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Abstract

Quantum processes are susceptible to errors. Over the years, numerous noise models,
such as two-level system noise and flux noise, have been proposed by physicists to describe
the mechanisms behind the error sources affecting quantum processes. However, a compre-
hensive understanding of the quantum noise landscape, particularly on longer timescales,
is still under active exploration. This thesis contributes to this ongoing effort, exploring
long-term quantum noise through the lens of a superconducting Xmon transmon qubit.

In our study, we explore the long-term qubit noises by conducting continuous purity
benchmarking experiments, utilizing a set of established metrics to gauge the quantum
errors. These metrics, namely the average gate fidelity and unitarity, provides a more
detailed characterization of quantum error compared to the commonly studied variables
such as T1 and frequency detuning, including characterization of the coherence property.
These metrics are also the subject of intense discussions, particularly in the fields of quan-
tum algorithms and quantum information processing hardware development. We measured
the coherent and incoherent quantum error for very long time periods, up to 440 hours.
Through these experiments. we gain valuable insights into the nature of the quantum noise
and its impact on qubit coherence.

Following the experiments, we further attempt to reconcile our observations with well-
established models, namely the two-level system and flux noise, through simultaneous
measurements and comprehensive simulations. While we succeed in explaining certain
aspects of the experimental results, our findings also highlight intriguing discrepancies
between experimental observations and simulations, thus prompting further research.
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interactions, Dr. Jérémy H. Béjanin has also served as an exemplary role model in both
my professional and personal life. I am immensely grateful for his guidance.

I must also express my appreciation for the extraordinary team members with whom I
am privileged to work: Christopher Xu, Mohammad Ayyash, Noah Gorgichuk, and for Dr.
Yosri Ayadi, with whom I had the honor to work previously. Their consistent dedication,
unique talents, and unwavering support have made a significant impact on my academic
journey.

On a personal note, I would like to express my deepest gratitude to those who provided
me with unwavering support throughout my degree journey. My parents, Mengcun Zhu
and Hongxin Zhang, and my friends, Boyan Liu and Han Huang, deserve a special mention
for their enduring support and encouragement.

Throughout this journey, I have been fortunate to encounter countless touching stories
and kind souls that have greatly enriched my experience and shaped my soul. It was
impossible for me to reach this milestone without their support, and I regret that it is
impossible to acknowledge them all here.

Finally, I reserve these special thanks for those extraordinary individuals who stood by
me during a critical juncture in my life. Christopher and Alicia, Carter Tsai and Vicky
Zhou, Yiran Wang and Mei Dong, Dr. Kesava KV Reddy, Dr. Waleed Abdulaziz Alsunbul,
Dr. Yosri Ayadi, as well as Dr. Matteo Mariantoni. I am forever indebted to them for
their kindness during that time of hardship.

iv



Dedication

To my parents, Mengcun and Hongxin, for their unwavering support and love throughout
my life journey. To all those who offered help and supported me through my setsuna of
shoumetsu, a moment for life or extinction. This degree has reshaped me and my beliefs,
and I carry its impact with me as I present this work.

v



Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

List of Figures viii

List of Tables x

Personal Message xi

1 Introduction 1

1.1 Circuit Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Superconducting Resonator . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Superconducting Qubit . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Experimental Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Homodyne Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Qubit Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Quantum Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Two-Level System . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

vi



2 Method 13

2.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Coherence and Unitarity . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Randomized Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Purity Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Experimental Protocol for Time Fluctuations of Quantum Errors . . . . . 22

2.3.1 Elimination of Offset Term . . . . . . . . . . . . . . . . . . . . . . . 24

3 Result 27

3.1 Preambles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Fluctuations in Single-qubit Errors . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Time Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.3 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Discussion 44

4.1 Simultaneous Qubit Relaxation Measurements . . . . . . . . . . . . . . . . 44

4.2 Simulations on TLS Noises and Flux Noises . . . . . . . . . . . . . . . . . 49

5 Conclusion 53

References 55

APPENDICES 61

A Time-domain Analysis: Overlapping Allan Deviation 62

B Single-qubit Clifford Gates 64

vii



List of Figures

1.1 Hanger-type lumped-element superconducting resonator . . . . . . . . . . . 2

1.2 Circuit diagrams for an anharmonic oscillator and a SQUID . . . . . . . . 6

2.1 Single-qubit RB and PB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Diagram for PB Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Cycle diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Time series of coherent error ϵcoh acquired by ”standard” PB protocol. . . 28

3.2 Impact of averaging more cycles on the “SNR”. . . . . . . . . . . . . . . . 29

3.3 Qubit calibrations before the first experiment . . . . . . . . . . . . . . . . 31

3.4 Time series for the first experiment . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Time series for the second experiment . . . . . . . . . . . . . . . . . . . . . 33

3.6 Qubit calibration after the second experiment . . . . . . . . . . . . . . . . 36

3.7 Period time for each cycle in both experiments . . . . . . . . . . . . . . . . 37

3.8 Simulations for time drifts . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.9 Overlapping Allan deviations for the first experiment. . . . . . . . . . . . . 41

3.10 Overlapping Allan deviations for the second experiment. . . . . . . . . . . 42

4.1 Color map for T1 Fluctuations. . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Time series of errors and T1 time for the first PB frequency . . . . . . . . . 47

4.3 Time series of errors and T1 time for the second PB frequency . . . . . . . 48

4.4 Color maps of simulated coherent and incoherent errors . . . . . . . . . . . 51

viii



A.1 Examples of PSD plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

ix



List of Tables

3.1 Power-law noise processes and their associated ADEV patterns in log-space. 40

B.1 Single-qubit Clifford gates and their decompositions . . . . . . . . . . . . . 66

x



Personal Message

The gift card I received in my despair, a reminder of the love and support from my team.

xi



Chapter 1

Introduction

With recent breakthroughs in both experimental design and quantum algorithms[1, 2],
superconducting qubits have emerged as a leading candidate for fault-tolerant quantum
information processing devices. In order to achieve fault tolerance practically, it is crucial
to accurately model and mitigate stochastic fluctuations that can degrade the performance
of superconducting qubits. The physical mechanisms of the quantum errors and noises can
be explored and studied via various metrics. Some broadly used metrics include relaxation
time (T1) and the dephasing time (T2). In this thesis, we study the coherent and incoher-
ent stabilities of single “Xmon” transmon qubit through long-time purity benchmarking
experiments. The corresponding metrics obtained through the experiment are introduced
in Chapter 2 and analyzed in Chapter 3.

This introductory chapter provides an brief overview of the critical components of our
study. We will first delve into the essential instruments for the experiments - the su-
perconducting resonator and the Superconducting Qubit - from the perspective of circuit
quantum electrodynamics (QED), with a specific focus on frequency-tunable Xmon trans-
mon qubits. This is followed by brief explanations of experimental procedures: how to
practically readout and manipulate the state of the qubit. Finally, we justify the purpose
of this study: exploring the physics behind the quantum noise. We also review a specific
noise model pertinent to our investigation.
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(a) Optical photo of a hanger-type lumped-
element resonator

Z0 Z0

Cext

C LR

(b) Equivalent circuit diagram

Figure 1.1: Hanger-type lumped-element superconducting resonator

1.1 Circuit Quantum Electrodynamics

1.1.1 Superconducting Resonator

In the context of circuit QED, superconducting resonators are typically implemented as
microwave resonators. They serve as the quantum mechanical counterparts to classical LC
circuits and can be mathematically described as harmonic oscillators. Furthermore, super-
conducting resonators play a critical role as ancillary systems for qubit readout, providing
a key mechanism for state measurement in superconducting qubits. Thus, these resonators
act as an indispensable component within the circuit QED framework.

Figure 1.1a shows a photo of a planar lumped-element superconducting resonator[3].
The resonator consists of interdigital electrodes and a meandering line, both made of super-
conducting aluminum on top of a silicon wafer. The interdigital electrodes and meandering
line effectively forms a parallel LC circuit, capacitively coupled to a coplanar waveguide
(CPW) transmission line above. Due to the resistance of the silicon wafer, a resistor is
added to the circuit in parallel to better model the corresponding energy dissipation. The
classical circuit model of this lumped-element resonator is presented in Figure 1.1b.
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Quantum Description

In order to derive the quantum description of the LC resonator, i.e. the quantum Hamil-
tonian of the system, we start from the classical circuit model. Since the typical energy
relaxation time of a superconducting resonator is much longer than the oscillation pe-
riod, we can assume the resistor is open and the loss from it is negligible, without loss of
generality. This simplified system can be represented by a simplest LC circuit.

The current-voltage relationships across the capacitor C and the inductor L are:

vL = −LdiL
dt

(1.1)

iC = C
dvC
dt

(1.2)

Since the electric field within this closed system is conservative, we can directly write down
the classical Lagrangian and Hamiltonian for the circuit as:

L =
1

2
(Cv2C − Li2L) (1.3)

H =
1

2
(Cv2C + Li2L) (1.4)

Although the current i and voltage v are the most easily measured quantities in classical
electrical engineering, it is more common to express this Hamiltonian in another pair of
canonical conjugate variables: flux ϕ and charge q. The variation is given by

vL =
dϕL

dt
(1.5)

iC =
dqC
dt

(1.6)

Combined with the Kirchhoff’s circuit laws for the LC circuit, we obtain the Hamiltonian

H =
1

2L
ϕ2
L +

1

2C
q2C (1.7)

Now it is time for the canonical quantization: we promote the variables ϕL and qC to
operators ϕ̂ and q̂ in a Hilbert space and impose the canonical commutation relation

[ϕ̂, q̂] = iℏ (1.8)
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and now we have the quantum Hamiltonian for a superconducting resonator.

Ĥ =
1

2L
ϕ̂2 +

1

2C
q̂2 (1.9)

Notice that Equation 1.9 possesses the exact mathematical structure as the Hamiltonian
for the quantum harmonic oscillator. Drawing inspiration from the method developed by
Paul Dirac[4], we proceed to change the operational basis by defining the following ladder
operators:

a =

√
Cω

2ℏ
(ϕ̂+ iLωq̂) (1.10)

a† =

√
Cω

2ℏ
(ϕ̂− iLωq̂) (1.11)

with ω = 1√
LC

. Finally we obtain the diagonalized form of the quantum Hamiltonian:

Ĥ = ℏω(a†a+
1

2
) (1.12)

1.1.2 Superconducting Qubit

An essential component of circuit QED, and the heroine of this thesis, is the superconduct-
ing qubit. Unlike resonators, these two-level systems (or multi-level systems in the case of
a qu-“dit” ) possess distinct states that register information and evolve in alignment with
the quantum nature of the world. This is typically achieved by introducing non-linearity
in the energy spacing between each stationary state in a quantum resonator. There is a
vast amount of different designs proposed in the field. We primarily focus on a type of
qubit design called the transmon[5], which is derived from the charge qubit (Cooper-pair
box), and its variant, the Xmon transmon qubit[6].

The non-linearity of a superconducting qubit typically arises from the Josephson ele-
ment within the circuit. This element can either be a single junction or a pair arranged in
a loop. This device is named after British physicist Brian Josephson. In its simplest form,
a single Josephson junction is constructed by positioning a thin layer of dielectric material
between two layers of superconducting material. The charge carriers, Cooper pairs in this
case, go through the dielectric material by quantum tunneling to form the current. Joseph-
son, in his Nobel-winning paper published in 1962[7], predicted the behavior of this specific
circuit element using equations that are now well-known as the Josephson Equations:

iJ = I0sin(φ) (1.13)
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vJ =
ℏ
2e

dφ

dt
(1.14)

where I0 is the critical current of the junction determined by the physical design[8], and
e is the elementary charge constant. These equations establish relationships between the
branch current iJ and the potential vJ to an order parameter: phase difference φ.

By integrating both sides of the second equation 1.14 in time, we obtain a relationship
between the magnetic flux ϕ and the phase φ:

ϕJ =
ℏ
2e
φ =

Φ0

2π
φ (1.15)

where Φ0 =
h
2e

is the magnetic flux quantum. Substitute Equation 1.15 back to Equation
1.13 and we obtain a pivotal relation for the qubit design:

iJ = I0sin(
2e

ℏ
ϕ) (1.16)

This is where the non-linearity manifests. In a classical inductor, the current flowing
through it exhibits a linear relationship with the magnetic flux, whereas in the case of a
Josephson junction, the current is proportional to the non-linear sinusoidal function of the
flux. This is why sometimes the Josephson junction is also called “non-linear inductor”.

To harness this non-linearity, we substitute the inductor in the superconducting res-
onator with a Josephson junction (as shown in Figure 1.2a), transforming it into an an-
harmonic oscillator. The classical Hamiltonian of system reads:

H = −EJcos(ϕ) +
1

2C
q2C (1.17)

where Ej =
ℏI0
2e

is the Josephson energy. After the canonical quantization, we have:

H = −EJcos(ϕ̂) +
1

2C
q̂2 = −EJcos(ϕ̂) + 4Ecn̂

2 (1.18)

where Ec =
e2

2C
is the single-electron charging energy and n̂ is the charge number operator

rescaled from the charge operator q̂ by n = q
2e
.

The diagonalization of this Hamiltonian becomes significantly more complex compared
to the case of resonators. Since the “potential” term in the Hamiltonian is no longer of
quadratic form, the same basis induced by the harmonic ladder operator cannot diagonalize
this Hamiltonian anymore. More detailed discussion of the diagonalizations, with specific
assumptions made for different qubit designs are beyond the scope of this thesis. Here
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(a) Circuit of an anharmonic oscillator in-
volving single Josephson junction

EJ2EJ1 ⊗

Φext

≈ EJeff

(b) Circuit diagram of a SQUID (two
Josephson junction in parallel)

Figure 1.2: Circuit diagrams for an anharmonic oscillator and a SQUID

we only present the results for the transmon qubit[9, 5, 10]. The approximated two-level
Hamiltonian reads

Ĥ ≈ −1

2
ℏω01σ̂z (1.19)

where ℏω01 = E1 − E0 ≈
√
8EJEC − EC is the first qubit transition energy. In addition,

the anharmonicity for a transmon qubit is approximately equal to −EC .

Frequency-Tunable Xmon Transmon Qubits

The qubit transition frequency of a transmon qubit is determined by the Josephson EJ and
charge energy EC of corresponding circuit elements. In order to change the frequency of the
qubit we need to make one of those parameters tunable. This is usually done by replacing
the single Josephson junction in the circuit with two in a loop, forming a superconducting
quantum interference device[11], or SQUID. The SQUID configuration allows for control
of the effective Josephson energy EJ by applying an external magnetic field, which induces
a flux through the loop. This flux modifies the EJ , and consequently biases the qubit
transition frequency, enabling us to tune the qubit to desired frequencies.

Figure 1.2b presents a circuit diagram for one SQUID. J1 and J2 are two Josephson
junctions with Josephson energies EJ1 and EJ2 respectively. Some external magnetic flux
Φext is applied through the loop. Given the flux quantization conditions in a supercon-
ducting loop, one can find the SQUID as one circuit element behave just like a single
Josephson junction with an effective Josephson energy Eeff. The effective Hamiltonian can
be expressed as:

HSQUID = −Eeffcos(φ) (1.20)
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Eeff = (EJ1 + EJ2)

√√√√1 +

(
EJ2 − EJ1

EJ2 + EJ1

tan(
πΦext

Φ0

)

)2

cos(
πΦext

Φ0

) (1.21)

where φ is the phase difference across the SQUID[12, 13].

Evolved from the transmon qubit, the Xmon transmon qubit uses a DC SQUID as its
Josephson element, enabling it to be frequency-tunable. During operation, a DC current
is applied around the SQUID, generating an external magnetic flux. This flux biases
the frequency of the qubit. To control the qubit frequency, we adjust the amplitude of
the applied current. As a result, the flux bias and hence the qubit frequency change
accordingly.

In experiments, this current is generated by applying a DC voltage to the Z line of the
qubit. Given that the impedances of the control lines can fluctuate over different samples
and cool-downs, the absolute amplitude of the individually applied voltage becomes less
meaningful. Nevertheless, the mapping between applied voltage and qubit frequency has
been experimentally found quite robust and stable over time. Therefore, we do not explic-
itly differentiate between the concepts of qubit frequency and bias voltage for the same
qubit sample under the same experimental setup. Furthermore, in this thesis, I use the
terms “current bias”, “voltage bias”, and “frequency bias” interchangeably: all refer to the
same concept of changing the qubit frequency to a specific value.

Gate Operation

The state of an Xmon transmon qubit can be manipulated using microwave pulses that
are delivered via a capacitively coupled drive line. The Hamiltonian of a qubit driven by
a classical field can be expressed as[14]:

Ĥ = −ℏ
2
ωQσ̂z + iℏε(t)cos(ωdt+ ϕd)(σ̂+ − σ̂−) (1.22)

Here, ε(t)cos(ωdt + ϕd) represents the applied classical microwave pulses. ωdt and ϕd are
the frequency and phase of the drive pulse, respectively, while ε(t) is the rescaled envelope
of the pulse. The qubit is typically driven close to resonance, meaning the drive detuning
∆ω = ωQ − ωd is small. After transforming to a frame rotating at the drive frequency
ωd and applying the rotating-wave approximation, we obtain the rotating frame driven
Hamiltonian:

Ĥ ′ =
ℏ
2
∆ωσ̂z +

ℏ
2
ε(t)
(
cos(ϕd)σ̂y − sin(ϕd)σ̂x

)
(1.23)
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Solving the time-evolution dynamics for Ĥ ′ leads to the phenomenon known as Rabi
oscillations, which represent the transition of the qubit between its ground and excited
states. Importantly, by adjusting the relative phase ϕd, we can manipulate the phase
difference of the qubit states. In the context of a single qubit, this is equivalent to rotating
the qubit state within the Bloch sphere along an axis in the xy-plane. Any rotations
within this plane can be achieved by meticulous tuning the envelope and relative phase of
the pulse. This type of drive line is often referred to as the XY line.

All single-qubit operations can be represented by rotations within the Bloch sphere,
corresponding to transformations in the special unitary group SU(2) or the special orthog-
onal group SO(3). These operations involve rotations about the x, y, or z axis of the Bloch
sphere. By precisely controlling the amplitude and phase of the microwave pulses applied
through the XY line, we can perform any arbitrary rotation around the x and y axes.
Since the entire Lie algebra so(3) can be generated by any two non-parallel rotations[15],
we can realize any desired single-qubit operation through combinations of these rotations
in the xy-plane, fully spanning the SU(2) or SO(3). This level of control is crucial for
implementing quantum algorithms in quantum computing.

1.2 Experimental Infrastructure

In this section, we briefly review the experimental techniques necessary for measuring the
state of a qubit and executing gate operations.

1.2.1 Homodyne Readout

For most types of superconducting qubits, including the Xmon transmon qubit, the readout
of the qubit’s energy state is performed through the strong interaction between the qubit
and a resonator. Depending on the state of the qubit, the resonant frequency of the
resonator will shift by different amount. This phenomenon is closely related to the AC
Stark shift observed in quantum optics.

When the resonator is strongly coupled to a qubit that is dispersively detuned, the
resonant frequency of the resonator will be shifted away from its classical frequency in a
direction opposite to the qubit frequency. Denote the detuning of the qubit as ∆ = ωQ−ωR.
The (angular) frequency shift when the qubit is in ground state |g⟩ can be represented as
χ in the following equation:

χ = −g
2

∆
(1.24)

8



where g represents the coupling strength constant. On the other hand, when the qubit is
in an excited state, this (angular) frequency shift, for a transmon, would be smaller and
dependent on its charge energy[9]:

∆ω ≈ EC +∆

EC −∆
χ (1.25)

Thus, the measurement of the resonator’s frequency shift is an effective method for destruc-
tively determining the qubit’s state. This technique is commonly referred to as dispersive
readout.

For dispersive readout, the state of the readout resonator is determined using homodyne
detection. During this process, a pulse of a few microseconds in length at the frequency
(ωR + χ)/2π is sent through the transmission line. This pulse is then highly attenuated
before it reaches the resonator. After interaction with the resonator, the signal is amplified
twice and transmitted back to the analog-to-digital converter (ADC) measurement device.

All the instruments involved in this process are synchronized from a 10 MHz external
reference generated by a rubidium atomic clock. The timing of pulse generation and read-
out measurements is further fine-tuned by a triggering signal, ensuring precise alignment.
As a result, the measured readout waveform is compared with the input signal to obtain
the single frequency complex-valued transmission coefficient, denoted as S21.

The behaviors of resonators are well understood. By analyzing the phase and amplitude
of S21, we can determine whether the resonator is at the measuring frequency, thus enabling
us to infer the state of the qubit.

1.2.2 Qubit Control

In our experimental setup, qubit control is facilitated by driving pulses through a capaci-
tively coupled XY line, as outlined in Section 1.1.2. Each experiment commences with a
series of preliminary calibrations, including a Ramsey measurement, which fine-tunes the
qubit frequency. The resultant frequency is then used to set the frequency of the sinusoidal
carrier wave for the XY pulses, enabling close-resonant control of the qubit.

Once the frequency is established, we define the envelope of the pulses. The design of the
pulse envelope is crucial to the qubit control. Since a qubit is not a truely two-level system,
particularly in the case of transmon-like qubits which often exhibit weak anharmonicity on
the order of 100 MHz, an improperly designed XY pulse can result in substantial leakage
into the third energy level of the qubit. This leakage can lead to significant experimental
errors.

9



To address this challenge, we employ cosine-shaped derivative removal by adiabatic gate
(DRAG) pulses. This method allows us to execute qubit gate operations with a minimal
error rate more efficiently. More detailed descriptions about the design and parameter
calibrations are given in Reference [16, 17].

1.3 Quantum Noise

Quantum noise refers to the uncertainties and random fluctuations that occur in quantum
systems. These fluctuations can be inherent from characteristics of quantum mechanics
and also from various sources, including quantum decoherence, imperfect measurements,
and environmental interactions. Understanding and mitigating quantum noise is therefore
a fundamental challenge in the field of quantum information. For quantum computing, the
ultimate goal is to mitigate these errors, aiming to keep the error threshold below a certain
level at all times. This task requires a dynamic approach due to the time-dependent nature
of quantum errors.

Beside practical considerations, studying and mitigating quantum noises also provide a
valuable context for advancing our understanding of quantum mechanics and environmental
interactions.

For instance, on-chip superconducting devices are known to suffer largely from interac-
tions with defects in amorphous dielectric materials, which can be modelled as two-level sys-
tems (TLS)[18, 19]. Experimental studies have shown that the TLSs introduce stochastic
fluctuations in qubit frequency as well as energy relaxation and dephasing channels[20, 21].
These experimental results can be well-explained by the General Tunneling Models[22].
Such stochastic channels inevitably affect the gate fidelity for quantum algorithms. More-
over, studying these quantum errors not only helps us understand and mitigate noise in
quantum systems but also provides a unique lens through which we can explore fundamen-
tal physical phenomena.

In this section we briefly review a popular model characterizing the physical impacts of
TLSs to the system and justify how these impacts could contribute to the quantum errors.

1.3.1 Two-Level System

The dynamics of TLS noises can generally be described by the generalized tunneling model
(GTM)[22], which states that superconducting quantum devices, including qubits and an-
cilla resonators, interact semi-resonantly with an ensemble of two-level systems described

10



earlier. Each TLS is characterized by its own transition frequency Ei and coupling strength
gi. Moreover, the TLSs interact with the thermal bath, leading to energy relaxations ΓTLS

1,i

and stochastic fluctuations in the TLS frequency Ei. Overall, the Hamiltonian of a driven
qubit coupled to TLSs in the rotating frame of qubit drive frequency reads

Ĥint = ∆qσ
q
+σ

q
− +

∑
i

∆TLS

2
σTLS
z +

∑
i

gi

(
σq
+ ⊗ σTLS

− + h.c.
)
+

(
Ω

2
σq
x −

Ω

2

∗
σq
y

)
(1.26)

where ∆q = 2π(fq−fdrive),∆TLS = 2π(Ei−fdrive), fq is the qubit transition frequencies, Ei

is the transition frequnecy of the i-th TLS in the ensemble, and fdrive is the drive frequency.
Both the energy relaxation rate ΓTLS

1,i and the frequency of the TLS fluctuate stochastically
due to the coupling to the thermal bath.

Energy Relaxation

The energy relaxation from TLS coupling is known to be one of the major mechanisms
contributing to qubit relaxation. Given that the energy relaxation time T1 for TLSs is
typically much shorter than that of the qubit, and considering the experimental limita-
tions in precisely estimating TLS parameters, it is practical to simplify this process to
an Markovian amplitude damping channel. The corresponding Lindblad operator for the
master equation is:

LTLS
1 =

√
ΓTLS
1 Iq ⊗ σTLS

− (1.27)

Meanwhile, the inherent energy relaxation of the qubit itself can be represented as a
combination of phase and amplitude damping channels:

Lq
1 =

√
Γq
1σ

q
− ⊗ ITLS, Lq

2 =
√

2Γq
2σ

q
+σ

q
− ⊗ ITLS (1.28)

The rapid energy relaxation of TLSs accelerates qubit decoherence, thereby leading to
quantum errors. The stochastic nature of TLSs further introduces fluctuations to these
quantum errors.

Frequency Shift and Leakage

The qubit and the TLS interact via the electric dipole interaction. When a qubit is
coupled to a TLS, this interaction results in a shift in the eigen-frequencies of the system’s
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Hamiltonian, leading to a detuning of the qubit frequency. Since both the DRAG pulses
involved in qubit operation and the qubit readout depend on precise qubit frequency, any
such detuning shift could result in a phase shift, imprecise axis rotations, and leakage,
thereby introducing errors into the quantum process.

In practice, it is possible to mitigate this type coherent errors by system calibrations[23].
However, recent studies suggest that the TLS’s frequency and energy relaxation rate can
vary significantly over time due to the coupling with the stochastic thermal bath[20, 22, 19,
24]. This uncertainty necessitates frequent re-calibrations in order to maintain accurate
control of the qubit. While this approach may be feasible for short experiments with a
limited number of qubits, it is neither practical nor scalable for larger-scale experiments.
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Chapter 2

Method

In quantum information processing, the performance of algorithms and protocols is fun-
damentally limited by the presence of noise and errors within the system. Therefore,
understanding and estimating these noise channels are crucial steps toward the design and
implementation of robust quantum computing systems. The goal of this chapter is to
formulate an experimental approach for estimating both coherent and incoherent errors
associated with a single superconducting qubit.

In Section 2.1, we delve into some widely recognized mathematical measures specifically
tailored for quantitative characterization of quantum errors. These include the error rate
or average gate infidelity, and the unitarity measure. These metrics serve as a benchmark
for the degree of deviation from the desired quantum state.

Following that, we explore two robust and scalable protocols for estimating coherent and
incoherent errors - randomized benchmarking and purity benchmarking. These protocols
operate by experimentally measuring the metrics introduced in the earlier section.

In the final part of this chapter, Section 2.3, we propose two experimental procedures
aimed at continuously monitoring the fluctuations in the qubit errors. The rationale behind
these procedures is to enable a more in-depth understanding of the error dynamics and
how they affect the quantum system’s performance over a long-time scale.

2.1 Metrics

Conceptually, each quantum experiment involves three operational procedures: prepa-
ration, dynamic transformation, and measurement, Each of which is carried out by an
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abstract quantum instrument which applies a specific transformation to an input density
operator. We can define an implementation of a quantum transformation [25] as a map
Φ : G −→ L (L (HD)), where G is an arbitrary unitary group and L (L (HD)) is the space
of quantum channels. The implementation of g describes the actual channel implemented
on the quantum state with a request of gate operation g. The purpose of this definition
is to establish a connection from the group elements (usually the group of unitary trans-
formation) to the corresponding quantum channels that the state undergoes, allowing us
to characterize the behavior of the quantum instrument. For an ideal instrument, the
implementation Φ0 of an element g ∈ G can be expressed as(

Φ0 (g)
)
(ρ) = UgρU

†
g (2.1)

where Ug is an unitary representation of the group element g. This equation implies
that this implementation applies the unitary transformation given by the element exactly
as desired. We refer to such perfect implementation as a reference implementation and
denote it with a subscript “0”. It is worth noting that the map Φ0(g) defined above is
a homomorphism and preserves the associativity from group G. Hence it is well-defined
under gate composition. In addition, the unitary representation of gates used in quantum
computation is often faithful, making the reference map isomorphic.

Real-world implementations are subject to a variety of imperfections, such as impreci-
sion in the instrument control and environmental noise. These imperfections can lead to
error channels in the actual implementations, deviating the transformation from their ideal
reference. Hence the nature of quantum errors can be seen as the deviation of a practical
implementation from its reference.

The study of the error process could be done in a fully deterministic way by recon-
structing the entire implementation matrix. One experimental protocol for achieving this
is quantum process tomography (QPT)[26]. However, it is well-known that QPT is not
scalable in terms of system size, as the complexities of both query and side computations
grow exponentially with the system. Additionally, QPT requires the state preparation and
measurement (SPAM) errors to be much lower than the error process being characterized,
which is often hard to achieve in real-world scenarios[27, 28]. These limitations make QPT
less practical and efficient for characterizing quantum errors.

Besides the full characterizations, it is also possible to learn about quantum errors
through partial characterization. To characterize quantum errors in real-world implemen-
tations, it is necessary to develop measures that can quantify the extent to which an
implementation deviates from its ideal reference. These measures can provide statistical
insights into the nature of quantum errors, even if they do not provide a complete picture
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of the error behavior. Such a measure could be naturally induced by a metric distance
between the implementation map and its reference.

Over time, multiple metrics have been developed to serve different research interests.
For example, two of the most popular definitions are known as diamond distance[29, 30] ϵ⋄,
which is popular in the theoretical studies of quantum algorithm and fault-tolerant thresh-
old theorems, and the average gate fidelity[31] Favg (or F), which is more experimental
accessible, especially since the development of randomized benchmarking. The average
gate fidelity can be used to describe the errors averaged uniformly over the space of states
and the operations, while the diamond distance can be thought as the gate fidelities in the
worst case scenarios.

Interestingly, average gate fidelities provide bounds for the diamond distance on both
sides via the Wallman-Flammia bounds[32]:

(1−Favg)
D + 1

D
≤ 1

2
ϵ⋄ ≤

√
1−Favg

√
D(D + 1)

This relation implies that examining either of the two metrics can also provide valuable
insights into the other. In practical terms, the average gate fidelity is more easily accessi-
ble, especially with the development of randomized benchmarking. Therefore, this thesis
primarily focuses on the average gate fidelity as a means of characterizing quantum errors.

As indicated by the name, the average gate fidelity is an average of the gate fidelity Fg

over all pure input states, weighted by the Fubini-Study measure. For an implementation
of gate g, the average gate fidelity can be defined as[33]:

Favg (Φ (g) ,Φ0 (g)) :=

∫
HD

dψ Fg (Φ (g) ,Φ0 (g) , |ψ⟩⟨ψ|)

=

∫
HD

dψ ⟨ψ|U †
g (Φ (g) ◦ |ψ⟩⟨ψ|)Ug|ψ⟩ (2.2)

where dψ is the Fubini-Study measure over the pure states. It is convenient to write the
pure error process of the implementation Φ(g) as

Eg := Φ†
0 (g) ◦ Φ (g) = U †

g (Φ(g) ◦ (·))Ug (2.3)

which is a composition of an imperfect implementation and the inverse of the ideal trans-
formation. Essentially, this process characterizes the pure error process relative to the
imperfect implementation of identity. It should be noted that by making the assumption
that Eg represents the pure error process, we assume implicitly that the error occurs prior
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to the unitary process. However, this assumption is generally satisfied under the Markovian
limit.

We write Eg in Kraus decomposition:

Eg(ρ) =
∑
k

A
(g)
k ρA

(g)
k

† (2.4)

The average gate fidelity can be expressed as[34, 35, 36]:

Favg (Eg) =
∫
HD

dψ ⟨ψ|Eg (|ψ⟩⟨ψ|) |ψ⟩ =
∑

k |Tr[A
(g)
k ]|2 +D

D2 +D
(2.5)

Finally, we can define a quantity to characterize the average quantum errors associated
with the pure error process, the error rate ϵ:

ϵ (Eg) = 1−Favg (Eg) (2.6)

The error rate is sometimes called infidelity of the error process since it is a subtraction of
the gate fidelity. This error rate is a useful quantity for experimentally characterizing the
overall errors in practice, because it is easily accessible via randomized benchmarking.

2.1.1 Coherence and Unitarity

While the error rate ϵ is a commonly used metric for quantifying the overall quality of a
quantum gate operation, it does not provide insight into the specific types of errors that
contribute to the overall error rate. To address this, a useful approach is to divide the error
rate based on the coherence of the error process, which characterizes how well the process
preserves the coherence of the quantum state.

Since any coherent quantum operation can be represented by a unitary transformation,
a good measure for the coherence is the unitarity of the process. The unitarity of a quantum
process should remain invariant under unitary transformations and reach its maximal value
if and only if the process itself is fully unitary.

The significance of this division is that the coherent error does not destroy or decrease
the coherence of the system. In fact, it is usually caused by systematic control errors in the
gate implementations[37, 38]. Hence it in principle can be corrected via better calibrations
or other error correction algorithms. In addition, the coherent error rate could provide a
metric of how well the instruments are experimentally calibrated. The incoherent error on
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the other hand, is usually caused by decoherence channels such as energy relaxation and
dephasing, which are harder to improve in reality.

A natural way to define the unitarity is by taking the average change in purity of a pure
state when a channel is applied, since the purity of the state persists when the channel is
unitary and reduces when non unitary. A more robust and popular definition is given by
[39], where the unitarity is defined as the average purity of output states subtracted with
identity components:

u(Eg) =
D

D − 1

∫
dψ Tr

(
E ′
g

(
ψ
)†E ′

g

(
ψ
))

(2.7)

where E ′
g

(
A
)
= Eg

(
A
)
− TrEg

(
A
)

√
D

I for all trace-less Krause operators A, and the integral is

over all pure states. u(E) reaches to the maximum 1 if and only if the process is unitary.
The unitarity also provides a upper bound of errors in terms of average gate fidelity that
can be corrected using unitary correction operations:

ϵcoh(Eg) ≤ ϵ(Eg)−
D − 1

D
(1−

√
u(E)) (2.8)

Based on this bound, we can partition the total error rate ϵ by defining the incoherent
error rate as:

ϵinc(Eg) =
D − 1

D
(1−

√
u(Eg)) (2.9)

and the corresponding coherent error rate

ϵcoh = ϵ− ϵinc (2.10)

The quantities ϵcoh and ϵinc can be experimentally estimated using a modified randomized
benchmarking protocol, often referred to as purity benchmarking [39, 40].

2.2 Randomized Benchmarking

An experimental protocol was proposed in 2005 by J. Emerson et al. [41] to study quantum
errors through partial characterization. It was later named as randomized benchmarking
(RB) by E. Knill & R. Laflamme (2007) [42]. This protocol, which involves using random
gate sequences and the Haar average, offers a statistical approach to estimating quantum
errors. Later, E. Magesan et al. made further improvements and developed the first well-
grounded and practically scalable version of RB protocol in 2012 [43]. RB has since become
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a popular method for estimating the average error rate of a quantum gate or circuit, and
has been used to optimize the performance of quantum computing systems.

Let Sm+1 = {g1, g2, ..., gm, ginv} be a sequence consisting of m gates drawn randomly
from the unitary group G, and an inverse gate ginv = (gm ◦ ...◦g1)−1 determined classically.
We evaluate the implementation of the entire sequence:

Φ(Sm+1) = ⃝m+1
i=1 Φ(gi) = ⃝m+1

i=1 (Φ0(gi) ◦ Egi) (2.11)

where Egi is the individual pure error process for each gate. The ⃝m+1
i=1 (·) symbol here

denotes the sequential composition of the operation from i = 1 to i = m + 1. Again,
by writing down the second equation in Equation 2.11, we made an assumption that the
error process has negligible memory effects on the time scale of gate operation, which is
also known as a Markovian process. Since the last gate is the inverse of the composition
of all previous m gates, the reference Φ0(S) is an identity map and the Φ(S) can be
treated as a pure error process. The key result from RB is that the Haar average of
such implementations over the unitary group G is equivalent to a linear combination of
depolarizing channels[31, 43]:

1

|G|

∫
G
dµ(g1, ..., gm) Φ(ginv) ◦ Φ(gm) ◦ ... ◦ Φ(g1) =

∑
σ

Aσ(λσ,m) (2.12)

where µ(g) is the Haar measure over the unitary group G, A represent a depolarizing
channel and λ is the corresponding decay rate, and the sum

∑
σ

is over all irreducible

sub-representations of original representation Ug.

E. Magesan et al. brought a significant improvement to the RB protocol by formalizing
the use of Clifford gates, demonstrating that the unitary group G could be replaced by
groups made of Clifford gates, while still maintaining the Equation 2.12 under some minor
assumptions. It’s important to note that the use of Clifford gates was initiated by E. Knill
et al[42], with the work of E. Magesan et al. serving to theoretically justify and ground
this practice.

This improvement is significant because it makes the RB protocol more practical and
scalable by avoiding the need for Haar-averaging over the unitary group, which is difficult
and not scalable in practice. In particular, for a single qubit and under the assumption of
gate-independent errors, the error process can be simplified to a single depolarizing channel
using the Clifford group-based protocol.

For a better demonstration of RB protocol, let’s consider a single qubit prepared in a
pure state ρ0 = |α⟩⟨α|, and a set of POVM {Ei}i=0,1,±,±i induced by the Pauli eigenstates.
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The probability of obtaining the measurement outcome Ei after applying a random gate
sequence Sm+1 can be expressed as:

P (m,Ei) = Tr
(
Ei

(
Φ(ginv) ◦ Φ(gm) ◦ ... ◦ Φ(g1) ◦ ρ0

))
(2.13)

Next, we average P|0⟩ over different random gate sequences drawn from the Clifford group
C:

P (m,Ei) =
1

|C|

∫
C
dµ(g1, ..., gm) Ei

(
Φ(ginv) ◦ Φ(gm) ◦ ... ◦ Φ(g1) ◦ ρ0

)
(2.14)

=
(∑

σ

Aσ(λσ,m)
)

(2.15)

where µ is the Haar measure on a Clifford group. The theory of RB shows that the
probability of the outcome Ei follows a linear combination of exponential decays. For a
single qubit, there are only two irreducible subrepresentations for the Pauli representations
of Clifford gates. Furthermore, by taking the assumption that the quantum errors are
much smaller than the gate fidelity and are independent of gates, the error process can
be approximated to a single depolarizing channel. In this case, the averaged probability
P (m,Ei) can be fitted with one simple exponential decay:

P (m,Ei) = Apm +B (2.16)

where A,B,p are fitting parameters, and m is the number of random gates in the gate
sequence . The average gate fidelity Favg and error rate ϵ are then

Favg =
1

2
p+

1

2
(2.17)

ϵ = 1−Favg =
1

2
− 1

2
p (2.18)

The error rate ϵ provides an average estimate of the total quantum errors per gate for the
implementation. As it is calculated by fitting over various gate sequence lengths m, it is
typically considered to be free of SPAM errors. To distinguish it with other error rates
appearing later, we denote this total error rate with a subscript “total”.

2.2.1 Experimental Protocol

The goal of RB protocol is to experimentally track changes in the survival probability
of a quantum state while applying increasingly long random gate sequences. To do this,
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the protocol involves an initial state preparation ρ0, applying a sequence of m randomly
chosen gates and an inverse gate at the end of the sequence, and measuring the survival
probability of the state. By repeating this process, the average survival probability should
converge to an exponential decay as given by Equation 2.16. To ensure that the convergence
is unbiased, the gate sequence should be generated uniformly at random from a Clifford
group and cumulative gate set should span the entire group.

The preparation of the initial state for a transmon qubit is typically achieved through
energy relaxation process in which the qubit is allowed to naturally lose energy and relax
to the energy ground state ρ0 = |g⟩⟨g|. Because the thermal energy at the qubit operation
temperature is much lower than the qubit transition energy, the qubit can be prepared
in the ground state with high fidelity. In this case, it is natural to choose the energy
ground state |g⟩ and the first excited state |e⟩ in the energy basis as computational basis.
To measure the survival probability of the state, we use a set of POVMs {Ei}i=±z,±x,±y

induced by the Pauli eigenstates. In particular, the survival probability is then given by
the measurement probability of E−z.

The RB protocol proceed as:

1. Determine an increasing sequence of distinct integers M = {mi}ni=1, with each mi

which will determine the length of the different gate sequences used in the protocol.

2. For each mi in the sequence M, generate N different randomized gate sequences
Smi+1
j=1,...,N = [g1, ..., gmi

, gmi+1], where g1, ..., gmi
are gates uniformly drawn at random

from the 1-qubit Clifford group. The final gate gmi+1 is computed classically so that
the composition of this entire sequence is effectively equal to the identity, ensuring
that the gate sequence is reversible.

3. For each gate sequence Smi+1
j , experimentally apply the sequence and measure the

qubit state survival probability:

P (Smi+1
j ,Π−z) = Tr(Π−zSmi+1

j (ρ0)) (2.19)

Then, average the survival probability P over N different sequences Smi+1
j with same

mi:

P (mi + 1) =
N∑
j=1

P (Smi+1
j ,Π−z)

N
(2.20)

4. Fit the average survival probability P to mi using the Equation 2.16
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The sequence M is determined based on the physical device being tested. Each mi

should be chosen so that P (mi + 1) can show a clear exponential decay with minimal
uncertainties. In this way, the fittings later would be more accurate. For example, a qubit
with higher quality might require longer sequences, i.e., larger mi to display a clear decay
than the qubit with lower quality. The number of random sequences for each sequence
length, k, needs to be sufficiently large, so that the random gates drawn for each mi span
the Clifford group. This would make the convergence less biased.

2.2.2 Purity Benchmarking

The coherence of the errors can be estimated by the unitarity u of the process, which is
based on the averaged state purity change. The PB protocol is designed to experimentally
estimate the unitarity of a gate operation.

As a modified RB protocol, the goal of purity benchmarking (PB) is to track changes
in the purity of the state while applying increasingly long random gate sequences, instead
of the survival probability. For a single transmon qubit, we choose the usual Pauli rep-
resentation and the same POVM as in RB. The state of the qubit can be expressed by a
vector α⃗ within the Bloch sphere:

ρ =
1

2
(I+ α⃗ · σ⃗)

where σ⃗ is the unit Pauli vectors. The purity of the state can then be expressed by the
squares of the 2-norm of α:

Purity(ρ) = Tr(ρ2) =
1

2
(1 + |α|2)

Note that when we define the unitarity, an identity is subtracted from the purity, leading
to a quantity P as:

P(ρ) = |α|2 = ⟨σx⟩2 + ⟨σy⟩2 + ⟨σz⟩2 (2.21)

As justified by [39], the average of P is directly related to the unitarity by a exponential
fit:

P(m) = A′u(Eg)m +B′ (2.22)

where A′, B′, u are fitting parameters, and m is the number of gates in the sequence. Fitted
u is the averaged unitarity per gate. The incoherent and coherent errors for a single qubit
are then respectively:

ϵinc(Eg) =
1

2
(1−

√
u(Eg)) (2.23)
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ϵcoh(Eg) = ϵtotal(Eg)− ϵinc(Eg) (2.24)

To experimentally measure the quantity P , we only need to modify the protocol for the
RB[40]. Specifically, in RB protocol the measured survival probability is the measurement
output of POVM element E−z , since the initial state is just the (almost) pure “−z”state

⟨E−z⟩ = ⟨I+ σz
2

⟩ = 1

2
+

1

2
⟨σz⟩ (2.25)

For the quantity P , we need more measurements for ⟨σx⟩, ⟨σy⟩. This could simply be done
by repeating Step 3 of the RB another 2 times for every Smi+1

j , with each time replace the
observable σz with σx, σy. The quantity P for a specific gate sequence can be calculated
with three measurements on observables ⟨σx⟩, ⟨σy⟩, ⟨σz⟩. We average P over N different
random sequences with the same length. The averaged P can then be fitted with Equation
(2.22) to obtain the unitarity and hence, coherent and incoherent errors.

2.3 Experimental Protocol for Time Fluctuations of

Quantum Errors

Quantum errors fluctuate both coherently and incoherently over time. To study the time
fluctuations of coherent and incoherent errors, we propose a experiment protocol based on
the original PB. This protocol allows us to monitor the fluctuations of both coherent and
incoherent errors over an long period of time for multiple qubit transition frequencies using
a single Xmon transmon qubit. The beginning part of the protocol follows standard RB.
First, we ran a few standard RB and PB experiments to determine the proper sequence
length set M for a physical qubit and the other devices. For example, Figure 2.1 shows
the results of RB and PB experiments for the target qubit and instruments. Based on
the decay curve, we choose M = {2, 6, 13, 25, 50, 100, 200}. These sampling points in gate
sequence lengths can adequately describe the exponential decays in average gate fidelity
and unitarity. The choice of M is not unique, as the choice of points in the set affects
both the accuracy and efficiency of the measurements. In general, a larger set or longer
gate sequence lengths lead to better fittings but longer measurement times.

Next, instead of directly generating and measuring N random sequences for each length
mi, we measure a single random sequence for each length and iterate the process one after
another. Each iteration is considered an execution of a PB sequence, and uses randomly
generated gate sequences that are independent from those used in other PB sequence. The
random Clifford gates are generated by algorithms described in [9, 44].
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Figure 2.1: Single-qubit RB and PB: For each length mi, 40 random sequences Smi+1

are averaged. 7 sequence lengths have been chosen to reflect the decay in both survival
probability and the quantity P .

Since the Xmon transmon qubit transition frequency is tunable via flux bias, we can
estimate the errors at different frequencies by executing one PB sequence per flux bias
point. The overall execution of the PB sequences at different designated flux bias points is
called a cycle. The cycles can be repeated for as long as desired. At the end of each cycle,
a short time buffer is added to ensure that the duration of each cycle is consistent.

This protocol enables us to perform PB continuously over time, as a conventional
PB measurement typically takes several minutes to complete. Diagrams of this proposed
protocol is shown in Figure 2.2,2.3.

After completing the measurements, the data collected from the cycles is partitioned
into segments of length N , with each segment representing a complete PB measurement.
The measurement data for each segment is then processed using the usual PB protocol,
which involves fitting the exponential decay of the average gate fidelity and unitarity to
obtain the coherent and incoherent errors.

This proposed protocol also offers greater flexibility in data post-processing. Since we
only measure a single random sequence for each length mi during each cycle, we can easily
adjust the number of sequences N collected for each length mi to optimize the trade-
off between measurement time and statistical uncertainty. Additionally, the use of cycle
segmentation enables for the possibility of overlapping segments, which can provide more
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PB sequence   𝕊: 

 

 

𝐺𝑚1
 𝐺𝑚2

 𝐺𝑚3
 ... 𝐺𝑚7

 

𝑚𝑖=1,2,…,7 ∈ {2,6,13,25,50,100,200} 

... 𝐺𝑚𝑖
: 𝑔1 𝑔𝑚𝑖

 
 
〈𝐸−𝑧〉 
 

𝑔𝑖𝑛𝑣 

〈𝜎𝑧〉 〈𝜎𝑥〉 〈𝜎𝑦〉 

  
〈𝐸−𝑥〉 
 

... ...  
〈𝐸−𝑦〉 

 

𝜌0 

𝑆𝑚𝑖+1 

Figure 2.2: Diagram for PB Sequence: each PB sequence is composed of |M| sub-sequences
G, with each sub-sequence G matched with a specific mi ∈ M. For each Gmi

, one random
sequence Smi+1 is generated. Then the random sequence is implemented 3 times. Each time
we change the measurement basis and measure one of the observables ⟨E−z⟩, ⟨E−x⟩, ⟨E−y⟩.

data points for analysis and increase the accuracy of the extracted error rates for lower
frequency.

2.3.1 Elimination of Offset Term

The advancements in engineering and environmental noise suppression methods have greatly
reduced the magnitude of quantum errors and fluctuations, which has made it increasingly
challenging to study the temporal dynamics of these errors. Due to the random nature
of the PB protocol, the estimation uncertainty of the measurement can often be so high
that the effect of the noise channels is obscured by the fitting uncertainty, making the
measured fluctuations unreliable. In order to improve this deficiency, various improve-
ments have been proposed in the literature for RB and its variants[45, 46, 47]. Based on
these improvements, the proposed protocol can be further optimized by a common way of
eliminating the offsets in the fitting models, yielding more accurate error estimations.

Ideally, after applying a sufficiently long gate sequence the qubit state decoheres and
converges to a maximally mixed state where ⟨σz⟩ = 0. With this process the overall fidelity
should be 0, which implies the offset term B in the Equation 2.16 being 0. However this
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(Voltage): 

𝕊1 𝕊2 

Time 
Buffer 

Cycle period = 30s 

Pulse sequences: 

Timeline 

-0.001V 

-0.101V 

Figure 2.3: Cycle diagram: Each cycle consists of multiple runs of PB sequences, with each
run executed at a different flux bias. One example is shown in the diagram. At first the
flux bias voltage is set to −0.001V , which shifts the qubit transition frequency to a specific
value. A PB sequence is then executed with the voltage held constant. The voltage then
ramps to −0.101V , which shifts the qubit frequency to another value, and another PB
sequence is executed. This process can be repeated for multiple bias voltages. At the end
of each cycle, there is a time buffer to ensure the cycle period is exactly 30 seconds. The
correlation between the flux bias voltage and qubit frequency is fixed. By iterating cycles
on the qubit, we can monitor errors at different qubit frequencies over time.

isn’t always true in practice. In fact, it is almost certain that there is a non-zero bias in the
state’s converging limit, which results in non-trivial offset term B in the exponential decay
fitting. For a non-linear fitting algorithm, such as least square fitting, the third fitting
parameter B in the fitting model can dramatically increase the fitting uncertainty. Hence,
the goal of this optimization is to eliminate this fixed offset without the need to estimate
its value.

Suppose the qubit is at the state of converging limit after applying a sufficient long
gate sequence, the measurement outcome ⟨E−z⟩ when the qubit is supposed to recover to
| − z⟩ should be the same as to recover to an orthogonal state |+ z⟩ :

⟨E−z⟩−z ≈ ⟨E−z⟩+z = 1− ⟨E+z⟩+z = B

for some offset value B. By the model given in Equation 2.16, we have

Apm +B = ⟨E−z⟩−z ≈ 1− ⟨E+z⟩+z = A′pm + (1−B) (2.26)

for some parameters A,A′. We define a quantity p such as:

p =
⟨E−z⟩−z + ⟨E+z⟩+z

2
=
A− A′

2
pm +

1

2
= A′′pm +

1

2
(2.27)
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Now by estimating the new quantity p, we are able to eliminate the offset term from
the exponential decay by fixing it to 1

2
. The average gate fidelity and total error can be

calculated with the fitting parameter p following Equation 2.17,2.18 To experimentally
measure the ⟨E+z⟩+z, we would just need to repeat the corresponding gate sequence S
again, and composite an extra X rotation at the end with the inverse gate before the usual
measurement.

A similar improvement for PB was proposed in Ref [47], where by introducing another
quantity b̂, the unitarity can be fitted by a simple exponential decay model without the
offset term.

b̂(mi + 1) =
1

N

∑
j=1,...,N

∑
i=x,y,z

(⟨σi⟩2Smi+1
j

− 1

N

∑
j=1,...,N

⟨σi⟩2Smi+1
j

) (2.28)

Here, “σi”-s represent the usual Pauli matrices. The expressions ⟨σi⟩Smi+1
j

denote the

expectation value of the observable σi, after applying the gate sequence Smi+1
j to the

qubit. The unitarity can be determined by fitting the b̂ quantity to the simple decay
model expressed as:

b̂(mi + 1) = Aumi (2.29)

The expectation values of Pauli matrices can be experimentally determined by evaluating
the POVM elements E−z, E−x, E−y. Finally, we eliminate the offset terms from all fitting
models used in the protocol.

In summary, by introducing new quantities p and b̂, we can effectively eliminate the
offset terms present in the decay models. To accommodate this change, the protocol of
sub-sequence G in PB sequence (see Figure 2.2) needs to be modified to include a fourth
component. In the fourth component, a X rotation is composed with the inverse gate at
the end of the sequence to measure E+z. In essence, this modification equates to measuring
E−z, E+z, E−x, E−y in a sub-sequence G.
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Chapter 3

Result

To investigate the time fluctuations of coherent and incoherent errors in superconducting
qubits, we conducted a series of PB experiments over extended time periods using a single
superconducting Xmon transmon qubit. Throughout each experiment, we iterated PB
cycles to acquire the time series data. Subsequently, we processed this data by averaging
the time series within a moving window and fitting it to the models developed in Chapter
2. The error metrics were then calculated from these fitting parameters.

The measurements were done at two different qubit transition frequencies for all the
experiments to account for frequency-dependent fluctuations. The selection of these fre-
quencies was decided by both the visibility of the qubit readout and the spectral background
of the qubit.

This chapter begins with one preliminary experiment, which is generally unsatisfactory
in terms of the fitting uncertainty. This led to the introduction of a modified model that
includes the elimination of offsets (Section 2.3.1). The results of the experiments performed
by the modified protocol are then presented and discussed in Section 3.2.

3.1 Preambles

Our initial long-time experiment was conducted using the “standard” PB protocol, wherein
the exponential decay fitting models (Equation 2.16 and 2.22) includes the offset terms
B,B′. The exact protocol is described in Figure 2.2, 2.3. The results of coherent errors
are presented as time series in Figure 3.1, with error bars denoting the uncertainties from
fitting.
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Figure 3.1: Time series of coherent error ϵcoh acquired by ”standard” PB protocol.

The time series for both frequencies already show intriguing patterns, including several
notable telegraphic shifts. Initially, the coherent error is large and fluctuates significantly.
Just before the 20-hour mark, a telegraphic shift occurs, causing the coherent error to drop
and stabilize. Some minor shifts are observed at approximately 60 and 90 hours. Toward
the end of the experiment, the coherent error begins to increase, and another telegraphic
shift, similar to the initial one, is imminent. This substantial shift pattern appears to
be recurring. It would be interesting to further explore the physics behind these shifts.
In addition, the time series patterns for both frequencies highly coincides, indicating the
sources of the coherent error is mostly frequency-independent.

Before examining the data in more depth, we noticed that the error bars for the time
series of the coherent error are relatively large in comparison to the amplitude of the actual
fluctuations. This discrepancy could render the fluctuations almost indistinguishable from
the fitting uncertainties. The situation worsens for the coherent error due to uncertainty
propagation, which can be expressed as:

se(ϵcoh) =
√

(se(ϵ))2 + (se(ϵinc))2 (3.1)

This equation is derived from the relation in Equation 2.24. se(·) represents the fitting
uncertainty in terms of standard error.
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To evaluate the clarity, or the “visibility”, of the true fluctuations, we approximate the
concept of the “signal-to-noise” ratio (SNR) and define the following quantity “SNR” for
the fitted time series as:

“SNR ” :=
σ(ε)

⟨se(ε)⟩
(3.2)

where σ(ε) is the standard deviation of ε, and ⟨se(ε)⟩ is the averaged standard error of
the least square fitting for ε. The “SNR” for the coherent error time series in Figure 3.1
is approximately 1.1, indicating the fitting uncertainties are almost equal to the actual
noise fluctuation. At this stage, the true qubit noises are primarily masked by these fitting
uncertainties. Additional experiments also yielded similar “SNR”,̇ which raises concerns
about the reliability of these measurements.

By averaging more cycles, we may potentially reduce the fitting uncertainties and
thereby increase the “SNR”.̇ However, this approach is not universally beneficial. As
we increase the number of cycles averaged for each data point, the sampling frequency of
the time series decreases, leading to a bigger loss of high-frequency information in the data.
Furthermore, the “SNR” may remain unchanged or even worsen due to distortions caused
by strong, fast-oscillating noises.
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Figure 3.2: Impact of averaging more cycles on the “SNR”.
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Figure 3.2(a) plots the “SNR” with respect to the number of cycles averaged in the
previous experiment. We see the “SNR” slightly increased for total and coherent error, and
barely moved for incoherent error. Despite the slight improvements in total and coherent
error by averaging more cycles, the uncertainties still remain significant, especially for the
incoherent errors in this experiment. This indicates a need for further improvements to
the experimental protocol to adequately reduce these measurement uncertainties.

To reduce the fitting uncertainties, we tested the modified protocol described in Sec-
tion 2.3.1. Figure 3.2(b) shows the improved “SNR” achieved with this new protocol. In
comparison to the previous protocol, the new models significantly increase the “SNR”.̇
Notably, the lowest “SNR” nearly triples, compensating for only a 67% increase in the
sampling period (from 30s to 50s). In order to achieve a balance between minimizing fit-
ting uncertainties and maintaining reasonable sampling frequencies, we have adopted the
modified protocol. Furthermore, to increase the number of data points in the time series
while ensuring the random gate sequences are unbiased, we use a window size of 20 cycles
with a 50% overlap for the remaining analysis.

3.2 Fluctuations in Single-qubit Errors

Using the protocol outlined in Section 2.3.1, we performed two experiments spanning over
440 hours in total. Each experiment began with a precise calibration of the read out and
gate control parameters. These parameters were then maintained consistently throughout
the experiment. For the multi-frequency measurements, both experiments used the same
set of flux bias settings. To some extent, the second experiment can be seen as a continu-
ation of the first one after a system calibration. However, it’s important to note that the
two datasets cannot be merged into a single experiment due to the time interruption and
system re-calibration.

Before performing the PB experiments, we characterized the qubit device by measuring
T1 and T2 over a range of qubit frequencies to study the qubit decoherence profile. First, we
measured the qubit frequencies in the presence of flux bias by applying a DC bias voltage
to the SQUID, which shifted the qubit frequency. We scanned multiple bias voltages and
measured the frequency shift using Ramsey measurements. Figure 3.3(a) shows the qubit
frequencies at different flux bias voltages. The measured frequency responses fit well with
the theory presented in Section 1.1.2. Finally, we measured the qubit T1 and T2 at each
bias voltage, as shown in Figure 3.3(b).

In Figure 3.3(b), the spectral lines of both T1 and T2 exhibit a clear “dip”at approx-
imately 4.598GHz (0.11V flux bias), indicating the qubit decoheres significantly faster
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Figure 3.3: Qubit calibrations: (a) Qubit frequencies at different flux bias voltages. Dots
represent the measured qubit frequency at each flux bias voltage, and the line is the fit
according to the Equation 1.19 and 1.21. The tips mark the bias voltages used in the PB
experiments. (b) T1 and T2 at different bias voltages.

around this frequency. This phenomenon can be attributed to a frequency-dependent cou-
pling to the environment, which is often due to interactions with the TLS. Later swap
spectroscopy experiments have supported this assumption.

To investigate the frequency dependency of the qubit noise, particularly in relation to
the impact of TLS coupling, we selected 0.115V and 0.14V as two bias voltages for the PB
experiments. The first bias corresponds to a qubit frequency that falls directly next to the
bandwidth of the coupling (i.e., close-resonant coupling), while the second bias is placed
in a more moderate region, further detuned from the TLS.

3.2.1 Time Series

The time series of both experiments are shown in Figure 3.4 and Figure 3.5. The first
experiment was prematurely interrupted due to an unforeseen equipment malfunction,
resulting in only about 202 hours of data collection. Fortunately, this incident did not
compromise the validity of the data gathered before and after the malfunction.

Due to the qubit fluctuations and the calibration performed before the second experi-
ment, the qubit drive frequencies changed slightly for the same two flux biases. Moreover,

31



0.0

2.0

4.0

6.0

8.0

to
ta

l

10-3

Qubit Frequency: 4.6097GHz
Qubit Frequency: 4.6007GHz

1.0

1.5

2.0

in
c

10-3
Qubit Frequency: 4.6097GHz
Qubit Frequency: 4.6007GHz

0 20 40 60 80 100 120 140 160 180 200
Time (h)

0.0

2.0

4.0

6.0

8.0

co
h

10-3

Qubit Frequency: 4.6097GHz
Qubit Frequency: 4.6007GHz

Figure 3.4: Time series for the first experiment. The red lines correspond to bias voltage
at 0.115V. The blue lines correspond to 0.14V.

32



1.0

2.0

3.0

4.0

5.0

6.0

to
ta

l

10-3

Qubit Frequency: 4.6101GHz
Qubit Frequency: 4.6011GHz

1.5

2.0

2.5

in
c

10-3

Qubit Frequency: 4.6101GHz
Qubit Frequency: 4.6011GHz

0 50 100 150 200
Time (h)

0.0

1.0

2.0

3.0

4.0

co
h

10-3

Qubit Frequency: 4.6101GHz
Qubit Frequency: 4.6011GHz

Figure 3.5: Time series for the second experiment. The red lines correspond to bias voltage
at 0.115V. The blue lines correspond to 0.14V.

33



the calibration modified the parameters for both driving and readout pulses. Therefore,
the two time series cannot be directly merged to generate a longer time series. Neverthe-
less, analyzing both time series is still insightful, as they are both subject to similar noise
channels.

Interestingly, we find that the fluctuating patterns of coherent error closely resemble
those of total error in both experiments. This suggests that the noises in total error might
be primarily driven by coherent noise channels. In other words, the coherent error, typically
resulting from systematic control errors like imperfect gate rotations or leakage[37, 38, 48],
appears to be dominant factors in qubit fidelity fluctuations.

Although incoherent error still contributes considerably to the total errors, its fluctua-
tion patterns differ from coherent and total errors, and the correlations between incoherent
and coherent errors are very low. At first glance, incoherent error fluctuates relatively mild
and exhibit less magnitude spread. However, there are also some arguably telegraphic
shifts. For example, there are jumps in incoherent error at approximately 110 hours for
both frequencies in the first experiment. Interestingly, both the coherent and total error
seem to remain unaffected by the jumps. Conversely, in the first experiment (Figure 3.4),
there is a clear telegraphic shift at approximately 90 hours in both total error and coherent
error, but incoherent errors seem to remain unaffected. Further exploration is needed to
understand the correlations between fluctuations in incoherent error, coherent noise, and
qubit fidelity.

In our investigation of frequency-dependent qubit noise, we selected the frequencies
represented by the red lines in Figure 3.4 and 3.5 to be closer to the TLS in the frequency
domain. This selection was based on the expectation that enhanced TLS coupling for
these frequencies would result in more errors and greater fluctuations. TLS is known to
be a source of incoherent error. It’s worth noting that the TLS coupling can also shift the
effective qubit frequency, leading to imprecise DRAG pulses and leakage which contributes
to coherent error.

However, the outcomes of both experiments reveal more complex patterns. During the
initial part of the first experiment, the red lines in total and coherent error demonstrated
notably higher amplitude and greater instability compared to the blue ones, aligning with
the intuition that stronger TLS coupling induces more errors. However, the incoherent
errors behaved contrarily to this expectation, with the blue line amplitudes consistently
surpassing those of the red.

Interestingly, the noise pattern in the incoherent error seemed independent of the two
frequencies at which we measured the qubit, which contrasts with its coherent counter-
part. Further combining the fact that the telegraphic shifts in both errors are not well
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synchronized, these features provide a key insight into the origins of both coherent and
incoherent errors. In the second experiment, these patterns persisted. The red lines in
total and coherent still show much more fluctuations compared to the blue lines, while the
contradiction about the incoherent errors also persists, showing some consistency of both
time series.

In order to check for any systematic drifting that may have occurred during the ex-
periments, we re-measured T1 and T2 of the qubit for the range of qubit frequency again
after the second experiment. The results are shown in Figure 3.6. The plot reveals a shift
of approximately 16MHz in both the “dips”of T1 and T2, indicating a stochastic frequency
shift in the TLS. After this frequency shift, both bias points used in the experiments were
positioned significantly away from the “dip”, and both had similar T1 and T2 values. Un-
fortunately, the experiments lack direct evidence indicating the precise time and impact
of this shift. Further improvements in the experimental protocol could help capture these
pivotal moments in future studies. For instance, a T1 scan can be incorporated into each
PB cycle to monitor the movement of the TLS frequency. Furthermore, a Ramsey mea-
surement could also be integrated into each PB cycle to track the flux noises. Additional
investigations on the TLS noises and qubit frequency fluctuations will be addressed later
in Chapter 4.

3.2.2 Time Drift

Long-time noise measurements requires a stable clock reference for sampling. Given that
our experimental protocol is structured such that all measurements are conducted in a
series, a single deviation in the clock reference could impact all subsequent measurements,
leading to a global time drift. Furthermore, many statistical analysis methods depend on
equally spaced samples, including time domain variances and frequency spectrum analyses.
Therefore, maintaining a stable clock reference is critical for the forthcoming analysis.

To maintain a consistent sampling rate, we time each execution of the PB cycle and
integrated a time buffer at the end of each cycle to offset any time variations. The timer
takes reference from the wall-clock time of the computer, and the computer clock synchro-
nizes with a network time protocol (NTP) server[49] every four hours. These measures
helped us maintain the period time coefficient of variation below 0.1% over a span of more
than 240 hours.

However, several unexpected drifts in the clock reference still occurred during the first
experiments. Figure 3.7 presents the time period recorded for each cycle in both exper-
iments. While the period of each cycle remained stable for the second experiment, the
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experiment.

first experiment exhibited three outliers, each ending about one second early. Each outlier
caused the clock reference to drift by roughly one second. Unfortunately, we don’t have
sufficient information and indicators to identify the cause of these outliers.

Prior to proceeding with statistical analysis, we conducted simulations with different
power-law noise processes to examine the influence of such time drifts. Figure 3.8 shows the
Allan deviations for simulated white noise and random walk noise, both with and without
the exact time drifts as shown in Figure 3.7. The fact that, in both power-law models, the
time drifts did not significantly impact the Allan deviations reinforces our confidence in the
subsequent analysis. Nevertheless, improving the stability of the clock reference remains a
desirable goal for future experiments.

3.2.3 Statistical Analysis

Following the visual validation of the time series, we proceeded to analyze the frequency
components of the noise. Our focus is mainly on the low-frequency noises inherent in
both coherent and incoherent errors. For both experiments, we set the cycle time to 50
seconds. After applying the moving-window averaging, the final base sampling period
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for frequency domain analysis becomes 50s ∗ 20 cycles ∗ 50%overlapping= 500s, which
corresponds to a sampling frequency as low as 2 milliHz. The 50% percent overlapping is
introduced to double the number of available sample points for later analysis. Although this
approach induces statistical dependency between neighboring points, thus compromising
the reliability of high-frequency analysis, it does not significantly impact our primary focus:
the study of low-frequency noise. In fact, we visually confirmed that, with a 50 percent
overlap, fluctuations with frequencies lower than 5 ∗ 10−4Hz converged satisfactorily.

Starting with the time series, the most direct approach to studying noise in the fre-
quency domain is through power spectral density (PSD). However, it is well-known that
PSD is less ideal for analyzing low-frequency noises. One reason is that the PSD spec-
trum has a relatively low resolution in the low-frequency range due to the linear frequency
division in discrete Fourier transform (DFT). Achieving a reasonable resolution for low-
frequency noise would often require impractically long time series. Although other research
suggests potential improvements using the logarithmic Fourier transform (LFT) [50], the
implementation of this method would require extensive discussions on statistical modifica-
tions in the PSD algorithm, which is beyond the scope of this thesis.

Another challenge of using the PSD arises from the extraordinarily low Nyquist fre-
quency of the time series in this experiment. For instance, the Nyquist frequency of the
time series in Fig 3.4 is 1mHz, equivalent to a period of 1000 seconds. In the meanwhile,
the potential noises in this experiment could span a wide frequency range. This could re-
sult in significant spectral leakage as well as aliasing in the spectrum[51, 52]. An example
of a PSD for a time series can be found in Figure A.1. The spectrum is less insightful and
provides minimal useful information.

Instead of the PSD, we turn to methods from time-domain analysis, computing the
overlapping Allan deviation (ADEV) for all time series presented in Section 3.2.1. The
(overlapping) Allan deviation is a powerful and common tool for identifying noise processes,
especially those occurring over extended timescales at low frequencies. A brief introduction
to the Allan deviation is presented in Appendix A.

Similar to the power spectral density, certain power-law noise processes exhibit linear
patterns in the log-space plot of the Allan deviation. Each type of these noise models
produces a distinct line with a characteristic slope. As a result, we can categorize the
dominant noise model at different frequencies based on the slope of the curve. This provides
an intuitive and useful tool for examining noise trends. Table 3.1 lists some common
power-law noise processes and their associated ADEV curve patterns and slopes in log-
space[20, 53].

Figures 3.9 and 3.10 display the overlapping Allan deviations for all the error time series
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Noise Type Spectral Form ADEV Form ADEV Slope in Log-Space

White FM h0f
0 (h0

2
)
1
2 τ−

1
2 -0.5

Flicker FM h−1f
−1 (2ln(2)h−1)

1
2 τ 0 0

Random Walk FM h−2f
−2 (2π)2

6
h−2

1
2
τ

1
2 0.5

Linear Drift ... ... 1

Table 3.1: Power-law noise processes and their associated ADEV patterns in log-space.

from Figure 3.4 and 3.5, respectively. The plots have been truncated at time intervals
greater than 104 seconds (τ > 104s) to avoid convergence issues at higher frequencies.
Additional reference lines with distinct slopes, corresponding to relevant power-law noise
processes, have been added to each plot, aiding in the analysis of the dominant noise trend.

The ADEV patterns exhibited in the first experiment align well with power-law pro-
cesses, characteristically forming “well” -like patterns. At higher frequencies, noise is domi-
nated by a 1/f process. As frequency decreases (or as τ increases), the curves for the coher-
ent and total errors exhibit an interesting evolution. Initially, they ascend and gradually
adopt patterns resembling a frequency linear drift process. Then, at the lowest frequency
(the right-most part of the plots), the noise curves flatten, revealing a divergence from
qubit frequencies.

Interestingly, for the second flux bias setting, the noise curves flatten both earlier and
more rapidly, displaying clear patterns of a random walk at the end. In contrast, the first
bias setting’s noise curves show only modest trends towards flattening. This discrepancy
could stem from the heating effect, causing long-time frequency linear drifts. Specifically,
the voltage setting for the flux bias 1 is approximately 22% higher than that for flux bias
2, translating into a roughly 48% higher input power to the qubit. This extra power
ultimately dissipates as heat, potentially amplifying the linear drifts. Simultaneously, the
incoherent patterns for both flux biases are similar, a conclusion also supported by time
series analysis.

In the second experiment, the noise patterns display less complexity. The majority of
ADEVs can be fitted with flicker noises, except for the coherent noises for flux bias 1 which
are predominantly white noises. Interestingly, the coherent noise for flux bias 1 and the
incoherent noise for bias 2 manifest small, hill-like bumps. These patterns are noteworthy
since they don’t align with power-law processes. Such bumps could signal a Lorentzian
noise pattern, a phenomenon often associated with the interaction with TLSs[20, 54].
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Figure 3.9: Overlapping Allan deviations for the first experiment.
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Figure 3.10: Overlapping Allan deviations for the second experiment.
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Overall, these experiments offer valuable insights into the behaviors of coherent and in-
coherent qubit noise under different experimental conditions. The presence of a stochastic
fluctuating TLS adds intriguing dynamics to the system. For a more comprehensive un-
derstanding of the qubit noise process involved in these experiments, it would be beneficial
to characterize the qubit noise using multiple metrics simultaneously, such as qubit energy
relaxation time T1 and frequency shift. We will explore such studies in the subsequent
chapter, offering a deeper dive into these intriguing phenomena.
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Chapter 4

Discussion

4.1 Simultaneous Qubit Relaxation Measurements

In order to enhance the characterization of this quantum system, we sought to monitor
additional metrics, particularly those closely related to TLS fluctuations. Thus, we incor-
porated method for monitoring qubit relaxation time T1 into our PB protocol, drawing on
well-established research such as References [21, 20].

To implement these modifications,we first select 11 evenly spaced qubit frequency val-
ues. These include the two frequency values at which the PB cycles are executed. We con-
vert these frequency values into flux bias voltages based on the results of qubit calibration
experiments. These flux bias voltages are then fixed for the duration of the experiment.

We make an assumption that the amount of external flux generated by a given bias
voltage remains consistent and stable throughout the experiment. This assumption is
reasonable given that the qubit and the external flux lines are heavily isolated, and the
bias voltages are supplied by a dedicated, isolated voltage source. This ensures a stable
and consistent external flux throughout the experiment.

For each cycle, we sweep the bias voltage across the selected 11 values. At each of these
bias voltages, the T1 time of the qubit is measured. Once the T1 measurements for all 11
bias values are completed, the PB measurements proceed.

As mentioned in Chapter 3, a telegraphic shift in TLS frequency may be reflected as
a shift in the “dip”of the T1 spectrum. Therefore, this new modified protocol provides
additional (semi-)simultaneous measurements that can be used to characterize the TLS
coupling and flux noise, along with the PB measurements.
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Figure 4.1: Color map for T1 fluctuations. The x-axis represents the qubit center fre-
quencies. The y-axis indicates the experiment time. The colors represent the T1 time of
the qubit. Two dashed vertical lines mark the frequencies where PB measurements were
conducted. Spectral-diffusion patterns in the experiment are highlighted with boxes.

Following the enhancement of our protocol, we executed another 192-hour time fluc-
tuation experiment. The results are shown in Figure 4.1, 4.2 and 4.3. Enhanced char-
acterization comes at the cost of an decreased repetition rate. By incorporating (semi-
)simultaneous T1 measurements, we see the repetition period of PB cycles increase nearly
four-fold, resulting in a cycle period of 180s. Given this extensive sampling period, per-
forming statistical analyses similar to those in Section 3.2.3 may no longer be meaningful.
Nevertheless, the time series still offer valuable insights into the fluctuations of the qubit.

Figure 4.1 presents a color map depicting a spectrotemporal representation of T1 versus
qubit frequency and time. A visual examination reveals two distinctive stochastic spectral-
diffusion patterns. From approximately 110 hours to 140 hours, we observe a slow, wide-
band telegraphic pattern, which is highlighted by a dashed red box. Another prominent
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pattern, highlighted by the solid orange box, resembles a blend of band-limited diffusive and
fast telegraphic patterns. These patterns can be qualitatively explained by the presence of
the TLS, as suggested by a more comprehensive study conducted by our group[21].

PB measurements were undertaken at two specific bias voltages, namely the 2nd and 8th
out of the total 11 selected points. The corresponding qubit frequencies are approximately
indicated in the T1 color map by two dashed vertical lines. It’s crucial to note, however,
that these lines correspond to the selected bias voltage points and may not represent the
exact qubit frequencies. This distinction arises due to potential fluctuations in the qubit
frequencies, suggesting that the frequencies employed for the T1 and PB measurements
may not be perfectly align. As a result, we use the bias voltage as our reference point
instead of the qubit frequency. The time series of the coherent and incoherent errors, as
well as the T1 fluctuation at corresponding bias voltages, for both frequencies are depicted
in Figure 4.2 and 4.3.

The first PB frequency situates within the area of combined band-limited diffusive
and fast telegraphic spectral patterns, placing it closer to the potential TLS frequency
(indicated by the “dip”). As a result, both error types for this first PB frequency exhibit
stronger fluctuations compared to those at the second frequency. Additionally, the overall
level of the coherent error for the first PB frequency consistently exceeds that for the second
frequency throughout the experiment. Interestingly, the overall levels of the incoherent
error for both frequencies remain virtually the same.

Another noteworthy observation is that, after approximately 70 hours, the center fre-
quency of the “dip”in the T1 spectrum begins to slowly shift towards both PB frequencies.
Simultaneously, we observe gradual increases in the coherent error at both PB frequencies.
Given that the overall level and the intensity of fluctuations of the coherent error for the
first PB frequency are higher, these observed behaviors of the coherent errors could be
qualitatively explained by the coupling with the TLS.

Finally, we turn our attention to the most notable event observed in this experiment:
the slow, wide-band telegraphic event. From approximately 110 hours to 135 hours, all
time series plots exhibit a synchronized telegraphic shift. During this window, both the T1
time at each PB frequency and all error measures alter in a telegraphic manner, reflecting a
distinctive event within the system. This event is captured not only in the metrics for both
coherent and incoherent errors but also in the T1 relaxation time. Also notably, this is the
only instance where a telegraphic shift occurs in the incoherent errors for both frequencies.

In conclusion, the time series analysis conducted in this additional experiment offers
partial support for the argument that the interaction with TLS qualitatively contributes to
quantum errors. The impact on coherent errors is clear from earlier analysis. The closer the
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Figure 4.2: Time series of errors and T1 time for the first PB frequency
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qubit frequency is to the TLS, the larger and more intense the fluctuations of the coherent
error become. This phenomenon might be explained by an increase in qubit leakage as
changes in TLS coupling alter the system dynamics. Techniques developed to counteract
leakage, such as DRAG pulses, may become less effective in the presence of stronger TLS
coupling. However, this hypothesis requires further investigation and validation.

On the other hand, the dynamics of incoherent error fluctuations observed in this
experiment remain more complex and demand further exploration. While the incoherent
error for the PB frequency closer to the TLS exhibits slightly more intense fluctuations,
its average amplitude remains largely the same as the other frequency. This observation
is somewhat counter-intuitive, as one would typically expect the rate of decoherence and
the incoherent error to be larger and faster at the qubit frequency closer to the TLS. The
reasons behind these observed dynamics necessitate further investigation and a more robust
set of evidence before a conclusive interpretation.

An intriguing avenue for further exploration arises from the observation of qubit fre-
quency fluctuations. As evidenced in the figures presented in this section, the frequencies
employed for PB and T1 measurements at the same bias voltage exhibit considerable de-
viation (approximately 0.7MHz). This disparity is not unexpected, as the frequency of
an Xmon transmon qubit is known to be sensitive to flux noise. Consequently, our ini-
tial assumption might not be proper in this experiment. Despite maintaining a fixed bias
voltage throughout the experiment, the qubit frequency may still fluctuate. Given that all
frequency parameters in the experiment remained constant for the duration of the study,
such qubit frequency fluctuations could introduce additional complexities in the analysis
of errors.

4.2 Simulations on TLS Noises and Flux Noises

To further substantiate the hypothesis that the fluctuation patterns observed in error met-
rics in the previous sections could be attributed to both TLS and flux noises, it is possible
to further incorporate the measurements for qubit frequencies into the PB protocol. The
simplest way to accurately measure the qubit frequency is through Ramsey measurements.
However, our trial experiments confirmed that adding even one Ramsey measurement for
each of the 11 selected bias voltages would extend the cycle period time to an excessive
340 seconds. Considering a moving window of length 20 cycle and 50% overlap, this leads
to a sampling period of about 57 minutes, which is less practical for PB measurements.
Therefore, we decided to conduct our exploration through comprehensive simulations of
the PB experiment.
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The model in our simulations is composed of a qubit and a TLS. To account for potential
leakage scenarios, we included three energy levels within the qubit space. The qubit and
the TLS are coupled via an electric dipole interaction. After applying a rotating-wave
approximation, the total Hamiltonian takes the form of the Jaynes-Cummings model, where
the system consists of a three-level anharmonic resonator (representing the actual qubit)
and a “qubit” (representing the TLS). The energy splitting values and the coupling strength
were determined based on estimates from the physical device.

The qubit control is implemented by adding the two driving terms from Equation
1.23. The drive pulse envelope ε(t) used in the simulation follows the design of cosine-
shaped DRAG pulses, identical to the pulses implemented in the physical experiments.
The parameters for these DRAG pulses are calibrated based on the system Hamiltonian
prior to conducting the PB simulations, thereby minimizing leakage. Similar calibration
procedures were also employed in the physical experiments.

Given that the assumptions of the PB protocol mandate the error processes to be gate-
independent and in the Markovian limit, the simulation is conducted by numerically solving
the master equation with the system Hamiltonian. To emulate the system’s decoherence,
an amplitude damping channel is applied to the TLS subspace, and a combined amplitude
and phase damping channel is applied for the qubit subspace. The Lindbladian operators
are given from Equations 1.27 and 1.28, respectively. The decay parameters ΓTLS

1 ,Γq
1, and

Γq
2 are drawn from physical estimations.

The simulation emulates the entire process of a standard PB experiment. Initially, both
the qubit and TLS are prepared in the pure ground state. Following this, the qubit is driven
by a pulse sequence derived from a random gate sequence S. The time-dependent evolution
of the system, under the influence of the qubit drive pulses and decoherence channels, is
then simulated by numerically solving the master equation. Upon completion of the pulse
sequence, the probability of the qubit being excited (P|e⟩ or ⟨E+z⟩) is assessed by directly
evaluating the density matrix elements. This method ensures that the execution of the PB
sequence is free of SPAM errors, thus reducing the complexity in computation and post-
analysis. We simulate 42 different random gate sequences for the same sequence length
mi (i.e., N = 42) and select M = {2, 6, 13, 25, 50, 100, 200}. Following the procedures
outlined in Chapter 2, the average gate fidelities and the quantity b̂ are computed and
fitted to derive the coherent and incoherent errors.

To investigate the contributions of TLS and qubit frequency shifts to the errors, as
well as to validate that the TLS and flux noise channels could plausibly account for the
error fluctuations observed in Section 4.1, we simulated both coherent and incoherent errors
across a range of TLS frequency detunings ∆t and qubit frequency detunings δ. The results
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are illustrated as color maps in Figure 4.4. The units for the x and y axes are both in
MHz. The source code of this simulation is available upon request.

From these simulations, it becomes evident that the coherent error is highly sensitive
to the detuning of the qubit frequency. Conversely, the detuning of the TLS has a less
pronounced effect on the coherent error. This observation supports the hypothesis that
the coherent noise for both frequencies could be primarily attributed to fluctuations in the
qubit frequency, which are potentially linked to flux noise. However, the role of the TLS
appears to be minimal in the generation of coherent noise.

The simulations of the incoherent error, on the other hand, reveal a richer set of fea-
tures. The amplitude of the incoherent error seems to vary slowly with the detuning of the
qubit frequency. In the range of qubit frequency variation implied by the coherent errors,
the amplitude of incoherent error remains relatively stable, suggesting that qubit frequency
fluctuations may not be a significant factor in inducing changes in incoherent error. How-
ever, the fluctuations from the TLS detuning do show notable variations, indicating a
potential correlation between incoherent noise and TLS noise.

It is also noteworthy that the overall variation level of incoherent error in this simulation
is relatively small. This could potentially explain the lack of telegraphic events in incoherent
noise compared to coherent noise. Moreover, this observation might hint at the existence
of additional noise channels, which were not explored in this simulation, contributing to
the incoherent noise. Such channels could be responsible for the wide-band telegraphic
event observed in Figure 4.2 and 4.3.
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Chapter 5

Conclusion

In this thesis, we explore qubit dynamics and their interactions with the environment,
using a set of novel metrics. These metrics, distinct from the commonly studied variables
such as T1 and frequency, are garnering increased attention in the quantum community,
particularly in the field of quantum algorithms and hardware development.

The metrics being explored are average gate fidelity and unitarity of the implementa-
tion of the quantum gates. The average gate fidelity offers estimations of the total averaged
quantum errors for quantum gates, while the unitarity offers an assessment of the coherent
portion of these total quantum errors. This analysis is significant because, in principle,
coherent errors could be mitigated through systematic optimizations, including refining
control protocols and calibrating experimental instruments. On the other hand, the inco-
herent component of the error should ultimately be constrained by quantum decoherence
of the quantum device, which is harder to improve.

In Chapter 3, we conducted two long-term experiments and subsequently performed
a detailed analysis of the results. The experiments were conducted utilizing modified PB
protocols introduced in Chapter 2. These investigations provide an initial understanding
of the behavior of the quantum noises derived from those novel metrics. Additionally, the
continuous measurements of these metrics over extended periods allowed us to characterize
the coherence of noise at very low frequencies, providing insights into how long-term qubit
fluctuations correlates to the coherent and incoherent errors.

Subsequently, we aimed to link the observed fluctuations in quantum errors with well-
established models, namely, the TLS and flux noises. This endeavor involved the imple-
mentation of simultaneous measurements and comprehensive simulations, as discussed in
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Chapter 4. Our goal was to connect these novel observations with existing knowledge,
thereby contributing to a more complete understanding of quantum dynamics.

While our experiments and simulations generally align, they also present intriguing
discrepancies. To delve deeper into these differences, one might consider incorporating ad-
ditional metrics into the PB cycle for better characterization. These could include Ramsey
measurements to simultaneously estimate the qubit frequency fluctuations. Conducting
more experiments over extended periods would also be beneficial in capturing telegraphic
events.

A significant challenge for adding more measurements for other metrics is the extended
sampling period of a cycle. The execution time for a single cycle in the experiments pre-
sented in Chapter 3 is 50 seconds, and tens of cycles are required to fit just one error value,
which is already a long duration.This issue is worsen when incorporating other measure-
ments. Introducing relaxation time and qubit frequency shift measurements into the PB
cycle extends the error sampling period to a daunting 3400 seconds. Although the results
from relaxation time and frequency measurements are both intriguing and consistent, the
measurements of the error metrics become less meaningful due to the long cycle period.
Hence, adjustments are needed prior to incorporating additional measurements into the
PB cycle.

To reduce the cycle period time, we experimentally benchmarked the time efficiency
of the PB protocol and found that initializing the instruments and uploading the random
sequences for each cycle take approximately 10 seconds. This duration is significant relative
to the cycle period. Better integration of the instruments, both at the hardware and
software levels, could potentially optimize the cycle period to some degree. However, the T1
and Ramsey measurements wouldn’t benefit significantly from this optimization. Protocol-
wise, since the T1 and Ramsey measurements usually take much longer, we could execute
and measure more than one PB sequence per frequency during each cycle. Although
this would extend the cycle period, we could reduce the length of the moving window
accordingly, ultimately reducing the sampling period for the error points. Further studies
are required to evaluate these potential improvements.
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Appendix A

Time-domain Analysis: Overlapping
Allan Deviation

The Allan variance (AVAR) was initially developed in 1966 by David W. Allan to analyze
frequency stability in precision clocks, oscillators, and other frequency sources[64]. Since its
inception, AVAR has been widely adopted in the fields of telecommunications, navigation,
and metrology. To enhance the statistical confidence of stability estimates, an overlapping
version of AVAR was later introduced. This overlapping version, and its deviation, has
since become the most common measures of time-domain frequency stability. The terms
”AVAR” and ”ADEV” are now commonly used to refer to these overlapping versions,
which have largely superseded the original Allan variance and deviation[65].

For an averaging time τ , the overlapping Allan deviation σ is defined by the following
equation:

σ2(τ) =
1

2m2(M − 2m+ 1)

M−2m+1∑
j=1

{j+m−1∑
i=j

(ȳi+m − ȳi)
}2

(A.1)

In this equation, M is the total number of samples, τ0 is the base measurement period, and
ȳ is the time-averaged fractional frequency. The averaging time τ is a multiple of the base
measurement period (τ = mτ0), where m is an integer representing the number of base
periods.

Similar to the analysis using PSDs, we compute the ADEV over different averaging time
τ . By examining the ADEV values corresponding to different τ , one can reveal various
characteristics of time-domain stability, including insights into the type of noise and the
frequency dependency.
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Figure A.1: Examples of PSD plots for time series of coherent error in the second experi-
ment (Figure 3.10).

In Particularly, when plotted in logarithmic space, the ADEV exhibits linear patterns
for power-law noises, with each type of noise having distinct slopes. Table 3.1 presents
some power-law noises and their characteristic slopes in the log-space σ − τ plot.

Power-law noise processes typically produce a “well”-shaped curve in the Allan devia-
tion plot. The “walls” of this well often exhibit slopes of -1/2 and 1/2, which are typically
indicative of white noise and random walk noise processes, respectively. As more types of
noise are incorporated into the noise model, the range of potential slope values expands.
Despite these additional noise types, the ’well’-shaped pattern in the Allan deviation plot
persists.

Next, we provide PSD plots in Figure A.1 for time series of coherent error in the
second experiment (Figure 3.10). When compared with the corresponding ADEV plots
(second row in Figure 3.10), the PSDs exhibit very limited resolution on the lower frequency
side, and overall, they are significantly more noisy and challenging to analyze. More
detailed explanations of why ADEV is preferred for low-frequency analysis can be found
in Reference. [20, 64].
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Appendix B

Single-qubit Clifford Gates

The protocol for randomized benchmarking requires random gate sequences to be drawn
uniformly from a quantum operation group. This effectively corresponds to taking the
Haar-average over this group. Ideally, for the most comprehensive estimation, this group
would have been chosen as the entire Unitary group. However, this approach is neither
scalable nor experimentally approachable. As a result, subsequent theories and experi-
mental implementations have shifted their focus to a special subset of the Unitary group:
the Clifford set. This appendix chapter provides a brief review of the single-qubit Clif-
ford set, and outlines our experimental implementations of the Clifford gates in our purity
benchmarking experiments.

In quantum information theory, n-qubit Clifford gates are defined as the normalizers of
the n-qubit Pauli group. In other words, they are operations that transform n-qubit Pauli
states into other n-qubit Pauli states[60]. These n-qubit Clifford gates form a subgroup
of the Unitary group. Although the Clifford group itself does not constitute a quantum
universal gate set, it plays a fundamental role in several key areas. These include, but are
not limited to, stabilizer codes, error corrections, entanglement studies, and as an essential
component in the construction of quantum universal gate sets. These areas represent signif-
icant portions of research and application in the field of quantum information. Therefore,
characterizing qubit errors by uniformly averaging random gates from the Clifford group,
rather than the entire Unitary group, still provides a sufficiently comprehensive approach
for most applications.

From an experimental standpoint, there are two advantages using the Clifford group
for randomized benchmarking. First, the Clifford group is a finite discrete set, which sim-
plifies the Haar integral in Equation 2.14 to a finite summation. Although the cardinality
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of the Clifford group still increases exponentially with the number of qubits, thereby not
being fully scalable, it does provide a practical approach for performing the Haar-average.
Second, Clifford gates can be efficiently computed and simulated using classical computers
(Gottesman-Knill theorem[61]). This is particularly advantageous in randomized bench-
marking , as it allows us to efficiently calculate the final inverse gate (ginv) and generate
the random sequence (Smi).

Clifford groups can be generated by compositions of Pauli matrices. Table B.1 lists
the 24 elements in single-qubit Clifford group and the respective decompositions we used
to implement the gate operations. Note that the representation and the decomposition
of each Clifford gates is not unique. The notation R(x,y,z)(θ) represents a Clifford gate as
a Block-sphere rotation by an angle θ around the axis u⃗ = (x, y, z). The decompositions
are expressed in terms of primitive gates. To avoid the usage of flux pulses, we further
decompose the z rotations into combinations of x,y rotations[9, 62, 63].
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Clifford gate Decomposition Clifford gate Decomposition

I I R(1,0,0)(π/2) X/2

R(1,0,0)(π) X R(−1,0,0)(π/2) −X/2

R(0,1,0)(π) X,Z R(0,1,0)(π/2) X/2, Z/2,−X/2

R(0,0,1)(π) Z R(0,−1,0)(π/2) X/2,−Z/2,−X/2

R(1,1,1)(2π/3) X/2, Z/2 R(0,0,1)(π/2) Z/2

R(1,1,−1)(2π/3) −Z/2, X/2 R(0,0,−1)(π/2) −Z/2

R(1,−1,1)(2π/3) Z/2, X/2 R(1,0,1)(π) X/2, Z/2, X/2

R(1,−1,−1)(2π/3) X/2,−Z/2 R(1,0,−1)(π) X/2,−Z/2, X/2

R(−1,1,1)(2π/3) Z/2,−X/2 R(0,1,−1)(π) Z,X/2

R(−1,1,−1)(2π/3) −X/2,−Z/2 R(0,1,1)(π) Z,−X/2

R(−1,−1,1)(2π/3) −X/2, Z/2 R(1,1,0)(π) X,Z/2

R(−1,−1,−1)(2π/3) −Z/2,−X/2 R(−1,1,0)(π) X,−Z/2

Table B.1: Single-qubit Clifford gates and their decompositions. Adapted from References
[9, 63]. The order of the decomposition sequence is from left to right. For instance, ”-
Z/2,X/2” presents applying a rotation of π/2 around the z-axis first, followed by a rotation
of π/2 around the x-axis.

66


	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Personal Message
	Introduction
	Circuit Quantum Electrodynamics
	Superconducting Resonator
	Superconducting Qubit

	Experimental Infrastructure
	Homodyne Readout
	Qubit Control

	Quantum Noise
	Two-Level System


	Method
	Metrics
	Coherence and Unitarity

	Randomized Benchmarking
	Experimental Protocol
	Purity Benchmarking

	Experimental Protocol for Time Fluctuations of Quantum Errors
	Elimination of Offset Term


	Result
	Preambles
	Fluctuations in Single-qubit Errors
	Time Series
	Time Drift
	Statistical Analysis


	Discussion
	Simultaneous Qubit Relaxation Measurements
	Simulations on TLS Noises and Flux Noises

	Conclusion
	References
	APPENDICES
	Time-domain Analysis: Overlapping Allan Deviation
	Single-qubit Clifford Gates

