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Abstract

Across many domains, the ability to work in teams can magnify a group’s abilities
beyond the capabilities of any individual. While the science of teamwork is typically
studied in organizational psychology (OP) and areas of biology, understanding how multiple
agents can work together is an important topic in artificial intelligence (AI) and multiagent
systems (MAS). Teams in AI have taken many forms, including ad hoc teamwork [226],
hierarchical structures of rule-based agents [233], and teams of multiagent reinforcement
learning (MARL) agents [13]. Despite significant evidence in the natural world about the
impact of family structure on child development and health [122, 245], the impact of team
structure on the policies that individual learning agents develop is not often explicitly
studied. In this thesis, we hypothesize that teams can provide significant advantages in
guiding the development of policies for individual agents that learn from experience.

We focus on mixed-motive domains, where long-term global welfare is maximized
through global cooperation. We present a model of multiagent teams with individual
learning agents inspired by OP and early work using teams in AI, and introduce credo,
a model that defines how agents optimize their behavior for the goals of various groups
they belong to: themselves (a group of one), any teams they belong to, and the entire
system. We find that teams help agents develop cooperative policies with agents in other
teams despite game-theoretic incentives to defect in various settings that are robust to
some amount of selfishness. While previous work assumed that a fully cooperative pop-
ulation (all agents share rewards) obtains the best possible performance in mixed-motive
domains [266, 71], we show that there exist multiple configurations of team structures and
credo parameters that achieve up to 33% more reward than the fully cooperative system.
Agents in these scenarios learn more effective joint policies while maintaining high reward
equality. Inspired by these results, we derive theoretical underpinnings that characterize
settings where teammates may be beneficial, or not beneficial, for learning. We also pro-
pose a preliminary credo-regulating agent architecture to autonomously discover favorable
learning conditions in challenging settings.
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Chapter 1

Introduction

Observed in both animal and human behavior, the ability to work in teams can magnify a
group’s abilities beyond those of any individual. The evolution of how cooperative behavior
emerged among humans was one of 2005 Science Magazine’s top 25 questions facing science
over the following 25 years [39]. Cooperation, teamwork, and social relationships are
central to the development of human cognition and contribute to the success of many
endeavours [146]. However, almost 20 years later, the emergence of cooperation among
humans is still not well understood. As artificial intelligence (AI) agents further interact
with people, agents will need to understand how and when cooperation is necessary or
desirable. As a result, there is growing interest in making the study of cooperation central
to the development of AI and multiagent systems (MAS) [38, 39]. In a human context,
there is significant evidence demonstrating the importance of family stability and structure
on child development and health [122, 245]; however, the impact of social structure on
individual learning agents in AI is often overlooked. In this dissertation, we explore the
role that teams play in the development of individual learning agents’ policies to better
understand the impact that team structures have on learning in AI.

The science of teamwork and social connection is widely studied across various dis-
ciplines in the natural sciences [7, 270]. Researchers in organizational psychology (OP)
and biology have studied how teams increase the collective efforts of all sub-groups and
individuals within a team [271, 143, 136, 193]. Interdependence theory has formalized the
importance of mutuality and the degree of dependence for the performance of interpersonal
relationships [108, 246].

Understanding how multiple agents can work together has been an important topic in
MAS for many decades. Early work with teams in AI experimented with agents sharing
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their beliefs, intentions, and organizing a group into decomposed structures of sub-teams
with a shared overall goal [75, 233]. That work showed how decomposing a task into sub-
tasks to be solved by sub-teams (within the larger team) could achieve state-of-the-art task
completion performance in team settings with simple rule-based agents. More recent work
with teams in AI focuses on ad hoc teamwork or teams of multiagent reinforcement learning
(MARL) agents. Ad hoc teamwork studies how multiple individual agents can coordinate
their behavior in zero-shot settings [226]. MARL focuses on how multiple agents can learn
to coordinate their behavior over time [30] and teams are typically explored in cooperative
or competitive domains (i.e., one cooperative population or two competing teams). MARL
has made significant advances in these domains by designing algorithms to guide individual
agents towards learning coordinated policies [195]. However, cooperative and competitive
domains offer limited opportunities for agents to learn how or when to cooperate with
others [12] and typically overlooks the possibility of sub-teams with variations in their
incentives.

There has been an increasing interest in the study of mixed-motive domains [115],
environments that are not purely cooperative or purely competitive and as a result, agents’
incentives may align some amount of the time. High levels of long term rewards in mixed-
motive domains can be obtained through mutual cooperation; however, agents have the
short-term incentive not to exhibit cooperative behavior. If all agents learn non-cooperative
behavior, all agents receive poor outcomes. Investigating the impact of group size and
structure on system stability has been argued as a way to relate AI research to findings
in the natural sciences [163]. We aim to reinvigorate the study of teams in AI using
individual reinforcement learning (RL) agents in contexts where agents may have different
incentives. We emphasize the exploration of teams in mixed-motive domains to study how
team structures (the number and size of teams among a population) influence how agents
learn when, how, and with whom to cooperate, each concept being an important area of
research in AI. We draw significant inspiration from OP in our design of team structures
with individual learning agents. These settings allow us to study the impact of teams
and the degree of agents’ aligned goals on how agents develop their policies, as well as
understand the potential side-effects and pitfalls of poorly constructed team structures.
We believe this work is of interest to researchers across Game Theory, MAS, and MARL.
We view our biggest contribution as being within MARL, highlighting the impact and
influence that population structure has on the policies that individual agents learn. Thus,
we argue that researchers and engineers should carefully consider the social structure of
populations when designing learning agents within specific environments.
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1.1 Thesis Statement

The hypothesis being studied in this dissertation is:

Teams can provide significant advantages in guiding the development of policies
for individual agents that learn from experience.

To explore this hypothesis, the remainder of this dissertation investigates the following
research questions:

1. Can organizing a population of agents into teams impact the behavior
that is learned by individual agents?

(a) Can teams change the underlying game-theoretic properties of mixed-motive
domains?

(b) Can teams promote cooperation in the context of mixed-motive domains?

(c) Can teams guide agents to develop globally beneficial joint policies despite mixed
incentives?

2. How do various degrees of common interest for shared goals impact the
behaviour learned by agents in teams?

(a) Do teams impact the amount of common interest necessary for globally favorable
results in different domains?

(b) Do different levels of common interest impact game-theoretic equilibria in the
context of team structures?

(c) Can mixed incentives support agents in learning globally favorable joint policies
in the context of teams?

3. Can we derive theoretical constructs about the impact of team structures
on how agents learn?

(a) Can teammates help agents explore and identify valuable areas of the state
space?

(b) Do team structures and shared goals impact the ability for agents to perform
effective credit assignment?

(c) Do settings exist where specific team structures may not be beneficial or desired?
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1.2 Motivating Examples

We identify several real-world, motivating examples that inspired various stages of this
research. These are situations where insights from this dissertation may have some impact
if adapted into real-world settings, either by constructing teams or changing incentive
structures among a population.

1.2.1 Wildland Fire Fuel Mitigation

Wildfires claim many lives and cost communities billions of dollars every year [183]. Cali-
fornia’s wildland fuel mitigation defensible space code (CA PRC §4291) describes required
practices for removing flammable vegetation around buildings to reduce wildfire risk and
maintain a defensible space for fire fighters. The code states that landowners must “main-
tain a defensible space of 100 feet from each side and from the front and rear of the
structure, but not beyond the property line” [62]. However, the code is not able to ensure
that neighbors mitigate their properties if a structure is within 100 feet of the property
line, since landowners are unable to be held liable for the independent actions of their
neighbors (i.e., placing a structure close to the property line).

The current state of California’s defensible space code presents a social dilemma that
humans currently do not solve. A neighborhood is safer if all landowners mitigate around
all structures (regardless of property lines), but mitigating carries a cost for the property
owner. One study found that 98% of the 686 buildings damaged in the 2018 Woolsey Fire
had insufficient, but technically legal, vegetation mitigation practices [164]. Changing the
vegetation mitigation code to require all buildings to be protected would disproportionately
impact homeowners since those with more neighboring structures close to their property
lines would incur greater mitigation costs. Furthermore, policing mitigation practices is
costly due to the high cost of manual surveys and terrestrial vegetation scanning. While we
have previously developed a method for less expensive widespread vegetation monitoring
using deep learning and remotely sensed data [190], the incentives to mitigate properly are
not currently strong enough for individuals to solve this dilemma.

Elinor Ostrom’s Nobel Prize winning work in economics recognized that self-monitoring
and enforcement are necessary for a group to solve social dilemmas [169]. We believe that
teams can improve self-monitoring and enforcement to promote aspects of Ostrom’s work.
We hypothesize that teams could create incentives to mitigate risky areas of flammable
vegetation that are currently considered legal under the California’s defensible space code.
Furthermore, teams that comprise neighborhoods and communities could better allocate
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resources to optimize mitigation efforts and conform to their own localized social norms of
behavior.

1.2.2 Team Sports Analytics for Invasion Games

In 2002, the Oakland Athletics adopted an approach to constructing and managing baseball
teams, starting a revolution in sports analytics that was popularized by the book and movie
Moneyball [130], using empirical statistics as a basis for roster management. Two decades
later, most baseball teams employ staffs of analysts that support coaching and management
decisions with quantitative data [56]. Baseball is classified as a “striking game” [57] due
to its episodic and repetitive structure, allowing for relatively easily collected data that
lends itself nicely to statistics. However, statistics alone are unable to fully capture the
complexity of “invasion games” [57], defined by using a goal or hoop where attacks rely on
invading opponent territory and players can interact anywhere on a playing surface (e.g.,
football (soccer), ice hockey, and basketball). Teams in invasion games rely on sub-groups
of players that play together as one cohesive group under various incentive structures;
thus, we posit that sports analytics for invasion games are another domain where our
research could be useful. Invasion games support the advancement of multiagent research
by providing enclosed, structured environments with an abundance of data collection to
adapt various findings from our dissertation to the real world.

Multiagent problems in invasion game sports analytics involve several levels of com-
plexity and time horizons. Coaches must identify players that coordinate well together,
devise team-based strategies, and construct best responses during a match to outperform
opponents. This requires a rich understanding of joint policies, different types of roles
within a team, and the impact of group structures on player development. Managing a
sports team requires long-horizon planning across multiple seasons, an environment which
emphasizes the importance of modeling long-term emergent of behavior, identifying role
specialization among a roster, and constructing monetary incentives to promote the emer-
gence of certain behaviors. The contributions of this dissertation touch on all of the above
aspects, emphasizing the importance of team structure, personal or group incentives, and
joint policies on agents’ abilities to effectively work together. In short, we believe that
multiagent systems is to invasion games what statistics is to striking games, and that the
research in this dissertation is one example of how concepts in these different fields can
intersect.
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1.2.3 Research Contributions

In this dissertation, we make the following research contributions:

1. We define a model of teams with individual learning agents for multiagent environ-
ments inspired by organizational psychology (OP) and early work with teams in AI.
We show how individual reinforcement learning agents in teams can learn cooperative
behavior in social dilemma environments where they have game-theoretic incentives
to not to cooperate (Figures 4.1 and 4.2). In a gridworld environment, agents divided
into multiple teams autonomously learn role specialization and global joint policies
that achieve up to 33% more reward than the fully cooperative population (Figure 4.3
and Figures 4.5-4.8). This is significant since the fully cooperative system has previ-
ously been assumed to maximize reward in mixed-motive environments [266, 71].

2. Using our model of teams, we introduce credo, a model that defines how individual
learning agents optimize their behavior for the goals of various groups they belong to:
themselves (a group of one), any teams they belong to, and the entire system. Our
results show that agents with high team-focus learn cooperation and are robust to
some degree of selfishness in settings where they have the game-theoretic incentive to
not cooperate (Figure 5.8). Team-focused agents learn to not be exploited by selfish
agents and learn mutual cooperation with other team-focused agents in other teams
(Figure 5.6). In a gridworld environment, we identify two credo parameter scenarios
that achieve the highest reward (Figures 5.11, 5.12, and 5.13); when agents have high
team-focus and when high system-focus agents are also slightly self-focused. Agents
in these scenarios autonomously learn role specialization and efficient global joint
policies that significantly outperform the fully cooperative population.

3. We provide theoretical underpinnings to further understand the conditions under
which teammates may be beneficial for individual learning agents (Theorem 1), as
well as scenarios where too many teammates may create settings where learning is
difficult (Theorem 2). To this end, we perform an extensive empirical evaluation
showing how our theoretical findings are consistent across multiple learning algo-
rithms and environments (Figures 6.3 to 6.11).

4. We design and implement a self-tuning credo agent to autonomously discover favor-
able learning conditions for a defined team structure through regulating credo pa-
rameters (Figure 6.12 and Algorithm 1). Each agent acts in the environment using a
low-level behavioral policy and maintains and updates their individual credo param-
eters using a high-level credo policy. We perform a preliminary empirical evaluation
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and show how self-tuning credo agents are able to modify their credo parameters to
shape their reward function and learn a joint policy that achieves more reward than
their initialized configuration (Figure 6.14).
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1.3 Research Area

This subsection defines the scope of research conducted as part of this dissertation and
is also summarized in Figure 1.1. This research lies in the intersection of three areas:
multiagent systems, reinforcement learning, and organizational psychology and multiteam
systems.

Figure 1.1: The focus of this dissertation as it relates to other fields and research topics.

Multiagent systems (MAS) is an area of research that is concerned with systems con-
taining more than one (intelligent) agent that learns to make decisions [227]. Agents
in MAS can either have static behavior or learn from experience. We consider individual
agents that learn from their individual experiences using reinforcement learning (RL) [230].
RL is a field of machine learning where an agent has the goal of acting “optimally” in a
dynamic environment by maximizing numerical feedback signals (i.e., rewards). For RL
agents in MAS environments, the optimal policy depends on both the environment and the
policies of all other agents in the system. Learning in MAS using RL has formed its own
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sub-field, multiagent RL (MARL) [85]. MARL algorithms can take many forms depending
on the dynamics of the underlying environment. For example, agents can work together
with aligned goals, be in direct competition with conflicting interests, or have mixed incen-
tives. Limited AI research has been conducted with multiple teams that are not in direct
conflict (i.e., not in zero-sum competition). This environment is similar to settings that are
studied in organizational psychology (OP) and multiteam systems (MTSs), social science
disciplines that focus on how human teams are formed, constructed, and maintained [143].
Our work does not make any direct contributions to the fields of OP or MTSs; however,
we aim to utilize relevant ideologies from these fields in MAS using individual RL agents.
Thus, we show how team and organizational structures from OP and MTSs impact differ-
ent settings in MARL and heavily influence how agents learn. Hence, our research lies at
the intersection of all three of these fields of research.
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1.4 Thesis Overview

The dissertation begins by detailing the related literature that our work is situated within
or builds on (Chapter 2). This is followed by a series of chapters that detail our work
exploring this dissertation’s thesis statement and understanding the impact of teams on
how individual agents learn from experience in multiagent systems.

Chapter 3: This chapter presents our model of teams for individual learning agents
inspired by early work with teams in AI and OP. Furthermore, we provide an overview of
all environments used in our empirical evaluations.

Chapter 4: The work in this chapter was published at the International Joint Confer-
ence on Artificial Intelligence (IJCAI) in 2022 [184]. We present an initial analysis of how
the implementation of team structures into populations of individual learning agents can
help agents achieve globally beneficial outcomes. We perform a game-theoretic analysis
to understand how team-shaped reward functions impact the various incentives of agents
playing the Iterated Prisoner’s Dilemma (IPD) matrix game. Our empirical analysis pro-
vides an understanding of how RL agents learn in the context of game-theoretic incentives
when divided into various team structures (i.e., different numbers and sizes of teams within
the population). Our results show how agents are able to learn favorable policies of global
cooperation in the IPD despite game-theoretic incentives suggesting they are better off not
cooperating. In the more elaborate Cleanup Gridworld Game social dilemma environment,
our results show that the population obtains significantly more reward when agents are
divided into several smaller teams with mixed incentives between teams when compared
to a fully cooperative population. Global reward equality is also found to remain high in
environments of multiple teams with mixed incentives between teams; however, this work
assumes agents’ goals are fully aligned with those of their teammates.

Chapter 5: The work in this chapter was published at the Autonomous Agents and Mul-
tiagent Systems (AAMAS) conference in 2023 [185]. This chapter removes the assumption
that agents are fully aligned with their teammates and studies settings where agents may
optimize for various goals. We present credo, a model that regulates how agents optimize
for multiple objectives in the presence of teams. The noun credo, defined as “the aims
which guide someone’s actions” [224], appropriately describes our model of how agents
optimize for various goals. We perform a game-theoretic analysis with teams and credo
to show how various incentives are impacted by credo parameters and the environment.
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In the Cleanup Gridworld Game, we discover multiple credo configurations that achieve
the highest mean population reward: when agents in a large group are slightly selfish
or when agents mostly optimize their behavior for smaller teams even in situations with
some amount of selfishness. High reward is achieved by agents learning efficient joint poli-
cies through division of labor, whereas the fully cooperative population fails to learn this
behavior.

Chapter 6: The work in this chapter was published at IJCAI in 2023 [186] and appears in
the Adaptive and Learning Agents (ALA) workshop at AAMAS in 2023 [191]. This chapter
studies why, and under which conditions, certain team structures (Chapter 4) and group
alignment (Chapter 5) outperform others. We derive theoretical underpinnings for teams
along two lines of inquiry which help agents learn initially but eventually lead to diminishing
returns. First, we show how teammates help agents identify valuable areas of the state
space more easily than if they did not have teammates. Second, we show how the size of a
team impacts the ability for agents to perform effective credit assignment and can create
settings where it is difficult to learn – the variance in reward converges to zero, resulting in
no meaningful information for agents to learn. We support our theoretical findings with an
extensive empirical analysis across four different environments with three different types
of learning algorithms. Our empirical results with learning agents align with our theory,
showing how team reward, role specialization, and learning characteristics are impacted
across all environments and algorithms in our evaluation. Motivated by our theoretical and
empirical findings, we conduct preliminary work on the design and implementation of self-
tuning credo agents that are able to modify their own credo parameters in a decentralized
system. These agents are able to receive the benefits of teams while recovering stronger
reward signals in settings where learning is challenging. A preliminary evaluation shows
how these agents are able to autonomously discover efficient joint policies despite being
initialized with known sub-optimal credo parameters given a specific team structure.

Chapter 7: This chapter presents an overview and conclusions about the work in this
dissertation. We revisit our motivating examples to discuss how the insights provided in
this work might be used as an approach to study interesting problems in those domains.
We discuss the broader implications and ethical considerations of our work and make
connections between concepts in our work and the natural world. Finally, we present
direct short-term and broader long-term possibilities for future work.
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Chapter 2

Background and Related Work

This chapter presents important background material and related research for this dis-
sertation. We begin by introducing features of reinforcement learning (RL) in the single
agent setting; specifically, Markov Decision Processes (MDPs), value functions, and types
of RL algorithms. Next, we introduce Deep RL and present examples of existing Deep RL
algorithms. We use agents that learn using various RL and deep RL algorithms throughout
the evaluations in Chapters 4, 5, and 6 to understand how teams impact different types
of learning algorithms. We then shift to the multiagent setting and introduce stochastic
games and existing multiagent RL (MARL) approaches that we use throughout this disser-
tation. We include background on organizational psychology (OP) and multiteam systems
(MTSs) that motivate our research using AI agents, and discuss the history of teamwork in
multiagent systems that is related to this dissertation. This chapter lays the groundwork
for subsequent chapters. The learning algorithms we use in this research are presented
here, but we leave implementation specifics to the following chapters.

2.1 Reinforcement Learning (RL)

Reinforcement learning (RL) is a field of machine learning that deals with an agent learn-
ing what to do, by mapping situations to actions with the goal of maximizing a numerical
reward signal [230]. The learning agent is not told which actions to take, but must in-
stead discover the actions that yield the most reward through their execution over discrete
timesteps t ∈ N in an environment. We implement agents using RL algorithms throughout
this dissertation; therefore, we provide specific underlying details about how learning works
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with various types of RL. In single-agent RL, an agent operates in a sequential decision-
making environment modeled as a Markov Decision Process (MDP) [230]. An MDP can
be formally defined as follows:

Definition 1. A Markov Decision Process (MDP) is defined as ⟨S,A,R, P, γ⟩ where S is
the set of states, A is the set of actions the agent can take, R is the reward function for
the agent, P is the transition function that transitions the agent to a new state following
an action in a previous state, and 0 ≤ γ < 1 is a discount factor to discount future rewards
more than near-term rewards.

At each timestep, the agent takes some action a ∈ A while being in state s. The
agent transitions to a new state s′ with some probability P (s, a, s′) and collects reward
R(s, a) ∈ R. The reward function R represents the goal of the RL problem; thus, the reward
R(s, a) defines what are the good and bad state-action transition events for the agent [230].
The behavior of an agent can be represented by a policy π : S → ∆(A), where ∆(A) denotes
the space of all probability distributions over the agent’s action space. A trajectory up to
time t is defined as a collection of state-action pairs {(s0, a0), · · · , (st−1, at−1)}.

An agent’s value function specifies the long-term value of being in a certain state (i.e.,
the total amount of discounted future reward an agent can expect to accumulate from that
state, or return [230]). While the reward R(s, a) provides immediate feedback of taking
an action a in state s, the value function accounts for the states that the agent is likely
to visit after state s. Thus, a state may yield low reward for any action but have a high
value in the case that the following states typically yield high rewards. The agent learns to
select actions based on this value estimate of a state instead of the explicit rewards because
actions with high value will return the highest reward over the long run [230].

The value function of state s under policy π, vπ(s), is the expected return when starting
in state s and following π thereafter. This can be formally defined at any timestep t as:

vπ(s) = Eπ

[
∞∑
k=0

γkRt+k+1|St = s

]
, (2.1)

for all s ∈ S. While vπ(s) calculates the value of a particular state, we can also calculate
the value of a specific action a from a particular state s under policy π. This is denoted
by a Q-value, Qπ(s, a), and is defined as the expected return from taking action a in state
s and following π thereafter, calculated by:
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Qπ(s, a) = Eπ

[
∞∑
k=0

γkRt+k+1|St = s, At = a

]
, (2.2)

The Q-values of all state-action pairs is known as the action-value function for policy
π [230]. The functions vπ(s) and Qπ(s, a) can be estimated from experience while an agent
is following policy π by maintaining estimates over state values and state-action value
combinations.

One policy π is considered to be better than another policy π′ if it’s expected return is
greater than or equal to that of π′ for all states (i.e., vπ(s) ≥ vπ′(s)∀s ∈ S) [230]. In finite
MDPs, where S, A, and R all have a finite number of elements, there always exists at least
one policy that is better than or equal to all other policies, called the optimal policy. The
goal of the learning agent in a finite MDP is to learn this optimal policy π∗. The optimal
policy has the optimal state-value function, defined as v∗(s)

.
= maxπ vπ(s) for all s ∈ S,

and the optimal action-value function, defined as Q∗(s, a)
.
= maxπQπ(s, a) for all s ∈ S

and a ∈ A. For any state-action pair, we can write Q∗(s, a) in terms of v∗(s):

Q∗(s, a) = E
[
Rt+1 + γv∗(St+1)|St = s, At = a

]
. (2.3)

Convergence to an optimal value function is guaranteed in the single-agent case [230];
thus, the value function v∗(s) and state-action value function Q∗(s, a) are able to be directly
solved. Once an agent has v∗, the optimal policy can be extracted by selecting the action
with the highest expected discounted future return by solving:

v∗(s) = max
a

E
[
Rt+1 + γv∗(St+1)|St = s, At = a

]
. (2.4)

Solving Equation 2.4 requires calculating the expected return for each action in A;
however, if the agent already has the optimal state-action value function, it can simply
select the action a that maximizes Q∗(s, a) without needing to explicitly solve Equation 2.4
in state s. Thus, the state-action values Q∗(s, a) cache the values of Equation 2.4 to be
available regarding each state-action pair at any timestep. While maintaining the state-
action function Q∗ requires additional cost of modeling state-action pairs instead of just
states, the agent does not need to know anything about the environment’s dynamics and
successor states to select optimal actions and construct π∗. Algorithms that maintain
estimates of value and act accordingly are called model free, whereas algorithms that model
the transition probabilities and build a world model are called model based. We use model
free algorithms throughout this dissertation.
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Another main distinction between types of RL algorithms is on-policy or off-policy
algorithms. On-policy algorithms are those that attempt to evaluate or improve the policy
that is being used to make decisions [230]. In control domains like in MDPs, the state-
action value Qπ(s, a) must be estimated for the current behavior policy π and all states
and actions in the environment. One example of an on-policy RL algorithm is SARSA, a
temporal difference control algorithm that estimates Q-values using tuples of state, action,
reward, next state, and π’s next chosen action (i.e., on-policy). Off-policy algorithms
evaluate or improve a policy different from the one that is being used to generate the
data the policy learns from in the environment [230]. To learn the optimal policy, off-
policy algorithms can use two policies: one that learns from data and ultimately becomes
the optimal policy (i.e., a target policy) and one that is more exploratory and generates
various types of state-action pairs to be used for learning (i.e., a behavioral policy). Since
the data used for training the target policy comes from the behavioral policy, this type of
algorithm is considered off-policy. We use both on-policy and off-policy methods in this
dissertation to analyze the impact of teams with both types of learning algorithms.

2.1.1 Exploration vs. Exploitation

One of the unique underlying features of RL compared to other types of learning is the
trade-off between exploration and exploitation of the state space. The goal of the agent
is maximize it’s sum of discounted future rewards; however, unless the agent is already
following π∗, choosing actions that the agent believes returns the highest reward may cause
it to forego alternative actions that are more valuable. To discover the actions that result in
the most reward, the agent must explore the set of actions and experience their outcomes;
however, pure exploration does not help the agent obtain high rewards. Thus, the agent
must also exploit it’s acquired knowledge regarding the value of actions some amount of
the time to gain rewards in the environment. Neither pure exploration or pure exploitation
can be done by the agent without failing at the task of maximizing rewards [230].

This dilemma has been studied for decades without resulting in any clear solution. Cur-
rently, several exploration algorithms are commonly used to assist the agent in balancing
the exploration-exploitation trade-off. On-policy and off-policy RL algorithms inherently
deal with exploration differently. Off-policy algorithms learn from data collected using dif-
ferent policies that can be very exploratory, whereas on-policy algorithms learn from the
data generated by the current policy and being very exploratory can be costly to learn-
ing. One of the most common exploration strategies regardless of learning algorithm is
ϵ-greedy exploration, where the agent selects max

a
Qπ(s, a) with probability ϵ, otherwise it
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selects a random action. Other strategies rely on state visitation frequency or exploration
entropy to increase an agent’s exploration [230]. We use ϵ-greedy exploration in our RL
algorithm implementations throughout this dissertation and draw comparisons between
the exploration-exploitation trade-off and how an agent’s teammates’ behaviors promote
exploration in Chapter 6.

2.1.2 Q-Learning

Q-learning is a popular model-free RL algorithm that maintains a state-action value func-
tion Qπ(s, a) for every state-action pair (i.e., Q-learning is value-based). We use Q-learning
in Chapter 6 to understand how teams impact simple RL agents in domains with small
state spaces. An agent using a Q-learning algorithm operates in an MDP and takes an
action a in a state s at each timestep t. Q-learning is easily implemented in single-agent
settings with discrete state and action spaces, where Qπ(s, a) is maintained in a Q-table of
size |S| × |A| and each value for a state and action is called a Q-value. The Q-values are
iteratively updated using the following rule:

Qt+1
π (s, a)← Qt

π(s, a) + α
[
(rt + γmax

a
Qt

π(s
′, a))−Qt

π(s, a)
]
, (2.5)

where α ∈ [0, 1] is the learning rate. The Q-learning update is similar to that of SARSA,
the on-policy algorithm discussed in Section 2.1.1; however, Q-learning uses the maximum
Q-value for the next state s′ instead of the one chosen by the current policy π. Convergence
is guaranteed to a fixed point of optimal state-action value functionQ∗(s, a) when α satisfies
the following rules over timesteps t of learning [98]:

∞∑
t=0

αt =∞
∞∑
t=0

(α2)t <∞. (2.6)

The policy at this fixed point is considered the optimal policy π∗ by selecting the action with
the maximal Q-value at each state. It is also common to use a different policy for action
selection than the one being constantly updated; thus, agents often use a target policy to
decide actions making Q-learning an off-policy algorithm as defined in Section 2.1.1.
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2.1.3 Policy Gradients

Q-learning optimizes a value function and takes actions that will result in the maximum
expected discounted reward – the policy is directly extracted from the value function.
Policy gradient (PG) algorithms are another type of RL optimization that updates the
policy directly using stochastic gradient descent (SGD). Thus, these algorithms are not
limited to a tabular representation of the policy (like Q-learning) and can act in high
dimensional action and state spaces. We use policy gradient algorithms throughout our
empirical evaluations.

The parameters of a PG policy are updated by:

∇θJ(πθ) = Es∼ρπθ ,a∼πθ
[∇θlogπθ(a|s)Qπθ

(s, a)], (2.7)

where J(πθ) represents the expected sum of discounted rewards following policy πθ (param-
eterized by θ), s ∼ ρπθ represents sampling a state s from a distribution generated though
actions sampled from policy πθ (a ∼ πθ), and Qπθ

represents the action-value function of
the policy πθ.

2.2 Deep Reinforcement Learning

Due to scaling difficulties in state and action spaces, RL algorithms were typically limited
to simple environments. For example, the Q-table in Q-learning scales linearly with the
number of states and is polynomial in the number of actions available at each state (since
the Q-table has size |S| × |A|). To expand to larger and more difficult environments, RL
algorithms needed a way to approximate these spaces.

Deep neural networks are proven to be universal function approximators given enough
depth or width of neurons [91]. In the context of RL, deep neural networks have been
adopted to approximate the Q-values at any state (removing the tabular constraint) or
directly represent the action-taking policy given a state. The space complexity of a neural
network is constant in the number of possible states it could experience; thus, function
approximation using a neural network has allowed RL to scale to environments with high-
dimensional state and action spaces. The integration of deep neural networks into the
RL pipeline created deep reinforcement learning (deep RL), and is responsible for many
significant breakthroughs in recent years (detailed below). In this dissertation, we imple-
ment most of our agents using deep RL algorithms to expand to environments with large
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state spaces. This allows us to analyze the impact of teams across more complex learning
environments.

2.2.1 Deep Q-Networks (DQN)

One of the simplest deep RL algorithms is the value-based method inspired by Q-learning
in Section 2.1.2 – Deep Q-Networks (DQN) [153]. We implement agents using DQN in
Chapters 4, 5, and 6 of this dissertation. Similar to Q-learning, a DQN agent operates
in an MDP composed of states, actions, and rewards; however, the DQN implementation
introduced several key methods that were necessary to address learning instabilities and
distribution shifts for DQN to learn effectively. First, they present the idea of experi-
ence replay – stashing previous experiences in a replay buffer for the network to learn
from to reduce changes in the data distribution (i.e., the networks train on a minibatch
of past experiences at each training iteration, chosen randomly). Second, similar to how
Q-learning uses two policies, they introduce the idea of updating the Q-value estimations
from the original (training) network (i.e., policy π with parameters θ) towards an identical
secondary target network to stabilize the learning procedure (i.e., policy π− with param-
eters θ−). Both networks take the state as input and estimate the Q-value of all possible
actions; however, only the training network trains regularly and the parameters of the
target network are replaced with the parameters of the training network at regular inter-
vals (i.e., every C environmental steps). Lastly, the original DQN implementation uses a
convolutional neural network (CNN), a specific kind of neural network typically used for
images and high-dimensional data. This detail is specific to the original implementation
domain [153]; however, the DQN algorithm is general and can be implemented with any
type of deep network. In our implementation, we use a multi-layer perceptron (MLP) given
one-dimensional states instead of images [73].

During learning, the DQN algorithm minimizes the mean squared error (MSE) between
the training network Q-value estimate and the target network Q-value estimate to compute
a loss. LetK represent the number of samples selected from the replay buffer as aminibatch
to train on. The loss is calculated by:

L(π) =
1

K

∑
(r + γmax

a
Qπ(s

′, a)−Qπ−(s, a))2, (2.8)

where r is the observed reward for taking action a in state s, γ is the discount factor,
and s′ is the next state. Since DQN uses the target network for action selection while
updating the training network, it is known as an off-policy algorithm. It is also considered
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a model-free algorithm since it updates the value estimation of actions instead of building
an explicit model of the world. The original implementation of DQN showed that it could
achieve results comparable to humans on Atari games from only pixel inputs using a CNN
deep network (i.e., 210 × 160 pixel images at 60 Hz) [153]. This implementation was a
significant achievement in scaling RL to higher-dimensional state and action spaces.

2.2.2 Trust Region Algortihms

Unlike DQN, deep policy gradient algorithms optimize the policy directly and adapt the
policy gradient update in Equation 2.7 to update the weights of a neural network. Trust
region algorithms are a sub-class of deep RL algorithms that optimize the policy directly
to some new policy that is not significantly different from the old policy (i.e., within a
trusted region of the policy space).

Trust Region Policy Optimization (TRPO) [212] is one of the most popular trust region
algorithms. While DQN is an off-policy value-based RL algorithm, TRPO is a policy-
gradient RL algorithm that is considered on-policy. The overall objective of TRPO is to
limit the search of parameter updates for some new policy π to a trusted region within
the policy space by restricting the length of the update step size α. TRPO theoretically
guarantees monotonic improvement on the policy given non-trivial step sizes. The loss of
TRPO is similar to the policy gradient loss function in Equation 2.7. We write the TRPO
optimization function using the notion of an objective function that is maximized instead
of minimizing a loss for easier comparison with the next algorithm. At timestep t, TRPO
aims to solve the following constrained optimization problem:

maximize
θ

Êt

[
πθ(a

t|st)
πθold(a

t|st)
Ât

]
subject to Êt

[
DKL[πθold(·|st)||πθ(·|st)]

]
≤ δ,

(2.9)

where θold is the vector of policy parameters before the update, θ is the vector of policy
parameters after the update, DKL is the Kullback-Leibler (KL) divergence, δ is in R+, and

Ât is the advantage function, defined as the difference between a policy’s Q-value estimate
given a state-action pair (parameterized by θ) and the state-value function estimate for a
given state (i.e., Aπ(s, a) = Qπ(s, a)− Vπ(s)). The theory behind TRPO actually suggests
using a penalty β on the KL divergence and solving an unconstrained optimization problem
(instead of using δ); however, choosing a single value of β is challenging in practice. We
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revisit the learning features of TRPO in the context of our broader discussion in Chapter 7.

Proximal Policy Optimization (PPO) [214] is an on-policy extension of TRPO that
only needs to solve a first-order approximation instead of TRPO’s second-order method
(due to the KL divergence). We implement agents using PPO across many empirical
evaluations in Chapters 4, 5, and 6 in complex environments with high-dimensional state
spaces. PPO constrains the ratio between the old and new policies without imposing
hard constraints on the optimization problem or using the KL divergence distance. Let

rt(θ) = πθ(a
t|st)

πθold
(at|st) . TRPO maximizes a “surrogate” objective Ê[rt(θ)Ât] with the constraint

that the new update is less than δ away from the previous policy. PPO modifies this
objective to penalize changes to the policy that move rt(θ) away from 1, making the PPO
objective:

LCLIP (θ) = Êt
[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)

]
, (2.10)

where ϵ is a hyperparameter. The second term in Equation 2.10 modifies the surrogate
objective by clipping the policy update so that the next policy πθ is not significantly
different from the previous policy πθold . This clipping removes any incentive for moving rt

outside of the interval [1− ϵ, 1+ ϵ] to ensure the next policy is within some trusted region.
PPO has been shown to be easier to implement and faster to train than TRPO with
similar performance in many environments [214]. Thus, PPO has emerged as a popular
policy gradient algorithm that is widely used in RL implmentations today.

2.3 Multiagent Reinforcement Learning (MARL)

Sections 2.1 and 2.2 introduced underlying RL algorithms and concepts behind many
single-agent RL implementations. While we implement agents using various algorithms
presented in Sections 2.1 and 2.2, our work is concerned with settings where there are
multiple learning agents within the same environment (i.e., multiagent environments). The
theory behind learning with single-agent algorithms typically assumes satisfaction of the
Markov property (i.e., environments are assumed to be stationary) which does not hold in
multiagent environments. Multiple agents in the same environment make learning in these
settings inherently more complicated. Converging to optimal policies in multiagent RL
(MARL) relies on both the environment and the strategies or behaviors of all other agents
in the system. This implies that the environment dynamics appear to be nonstationary
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from the perspective of a single agent (i.e., taking the same action from the same state can
result in different outcomes).

In settings where agents are assumed to be cooperative, the single-agent MDP formu-
lation can be extended to a Decentralized Partially Observable Markov Decision Process
(Dec-POMDP) [217]. While the Dec-POMDP setting offers a framework for decentral-
ized cooperative decision making among multiple agents, our work in Chapters 4, 5, and 6
considers domains beyond pure cooperation; specifically, stochastic games with mixed in-
centives. A stochastic game is a strategic generalization of both MDPs and repeated games
from game theory that models the interactions of multiple agents. The optimal policy of an
agent in a stochastic game depends on the policies of all other agents in the environment.

Definition 2. A stochastic game is defined by ⟨N , S, {A}i∈N , {R}i∈N , P, γ,Π⟩ where N is
the set of agents with size N ∈ N, S is a finite set of states, and A = A1× . . .×AN is the
joint action space for all agents where Ai is the action space of agent i. R = R1× . . .×RN

is the joint reward space for all agents where Ri is the reward function of agent i defined
as Ri : S ×A× S 7→ R. P : S ×A 7→ ∆(S) represents a transition function which maps a
state and joint action into a next state with some probability and γ represents the discount
factor so that 0 ≤ γ < 1. Π represents the policy space of all agents and the policy of agent
i is represented as πi : S 7→ Ai which specifies an action that the agent should take in an
observed state.

A common assumption in stochastic games is that all agents are able to observe the
finite set of states S (i.e., no agent can be excluded from observing any state in S). At each
timestep of the game t, agent i observes the current state sti ∈ S and takes a local action
ati ∈ Ai (note that agents may still be partially observable). Agents receive a reward rti
according to their reward function Ri, the joint state st, and the joint action of all agents
at at time t (we use bold to denote vector notation, i.e., the joint state or action for all
agents). The transition function P transitions the environment to the next joint state st+1,
conditioned on the previous joint state st and joint action at. Given a stochastic game,
a global joint policy is defined as πN = {π1, · · · , πN}, where πi represents the stochastic
policy followed by agent i. In Chapters 4, 5, and 6, we define joint policies for a team, a
subset of agents, or the entire population following the same logic as above.

Stochastic games operate with a temporal dimension captured through timesteps of the
game. One can model each timestep of a stochastic game as a single stage game where
agents select an action and receive some payoff which depends on the joint action of all
agents at. One class of stage games are two-player matrix games where the payoffs of either
agent depend on the actions taken by both agents. The game-theoretic incentives of an
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agent playing a stage game can be modeled using the payoffs and their opponent’s strat-
egy profile. The reward function of a stochastic game can be defined to have specialized
characteristics at the stage game level or across long horizons that define certain types of
solution concepts. The formulation of reward functions where the structure of environmen-
tal rewards are dependant on the context of other agents’ actions is called a general sum
model. The Nash Equilibrium of a general sum stochastic game is known as a stable point
in the joint policy space – the point at which no player will unilaterally be incentivized to
deviate from their strategy, coinciding with the minimax solution in zero-sum two-player
games [159, 201].

Definition 3. Nash Equilibrium
A Nash Equilibrium of a game between N players is a strategy profile
A = {a1, . . . , ai, . . . , aN} with the property that no player i can do better by choosing an
action different from ai, given that every other player j will keep selecting aj.

While the Nash Equilibrium is one solution concept of stochastic games, there may be
multiple Nash Equilibia that create coordination challenges or mixed incentives between
agents. Another solution concept of a stochastic game is one that maximizes the number
of players with maximal payoff. This converges to a joint strategy which is desirable if no
player can improve their payoff without decreasing the payoff of others. This is defined as
a Pareto Optimal outcome.

Definition 4. Pareto Optimality
Let ui(X) represent the payoff for player i under strategy profile X. A strategy profile
A∗ = {a∗1, . . . , a∗i , . . . , a∗N} is Pareto Optimal if there is no other strategy profile A =
{a1, . . . , ai, . . . , aN} such that ui(A) ≥ ui(A

∗)∀i.

Agents converging to Nash Equilibria or Pareto Optimal strategies may result in differ-
ent global outcomes depending on the dynamics of the environment (i.e., Nash Equilibria
may lead to unfavorable global results). For example, stochastic games are not limited
in the structure of their reward function and can have either competitive, cooperative,
or mixed-motive dynamics. Competitive stochastic games are those with conflicting in-
terests between agents, where one agent’s payoff is associated with a decrease in others’
payoffs, whereas cooperative games correspond with a mutual increase in payoffs between
agents. Games with mixed motives are those in which agent interests are, to varying
extents, sometimes aligned and sometimes in conflict [39]. Our work mostly considers
mixed-motive stochastic games; however, we provide a brief background on existing work
in each setting.
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2.3.1 Multiagent Work in Competitive Environments

State-of-the-art successes in deep learning have fueled some recent progress in MARL for
competitive domains. One class of competitive games are zero-sum, where the sum of
the global joint reward is equal to zero (i.e., one agent’s gain is another agent’s loss).
Two-player zero-sum board games where MARL has achieved superhuman performance
are Chess [223, 119], Go [223], and Shogi [211]. While these advances operate with only a
single opponent, the game can technically be considered multiagent due to the existence
of an opponent influencing the environment strategically. Competitive settings can also
support opportunities for coordination between agents in competitive teams. Two-team
zero-sum games where teammates are bound together with pure-common interest have
been studied, also achieving high performance in environments such as Starcraft [251],
Capture the Flag [99], Dota II [18], hide-and-seek [13], Robot Soccer [111], and Honor of
Kings [267]. These environments represent games of pure zero-sum competition between
teams, where one team’s gain is another team’s loss. While coordination exists within a
team, groups of agents are in direct competition. We highlight this work to show that
multiagent teams have been explored in competitive contexts; however, our work focuses
on multiagent teams in settings that are not purely competitive.

2.3.2 Multiagent Work in Cooperative Environments

Another type of setting is a fully cooperative domain, where agents aim to coordinate their
behavior towards a common goal [37]. Agents in these environments are always assumed
to be cooperative; thus, several algorithms have been developed to reduce nonstationarity
and improve coordination that often assumes internal access to all agents in the system.
This includes algorithms where agents share a centralized critic network for value estima-
tions [135, 66], network parameters [77], or gradient updates [268]. Other approaches have
endowed agents with the ability to communicate to reduce uncertainty, in both central-
ized and decentralized settings [65, 131]. Another approach is to help a group coordinate
through the centralized training decentralized execution (CTDE) methodology [166, 114]
where value decomposition of a joint reward signal has gained popularity [195, 69, 174].
Value decomposition algorithms divide a group’s reward among agents conditioned on their
marginal contribution, and have been shown to be effective to help agents learn coordina-
tion [195, 69, 174]. This value decomposition function is typically learned using supervised
learning during a centralized pre-training phase; thus, these algorithms rely on a cooper-
ative population and a separate centralized pre-training phase which may not always be
possible.
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Many existing MARL algorithms with cooperative populations suffer from the issue
of scalability since they rely on information from all agents. Therefore, another MARL
modeling approach is independent RL, where agents learn their own policy and assume
other agents are simply a part of the environment [236]. No information sharing is done
between agents to allow for independent updates and increased scalability to large environ-
ments with many agents. Independent PPO learners have been shown to perform as well
as network or parameter-sharing PPO implementations in cooperative environments [269].
Some theoretical work has been done to bound convergence properties with policy gradient
algorithms in specific settings [51]; however, convergence with independent learning agents
it is not always guaranteed and depends on exploration actions among the population [37].

In Chapters 4, 5, and 6, we model agents as individual RL agents to maintain indi-
viduality between their decisions and learning updates. This allows us to study emergent
aspects such as individual policy development, role specialization, and the joint policy
learned across a population.

2.3.3 Multiagent Work in Mixed-Motive Environments

While competitive and cooperative settings offer environments that are easy to benchmark
performance or assess coordination capabilities, they offer no opportunity for agents to
learn how to cooperate in settings with mixed incentives. A third class of multiagent
games, and the main ones considered in this dissertation, are those with mixed-motives
where agent interests are sometimes aligned and sometimes in conflict, often to varying
extents [39]. A main challenge is that agents should not only cooperate (as in cooperative
domains) to avoid being exploited, but instead understand when and how to cooperate.
Developing agents within the scope of “Cooperative AI” has gained popularity to address
the important and challenging problems ahead [38]. Our work is motivated by the focus
on Cooperative AI to study how multiagent teams influence game-theoretic incentives and
learned behavior in mixed-motive domains.

Mixed-motive domains present scenarios where the Nash Equilibrium and Pareto Op-
timal outcomes are different. The resulting environmental dynamics put strain on agents’
incentives to optimize their individual utilities to the detriment other agents, inducing a
social dilemma. Nash Equilibium strategies can result in poor long-term results for both
the individual agent and the entire system. Thus, mixed-motive environments offer set-
tings where the long-term rational behavior for the population is not converging to the
short-term Nash Equilibrium strategy. A successful population should converge to some
alternative strategy rather than acting on their short-term incentives (that are defined by
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Cooperate Defect

Cooperate R, R S, T
Defect T , S P , P

Table 2.1: An example of the two-player Prisoner’s Dilemma. T , R, P , and S are payoffs
for a row and a column player who simultaneously choose to “cooperate” or “defect”, and
receive the payoffs according to the result of the joint action. T > R > P > S is required
to make this game a social dilemma.

the Nash Equilibrium). A common assumption in the MARL literature is that aligning all
agents’ reward functions towards a common goal (i.e., turning the environment into a co-
operative system) will achieve the highest reward in mixed-motive environments [266, 71].
We also compare our results with the fully cooperative system; however, in contrast with
past work, we find that agents in teams can achieve significantly more reward than the
aligned population.

We position our work in the context of mixed-motive stochastic game environments with
individual learning agents. Although convergence to the Nash Equilibrium is a popular
solution concept in multiagent domains with cooperative or competitive dynamics [225],
we mostly explore domains where agents’ incentives can be mixed across a population or
have various degrees of alignment. Therefore, convergence to a Nash Equilibrium in these
settings yields poor outcomes. Since many of our evaluation settings contain underlying
mixed-motive social dilemmas, we provide deeper background in social dilemma domains
and existing methods that allow a population of agents to coordinate their behavior. While
we emphasize social dilemma domains here, we note that the entirety of our work in this
dissertation is not limited to social dilemmas.

Social Dilemma Environments

For normal-form games in game theory, the behavior of an agent can be generally thought
of in the context of “cooperation” (C) and “defection” (D). A social dilemma is a situ-
ation in which an individual receives a higher payoff for defecting than cooperating, but
all are better off if all cooperate than if all defect [26, 42]. The failure to solve social
dilemmas comes from acting in a way which seems individually rational by optimizing
short-term payoffs, but leads to agents being worse off than if they chose an action with
a potentially lower payoff. Social dilemmas can take many forms, including tragedies of
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the commons [170], collective risk dilemmas [150], and the Prisoner’s Dilemma [194]. Real-
world social dilemmas include scenarios of abstaining from benefit or incurring a cost for the
benefit of others, such as maintaining common-pool resources [25], donating money [42],
and wildfire fuel mitigation [164]. Wildfire fuel mitigation is one of our motivating ex-
amples listed in Chapter 1. Social dilemmas are difficult for AI learning agents to solve
without additional infrastructure since solving them requires an emphasis on long-term
planning and understanding the benefits of cooperation.

One of the most well studied social dilemmas is the two-player matrix game called
the Prisoner’s Dilemma, shown in Table 2.1. There exists a row and a column player,
where the row player selects the action corresponding to the rows of the matrix and the
column player selects actions corresponding to the columns. The variables T , R, P , and
S represent payoff values that both players would receive depending on the joint action
of the two agents. The payoff scheme T > R > P > S is required to make this a social
dilemma. Agents individually choose to either cooperate (C) or defect (D) and receive the
payoffs according to Table 2.1. The joint strategy of row and column players is represented
by a tuple (row, column), such as (C, C) for mutual cooperation.

When agents play the Prisoner’s Dilemma repeatedly a finite number of times, known
as the Iterated Prisoner’s Dilemma (IPD), the Nash Equilibrium is (D, D). Both players
should defect to avoid the S payoff, which results in P , the second lowest available payoff.
The IPD has three Pareto Optimal strategy profiles, namely (C, C), (C, D), and (D, C),
and is considered a social dilemma due to existence of some outcome (C, C) which is strictly
better for all agents than the unique Nash Equilibrium of (D, D). The RL methods that
have achieved success in two-player zero-sum games have subsequently failed to achieve
cooperative policies in repeated social dilemmas, ultimately leading to low return [3, 12,
40]. Therefore, solutions which help RL agents solve social dilemmas typically rely on
decentralized and centralized coordination mechanisms with various assumptions.

We highlight relevant decentralized and centralized approaches in the next two subsec-
tions to help position our work on multiagent teams. Specifically, we position the work
in this dissertation between centralized and decentralized systems. The following chapters
will show how teams 1) allow for more agency and adaptability than centralized systems
through autonomous role specialization, and 2) provide more learning stability than de-
centralized systems by removing the need for prior definitions or modified social networks.
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Method Summary Details Limitations

Punishment
norms

Retaliation against
defecting agents.

Negative
reward [113, 125].

Needs consensus on
punishable behavior.

Reputation
norms

Labeling based
on behavior.

Markovian [264],
non-Markovian [205].

Bottom-up
reputation may be
interpreted differently
by agents.

Payments
Pay agents to
cooperate.

Reward payments [266],
payment homophily [52].

Generates new
reward from
nothing.

Modify social
connections

Change social
networks.

Partner selection [4],
remove social
connections [70].

May not be possible
in practice.

Table 2.2: Summary of decentralized systems for social dilemmas.

Decentralized Systems for Social Dilemmas

Research on decentralized systems in social dilemma domains that we discuss here are
summarized in Table 2.2. Research focused on decentralized mechanisms in mixed-motive
domains to sway behavior has roots in economics [169, 25] and evolutionary game theory
(EGT) [207, 206]. This work often highlights social norms, punishment, and emergent
institutions that improve welfare as the mechanisms behind emergent cooperation. Social
norms are commonly known standards of behaviour of how individuals ought to behave in
a given situation and are the underlying mechanisms behind many decentralized systems
for cooperation [61, 59, 20]. While the extensive work on decentralized systems has shown
breakthroughs by promoting emergent cooperative behavior, our work shows how team
structures can allow agents to autonomously learn specialized roles within their teams that
benefit the overall community. We find that the structure of teams in the population
(Chapters 4 and 6) and agents’ alignment with the goals of various groups (Chapter 5),
significantly impact how these roles are developed.

EGT simulates generations of agents with simple strategies that are updated through a
dynamic learning process, where better performing strategies are more likely to be imitated
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by others [222]. Despite its simplicity, EGT is known to closely imitate human group
behavior and suggests that defective behavior will overtake any society once introduced
into a population; however, various mechanisms can inhibit this result [222]. Specifically,
enforcing norms through punishments have been found to lead to cooperation in human
studies [24, 59], then in EGT [207, 206], and also in AI [3, 125]. Synthesizing multiple norms
together to decrease the size of the set of norms for an agent to track has been the focus
of some previous work [140, 154, 64]. However, other work has found that adding more
rules with decentralized punishment mechanisms improves the ability for MARL agents to
learn compliance, even if the additional rules do not improve welfare directly [81, 113].

In the absence of direct punishment, reputation mechanisms have been shown to help
agents avoid being exploited by defectors [84], but these require high rates of participation
and truthful reporting [106, 197]. One example of a social norm is the process of assign-
ing reputation to agents in settings of indirect reciprocity [264] or as a third party agent
observing an interaction [60]. This norm can include Markovian (based on most recent in-
formation only) or non-Markovian levels of complexity, though Markovian has been shown
to be sufficient through experimentation [205]. However, for reputation to effectively lead
to cooperation in settings with multiple interacting agents, the method by which it is as-
signed must be known by all agents, defined system-wide a priori, or be one of few existing
mechanisms [221, 248, 264]. Converging to a single reputation norm using a bottom-up
approach has been shown to be difficult in MARL due to agents understanding reputa-
tion differently [3]. One aspect of teams we highlight in Chapters 4 and 5 is the ability
for agents to converge to specific roles in their team. This indicates agents individually
arrive at similar representations of the role requirements for a successful group. However,
like norms with decentralized populations, convergence to these roles can be difficult with
sub-optimal team structures (Chapter 6). While the mechanism behind punishment or
norms needs to be explicitly shared for the bottom-up emergence of cooperative behav-
ior, our work shows how teams allow for the emergence of roles and cooperative behavior
autonomously from only a modified reward function that can promote globally favorable
results.

Giving agents the ability to make costly reward payments to other agents has been
shown to increase population productivity in some of the same mixed-motive domains we
explore in Chapters 4, 5, and 6 [266]. This allows agents to be strategic in how they make
payments and incentivize their peers; however, their work assumes that agents can make
reward payments that generatemore reward in the environment than what the paying agent
has previously received (i.e., new rewards are generated from nothing). While that work
increases population productivity in the social dilemma environment, it has been shown
to induce a second-order social dilemma in how agents make payments [52] (i.e., agents
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Method Summary Details Limitations

Population
reward
access

Agents condition
rewards on all
other agents.

Global reward
sharing [145, 71], inequity
aversion [96], group-based
reward [55].

Relies on pre-
training phase,
access to all
agents.

Community
pleasing

Takes actions
based on
information from
other agents.

Agreed upon
action [15], action
pleases peers [117].

Relies on truthful
reporting, access to
all agents’ opinions.

Shared
learning
mechanisms

Shares learning
components to
align
representations.

Shared observations [46],
shared critic [135, 66],
shared reward network [254],
shared gradients [268].

Not possible in
real-world domains.

Group
composition.

Constructs
group dynamics
that promote
cooperation.

Role assigning [237],
group
diversity [148, 147, 149].

Knowledge of
social networks
or agent types.

Table 2.3: Summary of centralized systems for social dilemmas.

have an incentive to let others make payments). Dong et al., [52] implement a model
to encourage homophily, where similar-behaving agents are encouraged to have similar
payment strategies to mitigate the second-order social dilemma around payment strategies.
The multiagent teams we study in our work assume teammates fully share rewards in
Chapter 4 and can partially share rewards in Chapter 5. Agents can be strategic with
how they share rewards in Section 6.6 of Chapter 6. Our work does not create additional
reward but instead shares reward amongst agents on a team. Additionally, since the
aforementioned implementations did not outperform the fully cooperative population, and
many of our settings generated more reward than the fully cooperative population, we can
conclude our settings outperform their methods [266, 52].

Finally, the impact of social network architecture has also been found to have an impact
on cooperation and group performance in humans [68, 193], EGT simulations [67, 208,
232], and AI [47]. When giving agents the ability to choose their partner agent, EGT
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and AI algorithms have been shown to promote cooperation in the Prisoner’s Dilemma
game [176, 204, 4]. Similarly, giving agents the ability to remove social ties has also led
to cooperation [70]; however, completely controlling which agents they interact with may
not be possible in practice. A known result is that cooperation is unable to emerge when
RL agents play the IPD with randomly selected other agents [4]. Chapters 4 (Section 4.4)
and 5 (Section 5.4.1) shows that teams promote cooperation in social dilemmas despite
randomly selected opponents, a setting where agents are unable to modify their social
network. Our results show certain settings where agents in teams converge to mutual
cooperation by adapting their cooperative behavior with teammates to agents that are in
other teams, despite not sharing rewards with those agents and game-theoretic incentives
to not cooperate.

Centralized Systems for Social Dilemmas

Research on centralized systems for social dilemma domains that we discuss here are sum-
marized in Table 2.3. Centralized systems of cooperation have taken various forms in previ-
ous work, such as centralized structures to support learning, global reward sharing with all
agents in a population, or forming groups for tasks with specific agent distributions. These
frameworks have advantages of shared formal definitions, globally defined environmental
settings, and are easier to promote cooperation and behavioral convergence [83, 50, 3].
However, they typically assume control over all agents, require full observability, or share
internal optimization networks. While these assumptions hold under some conditions, they
might not be applicable to all problems and may lead to a single point of convergence or
lack of robustness.

Some systems rely on agents taking actions that their community agrees on [15] or is
pleased by [117]. These systems assume agents report their preferences truthfully, have
high rates of communication, or have access to other agents’ internal mental states which
may not be possible in real-world scenarios. To reduce the complexity of problems and
support learning, other work involves agents explicitly sharing or transferring policies [1],
local observations [46], a critic network [135, 66], or learning gradients [268]. While this
assumption can be overcome through opponent modeling and inverse RL [82], or by cre-
ating an intrinsic reward signal through social learning [100], these models often rely on
observability of other agents’ actions and can be susceptible to deception [35].

Methods focused on reward functions have emerged as the main way to build common
interest between RL agents in mixed-motive domains. These include defining agents to have
some degree of altruism for all other agents [145, 71], be averse to population inequity [96],
or condition reward on the population’s performance [55]. While these methods have been
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shown to be effective, they rely on having access to the reward functions of all agents in
a system and condition agents’ rewards relative to the population. Similar to our work,
Baker [12] studied the impact of noise and uncertainty over agents’ social connections with
potentially multiple groups of reward-sharing agents. In groups with less reward sharing,
they find that agents learn reciprocal equilibria (i.e., to defect against defecting agents)
faster when they have more uncertainty over their social relationships (i.e., the degree of
shared rewards from that agent). Furthermore, they found a positive relationship between
agents forming cooperative coalitions and social relationship uncertainty. That work mostly
studies the impact of social connections instead of team and group structures; thus, our
work is different in multiple ways. We do not allow agents to observe any features of
how rewards are shared and must learn how to behave through experience (i.e., agents do
not view how much reward another agent will give them). Furthermore, we do not inject
noise or uncertainty into agents’ observations or representations and allow them to reliably
observe correct team labels or the surrounding environment (depending on the domain)
and find agents in teams learn cooperative behavior while not being exploited by defectors
in a variety of conditions and environments.

Despite using individual learning agents, social networks and group construction can be
leveraged to study emergence of cooperation. Ultimatum games are those where a proposer
agents makes proposals to a set of responder agents with the goal of their proposal being
accepted. Pre-assigning roles to agents has been shown to increase fairness in multiplayer
ultimatum games using knowledge of agents’ social networks [237]. Another type of mixed-
motive domain are collective risk dilemmas, where agents donate amounts of capital to a
collective pool to avoid some globally unfavorable outcome (i.e., paying costs to mitigate
climate change). Without the need for prior labels, constructing groups of agents with
diverse wealth and risk perceptions has been shown to promote cooperation in collective
goods dilemmas [148, 147]. Furthermore, the compositions of a group has been found
to impact the policies developed by individual agents, placing emphasis on how diversity
levels in groups should be constructed to promote cooperation [147, 149].

Our work builds on the concept of reward sharing to build common interest; however, we
only allow teammates to share rewards in Chapter 4 instead of the broader population. We
study multiagent teams with individual RL agents that do not share networks, gradients, or
observations. Our results in Chapters 4 and 5 show how teams support the learning process
of individual agents in a variety of conditions and environments and promote autonomous
role specialization instead of pre-defining roles or diversity distributions.
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2.4 Organizational Psychology and Multiteam Sys-

tems

The thesis of this dissertation is that teams can have significant advantages in guiding
the development of policies for individual agents that learn from experience. We hypoth-
esize that teams help agents better navigate challenging multiagent domains even if their
interests are only somewhat aligned with other agents (i.e., only the subset of agents on
their team or aligned to various degrees). This idea is broadly inspired by human team
organization and team-based behavior.

Organizational psychology (OP) has mainly focused on studying the dynamics within
a group of human agents; however, this approach has been argued to not completely
capture the mechanisms behind successful organizations since most tasks are completed
by the combination of multiple coordinating teams [45]. Such organization can be seen in
disaster response, companies, the military, and sports teams. Mathieu et al.[143] introduces
the concept of “teams-of-teams” as an organizational structure for human teams, naming
the structure multiteam systems (MTSs). MTSs are composed of two or more teams
that interface directly and interdependently to accomplish collective goals [247], though
they may operate under different contextual demands, authority structures, protocols,
and norms [270]. Studies of MTSs typically involve multiple teams of human subjects
given simulated tasks to study team coordination [270, 271, 142], structure and boundary
status [97], component team differences [136], goal type [49], leadership [244, 121, 209],
and shared cognitive, motivational, and cohesive emergent states [34, 104, 139, 44, 87].
One topic of particular interest is studying the abilities and impacts of people to balance
personal or team goals with the overall system goal, resulting in a mixed-motive social
dilemma [262, 244, 161].

The MTSs community has relied heavily on user studies which often result in domain-
specific findings and are sometimes inconsistent which can cause confusion about the impact
of team structures on peoples’ abilities and development. For example, studies of the
benefits of strong within- versus between-team transition and action processes (i.e., taking
actions/making decisions across multiple teams or within one team) have found conflicting
results [41, 156, 274, 21], at least until between-team coordination limits system autonomy
with too much centralization [138]. Another example of inconsistency is the advantage of
centralized leadership teams [41, 171] or decentralized planning among team boundary-
spanning agents [120, 252, 175]. Consistency among subjects with fewer inherent biases
could provide rich insights into the benefits of various aspects of team structure.

In our work, we build on the shared concepts of MAS and MTSs to study the concept
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of multiple teams within a larger system of agents with various incentives and goals. We
believe incorporating multiteam systems-style research into MAS could help provide more
stable findings on the advantages of team structures. The dilemma of balancing related
self, team, and system-wide goals creates a social dilemma and a challenging landscape for
artificial learning agents to navigate. The thesis of this dissertation is heavily motivated by
MTSs. We hypothesize that organizational structures that increase joint human productiv-
ity will have similar advantages in MAS. In the next section we detail the early groundwork
on teams in AI for task completion domains. We believe modern learning algorithms en-
able this research to expand further into studying interesting problems comparable to those
explored in MTSs.

2.5 Teamwork in Multiagent Systems

While this dissertation studies features of teams with learning agents, the general idea
of teamwork and agents working together is not new to MAS. Early work with teams
in AI identified models which highlight the importance of joint intentions, sharing plans,
and communication for agents to work together. Despite this early work, research using
multiple component teams within a population has lacked in recent MARL literature.

Cooperative game theory, coalition structure generation (CSG), and Team Forming
can be used to sort a population into sub-groups for some desired goal [265, 192, 215]. In
the context of teams, CSG has been used to create sub-teams working towards specific
tasks; however, CSG often relies on pure common-interest scenarios, stationary policies
or abilities, and requires full control over agents’ social networks [116]. In sport domains,
coalitions of players with high utility have been found using cooperative game theory meth-
ods like the Shapley value [265, 133]. In our work, we are concerned with understanding
the development of policies with learning agents divided into teams instead of algorithms
that create teams of agents with pre-determined skills.

Agents working to coordinate their behavior has been an important area of research
in MAS for several decades. We now present the progression of early work on teams in
AI with rule-based agents. These frameworks focus on helping agents coordinate their
actions instead of supporting learning; however, they provide valuable groundwork on
which we construct our model of teams. Early work by Pollack defines a mental state
model for making collaborative plans among two agents [178, 179]. This framework relies
on agents having mutual belief that both of their actions would achieve some mutually
desired and achievable goal. Extending Pollack’s work, Grosz and Sidner [76] construct
SharedPlans, a model that includes more multiagent actions and mutual agent beliefs,
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similar to shared mental models in human teamwork [58, 63]. Eventually, SharedPlans
was extended to incorporate dialogue for communication between agents, however several
important limitations remained. First, SharedPlans assumed the impact of joint actions
were a linear combination of individual actions, ignoring the idea that joint actions could
have stronger impact when agents work together [102, 103]. Second, the model assumed
complete prior knowledge of a plan to complete a task [129, 110]. As a result, SharedPlans
alone was not complex enough for agents to overcome real problems that required long-term
planning and adaptation.

Informed by studies of human collaboration [14], Grosz and Kraus proposed a model to
share the internal intentions of agents, not just plans [75]. In their model, agents balanced
their intentions for their own success along with the success of the entire group. They pro-
posed a tree structure hierarchy of tasks, where agents perform sub-tasks along branches of
the tree towards the final goal positioned at the root. However, this work was primarily do-
main dependent and only explored using simple rule-based agents. Tambe [233] leveraged
the same tree hierarchy of plans to construct a Shell for Teamwork model (STEAM), a
general model of teamwork where tasks can be completed by sub-teams of multiple agents
within the larger system. STEAM introduced sub-team goals to reduce the complexity of
teamwork overheads and uses formal logic and joint intentions to communicate between
agents. This idea of sub-teams extended beyond their previous work [234] and other mod-
els that allocated role-plans for individuals [110], which made STEAM the state-of-the-art
team model with rule-based agents [235]. Extensions to STEAM have added lightweight
agent wrappers [182] and increased team lifespan by designing the system to value team
persistence over potentially destructive short term plans [235]. However, rule-based agents
limited the scope for what these models of teams could achieve since these team hierar-
chy frameworks were not designed with the intention of supporting learning agents. We
construct our team model with multiple levels of goals similar to the team hierarchy used
for SharedPlans and STEAM; however, we use more complex RL agents to analyze how
teams and team structures influence the policies that learning agents develop over time.

Although STEAM presented a multi-team structure within a broader system, more
recent research with teams has mostly overlooked this architecture. Recent work on ad hoc
teamwork has maintained the concept of valuable communication [137, 152] and work with
learning agents has focused on the balance between individual and group preferences [55,
254]. However, existing algorithms with teams typically assume the existence of a single
team with few agents [218, 226, 2, 196, 255]. Whenever work has incorporated multiple
teams, the domains are typically competitive [203, 202] or has viewed emergent sub-groups
as polarization [206]. One exception is Hu et al.’s work [95], where the local convergence
of an action within sub-groups leads to diverse communities, a positive result in their
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setting. However, that work only experiments with cooperative matrix games and removes
between-community social connections, whereas our work considers social dilemmas (both
matrix games and more complex dilemmas) and we do not remove any social connections
and allow for any agents to interact.

Fueled by recent successes in deep learning, self play, and natural group selection, Leibo
et al. [123] conceptually propose the idea of adaptive units. Their proposed definition of
an adaptive unit is a group of agents that is composed of sub-units, which itself could be
composed of other sub-units, similar to how STEAM has sub-teams composed of agents.
They suggest that the interaction between multiple adaptive units forms an autocurricula,
a self-generated sequence of challenging environments based on the co-evolution of be-
haviours. Co-evolution of sub-units within the same environment allows for exploration by
exploitation since the underlying dynamics of the environment shift as interacting agents
exploit and optimize their current behavior. Leibo et al. do not expand on their theoret-
ical proposal in that paper [123]; however, Malthusian RL uses these concepts to design
an algorithm similar to evolutionary pressures of population size by changing the size of
sub-populations based on their performance [124].

While the ideas behind adaptive units and autocurricula are similar to sub-teams, a
key distinction from the work done in this dissertation is how adaptive units have been
implemented. Malthusian RL [124] changes the size of adaptive units (number of agents) in
subsequent episodes of an experiment based on the relative performance of all units in an
experiment over previous episodes (executing in parallel simulations). That work showed
convergence properties of population sizes across multiple domains, emphasizing how group
size has an impact on the policies that are learned. While our work also emphasizes the
impact of team size and structure, our work is different in several areas. First, we keep the
number of agents in each experiment to be constant. We then modify the number and size
of teams (Chapter 4) and how agents optimize their behavior for the goals of themselves,
their teams, and the entire system (Chapter 5). We find that teams and various settings
of goal alignment promote agents to autonomously discover different distributions of role
specializations. Instead, since Malthusian RL uses a shared policy network for agents in
the same group, they found that biasing agents towards different roles was necessary to
achieve role specialization in some settings. We emphasize that prior role distributions
may not be known in different environments; thus, defining prior biases for different roles
may result in sub-optimal role distributions. Finally, groups in Malthusian RL rely on the
performance of other populations in concurrent simulations instead of groups needing to
coordinate within the same environment as done in our work in Chapters 4, 5, and 6.

Our research builds on the prior work presented in this chapter. We adapt existing find-
ings regarding the structure of teams and groups in OP and MTSs to MARL populations
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and analyze how features of teams impact learning with individual learning agents. Next,
we provide details of our general model of teams and present specific evaluation domains
we consider throughout this dissertation.
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Chapter 3

Models and Environments

Each chapter of this dissertation utilizes similar notation, frameworks, team models, and
environments. This chapter provides more details about the concepts that are used through-
out the remaining chapters. We first define our model of multiagent teams. This model is
used throughout the dissertation; however, some aspects of the model will change depend-
ing on the specific problem addressed in each chapter. We provide specific extensions or
modifications to this model in subsequent chapters as appropriate. Lastly, we then present
all of the environments used in the empirical evaluations throughout this dissertation.

3.1 A Model for Multiagent Teams

We model our base environment as a stochastic game G = ⟨N , S, {A}i∈N , {R}i∈N , P, γ,Π⟩,
a repeated game with probabilistic transitions played by one or more players. N is our
population set of N ∈ N agents that learn online from experience and S is the state
space, observable by all agents, where si is agent i’s observation of the environment state.
A = A1 × . . .× AN is the joint action space for all agents where Ai is the action space of
agent i. R = R1 × . . .×RN is the joint reward space for all agents where Ri is the reward
function of agent i defined as Ri : S × A× S 7→ R, a real-numbered reward for taking an
action in an initial state and resulting in the next state. P : S × A 7→ ∆(S) represents
the transition function which maps a state and joint action into a next state with some
probability and γ represents the discount factor so that 0 ≤ γ < 1. Π represents the policy
space of all agents and the policy of agent i is represented as πi : S 7→ Ai which specifies

37



an action that the agent should take in an observed state.1

Our teams model consists of a stochastic game with teams ⟨G, T ⟩, where T is a partition
of the population of agents into disjoint teams, T = {Ti|Ti ⊆ N,∪T = N, Ti∩Tj = ∅∀i, j ∈
N}. We define the term team structure as follows:

Definition 5. A team structure is the global composition of T , such as the number of
teams and number of agents in each team.

Consistent with the original groundwork on multiagent teams [233, 76], we define a
team of agents as being bounded together through common interest. To be consistent with
recent MARL work, we model common interest through reward sharing and assume agents
have identical (deterministic) reward functions (i.e., Ri = Rj for all i, j ∈ N) [145, 96].
We define a new reward function for agents in a team as TRi : S × A × S 7→ R so that
the reward for i ∈ Ti depends on their own behavior and that of their teammates. Any
deterministic function can be implemented to define TRi so long as every agent in a team
gets some amount of the team’s reward. In our analysis and experiments, we use:

TRi =

∑
j∈Ti

Rj(S,A, S
′)

|Ti|
, (3.1)

where teammates share their rewards equally to be consistent with past work [254, 13].
While there exist several mechanisms for how teammates share rewards, our model of teams
makes the assumption that rewards are shared between teammates instantaneously. Other
popular methods include agents explicitly choosing how and when to share rewards [266]
or a centralized planner allocating a team’s reward according to marginal contribution to
team success [195]. In Chapter 5, we relax the assumption that teammates fully share
rewards and in Chapter 6 we experiment with agents that learn how to share rewards
among groups in the population.

We define agents to be independent learners and learn a policy πi based on their in-
dividual experiences. As is standard in many MARL problems, each agent is trained to
independently maximize their own rewards. In particular, at time t each agent i observes
the state sti and selects some action ati which together with all agents forms a joint action at.
This action results in an environment transition from joint state st to joint state st+1, ac-
cording to the transition function P , and provides each agent i with reward Rt

i(s
t, at, st+1).

Agents seek to maximize their sum of discounted future rewards, Vi =
∑∞

t=0 γ
tRt

i. In later

1We can also allow for randomized policies.
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Figure 3.1: 4-States: Environment diagram.

chapters of the dissertation, we replace Ri with various shared reward functions. For ex-
ample, an agent that fully optimizes their behavior for a team (Chapter 4) replaces Ri

with TRi, reconfiguring the learning problem so that agents must simultaneously learn
what individual behavior maximizes their team’s expected discounted future reward. We
also experiment with settings where Ri is replaced with a mixture of different reward com-
ponents for different groups (Chapter 5). We provide specific details about these reward
functions in the appropriate chapters.

3.2 Specific Environments Used in Evaluations

Our specific environments range from few-state settings to elaborate and complex gridworld
domains with underlying social dilemma or hunter-gatherer dynamics. In this section, we
present the environments used in our evaluations throughout this dissertation.

3.2.1 4-States

4-States is a simple, partially observable stochastic game shown in Figure 3.1. This envi-
ronment can support any number of agents (N ≥ 1) divided into any number of teams and
the state transitions and rewards depend on the joint action of all N agents. There exists
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four physical states that agents individually observe: sc, sr, s3, and s4. At each timestep,
agents can take one of four possible actions: stay at their current state (a0) or move to
another state (a1, a2, or a3). The “c” in sc corresponds with a binary signal (loosely,
visiting sc can be thought of as reward-causing depending on this signal) and the “r” in
sr refers to a reward state. States s3 and s4 are extra states added to help us assess the
performance of agents’ joint policies and return a reward of 0. To assist our discussion of
the reward dynamics in 4-States, we carefully define the difference between the two types
of states in this setting:

• sti is the physical state within the environment that agent i is located in and observes
at time t.

• st is the joint state of all agents, or the state of the environment, at time t (i.e., the
collection of sti for all i ∈ N)

In our analysis, we distinguish between the direct reward an agent receives from the
environment when transitioning into their own observed state st+1

i , Rt
i(s

t, at, st+1
i ), and

the team reward, TRi (note the condition on the agent’s own observed state st+1
i in Rt

i).
We condition on the individual next state st+1

i instead of the joint state when defining Rt
i

to support a deeper analysis of behavioral dynamics in the 4-State environment (specif-
ically in Chapter 6); however, references to reward for other environments use the joint
state (i.e., Rt

i(s
t, at, st+1)). There is never an environmental reward given to agent i for

individually transitioning to sc, thus R
t
i(s

t, at, sc) = 0. However, any agent (regardless of
team affiliation) visiting sc changes a binary signal c that allows reward to be collected
at sr. Thus, the possible rewards (depending on c) given to any agent transitioning to
sr are Rt

i(s
t, at, sr) = {0, r}, where r > 0. We assume agents in a team share rewards.

When agent i individually transitions to sr, their reward (before sharing with their team)
is Rt

i(s
t, at, sr) = 0 if c = 0, and their reward is Rt

i(s
t, at, sr) = r if c = 1. Once the reward

is consumed at sr, c has to be reset by visiting sc again. Thus, visiting sc causes reward
to be obtained elsewhere in the environment (i.e., when visiting sr). Explained further in
Chapter 6, visiting sc can be thought of as a reward-causing state-action pair. The two
additional states, s3 and s4, do not impact the reward dynamics of the environment but
are included to understand how well agents learn the underlying environment (i.e., they
should learn to avoid visiting these states).

This environment’s reward function emphasizes the importance of coordination and
social responsibility. Visiting sc requires an agent deciding to fulfill a role of social re-
sponsibility and visit a state that will not return an explicit reward; however, an optimal
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Cooperate Defect

Cooperate b− c, b− c −c, b
Defect b, −c 0, 0

Table 3.1: An example of the Prisoner’s Dilemma with the costs (c) and benefits (b) of
cooperating (b > c > 0). Mutual defection is the unique Nash Equilibrium when playing
the Prisoner’s Dilemma with agents that do not share rewards.

Cooperate Defect

Cooperate b− c, b− c b−c
2
, b−c

2

Defect b−c
2
, b−c

2
0, 0

Table 3.2: An example of the Prisoner’s Dilemma when agents are teammates. Mutual
cooperation is the unique Nash Equilibrium when playing the Prisoner’s Dilemma with a
teammate and sharing rewards.

solution is when exactly one agent visits sc at each timestep (and other agents are in sr
to collect the reward). Thus, coordination is crucial to achieve a good joint policy in this
environment.

Chapter 6 shows how the size of a team has a significant impact on how agents coor-
dinate in this environment. Specifically, if a team is large, agents form joint policies that
achieve sub-optimal results by either having too many agents in sc or visiting s3 and s4
too often (which provides nothing to the underlying reward structure).

3.2.2 Iterated Prisoner’s Dilemma (IPD)

The Prisoner’s Dilemma is a decades-old matrix game analyzed in game theory that repre-
sents a social dilemma [194]. In the one-shot Prisoner’s Dilemma, two agents interact and
each must decide to either cooperate with (C) or defect on (D) each other. We assume
there is a cost (c) and a benefit (b) to cooperating where b > c > 0 (the payoff matrix
is shown in Table 3.1 for one row agent and one column agent). If an agent cooperates,
it incurs the cost c. If both agents cooperate, they both also benefit, each receiving a
reward of b − c. If one agent cooperates but the other defects, then we assume that the
cooperating agent incurs the cost c, but the defecting agent reaps the benefit b (e.g., by
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Figure 3.2: Cleanup: Cleanup environment with six agents in three teams of two agents
each. Agents are represented as squares (i.e., two red, two purple, and two dark brown.

stealing the contribution of the cooperator). If neither cooperate, neither benefit nor incur
a cost, leading to a reward of zero for both. The unique Nash Equilibrium is obtained
when both agents defect, represented by (D, D). Mutual cooperation does not form an
equilibrium, since if one agent cooperates, the other agent is strictly better off defecting
and receiving b, instead of b− c.

In the Iterated Prisoner’s Dilemma (IPD), this game is repeatedly played which adds
a temporal component and allows agents to learn a policy over time. Instead of just two
agents, we work with a population of agents that are divided into teams a priori. At each
timestep, agents are randomly paired with another agent, a counterpart, that may or may
not be a teammate. Agents observe the team identity of their counterpart at time t as sti,
though additional identity information is not shared. Agents must decide to cooperate with
or defect on their counterpart as ati. Their payoff for the interaction is their team’s reward,
based on their own and other teammates’ interactions. Thus, their direct payoffs for their
own interaction (that they contribute to the team reward) come from Table 3.1 if their
counterpart is not a teammate and their payoffs come from Table 3.2 if their counterpart
is a teammate (when teammates equally share rewards by Equation 3.1). Agents update
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their strategies (i.e., learn) using their direct observation, what action they chose, and their
team’s reward. Since the only information shared is the team the counterpart belongs to,
the strategies of all agents on a team ultimately affects how agents learn to play any
member of that team.

We use the IPD for empirical evaluations in Chapters 4, 5, and 6. Our results show
multiple settings where agents in teams that have the game-theoretic incentive to defect
learn mutual cooperation with agents in other teams (despite not sharing any rewards with
these agents). These results are robust to multiple scenarios where agents may not fully
optimize for their team’s reward and may instead be somewhat selfish.

3.2.3 Cleanup Gridworld Game

The Cleanup Gridworld Game (or simply Cleanup) [249] is a temporally and spatially
extended Markov game that represents a social dilemma. This domain allows us to examine
a more complex environment than the IPD while maintaining aspects of an underlying
social dilemma. Specifically, agents must learn a cooperative policy through movement
and decision actions instead of choosing an explicit cooperation action like in the IPD.
Successful groups in Cleanup require some agents to perform active provision [96], taking
actions that supply something of use [224]. Active provision in Cleanup is when agents
choose actions with no associated environmental reward, but these actions are necessary for
agents to achieve rewards (i.e., these actions are reward-causing). Cleanup is a widely used
simulated environment in previous MARL research studying the emergence of coordination,
cooperation, and pro-social policies among a population of learning agents [96, 100, 266, 52].

Figure 3.2 shows a timestep of an experiment in the Cleanup environment with six
agents. The environment visually represents features (and agents) as squares in Figure 3.2.
The gridworld contains a river on one side and an apple orchard on the other side. Agents
are represented by colors, and we define teammates to share the same color. Figure 3.2
shows a scenario with three teams of two agents each; thus, two agents are red squares,
two are purple squares, and two are dark brown squares. Apples only grow in the apple
orchard and appear as green squares, whereas light brown waste only spawns in the river.
Agents clean the river using a “cleaning beam” action that is represented by a collection
of yellow squares.

At each timestep, agents choose among nine actions: five movement (up, down, left,
right, or stay), two turning (left or right), and a cleaning or punishing beam. An agent’s
observability is limited to an egocentric window of 15 × 15 pixels. Waste accumulates in
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the river with some probability at each timestep which must be cleaned by the agents. Once
a cleanliness threshold is reached, apples spawn in the orchard proportional to the overall
cleanliness of the river. Agents receive a reward of +1 for consuming apples by moving
on top of them. The dilemma exists in agents needing to take non-rewarding actions to
clean the river to spawn new apples versus staying in the orchard and enjoying the fruits
of another’s labor. Agents have the incentive to stay in the orchard; however, if all agents
attempt this free-riding policy, no apples grow and none get any reward. A successful
group in Cleanup will balance the temptation to free-ride with the public obligation to
clean the river.

In Chapters 4, 5, and 6 when teammates in Cleanup share some amount of their re-
wards, rewards are distributed to teammates at the timestep they are collected instead
of teammates needing to distribute rewards themselves. Future work could incorporate
methods where agents must learn to share with their teammates in subsequent timesteps;
however, our model of teams implements instantaneous reward sharing. This is analogous
to a team achieving some team-level goal.

In Chapter 4, we find that teams promote autonomous role specialization and the
emergence of efficient global joint policies. These joint policies generate 33% more mean
population reward than the fully cooperative population (i.e., when all agents in the popu-
lation share rewards). In Chapter 5, our results show that this joint policy can also emerge
in settings when agents are slightly selfish and in Chapter 6, we show how a team’s ability
to generate high rewards is significantly influenced by the size of the team.

3.2.4 Neural MMO (NMMO)

Neural MMO (NMMO) [228] is a large, customizable, and partially observable multiagent
environment that supports foraging and exploration. NMMO is different than Cleanup
since it simulates hunter-gatherer societies instead of supporting an underlying social
dilemma and has gained popularity among the MARL community to understand how
agents operate in large environments [168, 79]. Figure 3.3 shows the NMMO environment
with no agents. There is no standard NMMO implementation; thus, we configure a map
with 1024 × 1024 pixels bounded by lava tiles to enclose the agents within the environ-
ment. Within the lava boundary, NMMO has squares of grass for agents to move freely
on, stones as obstacles, and water and forest (food) squares that regenerate over time. The
map is randomly initialized; however, we spatially separate water and forest to encourage
exploration. Otherwise, there would be water and forest tiles randomly interspersed and
agents would not be forced to explore different areas of the map. An agent’s observability
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Figure 3.3: NMMO: Environment layout.

is limited to an egocentric window of 15 × 15 pixels. We configure the environment so
that agents always spawn in the center of the map at the beginning of each episode (i.e.,
not in the water or forest area) and agents can take movement and combat actions.

Agents maintain a stash of consumable resources (food and water). Collecting any
forest (food) or water tile increases an agent’s personal inventory for that resource by +0.1
up to a maximum amount of 1.0. At each timestep, an agent’s inventory for both food
and water deplete by a rate of -0.02 down to a minimum of 0.0 each. When in teams,
teammates share water and food resources amongst themselves.

There is no standard reward function in NMMO. To simulate the dynamics of a hunter-
gatherer society with multiple tasks, we reward agents based on their inventory of resources.
We reward agents for positive increases to their lowest resource: min(I)t−min(I)t−1 when
min(I)t > min(I)t−1, where I is the inventory of food and water. Thus, agents must learn
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to maintain both food and water to receive reward. We remove agent “death” by starvation
since this feature is not relevant to our study and it’s removal maintains consistent episode
lengths and learning steps in each experiment. We use NMMO in Chapter 6 where
teammates share their rewards according to Equation 3.1. Similar to Cleanup, rewards are
distributed to teammates at the timestep they are collected instead of teammates needing
to distribute rewards themselves.

In Chapter 6, we find that a single agent in NMMO is unable to learn the reward
dynamics of maintaining both food and water resources. When agents are in a team, they
divide labor to collect either food or water, similar to the dynamics of hunter-gatherer
societies. However, we find that the ability for teams to form an effective joint policy
depends on the size of the team.
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Chapter 4

The Benefits of Teams in Multiagent
Learning

This chapter first introduces the idea of multiagent teams in social dilemma domains with
individual learning agents. We find that forming teams within a population helps agents
develop cooperative pro-social policies despite incentives to not cooperate. Furthermore,
agents are able to better coordinate and learn emergent roles within their teams to achieve
higher rewards compared to when the interests of all agents are aligned. This is done
through agents autonomously discovering a more efficient global joint policy when defined
in certain team structures compared to the fully cooperative population.

4.1 Introduction

Observed in both animal and human behavior, the ability to work in teams can magnify
a group’s abilities beyond the capability of any individual. In multiagent research with
AI agents, a large area of research focuses on the process of forming teams of agents with
defined abilities towards a known goal [265, 192, 215]. With teams of learning agents,
multiagent reinforcement learning (MARL) has achieved impressive results in competitive
two-team zero-sum settings such as capture the flag [99], hide-and-seek [13], and Robot
Soccer (RoboCup) [111].

While Team Forming algorithms have important and widespread applications, they do
not analyze how team dynamics and structures impact the development of learning agents’
policies such as in MARL contexts. In the two-team zero-sum domains with MARL teams,
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the structure of teams are typically defined (i.e., hide-and-seek is always 2 vs. 2), meaning
the potential impact of team structures are typically overlooked. Furthermore, when agents
are deployed into the real world, they will be faced with problems that are not zero-sum [12].
Therefore, there is growing interest in exploring how agents can learn cooperation in mixed-
motive domains, such as Sequential Social Dilemmas (SSDs) [125]. This chapter presents
an analysis of the impact and benefit of teams and different team structures on the learning
process for individual agents that learn in the context of mixed-motive domains.

Inspired by group structures in organizational psychology (OP) and early models of
teams from the AI literature for task completion (highlighted in Chapter 2), we implement
the general model of multiagent teams presented in Chapter 3 and evaluate it in the
context of social dilemmas. It is well documented that individual RL agents fail to learn
cooperation in social dilemmas while agents with common interest have more success [4, 13].
Our teams model is situated between these two extremes, where teammates are bound by
common interest but mixed-motives exist between non-teammates. We show in the Iterated
Prisoner’s Dilemma (IPD) and Cleanup Gridworld Game (both presented in Chapter 3)
that teams improve how agents learn and develop pro-social policies. This chapter makes
the following contributions:

• We implement a model of teams inspired by early work in multiagent systems and
OP (presented in Chapter 3).

• In Section 4.2 we discuss the theoretical ramifications of our model in the context
of social dilemmas regarding game-theoretic incentives under different environmental
conditions.

• Through an extensive empirical evaluation, Section 4.3 shows how our model of
teams helps agents develop globally beneficial pro-social behavior despite short-term
incentives to not cooperate. As a result, agents in teams achieve higher rewards in
complex domains than the fully cooperative system by autonomously learning more
efficient combinations of roles.

4.2 Equilibrium Analysis with Teams

Our environment in this context is the N -agent stochastic game presented in Chapter 3. In
this section, we perform an equilibrium analysis in the context of the IPD environment to
understand how teams impact the game-theoretic incentives for behavior in this repeated
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Cooperate Defect

Cooperate b− c, b− c −c, b
Defect b, −c 0, 0

Table 4.1: An example of the Prisoner’s Dilemma with the costs (c) and benefits (b) of
cooperating (b > c > 0).

game. Recall that in our implementation of the IPD, a population of agents is divided into
teams a priori. At each timestep t:

1. Agents are randomly paired with another agent, a counterpart, that may or may not
be a teammate.

2. Agents are informed as to what team their counterpart belongs to through a numerical
signal si, though additional identity information is not shared.

3. Agents must decide to cooperate with (C) or defect on (D) their counterpart, ati.

4. Agents receive their team reward, TRt
i, based on their own and their teammates’

interactions.

5. Agents update their strategies (i.e., learn) using their own direct observation sti, what
action they chose ati, and their team reward TRt

i.

Since only the team information of the counterpart is shared, the strategies of all agents
in team Ti ultimately affects how agents learn to play any member of Ti. We are interested
in understanding how the introduction of teams may help or hinder cooperation. As a
first step towards addressing this question, we investigate the impact of teams on the stage
game of the IPD. To provide a clear comparison with the standard IPD, we take an ex-ante
approach, where agents are aware of their imminent interaction and the existence of other
teams but not the actual team membership of their counterpart.

Assume a pair of agents, i and j, have been selected to interact at some iteration of
the IPD and agent i knows j will be a teammate with probability ν and a non-teammate
with probability (1 − ν). Also assume agent j is playing some strategy summarized by
the probability that agent j selects action C conditioned on if they are a teammate or
non-teammate. Let σTi

= (σji, 1 − σji) be the strategy profile for agent j, where σji is
the probability that j selects action C if j ∈ Ti (a teammate) and σTj

= (σjj, 1 − σjj) be
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Cooperate Defect

Cooperate b− c, b− c b−c
2
, b−c

2

Defect b−c
2
, b−c

2
0, 0

Table 4.2: An example of the Prisonner’s Dilemma when agents are teammates with full
common interest. (C,C) is the unique Nash Equilibrium.

the strategy profile when j ∈ Tj (is not a teammate). The expected utility of i choosing
to cooperate (C) or defect (D) can be derived using Table 4.1, Table 4.2 (same tables as
in Chapter 3, repeated here for the reader), ν, and the strategy profile of j, σTi

or σTj

(we denote strategy profile as σT below when referencing both σTi
or σTj

, such as in the
expected utility to cooperate E(C, σT )).

If agent i decides to cooperate, it’s expected utility, subject to agent j’s strategy, is
calculated by:

E(C, σT ) = ν

[
σji(b− c) + (1− σji)

b− c
2

]
+ (1− ν) [σjj(b− c) + (1− σjj)− c] (4.1)

E(C, σT ) = ν

[
2σji(b− c)

2
+
b− c
2
− σji(b− c)

2

]
+ (1− ν) [σjjb− σjjc− c+ σjjc] (4.2)

E(C, σT ) = ν

[
σjib− σjic

2
+
b− c
2

]
+ (1− ν) [σjjb− c] (4.3)

E(C, σT ) = ν

[
(b− c)(σji + 1)

2

]
+ (1− ν) [σjjb− c] (4.4)

E(C, σT ) =
ν(b− c)(σji + 1)

2
+ (1− ν)(σjjb− c) (4.5)

If agent i decides to defect, it’s expected utility, subject to agent j’s strategy, is:

E(D, σT ) = ν

[
σji

(b− c)
2

]
+ (1− ν) [σjjb] (4.6)
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E(D, σT ) =
νσji(b− c)

2
+ (1− ν)σjjb (4.7)

We determine the conditions under which agent i has incentive to cooperate as when
E(C, σT ) ≥ E(D, σT ). We calculate this scenario by substituting E(C, σT ) and E(D, σT )
from above:

ν(b− c)(σji + 1)

2
+ (1− ν)(σjjb− c) ≥

νσji(b− c)
2

+ (1− ν)σjjb (4.8)

ν(b− c)(σji + 1)

2
− c+ νc ≥ νσji(b− c)

2
(4.9)

ν(b− c)
2

− c+ νc ≥ 0 (4.10)

ν(b− c) + 2νc ≥ 2c (4.11)

νb+ νc ≥ 2c (4.12)

ν ≥ 2c

b+ c
(4.13)

The above derivation calculates the point at which agents have incentives to cooperate
in our environment. In the regular IPD without teams, agents have no common interest
making (D, D) the unique Nash Equilibrium and (C, C), (C, D), and (D, C) the three
Pareto Optimal strategies. Since teammates share rewards, the degree of common inter-
est is ultimately determined by the amount they interact with their team, ν (i.e., more
teammate-teammate interactions means a higher degree of population common interest).
Therefore if Equation 4.13 is satisfied, the game-theoretic properties of the IPD transform
so that (C, C) is the unique Nash Equilibrium and Pareto Optimal strategy. We further
analyze these incentive dynamics in each of our evaluation domains in the next section;
however, we find that teams often lead to agents learning cooperation in settings where
they have incentives to defect.
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4.3 Empirical Evaluation Configuration

In this section, we present the setup and results of experiments in the IPD [194] (Sec-
tion 4.4) and Cleanup [249] (Section 4.5) environments using MARL agents. While our
teams model does not require it, we assume that for all Ti, Tj ∈ T , |Ti| = |Tj| (i.e., given a
team model, the teams are the same size). This avoids complications that might arise with
agent interactions if teams were significantly different sizes and to be consistent across our
domains. Alternative interaction mechanisms and teams of different sizes are left for future
work. We use the notation |T |/|Ti| to indicate the total number of teams and the size of
each team. For example, 1/N indicates one team of N agents (fully cooperative) and N/1
represents N teams of one agent (fully mixed-motive). Of course, many scenarios may fall
between these two extremes. Since fully mixed-motive has agents working as individuals
(i.e., no teams, or N teams of one), it serves as a benchmark against which we can compare
the performance of team structures.

4.4 IPD Evaluation

In the IPD, each experiment lasts 1.0 × 106 episodes where N = 30 agents learn using
Deep Q-Networks [153]. An episode is defined by a set of agent interactions where each
agent is paired with another agent and plays an instance of the Prisoner’s Dilemma. Agent
pairings are assigned using a uniform random distribution over each team so agents are
unable to explicitly modify who they interact with, known as a challenging scenario for
cooperation to arise without additional infrastructure [4]. We define a counterpart as
having equal probability of being in any team (i.e., p(sti = Ti) = p(sti = Tj)∀Ti, Tj ∈ T ).
Each experiment is repeated five times to study variance in results. In Appendix A.1, we
prove how this configuration ensures that each agent has the same number of expected
interactions to learn from.

Population Reward Results

In our first set of experiments, we explore the degree to which team structures support
cooperation. We fix the cost (c) at 1, and let the benefit (b) be 2, 5, or 10. To capture
the behavior of agents after they have converged to a policy, the top graph of Figure 4.1
shows the normalized average global reward of the last 25% of the episodes using individual
learning RL agents. We normalize the average global reward of each experiment in the
interval [0− c, 0 + b] and calculate 95% confidence intervals to compare different cost and
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Figure 4.1: IPD: The top graph shows the normalized average population reward of MARL
experiments with three different cost:benefit ratios when N = 30 with 95% confidence
intervals. The bottom graph shows incentivized actions from Equation 4.13, where positive
(or zero) is cooperation and negative is defection being incentivized. Team structures
are labeled |T |/|Ti| and bookended with fully cooperative (1/30) and fully mixed-motive
(30/1). When b ∈ {5, 10}, every team structure besides the individualistic case (30/1)
achieves about as much reward as 1/30 without requiring a fully cooperative the population.
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Figure 4.2: IPD: The 5/6 team composition showing the percent of cooperation towards
teammates and non-teammates when c = 1 and b ∈ {2, 5}. When benefit is greater, agents
develop pro-social policies towards non-teammates despite the incentive to defect.

benefit ratios on the same plot. To show the corresponding incentives of each experiment,
we include the bottom graph which displays the calculated action incentive by a modified
Equation 4.13, ν− 2c

b+c
. Each bar in this graph corresponds with the experiment in the top

plot so that positive (or zero) bars represent cooperation being incentivized and negative
bars represent defection. Cost and benefit ratios are arranged from highest benefit (left)
to lowest benefit (right).

Our results show teams always achieve more reward than individual agents (30/1);
however, this reward depends on the cost and benefit ratio. When b = 2, the experiment
results for average population reward a follow trend similar to the incentives of each scenario
in the bottom graph. Our main finding in Figure 4.1 is how, when the benefit increases,
individual RL agents achieve high average population reward despite the incentive to defect
as shown in the bottom graph. When b ∈ {5, 10}, every team structure, other than
the individualistic 30/1 scenario, achieves basically the same reward as 1/30 even though
there exists mixed-motive interactions with other teams. Defection is the incentivized
action in seven of 12 (58%) of these experiments that would produce low global reward
if agents actually learned defection. Instead, we observe agents develop reciprocally pro-
social policies that achieve high rewards in every scenario with teams of multiple agents
when b ∈ {5, 10}. To analyze how high rewards are achieved in environmental conditions
that promote defection, we study agents’ behavior over time.
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Analyzing Learned Policies

In evolutionary biology, fostering cooperation at various levels has been found to depend
on the size of the cooperative return [210]. The idea behind cooperation levels comes from
the concept that not all cooperative actions are equal, cooperating with certain groups is
more significant than cooperating with other groups. Different types of cooperation, or
levels of cooperation, have yet to be explicitly explored in MARL; however, teams allow us
to identify two levels of cooperation in our IPD environment: cooperation with teammates
and cooperation with non-teammates. Figure 4.2 shows the percent of cooperative actions
over time with the 5/6 team structure when b ∈ {2, 5}. By Equation 5.2, agents have
the incentive to defect in both scenarios. The x-axis shows time and the y-axis shows the
percent of an agent’s actions that are cooperation (2,000 episode sliding window mean,
single episode progression).

Both graphs in Figure 4.2 show that agents immediately learn to cooperate with team-
mates regardless of b. When b = 2, agents defect on non-teammates; however, when b = 5,
agents learn to cooperate with both teammates and non-teammates. We observe similar
behavior with every other team structure (not including 30/1) when b ∈ {5, 10}. That
is, cooperation emerges with teammates and non-teammates despite incentives to defect.
While other work requires strong assumptions of agent behavior to foster cooperation, our
results indicate teams allow agents to learn an emergent cooperative convention at multiple
levels of a system in certain settings.

4.5 Cleanup Gridworld Game Evaluation

We expand our evaluation of teams to the Cleanup Gridworld Game [249]. Instead of
distinct “cooperate” and “defect” actions like in the IPD, agents in Cleanup must learn
entirely cooperative or defecting policies through their general behavior in the environment
(i.e., cleaning the river or picking apples). This added complexity allows us to further
analyze how agents develop joint policies, converge to various roles in the environment,
and learn to explore the underlying dynamics of the environment.

To allow for multiple teams with the same size in Cleanup, we experiment with N = 6
agents (previous work typically uses N = 5 [96, 145, 100]). Our agents use the Proxi-
mal Policy Optimization (PPO) [214] RL algorithm for 1.6× 108 environmental timesteps
(each episode is 1,000 timesteps). Agent observability is limited to a 15 × 15 egocentric
RGB window. Teammates share the same color and optimize for TRi calculated at each
environmental timestep. Each experiment is repeated for eight trials.
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Figure 4.3: Cleanup: Mean population reward for each team structure with 95% confi-
dence intervals. 6/1 represents individualistic agents and 1/6 represents a fully cooperative
population. Both 2/3 and 3/2 team structures achieve more reward than 1/6 and 6/1.

Mean Population Reward in Cleanup

Figure 4.3 shows the mean population reward for each scenario in Cleanup with 95%
confidence intervals. It has been previously assumed that the setting that achieves the most
population reward in Cleanup is when agents are fully cooperative and optimize for the
collective rewards of the entire group [266, 52, 254, 145], similar to our 1/6 configuration.
However, teams introduce a new dynamic to the environment and we find the 2/3 and 3/2
team structures both achieve 33% more reward than 1/6 despite the interests of all agents
not being aligned. As expected, the 6/1 scenario fails to achieve significant reward since
agents succumb to the incentive to free ride and few apples grow. McKee et al., [145] has
shown that only evaluating a system for mean reward masks other dynamics such as high
levels of reward inequality among agents.

Reward Equality Among the Population

Mean population reward does not fully investigate the dynamics of why or how team
structures achieve this higher reward. It is important to consider potential side effects on
population reward equality, such as how the reward is distributed among agents in these
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Figure 4.4: Cleanup: Inverse Gini index (equality) for each team structure with 95% con-
fidence intervals. Higher values represent more equality. Both 2/3 and 3/2 team structures
have high equality despite the interests of all agents not being aligned.

settings. It is important to understand if teams introduce scenarios that lead to high
inequality for settings where reward inequality may be detrimental to a system. We model
population reward equality as the inverse Gini index, similar to past work [145], calculated
as:

Equality = 1−
∑N

i=0

∑N
j=0 |Ri −Rj|

2N2RN

, (4.14)

where RN is the mean population reward. Figure 4.4 shows our results for reward equality
over time with 95% confidence intervals where higher values represent more equality. The
1/6 scenario is, by definition, always 1 since there is only one team. Despite earning high
reward, both 2/3 and 3/2 team structures also achieve high equality and always have
greater equality than 6/1. Success in Cleanup relies on agents coordinating to form an
effective joint policy instead of simply choosing an explicit cooperation action (as in the
IPD). To further understand how team structures achieve the highest rewards while also
maintaining high equality, we analyze agents’ policies and division of labor that generates
the increase of reward.

57



Figure 4.5: Cleanup: One team of six agents. Mean number of apples picked (top) and
cleaning beams selected (bottom) per-episode.
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Figure 4.6: Cleanup: Six teams of one agent each. Mean number of apples picked (top)
and cleaning beams selected (bottom) per-episode.
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Figure 4.7: Cleanup: Two teams of three agents each. Mean number of apples picked
(top) and cleaning beams selected (bottom) per-episode.
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Figure 4.8: Cleanup: Three teams of two agents each. Mean number of apples picked
(top) and cleaning beams selected (bottom) per-episode.
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Division of Labor in Global Joint Policies

While agents in teams consistently learn to divide labor, the same numbered agent does
not always learn the same behavior across different trials of our experiments. This makes
aggregating multiple trials difficult. Therefore, Figures 4.5 through 4.8 show the mean
apples picked (top) and cleaning beams selected (bottom) for each agent in one trial of
our evaluation with each team structure (1/6, 6/1, 2/3, and 3/2). The behavior in this
trial represents the most common division of labor for each team structure. Agents on the
same team in each plot are presented as different shades of the same color (i.e., light red
and dark red are teammates). The y-axis shows the number of apples collected or cleaning
beam actions taken and the x-axis represents time. Agents rarely punish, thus we omit it
from our analysis.

In the 1/6 configuration (Figure 4.5), two agents learn to mostly pick apples while four
agents clean the river. While this represents the most common division of labor with 1/6,
we do observe two trials where three agents learn to pick apples and three agents learn
to clean the river. These strategies achieve high mean reward, but is not the best joint
policy observed in our evaluation and consistently achieves less reward than the 2/3 and
3/2 team structures, discussed below. Shown in Figure 4.6, independent agents in 6/1 fail
to significantly clean the river; therefore, few apples grow which leads to low rewards. Five
agents free-ride on the labor of only one river cleaning agent. Figure 4.7 and Figure 4.8
show the 2/3 and 3/2 team structures respectively. We consistently observe populations
of agents in these team structures divide into four apple pickers and two river cleaners.
This division of labor joint policy achieves the highest reward in the Cleanup environment
out of all joint policies we observed. The 3/2 team structure tends to learn this division
slightly quicker (Figure 4.8), although both configurations eventually achieve basically the
same reward on average as shown in Figure 4.3.

In summary, our results show how agents in team structures learn better specialization
among the population by autonomously learning roles within their team. This allows
populations in the 2/3 and 3/2 team structures to keep the river clean while most agents
collect the spawning apples to collect reward. This causes 2/3 and 3/2 to achieve high
mean population reward and equality across teams even though agents on different teams
optimize for their own team’s reward.
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4.6 Discussion

This chapter shows that our model of teams has a significant impact on the development of
agents’ policies. In the IPD, we show how teams allow agents to immediately identify and
cooperate with their teammates. Interestingly, we find that RL agents develop a pro-social
convention and adapt this cooperative behavior towards non-teammates with specific team
structures depending on the payoff scheme, even if defection has greater expected value.
This behavior may be comparable with different levels of cooperation in humans, similar
to increasing cooperation from only kin selection to notions of direct reciprocity with other
groups [157].

While it was previously assumed that optimizing for signals from all agents (i.e., a
fully cooperative population) achieves the highest reward in Cleanup [266, 52, 254, 145],
our results indicate that agents optimizing for only a subset of the population (i.e., a
team) and maintaining mixed-motives within the population achieves higher reward. Agent
specialization in Cleanup is first identified by McKee et al. [145]. However, that work
views specialization into a specific role of river cleaning agent or apple picking agent as a
negative result that causes high labor inequality. We argue that the context of teams should
change how role specialization is viewed in MARL. In the literature on Team Forming and
Coalition Structure Generation, teams are often constructed to explicitly fill necessary
roles [7]. We view role specialization as the agents autonomously learning these roles with
only the feedback of their team’s reward. This reinforces our hypothesis that teams can
help improve how MARL agents learn to coordinate, and may be of specific interest to the
emergent behavior community.

However, certain side effects may occur among teams depending on the defined team
structure. While our 3/2 team structure achieves high reward in Cleanup, there is higher
inequality than 2/3. To achieve the four apple picker and two river cleaner joint policy,
one team (T1 (red) in Figure 4.8) must free-ride on the labor of the other two teams. In
practice, systems should consider potential side effects if slight inequality is detrimental
to its welfare in the long-run, despite short-term stability. Furthermore, while we explore
teams of AI agents, teams may also consist of humans or hybrid populations of both AI
and humans. Exploring alternative team reward functions may lead to interesting results
and future research, particularly in the context of hybrid teams.
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4.7 Conclusions

This chapter provides an initial analysis into how team structures impact the development
of individual learning agents’ policies. While teammates in this setting share rewards and
have common interest, mixed-motives are preserved between teams. Our results show that
teams help agents develop pro-social policies in social dilemma domains despite game-
theoretic incentives not to cooperate. In Cleanup, this leads to more globally productive
joint policies than a fully cooperative population (1/6 team structure). This is significant
considering that prior work assumes the fully cooperative population will achieve the best
results in mixed-motive domains and has often compared their methods to fully cooperative
outcomes. Instead, we find that a fully cooperative population may be sub-optimal and
may not achieve the highest reward. In the next chapter, we relax the assumption that
teammates fully share rewards and explore the impact of different degrees of mixed-motives
among teammates.
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Chapter 5

The Impact of Credo on Multiagent
Learning

Chapter 4 explored the idea of how team structures impact the development of agents’
policies in mixed-motive domains. While teammates in that setting had common interest
by fully sharing rewards, mixed-motives were maintained between teams. A main finding
is how different team structures help support the development of pro-social policies that
can discover more efficient global joint policies than a fully cooperative population. In this
chapter, we relax the assumption that teammates fully share rewards and explore settings
where agents can partially optimize their behavior for various goals. We introduce a model
to define how agents can optimize for different goals in the context of teams and analyze
it’s impact on the policies that individual learning agents develop.

5.1 Introduction

Humans have evolved with the inherent ability to cooperate and organize into teams.
Some hypothesize that this has significantly supported our path to achieving higher intelli-
gence [193, 240]. People tend to organize themselves into “teams-of-teams” within a larger
system that are not in zero-sum competition, improving self identification and clarity of
goals within a smaller group [143]. Today, these teams are present at various levels of
complexity in order to survive, compete in sports, or complete tasks.

Wayne Gretzky, a former ice hockey player known as The Great One, describes a suc-
cessful team as requiring “each and every [player] helping each other and pulling in the
same direction”. This statement, however, raises a number of questions.
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• Do players on successful teams only optimize for the goals of their team?

• Is this strategy the best way for teams to achieve success?

• If not, under which conditions does optimizing for an alternative goal help or hinder
overall success?

• Can incentives for individual goals actually promote behavior that is beneficial to
the team?

In this chapter, we analyze how the performance and benefits of teams are impacted
when learning agents may have different preferences by which they optimize their behavior.
In multiagent reinforcement learning (MARL), agents learning to cooperate are often de-
fined to have common interest through sharing exogenous rewards [3, 12]; however, purely
pro-social agents may not be possible in practice. For example, consider scenarios where
agents are designed by different manufacturers or hybrid AI/human populations interact.
Agents in these settings may have some self-interest for personal goals. Therefore, it is
important to understand how and when cooperation can be supported in systems where
agents may partially optimize for multiple objectives.

In this chapter we introduce agent credo, a model which regulates how agents opti-
mize for multiple objectives in the presence of teams. The noun credo, defined as “the
aims which guide someone’s actions” [224], describes our model of how agents optimize
for goals. To be consistent with the analysis in the previous chapter, we analyze credo in
mixed-motive social dilemmas popular in recent MARL research on cooperation [125, 249].
A common assumption made in past MARL literature is that aligning all agents’ reward
functions in mixed-motive environments is the strategy that will achieve the highest re-
ward [266, 71]. Chapter 4 disproved this assumption by showing that multiple teams
of fully aligned teammates achieves significantly more reward than the fully cooperative
system. In this chapter, we discover multiple situations in which, despite some selfish
preferences among agents, certain credo configurations with a defined team structure also
significantly outperform the fully cooperative population. This chapter makes the following
contributions:

• In Section 5.2, we augment the environment definitions in Chapter 3 and formally
define the model credo in the context of multiagent teams.

• In Section 5.3, we study how the incentive structures of social dilemmas depend on
the interaction between agents’ credo and environmental variables.
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• With learning agents, in Section 5.4 we show how different configurations of credo
can lead to over 30% higher rewards than a fully cooperative population if agents
partially optimize for personal or team-based goals.

5.2 Model of Credo with Multiagent Teams

The model of multiagent teams with individual learning agents used in this chapter is
consistent with the model detailed in Chapter 3 and implemented in Chapter 4. In review,
a team is a subset of agents which have some degree of common interest for team-level
goals. Given a population, multiple teams with different preferences and interests may
co-exist that are not in zero-sum competition. Consistent with Chapter 4, we refer to the
number and size of all teams as a team structure and denote the set of all teams as T , the
teams agent i belongs to as Ti, and a specific team as Ti ∈ Ti.

This chapter augments agents’ reward functions by introducing credo: a model to reg-
ulate how much an agent optimizes for different reward components it has access to. We
relax the modelling assumption that teammates are bound through full common inter-
est [184, 99, 13, 36] to study how different credos impact a system of learning agents.
For example, an agent may optimize their policy for the performance of one or multiple
teams, while also being somewhat oriented towards its own personal goals. We represent
these guiding principles by decomposing the reward any agent i may receive from the
environment into three components:

• IRi: agents’ individual exogenous rewards Ri.

• TRTi
i ∀Ti ∈ Ti: the rewards i receives from each team for which they are a member.

• SRi: the reward i receives from the system of N agents.

TRTi
i and SRi can be implemented with any function to aggregate and distribute re-

wards amongst multiple agents so long as agents are able to receive some amount of reward
from these functions.

We define credo to be a vector of parameters, cri, where the sum of all parameters is
1. The credo of an agent is represented by

cri = ⟨ψi, ϕ
T1
i , . . . , ϕ

T|T |
i , ωi⟩,
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where ψi is the credo parameter for i’s individual reward IRi, ϕ
Ti
i is the credo parameter

for the reward TRTi
i from team Ti ∈ Ti, and ωi is the credo parameter for the reward i

receives from the system SRi. The parameter notation is organized by increasing order of
group size, so that cri = ⟨self, . . . , teams, . . . , system⟩, where |self| < |teams| ≤ |system|.
Agent i’s credo-based reward function Rcr

i is calculated as:

Rcr
i = ψiIRi +

∑
Ti∈Ti

ϕTi
i TR

Ti
i + ωiSRi, (5.1)

The environment in our analysis consists of a stochastic game with a model of team
structure ⟨G, T ⟩. Being consistent with Chapter 4, we continue to analyze the setting
when agents belong to exactly one team. Formally, T is a partition of the population into
disjoint teams, T = {Ti|Ti ⊆ N,∪T = N, Ti ∩ Tj = ∅∀i, j}. This team structure simplifies
the credo vector for each agent to be cri = ⟨ψi, ϕi, ωi⟩, where ϕi is the credo parameter for
i’s team and we drop the team-specific superscript.

Any deterministic function can be used to calculate IRi, TR
Ti
i for any Ti, or SRi in

our model so long as any agent in a team or system receives reward for being part of the
team or system (agents are part of the system by default). We implement functions to
be consistent with past work by defining agents in a particular group to share rewards
equally [254, 13, 99]. IRi = Ri, the agent’s normal individual reward function. Their team
reward is defined as TRTi

i : S × Ai × S 7→ R, so that:

TRTi
i =

∑
j∈Ti

Rj(S,Aj, S)

|Ti|
,

where teammates share their rewards equally, consistent with Chapter 4. The system-wide
reward is defined as SRi : S × Ai × S 7→ R so that:

SRi =

∑
j∈N Rj(S,Aj, S)

|N |
,

the mean reward of all N agents in the system. The final credo-based reward for agent i,
Rcr

i , is calculated using Equation 5.1 with these functions.

As is standard in many MARL problems, agents are trained to independently maximize
their rewards. In particular, at time t each agent i selects some action ai which together
form a joint action at. This action results in a transition from joint state st to joint
state st+1, according to the transition function P , and provides each agent i with reward
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Rt
i(s

t, at, st+1). Agents seek to maximize their sum of discounted future rewards, Vi =∑∞
t=0 γ

tRt
i. Our model replaces Ri with R

cr
i at every timestep, reconfiguring the learning

problem so agents must learn behavior that maximizes their sum of discounted future
credo-based rewards according to the team structure and environment. This creates
various dimensions of incentives that can impact the policies that agents learn through
experience.

5.3 Equilibrium Analysis with Credo

We are interested in understanding the conditions under which credo may help or hinder
cooperation. Thus, as a first step we investigate the impact of credo on the stage game
of the IPD with teams. To provide a clear comparison with the standard IPD, similar
to in Chapter 4, we take an ex-ante approach where agents are aware of their imminent
interaction and the existence of other teams, but not the actual team membership of their
counterpart.

Assume a pair of agents, i and j, have been selected to interact at some iteration of
the IPD and agent i knows j will be a teammate with probability ν and a non-teammate
with probability (1− ν). Let σTi

= (σji, 1− σji) represent j’s strategy profile when j ∈ Ti,
where σji is the probability for cooperation (C). Likewise, let σTj

= (σjj, 1 − σjj) be j’s
strategy profile when j ∈ Tj, any other team.

For the sake of our analysis, we make the assumption that all agents have the same
credo. We calculate the expected values of cooperation and defection in situations where
agents are fully self-focused (cri = ⟨1.0, 0.0, 0.0⟩), team-focused (cri = ⟨0.0, 1.0, 0.0⟩),
and system-focused (cri = ⟨0.0, 0.0, 1.0⟩). These values are then weighted by agents’
credo parameters to consider all mixtures of possible parameters. We then calculate the
conditions in which agent i has the incentive to cooperate as when the expected value of
cooperation based on credo is greater than the expected value of defection. We include
the full derivation in Appendix B.1. After algebraic simplification, we determine agent i is
better off cooperating whenever:

ϕi

(
ν − 2c

b+ c

)
+ ωi

(
b− c
2

)
≥ ψic. (5.2)

Note that this is independent of the strategy profile of their counterpart, σT (we remove the
team notation from the subscript since the counterpart could be from Ti or Tj). Whenever
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Figure 5.1: Impact of teammate pairing probability ν and the cost of cooperation c (benefit
b = 5) on action incentives with credo. Red corresponds with cooperation being incen-
tivized and blue corresponds with defection.
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cooperation is the dominant strategy in a stage game, it will be supported in the repeated
game.

Figure 5.1 shows the expected reward value of cooperation minus the expected reward
value of defection by solving Equation 5.2 with |T | = 5 teams. Each triangle shows the
results for the linear combination of agent credo composed of self- (ψi; right axis), team-
(ϕi; left axis), and system-focused (ωi; bottom axis) parameters for an agent i (increments
of 0.02). The colors indicate the expected value that agents would receive if they choose to
cooperate; thus, colors correspond with the incentive to defect (blue) or cooperate (red),
as computed by subtracting the value of defection from cooperation. White is used when
this difference holds with equality.

Each row of plots represents different values of ν, the probability of being paired with
a teammate. The remaining probability 1−ν is spread across the |T |−1 teams uniformly.
With five teams, these values of ν represent when the chance of a counterpart being from
another team is four times more likely than their own team (ν = 0.06), being from any of
the five teams has equal probability (ν = 0.2), and being from the same team is four times
more likely than another team (ν = 0.5). Each column of plots represents a different cost
of cooperation so that c ∈ {1, 2, 3} with the benefit fixed to b = 5. For our entire analysis,
we increase the cost and fix the benefit since we are interested in the ratio between the
cost and benefit of cooperation instead of their absolute values.

We observe less overall incentive to cooperate as the cost c increases (i.e., darker blue
and has more area inside the triangles). This pattern resembles findings observed in human
behavior, where the amount of cooperation depends on the size of the benefit compared
to the cost [210]. Another observation is that defection is incentivized in the presence
of any amount of self-focus (right axes), with the exception of one environment (c = 1
and ν = 0.5). Even in this scenario, defection becomes quickly incentivized as self-focus
increases to ψi = 0.2. The following empirical experiments show that learning agents are
able to develop globally beneficial cooperative behavior in multiple settings where defection
is incentivized.

5.4 Empirical Evaluation

The following sections present the setup and results of experiments in the Iterated Pris-
oner’s Dilemma (IPD) and Cleanup gridworld game environments using learning agents.
Consistent with Chapter 4, we assume that for all teams Ti, Tj ∈ T , |Ti| = |Tj| (i.e., given a
team model, the teams are the same size). This avoids complications that might arise with
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Figure 5.2: IPD: Fully self-, team-, and system-focused agents when c = 1, b = 5, ν = 0.2
in a setting with five teams (|T | = 5) of five agents each (|Ti| = 5).

agent interactions if teams were of significantly different sizes and to be consistent across
our domains. We initialize cri to be the same for all agents a priori and do not change
the parameters over the duration of an experiment. Since fully self-focused and system-
focused credos have agents working as individuals (i.e., the standard non-team framework)
and one full group (i.e., cooperative setting), they serve as benchmarks against which we
can compare the performance of other credo with teams.

5.4.1 IPD Evaluation

In the IPD, each experiment lasts 1.0×106 episodes. We configure N = 25 Deep Q-Network
(DQN) [153] agents into five teams (|T | = 5) of equal size (i.e., five agents per-team). While
our general team model allows for an arbitrary number of teams of any size, this work is
concerned with the relationship between agent credo and environmental conditions.

An episode is defined by a set of agent interactions where each agent is paired with
another agent and plays an instance of the Prisoner’s Dilemma. Agent pairings are assigned
based on ν, the probability of being paired with a teammate, and agents are unable to
explicitly modify who they interact with, a challenging scenario for cooperation without
additional infrastructure [4]. Each experiment is repeated for five trials. We analyze two
types of credo distributions among the population: full-focus and multi-focus credo.
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Full-Focus Credo

We start by analyzing how the behavior of agents is impacted by the extremes of full
self-focus (cri = ⟨1.0, 0.0, 0.0⟩), team-focus (cri = ⟨0.0, 1.0, 0.0⟩), or system-focus (cri =
⟨0.0, 0.0, 1.0⟩) credo, denoted as full-focus credo.

Figure 5.2 shows our results where the x-axis of each plot shows time and the y-axis
shows the percent of actions where agents chose to cooperate, averaged over 2,000 episode
windows (sliding window, increments of one episode). We set c = 1, b = 5, and ν = 0.2 so
counterparts have equal probability of being selected from any team (since |T | = 5). Blue
represents when the counterpart is a teammate and green when the counterpart is not a
teammate.

When all agents are fully self-focused (left), cri = ⟨1.0, 0.0, 0.0⟩∀i ∈ N , they immedi-
ately learn defection towards all other agents (blue overlapped by green). When agents are
team-focused (middle), cri = ⟨0.0, 1.0, 0.0⟩, defection is the incentivized behavior as shown
in Figure 5.1 (top corner of each triangle plot). However, we find agents quickly identify
and cooperate with their teammates and almost every agent simultaneously develops stable
pro-social policies with non-teammates despite not sharing rewards (similar to Figure 4.2
in Chapter 4). We hypothesize this is due to a combination of reduced reward variance for
actions in specific states and interactions with teammates providing a strong positive feed-
back signal favoring cooperation. Only one agent over all trials learned defection against
non-teammates, likely due to random initialization, although mutual cooperation is sus-
tained among the other agents despite this defecting agent. In the right plot when agents
are fully system-focused, agents learn to cooperate with every agent regardless of team
(blue overlapped by green). The ϵ-greedy exploration algorithm prevents this percent of
cooperation from ever reaching 100%. While other work requires strong assumptions of
behavior to steer agents towards cooperation [3], these results indicate that full common
interest may not be necessary to promote cooperation across an entire population with
teams.

Heterogeneous Environment

Next, we experiment with settings where each of the five teams may have different
credos within the same environment (e.g., 1 self-focused team, 3 team-focused teams, and
1 system-focused team). We use the same environmental settings as Figure 5.1, so that
ν ∈ {0.06, 0.2, 0.5}, c ∈ {1, 2, 3}, and b = 5 to understand how credo and environmental
parameters impact how agents learn. This set of experiments is designed to understand how
teams following different credos learn to interact with each other, and which credos have
advantages in certain environments and population distributions. We assign teams a priori
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Figure 5.3: IPD: Cost is 1 and all agents follow different full-focused credos. Percent
of actions that are cooperation (Total), only with teammates (In-Team), and only with
non-teammates (Out-Team). We experiment with different probabilities of being paired
with a teammate ν ∈ {0.06, 0.2, 0.5} and the benefit is 5.
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Figure 5.4: IPD: Cost is 2 and all agents follow different full-focused credos. Percent
of actions that are cooperation (Total), only with teammates (In-Team), and only with
non-teammates (Out-Team). We experiment with different probabilities of being paired
with a teammate ν ∈ {0.06, 0.2, 0.5} and the benefit is 5.
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Figure 5.5: IPD: Cost is 3 and all agents follow different full-focused credos. Percent
of actions that are cooperation (Total), only with teammates (In-Team), and only with
non-teammates (Out-Team). We experiment with different probabilities of being paired
with a teammate ν ∈ {0.06, 0.2, 0.5} and the benefit is 5.
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to follow one of fully self-focused cri = ⟨1.0, 0.0, 0.0⟩, fully team-focused cri = ⟨0.0, 1.0, 0.0⟩,
or fully system-focused cri = ⟨0.0, 0.0, 1.0⟩ credos for the duration of that experiment.

We inspect total, in-team, and out-team cooperation in each environment separately.
Thus, since we fix the benefit b = 5, we plot when cost c = 1 (Figure 5.3), c = 2 (Fig-
ure 5.4), and c = 3 (Figure 5.5) in separate figures to allow us to further inspect total
cooperation (left plots), cooperation with teammates (In-Team; middle plots), and cooper-
ation with non-teammates (Out-Team; right plots). In the IPD, mutual cooperation yields
the highest mean population reward. The hexagonal area around each intersection point is
colored according to the global percent of actions which were to cooperate from blue (less
cooperation) to red (more cooperation) over the last 25% of the timesteps.

Figures 5.3 to 5.5 show the percent of cooperation that arises when the five teams can
follow different credos for different combinations of cost, benefit, and probability of being
paired with a teammate ν. Each axis of each triangle plot shows the number of teams (out
of five) that follow a particular credo (i.e., self-, team-, or system-focused). For example,
the left corner of any triangle plot is when agents on all five teams are system-focused, the
top corner is when all five teams are team-focused, and the right corner is when agents on
all five teams are self-focused. The hexagonal area around each intersection point (within
each triangle plot) is colored according to the global mean percent of actions that were
cooperation from blue (less cooperation) to red (more cooperation) over the last 25% of
timesteps.

We make several key observations in this setting. The amount of in-team cooperation
does not change across various values of the probability of being paired with a teammate
ν or cost of cooperation c (observed in all Figures 5.3 to 5.5) and is instead dependent
on the number of self-focused teams in the environment. Thus, team-focused and system-
focused agents learn cooperation with their teammates regardless of the behavior of other
teams. Figure 5.3 shows that global out-team cooperation is able to be sustained even with
the existence of one self-focused team; however, this trend disappears as cost increases.
Observed in Figures 5.4 and 5.5, out-team cooperation is a function of the number of
system-focused teams, meaning team-focused agents learn defection against non-teammates
when the cost is higher (i.e., c ≥ 2). When c = 2 (Figure 5.4), the existence of just
one selfish-focused team prevents high out-team cooperation regardless of the value of
ν. Despite this higher cost, out-team cooperation is supported when all teams are team-
focused and ν ∈ {0.2, 0.5}, but fails to materialize when teammates are rarely paired (i.e.,
ν = 0.06).

In summary, out-team cooperation emerges when teammates are paired more often,
there exist more non-teammates that are either team- or system-focused, and the cost of
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cooperation is low. High levels of cooperation tend to be robust to a small number of
self-focused agents in the population if the cost of cooperation is low; however, higher cost
or more self-focused defecting agents tend to make agents learn to only cooperate with
their teammates despite other potential gains to be had through mutual cooperation with
agents in other teams.

Winning Credo

Figure 5.6 shows which full-focused credo the team that achieved the highest team-
wide reward followed in each of the environments studied in Figures 5.3 to 5.5. While
self-focused teams have the ability to gain more reward (a maximum of b in Table 2.1
compared to a maximum of b − c in the common interest game in Table 3.2), our results
show they often fail to achieve the highest reward. The orange hexagons indicate that team-
focused teams overwhelmingly collect the highest team reward when playing the IPD with
various combinations of other teams in the environment. Interestingly, we find that team-
focused agents are able to maintain cooperative policies with their teammates in settings
with large amounts of self-focused agents. When no team-focused teams are present, self-
focused teams tend to dominate the system-focused teams; however, system-focused teams
do better when c = 1 and ν = 0.5 since cooperative system-focused teammates are paired
more often.

One main result in Figure 5.6 is similar to findings in evolutionary game theory (EGT).
At the single agent level, EGT has shown that a single defector will perform best in a
population of cooperating agents [222]. Our work expands this finding to the team level
and explores this concept with RL agents – a team of self-focused agents tends to perform
best in a collection of system-focused teams (bottom of each environment). We find this
is not the case only when self-focused agents are paired at least half of the time. We find
that team-focused agents are able to maintain mutual cooperation with their teammates
and other team-focused agents to achieve the highest rewards in the majority of settings.
Contrary to EGT that states defection will spread over a population once introduced, the
defective behavior of the self-focused team does not make team-focused agents’ become
non-cooperative with certain groups.

Losing Credo

Figure 5.7 shows the full-focused credo of the team that achieved the lowest mean
team reward in each environment. Team-focused teams tend to only receive the lowest
team reward in situations with low probability of being paired with a teammate ν and low
cost of cooperation c (top left triangle plot). In these settings, team-focused agents get
exploited by the self-focused teams they interact with more due to the low probability of
being paired with a teammate ν, shown through high cooperation in the out-team setting
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Figure 5.6: IPD: Full-focused credo that achieved the highest team-wide average reward
in different environments. We experiment with different probabilities of being paired with
a teammate ν ∈ {0.06, 0.2, 0.5}, cost ∈ {1, 2, 3}, and the benefit is 5.
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Figure 5.7: IPD: Full-focused credo that achieved the lowest team-wide average reward
in different environments. We experiment with different probabilities of being paired with
a teammate ν ∈ {0.06, 0.2, 0.5}, cost ∈ {1, 2, 3}, and the benefit is 5.

80



in Figure 5.3. We also observe that system-focused teams tend to perform the worst when
c ≥ 2 and ν ≤ 0.2. This is due to self- and team-focused agents cooperating less with other
teams as c increases; however, system-focused agents still attempt cooperation and get
exploited. Contrarily, when ν is high and teammates are paired more often, self-focused
teams perform the worst since selfish agents are paired together more often.

Similar to the results in Figure 5.6, our results in Figure 5.7 echo those of EGT. For
example, our results show that system-focused teams tend to perform the worst in most
environments when there is a self-focused team present (bottom of each environment). This
expands the EGT result of cooperators doing worse in the presence of a few defectors [222].
We also find that system-focused teams tend to perform the worst in the majority of other
environments when team-focused teams are present. This is due to less cooperation between
different teams caused by the increased cost of cooperation c and the system-focus agents
being exploited by the defecting self- and team-based agents.

Multi-Focus Credo

Next, we experiment with settings where agents can simultaneously partially optimize for
their own, their team’s, or the system’s goals through various definitions of their credo pa-
rameters, denotedmulti-focus credo. We use the same environmental settings as Figure 5.1,
so that ν ∈ {0.06, 0.2, 0.5}, the cost c ∈ {1, 2, 3}, and the benefit b = 5 to understand how
credo and environmental parameters impact how agents learn. We evaluate the case where
all agents have the same credo parameters, that is, cri = crj∀i, j ∈ N .

Figures 5.8 to 5.10 show our results for various combinations of credo with 0.2 step credo
increments, teammate pairing probability ν (rows), and the cost of cooperation c (columns).
Each setting of different cost has nine different environments (three environments per-
figure), each with 21 combinations of credo represented by the intersections of dotted lines
from the three axes of each triangle in Figures 5.8 to 5.10. In the IPD, mutual cooperation
yields the highest mean population reward. Similar to Figures 5.3 to 5.5, the hexagonal
area around each intersection point is colored according to the global percent of actions
which were to cooperate from blue (less cooperation) to red (more cooperation) over the
last 25% of the timesteps. RL agents are able to condition their policy on the information of
their counterpart’s team, allowing us to observe how they learn behavior towards different
groups. For each environment, we plot the total cooperation (left plots), cooperation with
teammates (In-Team; middle plots), and cooperation with non-teammates (Out-Team;
right plots).

Across all environments, agents achieve high cooperation when they have full system-
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Figure 5.8: IPD: Cost is 1 and all agents follow the same credo. Percent of actions that
are cooperation (Total), only with teammates (In-Team), and only with non-teammates
(Out-Team). We experiment with different probabilities of being paired with a teammate
ν ∈ {0.06, 0.2, 0.5} and the benefit is 5.

82



Figure 5.9: IPD: Cost is 2 and all agents follow the same credo. Percent of actions that
are cooperation (Total), only with teammates (In-Team), and only with non-teammates
(Out-Team). We experiment with different probabilities of being paired with a teammate
ν ∈ {0.06, 0.2, 0.5} and the benefit is 5.
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Figure 5.10: IPD: Cost is 3 and all agents follow the same credo. Percent of actions that
are cooperation (Total), only with teammates (In-Team), and only with non-teammates
(Out-Team). We experiment with different probabilities of being paired with a teammate
ν ∈ {0.06, 0.2, 0.5} and the benefit is 5.
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focus (left corners of each triangle) and learn defection when agents are fully self-focused
(right corners of each triangle). Despite the incentive to defect in eight of nine environ-
ments, fully team-focused agents learn high cooperation in five environments (top corners
of each triangle). The pattern of cooperation in each team-focused environment where
agents learn cooperation is similar to the behavior in Figure 5.2, where agents adapt their
cooperative behavior with teammates (In-Team) towards non-teammates (Out-Team). In
environments with a lower cost of cooperation (i.e., c = 1 in Figure 5.8), cooperation is
robust if full team-focus can not be achieved, such as when self-focus is ψi = 0.2. In these
settings when agents are slightly self-focused, the rate of cooperation is higher when agents
have high team-focus compared to high system-focus (i.e., darker red with high team-focus
compared to system-focus when ψi = 0.2). However, this cooperation level depends on the
probability of being paired with teammates ν and cost c. This is shown by both in-team
and out-team cooperation decreasing as a function of ν observed in Figure 5.9 and no par-
tially self-focused credo leading to cooperation when c = 3 in Figure 5.10. Unlike previous
implementations of teams that assume agents have full common interest [99, 13, 36], we
find teammates are not required to be fully aligned to achieve cooperative behavior in some
settings.

These results show that teams of highly team-focused agents have the ability to support
more cooperation when some self-focus exists than settings with high system-focus despite
incentives to defect. Contrary to Gretzky’s belief in the beginning of this chapter, our
results indicate teams still achieve good results despite some self-focus among agents in
teams. To understand this significance, consider situations where full common interest
among teammates may not be guaranteed or all agents are unable to be controlled. Shown
next, results in the Cleanup domain actually improve beyond full system-focus with certain
credo parameters.

5.4.2 Cleanup Gridworld Game Results

Using the Cleanup environment, we experiment with N = 6 agents learning with Proximal
Policy Optimization (PPO) [214] divided into three teams (|T | = 3) of two agents each
(|Ti| = 2) with the multi-focus credo setting (i.e., when agents can partially optimize their
behavior for self, team, or system rewards simultaneously). Past work that has used the
Cleanup domain typically uses five agents (N = 5) for a time of 1.6×108 environment steps
(each episode is 1,000) [96, 254]. We increase the population to six agents (N = 6) to allow
for three equal sized teams and calculate metrics over the last 25% of timesteps, similar to
the IPD evaluation. Agent observability is limited to a 15 × 15 RGB window centered on
the agent’s current location. Teammates appear as the same color and optimize their own
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Figure 5.11: Cleanup: Mean population reward for every credo in our evaluation. These
experiments have |T | = 3 teams of two agents each. The scenarios with the highest reward
often have agents with slight self-focus. We identify two types of credo scenarios that
achieve the highest reward, when credo has slight self-focus paired with high system-focus
(green star) and when team-focus is high (yellow stars).
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Rcr
i after each timestep. Each experiment is completed eight times with different random

seeds.

Mean Population Reward in Cleanup

While success in the IPD relies on agents choosing to cooperate in direct interactions, suc-
cess in Cleanup requires agents to coordinate and form an effective joint policy to clean the
river enough for apples to grow. Figure 5.11 shows the mean credo-based population re-
ward per-episode Rcr for all 21 credo configurations in Cleanup (intervals of 0.2), removing
the subscript i when referencing all agents. The mean population reward gives insight into
how well agents learn to solve the dilemma. Each hexagon corresponds with a combination
of credo, centered at the intersections of three dotted lines from each axis (self, team, and
system). Hexagons are colored according to the mean population reward from low (white)
to high (red).

Fully self-focused agents fail to solve the dilemma, receiving the lowest mean pop-
ulation reward of any scenario. Previous work has found that the highest rewards in
Cleanup are obtained when agents optimize for reward signals from all agents (i.e., system-
focus) [254, 145, 71]. However, we find that some self- or high team-focus improves the
mean reward significantly over the system-focused setting. We divide the five highest-
reward environments into two scenarios shown in Figure 5.11. First, Scenario 1, when
agents with high system-focus also have slight self-focus (Figure 5.11, green star), and sec-
ond, Scenario 2, when agents have high team-focus relative to their other credo parameters
(Figure 5.11, yellow stars). These scenarios achieve at least 30% higher mean population
reward per-episode than the fully cooperative setting (system-focused; left corner).

Achieving High Reward in Scenario 1: The first scenario we examine is when
highly system-focused agents have slight self-focus, cri = ⟨0.2, 0.0, 0.8⟩ (green star). Agents
with this credo achieve 33% higher reward per-episode compared to a population with full
common interest. This result is comparable to a similar finding in past work [55], where
a cooperative group performs best when agents have some selfish preferences of how to
complete a task. This suggests that, despite using an entirely different domain, agents
with high common interest but slight self-focus may consistently contribute to high group
performance and is worthy of more exploration.

Achieving High Reward in Scenario 2: With the introduction of teams-focus, we
more closely examine another credo scenario that contains four of the top five experiments
with high mean population reward. The yellow stars in Figure 5.11 show experiments
when agents have high team-focus relative to their other credo parameters, specifically
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cri ∈ {⟨0.0, 1.0, 0.0⟩, ⟨0.2, 0.8, 0.0⟩, ⟨0.0, 0.8, 0.2⟩, ⟨0.2, 0.6, 0.2⟩}. As discussed in Scenario 1,
agents with high system-focus experience a decrease in rewards when they are too system-
focused. In Scenario 2, high team-focused agents achieve high rewards regardless if self-
focus is zero or 0.2, echoing our result in the IPD that teammates are not required to have
full common interest to achieve good results. These insights may be useful when attempting
to influence credo in settings where agents are unable to guarantee their amount of self-
focus or team commitment.

Division of Labor in Global Joint Policies

We find that agents in the highest-reward experiments (stars in Figure 5.11) often learn to
divide labor and specialize to either clean the river or pick apples. This ability to coordinate
with other teams and fill roles significantly impacts the global reward. This distribution of
roles forms a global joint policy that we can analyze to determine how credo parameters
impact the behaviors that agents learn. We observe the best division of labor strategy
when two agents clean the river (i.e., cleaners) and four agents pick apples (i.e., pickers).
In the following analysis, each line in Figures 5.12 and 5.13 represent the behavior of a
single agent. For example, a line labeled “a-0/T0” represents agent 0 belonging to team 0.
Teammates appear as different shades of the same color (T0 blue, T1 red, and T2 green).
In adjacent trials, agents with the same label (i.e., a-0/T0) may learn different behavior,
making aggregating policies from all eight trials difficult. Therefore, we present figures
from one trial representing the most commonly learned behavior in each setting.

Division of Labor in Scenario 1: We first analyze the division of labor in Scenario
1 (green star in Figure 5.11). Figure 5.12 shows the number of apples picked (top) and
cleaning actions taken (bottom) by all six. The left plots show when agents are fully
system-focused (cri = ⟨0.0, 0.0, 1.0⟩) and the right plots shows when agents are slightly
self-focused (cri = ⟨0.2, 0.0, 0.8⟩). The full system-focused population develops into four
cleaning agents and two apple pickers, with each cleaner receiving rewards from both pickers
regardless of team membership (due to system-focus). This amount of reward suppresses
any desire for cleaning agents to learn to pick apples, causing the population to reach
a local minimum. The two apple pickers pick over 700 apples each resulting in a mean
population reward of Rcr = 230.3. However, increasing the self-focus to ϕi = 0.2 (right
plots) provides enough individual incentive to for four agents to learn to pick apples and
collect 600 apples each for Rcr = 305.5. Due to high system-focus, the two cleaning agents
receive enough reward from all four pickers to incentivize them to continue cleaning, and
the entire system achieves 33% higher reward by escaping the previous local minimum.
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Figure 5.12: Cleanup: (Scenario 1) high system-focus with slight self-focus. Agents are
labeled so that “a-0/T0” represents agent #0 belonging to team #0. Each column of plots
shows (left) fully system-focused agents and (right; green star in Figure 5.11) when agents
become slightly self-focused. Better division of labor strategies are learned when self-focus
increases from zero to 0.2 by enticing four agents to pick apples instead of just two, leading
to 33% higher reward.
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Figure 5.13: Cleanup: (Scenario 2) high team-focus achieves high rewards despite a small
amount of self-focus. Each column of plots shows when team-focus is 0.6 (left) and 0.8
(right, a yellow star in Figure 5.11), offset with self-focus. As team-focus increases, two of
the teams end up having one teammate cleans the river, leading to better global division
of labor. This strategy is maintained when agents are fully team-focused as well.
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Division of Labor in Scenario 2: We now analyze when agents have high team-
focus compared to their other credo parameters (yellow stars in Figure 5.11). Of the
four experiments in this scenario, we choose cri = ⟨0.2, 0.8, 0.0⟩ and compare with cri =
⟨0.4, 0.6, 0.0⟩.

The columns of Figure 5.13 represent when agents increase team-focus from 0.6 (left)
to 0.8 (right), with the remaining credo being self-focus. When team-focus is 0.6 (left),
only one team (T2, green) learns to divide into the different roles of one river cleaner and
one apple picker. While a-0 on T0 (dark blue) fully learns to pick apples, their teammate
(a-1) does not fully learn the role of river cleaner. This agent attempts to also pick apples
and free ride on the cleaning of a-5. T1 does not commit either agent to clean the river,
resulting in fewer than two full river cleaners overall. This hinders population reward, since
fewer than two total cleaners is unable to generate enough apples to support the remaining
apple pickers. Thus, the four main apple pickers only collect an average of just over 400
apples each for a mean population reward of Rcr = 249.8.

In the right column when agents have higher team-focus (cri = ⟨0.2, 0.8, 0.0⟩, yellow star
scenario), two teams learn to divide into one river cleaner and one apple picker, ensuring
two agents are always cleaning. This produces enough apples for four pickers to collect
about 600 each and both cleaners receive enough shared reward to overcome the incentive
to free ride. As a result, the population earns Rcr = 299.4, which is 20% more reward
than when cri = ⟨0.4, 0.6, 0.0⟩ (left) and 30% more reward than the full common interest
setting cri = ⟨0.0, 0.0, 1.0⟩ (Figure 5.12 left). This division of labor is consistently learned
when team-focus is high (yellow stars).

Overall, our results show specific combinations of credo support globally beneficial
behavior among a population of teams. We expand a result from [55] to social dilemmas
showing some selfishness improves group performance. Furthermore, we identify that agent
specialization within their component teams results in high team-focus achieving more
reward than fully system-focused credo.

Reward Equality Among the Population

Similar to Chapter 4, we now analyze reward equality among the population to understand
if certain credo parameters create inequality. Since agents do not receive any exogenous
reward for cleaning the river, it is important to consider the implications and potential
side effects of credo and teams on population equality, or how evenly reward is distributed
among a population of agents. We model population reward equality as the inverse Gini
index, similar to past work [145]:
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Figure 5.14: Cleanup: Inverse Gini index for every credo in our evaluation. These exper-
iments have three teams (|T | = 3) teams of two agents each (|Ti| = 2). Despite drastically
different rewards, the credos that achieve high rewards also have high equality.

92



Equality = 1−
∑N

i=0

∑N
j=0 |Rcr

i −Rcr
j |

2N2Rcr
, (5.3)

where values closer to 1 represent more equality. Figure 5.14 shows our results for equality,
where darker red corresponds with the reward being more equal across the population. The
full system-focused case, by definition, has perfect equality since all agents share rewards
equally. Scenario 1 still has high system-focus and also achieves high equality. In Scenario
2, we observe the two agents that learn to clean the river always emerge from two teams
learning to divide their labor (i.e., one team does not only clean the river). Since each team
has at least one apple picker agent, and agents have high team-focus to share rewards with
cleaners, the population maintains high equality. Both scenarios achieve more equality than
fully self-focused agents cri = ⟨1.0, 0.0, 0.0⟩ while obtaining significantly higher reward.

5.5 Discussion

We proposed a model, credo, that regulates how agents optimize their behavior for different
groups they belong to (i.e., self (a group of one), teams, or system). Our analysis serves as
a proof of concept for exploring how agents simultaneously optimize for multiple objectives
and learn to cooperate and coordinate. Our main contributions are two-fold.

• We show how agents form cooperative policies that are robust to some amount of
self-focus. Furthermore, in a population where some agents may be fully self-focused,
team-focused agents overwhelmingly achieve the highest reward.

• We find that agents achieve high population reward in Cleanup with high team-focus
or slight self-focus (paired with high system-focus) compared to other combinations
of credo parameters. This is achieved by agents learning more efficient global joint
policies of division of labor under specific credo parameter combinations with teams.

Our results show how teams are not required to have full common interest to achieve
high reward, unlike previous definitions of teams [99, 13, 36]. This has significant implica-
tions in settings where the amount of agents’ self-focus may be unknown or full alignment
of a group’s interests may not be possible or desired.

A key takeaway of this work is that a fully cooperative system of individual learners
may not achieve the highest reward, despite several recent studies using this scenario as
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a basis for comparison [254, 71, 145]. This is consistent with our finding in Chapter 4
and is contrary to the spirit of Gretzky’s observation from the introduction: a certain
amount of personal striving can be beneficial for the overall system. We observed that
fully cooperative populations did not take full advantage of the efficiencies of labor division
and task specialization, which did arise when agents had some self- or team-focus. This
tended to be particularly problematic as the number of agents sharing rewards increased,
indicating a correlation between team structure, credo, and learning role specialization.

Similar to a recent single-agent finding [9], we hypothesize this is potentially due to
the increased complexity in the credit assignment problem as the reward-sharing group
increases in size. We explore this idea further in Chapter 6. The credo model offers a
potential solution to mitigate this credit assignment problem in the context of teams. If
agents’ credo parameters are actively tuned to emphasize self- or team-focus, agents that
are incurring credit assignment problems may gain a stronger feedback signal for their
actions, guiding them towards better policies. On the other hand, agents initialized to be
fully self-focused may converge to more cooperative policies if they tuned their credo to
encompass teams or the system as a whole. In general, this may be viewed as a form of
meta-learning where some credo-regulating policy learns to shape the environment for a
lower-level behavioral policy. We envision a credo-tuning approach being implemented in
two ways: centralized or decentralized. Using a centralized credo-tuner has the advantages
of striving for global goals such as egalitarian or utilitarian ideas of equity, diversity, or
productivity at a cost of potentially significant overhead. A fully decentralized credo-tuning
model may make analyzing systems and the resulting equilibria even more challenging but
carries the advantages of scaling linearly with the number of agents. We implement a
preliminary decentralized model of self-tuning credo agents in Section 6.6 of Chapter 6 and
achieve promising preliminary results.

We see more interesting directions for this work such as analyzing situations when
teammates have different credo, how agents could influence the credo of teammates or
other teams, or studying how results vary with different team structures. This includes
understanding which processes achieve the highest behavioural influence in decentralized
communities in the presence of team structures and group memberships. We hope that
this work helps inspire future directions studying multiagent teams, multi-objective opti-
mization, and the design and impacts of incentives to improve system performance.
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5.6 Conclusions

This chapter introduced credo, a model that regulates how agents optimize for multiple
objectives in the presence of teams. Agents’ credo parameters determine how much of
their reward function is influenced by various groups they belong to: themselves (a group
of one), any teams they belong to, and the entire system. Credo relaxes the assump-
tion that teammates fully share rewards. By implementing and studying credo, we have
uncovered interesting theoretical and empirical results. Our results indicate that highly
team-focused or slightly self-focused (with high system-focus) agents achieve the highest
mean population reward in Cleanup, significantly higher than fully cooperative populations
while maintaining high reward equality. These results are robust to some amount of self-
focus among highly team-focused teammates and suggest some correlation between team
structure, credo, and learning role specialization. While we have analyzed the influence of
teams and credo on policy development in the previous two chapters, we have not provided
a theoretical understanding as to why these groups perform better than a fully cooperative
population. In the next chapter, we provide theoretical underpinnings to this result and
expand on our hypothesis about the connection to the credit assignment problem.
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Chapter 6

How Teams Impact Learning

The previous chapters explored how dividing a population of agents into teams and chang-
ing agents’ credo parameters impacts the individual and joint policies that are developed.
One main finding of the previous chapters is that team-focused agents, or system-focused
agents with a small amount of self-focus, both achieve significantly higher mean popula-
tion reward than a fully aligned cooperative population in some mixed-motive domains.
This is significant considering that past research assumes a fully cooperative population
achieves the highest reward in mixed-motive environments and uses this setting as a basis
for comparing with their results [266, 71, 145]. Formally understanding why fully cooper-
ative populations may be sub-optimal is important. While the two previous chapters use
social dilemma domains, we now broaden the scope to understand general characteristics
of environments that support this type of result. The goal of this chapter is to provide
theoretical groundwork as to the conditions under which team structures properly support
individual learning agents to develop better policies.

6.1 Introduction

To effectively work as a team, agents must learn coordination and cooperation with other
agents in the environment. In settings with individual learning agents, teams are typically
defined so that agents learn from their individual experiences, but share environmental
rewards, creating a single team reward [144, 13]. In this chapter, we further investigate
how teams and different team structures influence and guide the underlying learning process
of individual agents.
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Past researchers studying agent cooperation often compare their results with the fully
cooperative population (i.e., a single team), assuming this population achieves the most
reward in mixed-motive domains [266, 71, 145]. Furthermore, recent work [55] and our
previous chapters have indicated that non-fully cooperative populations can actually learn
more productive joint policies than a fully cooperative population. Even though a larger
team has more agents at its disposal to perform tasks, smaller teams can achieve better
global outcomes because agents learn more efficient joint policies. We have also shown that
more effective joint policies are learned with some amount of self-focus credo. While these
phenomena have been observed across multiple domains, the cause for better joint policies
with mixed incentives is not fully understood.

This chapter provides theoretical groundwork as to why, and under which conditions,
smaller teams outperform larger teams, as shown in Chapters 4 and 5. We focus on two
areas of how teams impact learning:

1. How the introduction of teammates initially improves the ability for individual agents
to learn about valuable areas of the state space (Section 6.3).

2. How the credit assignment problem (i.e. learning the value of taking a particular
action) becomes more challenging as a team gets larger (Section 6.4).

These two axes of analysis characterize how teammates can be beneficial for learning
to a point, since too many teammates can lead to sub-optimal results. In particular, we
make the following contributions:

• In Section 6.3 we theoretically explore how teams can reduce the complexity of learn-
ing problems in certain environments.

• In Section 6.4 we show how sub-optimal team structures increase the difficulty for
agents to identify valuable experiences, expanding previous work [9] to the multiagent
team setting.

• In Section 6.5 we validate our theory empirically using widely used multiagent testbeds.

6.2 Background

We follow the same stochastic game definition and model of teams as the previous chapters.
Much of our theory explores concepts within the internal dynamics of a single team even

97



though our theory depends on all N agents and scales to environments with multiple
teams; thus, we use “team structure” to denote “team size” when considering a single
team to remain consistent with previous chapters. As done previously, we refer to the
set of all teams as T , the set of teams agent i belongs to as Ti, and a specific team that
agent i belongs to as Ti ∈ Ti. Agents on a team share rewards evenly by the definition in
Equation 3.1. For readability, in this chapter we define the size of a team |Ti| = n and
modify the notation of the team reward function to be TRi[n] to emphasize the feature of
team size.

Much of our theory relies on features of agent or team trajectories. We define τi =
{(s1i , a1i ), (s2i , a2i ), · · · , (sHi , aHi )} to be a trajectory of individual state-action pairs generated
by agent i following πi over H timesteps. A joint policy for Ti is the collection of individual
behavior policies of all n agents in Ti, πTi

. A joint trajectory for team Ti, τ Ti
, is the

collection of joint state-action pairs generated by agents in Ti. We are required to index
trajectories in three ways:

1. τ t
Ti

is the joint state and joint action at time t, τ t
Ti
= (stTi

, at
Ti
).

2. τ 1:t−1
Ti

is the joint trajectory for team Ti up to time t− 1,

τ 1:t−1
Ti

= {(s1Ti
, a1

Ti
), · · · , (st−1

Ti
, at−1

Ti
)}.

3. τ−t
Ti

is the H-timestep joint trajectory for team Ti without timestep t,

τ−t
Ti

= {(s1Ti
, a1

Ti
), · · · , (st−1

Ti
, at−1

Ti
), (st+1

Ti
, at+1

Ti
), · · · , (sHTi

, aH
Ti
)}.

Let Z(τ Ti
) be a random variable denoting the team random return obtained after team

Ti completes the joint trajectory τTi
following their individual policies that compose πTi

.
We define ZTi

≜ Z(sTi
, aTi

) to be a random variable denoting the team reward observed
at the joint state of all teammates sTi

having taking joint action aTi
and following their

individual policies thereafter. Note that sTi
is dependent on all N agents in the system by

definition of stochastic games.

6.3 Identifying Valuable State-Action Pairs

We study the most restrictive case where teammates have no communication or coordi-
nation mechanisms and focus only on features of the team reward function. This isolates
the impact that teammates have on the development of each others’ policies to only their
value functions. Therefore, we are able to analyze how teams distribute reward through
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Figure 6.1: 2-States: Diagram of our two state example environment. A stochastic game
diagram with two agents is given in Figure 6.2.

the shared team-based reward function to understand how teams impact learning. By
the definition of a stochastic game, rewards obtained from the environment depend on the
joint states and actions of all agents. Thus, there can exist reward-causing state-action
pairs – experiences that may not yield reward themselves, but allow reward to be obtained
elsewhere in the environment [8]. Identifying these pairs can be challenging, since inde-
pendently each state may provide little or no reward and agents need to learn about them
indirectly.

We want to understand when teams of agents can leverage these reward-causing state-
action pairs. We distinguish between the direct reward an agent receives from the environ-
ment when transitioning into their own observed state st+1

i , Rt
i(s

t, at, st+1
i ), and the team

reward, TRi[n]. Note the condition on an agent’s individually observed next state instead
of the condition on the joint state. We identify an environmental property where the
team reward signal is stronger than the individual reward signal (i.e., E

[
Rt

i(s
t, at, st+1

i )
]
<

E
[
TRi[n]

]
) because of the reward-causing state-action pair effect. This signal causes agents

to become more attracted to, and thus learn to execute, reward-causing state-action pairs
more often.

Consider the two state environment shown in Figure 6.1 – a modified version of the
4-States environment presented in Chapter 3 without the extra s3 and s4 states. This envi-
ronment can support any number of agents (N ≥ 1), and the state transitions and rewards
depend on the joint action of all N agents. For simplicity, we assume the existence of only
one team (i.e., n = N). Similar to the explanation of states in the 4-State environment
in Chapter 3, we emphasize two types of states in the 2-States environment to assist our
reward dynamics discussion:

• sti is the physical state that agent i observes at time t.
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• st is the joint state of all agents, or the state of the environment (i.e., the collection
of sti for all i ∈ N).

There exists two physical states that agents individually observe: sc and sr. Agents
have two actions: stay at their current state (a0) or move to the other state (a1). The
“c” in sc corresponds with a binary signal (explained below) and the “r” in sr refers to a
reward state.

There is never a non-zero environmental reward given to agent i for transitioning to
sc, thus R

t
i(s

t, at, st+1
c ) = 0. However, any agent (regardless of team affiliation) visiting

sc changes a binary signal c that allows reward to be collected at sr. Thus, the possible
rewards (dependent on c) given to any agent in sr are R

t
i(s

t, at, st+1
r ) = {0, r}, where r > 0.

When agent i individually transitions to sr, their reward (before sharing with their team) is
Rt

i(s
t, at, st+1

r ) = 0 if c = 0, and their reward is Rt
i(s

t, at, st+1
r ) = r if c = 1. Once reward is

consumed at sr, c has to be reset by visiting sc again. Thus, the reward-causing state-action
pair in this environment is to “visit sc”, causing a reward to be obtained when visiting
sr. With teams, the rewards given to individual agents for their actions are transformed
into the team reward by Equation 6.1 for agents to learn from (same as Equation 3.1 with
notation TRi[n], repeated for the reader).

TRi[n] =

∑
j∈Ti

Rj(S,A, S
′)

|Ti|
, (6.1)

Figure 6.2 shows a stochastic game diagram of this two state environment with two
agents: i and j. The possible scenarios of the game are labeled so that sc(i, j) represents
both agents being in physical state sc. The reward represents the total reward yielded
from the environment in that specific game state (i.e., reward = 2r represents both i and j
receiving r). For any agent to obtain the reward of r at sr, some agent in the environment
must visit sc to change the binary signal to c = 1. With just two agents, there are
multiple joint policies that yield optimal reward on which agents must learn to coordinate.
Specifically, the two agents could 1) both move between sc and sr together, 2) transition
from sc to sr (vice versa) with a1 to never be in the same state, or 3) both agents use a0
to always stays in sc or sr.

We can generalize features of this environment to support theory about how teams
impact learning under certain conditions. In doing so, our theory is applicable to any
multiagent environment where the following assumptions hold:

1. Agents’ policies are initialized at random and fully explore the state space in the
limit.
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Figure 6.2: 2-States: Stochastic game diagram induced from our two state environment
in Figure 6.1 with two agents. Game states are labeled so that sc(i, j) represents both
agents (i and j) being in physical state sc.
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2. The environment yields mid-episode rewards (not only at termination state) and any
agent can collect a non-zero reward.

3. Executing a reward-causing state-action pair returns the minimum reward in the
environment if the agent is not in a team (e.g., visiting sc returns a reward of 0, the
minimum reward of the environment in Figure 6.1).

Theorem 1. There exists an environment where increasing the team size increases the
probability of an agent receiving a reward for executing any reward-causing state-action
pair that is greater than if they were not in a team.

Proof. Due to agent’s policies being initialized uniformly at random at the beginning of
learning, we assume full coverage of the state space by all independent agents in the
limit (Assumption 1). Subsequently, suppose agent i is executing a reward-causing state-
action pair that yields the minimum reward in the environment (Assumption 3). Any
teammate moving to a reward state increases the reward i receives for executing that
reward-causing state-action pair through TRi[n] compared to when i acts individually.
This is because i would receive the minimum reward in the environment for executing a
reward-causing state-action pair if they did not have teammates; whereas, a teammate
being in a reward state shifts some reward to the reward-causing state-action pair through
TRi[n]. Assuming independence among agents, the probability of any teammate j being
in a reward state sr is equal to the product of agents not being in sr subtracted from 1.
Let 0 < ζ < 1 be the probability that a teammate j is not located in a reward state, sr,
where ζj = ζk for each j, k ∈ Ti (i.e., ζ is assumed to be equal for all teammates). For a
team of size n, the probability of any teammate being in a reward state at any timestep
is p(sj = sr) = 1 − ζ(n−1). Since 0 < ζ < 1, the second term ζ(n−1) → 0 as n → ∞. As a
result, the overall probability of any teammate being in a reward state p(sj = sr) converges
to 1 as team size increases.

This theorem has direct implications on the policy that i learns – more positive reward
for executing a particular state-action pair will cause i to execute that pair more often. A
larger team monotonically increases the probability that any teammate will be in a corre-
sponding reward state and instantaneously share this reward with i through TRi[n]. From
the perspective of individual agents, this distributes the environment’s reward function to
other valuable areas of the state space.

Consider our two state environment in Figure 6.1. Agents individually receive a reward
of 0 for visiting sc but receive a reward of r for visiting sr when c = 1. Without teammates
(n = 1), agent i only receives the environmental reward when visiting sc (i.e., reward of 0).
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With teammates, i receives a reward (through TRi[n]) of at least
r
n
> 0 when visiting sc if

at least one teammate is visiting sr. The probability of receiving this reward (or greater)
increases if there are more teammates that can be in reward states. The implications of
this is that i will learn the benefit of executing it’s part in a reward-causing state-action
pair, leading it to execute this role more often.

6.4 Team Impacts on Credit Assignment

Whereas the previous section showed how introducing teammates increases the probability
that agents receive a better reward for executing reward-causing state-action pairs (i.e.,
visiting sc), this section analyzes the relationship between team structure and the distribu-
tion of rewards across all state-action pairs as a function of team size. We use information
theory to explore how sub-optimal team structures impact the ability of agents to perform
credit assignment despite a higher probability of receiving non-zero reward.

6.4.1 Information Sparsity in Single-Agent Settings

Credit assignment is concerned with identifying the value of past actions on the observed
future outcomes and rewards. In single agent Markov Decision Processes (MDPs), informa-
tion theory has been used to formalize conditions which make credit assignment infeasible,
such as when the environment does not provide enough information (through reward) for
an agent to learn an optimal policy [9]. We expand this concept to our setting. Let si ∈ Si

and ai ∈ Ai represent any arbitrary state and action by an agent i within their individual
state and action spaces. Following the single-agent case definitions in Arumugam et al., [9]
(i.e., if N = 1), let Zi be a random variable denoting the return for a single agent having
taken action ai in state si, and following πi thereafter. The information gained by πi is
also a random variable, defined as:

Iπi
si,ai

= DKL(p(Zi|si, ai)||p(Zi|si)), (6.2)

the Kullback-Leibler (KL) divergence between p(Zi|si, ai), the distribution over returns for
random state-action pairs conditioned on a particular state and action (i.e., the Q-value),
and p(Zi|si) = Σai∈Ai

πi(ai|si)p(Zi|si, ai), the distribution over random returns for the state-
action pair conditioned on a particular state si (i.e., the value function). Equation 6.2
is the distributional analogue to the advantage function in reinforcement learning (RL),
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Aπi = Qπi(si, ai)− V πi(si), the difference between the value of taking action ai at state si
and the expected value of state si. Let d

πi be the distribution of states visited and actions
taken by i’s policy. The expected amount of information carried by the actions of πi about
the return of those state-action pairs is defined as:

I(Ai;Zi|Si) = E(si,ai)∼dπi [DKL(p(Zi|si, ai)||p(Zi|si))] . (6.3)

Difficulties with credit assignment emerge when I(Ai;Zi|Si) is small enough that the ac-
tions of a policy carry almost no correlation with the reward signal. Prior work defined an
ϵ-information sparse MDP as when Iπi(Ai;Zi|Si) ≤ ϵ for any initial policy at the beginning
of training [9]. However, Equation 6.3 and ϵ-information sparsity do not fully translate
to the multiagent team setting since they only consider the expected information. Teams
modify the distribution, or variance, of information (Equation 6.2) across state-action pairs
conditioned on the experienced values of the team reward random variable, ZTi

.

For example, consider a non-ϵ-information sparse single-agent MDP environment where
one state-action pair yields reward r and every other state-action pair gives a reward of
zero. If r is divided evenly and distributed so that every state-action pair yields the same
reward, I(Ai;Zi|Si) is unchanged (due to expectation) but the agent’s policy carries no
correlation with the reward signal. The agent would be unable to learn the same optimal
policy as before (i.e., visiting the state which previously yielded r).

6.4.2 Information Sparsity with Teams

We enrich the definition of information sparsity in the context of stochastic games. This
must consider two aspects of information. First, similar to before, the expected information
gained by i’s individual policy given their team reward function by substituting Zi with ZTi

in Equation 6.2, Iπi(Ai;ZTi
|Si). Second, we must also consider the variance of information

gained by i’s policy over the distribution of their individual state-action pairs given their
team reward function, var

[
Iπi
Si,Ai

(ZTi
)
]
(see Appendix C.1 for the extended KL-Divergence

derivation).

Definition 6. Given a stochastic game with non-stationary policy class πH , let π
0
N denote

the set of initial policies for all N agents employed at the very beginning of learning. For
small constants ϵ > 0 and µ > 0, a stochastic game is (ϵ, µ)-information sparse if:

sup
πi∈π0

N

Iπi(Ai;ZTi
|Si) ≤ ϵ,
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or
sup

πi∈π0
N

var
[
Iπi
Si,Ai

(ZTi
)
]
≤ µ.

Definition 6 states that the actions of any agent i’s policy (within their team’s joint
policy) given their shared team reward function must carry enough information with high
enough variance for i to be able to learn. Otherwise, the stochastic game is considered
(ϵ, µ)-information sparse. Low variance of information is detrimental to credit assignment
since an agent would receive similar rewards regardless of their policy. By redistributing
rewards, teams that fully share rewards can significantly modify var

[
Iπi
Si,Ai

(ZTi
)
]
compared

to settings without teams.

6.4.3 Risks of Sub-Optimal Team Structure

We now analyze convergence properties of the team reward as a function of team size,
conditioned on the behavior of all N agents (i.e., global team structure). Since TRi[n] is
determined by the experiences of all teammates, we focus on the joint policy of agents in
Ti, πTi

, which determines the team return over a joint trajectory, Z(τ Ti
).

First, assume we have a stochastic game withN individual agents (no teams) that is not
(ϵ, µ)-information sparse. By Definition 6, this environment has enough information with
high enough variance for individual agents to be able to learn. Creating teams of agents
in this game impacts the team structure and the reward signals agents learn from. In
Section 6.3, we showed how increasing a team’s size increases the probability of i receiving
a better reward signal for executing a reward-causing state-action pair than without teams.
However, this section shows how the ability to effectively identify these state-action pairs
that cause reward depends on an appropriate team structure.

We now provide theoretical background to show how a sub-optimal team structure
transforms this non-(ϵ, µ)-information sparse stochastic game into an (ϵ, µ)-information
sparse stochastic game by decreasing the variance of information through TRi[n] below µ
as team size increases. In practice, N (or the size of a team n) only needs to be sufficiently
large to reduce the variance of information below µ as agents are grouped together in a
team. This has implications on an agent’s ability to perform credit assignment and learn
an effective policy. To formalize this, we leverage a finding in Arumugam et al. [9] that we
adapt to the multiagent team setting which equates information with reward entropy.

Proposition 1. Let πTi
be the joint fixed behavior policy of agents in Ti that generates

a joint trajectory of experiences τ Ti
, where the randomness of state-action pairs in τ Ti
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depends on all N agents (by the definition of a stochastic game). Let TRt
i[n] be a random

variable denoting the team reward at any timestep t (where the randomness of the deter-
ministic reward follows from the randomness of the joint state-action pairs of individual
agents in Ti at time t, depending on all N agents, τ t

Ti
). It follows that:

I(Z(τ Ti
); τ t

Ti
|τ−t

Ti
) = H(TRt

i[n]|τ 1:t−1
Ti

).

Proof. The chain rule of mutual information gives us:

I(Z(τ Ti
); τ t

Ti
|τ−t

Ti
) = I(Z(τ Ti

); τ t
Ti
, τ−t

Ti
)− I(Z(τ Ti

); τ−t
Ti
) (6.4)

= I(Z(τ Ti
); τ Ti

)− I(Z(τ Ti
); τ−t

Ti
). (6.5)

By the definition of mutual information, we can expand in terms of entropy:

= H(Z(τ Ti
))−H(Z(τ Ti

)|τ Ti
)−H(Z(τ Ti

)) +H(Z(τ Ti
)|τ−t

Ti
) (6.6)

= H(Z(τ Ti
)|τ−t

Ti
)−H(Z(τ Ti

)|τ Ti
). (6.7)

We know Z(τ Ti
) is a deterministic function of τ Ti

due to the deterministic aggregation
(mean reward) of n deterministic reward functions of all teammates. The deterministic
individual reward functions are already dependent on all N agents; thus, we can drop the
second term and simplify to:

= H(Z(τ Ti
)|τ−t

Ti
). (6.8)

Since we know each agent in Ti is optimizing their discounted sum of future team
rewards, we know Z(τ Ti

) = ΣH
t=1γ

t−1TRt
i[n], and can substitute for Z(τ Ti

):

= H(TRt
i[n]|τ−t

Ti
), (6.9)

= H(TRt
i[n]|τ 1:t−1

Ti
, τ t+1:H). (6.10)

Finally, since TRt
i[n] is unable to be impacted by the future (i.e., anything greater than

t), we can remove the correlation with τ t+1:H :
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= H(TRt
i[n]|τ 1:t−1

Ti
). (6.11)

The equality in Proposition 1 states that the information of the joint policy for team
Ti at time t is equal to the entropy, a measure of missing information or uncertainty [219],
of the team reward at timestep t, TRt

i[n], given the team-wide joint trajectory up to time

t. For example, if TRt
i[n] returns the same value at each timestep regardless of the joint

policy, the entropy of this reward function is zero and the information gained by the team’s
joint policy, and each agent’s individual policy within this joint policy, is zero.

Our next step is to show how the variance of TRi[n] converges to zero as a function
of increasing team size. The variance describes the distribution of potential team rewards
given the randomness of state-action pairs experienced by agents in Ti.

Lemma 1. The team reward random variable TRi[n] for any state-action pair converges to
the mean environmental reward (mean of any agent’s individual reward function) as team
size increases in the limit (i.e., TRi[n](s

t, at, st+1)→ Ri as n→∞).

Proof. Since the team reward is an aggregation of n individual and uniformly random

rewards samples from identical reward functions, TRi[n] ≈ N
(
Ri,

σ2
Ri√
n

)
by the Central

Limit Theorem, where var[Ri] = σ2
Ri
. The variance var

[
TRi[n]

]
=

σ2
Ri√
n
, with a derivative

of var
[
TRi[n]

]′
= − σRi√

n3
. Since σRi

=
√
σ2
Ri

is the standard deviation of Ri (i.e., distance

from Ri), we know σRi
> 0. Furthermore, σRi

is a constant and n ≥ 1; thus, var
[
TRi[n]

]′
is negative and converges to zero as n increases in the denominator.

Using Proposition 1 and Lemma 1, we conclude that the information carried by the joint
policy of teammates over the joint trajectory τ Ti

converges to zero as team size increases.

Theorem 2. The information in a stochastic game at time t, I(Z(τ Ti
); τ t

Ti
|τ−t

Ti
), converges

to 0 as the size of a team, n, increases in the limit.

Proof. By Proposition 1, we can use the entropy of TRt
i[n] to determine the information of

Z(τ Ti
) at time t of a trajectory. By the Central Limit Theorem and Lemma 1, let TRt

i[n] be

a Gaussian distributed random variable so that TRt
i[n] ≈ N

(
Ri,

σ2
Ri√
n

)
. For readability, let
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the variance σ2 =
σ2
Ri√
n
. We rewrite the entropy of TRi[n] at time t given the joint trajectory

up to t, H(TRt
i[n]|τ

1:t−1
Ti

), in terms of the function’s variance:

H(TRt
i[n]|τ 1:t−1

Ti
) = −

∫
TRi[n]

p(TRi[n]) log p(TRi[n])

= −E
[
logN (Ri, σ

2)
]

= −E
[
log

[
1√
2πσ2

e−
1
2
(
Ri−Ri

σ2 )2
]]

=
1

2
log

(
2πσ2

)
+

1

2σ2
E
[
(Ri −Ri)

2
]

=
1

2
log

(
2πσ2

)
+

1

2

(6.12)

Since π is a constant, the variance σ2 =
σ2
Ri√
n

regulates the entropy of TRt
i[n]. By

Lemma 1, we know lim
n→∞

σ2
Ri√
n
→ 0. Thus, the entropy and information carried by the actions

of a policy in a stochastic game at time t converges to zero as their team size increases.

Since µ > 0, defining larger teams will turn a non-(ϵ, µ)-information sparse stochastic
game into an (ϵ, µ)-information-sparse stochastic game if the team is too large. In this
setting, TRi[n] would not provide enough information about agents’ individual policies and
has implications on credit assignment, leaving agents unable to learn. Note that our theory
uses equal reward sharing for TRi[n]; however, the results of Theorems 1 and 2 are robust to
any deterministic reward sharing function among teammates so long as teammates get some
share of the team’s reward. For Theorem 1, any deterministic reward sharing function will
increase the probability of getting a higher reward for reward-causing state-action pairs
as a function of the reward sharing group size. For Theorem 2, the only impact of an
alternative sharing mechanism is on the convergence value of Lemma 1 (i.e., Lemma 1 uses
a fixed point of Ri). However, the entropy of the reward signal would still converge to zero
regardless of the reward convergence fixed point (i.e., a modified Lemma 1).

Theorems 1 and 2 imply the existence of an optimal team structure. Increasing the size
of teams can help agents identify reward-causing state-action pairs (Theorem 1); however,
sub-optimal team structures carry the risk of infeasible credit assignment (Theorem 2).
Since ϵ and µ are domain dependent, discovering the best team structure to help agents

108



learn remains subject to many domain specific variables. We can theoretically define a
general rule that this team structure follows:

max n

s.t. sup
πi∈π0

N

Iπi(Ai;ZTi
|Si) > ϵ

sup
πi∈π0

N

var
[
Iπi
Si,Ai

(ZTi
)
]
> µ.

To investigate features of this optimal structure in practice, we next empirically evaluate
teams across multiple multiagent domains that support increasingly large populations of
agents.

6.5 Empirical Results

In this section, we evaluate how the size of teams affect team performance and the policies
agents learn. The learning algorithms used in this evaluation are Q-learning, Deep Q-
Networks (DQN), and Proximal Policy Optimization (PPO) and our environments include
4-States, the Iterated Prisoner’s Dilemma (IPD), the Cleanup Gridworld Game (Cleanup),
and Neural MMO (NMMO). We consistently observe a similar trend across all domains:
performance initially increases with more teammates, but decreases once teams are initial-
ized to be too large. Thus, our results highlight a “sweet spot” team structure that helps
guide agents towards learning good policies in different environments. We highlight fea-
tures of agents’ policies in each environment that provide further insight into their learning
processes.

6.5.1 4-States Environment Results

An action transitions agents to their intended next state with 90% probability and to
another random state with 10% probability. We fix the number of teams to be one (|T | = 1)
and increase n by a factor of 2 to remove the impact of other teams on the binary signal.
Agents use Q-Learning with γ = 0.9 and ϵ-exploration (ϵ = 0.3) for 50 trials of 1,000
episodes (100 steps each).

Due to the small number of states, larger teams in 4-States can generate more reward,
even if agents act randomly (more agents can collect a reward of 1 each in sr). Thus,
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Figure 6.3: 4-States: Team reward (top) and mean difference in Q-values normalized by
maximum Q-value (bottom). We find that teammates are able to coordinate and achieve
high team rewards and understand the value of actions when n = 2; however, large teams
cause agents to struggle with coordination and agents have smaller differences between the
expected value of their actions. This indicates that agents have not learned the value of
particular actions as well in larger teams.
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we measure team reward as a fraction of each team structure’s theoretical optimal reward
assuming no randomness (mean episode reward of 1

2
for n = 1, n−1

n
for n > 1). Figure 6.3

(top) shows the team reward compared to optimal (y-axis) over timesteps of our experi-
ments (x-axis). Each line represents a different team size with 95% confidence intervals.
When n = 1, only 25.2% of the optimal reward is achieved. Increasing to n = 2 dra-
matically increases the reward to 66.5% of the optimal solution, and larger teams result
in diminishing returns. Considering ϵ-exploration and stochastic transitions impose about
33% unintended actions and transitions, n = 2 performs well.

Figure 6.4: 4-States: Mean state visitation fraction of optimal joint policy for different
team sizes (95% confidence intervals). Positive bars indicate more visits to that state than
the optimal strategy and negative bars indicate fewer. Teams when n = 2 perform closest
to the optimal joint policy.

The y-axis of Figure 6.3 (bottom) shows the mean difference in Q-values between ac-
tions, scaled by the maximum Q-value in the table at each timestep. Lower values indicate
agents expect similar values for any action and have not learned the reward dynamics of the
environment. This plot follows the same trend as the reward: agent learn more disparate
Q-values when n = 2, but larger teams cause agents to learn similar values for all actions.
This indicates a decrease of environmental information as n grows.

Figure 6.4 shows the team state visitation frequencies as a fraction of the optimal policy
with 95% confidence intervals (i.e., transitioning between sc to sr when n = 1, and one
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agent in sc while n − 1 agents in sr when n > 1). When n = 1, the agent fails to learn
the value of transitioning to sc. Agents perform closest to optimal when n = 2, suggesting
they learn the value of visiting both sc and sr while avoiding s3 and s4. The agents are
unable to fully converge to the optimal policy due to the stochastic transition function and
ϵ-greedy action selection. With larger n, agents tend to visit sc more often than optimal
and sr with less frequency, suggesting they fail to learn the reward-causing dynamics of
the environment with larger groups, supporting our theory.

6.5.2 Iterated Prisoner’s Dilemma (IPD) Results

We fix the cost c = 1, benefit b = 5, and define two teams (|T | = 2) with increasing sizes
of each team where n = 1 (no teams), n = 2 (one teammate), and then multiples of 5
to study general trends with larger teams. We fix ν = 97% (non-teammates are 16 times
more likely than teammates) and 100% when n = 1 (agents do not play themselves). Each
experiment lasts 1.0× 106 episodes where N = 30 agents learn using DQN [153], repeated
for 20 trials each.

Figure 6.5 shows our results in the IPD environment for the mean population reward
(top) and the difference in Q-values for C and D when paired with non-teammates (bot-
tom). Both graphs share the same x-axis, representing the timesteps of our experiments.

Since mutual cooperation is the result with the highest mean population reward, we use
reward as a proxy for learned cooperation (higher is better). When n = 1, agents converge
to the Nash Equilibrium of mutual defection and obtain the lowest mean population reward.
Consistent with Chapter 4, our results show how having even one teammate allows agents
learn cooperation and achieve high mean population reward despite only being paired with
this teammate 3% of the time. However, team growth has diminishing returns. When
n = 30, the mean population reward approaches the mean reward of the environment,
suggesting agents behave randomly (i.e., Ri = 2 when cost is 1, benefit is 5). This is a
direct example of Lemma 1.

The bottom graph shows how initially providing agents with teammates (n = 2) in-
creases the difference in Q-values significantly since agents learn the benefit of mutual
cooperation. Agents adapt this behavior towards other teams and the population experi-
ences high cooperation and high reward. Further increasing team size tends to reduce the
difference in Q-values until agents have little Q-value difference when n = 30, at which
point agents behave essentially randomly.

As a further analysis into how teams impact learning, Figure 6.6 shows the mean
maximum eigenvalue (λmax) of agents’ policy network Hessian matrices as they learn (log10
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Figure 6.5: IPD: Mean population reward (top) and mean difference in agents’ Q-values
(bottom). We observe smaller differences between Q-values for cooperation and defection
as agents are on larger teams, indicating agents have less preference for either action and
behave randomly when n = 30.
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Figure 6.6: IPD: Mean maximum eigenvalue (λmax) of agents’ Hessian matrices. This
represents the flatness of the loss landscape. We find that λmax initially increases with
teammates; however, large teams leads to a flattening of the loss landscape and agents
learn random behavior when n = 30.

scale). Lower values of λmax represent a flatter optimization surface [107] that makes
convergence through stochastic gradient descent more difficult. When n = 1, the high rate
of 0 reward leads to a flat optimization landscape, but when n = 2 or 5, λmax is the highest
among all team structures we study. As teams grow larger, the loss landscape flattens and
convergence to a minima becomes more difficult. This highlights that teams shape the loss
landscape to assist convergence to a cooperative minima [184], but large team structures
flatten the landscape and reduce convergence abilities.

6.5.3 Cleanup Gridworld Game Results

We configure Cleanup with one team (|T | = 1) and increase team size to remove impacts of
other teams on the conditional reward structure. We implement PPO agents for 10 trials
of 1.6× 108 episodes (1,000 timesteps each) using the Rllib RL library.1

Figure 6.7 shows the team reward (top) and mean policy entropy (bottom) along the
y-axes with 95% confidence intervals, and timesteps along the x-axis. We use policy
entropy (πi entropy) to better understand role specialization on teams, where lower πi

1https://docs.ray.io/en/latest/rllib/index.html
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Figure 6.7: Cleanup: Team reward (top) and mean policy entropy (bottom) with 95%
confidence intervals. We find that n = 2 and n = 4 achieve the highest team reward in
Cleanup and n = 2 achieves the lowest πi entropy. Larger teams lead to lower team reward
and higher πi entropy which indicates more random policies.
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Figure 6.8: Cleanup: Team reward obtained at each location for different agents when
n = 4. Green stars indicate agents that learn to pick apples and yellow stars indicate
agents that learn to clean the river. We compare with Figure 6.9 when n = 6 to show that
agents converge to specialized cleaning roles when n = 4.
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Figure 6.9: Cleanup: Team reward obtained at each location for different agents when
n = 6. Green stars indicate agents that learn to pick apples whereas yellow stars indicate
agents that learn to clean the river. Agents converge to overlapping redundant roles when
n = 6 compared to specialized cleaning roles in Figure 6.8.
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entropy implies higher role specialization and less random actions. Our results follow a
similar trend as seen in 4-States and the IPD. More reward is initially obtained by adding
teammates and is highest when n = 2 or n = 4, due to a division of labor: half of the agents
specialize in each role of cleaning the river or picking apples. When n = 3, two agents
specialize in river-cleaning roles while only one collects apples, causing slightly less team
reward due to more sharing than when n = 2, but collecting fewer apples than when n = 4.
Team structures with n > 4 tend to have decreasing team reward, following our theoretical
findings in Section 6.4.3. We observe that when n = 2, mean πi entropy is lowest and as n
increases, agents policies tend to become more random. Our results indicate a correlation
between team reward and agents’ convergence to specialized roles, measured by lower πi
entropy, and find the lowest mean πi entropy when n = 2.

Figures 6.8 and 6.9 show the mean team reward agents receive at different map locations
when they are in a team of n = 4 (Figure 6.8) and n = 6 (Figures 6.9), where darker red
indicates more reward. We indicate roles that agents converge to with colored stars in
the top right corner of each plot: a yellow star for river cleaning agents and a green star
for apple picking agents. When n = 4, we find that the two agents that specialize in
river-cleaning roles (agent 0 and 3) also spatially divide the labor into different parts of
the river, one in the top half and one in the bottom half. This allows their two other
teammates (agents 1 and 2) to collect apples and reward for the team. However, when
n = 6 we observe that three agents specialize in river-cleaning roles (agents 0, 3, and 4),
but are less specialized in their cleaning locations. Agents 0 and 3 tend to clean the same
segment of the river, converging to redundant policies that do not generate significantly
more apples for their apple-picking teammates to collect.

6.5.4 Neural MMO Results

We implement PPO agents for six trials of 1.5×107 environmental timesteps (episodes are
1,000 timesteps each) using Rllib, similar to in Cleanup. Figure 6.10 shows the NMMO
results. When n = 1, the agent fails to learn the value of collecting both food and water
which results in no reward. As teammates are introduced, the agents learn complimentary
harvesting roles and gain the highest team reward when n = 2, 3, 4. However, we observe
diminishing returns with larger teams (when n > 4). We hypothesize that these values are
highly correlated with the number of inventory item types and harvesting tasks. Similar
to Cleanup, agents have less πi entropy in settings where they achieve higher team reward,
suggesting that agents in these teams have converged to specific roles and act less randomly
than when they have zero or many teammates. This result supports our theory and is
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Figure 6.10: NMMO: Team reward (top) and mean policy entropy (bottom) with 95%
confidence intervals.
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consistent with our other experiments: a sufficient number of teammates results in more
favorable policies, but too many teammates leads to diminishing returns.

Figure 6.11 shows the movement of agents when n ∈ {1, 2, 4, 5, 8, 9}. When n = 1
(Figure 6.11 top left), the agent has difficulty learning about the value of both food and
water, resulting in the agent staying in the center region of the map where there is only
grass and stone (Figure 3.3). When the agent is given a teammate (n = 2; Figure 6.11 top
right), agents reliably converge to complimentary roles and explore different regions of the
environment, collecting either food or water and sharing their resources. This behavior is
also observed when n = 4 with two agents collecting food or water each (Figure 6.11 middle
left). This joint policy generates one of the best team reward results in our evaluation,
showing the benefits of initially adding teammates to discover reward-causing state-action
pairs. When n ∈ {5, 8, 9} in Figure 6.11, agents still learn complimentary roles; however,
they tend to interfere with each other and cover similar areas of the environment instead
of spatially dividing the gridworld to be more efficient. This result is consistent with our
spatial results in Cleanup shown in Figure 6.9 where the cleaning agents clean the same
area of the river when their team is larger. The NMMO environment is significantly large
so that this duplication is avoidable. Despite this, agents have difficulty learning how to be
spatially diverse and maximize the effectiveness of their joint policy. Furthermore, when
n = 8 and n = 9, we observe some agents returning to the center grass/stone area later in
a trajectory which contributes no positive reward for their team.

6.6 Self-Tuning Credo

Theorem 1 shows how there exist environments where teammates promote exploration
and increase reward for executing reward-causing state-action pairs. However, team struc-
tures that maximize reward for reward-causing state-action pairs may lead to an (ϵ, µ)-
information sparse stochastic game by Theorem 2. Designing favorable team structures
for learning may be a difficult problem for researchers or practitioners because of domain
variables. This may require trial and error and static configurations could be brittle to
changes to the underlying environment dynamics. The credo model presents a unique op-
portunity where agents could recover stronger information signals themselves by modifying
their credo parameters for various groups.

While we explored favorable team structures and credo parameters throughout Chap-
ters 4 and 5, not all environments can be thoroughly evaluated in practice. The motivation
for self-tuning credo is not to determine favorable team structures with fully team-focused
agents as in Chapter 4. Instead, the goal is to allow agents to discover favorable learning
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Figure 6.11: NMMO: Agent trajectories for different executions when n ∈ {1, 2, 4, 5, 8, 9}.
Each different color represents the path of a different agent in the system. All agents are
on the same team and fully share rewards.
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conditions in any environment given a pre-defined team structure. Our hope is that this
may make the design of team structures less critical, so that researchers or practitioners
can define a team structure (that does not change) and agents will adapt their credo pa-
rameters to learn favorable policies in that setting. Agents’ credo parameters for the given
team structure may be sub-optimal when initialized; however, agents could discover favor-
able learning settings by modifying their credo parameters. One example is Figure 4.3 of
Chapter 5, where a population of fully aligned system-focused agents achieve significantly
less reward in Cleanup than if they were slightly self-focused. Agents initialized to be
system-focused, but capable of modifying their credo parameters, might discover the bene-
fits of being slightly self-focused themselves and discover a better joint policy. This would
eliminate the need for researchers and practitioners to engineer specific credo parameters
for different team structures in specific environments.

We propose and implement self-tuning credo agents to overcome sub-optimal learning
settings like the fully aligned system-focused agents in Figure 4.3 of Chapter 5. We perform
an initial evaluation using simple self-tuning credo agents to show how these agents can
discover favorable joint policies despite sub-optimal initializations of team structures and
credo parameter combinations.

6.6.1 Self-Tuning Credo Framework

We consider the same stochastic game base environment presented in Chapter 3 and used
in previous chapters. Recall from Chapter 5 that agent i’s credo is defined as a vector of

parameters that sum to 1, represented cri = ⟨ψi, ϕ
T1
i , . . . , ϕ

T|Ti|
i , ωi⟩, where:

• ψ is the credo parameter for i’s individual reward IRi,

• ϕTi
i is the credo parameter for the reward TRTi

i ,∀Ti ∈ Ti, and

• ωi is the credo parameter for the reward i receives from the system SRi.

Since self-tuning credo agents can have different credo parameters for the same group,
we modify agent i’s credo-based reward function Rcr

i so that all rewards collected by a team
or the system are allocated in proportion to the credo values for those groups. Specifically,
Rcr

i is calculated as:

Rcr
i = ψiIRi +

∑
Ti∈Ti

ϕTi
i∑

j∈Ti
ϕTi
j

TRTi
i +

ωi∑
j∈N ωj

SRi. (6.13)
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Algorithm 1 Self-tuning credo algorithm

Require: N ≥ 1, E ≥ 1, |T | ≥ 1
1: t← 0 ▷ Initialize time to 0.
2: Initialize cri ← ⟨ψi, ϕi, ωi⟩,∀i ∈ N ▷ Initialize credo parameters for each agent.
3: Initialize πcr

i ,∀i ∈ N ▷ Initialize credo policy for each agent.
4: Initialize πi,∀i ∈ N ▷ Initialize behavioral policy for each agent.
5: while t <∞ do
6: RE ← behavioral episodes(π, cr, E) ▷ Execute low-level policies for E episodes.
7: for i ∈ N do
8: V cr

i (cri)← V cr
i (cri) + γRE

i ▷ Update value estimate of cri, where RE
i ∈ RE.

9: cr
′
i ← πcr

i (cri) ▷ Define new credo for agent i, high-level action.
10: cri ← cr

′
i ▷ Update credo parameters.

11: end for
12: end while

This is a necessary modification for the scenario where agents may have different credo
parameters for the same group to ensure all rewards are re-allocated to agents in the
population. To maintain consistency with Chapter 5, we modify TRTi

i and SRi to be the
weighted sum of agents’ rewards and their credo parameter for that specific group:

TRTi
i =

∑
j∈Ti

ϕTi
j Rj(S,Aj, S), (6.14)

SRi =
∑
j∈N

ωjRj(S,Aj, S). (6.15)

This ensures all rewards that are collected from the environment are re-allocated to
the various groups and scaled according to all credo parameters. These modifications are
equivalent to the previous credo setting when all agents have the same credo, but expand
the reward function dynamics to the situation where teammates may not have the same
credo within a team.

Agent Architecture

The agent design is inspired by hierarchical reinforcement learning (HRL) and meta-
learning. We draw specifically from feudal HRL where a single RL manager policy has a
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Figure 6.12: Overview of the proposed self-tuning credo agent framework. Each agent has
two policies that operate at different time scales: a low-level behavioral policy that acts
within an environment and a high-level credo-tuning policy that operates every E ≥ 1
episodes. The credo-tuning policy shapes the optimization landscape for the behavioral
policy while the learned behavior impacts the reward function for the credo-tuning policy.
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single RL sub-manager policy that acts in the environment [43]. The manager sets a task
(the credo policy sets credo parameters for the agent) that influence how the sub-manager
(the behavioral policy in our case) learns in the environment [78]. Since credo parameters
are connected to an agent’s reward function, our framework can also be viewed as being
similar to meta-learning [88]. Meta-learning algorithms aim to improve a learning algo-
rithm by iteratively learning hyperparameters that result in improved learning conditions
(i.e., “learning to learn”) [238, 92].

An overview of our proposed agent framework and learning process is given in Fig-
ure 6.12 with N agents interacting with the same environment. Pseudocode is given in
Algorithm 1, where π is the joint behavioral policy of all agents, cr represents the collec-
tion of credo parameters for all agents, V cr

i is agent i’s credo-facing value function, and RE

represents a list of all agents’ mean rewards over E behavioral episodes (i.e., RE
i is agent

i’s mean credo-based rewards over E behavioral episodes).

Throughout Chapters 4, 5, and 6, agents have only executed behavioral policies that
learn in teams with static credo parameter settings (note that agents in Chapter 4 follow the
full team-focus definition). In this setting, we define agents to have two internal policies
that operate at different time scales: a “low-level” behavioral policy and a “high-level”
credo policy. The low-level policy, πi, is a typical behavioral policy that takes actions ai
conditioned on an observed state si within an environment (in line 6 of Algorithm 1). At
each timestep of an episode, rewards are shared with other agents according to the agent’s
credo parameters cri, similar to Chapter 5. The high-level policy, πcr

i , modifies the agent’s
credo parameters at a slower time scale. For value-based versions of πcr

i , as used in our
implementation, the high-level policy maintains a value function for different combinations
of credo parameters using the low-level policy’s mean reward over E behavioral episodes,
RE (line 8 in Algorithm 1). Conditioned on the previous credo parameters, cri, the high-
level agent produces updated credo parameters cr′i to shape i’s reward function in the
following E behavioral episodes (lines 9 and 10 in Algorithm 1). The high-level credo
policy operates at a larger time scale than the low-level behavioral policy to allow the
low-level policy to gain experience with a particular credo setting and stabilize learning.

Both policies learn from experience using RL. They both aim to individually maximize
their sum of discounted future rewards and neither policy directly observes or models
the other (i.e., both are individual learning policies). Instead, each policy influences the
optimization landscape and learning problem of the other without their actions being
directly observed in their state spaces. For example,

1. Low-Level Influence on High-Level: the low-level policy produces rewards for

125



the high-level policy; if the low-level policy fails to obtain high reward, the high-level
credo-tuning policy fails to get positive feedback.

2. High-Level Influence on Low-Level: the credo parameter changes made by the
high-level policy shapes the reward function of the low-level policy for the next set
of E episodes which impacts the behaviors that the low-level policy learns. The low-
level policy does not observe the change in credo parameters, or what those credo
parameters are; however, their received reward is shaped by the parameters defined
by the high-level policy.

Tuning the amount of shared reward within groups regulates the amount of reward
agents receive for executing reward-causing state-action pairs (Theorem 1) and information
in their reward signals (Theorem 2). Thus, the high-level credo policy shapes the influence
of these two aspects with respect to all groups referenced in the credo vector to guide the
learning process of the low-level behavioral policy (themselves, any teams they may belong
to, and the system).

Implementation

Low-level Behavioral Policy: The Proximal Policy Optimization (PPO) [214] imple-
mentation in Chapter 5 used an older version of the RLlib2 library (version 0.8.5) that
made interrupting agents’ behavioral training loops every E episodes for the high-level
credo-tuning policy infeasible. Thus, we adopt the same architecture as the agents in
Chapter 5 to an updated version of RLlib (version 2.1.0) to incorporate the self-tuning
credo agent architecture shown in Figure 6.12.

High-level Credo Policy: Any type of RL algorithm can be used for the high-level
credo policy. To reduce sample complexity, we implement the high-level credo policy as a
Q-Learning agent with ϵ-greedy exploration (ϵ = 20%) [257]. Consistent with Chapter 5,
agents belong to only one team, resulting in credo vectors with three parameters (i.e.,
cri = ⟨ψi, ϕi, ωi⟩). We limit possible agent credo values to intervals of 0.2, creating 21
possible credo configurations for the high-level policy to observe (shown in Figure 5.11 of
Chapter 5). With three credo parameters, the agent can take actions to increase any credo
parameter by 0.2, decrease any other credo parameter by 0.2, or not change the credo
parameters. This results in seven discrete actions. For example, if cri = ⟨0.2, 0.0, 0.8⟩, the
agent can take an action to decrease self-focus and increase system-focus (by increments of

2https://docs.ray.io/en/latest/rllib/index.html
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0.2) to result in cr′i = ⟨0.0, 0.0, 1.0⟩. If the agent chooses an action that would increase any
credo parameter above 1.0 (such as choosing to further increase system-focus), no action is
taken and cr′i = cri. The behavioral policies are updated with cr′i for the next E episodes.
The value of E is defined by the number of concurrent behavioral training environments
discussed in our evaluation.

6.6.2 Empirical Evaluation

We perform a preliminary evaluation with a population of self-tuning credo agents in the
Cleanup environment. We choose the Cleanup environment since we have extensively
explored the results of various joint policies throughout the previous chapters of this dis-
sertation. To be consistent with Chapter 5, we instantiate six agents and construct three
teams of two agents each (i.e., |T | = 3, |Ti| = 2).

Experiment Methodology

We design an experiment to evaluate if self-tuning credo agents can overcome a sub-optimal
initialization of fully system-focused credo parameters and discover a joint policy that
achieves higher mean population rewards (Scenario 1 or 2 in Figure 5.11 in Chapter 5).
We initialize agents to be fully system-focused (i.e., cri = ⟨0.0, 0.0, 1.0⟩). Note that this
configuration represents a fully cooperative population; however, agents are able to modify
their credo parameters towards a smaller team (through the team-focused credo param-
eter). The low-level behavioral policy trains on data from every 96 episodes since our
Rllib implementation has six parallel workers with 16 environments each. The number
of workers and their environments are learning hyperparameters that are consistent with
Chapters 4, 5, and 6. Thus, the high-level credo policy takes an action to update the
agents’ credo parameters every E = 96 episodes. The behavioral policy never observes the
credo parameters but instead experiences changes to their rewards.

This experiment is equivalent to initializing agents with credo parameters in the bottom
left corner of Figure 5.11; however, agents’ credo policies are now able to adjust the agent’s
credo parameters. The design of this experiment is used to determine if self-tuning credo
agents can discover stronger reward signals and converge to a better joint policy than the
fully system-focused population.

We compare the population of credo tuning agents to two populations where credo pa-
rameters remain static throughout entire experiments. In the static team-focus experiment,
agents maintain cri = ⟨0.0, 1.0, 0.0⟩ for the entire experiment. In the static system-focus
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Figure 6.13: Cleanup: Mean population reward over time for each experiment in our
evaluation. Results are the mean across 4 trials for each experiment with 95% confidence
intervals. The static team-focused agents have been observed to achieve the highest mean
population reward in Cleanup among different credos (Figure 5.11, Scenario 2). This shows
that self-tuning credo agents that are initialized with system-focused credo can increase
their mean population reward above the initial fully system-focused settings.

experiment, agents maintain cri = ⟨0.0, 0.0, 1.0⟩ for the entire experiment. We execute
four trials of each experiment configuration to measure variability.

6.6.3 Preliminary Results

This section presents preliminary results from the experiments described in Section 6.6.2.
We observe the same patterns with the static experiments as in Chapters 4 and 5: teams
that are fully team-focused perform significantly better than when agents are fully system-
focused. Consistent with previous results, fully team-focused populations converge to the
best observed global joint policy of two river cleaning agents and four apple picking agents.
The fully system-focused population converged to sub-optimal joint policies of either three
river cleaning agents and three apple picking agents or four river cleaning agents and two
apple picking agents (depending on the random seed).

We found that updating the PPO agents from RLlib 0.8.5 to RLlib 2.1.0 modified
their learning processes so that agents learn more gradually (despite no changes to the
algorithm configurations). Thus, while our direct learning curves are not comparable to
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the Cleanup results in Chapters 4, 5, and 6, teams achieving significantly more reward than
the fully cooperative system is consistent and we extend the duration of the experiments
from 1.6× 108 to 3.2× 108 environment steps.

Mean Population Reward

Figure 6.13 shows the mean population reward with 95% confidence intervals over the
four trials of each experiment: static system-focus, static team-focus, and self-tuning credo
agents that were initialized to be system-focused. The y-axis shows mean population re-
ward and the x-axis shows timesteps of the experiment. Consistent with Chapters 4 and 5,
we find that static agents that are fully team-focused (blue) perform significantly better
than static system-focused agents (red). The static system-focused agents are equivalent
to a fully cooperative system since all agents in the system fully share their rewards.
Higher reward is achieved by team-focused agents converging to a more efficient division
of labor joint policy with two river cleaning agents and four apple picking agents, whereas
system-focused agents converge to three agents each cleaning the river or picking apples.

Recall from Figure 5.11 that agents with full team-focused credo is one setting that
achieves the highest observed reward in this configuration. The expectation of these initial
experiments with self-tuning credo agents is not to outperform the fully team-focused credo
since those agents achieve the highest observed mean population reward in our Chapter 5
evaluations. Instead, the hope is that self-tuning credo agents learn and perform better
than their initialized settings (i.e., fully system-focused credo; the red line) towards the
level of the static team-focused credo setting. The green line in Figure 6.13 shows
the mean population reward for the self-tuning credo agents initialized with fully system-
focused credos with 95% confidence intervals. Through the first 800,000 timesteps of the
experiment, the credo-tuning agents (green) learn along approximately the same trajectory
as the system-focused agents (red). However, giving agents the ability to modify their credo
parameters leads to the population achieving roughly 21% more mean population reward
than the fully system-focused credo population by the end of the experiment (320 reward
for credo-tuning agents compared to 264 reward for static system-focused agents). This
shows that self-tuning credo agents are able to achieve more mean population reward than
the fully system-focused setting despite their sub-optimal initialization.

Division of Labor in Global Joint Policy

We now examine the credo-tuning experiment results in more detail. Figure 6.14 shows
the amount of apples consumed (top) and cleaning beam actions (bottom) by each credo-
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Figure 6.14: Cleanup: Amount of apples consumed (top) and cleaning beam actions
(bottom) by each agent for one trial of the credo-tuning experiments with agents initialized
with system-focused credo (green line in Figure 6.13). Agents are labeled so that “a-0/T0”
is agent #0 on team #0. Teammates are colored with different shades of the same color.
Whereas system-focused agents converge to a joint policy of three apple pickers and three
cleaning agents, credo-tuning agents autonomously discover the better joint policy of four
apple pickers and two cleaning agents autonomously (which is the same as fully team-
focused agents) and generate more reward (Figure 6.13).
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Figure 6.15: Cleanup: Inverse Gini index curve for each experiment in our evaluation.
Results are the mean across 4 trials for each experiment reported with 95% confidence
intervals. Static system-focused credo is defined to have full equality and is always 1.
This shows that credo-tuning agents achieve slightly higher equality than the static team-
focused agents.

tuning agent in one trial where the agents are initialized to be fully system-focused (the
green line in Figure 6.13). Despite being initialized as fully system-focused, these agents
are members of one of three teams (T0, T1, or T2) that are one of their modifiable credo
parameters. Agents are labeled so that a-0/T0 represents agent 0 on team 0 and teammates
in the plots are colored with different shades of the same color.

Similar to some fully system-focused trials in Chapter 5, the agents in the credo-tuning
experiment initially specialize into roles of three apple pickers and three river cleaning
agents. However, the advantage of agents being able to tune their credo causes the a-
4/T2 agent to learn to pick apples in the second half of the experiment. We analyze the
credo parameters of these agents in a later subsection. This discovers the global joint
policy of four apple picker agents and two river cleaning agents (joint policy of the static,
fully team-focused agents) despite agents being initialized with fully system-focused credo.
This results in an increase in mean population reward when compared with the static fully
system-focused scenario. While the mean population reward level of fully team-focused
agents is not quite reached, these agents appear to mostly discover the same global joint
policy as the fully team-focused agents of two river cleaning agents and four apple picking
agents by the end of the experiment. Perhaps longer training would see convergence to
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the reward level of the fully team-focused population (blue in Figure 6.13) given this joint
policy.

Population Reward Equality

Since certain roles in the environment do not produce reward and teammates are able to
define different credos, it is important to consider population reward equality to examine
if tuning credo leads to significant inequality among the population. We model population
reward equality as the inverse Gini index, consistent with past work [145] and the previous
chapters:

Equality = 1−
∑N

i=0

∑N
j=0 |Rcr

i −Rcr
j |

2N2Rcr
, (6.16)

where values closer to 1 represent more equality. Figure 6.15 shows our equality results,
where the y-axis shows the mean inverse Gini index with 95% confidence intervals and the
x-axis is the number of timesteps. Since the static system-focused scenario defines agents to
fully share rewards, the inverse Gini index is always equal to 1. After some initial learning,
we find that the credo-tuning agents converge to a setting where the population has higher
mean equality than the static team-focused setting. While this is likely impacted by the
credo initialization and is worthy of further exploration, we find that credo-tuning agents
discover a setting that achieves high reward while maintaining high reward equality across
the population.

Dynamic Credo Parameters of Each Agent

Figure 6.16 shows how the credo parameters change over time for each agent in the trial
shown in Figure 6.14. Each plot is titled and colored according to the agent’s label and
color in Figure 6.14. The y-axis of each plot shows the credo parameter values and the
x-axis of each plot shows timesteps of the experiment. The values shown for each credo
parameter are the mean sliding window of 10 samples (increments of one); thus, some
results appear between two discrete credo steps (such as 0.1 being between 0.0 and 0.2).

Figure 6.16 shows that two teammates that converge to complimentary roles of one river
cleaner and one apple picker, a-0 and a-1 (blue; T0), maintain periods of non-zero team
focus. This allows the agents to share some of the reward gained by their teammate while
sharing the majority of their apples through the system-focus reward channel. The other
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Figure 6.16: Cleanup: Credos of all six agents over time in the same credo-tuning trial
as Figure 6.14. Each plot shows the credo parameters for a different agent shown in
Figure 6.14. Each y-axis represents credo parameter space and each x-axis represents
timesteps. We observe that heterogeneous credo parameters emerge across the population;
however, a-4 becomes more self- and team-focused as it switches roles to become an apple
picking agent.
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team that divides labor between two roles over the entire experiment, a-2 and a-3 (red;
T1), have heterogeneous credo parameters amongst their team. While the cleaning agent
a-2 maintains higher system-focus, the apple picking agent a-3 has slightly higher self-focus
to keep some amount of the reward they collect to themselves. The agent that changes
roles to become an apple picker, a-4 on T2, maintains a period of being self- and team-
focused, before 1.5×108 timesteps. At that time, their teammate (a-5/T2) develops a credo
where they do not share rewards through the team parameter, instead maintaining high
system-focus before becoming slightly self-focused. After a period where their teammate is
not contributing to the team reward when a-4 is slightly team-focused, the agent switches
behaviors to become an apple picking agent. This may indicate why a-4 becomes an apple
picker with some amount of self-focus (i.e., increasing their personal reward).

These results show how our framework allows for diverse group alignments to be learned.
In turn, these learned heterogeneous alignments lead to agents discovering a globally better
joint policy while maintaining high equality.

6.7 Discussion

This chapter provides an understanding as to why, and under which conditions, smaller
teams can outperform larger teams in certain environments. Introducing teammates can
help agents identify reward-causing state-action pairs (Section 6.3), but too many team-
mates can make credit assignment more difficult which hinders learning (Section 6.4).
This provides theoretical explanations behind the empirical results of some other recent
research [55, 184].

A common perception about RL theory is that convergence to the optimal policy is
guaranteed given infinite computation. While this finding is true for single-agent RL [230],
convergence guarantees are known to not hold in many multiagent settings [37]. This
chapter’s context of multiagent teams, even in a scenario with one fully team-focused team
(i.e., a cooperative population), is a setting where convergence to an optimal joint policy
is not guaranteed, even with infinite computation. We show this through Theorem 2,
since information converges to zero as a function of team size. However, information does
not need to be zero for RL to fail (it can fail when information is sufficiently small); thus,
in practice, infinitely large team size is not required for RL agents to fail to learn. We
are unable to guarantee non-convergence since random policy updates could theoretically
result in the optimal joint policy; however convergence to this policy is not guaranteed.

To recover stronger learning signals in scenarios with sub-optimal team structures and
credo parameters, in this chapter we propose, design, and implement a self-tuning credo
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agent capable of dynamically changing its internal credo parameters. Our preliminary
results show how individual self-tuning credo agents can recover the best observed joint
policy in Cleanup of four apple picking agents and two river cleaning agents despite being
initialized as fully system-focused. The motivation for self-tuning credo is to generalize to
environments where the best joint policy or team structure is unknown and experimentation
may be costly. In those settings, the goal of self-tuning credo agents is that they could
autonomously discover favorable credo parameter distributions that discovers good joint
policies for a given team structure and environment.

While we provide insights into the importance of teams and team structure to shape
learning problems and reward functions for individual learning agents, there are several
opportunities for future work specifically related to the work in this chapter. These include
precisely measuring ϵ and µ from domain variables or experimenting with the impact of
alternate definitions for teams or reward functions. Other direct future work includes
analyzing self-tuning credo agents in settings with other initial credo parameter settings
or instances where agents are members of multiple teams.

6.8 Conclusions

This chapter contributes theoretical underpinnings toward understanding how teams shape
the learning environments for individual agents to achieve the results we observe in Chap-
ters 4 and 5. The development of this work is influenced by the fields of organizational
psychology (OP) and anthropology. Our result in Theorem 1 echoes findings of division
of labor and complimentary traits found in studies of collective intelligence and the OP
subfield of multiteam systems [143], whereas Theorem 2 parallels the concepts behind the
maximum number of social connections that can be maintained [54]. This chapter formal-
izes these concepts in terms of information theory and defines a multiagent setting where
learning is not possible, an (ϵ, µ)-information sparse stochastic game. The culmination
of the previous three chapters motivates the idea of self-tuning credo – a system where
individual agents modify their group alignment to receive benefits of reward sharing and
recovering stronger feedback signals when necessary (i.e., when in sub-optimal groups such
as a fully cooperative system in Cleanup). Since optimal team structures are highly do-
main dependent and may be unknown in various settings, self-tuning credo agents may
have the potential to learn the credo parameters that achieve high rewards in any setting.
This mitigates the burden of researchers or practitioners having to determine team struc-
tures of fully team-focused agents or specific credo parameters in settings where favorable
configurations may be unknown.
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Chapter 7

Conclusions and Future Work

This chapter presents an overview of our contributions in this dissertation. We expand on
various discussion points and provide avenues for future work.

7.1 Summary of Contributions

The thesis statement of this dissertation is that teams can have significant advantages in
guiding the development of policies for individual agents that learn from experience.

In the previous chapters, we found that teams have a significant impact on the behavior
that AI agents learn and identified settings where teams are specifically beneficial for pol-
icy development in challenging domains. First, we explored the impact of team structures
on how agents learn. We developed a model of multiagent teams and explored how team
structures impact game-theoretic incentives of interaction. With learning agents, we found
that agents in teams developed pro-social policies with agents in separate teams under
certain conditions, leading to high global rewards despite game-theoretic incentives that
encouraged defection. In a gridworld game, we found that team structures of multiple
teams promote role specialization and the development of a more efficient global joint pol-
icy that achieved the highest observed global rewards. Agents learn role specialization from
only their team-based shared reward signal and multiple teams coordinate to converge to
efficient global joint policies (i.e., global distributions of roles). Populations with multiple
teams achieve this high reward while maintaining high global equality. These results pro-
vide an initial insight as to how teams can shape the policies that agents develop under
various assumptions of group alignment and team structure.
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Second, we relax the assumption that teammates are fully aligned with the goals of
their team and explore the impact of teams with various degrees of mixed incentives. We
present credo, a model that defines how agents optimize their behavior for various groups
they belong to: themselves, any teams they may belong to, and the entire system. We find
that teams of learning agents that are fully team-focused autonomously learn to cooperate
with other team-focused agents (on other teams) and learn to not be exploited by a small
amount of self-focused agents in certain conditions. When all agents in the population have
the same credo, we find that agents with high team-focus are more robust to some amount
of self-focus than when agents are more system-focused. In the gridworld environment,
agents learn efficient role specialization in multiple scenarios, not just when they are fully
team-focused. First, highly system-focused agents generate significantly more reward if
they are also slightly self-focused compared to if they are fully system-focused. Second,
highly team-focused agents generate high reward regardless of whether they are slightly
self-focused or not. These scenarios achieve significantly more global reward than the
setting previously assumed to achieve the highest reward in mixed-motive environments
(i.e., a fully cooperative population). These results motivate our next contribution.

Our last area of contribution is centered around understanding how teams and certain
credo parameters lead to some populations that discover efficient joint policies, while others
reliably hinder the emergence of these policies. We provide theoretical underpinnings that
draw connections between team structure, reward signals, and the policies that agents
develop in specific environments. We expand a single-agent concept of information sparsity
to the multiagent setting. Our theory shows how sub-optimal team structures can turn a
stochastic game into a setting where agents are not able to reliably learn high performing
policies (although these could theoretically still be discovered through random updates).
Our empirical results align with our theory across four different environments with various
learning algorithms, including RL and deep RL that are either on-policy or off-policy and
value-based or policy gradient.

7.1.1 Tuning Credo to Improve Learning

Our results motivate a deeper question about the impact that team structure can have on
multiagent learning settings, and the role credo can play to mitigate potential risks. The
environments we explored in this dissertation are testbeds that represent the underlying
dynamics of broader classes of problems. While we can observe agents’ joint policies
and determine which joint policy performs best, there likely exist environments where
the best joint policy of a population is unknown or may change over time. The idea
that team structures can help agents develop effective joint policies, but can also limit
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their development if teams are sub-optimally defined, is a powerful concept that can be
utilized for multiagent learning. In settings where the best team structure for learning is
unknown, credo may be a way to enable agents to autonomously discover favorable joint
policies by including different types of reward signals. Allowing agents the ability to self-
regulate their internal credo parameters influences the amount of information they have
to learn from; thus, tuning credo shows promise in giving learning agents the ability to
overcome sub-optimal team structures. For example, agents in a fully cooperative system
that is challenging to learn in could become slightly self- or team-focused to gain more
information from their actions.

We briefly explore this direction of research and design an agent inspired by feudal
hierarchical RL [43, 78] and meta-learning [238, 88, 92]. In our setting, agents have one
credo-tuning policy (i.e., manager) that modifies the agent’s credo parameters. The credo
parameters shape the reward received by the agent’s behavioral policy (i.e., sub-manager)
in the environment. This one-to-one configuration is inspired by feudal HRL [43] and
the high-level learning credo-tuning policy shaping the reward function for the low-level
behavioral policy resembles a meta-learning problem [88]. The overall goal of this research
is to adapt the benefits of team structures to any environment and eliminate the need for
researchers and practitioners to engineer specific team structures and credo parameters
in new or dynamic environments. Self-tuning credo agents have the potential to learn
the credo parameters in any team structure and environment that benefit their learning
processes and achieve high rewards.

Our work contains contributions in Game Theory, MAS, and MARL; however, we be-
lieve the largest contribution of this dissertation is highlighting how population structure
has an impact on the policies that individual learning agents develop. In future envi-
ronments with individual learning agents, we hope our work encourages researchers and
engineers to consider population structure when designing and implementing systems with
multiple individual learning agents.

7.2 Revisiting Motivating Examples

This thesis can be illustrated by two real-world examples: wildland fire fuel mitigation and
invasion game team sports analytics.

First, studies have shown that wildland fire fuel mitigation has been insufficient to pre-
vent major wildfire disasters despite 98% of properties adhering to California’s defensible
space code [164]. The defensible space code focuses on characteristics of a single property
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instead of a broader, community-wide level. Furthermore, monitoring and policing fuel
mitigation is a costly undertaking, despite recent efforts to make this process easier [190].
Mitigating wildfire fuel, despite the low-risk of being caught for non-compliance or for the
good of one’s neighbors, creates a social dilemma among neighboring properties. To solve
the dilemma, homeowners would need to pay the cost of removing more fuel than legally
required. In this first motivating example, we argue that a community-based (i.e., team-
based) solution to fuel mitigation would modify the incentives and goals of a community
to properly adhere to a community level defensible space code. Stricter legal requirements
are not possible since fuel mitigation extends beyond property lines and property owners
are not able to modify other people’s property, even to improve their own safety. Property
owners that pay the cost of removing more fuel on their own individual property to com-
ply with their community approach (i.e., more fuel than would be required if they only
considered their own property and own house) could receive the benefits of their neighbors
doing the same on their individual properties. Thus, the costs and benefits are not purely
monetary, but ingrained in the overall reduced risk of wildfire. Reinforcement learning
(RL) could be used to identify effective team structures among land owners across various
geographical distributions that result in the best mitigation practices. This would result
in significantly better fuel mitigation and overcome the current social dilemmas humans
fail to solve.

Second, while sports analytics has revolutionized “striking games” such as baseball, they
have lagged behind in sports classified as “invasion games” (football/soccer, ice hockey, and
basketball). The reason for this is that invasion games have more opportunities of team-
work, where multiagent interaction must be modeled to properly capture the dynamics
of the sport. Furthermore, invasion game sports teams are often composed of disjoint
groupings of player positions (e.g., forwards, defense, and goalies in ice hockey), each with
potentially different playing styles or goals. For team sports analytics to fully expand to
invasion games, models must identify and understand various role specializations among
a team similar to how we have identified role specialization with learning agents across
various domains. In this dissertation, we have shown the emergence of role specialization
and successful teams using a variety of team structures and combinations of credo pa-
rameters. There are several areas where the work in this dissertation can make a direct
impact. Modelling the distribution of roles and team structure within opponent teams can
help construct or learn a best response strategy that could provide significant value for
coaching. Identifying role distributions could be done using behavior cloning (supervised
learning) or inverse reinforcement learning to learn players’ or groups’ value functions. Sim-
ilar techniques could be used to analyze a team’s current roster and identify sub-optimal
distributions of roles and areas in the roster for improvement to benefit team management.
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This may inform the use of monetary incentives at the individual or group level to modify
credo towards settings more favorable for the team.

7.3 Broader Implications and Ethical Considerations

As with any technology, it is important to understand the risks and broader implications.
The work in this dissertation is no exception.

The first example is that team structures can have negative implications if they are
poorly defined. For instance, the team structure will promote inequality in settings where
the most efficient joint policy relies on one team learning to free ride or benefit from the
reward of other teams without contributing itself.

The second example is that defining explicit team structures among a population can
exclude some agents from specific teams. Defining teams as a system designer may ignore
potential the desires of agents for specific groups. While both of these examples could
be mitigated with credo or self-tuning credo agents under certain conditions, reducing
group alignment to a series of parameters can promote potentially unethical scenarios. In
a real world scenario, if an institution developed the ability to predict or infer the credo
parameters of agents or people, they could penalize or act unethically to reduce free will
among the individuals. This is similar to existing concerns about the potential misuse of
other AI technologies such as facial recognition [101].

Lastly, our work assumes the ability for system designers to impose or change team
structures in environments. This ignores alternative underlying incentives for various team
structures. We may fail to capture additional characteristics of team structures by modi-
fying the structure of teams or incentivizing changes to agents’ credo parameters based on
productivity, equality, or any other measure of performance. In practice, all features of an
environment and the long term impact of team structures must be considered. All of these
points are interesting areas for important further research throughout the development of
teams, credo, and Cooperative AI.

7.4 Similarities in the Natural World

In this section, we broadly connect the work in this dissertation to observations in the
natural world. We identify connections from the level of human relationships to inter-
cellular biological connections.
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7.4.1 Human Level

Teams and working together are the underlying concepts behind many of humanity’s great-
est accomplishments. As noted in Chapter 2, organizational psychology and multiteam
systems have explored features of successful teams and groups in the workplace, sports,
and the military for several decades. However, we also highlight comparisons of our work
with features behind Dunbar’s number [54]. The premise behind Dunbar’s number is that
mean group size and the strength of connections within a group are highly correlated with
that species’ cognitive limits. In the context of primates, this is defined as the maximum
number of individuals with whom an one can maintain social relationships through per-
sonal contact. Dunbar analyzes various hunter-gatherer and Western working societies for
impact of group size, in much the same way our research analyzes team structure and size
with RL agents. Dunbar draws correlations between group structures and the development
of language in humans. The study also finds a marked negative affect of group size on group
cohesion and job satisfaction when groups were too large or poorly defined. Interestingly,
a study of Twitter data found that the size of user communities follow Dunbar’s number
hypothesis despite the platform enabling communication without physical restrictions on
social interactions [72].

The idea that mean group size impacts social and cognitive development of species
closely resembles the findings in this dissertation with AI agents. Chapter 4 shows how
smaller teams within a population can allow agents to autonomously discover efficient divi-
sions of labor and joint policies across multiple teams. Chapter 5 shows how these results
can generalize to situations where teammates may not have common interests or even
not optimize for the same goals (effectively removing that social connection). Chapter 6
provides theoretical groundwork behind learning environments and team structure. Con-
necting our research with the study of human teams and acknowledging the impact that
social structures have had in human development strengthens the premise of our thesis:
team structures can benefit the policies that agents develop and must not be overlooked
in the development of AI.

7.4.2 Cellular Level

We identify similarities between our work and biological observations at the cellular level.
Gap junctions are intercellular connections between neighboring cells that directly connect
the cytoplasm of cells (through multiple connection channels), allowing for the diffusion of
ions, second messengers, and small molecules [118, 160]. The goals, stresses, and rewards
experienced by any connected cells are instantaneously experienced by neighboring cells
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with gap junctions. Gap junctions are instrumental in multiple physiological phenomena,
including embryonic development and are widely found in all tissues [177]; however, these
connections and messages are not always fully shared between cells. Channels connecting
cells can be regulated by post translational modifications (i.e., production of new proteins)
that affect the channel open probabilities, gating, conductance, or selectivity [155, 10]. Gap
junction channels have been found to contain multiple gating mechanisms that regulate
the sharing of signals between cells [27] and aggregate to form assembled clusters of cells
that are sometimes dynamically adjusted through shared channels [216].

We do not claim that our work contributes to the gap junction literature, but perhaps
provides insights into and has interesting parallels to the work studying gap junctions.
Cells that form gap junctions share signals and chemicals between each other, forming
aggregated structures and plaques of signal-sharing cells. These plaque structures indicate
that cells do not form gap junctions and share signals with all other cells, similar to how
teammates only share rewards in Chapter 4 instead of sharing with the entire population.
Regulated gap junctions are those where signals are not entirely shared, similar to how our
model of credo regulates the amount of reward that is shared between agents in Chapter 5.
Interestingly, the loss of gap junctional inter-cellular communication has been linked to
carcinogenesis – the development of cancer cells [126]. Similarly, we find that decreases in
agent reward sharing leads to poor global results (i.e., agents with high self-focus), whereas
agents that share their rewards with their teammates achieve high rewards overall.

Similar to the self-tuning credo agents presented in Section 6.6 of Chapter 6, the regu-
lation of inter-cell signals through gap junctions is observed to be dynamic through gating,
cell aggregation, and channel removal [216]. However, an area of gap junction research that
is not well understood is why continuous channel synthesis and removal is evolutionary and
physiologically desirable [216]. We explore a similar problem in our context of multiagent
teams of AI agents in Chapter 6 to understand why self-focus and mixed incentives may be
beneficial for learning. Given some of the similarities between the behavior of gap junctions
and of multiagent systems with teams explored in this dissertation, perhaps our findings
may be of interest to the gap junction community. Furthermore, gap junction research
could help inspire future work on multiagent systems with teams.

7.5 Future Work

There are several areas for future research directions inspired by the work in this disserta-
tion. Some directions are direct short-term extensions of the work presented in the previous
chapters, while others are broader long-term expansions.
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7.5.1 Direct Short-Term Expansions

Initial directions for future research include exploring teams of unequal size, team structures
where agents belong to multiple teams, and conditions under which low-level cooperation
(i.e., nepotism or bribery) undermines global progress. Our model of teams allows the
implementation of additional infrastructure among the agents beyond only their reward
function; thus, longer term questions include analyzing how features such as communica-
tion, negotiation, trust, and sanctions impact our model and introduce new challenges.
Furthermore, the study of teams in conjunction with emergent social norms, reputation
mechanisms, and levels of cooperation are all open directions of future research.

Our work in Chapter 6 emphasizes how the best team structure is highly domain specific
and depends on the distribution of reward-causing state-action pairs, reward states, and
underlying reward structure of the environment. This raises the question of whether or not
beneficial team structures could be learned from domain variables. Exploring this direction
of research from the perspective of a social planner is an interesting area of future research.

In Chapter 5 we examined credo with a team structure of three teams with two agents
each in Cleanup; however, Chapter 6 analyzes how team size has a significant impact learn-
ing. Therefore, an interesting extension of our work would be to examine how the impact
of credo changes depending on team structure across different environments. Perhaps the
best credo scenarios change regarding the underlying team structure, including the size of
teams, number of teams, or if agents have the ability to belong to multiple teams. This
also includes analyzing teams with vertical within-team structures such as levels of senior-
ity or leadership. These directions will undoubtedly lead to deeper and more interesting
questions behind the impact that team structures have on multiagent learning.

The further development of self-tuning credo agents is another interesting area of future
research. We have presented an initial prototype for a decentralized system where agents
can self-tune their own credo parameters inspired by hierarchical learning. Our preliminary
evaluation shows promising results; agents are able to modify their credo parameters and
discover the best observed joint policy of four apple picking and two river cleaning agents
after being defined in a sub-optimal team structure/credo setting. However, our prototype
remains simplistic and is unable to scale to continuous credo configurations sinceQ-learning
(the credo-tuning policy) requires discrete state and action spaces. Further developing self-
tuning credo agents is an exciting area of future work that fully encompasses the work done
in this dissertation. These agents would have the ability to self-organize and discover effi-
cient team structures, credo parameters, and potentially evolve to dynamic environments.
This will require addressing broader problems of sample complexity, generalizability, and
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further developing and understanding the connections with meta-learning.

7.5.2 Broader Long-Term Expansions

Recall from Chapter 2 that the single-agent TRPO algorithm guarantees policy improve-
ments given a penalty β on the KL divergence; however, the authors suggest that choosing
a single value of this penalty is challenging. The parameter β essentially restricts the
trusted region (in parameter space) for policy updates. This space is also influenced by
the agent’s advantage function, the difference between the expected value of a state and
the expected value for taking a specific action in that state. Throughout this dissertation
we have shown multiple examples of how team structures or credo parameters regulate
an agent’s reward signal; thus, modifying the space of policy updates for a single agent
depending on the information in this signal. For example, by Theorem 2 in Chapter 6,
an infinitely large team results in a reward signal with an amount of information that
converges to zero; thus, the agent’s advantage function would also converge to zero. One
can imagine that this would result in an infinitely small policy search space for parameter
updates (i.e., the trusted region of updated in TRPO shrinks). Agents’ credo parameters
also influence the information in reward signals; thus, they also modify the size of this
possible search space through the mixing of reward signals. Similar to the claims about β
in the TRPO publication, Chapter 6 shows how constructing a favorable team structure
from no prior domain knowledge is a challenging problem with a potentially sub-optimal
impact on learning. Endowing agents with the ability to self-modify their credo parameters
and team alignment may be thought of as a way to dynamically modify the policy search
space (i.e., learning to dynamically modify β depending on context). Fully exploring the
extent to which these problems are related is an interesting area for future work.

Finally, we revisit our motivating examples and suggest avenues for further develop-
ment in real-world contexts. Future emphasis on team structures and simulating credo
parameters could help inform or study how social dilemmas are solved, or not solved,
among human agents. This includes developing incentives or team strategies to help solve
the wildfire fuel mitigation dilemma that is currently unsolved. Many interesting problems
exist in team sports analytics where multiagent systems, with a focus on teams and credo
specifically, are promising avenues for exploration. Sports encompasses multiple levels of
complexity: short-term strategizing (coaching) and long-term planning (management and
development). Professional sports operate as a system of coordinating sub-groups of agents
motivated by financial incentives. Some specific areas of future work include predicting
a players’ credo based on their actions to inform team construction (i.e., who plays with
who), evaluating or predicting group development and agency from initial configurations,
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learning the best team structures from a social planner perspective, or developing finan-
cial incentive strategies to influence a player’s credo parameters. We further detail the
relationship between multiagent systems and team sports analytics in recently published
work [187]. These directions of future work will require immense development of simula-
tions and push our research into real-world domains.
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Smith, Tom Schaul, T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps, and D. Sil-
ver. Grandmaster level in StarCraft II using multi-agent reinforcement learning.
Nature, pages 1–5, 2019.

[252] Thomas De Vries, John Hollenbeck, Robert Davison, Frank Walter, and Gerben
V. D. Vegt. Managing coordination in multiteam systems: Integrating micro and
macro perspectives. Academy of Management Journal, 59:1823–1844, 2016.

[253] Caroline Wang, Ishan Durugkar, Elad Liebman, and Peter Stone. DM2: Distributed
multi-agent reinforcement learning for distribution matching. The AAAI Conference
on Artificial Intelligence, 2023.

169

https://github.com/eugenevinitsky/sequential_social_dilemma_games/issues/182
https://github.com/eugenevinitsky/sequential_social_dilemma_games/issues/182


[254] Jane X. Wang, Edward Hughes, Chrisantha Fernando, Wojciech M. Czarnecki,
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ing: A selective overview of theories and algorithms. Handbook of Reinforcement
Learning and Control, pages 321–384, 2021.

[273] Ke Zhang, Fang He, Zhengchao Zhang, Xi Lin, and Meng Li. Multi-vehicle routing
problems with soft time windows: A multi-agent reinforcement learning approach.
Transportation Research Part C: Emerging Technologies, 121:102861, 2020.

[274] X. Zhang, Hui hua Liu, Yushen Shi, and D. Tjosvold. Conflict management for co-
ordination between shift teams in Shanghai subway stations. Asia Pacific Journal of
Human Resources, 57:399–417, 2019.

171



[275] Stephan Zheng, Alexander Trott, Sunil Srinivasa, Nikhil Naik, Melvin Gruesbeck,
David Parkes, and R. Socher. The AI economist: Improving equality and productivity
with AI-driven tax policies. ArXiv, abs/2004.13332, 2020.

[276] Simon Zhuang and Dylan Hadfield-Menell. Consequences of misaligned AI. Proceed-
ings of the 34th Conference on Neural Information Processing Systems, 33:15763–
15773, 2020.

172



APPENDICES

173



Appendix A

Counterpart Sampling in the Iterated
Prisoner’s Dilemma

A.1 Training Samples Theory

Chapter 4 shows how agents with teammates are able to learn cooperative policies in the
Iterated Prisoner’s Dilemma (IPD) in various environmental conditions. One assumption
we make when designing the IPD scenario is that every team is the same size and agents
sample a counterpart from any team with equal probability (i.e., uniform sampling over
teams). When using off-policy Deep Q-Network reinforcement learning agents, these as-
sumptions ensured that each agent was training on the same number of samples in the
limit. We prove this aspect of our design here.

In each episode, agents all play a round of the Prisoner’s Dilemma stage game against
a counterpart for a total of N pairings per-episode. Agents are given a counterpart to
interact with, but could also be selected as the counterpart for another agent. Since agents
are individual learners and only learn through their own direct interactions, we must ensure
that the particular matching process does not disproportionally bias a subset of the agents.
In particular, we need to be confidant that the underlying team structure in which agents
are embedded in no way influences the agent training through under- or over-sampling or
providing disproportionate opportunities to be matched and play an iteration of the IPD.

Proposition 2. If |Ti| = |Tj| ∀i, j ∈ N and agents are randomly paired from any team with
uniform probability, each agent will have the same expected number of IPD interactions for
any value of |T | or N .
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Proof. Let a population of N agents be split up into |T | teams of size n, so that N = |T |n.
Since agents are paired with an agent from any team with equal probability, p(IN) =
1− 1

|T |(n−1)
and p(OUT ) = 1− 1

|T |n represents the probability of not being matched with
a teammate or non-teammate respectively. These are different since an agent is unable to
be paired with themselves, leaving n− 1 agents to possibly be paired with from their own
team. The probability of agent i not being chosen as the matching agent is defined as:

p(¬i)|T |n = p(IN)n−1 + p(OUT )n(|T |−1).

Suppose m agents are added to each team so that N ′ = |T |n+ |T |m and n := n+m.
In this new setting, the probability of i not being chosen in a population of |T |(n + m)
agents becomes:

p(¬i)|T |(n+m) =

p(IN)(n−1)+m + p(OUT )n(|T |−1)+(|T |m−m).

We can derive that p(¬i)|T |(n+m) − p(¬i)|T |n = (|T |m − m) + m, which simplifies to
|T |m. Note that also N ′−N = |T |m. While the probability of not being chosen increases
by |T |m, the total interactions in each episode also increases by |T |m. Thus, agents have
the same number of expected interactions.
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Appendix B

Equilibrium Analysis with Credo

B.1 Expanded Equilibrium Analysis with Credo

As review, we re-define the IPD payoff matrices for the cases where agents have no common
interest (Table B.1) and where agents have full common interest (Table B.2). These tables
are the same as in Chapter 3.

Chapter 4 presents an equilibrium analysis with the IPD and team structures under the
assumption that agents in a team are fully team-focused. When calculating the expected
values of cooperation and defection with different credo, the fully self-focused and system-
focused values are simply calculated using Table B.1. Team-focused credo becomes more
complex since it is a mixture of the mixed-motive and common interest game depending
on the probability of being paired with a teammate ν. We show the derivation for team-
focused agents and continue with the final equilibrium with credo below.

B.1.1 Team-Focused Agents

Let σTi
= (σji, 1 − σji), where σji is the probability for agent j choosing action C when i

and j have common interest (i.e., j ∈ Ti). Let σTj
= (σjj, 1 − σjj) be the strategy profile

of agent j when i and j do not have common interest (i.e., j ∈ Tj). We now use common
interest instead of strictly in the same team to scale to the self- and system-focus settings.
The expected utility of choosing to cooperate (C) or defect (D) for an agent with team-
focused credo can be derived based on Table 1, ν, and the strategy of j (σTi

or σTj
). First

we show the derivation for a fully team-focused agent i’s expected utility for choosing C
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Cooperate Defect

Cooperate b− c, b− c −c, b
Defect b, −c 0, 0

Table B.1: An example of the Prisoner’s Dilemma with the costs (c) and benefits (b) of
cooperating (b > c > 0).

Cooperate Defect

Cooperate b− c, b− c b−c
2
, b−c

2

Defect b−c
2
, b−c

2
0, 0

Table B.2: An example of the Prisonner’s Dilemma when agents are teammates. (C,C) is
the unique Nash Equilibrium.

subject to j’s strategy. This is the same derivation as the expected value of cooperate in
Chapter 4.

E(C, σT ) = ν

[
σji(b− c) + (1− σji)

b− c
2

]
+ (1− ν) [σjj(b− c) + (1− σjj)− c] (B.1)

E(C, σT ) = ν

[
2σji(b− c)

2
+
b− c
2
− σji(b− c)

2

]
+ (1− ν) [σjjb− σjjc− c+ σjjc] (B.2)

E(C, σT ) = ν

[
σjib− σjic

2
+
b− c
2

]
+ (1− ν) [σjjb− c] (B.3)

E(C, σT ) = ν

[
(b− c)(σji + 1)

2

]
+ (1− ν) [σjjb− c] (B.4)

E(C, σT ) =
ν(b− c)(σji + 1)

2
+ (1− ν)(σjjb− c) (B.5)

Now we show the derivation for a team-focused agent i’s expected utility for choosing
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D subject to j’s strategy. This is also the same as in Chapter 4.

E(D, σT ) = ν

[
σji

(b− c)
2

]
+ (1− ν) [σjjb] (B.6)

E(D, σT ) =
νσji(b− c)

2
+ (1− ν)σjjb (B.7)

The terms for playing defection with a counterpart who mutually defects (1 − σji) is
zero, and therefore omitted above. Next, we show how the final equilibrium is derived
using our parameters which define credo.

B.1.2 Equilibrium with Credo

The credo vector defines how self-focused, team-focused, or system-focused an agent is
while it learns in our environment. We can calculate and derive when an agent has the
incentive to cooperate in the Prisoner’s Dilemma stage-game as:

ψE(C, σT )I + ϕE(C, σT )T + ωE(C, σT )S ≥
ψE(D, σT )I + ϕE(D, σT )T + ωE(D, σT )S .

Expanding each term with the derivations above (and those for self- and system-focus),
we get:

ψi [σjj(b− c) + (1− σjj)(−c)] +

ϕi

[
ν(b− c)(σji + 1)

2
+ (1− ν)(σjjb− c)

]
+

ωi

[
σji(b− c) + (1− σji)

(
b− c
2

)]
≥ ψi [σjj(b)] + (B.8)

ϕi

[
νσji(b− c)

2
+ (1− ν)σjjb

]
+ ωi

[
σji

(
b− c
2

)]
.

Note that the opponent strategies are always σjj for the self-focus term (no common inter-
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est) and σji for the system-focus term (all common interest). We expand and simplify:

ψi [σjjb− σjjc− c+ σjjc] + ϕi

[
ν(b− c)(σji + 1)

2
− c+ νc

]
+

ωi

[
σji(b− c) +

b− c
2
− σji

(
b− c
2

)]
≥ ψi [σjj(b)] + (B.9)

ϕi

[
νσji(b− c)

2

]
+ ωi

[
σji

(
b− c
2

)]
.

We can subtract everything on the right and be left with zero.

ψi [−c] + ϕi

[
ν(b− c)

2
− c+ νc

]
+ ωi

[
σji(b− c) +

b− c
2
− σji(b− c)

]
≥ 0, (B.10)

ψi [−c] + ϕi

[
ν(b− c)

2
− c+ νc

]
+ ωi

[
b− c
2

]
≥ 0. (B.11)

The self- and system-focus terms are now fully simplified leaving the team-focused
derivation remaining. We move ϕi [2c] to the other side of the inequality and simplify
further.

−ψic+ ϕi [ν(b− c) + 2νc] + ωi

[
b− c
2

]
≥ ϕi [2c] (B.12)

−ψic+ ϕi

[
ν − 2c

b+ c

]
+ ωi

[
b− c
2

]
≥ 0 (B.13)

ϕi

(
ν − 2c

b+ c

)
+ ωi

(
b− c
2

)
≥ ψic (B.14)

This last step represents the final derivation shown as Equation 5.2 in Chapter 5. This
equilibrium signifies the conditions under which an agent has more incentive to cooperate
than to defect.
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Appendix C

Information Sparsity

C.1 Information with Teams

A fixed behavior policy πi induces a stationary visitation distribution for agent i over states
and state-action pairs, denoted as dπi(s) and dπi(s, a) respectively. Since we are concerned
with the progression of how agents learn, our theory assumes agents are initialized with
random policies that cover the state space uniformly, consistent with past work [9].

The value of var
[
Iπi
Si,Ai

(ZTi
)
]
depends on calculating the KL Divergence for state-action

pairs from the distribution of states and actions for πi, d
πi . Given the distributional support

Xsi,ai (the distribution of team rewards conditioned on specific state-action pairs that are
not mapped to zero), this can be expanded to be:

var
[
Iπi
Si,Ai

(ZTi
)
]
= varsi,ai∼dπi

 ∑
ZTi

∈Xsi,ai

p(ZTi
|si, ai) log

(
p(ZTi

|si, ai)
p(ZTi

|si)

) (C.1)

Note that Si and Ai are based on agent i’s individual observations and policy, but ZTi

is based on their shared team reward.
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