V ′
eff = 0, (2.6)

which V ′
eff is the radial derivative of Veff . Therefore:

rγ =
N(rγ)

N ′(rγ)
, (2.7)

and

bγ =
1√

Veff(rγ)
=

rγ
N(rγ)

, (2.8)

also [
1

Veff(r)

]′′
rγ

=

[
r2

N2(r)

]′
rγ

= 0, (2.9)

where N ′(r) is the radial derivative of N(r). That a rγ ≥ rh exists that satisfies this
condition follows from the assumption of asymptotic flatness and the existence of an event
horizon at some finite rh.

Note that these conditions may be satisfied at more than one location, corresponding to
multiple photon orbits. That there is at least one unstable photon orbit for asymptotically
flat, black hole spacetimes is guaranteed by two facts: 1. asymptotic flatness gives Veff(r) >
0 and V ′

eff(r) < 0 at very large r, and 2. Veff(rh) = 0 vanishes at some rh that defines
the event horizon. Thus, Veff is positive and decreasing at large r and vanishes at small
r, requiring via the mean value theorem that at some intermediate point Veff(r) has a
maximum. Subsequently, photon orbits may appear in pairs, one stable (maximum of
Veff(r)) and one unstable (minima of Veff(r)). Because the shadow is necessarily associated
with the global maximum of Veff(r), by Equation 2.8, its size is set by the smallest bγ.
Thus, henceforth, we will restrict ourselves to the photon orbit with the smallest shadow,
which we call rγ and bγ, respectively.

2.2 Shadows in Perturbed Spacetimes

For the innermost shadow, all null geodesics that are outward propagating at rγ will have
begun on the horizon. Thus, the boundary of the black hole shadow is associated with
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those null geodesics that are tangent to the photon orbit at rγ. This occurs when the
photon angular momentum is equal to a critical value, bγ = rγ/N(rγ). Identifying bγ with
the impact parameter at infinity and using the definition of rγ, the shadow radius is

R =
1

N ′(rγ)
. (2.10)

As it will be shown later in the following chapter, this continues to hold unchanged for polar
observers of slowly spinning black holes (i.e., up to order a, where a is the dimensionless
black hole spin). As a result, there is a simple, one-to-one relationship between the observed
shadow size and a property of the metric at a specific location. From this simple result a
number of profound conclusions immediately follow.

2.2.1 Characterizing Shadow Size Measurements

First, because R depends solely on N ′(rγ), N
′(rγ) is a convenient way in which to charac-

terize the constraints imposed by a shadow size measurement. While this may appear to
be a trivial redefinition given Equation 2.10, the interpretation of N ′(rγ) is fundamentally
gravitational: it is a direct measurement of spacetime geometry at a dynamically impor-
tant location for all massless fields, and thus for all electromagnetic and gravitational wave
observations.

N ′(rγ) is related to, but distinct from, N(rγ), a point upon which we expound below.
However, it does suggest a natural framework within which to begin describing near-horizon
phenomena generally:

N(rγ), N
′(rγ), N

′′(rγ), . . . (2.11)

from which the near-photon-orbit behavior of N(r) can be constructed via Taylor series.
Note that because R depends solely upon N ′(rγ), for shadow size measurements this frame-
work is nonperturbative and nonparametric.

However, characterizing strong gravity probes in this way is conceptually complicated
by the unknown value of rγ, i.e., the constrained quantity is the value of N ′(r) at the
photon orbit, wherever that may be for a particular spacetime. While at first this may
appear an onerous restriction, it is natural in that the location of the photon orbit is gauge
invariant (even if the value of rγ may not be). Explicit examples of applying this constraint
will be provided in subsection 2.2.4
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2.2.2 Caveats for Known Metric Expansions

As is immediately evident from Equation 2.10, there is no constraint on N(rγ) given a
shadow size measurement. This simple fact has profound consequences for shadow size
interpretations: it does not follow that because R matches its general relativistic value
that N(rγ) should be close to its GR value. This, however, does not mean that shadow
size measurements are not constraining; a tight constraint on R does indeed translate into
a tight constraint on N ′(rγ). Moreover, the detection of any shadow is a qualitative result
that implies N ′(rγ) > 0, eliminating all metrics for which N(r) is decreasing at rγ. These
subtleties are often lost in the context of metric expansions, for which N(r) and N ′(r)
become correlated by construction. We review some examples here.

Post-Newtonian Expansion

As we mentioned in the introduction and had been employed in [76] and in a restricted
manner in [41] the Post-Newtonian Expansion of ψ(r) has the form:

ψ(r) =
κ1
r2

− κ2
r3

+
κ3
r4

− κ4
r5
. . . (2.12)

in which:

N2(r) = 1− 2M

r
+ 2ψ(r), (2.13)

where the post-Newtonian coefficients, κi, can be related at large r to terms in the often
used parameterized post-Newtonian formalism. In this way, it is hoped that measurements
of R can be related to a broad range of collected tests of general relativity on scales ranging
from the laboratory to the cosmos [86, 6]

As illustrated in Figure 2.1, a perturbation defined by any single PN term traces out
a curve in the N(rγ)-N

′(rγ) plane traversed by the associated PN coefficient. Wherein
this curve lies within the band of allowed N ′(rγ) given a measurement of R, the values of
the associated κi are permissible, appearing to place a constraint on the magnitude of the
ψ(rγ).

However, the addition of even a second PN term results in a band that covers the
entire physically-relevant quadrant of the N(rγ)-N

′(rγ) plane. Thus, it appears that even
with only two PN terms, no constraints are possible. This is, of course, not true: the
two PN coefficients are strongly correlated, and it is within the context of that correlation,
indicated rather more simply in Figure 2.1 by the gray band, that the shadow size constraint
is present.

11



Figure 2.1: Comparison of allowed range of N(rγ), N
′(rγ) for a shadow size measurement

with σR/R = 10% (gray band) and the curves by single-parameter modifications to the
metric. Explicitly, those associated with various PN orders, JP metric orders, MGBK
metric orders for γ1 and γ4, and RZ metric with a0 and a1 varied, holding all other metric
expansion parameters fixed at zero. Thin lines indicate values for which an event hori-
zon does not exist (affecting only the PN expansion examples); the small open and filled
points at which the curves terminate show when the photon orbit becomes infinite and
degenerate with the event horizon, respectively. The large black point indicates the values
corresponding to general relativity.
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Moreover, the measurement of a shadow size does not exclude large deviations beyond
rγ. For example, consider the perturbation,

ψ(r) = κ2
(3M − r)2

r5
, (2.14)

which is dominated by the 2PN term at r ≫ 3M with 2PN coefficient κ2. This explicitly
satisfies the conditions that ψ(3M) = 0 and ψ′(3M) = 0, and thus has rγ = 3M and
R =

√
27M , identical to those from Schwarzschild. This is true for any value of κ2. In this

sense, there is no meaningful limit on κ2 from any measurement of the dynamics of massless
fields near the photon orbit without additional, typically strong, assumptions about the
spacetime geometry.

Other Metric Expansions

For completeness, in Figure 2.1, we also show the paths traced out by the various other
metric expansions considered in Section 5.1 of [41] and also had been mentioned in the
introduction. These expansions include the spherically-symmetric restriction on the met-
rics proposed by [60, hereafter JP], MGBK [83, hereafter MGBK], and [79, hereafter RZ],
as described in [41]. Each exhibits a similar qualitative behavior to the post-Newtonian
expansions: the range of the inferred limits on N(rγ) are solely due to the priors imposed
by the underlying expansion themselves. Quantitative differences are present, further high-
lighting the impact of these priors.

2.2.3 Comparison to Explicit Alternatives

Metrics associated with alternative gravity theories, that we mentioned some of them in
the introduction, e.g., Reissner-Nordström, present a similar story as those associated
with metric expansions. The details of the metric perturbation appear to induce a limit on
N(rγ) through model-induced correlations betweenN(rγ) andN

′(rγ). However, alternative
metrics differ in an important conceptual way: the correlations are a consequence of the
physical prior that the metric of interest applies and is not an arbitrary truncation of an
otherwise infinite series of terms. In this sense, the constraints are meaningful within the
narrow context of the alternative metric.

In Figure 2.2 we show the regions of the N(rγ)-N
′(rγ) plane spanned by a sample of

alternative black hole metrics. Following [41], we focus attention on a subset of represen-
tative spherically-symmetric alternatives, though we expand this list to the twelve listed
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Figure 2.2: Comparison of allowed range of N(rγ), N
′(rγ) for a shadow size measurement

with σR/R = 10% (gray band) and the curves associated with the various axisymmetric
alternative spacetimes consider in [65]. The small open points at which the curves terminate
show when the charge reaches an intrinsic limit, e.g., the solution no longer has an event
horizon. The large black point indicates the values corresponding to general relativity.
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in Table 2.1 of [65]. We do not make any representation that these twelve are complete,
but rather only that they are illustrative.2 For more details on the metrics refer to the
introduction or [41] and [65] for details on the metrics themselves and their underlying
assumptions.

Two things are immediately evident upon comparison with the parameterized metric
expansions. First, the imposition of physical constraints on the metric itself typically limits
the region in the N(rγ)-N

′(rγ) plane spanned by alternative metrics significantly. In this
sense, the parameterized metric expansions are more agnostic, covering a wider variety
of potential deviations from general relativity. However, this is also a consequence of the
difference in interpretation: where the metric expansions need to be sensible only locally,
alternative spacetimes must be globally well-behaved.

Second, the general direction in the N(rγ)-N
′(rγ) spanned by the alternative metrics

differs from those for any single-parameter exploration in the metric parameterizations in
Figure 2.1. Of course, upon permitting more than one parameter to vary in the metric
expansions it is possible to mimic the alternative spacetimes [65]. However, this illustrates
the difficulties faced by single-parameter characterizations of the shadow-size constraints.

2.2.4 Implications of Known shadow Sizes

We now review the implications of measurements of the shadow sizes arising from EHT
observations of M87* and Sgr A*. While some uncertainty regarding the methodology of
such measurements may persist, we take these at face value here, and assess the implications
for deviations from GR using the N(rγ)-N

′(rγ) formalism and more traditional metric
expansions and alternatives.

2.2.5 Shadow Size Estimates

We consider four EHT shadow size measurements arising from the 2017 observing cam-
paign, two each for M87* and Sgr A*, differing in the particulars of how they are produced.
All involve two underlying measurements, that of the shadow size with the EHT and a com-
parison mass measurement.

2Where a metric depends on more than one parameter, we evaluate it at a fixed value of all but one.
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2017 M87* Paper VI

First, for M87*, we adopt the angular size of the gravitational radius, i.e., θg = GM/c2D
whereM andD are the mass of and distance to M87*, reported in [35] of 3.8±0.4µas. Stel-
lar dynamics measurements by [48] produce a corresponding estimate of θdyn = 3.62+0.60

−0.34 µas
[35]. Taking the latter to define M , the former gives an estimated Shadow radius of

R =
√
27

θg
θdyn

=
√
27

(
1.05+0.15

−0.20

)
. (2.15)

This estimate presumes that the shadow size is indeed related to the EHT-measured size
by the canonical

√
27, which may differ due to spin and/or the assumed astrophysics of

the emitting region [49, 12]. The latter concern is amplified by the fact that the mass
measurement presented in [35] calibrates the relationship between the bright ring and
black hole mass using simulations that assume general relativity. Nevertheless, it forms
the basis for the general relativity tests reported in [35] and [76], and thus we include it
here. We refer to this shadow size measurement as the M87* 2017 Paper VI estimate in
Table 2.1.

2017 Sgr A* Paper IV

Finally, for Sgr A*, we employ a similar procedure as that employed by M87* based upon
the mass estimate in [39], θg = 4.8+1.4

−0.7 µas, and the stellar dynamics measurements by [23]
and [50] as collated in [41], θdyn = 4.92 ± 0.3µas. The resulting estimate for the shadow
size is

R =
√
27

θg
θdyn

=
√
27

(
0.98+0.28

−0.14

)
. (2.16)

This is significantly more conservative than the estimate from [41], with roughly twice
the uncertainty. We refer to this shadow size measurement as the Sgr A* 2017 Paper IV
estimate in Table 2.1.

2.2.6 Metric Expansions

The left panels of Figure 2.3 shows the implications for parameterized metric perturbations
of the 2017 M87* Paper VI and 2017 Sgr A* Paper IV shadow size estimates. As in
Figure 2.1, each metric parameterization imposes a strong prior within the N(rγ)-N

′(rγ)
plane, inducing an apparent constraint on N(rγ) given the shadow measurement’s direct
constraint on N ′(rγ).
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Sole
Varied
Parameter

M87* 2017 Sgr A* 2017
Basis/Metric Paper VI θn=1 Paper VI Paper IV

This paper
√
3N(rγ)√
27N ′(rγ) 0.95+0.22

−0.12 0.89+0.16
−0.07 1.04+0.12

−0.10 1.02+0.17
−0.23

PN
κ2 [−2.7, 0.7] [−3.2, 0.7] [−0.5, 0.7] [−4.2, 0.7]
κ3 [−10.9, 1.1] [−13.0, 1.0] [−1.7, 1.2] [−17.7, 1.0]
κ4 [−44.1, 1.8] [−54.1, 1.8] [−5.5, 2.2] [−77.6, 1.8]

JP
α12 [−1.2, 2.0] [−0.4, 2.2] [−1.1, 0.5] [−1.3, 2.8]
α13 [−3.2, 7.0] [−1.1, 8.0] [−3.1, 1.5] [−3.5, 10.2]
α14 [−8.2, 26.0] [−3.2, 30.5] [−7.8, 4.6] [−8.7, 40.5]

MGBK

γ1,2 [−3.2, 3.2] [−0.8, 3.5] [−2.9, 0.9] [−3.6, 4.2]
γ1,3 [−8.6, 11.5] [−2.5, 13.1] [−8.0, 2.7] [−9.8, 16.2]
γ4,2 [−5.2, 4.0] [−1.3, 4.4] [−4.8, 1.3] [−5.9, 5.0]
γ4,3 [−15.2, 13.0] [−3.9, 14.3] [−14.0, 3.8] [−17.5, 16.8]

RZ
a0 [−0.8, 0.8] [−0.9, 0.2] [−0.2, 0.7] [−1.0, 0.9]
a1 [−1.4, 1.1] [−1.6, 0.3] [−0.3, 1.0] [−2.0, 1.2]

Reissner-Nordström 0 < q̄ ≤ 1 < 0.86 < 0.51 < 0.84 < 0.90

Bardeen q̄m ≤
√

16/27 < 0.50
Hayward l̄ ≤ 1.06 < 1.01

Frolov (l̄ = 0.4) q̄ ≤ 0.79 < 0.42 < 0.77
Kazakov-Solodhukin ā < 1.65 < 1.75 < 0.79 < 1.95

EMd-1 q̄ ≤
√
2 < 0.90 < 0.51 < 0.87 < 0.94

E ae-1 0 ≤ c̄13 < 1 < 0.93 < 0.94 < 0.66 < 0.95
E ae-2 (c̄13 = 0.25) 0 ≤ c̄14 ≤ 2c̄13 < 0.33 < 0.16 < 0.31 < 0.36

CFM A β < 1
CFM B 1 < β < 5/4

Bronnikov 0 ≤ c̄13 < 1 < 0.86 < 0.51 < 0.84 < 0.90
EEH (ᾱ = 0.25) 0 < q̄m < 0.86 < 0.51 < 0.84 < 0.90

Table 2.1: Direct and Apparent Implications of EHT Shadow Sizes for Various Metrics
Note: For all metrics, only the parameter listed is varied. Varying multiple parameters

typically results in no parameter constraint. Missing entries correspond to no constraints.
See subsection 2.2.5 for how the various shadow size estimates are produced.
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Figure 2.3: Representative constraints implied by the shadow size constraints for M87*
(left) and Sgr A* (right) published by the EHT. Illustrative curves associated with the
metric expansions in Figure 2.1 (blue) and alternative spacetimes in Figure 2.2 (orange)
are shown. See Figure 2.1 for a description of line types. In both panels the relevant EHT
measurements at 1σ and 2σ are shown by the green bands.
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The 1σ single-parameter limits, when all other perturbations are fixed at zero, are
collected in Table 2.1 for all four shadow size estimates. These ranges are obtained simply
by inspecting the range of parameter values for which the curves in Figure 2.3 remain in
the 1σ bands. Note in particular that the limits from the 2017 Sgr A* Paper VI shadow
size estimates quantitatively match those in [41].3 However, all of these limits should be
interpreted with significant care for the reasons described in subsection 2.2.2. In particular,
the constraint on the magnitude of the perturbation, at rγ or otherwise, is illusory.

2.2.7 Alternative Spacetimes

The implications for the alternative metrics in [65] are shown in the right panes of Figure 2.3
for the 2017 M87* Paper VI and 2017 Sgr A* Paper IV shadow size estimates. The 1σ
limits on the alternative metrics’ charges are collected in Table 2.1 for all four shadow size
estimates. Where appropriate, these agree with those reported in [41] and [64].

Generally, the global constraints on the alternative metrics, e.g., the necessity of an
event horizon, limits the range of N ′(rγ) permitted substantially. While not universal, this
does impose a typical scale on the shadow size measurements that will be informative,
roughly requiring measurement precisions of a few percent.

As with the parameterized metric expansions, limits on N(rγ) are inferred from the
form of the particular alternative metric under consideration. Therefore, further empirical
progress requires additional observables that constrain quantities other than N ′(rγ).

2.3 Beyond Shadow Sizes

A variety of astrophysical probes of the strong-gravity regime have either already become
possible, or will be possible in next decade. These are frequently relevant for ostensibly
stationary spacetimes, e.g., presumably Kerr black holes, and we will consider that case.
Here, we explore how multiple photon rings measurements, specifically, can incorporate
into measurements of N(rγ), N

′(rγ), etc., and what additional underlying assumptions
may be necessary.

The shadow is bounded by an infinite sequence of higher-order images of the accretion
flow, often referred to as “photon rings”. Each higher-order photon ring is the result of

3A solitary exception is the constraint on γ1,2 of the MGBK expansion. However, the values in Ta-
ble 2.1 quantitatively match those inferred from Fig. 17 of [41], and thus we attribute the mismatch to a
typographical error in Table 3 of [41].
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an additional half-orbit executed by the null geodesic prior to streaming toward a distant
observer. Necessarily, each ring is distinctly located in the image (no position in the image
can contribute to more than one null geodesic, and, therefore, more than one image).
These are purely geometric features, depending only upon the strong lensing within the
spacetime, and therefore present a natural probe of general relativity [16].

The ability to separate and extract individual ring-like structures within images has
recently been developed [15, 14] and future experiments may be able to resolve multiple
such rings [61, 16]. Thus, measuring the size of multiple photon rings presents a natural
and practical extension to the notion of measuring the shadow size, and is necessarily
probing the region near the photon orbit.

Similar to the way that been discussed in the introduction to find the multiple photon
rings for Schwartzshild and Kerr spacetime, one can derive the multiple photon rings
for this general spherically symmetric space time. The higher order images of the near-
horizon emission region form a sequence of typically ring-like image features [13, 61, 16].
Each additional image is associated with photon trajectories that execute an additional
half orbit about the black hole, and therefore the size of these rings are probes of spacetime
about the photon orbit. Here we derive the radius of the higher-order photon rings in the
limit of high photon-ring order.

For null geodesics near the photon orbit, i.e., for which

r = rγ + δr, (2.17)

Equation 2.4 becomes after Taylor expanding about r = rγ to lowest order,

δ̇r
2 ≈ −

b2γ
2B2(r)

[
N2(r)

r2

]′′
rγ

δr2, (2.18)

where the first two terms vanish due to Equation 2.8 and Equation 2.9 and because the
inner turning point (i.e., the minimum δr) is small, we’ve replaced b with bγ. Combining
this radial equation of motion with Equation 2.2, gives

π
dδr

dϕ
= γδr, (2.19)

where

γ = π
N3/2(rγ)

N ′(rγ)

[
−N

′′(rγ)

B2(rγ)

]1/2
, (2.20)

20



is the Lyapunov exponent identified in [61]. Solving this, we obtain,

δr = δr0e
γϕ/π, (2.21)

i.e., upon every half orbit the geodesic grows by a factor of eγ. This matches Equation 7
of [61] in the limit of Schwarzschild.

At some δrmax ∼M , the perturbative expansion of the radial equation of motion breaks
down, and the photon trajectory streams to the observer at infinity. Prior to this point, it
will have executed

n ≈ 2

π
γ−1 ln (δrmax/δr0) , (2.22)

half orbits, where the preceding orbits from a distant source to the vicinity of the photon
orbit are now included, and thus contribute to the nth-order photon ring. Describing the
details of the transition is not necessary to obtain the relative locations of the photons
on a distant observing screen; rather the photon ring sizes are completely controlled by b,
which is, in turn, set by the inner turning point, i.e., by δr0. At δr0, ṙ = 0, and therefore,

b2 ≈ b2γ +
1

2

[
r2

N2(r)

]′′
rγ

δr20, (2.23)

where again the linear term vanishes as a result of Equation 2.9. Identifying the radius of
the nth order photon ring, Rn, with the b associated with the δr0 that corresponds to n
half orbits, we find

Rn −R ≈ N ′(rγ)

4

[
r2

N2(r)

]′′
rγ

δr2maxe
−γn. (2.24)

The prefactor is common to all order photon rings. The shift relative to the shadow size
decreases as e−γn, from which we recover that the shadow is bounded by the asymptotic
photon ring corresponding to n→ ∞. This matches Equation 12 of [61].

Therefore, it’s been estimated that the radii of high-order photon rings relative to that
of the shadow is,

Rn −R ≈ he−γn, (2.25)

where h is a function of rγ, N(rγ), N
′(rγ), and N

′′(rγ). Note that in addition to N(rγ) and
N ′(rγ), γ depends on N ′′(rγ) and B(rγ) through the combination N ′′(rγ)/B

2(rγ). This is a
consequence of the fact that the finite order photon ring radii are dictated by the dynamics
of photons very nearby, but outside of the photon orbit. Because γ also describes the rate
at which the radii of these trajectories grow, it naturally depends on the second derivative
of the effective potential, N ′′(rγ), and the notion of radial distance, B(rγ), at rγ.
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The absolute normalization must ultimately be computed numerically and may differ
among spacetimes. However, the relative sizes are fully fixed by γ, and thus it is possible
to measure γ directly with a shadow size and two photon ring radii:

γ = ln

(
Rn −R

Rn+1 −R

)
. (2.26)

Alternatively, measuring three photon ring radii permits removing R altogether,

γ = ln

(
Rn+1 −Rn

Rn+2 −Rn+1

)
. (2.27)

As with the detection of a shadow, the detection of a single photon ring has profound
qualitative implications, requiring N ′′(rγ) to be positive.4 Otherwise, the photon orbit
would be stable, and the associated null geodesics not reach distant observers to generate
a ringlike structure in the images.

Examples of the implications of a 10% measurement of γ are shown in Figure 2.4,
roughly the precision required to distinguish the n = 1 and n = 2 photon rings. Be-
cause measurements of γ are necessarily coupled with a high-precision measurement of R,
N ′(rγ) is effectively fixed, resulting in an additional constraint in the N(rγ)-N

′′(rγ)/B
2(rγ)

plane. The qualitative differences between the interpretation of such a measurement for
parameterized metric expansions and explicit metric alternatives is similar to that for the
shadow size. The measurement presents a fundamentally degenerate constraint. Thus,
even multiple photon ring measurements, it is not possible to uniquely determine N(rγ).

4More properly, positive in an appropriate neighborhood of rγ , the size of which depends on the
particular order photon ring under consideration.
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Figure 2.4: Constraints on N ′′(rγ)/B
2(rγ) arising from a 10% measurement of γ. For

reference, the curves associated with parameterized metrics (above) and alternative theories
(below) are shown. Line types and points are the same as in Figure 2.1 (above) and
Figure 2.2 (below).

23



Chapter 3

General Axi-symmetric and
Stationary Spacetime

In the previous chapter, we examined how modifications to a general static and spherically
symmetric metric would affect the shadow size and multiple ring measurements. In this
current work, we expand on that approach and explore a stationary and axisymmetric
metric, similar to the Kerr spacetime.

Despite the increased complexity of this spacetime, we maintain the two key features of
our previous work: a non-parametric metric to retain generality and avoid complications
from strongly correlated parameters, and a non-perturbative metric for better applicability
in the highly-nonlinear near-horizon regime.

We construct the metric and explore the existence of the shadow and subsequent photon
rings, calculating their respective sizes and radii. We also define the Lyapunov exponent
for these rings and discuss its measurement, which helps to constrain the metric compo-
nents. Additionally, we investigate the simplified cases of slow rotation and polar observer
independently here.

3.1 The Polar Observer in General Spherically Sym-

metric Spacetimes

We start by mentioning an important fact about spherically symmetric spacetimes that
would be helpful later. Spherical symmetry renders the problem of computing orbits planar.
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As a consequence, it is typical to compute orbits in the equatorial plane. However, because
the situation of practical interest here are polar orbits about axisymmetric spacetimes,
this simplification is no longer possible. Before discussing the general case, we begin by
demonstrating the equivalence of such a calculation in the spherically symmetric case,
introducing the relevant constants of motion, and providing an explicit example of their
use.

3.1.1 Polar Photon Orbits

Here we repeat the computation that we had in the previous chapter for equatorial orbits,
but in a language explicitly relevant for polar orbits. Again, we require two constants of
motion, the first of which will be the energy, e. The second is now given by the Carter
constant,

Q = p2θ + L2
z cot

2 θ, (3.1)

which for orbits with Lz = 0 reduces to Q = p2θ. We define q ≡
√
Q/e, and the equations

of motion for the polar trajectories (with Lz = 0) are

ṙ2 =
e2

N2

(
1− q2

r2
N2

)
and θ̇ = e

q

r2
, (3.2)

which apart from replacing one constant for another (q for ℓ) is identical to (2.2). It
immediately follows that rγ = N(rγ)/N

′(rγ) and q = 1/N ′(rγ). As before(section 2.2),
for polar observers, q may be identified with the impact parameter for photon orbits that
reach observers at infinity.

The shadow is surrounded by an infinite series of higher-order images, i.e., the “photon
rings”. Each subsequent order ring is associated with an additional half-orbit made by
the null geodesic before it heads towards a faraway observer. As each ring is situated at a
unique position in the image, no position can produce more than one null geodesic or image.
These features are solely based on the strong gravitational lensing within the spacetime
and serve as an excellent tool to investigate general relativity. In order to explore these
rings we calculate the Lyapunov exponent like we did before. Using (3.2) and expanding
around rγ we have:

δ̇r
2 ≈ − q

2B2(r)

[
N2(r)

r2

]′′
rγ

δr2, (3.3)

then by utilizing the definition of the Lyapunov exponent:

π
dδr

dϕ
= γδr (3.4)

25



we get:

γ = π
N3/2(rγ)

N ′(rγ)

[
−N

′′(rγ)

B2(rγ)

]1/2
(3.5)

that is exactly what we had before for the orbits in equatorial plane of the spherical
spacetime, which was expected due to the spherical symmetry of the spacetime.

This illustrates the general procedure we will follow here, and the role that the Carter
constant will play, analogous to that of angular momentum in the spherical context.

3.2 A General Non-Parametric Non-Perturbative Ax-

isymmetric spacetime

The Kerr metric is an exact solution to the vacuum Einstein field equations, and de-
scribes spinning black hole spacetimes. It is the sole uncharged stationary, axisymmetric,
asymptotically flat, nonpathological solution to the the Einstein equations, and therefore
is believed to be applicable to astrophysical black holes.1

Due to the presence of two clear symmetries that involve stationarity and axisymmetry,
test particles possess two conserved quantities, namely energy and angular momentum
along the rotation axis, as a result of Noether’s theorem. Less obvious is the presence of
a third integral of motion, the Carter constant ([18]). In addition to a fourth constant,
particle rest mass, test particle orbits in Kerr are fully integrable.

In contrast, deviations from Kerr need not admit fully integrable geodesics. Never-
theless, their obvious utility has motivated the definition of a broad family of arbitrary
stationary, axisymmetric metrics that have four constants of motion [60]. By construction,
this set of metrics possesses a modified Carter constant, allowing us to avoid concerns
about the integrability of the spacetime and simplifying the examination the path of pho-
tons around the central mass. These metrics introduces four arbitrary real functions of
radius (called A1(r), A2(r), A5(r), and f(r) in [60]) that we will not expand upon and will
leave in their general form. Consequently, we extend the proposal of a nonperturbative,
nonparametric characterization of shadow size and related measurements in the space-
time domain in the previous chapter to a broad class of spinning spacetimes, explicitly
demonstrating the nature and effectiveness of shadow size-based constraints.

1While the Kerr-Newman metric, which describes the charged black holes, presents a more general
class of spacetime, the abundance of free charges in astrophysical environments precludes this possibility
in practice.
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We begin with a manifestly stationary and axisymmetric metric, expressed in terms of
four arbitrary functions of radius, N(r), B(r), F (r), and f(r),

ds2 = − Σ̃N2

(r − Fa2 sin2 θ)2
(dt−a sin2 θdϕ)2+

Σ̃ sin2 θ

(r − Fa2 sin2 θ)2
(aFdt−rdϕ)2+Σ̃

B2

N2
dr2+Σ̃dθ2,

(3.6)

where
Σ̃ = r2 + a2 cos2 θ + f(r)

∆ = r2 − 2Mr + a2,
(3.7)

and the parametersM and a are parameters related to the mass and spin2. This is identical
to the metric presented in Equation 51 of [60] (see Appendix H).

Expressing from [60] family of metrics in this fashion has some significant conceptual
benefits.

1. The event horizon for stationary spacetimes, defined by where grr diverges, occurs
at the largest radius for which N(r) = 0. That is, N(r) completely describes the
location and structure of the event horizon; that an event horizon exists reduces to
the requirement that N(r) has at least one root. Furthermore, the event horizon is
necessarily at fixed r, i.e., within our particular choice of coordinates (which reduce
to Boyer-Lindquist in Kerr), the horizon appears spherically symmetric.

2. The ergosphere, defined by where gtt vanishes, is set by

N2(r)− a2F 2(r) sin2 θ = 0, (3.8)

and thus its structure is determined by F 2(r) once N2(r) is specified, with immediate
consequences for the existence and structure of the ergosphere. When a = 0, Equa-
tion 3.8 is never satisfied outside of the event horizon, and there is no ergosphere.
Similarly, when F (r) = 0, there cannot be an ergosphere. Thus, within this family
of metrics, the spin and F (r) must be non-zero for energy extraction via the Penrose
process and related mechanisms [74]. There is also a strong constraint on the poloidal
shape of the ergosphere. Because N2(r)/F 2(r) is a function of r alone, the shape of
the boundary of each ergosphere depends only the magnitude of the black hole spin
(as it must be) and is axi-symmetric.

2M and a are exactly the ADM mass and spin when N(r), B(r), F (r), and f(r) take on appropriate
asymptotic behavior at large r (see Appendix G).
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3. When a = 0, N(r) and B(r) take on the same meaning as they did in chapter 2. For
polar observers, we shall see they take on the same importance for the shadow and
photon ring sizes.

The first two constants of integration of photon trajectories are given by their usual
expressions, e ≡ pt (which we set to unity) and Lz = pϕ = ℓe. The third constant of motion
is the modified Carter constant, which for photons is by construction,

Q = p2θ +
(ℓ− a sin2 θ)2

sin2 θ
− (ℓ− a)2. (3.9)

For polar observers, to which we will restrict ourselves, the Carter constant reduces to
Q = p2θ − a2, which, as in the sphercally symmetric case, we will again express in terms of

q ≡
√

Q
e2
.

3.3 Polar Shadow Size

As seen by a distant observer located along the polar axis, the image of the event horizon
(or the photon orbit) fills a circle. The location of photon trajectories on a screen at large
r asymptotes to,

R =M
√
q2 + (ℓ− a)2 − (ℓ− a sin2 θ)2/ sin2 θ, (3.10)

(see [20]). We will consider only orbits with Lz = 0, which corresponds to a screen that is
not rotating at infinity, for which R reduces to

R =M
√
q2 + a2, (3.11)

reducing the problem of determining the shadow size to identifying the Carter constant of
those photons that just graze the photon sphere, the generalization of the unstable circular
photon orbit from the spherically symmetric case.

The equation of motion of the photons near the black hole is given in Equation 35 of
[60], which expressed in terms of our metric functions becomes,

ṙ2 =
r2

Σ̃2

1

B2(r)

[
1− q2 + a2

r2
N2(r)

]
, (3.12)

which differs from the spherically symmetric case only by a prefactor. On the unstable
photon sphere, we again require ṙ = 0 and r̈ = 0. The first condition is satisfied outside
the event horizon when q2γ + a2 = r2γ/N

2(rγ). The second requires

rγ = N(rγ)/N
′(rγ), (3.13)
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(see section F.1). As the name photon sphere implies, in these coordinates, these orbits all
lie at constant radius. Substituting these two conditions in Equation 3.11 gives

R =
M

N ′(rγ)
. (3.14)

Note that these expressions are identical to those for the spherically symmetric spacetime,
and thus N(r) plays an exactly analogous role in the family of integrable stationary ax-
isymmetric spacetimes for polar observers. Similar to the spherically symmetric scenario,
the identification of the shadow relies solely on the value of N ′ at rγ. Consequently, any
measurements of shadow size do not provide additional information about other arbitrary
functions of the general metric, such as B or F. The former implies that shadow size
measurements do not necessarily offer insights into the grr component of the metric and,
consequently, radial distances. The latter indicates that the determination of the ergo-
sphere’s location using shadow size measurements is not possible, as F is the determining
factor for the ergosphere, as mentioned earlier. Therefore, we do not see evidence of frame
dragging via shadows or multiple photon rings. We are going to show the latter in the
following section. However, it is worth mentioning again that the shadow size measurement
does provide an evidence for existence of a real positive value of N ′ at rγ.

3.4 Multiple Photon Rings

The shadow is surrounded by an infinite series of photon rings, composed of higher-order
images. These rings are created by the null geodesic’s execution of an additional half-
orbit before moving towards a faraway observer. These features are geometric and depend
soley on strong gravitational lensing, making them an excellent tool for studying general
relativity in the vicinity of the photon orbit.

Higher order photon rings lie exponentially closer to the shadow boundary, with their
structure heavily impacted by the dynamics of orbits nearby rγ. To examine the radii of
the photon rings, we will make the following assumptions regarding their propagation:

1. Each photon ring has an inner turning point at some radius outside of the photon
sphere, rγ + δr0.

2. This location is sufficiently close to the photon sphere that we may perturbatively
expand the photon equation of motion about rγ.
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3. Upon propagating some distance of order M away from rγ, the photon will stream
to the observer at infinity.

The second provides an immediate equation of motion for δr, obtained from expanding
Equation 3.12 about rγ,

δ̇r
2
= − r2

Σ̃2

(q2 + a2)

2B2(r)

[
N2(r)

r2

]′′∣∣∣∣
rγ

δr2. (3.15)

Again, apart from prefactors, this is very similar to the expression found in the spherically
symmetric case. Importantly, it is proportional to R2[N2(r)/r2]′′.

Unlike the spherically symmetric case, this now depends on the polar angle via Σ̃.
However, the angular equation of motion at constant r is

θ̇ = pθ =
1

Σ̃

√
q2γ + a2 − a2 sin2 θ, (3.16)

which the Σ̃ terms would canceled out and thus,

dδr

dθ
= G(θ)

N3/2(rγ)

N ′(rγ)

[
−N

′′(rγ)

B2(rγ)

]1/2
δr, (3.17)

where

G(θ) ≡ R√
R2 − a2 sin2 θ

. (3.18)

We note that G(θ) is independent of the four metric perturbations, apart from the speci-
fication of R. Therefore, we may integrate Equation 3.17 immediately to obtain that the
growth in orbital radius from the n to n+ 1 half orbit is

ln

(
δrn+1

δrn

)
=
N3/2(rγ)

N ′(rγ)

[
−N

′′(rγ)

B2(rγ)

]1/2 ∫ π

0

dθG(θ). (3.19)

Expressing this in terms of the orbital radius at the inner turning point, the orbital radius
after n half-orbits is

δrn = δr0e
γn (3.20)

in which the Lyapunov exponent is given by

γ ≡ N3/2(rγ)

N ′(rγ)

[
−N

′′(rγ)

B2(rγ)

]1/2
2K[(a/R)2] (3.21)
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where K(k) is the complete elliptic integral of the first kind. Identically, when a = 0, we
have K[(a/R)2] = π/2 and γ reduces to the expression (2.20) in chapter 2.

The requirement that there is an inner turning point at r = rγ+δr0 modifies the Carter
constant associated with the photon ring trajectories. Because ṙ = 0 on the photon sphere,
the lowest order at which q changes is second order, i.e.,

q2 + a2 = q2γ + a2 +
1

2

[
r2

N2(r)

]′′
rγ

δr20. (3.22)

Employing the third assumption, that upon reaching some radius (rγ + δrmax) the photon
streams toward infinity, we may estimate the radii of the photon rings generated by n half
orbits (i.e., θ = nπ),

Rn −R ≈ N ′(rγ)

4

[
r2

N2(r)

]′′
rγ

δr2maxe
−γn, (3.23)

which is identical to the spherically symmetric case up to the generalization of γ. By
measuring the radii of three photon rings, it becomes possible to eliminate the need for the
shadow size altogether,

γ = ln

(
Rn+1 −Rn

Rn+2 −Rn+1

)
. (3.24)

As previously stated within this section, the shadow is constrained by these multiple
photon rings. The observation of the shadow serves as evidence for the presence of a real
and positive value for γ. According to equation (3.21), this implies a requirement for
a positive value of −N ′′/B2. In the following section we will discuss more about other
constraints that the shadow size measurement and other possible measurements can put
on the metric components.

3.5 Constraints on the Metric by Observation

In this section, we examine the consequences of the EHT’s measurements of the shadow
sizes of M87*, which is viewed nearly face on. Although there is some uncertainty in the
measurement approach (see subsection 2.2.5), we accept the results at face value and eval-
uate their implications for deviations from gravity using both the N(rγ)-N

′(rγ) formalism
and alternatives.
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Figure 3.1: N −N ′ plot for Kerr spacetime
Representative constraints implied by the shadow size measurements for M87*, that had been mentioned

in subsection 2.2.4, at 2σ, is represented by the green shaded regions. The solid black line demonstrates

valid regions for Kerr spacetime. Additionally, the black dot illustrations the Schwarzschild value. Also,

the dark grey shaded region, are excluded due to the existence of shadow(see section 3.3).

3.5.1 Observational Implications on Kerr Spacetime

In order to gain a better understanding of the procedure, we first examine the observational
implications of Kerr spacetime before delving into the implications for alternative metrics.
As discussed in section 3.3, the size of the shadow is directly determined by the value of
N ′ at rγ, without imposing any constraint on the value of N at that location. However,
in the case of assuming the spacetime to be Kerr, there exists a relationship between N
and N ′ derived from the underlying theory, which allows for constraints on both variables.
A visual representation of this concept can be seen in Figure 3.1. The N-N’ diagram at
rγ for various spin values is depicted by the black curve, illustrating how Kerr spacetime
aligns with the shadow size measurements of M87 discussed in subsection 2.2.4. This
plot clearly demonstrates that Kerr spacetime is entirely encompassed within the current
EHT measurements. To effectively distinguish between various spins with a precision of
δa = 0.1, the required level of accuracy is approximately four orders of magnitude smaller
than the current observation range for the shadow size.
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Figure 3.2: N −N ′′/B2 diagram for Kerr spacetime

Representative constraints implied by the QNM measurements, that had been mentioned in [2], at 2σ, is

represented by the pink shaded region (also see subsection 3.5.3 for some detail). The black dot

illustrations the Schwarzschild value. The solid black curve shows the Kerr spacetime for different value

of spin. Also, the dark grey shaded region, is excluded due to the existence of shadow (see section 3.4).

Furthermore, an additional means of testing the underlying theory, here GR, involves
utilizing measurements of the Lyapunov exponent in potential future observations of the
photon rings. Please refer to Figure 3.2 for a visual representation of the acceptable range
of Kerr spacetime corresponding to different spin values. It is worth noting that the shaded
regions in the N − (N ′′/B2) plane is obtained by inserting the various measurements of N ′

from the M87 observations in subsection 2.2.4 into Equation 3.21 for Kerr spacetime. This
plot provides clear evidence that Kerr spacetime is fully encompassed by the current QNM
measurements (see subsection 3.5.3 and [2]). In order to differentiate between different
spins with a precision of δa = 0.1, the necessary level of accuracy is roughly two orders of
magnitude smaller than the current observation range for the Lyapunov exponent, which
will be further discussed in Section (3.5.3).

33



3.5.2 Observational Implications on Alternative Spacetimes

The current measurements of the EHT shadow size provide an opportunity to assess al-
ternative theories of gravity in addition to general relativity.(see subsection 2.2.5) Instead,
our focus lies on the theoretical implications of the model-agnostic framework introduced
in this study, aiming to test alternative metrics that are compatible with equation (3.6).

Figure 3.3 and Figure 3.4 illustrate the permissible region for N −N ′ and N −N ′′/B2

at rγ in various alternative spacetimes mentioned in Appendix J and Appendix J. By
utilizing the shadow size measurements, these plots enable the exclusion of certain spin
and extra charge values associated with these alternatives, thereby imposing constraints
on them. Moreover, as we discussed before, the existence of a shadow implies a positive
value for N ′ and (−N ′′/B2) at rγ(see section 3.3 and section 3.4). This fact excludes the
lower half plane of the N −N ′ and upper half of the N − (N ′′/B2). Additionally, without
loss of generality we can assume N is positive and therefore exclude the left half of these
diagrams.

As we discussed on chapter 2 by utilizing both shadow size measurement and potential
future measurements of photon rings radii, one can establish limitations on the values of
free parameters in the underlying theory. To illustrate this idea, several lines in Figure 3.3
and Figure 3.4 depict varying values of these free parameters. The blue lines correspond
to a constant spin value for different values of an additional charge used in these theories
to explain gravity. Conversely, the red lines represent a constant extra charge for different
spin values.

3.5.3 LIGO measurements

With the detection of GW150914, gravitational waves have become an important probe
of the near-horizon region of merging stellar-mass black holes. Future space-based inter-
ferometers [3] and pulsar timing monitoring experiments promise to expand these tests to
supermassive black holes that are directly comparable to EHT observations of Sgr A* and
M87*, respectively[55].

Comparison of these limits is complicated by the fact that gravitational wave obser-
vations necessarily require specification of the dynamical sector of any putative gravity
theory. Therefore, it is generally insufficient to postulate alternative stationary spacetimes
as doing so does not inform dynamical phenomena of any alternative theory. With this
caveat, there are two situations in which it may nevertheless be useful to characterize
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Figure 3.3: N −N ′ diagram for alternative spacetime

Representative constraints implied by the shadow size measurements for M87*, that had been mentioned

in subsection 2.2.4, at 2σ, is represented by the green shaded regions,in these diagrams. In all of the

plots, the colored regions demonstrates valid regions for alternative spacetimes. Additionally the black

dot illustrations the Schwarzschild value. The black curve shows the Kerr spacetime for different value of

spin. Also, the dark grey shaded regions, in both plots, are excluded due to the existence of shadow(see

section 3.3 and section 3.4). On the left side, you can see more elaborate representations of the plots, for

these metrics .
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Figure 3.4: N −N ′ diagram for alternative spacetime

Representative constraints implied by the QNM measurements, that had been mentioned in [2], at 2σ, is

represented by the pink shaded regions, in these diagrams(also see subsection 3.5.3 for some detail). In

all of the plots, the colored regions demonstrates valid regions for alternative spacetimes. Additionally

the black dot illustrations the Schwarzschild value. The black curve shows the Kerr spacetime for

different value of spin. Also, the dark grey shaded regions, in both plots, are excluded due to the

existence of shadow(see section 3.3 and section 3.4). On the left side, you can see more elaborate

representations of the plots, for these metrics .
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results in the way proposed here: gravitational wave ringdowns and extreme mass ratio
inspirals (EMRIs), which we treat in turn.

Gravitational Wave Ringdown

The late-time evolution of high-angular momentum quasinormal modes (QNMs) is related
in general relativity to the shadow size [62, 81, 89]. This is a consequence of these modes be-
ing associated with high-frequency, azimuthally propagating massless perturbation, which
is necessarily governed by the same dynamics as photons near the photon orbit. As a
consequence, generically the angular frequency, ω = ωR,l + iωI,l of the quasinormal mode
with azimuthal quantum number l is given by 3

lim
l→∞

ωI,l =
N ′(rγ)γ

2π
and lim

l→∞

ωR,l

l
= N ′(rγ), (3.25)

which are equivalent to Equation I.1 of [89]. Thus, observations of high-frequency quasi-
normal modes result in spacetime constraints that are directly comparable to those from
shadow sizes and multiple photon ring measurements. Of particular interest is that these
can be combined to separately measure γ:

γ = 2π lim
l→∞

l
ωI,l

ωR,l

. (3.26)

While the above expressions invoke the high-l limit, in practice, for Kerr spacetime
viewed by a polar observer and Schwarzschild spacetime, which were the cases of study in
chapter 2 and 3, the approximations are good to better than 5% by l = 2,improving rapidly
thereafter [11](see Figure 3.5). Of course, this does not confer any guarantees for alternative
spacetimes. Nevertheless, for illustrative purposes we consider the implications of the LIGO
QNM measurements. However, it is worth mentioning that by considering a polar observer,
which implies Lz = 0, it immediately follows thatm = 0 for the Quasinormal Modes. Thus,
in Figure Figure 3.5, we exclusively focus on different values of l with m = 0. However,
we also show the corresponding region between m = ±2 for l = 2 to provide a visual
representation of the deviation across various quantum numbers.

Gravitational Wave Inspiral

EMRIs have the significant virtue of the secondary being a perturbation on the spacetime
of the much more massive primary [5]. Therefore, as with QMNs, the dynamics of the

3Since we are considering the case with Lz = 0, equation II-21 in [89] reduces to I-1 in the same work,
which is the expression that we used here.
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Figure 3.5: Bottom: polar-orbit Lyapunov exponent from (3.21)
(black) in comparison to the estimates from the fundamental (n = 0) quasinormal modes,
2πlℑ(ωlmn)/ℜ(ωlmn) for various l and m as tabulated by [11]. The range of values for
l = 7 encompassed by |m| ≤ l is shaded in blue, with those for m = −1,−2 and

m = 0, 1, 2 shown by the thin and thick lines, respectively, for l = 2, 7. For reference, the
implied estimates from [2] are shown in magenta (error bars indicate 90% 4πωI/ωR and
final spin ranges). Top: the fractional difference between the QNM estimates and the
polar-orbit Lyapunov exponent. The grey band shows the 15% region, similar to those

expected for high S/N LIGO events [58].
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EMRI system can be analyzed within the context of a stationary background spacetime,
subject to the caveat regarding the dynamical sector of the underlying gravity theory.
However, there is an additional complication: the inspiral typically occurs at r > rγ.

A short discussion of the circular orbits of massive paricles in arbitrary spherically
symmetric spacetimes may be found in Appendix E. An implicit expression for the radius
of the ISCO, which terminates the inspiral regime, is given in Equation E.8. While it is
clear that the detection of a photon ring ensures that stable circular orbits do not exist
a rγ (see Appendix E), general statements about the ordering and proxmity of the ISCO
and photon orbit depend on the particular form of N(r). As a result, some assumption
regarding the extrapolation of N(r) away from rγ is necessary to make any estimate of the
implications of inspiral waveform measurements for deviations from general relativity.
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Chapter 4

Conclusion

The EHT images of M87* and Sgr A* provide a new, direct window into the properties of
astrophysical black holes. Shadow size measurements, and more generally, measurements
of the size of photon rings, provide a means to directly probe the spacetime geometry of
black holes. However, interpreting the gravitational implications of these measurements
requires some care due to the nonlinear nature of general relativity near black hole event
horizons and limited information contained in a single (or handful) of size measurements.

Significant qualitative conclusions may be reached already based solely upon the de-
tection of various image features. The detection of a shadow immediately implies that
N ′(rγ) > 0. The detection of any photon ring implies that N ′′(rγ) < 0. These hold
independent of the shadow or photon ring size.

The size of the shadow is directly related to N ′(rγ) (at least for the cases where the
inclination is almost zero): measuring the shadow size is synonymous with measuring the
radial derivative of the tt-component of the metric in areal coordinates. In this sense,
precise shadow size measurements generate precise metric constraints. However, there is
no constraint on N(rγ) from the shadow size alone, and thus shadow size measurements
by themselves do not provide any limit on the magnitude of a putative deviation in the
tt-component of the metric. In this sense, precise shadow measurements are uninformative.

Shadow measurements do not offer any insights into the various arbitrary functions
of the general metric, such as F (r), B(r), or f(r), as well. Similarly, both shadow mea-
surements and multiple photon ring measurements fail to provide information about the
ergosphere’s location and properties since these can only be established through F 2(r).
Furthermore, solely relying on shadow measurements does not provide any details about
the radial distances, which can be determined by the grr and consequently B2(r).
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When translated to spacetime parameters, either via parameterized metric expansions
or explicit alternative spacetimes, precise shadow size measurements can appear to im-
pose strong constraints on both N(rγ) and N ′(rγ). The constraint on N(rγ) is a direct
consequence of the prior that has been adopted via the choice of the underlying metric.
In the case of parameterized metric expansions, for which there is little significance to
this prior, the strength of the attendant limit on N(rγ) is illusory. Indeed, it is straight-
forward to generate examples of perturbed metrics that are otherwise consistent with all
existing constraints for Sgr A* and M87*, including the recent EHT shadow sizes, that
have nearly arbitrary magnitude metric perturbations at the photon orbit. Claims in the
literature that shadow size measurements limit a specific metric expansion coefficient, or
a linear combination of coefficients, must be understood within a narrow context for a
similar reason.

Nevertheless, because shadow size measurements do impose a strong measurement on
some facet of the underlying spacetime, we propose an alternative way to characterize their
gravitational implications: the values of N(r), N ′(r), N ′′(r)/B2(r), etc., measured at rγ.
This series has the virtue of being a nonparametric and nonperturbative description of
the shadow size measurement — in spherical symmetry and some cases of axi-symmetry,
which we explored in this work, the identifications are exact. However, they are complicated
by the a priori unknown value of rγ, i.e., properties of the metric are constrained at an
important dynamical location in the spacetime whose location is otherwise unknown.

The proposed formalism in this study establishes a comprehensive framework for cross-
correlating between various tests and measurements of near-horizon probes. One notable
application of this framework involves gravitational wave measurements, specifically the
assessment of Quasi-Normal Mode (QNM) frequencies in binary mergers and pulsars. To
compare these measurements with shadow size measurements, we propose utilizing the
connection between the critical photon curve (shadow) and the QNM frequency. This
approach enables the combination of these two measurements, serving as a valuable tool
for exploring gravity at near-horizon distances and imposing more stringent constraints on
different theoretical frameworks. It is also worth mentioning that there are numerous other
tests that can be probed using this general framework such as, redshift Measurements in
relativistically broadened iron fuorescence lines [22, 82], Light Echos [69, 52], etc.

Despite the unknown rγ, this proposal presents a particularly useful basis for com-
paring near-horizon measurements, including photon rings, shadow sizes, and black hole
ringdowns, all of which are dominated by massless particle dynamics near the event hori-
zon, and therefore the photon orbit. It is also convenient theoretically, providing a more
natural quantity for theoretical comparison and obviating the need for full ray-tracing and
radiative transfer simulations and/or mode spectrum computation.
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This basis remains poorly connected to gravity measurements that probe very different
spatial scales. This is a natural consequence of the afore-mentioned nonlinearity expected
near the photon orbit: the unavoidable price of adopting a nonperturbative way to charac-
terize near-horizon observations is difficulty in making comparisons to perturbative char-
acterizations of other measurements. This complicates, e.g., quantitatively relating EHT
shadow size measurements to solar system tests or observations of the inspiral phase of
black hole mergers outside of a particular gravity theory.

We have focused on spherically symmetric spacetimes for simplicity in chapter 2. How-
ever, to linear order in spin, all of the results obtained for Schwarzschild continue to apply
for polar observers (the relevant inclination for M87*). We also explored the expansion of
the nonparametric, nonperturbative characterization to integrable rotating spacetimes with
arbitrary spins in chapter 3. Nevertheless, even the simple cases explored here, elucidate
the power and limitations of measurements of the shadow and photon ring sizes.

Although this study presents a fairly comprehensive framework, there is potential for
further generalization. One of the assumptions made in this thesis, within the context of
axi-symmetric spacetime, was the presence of a separable action. This assumption allows
for the existence of a fourth constant of motion, ensuring the integrability of geodesics
in this particular spacetime. Consequently, a future direction for this project involves
extending the framework to incorporate a non-separable action and investigating non-
integrable null rays. Additionally, in Chapter 3, a simplification was made by considering
the viewpoint of polar observers. Expanding this perspective to encompass a more general
observer’s viewpoint would enhance the generality of the study and can be considered as
another direction for the future work.
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M. Cappi, G. Matt, G. Miniutti, P. O. Petrucci, E. Piconcelli, G. Ponti, D. Por-
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Appendix A

Critical photon orbit for
Schwarzschild space time

Due to the fact that Schwarzschild metric is static and spherically symmetrical, this space
time has three integrals of motion. Thanks to Noether theorem any symmetry is associated
with a conserved charge [73]. In the case of this space-time, spherical symmetry leads to
the constancy of three quantities. We choose these to be the angular momentum along
the polar axis, the total angular momentum and energy, namely Lz, L, and E respectively.
Therefore, the value of energy can be expressed as,

E = pt = gttṫ (A.1)

Where ḟ means df/dλ, also angular momentum in z direction is,

Lz = pϕ = gϕϕp
ϕ, (A.2)

and pϕ = ϕ̇. Inserting these equations for null rays, which basically means ds2 = 0, in
Schwartzshild metric which results in,

0 = − E2

f(r)
+

ṙ2

f(r)
+ r2θ̇2 +

L2
z

r2 sin2 θ
, (A.3)

which f(r) = 1−2M/r. Due to the spherically symmetry the spatial part of the trajectories
lives in a 2D plane thus, we can set θ = π/2 and θ̇ = 0, without loss of generality. Therefore,
(A.3) reduces to,

ṙ2 = E2 − f(r)
L2
z

r2
. (A.4)
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Since gtt = −f(r), we can define an effective potential by,

Veff(r) = −gtt
L2
z

r2
. (A.5)

In terms of which we obtain,
ṙ2 + Veff(r) = E2. (A.6)

Figure A.1 helps identifying the location and existence of the turning points, where are the
points that ṙ = 0 or equivalently Veff(r) = E2. Therefore, one can see the extermal point

Figure A.1: The effective potential for null geodesics in the Schwarzschild spacetime as
a function of areal radius. The black horizontal line shows the Veff = 0 and the curve
represent a null ray with Lz =

√
40.

of this curve could be equal to 0 for ,(
Lz

E

)2

=
r2

−gtt(r)
(A.7)

On the other hand, by taking time derivative from (A.6) we get,

r̈ =
1

2
V ′
eff(r), (A.8)

where V ′
eff is the radial derivative of Veff , solving these two equations simultaneously we get

the critical photon orbit,

rγ =
2gtt(rγ)

g′tt(rγ)
, (A.9)
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which is the radius of photon circular orbit. The value for rγ and the critical impact
parameter for the Schwarzschild metric are equal to,

rγ = 3M and

(
Lz

E

)
=

√
27. (A.10)

According to the predictions of general relativity, the null photon circle is not stable.
We will elaborate on the reason for this instability in the following. However, before
explaining that we need to discuss about impact parameter of null rays.

Photons coming from infinity with a impact parameter b and angular momentum Lz

follow this equation,
Lz = r × p, (A.11)

also one can see, since p = rϕ̇,

ϕ̇ =
Lz

r2
(A.12)

Additionally, one can deduce at infinity,

Lz = b|p|. (A.13)

For the null rays in natural units we know p = E. Therefore,

Lz = bE (A.14)

Which b, the impact parameter, is defined as the perpendicular distance between the path
of a projectile and the black hole at infinity.

Now by using equations (A.9) and (A.7) we have,

bγ =
rγ

gtt(rγ)
=

√
27. (A.15)

This impact parameter determines the shadow size that can be observed on the black hole
Images [35, 41].
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Appendix B

Multiple Photon Rings in
Schwarzschild spacetime

Consider a null ray positioned immediately outside the photon circular orbit at rγ + δr0,
with an impact parameter slightly greater than the critical impact parameter bγ + δb. This
null ray starts from r+δr0 and proceed to r(t) = rγ+δr(t). Here, |δr| << rγ and δb << bγ.
Using the Taylor expansion around rγ to describe this ray gives,

r̈(rγ + δr) = r̈(rγ) + r̈′(rγ)δr (B.1)

where r̈(rγ) is equal to zero due to definition of circular orbit and r̈′(rγ) is radial partial
derivative of r̈(rγ) at the photon orbit. For the Schwarzschild metric this is equal to,

r̈′|rγ =
1

2

gtt(rγ)

r2γgrr(rγ)

(
r2

gtt

)′′∣∣∣∣
rγ

. (B.2)

Solving (B.2), gets,
δr = δr0e

ωτ (B.3)

where ω is,

ω2 =
1

2

gtt(rγ)

r2γgrr(rγ)

(
r2

gtt

)′′

|rγ , (B.4)

and for Schwarzschild it is equal to 1√
27
. As a result, it can be inferred that the photon

orbit at rγ is unstable and the null rays slightly outside the rγ circulate around the black
hole a finite amount of times before reaching a point where the Taylor expansion becomes
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invalid (r=R), after which they continue on their unbound trajectories towards infinity.
Furthermore, it is noteworthy to mention that the equation (B.3) also indicates that null
rays within rγ, (δr < 0) exhibit an exponential fall into the black hole, which in turn
predicts the presence of a dark region the in black hole images. In order to see that we
need to check the ϕ component of the trajectory. Starting from defining the Lyapunov
exponent, γ, as,

π
dδr

dϕ
= γδr (B.5)

and using (B.3),(A.12) and (A.15) one can conclude 1,

dδr

dϕ
=
dδr

dτ

dτ

dϕ
= ω

(
r2γ
bγ

)
δr → γ = π

(
rγ
bγ

)√
1

2

gtt(rγ)

grr(rγ)

(
r2

gtt

)′′

|rγ (B.6)

Thus,
δr = δr0e

γϕ/π, (B.7)

where the Schwarzschild value of γ predicted by GR is π. Moreover, by assuming that
the Taylor expansion fails at a particular radius (δr = Rn), where the photon completes n
revolutions around the black hole (ϕ = πn), we can derive the following,

Rn = δr0e
γn. (B.8)

This results in,

n =
1

γ
ln
Rn

δr0
. (B.9)

These photons can get arbitrarily close to the photon circle, i.e., δr0 can get arbitrarily
close to zero, thus due to (B.9), n can get arbitrarily big. Therefore we can see that GR
predicts the shadow is bounded by an infinite number of these subsequent rings which
are the effect of strong gravitational lensing at the vicinity of the black hole horizon.
These photon rings represent higher-order images of the photons emitted mainly from the
accretion flow, which are heavily lensed as they pass by the black hole.

1I set E = 1 since energy is a constant of motion and can be rescaled to 1.
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Appendix C

Critical photon orbit in Kerr space
time

According to the No hair theorem, black holes can be uniquely characterized by their mass,
spin, and charge. Since electromagnetism is significantly stronger than gravity, it is widely
believed that black holes in nature are typically neutral, meaning that their mass and spin
are sufficient to describe them. Additionally, the Birkhoff theorem states that the solution
for axi-symmetric and stationary vacuum space-time in general relativity is unique, and it
is known as the Kerr space-time. Therefore, General relativity predicts that the space-time
surrounding all natural black holes can be described by the Kerr metric.

Now by using Kerr metric in Boyer-Lindquist coordinates,

ds2 = −
(
1− 2Mr

Σ

)
dt2 +

Σ

∆
dr2 + Σdθ2+(

r2 + a2 +
2Mra2

Σ
sin2 θ

)
sin2 θdϕ2 − 2

(
2Mra sin2 θ

Σ

)
dtdϕ (C.1)

where
Σ = r2 + a2cos2θ and ∆ = r2 − 2Mr + a2. (C.2)

Moreover due to the symmetries of this spacetime, it contains 3 constants of motion, which
we explain in the following.

1. ∂t is a Killing vector for this space time, thus,

E = pt (C.3)
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energy is an integral of motion here.

2. ∂ϕ is a Killing vector for this space time, thus,

Lz = pϕ (C.4)

angular momentum along the spinning axis (z-axis) is another integral of motion for
this space time.

3. The Kerr metric has an additional non-trivial integral of motion which is called the
Carter constant,

Q = p2θ + cos2 θ

(
a2(µ2 − E2) + (

Lz

sin θ
)2
)

(C.5)

where pθ is the angular momentum in θ direction and µ is the particle’s rest mass
[18].

Particle’s rest mass along with these integrals of motion guarantee that geodesics are
integrable in this spacetime.

Since the action in this spacetime is separable [18], the equation for the radial position
can be derived using the Hamiltonian-Jacobi method,

ṙ2 =
R(r)

Σ2
, (C.6)

where R(r) is,

R(r) = E2[r4 + (a2 − λ2 − q2)r2 − a2q2 + 2M
(
(a− λ)2 + q2)

)
r] (C.7)

where M is the black hole’s mass and ,

λ =
Lz

E
and q2 =

Q

E2
(C.8)

Similar to the Schwarzschild black holes, we begin by finding the turning point, the
place where

ṙ = 0 → R(r) = 0 (C.9)

Photons coming from specific impact parameters reach to the turning point. However,
in this spacetime, impact parameters are more complex on the celestial sphere of a distant
observer than they are in Schwarzschild spacetime. Figure C.1 illustrates this, where the
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Figure C.1: Impact Parameter

impact parameter for a null ray coming from infinity in Kerr space time. The dotted line is the

projection of axis of rotation on distance observer’s screen

axis of rotation of the black hole is represnted by an arrow. α is the perpendicular impact
parameter to the rotation axis, and β is the parallel impact parameter. The total value for
the impact parameter is equal to, b2 = β2 + a2.

To simplify matters, let us assume that the observer is viewing the black hole along
the axis of rotation. Therefore the photon reaches the detectors at θ0 = 0 which by using
equation 28 in [21] we derive,

λ = α = 0 (C.10)

and
β = E2

√
q2 + a2 (C.11)

Now by using this and rewriting equation(C.7) one can get,

R = E2(r2 + a2)2
(
1− ∆

(r2 + a2)2
β2

)
(C.12)

therefore,

ṙ2 = E2 1

Σ2

(
1− ∆

(r2 + a2)2
β2

)
(C.13)
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which is very similar to the effective potential that we found in (A.6) for non-spninng
black holes in GR. In fact if we set a=0 we get,

ṙ2 = E2

(
1− f(r)

q2

r2

)
(C.14)

The expression is quite similar to (A.4), with the only distinction being that in the
former case, we were examining null paths on the equatorial plane, whereas here, we are
studying photons with θ0 = 0. Moreover, this is related to the fact that Schwarzschild
space time also has Carter constant as an integral of motion and it is equal to setting
a = 0 in (C.5), which gives,

Q = p2θ + cos2 θ

(
L2
z

sin2 θ

)
(C.15)

Now by setting Lz = 0 we get,
Q = p2θ (C.16)

By inserting these in (A.3) we derive,

0 =
E2

f(r)
+

ṙ2

f(r)
+
p2θ
r2

(C.17)

Therefore,

ṙ2 = E2

(
1− f(r)

q2

r2

)
(C.18)

which is compatible with (C.14). Having established that the previous calculations align
with the Schwarzschild spacetime in the absence of spin, we can proceed with determining
the radius of the photon orbit for null trajectories in Kerr spacetime with θ0 = 0, utilizing
(C.13) and deriving ṙ and r̈ we get,

rγ =M + 2M

√
1− a2

3M
cos

[
1

3
cos−1

(
1− a2/M2

(1− a2/3M)3/2

)]
.

β2 =
(r2γ + a2)2

∆(rγ)

(C.19)

which is compatible with the results we saw in the Schwarzschild space time in the slow
rotating regime.
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Nevertheless, it is worthwhile to consider the general scenario where null rays may
not necessarily have θ0 = 0. To determine the critical circular orbit for these trajectories,
Equation (C.7) must be taken into account. The first step is to identify the constant radius
orbit by finding the point where ṙ = 0,

ṙ = 0 → R(rγ) = 0 (C.20)

To remain on this orbit, we need to ensure that r̈ = 0,

r̈ = 0 → R′(rγ) = 0 (C.21)

Which in principle, we can solve for two out of the three quantities, rγ, λ, and q, as
a function of one of them. Furthermore, we can explore the subsequent photon rings in
axi-symmetric space time by taking the similar path to the one that we took for spherically
symmetric spacetimes before.
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Appendix D

Multiple photon rings in Kerr
Spacetime

Null rays coming from slightly different impact parameters create the subsequent photon
rings that we review here, by starting from Taylor expanding r̈ around rγ we get,

r̈(rγ + δr0) = r̈(rγ) + r̈′(rγ)δr0, (D.1)

where r̈(rγ) is equal to zero due to the definition of circular orbit and r̈′(rγ) is the radial
partial derivative of r̈(rγ) at the photon orbit. Thus for a general observer this can be
derived as,

r̈′(rγ) =
1

2

1

Σ∆grr
R′′(rγ), (D.2)

where
δr = δr0e

ωτ . (D.3)

By using (D.1) we see,
ω2 = r̈′(rγ). (D.4)

Also setting Lz = 0,

ω2 =
E2

2

(r2γ + a2)2

Σ(rγ)∆(rγ)grr(rγ)
[

∆

(r2 + a2)2
]′′rγβ

2
γ (D.5)

This outcome is akin to (B.4) and precisely reduces to the calculations in the Schwarzschild
spacetime, when a approaches zero.
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We can proceed by introducing the Lyapunov exponent as we did for the Swartzshild
space time but we will leave this part for chapter 3, where we can discuss this in more
detail.

Moreover, to witness a shadow of the black hole, there should be a significant decline
in brightness within the radius of the photon circle, leading to,

r̈′(rγ) > 0 (D.6)

which basically means if δr0 is positive then this null ray exponentially gets further
and further away and eventually escapes to infinity and reaches the detectors. Also if δr0
is negative it will exponentially fall towards the black hole which results in exponentially
decreasing of the brightness inside the photon circular orbit.
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Appendix E

Circular Orbits of Massive Particles

General expressions for circular orbits for massive particles may be constructed for the
family of space times described by the metric that been mentioned in chapter2 in a fashion
similar to that used to obtain rγ. We again require ṙ and r̈ vanish. The first condition
gives

ṙ2 =
1

B2(r)

[
E2 −N2 − N2

r2
L2

]
= 0, (E.1)

where E = −ut and L = uϕ are the conserved specific energy and specific angular momen-
tum. From this, the second gives

r̈ =
N(r)

B2(r)

[
N ′(r) + L2

(
N ′(r)

r2
− N(r)

r3

)]
= 0, (E.2)

where we employed the previous condition. Together, these imply that for circular orbits,

L ≡ uϕ = ±

√
r3N ′(r)

N(r)− rN ′(r)
, (E.3)

with associated energy,

E ≡ ut = −

√
N3

N(r)− rN ′(r)
. (E.4)

From these, the angular velocity as measured by a distant observer is,

Ω =
uϕ

ut
= −N

2(r)

r2
L

E
= ±

√
N(r)N ′(r)

r
. (E.5)
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The stability of these circular orbits is determined by the response to perturbations
(again similar to the analysis of photon orbits in Appendix B),

δ̇r
2
= −ω2δr2 (E.6)

where

ω2 =
N(r)

B2(r)

[
N ′′(r)

(
1 +

L2

r2

)
+

3N3(r)

r4
L2

E2

]
δr2. (E.7)

When ω2 > 0, the perturbation is oscillatory and the orbits are stable; when ω2 < 0 the
perturbation grows exponentially. Note that at rγ, L

2 → ∞ and ω2 < 0 if N ′′(rγ) < 0, i.e.,
if any photon rings are observed then timelike geodesics are also unstable at the photon
orbit.

Transitions from stable to unstable circular orbits occur when ω2 = 0. The radius of
the innermost stable circular orbit is the minimum rI for which

rI = − 3N(rI)N
′(rI)

3N ′2(rI)−N(rI)N ′′(rI)
, (E.8)

which is an analogous condition to that for rγ in Equation 2.7. However, in the absence
of knowledge about the particular form of N(r) away from rγ, it is difficult to place any
further general conditions on rI relative to rγ.
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Appendix F

Slowly Rotating Space times

When viewed from the polar axis, approximately appropriate for M87*, by symmetry all
axisymmetric space times must produce circular shadows. While limiting ourselves to this
viewing angle reduces the impact of space time properties, it does simplify the relationship
between the shadow size and the underlying space time geometry.

ds2 =−N(r)2
[
1 + a2ft(r, cos θ; a

2)
]
dt2

+
B(r)2

N(r)2
[
1 + a2fr(r, cos θ; a

2)
]
dr2

+ r2
[
1 + a2fθ(r, cos θ; a

2)
]
dθ2

+ r2 sin2 θ
[
1 + a2fϕ(r, cos θ; a

2)
]
dϕ2

+ 2ag(r, cos θ; a2)dtdϕ,

(F.1)

for some set of functions ft(r, cos θ; a
2), fr(r, cos θ; a

2), fθ(r, cos θ; a
2), fϕ(r, cos θ; a

2), and
g(r, cos θ; a2), where we have explicitly enforced the reduction to spherical symmetry when
a = 0 and reflection symmetry across the equatorial plane.

Because of this latter symmetry, shadow sizes observed by polar viewers must be inde-
pendent of the sign of the spin. Expanding the above confirms that the lowest-order spin
correction enters at a2 . As a consequence, up to corrections of a2, the shadow size is that
given in Equation 2.10.
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F.1 The Polar Photon Sphere

We begin with Equation 3.12 for ṙ2,

ṙ2 =
r2

Σ̃2

e2

B2(r)

[
1− q2 + a2

r2
N2(r)

]
. (3.12)

To obtain an equation for r̈, we differentiate with respect to the affine parameterization of
nearby geodesics (λ) and take the limit as ṙ → 0. That is,

r̈ =
1

2ṙ

dṙ2

dλ

=
1

2ṙ

(
∂ṙ2

∂r
ṙ +

∂ṙ2

∂θ
θ̇

)
=

1

2

[
r2

Σ̃2

e2

B2(r)

]′ [
1− q2 + a2

r2
N2(r)

]
− r2

Σ̃2

e2

B2(r)

[
q2 + a2

r2
N2(r)

]′
− sin(2θ)

Σ̃
ṙθ̇.

(F.2)

Taking the limit as r → rγ, and therefore ṙ → 0 and r2 → (q2 + a2)N2(r), the first and
third terms vanish identically. This leaves

r̈ = − r2

Σ̃2

e2

B2(r)

[
q2 + a2

r2
N2(r)

]′
(F.3)

which we assume vanishes only when the second term does, i.e., [(q2 + a2)N2(r)/r2]′ = 0.
Thus, we have two simultaneous equations for r and q, which combine to give the desired
expression, rγN

′(rγ) = N(rγ).
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Appendix G

ADM Mass and Spin

The parameters M and a correspond to the ADM mass and spin, respectively, when N(r),
B(r), F (r), and f(r) approach their Kerr values at large r. That is, should it be desirable
to interpret M and a as the ADM mass and spin, this imposes the following asymptotic
conditions on the otherwise unrestricted functions,

lim
r→∞

f(r) = 0

lim
r→∞

r[N(r)− (1−M/r)] = 0

lim
r→∞

r[B(r)− 1] = 0

lim
r→∞

r[F (r)− 1] = 0.

(G.1)
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Appendix H

Metric Components

The components of the metric in Equation 3.6 may be written as

gtt = −Σ̃
N2 − a2F 2 sin2 θ

[r − a2F sin2 θ]2

grr = Σ̃
B2

N2

gθθ = Σ̃

gϕϕ = Σ̃ sin2 θ
[r2 − a2N2 sin2 θ]

[r − a2F sin2 θ]2

gtϕ = Σ̃a sin2 θ
[N2 − rF ]

[r − a2F sin2 θ]2
.

(H.1)

From these we have

g2tϕ − gttgϕϕ =
Σ̃2N2 sin2 θ

[r − a2F sin2 θ]2
, (H.2)

and therefore, the metric determinant is

√
−g = Σ̃2B

r − a2F sin2 θ
. (H.3)
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With the identifications,

A2
1(r) =

r2∆

N2(r)(r2 + a2)2

A2
2(r) =

F 2(r)∆

N2(r)

A5(r) =
N2(r)

∆B2(r)
,

(H.4)

and f(r) is unchanged, these match Equation 51 of [60] exactly.
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Appendix I

Describing Alternative Spherical
Spacetimes

Our approach here involves two complementary methods. Firstly, we will provide a brief in-
troduction to metric expansions that are not dependent on any underlying physical theory.
These expansions have been designed in such a way that they reduce to the Schwarzschild
metric when deviation parameters are set to zero. Despite not being derived from any
specific modified theory of gravity, these metrics enable us to explore a wide range of
possibilities and can later be mapped to parameters of a fundamental theory for further
analysis and also help us quantifying the deviations from GR.

I.1 Metric Expansions

In Table I.1, we review certain metric expansions and focusing on the metric’s gtt compo-
nent since as we demonstrated before in (A.15), shadow size is directly related to radial
component of gtt at the photon orbit. Furthermore, we will explain more about these
expansions in subsection 2.2.2 .

I.2 Alternative Spacetime

In Table I.2 we review some explicit alternatives to General Relativity. Alternative metrics
differ in an important conceptual way from the metric expansions, the correlations are a
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Metric gtt

PN([76, 41],) −(1− 2M

r
+ 2(

κ1
r2

− κ2
r3

+
κ3
r4

− κ4
r5
. . . ))

MGBK metric Expansion[83] −
(
1− 2M

r

) [
1−

∑∞
n=2

γ1,nMn

rn
− 2

(
1− 2M

r

)∑∞
n=2

γ4,nMn

rn

]

RZ metric Expansion [79] −
(
1− r0

r

) [
1− ϵ r0

r
+ (a0 − ϵ)

r20
r

2
+ a1

r30
r3

]
.

JP metric Expansion[60] −
(
1− 2M

r

) (
1 +

∑∞
n=2

α1nMn

rn

)−2

Table I.1: Metric Expansions

consequence of the physical prior that the metric of interest applies and is not an arbitrary
truncation of an otherwise infinite series of terms. In this sense, the possible observational
constraints are meaningful within the narrow context of the alternative metric.

Similar to previous section, we focus mostly on the gtt component of each of these
metrics since in the following chapters we can deduce the shadow size associated with each
of these just by using this component of the metric (for simplicity here we redefine r to
r
M

to have a dimensionless parameter). However, it is worth mentioning that all other
components of these metrics are same as the Schwarzschild spacetime unless otherwise
stated.
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Metric gtt grr

RN(Reissner–Nordström) metric[77] −
(
1− 2

r
+ q2

r2

)
1/f(r)

E-ae 1 metric[10] −
(
1− 2

r
+ 33c13

24(1−c13)
1
r4

)
1/f(r)

E-ae 2 metric[10] −
(
1− 2−c14

r
+ (2c13−c14)(2−c14)2

8(1−c13)
1
r2

)
1/f(r)

Bardeen metric[7] −
(
1− 2r2

(r2+q2m)3/2

)
1/f(r)

Hayward metric [53] −
(
1− 2r2

r2+2l2

)
1/f(r)

Birnokov metric[17] −
(
1− 2

r

(
1− tanh( q

2
m

2r
)
))

1/f(r)

EEH metric[88] −
(
1− 2

r
+ q2m

r2
− α 2q4m

5r6

)
1/f(r)

Frolov metric[44] −
(
1− (2r−q̃2)r2

r4+(2r+q̃2)l̃2

)
1/f(r)

KS metric[63] −
(
−2

r
+

√
r2−ã2

r

)
1/f(r)

CFM-A and CFM-B metric[19] −
(
1− 2

r

)
(1− 3

2r
)(1− 4β−1

2r
)−1(1− 2

r
)−1

EMd [46, 47] −
(
1−

√
4r2+q̃4−q̃2

r2

)
4r2

4r2+q̃4

(
1−

√
4r2+q̃4−q̃2

r2

)−1

Table I.2: Spherically symmetric alternative theories of gravity

In this table we listed some alternative theories of gravity that had been mentioned in [65] and describe a

spherically symmetric spacetime around a massive object. f(r) is equal to 1− 2M/r. Additionally, it is

worth mentioning that the difference between CFM-A and B relies on β’s range, which for CFM-A is

β < 1 and for CFM-B is 1 < β < 5/4
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Appendix J

Describing Alternative
Axi-symmetric Spacetimes

The metric in Equation 3.6 is sufficiently general to describe a wide range of spinning black
hole space times. Here we explicitly demonstrate that it can express a number of specific
alternative space times by constructing the associated free functions.

J.0.1 Kerr

We begin with the Kerr metric, written in Boyer-Lindquist coordinates,

ds2 = −∆

Σ
(dt − a sin2 θdϕ)2 +

sin2 θ

Σ

[
adt− (r2 + a2)dϕ

]2
+

Σ

∆
dr2 + Σdθ2, (J.1)

Metric N2(r)/F 2(r) B2(r)/F 2(r) F (r) f(r) A2
1(r) A2

2(r) A5(r)

Kerr ∆ r2 r/(r2 + a2) 0 1 1 1
Kerr-Newman ∆KN r2 r/(r2 + a2) 0 ∆/∆KN ∆/∆KN ∆KN/∆

Hayward ∆H r2 r/(r2 + a2) 0 ∆/∆H ∆/∆H ∆H/∆
Bardeen ∆B r2 r/(r2 + a2) 0 ∆/∆B ∆/∆B ∆B/∆

Kerr-Sen ∆S r2 r/[r(r + rS) + a2] rrS
∆[r(r + rS) + a2]

∆S(r2 + a2)
∆/∆S ∆S/∆

Baines-Visser ∆BV e
−2Φ r2e−2Φ r/Ξ2 Ξ− (r2 + a2)

Ξ2∆e2Φ

(r2 + a2)2∆BV

∆e2Φ/∆BV ∆BV/∆

Table J.1: Alternative Axi-symmetric spacetimes
Describing alternative spacetime metrics with Equation 3.6 and the [60] metric.
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where Σ = r2 + a2 cos2 θ. This form may be immediately represent in the form of Equa-
tion 3.6 with appropriate choices for N(r), F (r), B(r), and f(r). Before explicitly stating
these (see also Table J.1), we begin with define a function that will appear repeatedly,
u(r) ≡ r/(r2 + a2), and note that when F (r) = u(r),

r − Fa2 sin2 θ = Σu(r), (J.2)

i.e., with an appropriate definition of F (r) some of the denominators in Equation 3.6 (or
Equation H.1) simplify in such a way that the dependence on the polar angle may be
subsumed into factors of Σ. Therefore, inserting this expression for F (r) into Equation 3.6
produces

ds2 = − Σ̃N2

Σ2u2(r)
(dt− a sin2 θdϕ)2

+
Σ̃ sin2 θ

Σ2

[
adt− (r2 + a2)dϕ

]2
+ Σ̃

B2

N2
dr2 + Σ̃dθ2. (J.3)

The remaining functions in Equation 3.6 are set by matching the coefficients in Equation 3.6
and Equation J.1. We begin with setting the coefficient of dθ2, which requires f(r) = 0
and thus Σ̃ = Σ. This choice also results the matching of the coefficient in the second
term. The first term may be used to set N(r),

N2(r) = ∆u2(r), (J.4)

and the third sets B(r),

B2(r) =
N2(r)

∆
= 1. (J.5)

These are summarized in Table J.1.

J.0.2 Kerr-Newman

Charged spinning black holes are described in general relativity by the Kerr-Newman
metric,

ds2 = −∆KN

Σ
(dt− a sin2 θdϕ)2

+
sin2 θ

Σ

[
adt− (r2 + a2)dϕ

]2
+

Σ

∆KN

dr2 + Σdθ2, (J.6)
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which differs from Kerr by the introduction of ∆KN,

∆KN ≡ r2 − 2Mr + a2 + r2Q, (J.7)

where r2Q ≡ GQ2/4πϵ0c
4 is the black hole charge in gravitational units (CITE). Again, we

set F (r) = u(r), which puts the metric in the form of Equation J.3. Then, we adopt

N2(r) = ∆KNu
2(r)

B2(r) =
∆KN

∆
f(r) = 0,

(J.8)

for which Equation J.3 becomes identical to Equation J.6.

J.0.3 Rotating Hayward

The Hayward metric is originally spherically symmetric, and thus a substitute for Schwarzschild
[53]. A rotating analog has been constructed via a procedure analogous to the Newman-
Janis algorithm, resulting in a Kerr-like metric with mass replaced by a function of radius
(Abdujabbarov et al. 2016, though see Bambi and Modesto, 2013). Expressed in Boyer-
Lindquist coordinates, this takes the form

ds2 = −∆H

Σ
(dt − a sin2 θdϕ)2 +

sin2 θ

Σ

[
adt− (r2 + a2)dϕ

]2
+

Σ

∆H

dr2 + Σdθ2, (J.9)

where

∆H = r2 + a2 − 2
Mr4

r3 + g3
(J.10)

is modified to eliminate the space time singularity. Like the Kerr-Newman metric, the
modification to Kerr is confined to a redefinition of ∆, and thus upon choosing N2(r),
B2(r), F (r) and f(r) , Equation 3.6 reproduces the desired metric.

J.0.4 Rotating Bardeen

The rotating Bardeen metric is nearly identical to the rotating Hayward metric, with the
exception that ∆H is replaced with

∆B = r2 + a2 − 2
Mr4

(r2 + g2∗)
3/2
, (J.11)
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J.0.5 Kerr-Sen

The Kerr-Sen metric describes a charged black hole that arises in a heterotic string theory.
It is characterized by an additional charge, related to a length scale via rS = Q2/4πϵ0Mc2

(Sen 1992). In Boyer-Lindquist coordinates, this metric may be written as,

ds2 = −
(
1− 2Mr

ΣS

)
dt2−4Mra sin2 θ

ΣS

dtdϕ+

[
r(r + rS) + a2 +

2Mra2 sin2 θ

ΣS

]
sin2 θdϕ2+

ΣS

∆S

dr2+ΣSdθ
2,

(J.12)

where
ΣS ≡ r(r + rS) + a2 cos2 θ∆S ≡ r(r + rS)− 2Mra2, (J.13)

(Narang et al. 2020 [arXiv:2002.12786]). Comparing the metric coefficients with those in
Equation 3.6, it is immediately clear from the coefficient of dθ2 that f(r) = rrS. Setting
the remaining free functions,

F (r) = r/[r(r + rS) + a2]

N2(r) = ∆SF
2(r)

B2(r) = F 2(r),

(J.14)

brings Equation 3.6 into agreement with Equation J.12.

J.0.6 Baines-Visser Metric

In arXiv:2303.07380 a family of metrics describing axisymmetric space times is proposed
that admits separable Hamilton-Jacobi and Klein-Gordon equations,

ds2 = −∆BVe
−2Φ − a2 sin2 θ

Ξ2 + a2 cos2 θ
dt2 − 2

a
(
Ξ2 −∆BVe

−2Φ + a2
)
sin2 θ

Ξ2 + a2 cos2 θ
dtdϕ

+

[
(Ξ2 + a2)

2 − e−2Φ∆BVa
2 sin2 θ

]
sin2 θ

Ξ2 + a2 cos2 θ
dϕ2 +

Ξ + a2 cos2 θ

∆BV

dr2 +
(
Ξ2 + a2 cos2 θ

)
dθ2,

(J.15)

where Φ(r), ∆BV(r), and Φ(r) are three free functions of radius. Thus, this family metric is
suggested as a useful class of foils for general relativity. It is a special case of Equation 3.6,
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with
f(r) = Ξ(r)− (r2 + a2)

F (r) =
r

Ξ(r)

N2(r) =
r2∆BV(r)e

−2Φ(r)

Ξ2(r)

B2(r) =
r2e−2Φ(r)

Ξ2(r)
.

(J.16)
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