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Abstract

Energy-intensive artificial intelligence (AI) is prevailing and changing the world, which requires
energy-efficient computing technology. However, traditional Al driven by von Neumann computing
systems suffers from the penalties of high-energy consumption and time delay due to frequent data
shuttling. To tackle the issue, brain-inspired neuromorphic computing that performs data processing in
memory is developed, reducing energy consumption and processing time. Particularly, some advanced
neuromorphic systems perceive environmental variations and internalize sensory signals for localized
in-senor computing. This methodology can further improve data processing efficiency and develop
multifunctional Al products. Memristive devices are one of the promising candidates for neuromorphic
systems due to their non-volatility, small size, fast speed, low-energy consumption, etc.

In this thesis, memristive devices based on chalcogenide and metal-oxide materials are fabricated for
neuromorphic computing systems. Firstly, a versatile memristive device (Ag/CulnSe,/Mo) is
demonstrated based on filamentary switching. Non-volatile and volatile features are coexistent, which
play multiple roles of non-volatile memory, selectors, artificial neurons, and artificial synapses. The
conductive filaments’ lifetime was controlled to present both volatile and non-volatile behaviours.
Secondly, the sensing functions (temperature and humidity) are explored based on Ag conductive
filaments. An intelligent matter (Ag/Cu(In, Ga)Se,/Mo) endowing reconfigurable temperature and
humidity sensations is developed for sensory neuromorphic systems. The device reversibly switches
between two states with differentiable semiconductive and metallic features, demonstrating different
responses to temperature and humidity variations. Integrated devices can be employed for intelligent
electronic skin and in-sensor computing. Thirdly, the memristive-based sensing function of light was
investigated. An optoelectronic synapse (ITO/ZnO/MoO3/Mo) enabling multi-spectrum sensitivity for
machine vision systems is developed. For the first time, this optoelectronic synapse is practical for
front-end retinomorphic image sensing, convolution processing, and back-end neuromorphic
computing. This thesis will benefit the development of advanced neuromorphic systems pushing

forward Al technology.

Keywords: Memristive device, resistive switching, memory, neuromorphic computing, in-sensor

computing
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Chapter 1. Introduction

1.1 Background

Energy-intensive artificial intelligence (AI) which is increasingly important in our daily life imposes
increased pressure on current computing and energy systems. The power consumption trend is shown
in Figure 1.! The computing power consumption doubled around 24 months (about 2 years) by 2012.
However, the power consumption demands doubled every 2 months in recent years. This may put
excessive pressure on the power supply system soon. The root of the expensive energy budget for
computers derives from the von Neumann architecture. It is used for current mainstream computers
with separate memory and computing units. The frequent data shuttling between two units limits the
computing speed (the ‘von Neumann bottleneck’) and increases energy consumption.”> To solve this
issue, brain-inspired neuromorphic computing that co-locates memory and computation has been
developed. This methodology realizes massive parallelism, avoiding energy consumption for data
shuttling. Particularly, the artificial neural network executing neuromorphic computing can be equipped
with sensory functions. Integrating sense, memory, and computing in one single chip further shortens
or eliminates the transmission between sensory notes and memory-computing units. This can
significantly improve processing efficiency, which is promising for Al systems that interact with

surrounding environments.’
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Figure 1. The computing power demand trend over 40 years. The consumption is described in petaFLOPS days.

Reprinted with permission.! Copyright 2022, Springer Nature.



To construct advanced neuromorphic computing systems, memristive devices (or memristors) are one
of the promising candidates as building blocks. Their resistance (or conductance) is programable
(resistor function), and subsequently remained for some time (memory function).* The device shows
commendable advantages compared to other technology, including low energy consumption (fJ)’, fast
switching speed (ns),® small size (2 nm),” excellent area compaction (4F?), and three-dimensional (3D)
integration, etc. The device endows complex dynamic electrical responses. It can be utilized as digital
memory elements, programable weights in artificial synapses, biological neurons, and intelligent
sensors.'® In memristive devices, filamentary switching and non-filamentary interfacial switching are
two main types of configurations.’ For filamentary resistance switching, the switching mechanism is
owing to the generation of single or multiple conductive filaments inside switching layers bridging the
top electrode and the bottom electrode. The mobile ions are usually from the active metal of Ag, Cu,
Ni, or an alloy.! The dynamics of those ions are controllable to modulate volatile and nonvolatile
properties, which can be employed to develop multifunctional devices.!! Particularly, filamentary
memristive devices can reversibly switch between two states with differentiable semiconductive and
metallic features, which endows different sensory responses. The tailorable lifetime and sensory
function of conductive filaments are attractive for advanced neuromorphic computing. For interfacial
switching, the Schottky barrier height and the bulk conductance of materials can be modulated by
controlling the defect distribution.> Metal-oxide materials are widely used due to their stable
properties, straightforward process, excellent memristive properties, and compatibility with mature
CMOS processes (CMOS, Complementary metal-oxide-semiconductor).”* Besides, metal-oxide
semiconductors are usually sensitive to light. This kind of device is promising for machine vision

systems that are particularly important in the Al world.'

Although progress has been made in developing neuromorphic computing systems. Some gaps
regarding novel memristive devices still exist, including versatile memristive devices with multiple
functions to simply neuromorphic circuits, intelligent matter with reconfigurable temperature and
humidity sensations for advanced neuromorphic systems, and optoelectronic synapse for monolithic

neuromorphic machine vision.



1.2 Objectives

The objective of this project is to develop advanced neuromorphic computing systems for energy-

efficient Al. Filamentary memristive devices based on chalcogenide materials were developed. The

controllable lifetime of conductive filaments induced both volatile and non-volatile memory for a

versatile memristive device. The resistive switching performances were improved by adding Ga into

the switching layer of CulnSe>, The device reversibly switched between two states with differentiable

semiconductive and metallic features, which showed different responses to temperature and humidity

variations. Finally, an optoelectronic device promising for neuromorphic machine vision has been

developed. The memristive devices can be utilized for sensory neuromorphic computing that is

sensitive to temperature, humidity, and light. The main objectives are listed:

(1)

2

3)

The development of a versatile memristor, the device of Ag/CulnSe,/Mo was fabricated.!> The
lifetime of conductive filaments was tunable by controlling electric forces, which resulted in the
coexistence of volatile and non-volatile memristive effects. A versatile memristor covering the
multiple roles of non-volatile memory, selectors, artificial neurons, and artificial synapses was

developed.

The development of intelligent matter (Ag/Cu(In, Ga)Se,/Mo), it showed reconfigurable
temperature and humidity sensations for sensory neuromorphic computing.'® Different
sensational features regarding the temperature and humidity were observed in the device under

different resistance states.

Exploring the novel optoelectronic device for artificial vision systems, the device
(ITO/ZnO/Mo0s/Mo) enabling multi-spectrum sensitivity can be employed for front-end

retinomorphic image sensing, convolutional processing, and back-end neuromorphic computing.

1.3 Organization of the Thesis

This thesis focused on advanced neuromorphic computing based on memristive devices.

Chalcogenide and metal-oxide materials were employed as switching layers to construct devices

enabling memory, sensing, and computing functions.

Chapter 1 is an introduction covering the research background, objectives, and thesis organization.



Chapter 2 is the literature review. A review of memristive technology is presented, including the
brief history, critical characteristics, memristive materials, and memristive mechanisms. Then, the
investigating methods of resistive switching are reviewed. Imaging technology, spectroscopy
technology, theoretical simulation, and compact mathematical models are discussed to investigate
resistive switching mechanisms and accelerate the development of memristive systems. Finally,
memristive devices for information processing, particularly based on neuromorphic computing, are
summarized. The efficient artificial neural networks (ANN) implementing vector-matrix multiplication
(VMM) and in-sensor computing based on memristive devices are elaborated.

Chapter 3 developed a versatile memristor (Ag/CulnSe,/Mo). This device exhibited both volatile and
non-volatile properties. It provided multiple functions covering non-volatile memory and neuromorphic
computing. Particularly, the device emulated both short- and long-term synaptic plasticity, as well as
neuron-like threshold switching. The leaky integrate-and-fire (LIF) neuron model and artificial synapse
based on the device were studied. Such a versatile memristor enabled the functions of nonvolatile
memory, selectors, artificial neurons, and artificial synapses, providing advantages regarding circuit
simplification, fabrication processes, and manufacturing costs.

Chapter 4 focused on an intelligent matter (Ag/Cu(In, Ga)Se»/Mo) that endows reconfigurable
temperature and humidity sensations for sensory neuromorphic systems. The device reversibly
switched between two states with differentiable semiconductive and metallic features, demonstrating
different responses to temperature and humidity variations. The novel concept is that controlling
materials states (with/without Ag filaments) enables reconfigurable sensory functions. More novel
reconfigurable sensory intelligent matters can be potentially developed based on redox reaction
materials, phase change materials, spin-transfer torque materials, and ferroelectric materials. This is
promising for energy-efficient Al systems requiring temperature and humidity sensitivities.

Chapter 5 presents an optoelectronic synapse (ITO/ZnO/MoQOs/Mo) enabling multi-spectrum
sensitivity. Synaptic plasticity triggered by photons can be simulated by the optoelectronic synapse,
which is promising for photonic computing and information transmission. An ultra-low energy kernel
generator fully controlled by photons for convolutional processing is developed. Meanwhile, the device
shows memristive effects under electronic stimulations that implement brain-inspired neuromorphic

computing with backpropagation algorithms. For the first time, this optoelectronic synapse is practical



for front-end retinomorphic image sensing, convolutional processing, and back-end neuromorphic
computing. This work will benefit the development of advanced machine vision.

Chapter 6 gives the summary and discussion of the completed research and future works based on
current progresses.

Chapter 7 lists the author’s research contributions and awards.



Chapter 2. Literature Review

This chapter focuses on a literature review regarding memristive technology, including memristive

effects, investigation methods, and neuromorphic computing.
2.1 Memiristive Effects

2.1.1 The History of Memristive Effects

Memristive devices (often named memristors) combine the functions of resistor and memory.
Resistance (or conductance) can be programed into two or more distinguishable nonvolatile levels by
applying electronic stresses.!” The fingerprint of a memristor was documented by Leon Chua and Sung
Mo Kang: “A pinched-hysteresis loop under a bipolar periodic electronic signal”.'® This signature has
been discovered in various electronic devices based on different materials and structures over more
than a century. The first manufactured memristive device can track back to 1801.!" In the 1960s,
pronounced memristive behaviors were observed with the help of advanced thin-film technology. A

2021 1n 1971, the memristor,

remarkably high electric field was achieved in metal/oxide/metal devices.
considered the fourth electronic element, was theoretically reasoned from symmetry arguments.?? Apart
from three known fundamental circuit elements: resistor, capacitor, and inductor, a fourth circuit
element (named as memristor later) existed as shown in Figure 2. However, the lack of a physical
model and practical device limited the application of this device although it showed valuable and
interesting circuit properties. In 2008, the memristive effect was then experimentally confirmed along
with a physical model by HP Laboratory.* Frequently observed hysteretic I-V features in thin-film
devices are now identified as memristive effects. Ever since memristive effects attracted extensive
attention from both academia and industrial communities. The device has been proposed for high-

performance nonvolatile memory, learning neural networks, encryption, and radio-frequency

communication.'’
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Figure 2. Four fundamental two-terminal passive circuit elements. Reprinted with permission.* Copyright 2008,

Springer Nature.

2.1.2 Memristive Characteristics and Parameters

Memristive devices are usually in a capacitor-like configuration consisting of a top electrode (metal
or other conductive compound materials), a switching layer (semiconductor or insulator), and a bottom
electrode as exhibited in Figure 3a.”* The simple structure is highly scalable in the crossbar and 3D
stacking integrations (Figure 3b). The distinguishable states can be utilized for information storage and
logic operations.”* Memristive devices typically have two stable resistive states, referred to as high
resistive state (HRS) and low resistive state (LRS). Interestingly, some devices provide multiple
resistive states that are represented by state 1, state 2, state 3, etc.>> The memristive devices with multi-
level resistance states show higher information storage density since one cell stores multiple bits.
Whereas it is more difficult to distinguish each resistive state due to intrinsic variability, especially for
large-scale integrated devices. Particularly, some memristive devices may show analog resistive
switching (a special scenario of multiple states), in which the resistance (or conductance) changes
gradually and linearly (or near-linearly). A series of conductance can store programable weights in

ANNS for neuromorphic computing.
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Figure 3. (a) Diagram of a typical memristive device. (b) Integrated memristive devices in a crossbar. Reprinted
with permission.?* Copyright 2008 Elsevier Ltd. (c) I-V curve of a unipolar switching. (d) I-V curve of a bipolar
switching. Reprinted with permission.?’” Copyright 2009, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

It is crucial to quantificationally characterize the memristive properties. One commonly used figure
is the I-V curve of current versus voltage (I-V) that presents the SET/RESET voltages (operation
voltages), current values (estimating energy consumption), and HRS/LRS ratio (resistive
distinguishability). To get I-V curves, a sweep voltage (0—+V—-V—0) is applied to the device and
current values are recorded. This test is called the direct current (DC) switching cycle test. Compliance
currents (CCs) are usually imposed to constrain the current flowing through devices. This avoids
unrecoverable breakdown due to striking currents.?® Applied electronic stresses induce the transition
from HRS to LRS, referred to as a SET process. Similarly, the voltage changes the device resistance
from LRS to HRS, it is called a RESET process. Memristive effects are categorized into unipolar and
bipolar resistive switching according to electrical polarity. The unipolar switching is depicted in Figure
3¢, the SET and RESET operations are both triggered under the same electrical polarity. For the SET
operation, switching devices to LRS is done by a higher voltage. The operation current is limited by
CCs. The RESET operation is achieved by a small voltage without compliance currents. In comparison,

the bipolar resistive switching is exhibited in Figure 3d. A positive voltage is employed to realize a



SET operation. A negative voltage changes the device back to the HRS, namely a RESET operation.
An asymmetric structure in the capacitor-like device is usually needed to realize the bipolar mode.
Notably, the two featured curves (Figure 3c and Figure 3d) are schematic illustrations for I-V
behaviors with a specific switching direction. Experimental curves may deviate from the illustration
depending on the device structure and test parameters. Notably, this I-V curve alone is not sufficient to
evaluate the quality of memristive performances. Several other figures of merit, including endurance,

retention time, switching speed, and variability, should be investigated as well.

Endurance: The device endurance describes the maximum operation cycles ensuring a sufficient
ratio of HRS/LRS. It shows the robustness of devices. Generally, the failure is accumulated over
multiple operations instead of occurring in one single cycle.?’ Different measurements are used to get
endurance characteristics: 1) DC switching multi-cycle test. ii) Current-blind pulsed voltage stresses
(PVYS). iii) Current-visible PVS. iv) Multi potentiation/depression cyclic test. Method i is a preliminary
test to identify resistive switching. Consecutive DC switching cycles are collected as shown in Figure
4a.%° This measurement is reliable in which one can inspect resistive switching in every cycle. Besides,
the statistics of SET voltage and RESET voltages can be obtained. The distribution plots of HRS and
LRS are extracted from tested curves. Using a small voltage and corresponding currents calculates
resistance values, as shown in Figure 4b. The value of HRS/LRS (sometimes called the ON/OFF ratio)
reflecting the resistance states’ distinguishability can also be obtained. However, this method is very
time-consuming as each cycle takes 30-60 s or even longer for low currents. Also, this method does not
perform the electronic stresses in practical scenarios that use pulsed voltages for resistive switching
operations. A better method is using PVS. Method ii and iii mimic the real operation scenario in
integrated systems. In the inset of Figure 4c, a short SET pulse switches the device to the LRS,
following a small pulse voltage to measure the resistance.®! Similarly, a short RESET pulse switches
the device to the HRS, following the same small pulse voltage to measure the changed resistance.
Notably, the current is not measured after every SET and RESET operation in method ii. The currents
are measured after a specific number of SET and RESTE PVS operations. This can shorten the overall
experimental time as measuring current (especially low current) is usually time-consuming. The
drawback of method ii is that it cannot monitor every switching operation effectively. Because the
collected data points are spaced. Method iii also uses PVS to operate devices. The difference is that the

currents are measured in every cycle of SET and RESET operations as shown in Figure 4d. This
9



method monitors every resistive switching operation mimicking practical scenarios. But this method is
challenging to measure low current (<10 pA) for most equipment. The endurance test of
potentiation/depression is discussed, which is vital for brain-inspired neuromorphic computing
implementing VMM. Short consecutive pulses (for example 50 positive pulses) are used to mimic the
synaptic potentiation operation. Each pulse follows a small pulse voltage to monitor the change of
currents that can be used to calculate the conductance as shown in Figure 4e. Likewise, Short
consecutive opposite voltage pulses (for example 50 negative pulses) are used to mimic the synaptic
depression operation. Each pulse follows a small pulse voltage. One potentiation/depression operation
is regarded as one cycle. Multiple cycles of the test are required to monitor the device’s endurance.
Notably, each method has different purposes with advantages and disadvantages. The best option is to

mix them up and characterize the device from different perspectives.
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Figure 4. (a) DC switching cycle test for 100 consecutive cycles. Reprinted with permission.*® Copyright 2021,
The Authors. (b) Distribution of LRS and HRS over 100 cycles, the data is extracted from the DC switching cycle
test. Reprinted with permission.3? Copyright 2022, The Authors. (c) Endurance test on the device with distinctive
resistance levels by current-blind PVS. Reprinted with permission.’! Copyright 2022, American Chemical Society.
(d) Endurance test on the device with distinctive resistance levels by current-visible PVS. Reprinted with
permission.3* Copyright 2013, The Authors. (¢) Endurance test of potentiation/depression behaviors. Reprinted

with permission.>* Copyright 2022, The Authors.
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Figure 5. (a) Illustration of the measurement setup for the state retention time. The inset is a typical experimental
circuit. (b) State retention time under different program electronic stresses. Reprinted with permission.’
Copyright 2019, The Author(s). (c) Typical state retention time of HRS and LRS. Reprinted with permission.*®
Copyright 2019, The Authors. (d) Multi-level state retention time. Reprinted with permission.?” Copyright 2022,
The Authors. (e) Retention time under different temperatures. Reprinted with permission.>® Copyright 2021, The
Authors.

State retention time: Investigating state retention time is to check if the HRS and LRS are stably
reserved over time after SET and RESET operations. To measure the state retention time, a small
constant reading voltage (=0.2 V or smaller) is applied to the device after a SET or RESET operation.
The current is measured constantly to monitor the resistance (or conductance) changes over time. The
reading voltage is usually orderly smaller than program voltages to avoid the resistance drifting during
the test.*® Thus, current-time (or resistance-time, or conductance-time) curves should be presented for
the state retention time characterization.?” A typical measurement setup is shown in Figure 5a. The
memristive device (G) connects with a resistor in series. The resistor can have different values to
modulate the electric forces applied on the memristive device, which modulates the changing margins
of resistance and the retention time.!! The auxiliary resistor can also share voltage stresses to prevent
the device breakdown owing to high-current striking.* The current or the voltage on the device is
measured to get conductance values. Typically, more attention is paid to the retention time of LRS.
Because atomic rearrangement is generated during the SET process, which may vanish after a period.
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In comparison, the HRS is the initial state of the device that is normally stabled. Figure 5b shows the
SET conductance changes over time, the conductance and the retention time were different due to
different electronic stresses of SET operations.*® In this specific case, the metallic conductive filaments
(MCFs) were responsible for the resistive switching. Higher electronic stress induced stronger MCFs
that exhibited higher conductance and longer retention time. This programable retention

characterization shows potential applications in multifunctional devices.*’

Although the retention time of HRS is not specifically concerned, the figure of merit for both states
is often presented as shown in Figure 5c.>®* The HRS/LRS (or sometimes so-called ON/OFF) feature
along with retention time are elaborated, indicating distinguishable states.*'*? Particularly, multi-level
memristive devices show promising applications for high-density memory and computing systems.*
The retention time of all resistive states should be measured to demonstrate the validity as shown in
Figure 5d.*” To induce multi-level states, different electronic stresses, including various program
voltages,’” program currents,* and program durations (the width of program pulse),** are utilized. A
retention time longer than 10 years is usually required for nonvolatile memory.?’” However, it is not
doable to execute the state retention test for that long time. One strategy is to assess the retention
characterization in the aggressive condition of elevated temperature instead of normal service
conditions (room temperature). Atoms in memristive devices are more active under high temperatures,
indicating the accelerated rearrangement speed of atoms. LRS retention time at high temperatures is
shorter than the room temperature counterpart.* The relationship between retention time and

temperature is described by the following equation:
In(t) o =& Eq. 1
n pr q-

where t is retention time. E, is the activation energy. k represents the Boltzmann constant. T represents
the measurement temperature. In this method, several data points of retention time are collected at
different temperatures (typically > 80 °C). An extrapolating operation to In(t)-1/T plots will be
implemented based on the data points carrying failure information.*® In Figure Se, the conductance

t.3¥ The evaluated

variation over time is presented, and the extrapolating fitting is shown in the inse
retention time was about 9 x 10% s which is much longer than the actual test time. Notably, memristive
devices with short retention time (volatile resistive switching) ranging from some microseconds to a

few seconds also show incredibly good prospects.!! The dynamics after removing the voltage stresses
12



can be employed for short-term plasticity learning,*” high-performance selectors,”® security
applications,* etc. For those volatile devices, the retention time is usually tested directly, for example
in Figure 5a and Figure 5b.% A fast measurement speed is required to catch the transition from the

LRS to HRS in the volatile resistive switching.>

Variability: The temporal (cycle-to-cycle) variation and spatial (device-to-device) variation are the
two main variabilities in memristive arrays.’! The variation characterizations of Vsgr, Vreser, HRS, and
LRS are crucial parameters that need to be identified. Wherein, Vsgr and Vreser distributions indicate
the reliability of programing procedures. HRS and LRS variations are vital for the accuracy of memory
and computing applications. The statistical analysis of device variabilities is essential to investigate
memristive devices. The cycle-to-cycle variation is determined by intrinsic properties regarding
materials used, defects distributed in materials, resistive mechanisms, device structure, etc. Also, the
operation strategies influence device variability. For example, the CC can protect the device from
damage or breakdown, which may also benefit the device’s stability since the failure is due to
accumulated damage over multiple operations. As for the device-to-device variation, it is decided by
the fabrication processes. The smooth surface, homogenous defects distribution, controllable thickness
over a specific area, and uniform element composition in devices are important aspects of integrated
devices with small spatial variations. The typical DC switching cycles are one of the important and
frequently used methods to present the variations (Figure 6a). The SET/RESET voltages and the
HRL/LRS were obtained. Figure 6a shows a typical multiple-cycle operation in one device, indicating
the cycle-to-cycle variation. It should be noticed that the DC switching cycles of multiple devices can
also be presented in the same figure to indicate the device-to-device variation, which is similar to
Figure 6a.> To quantitatively evaluate statistics variations, The cumulative probability plot and
histogram are commonly employed as presented in Figure 6b and Figure 6c, respectively. The data is
fitted by the Gaussian function to calculate the mean value («) and the standard deviation (o). The HRS
and LRS can be extracted from DC switching cycle curves (Figure 6a) or PVS operations. Figure 6b
gives a typical cumulative probability plot of HRS and LRS, both cycle-to-cycle variations and device-
to-device variations.>®> The figure indicated the resistance distribution range over two distinguished
states. The SET and RESET voltages were obtained from DC switching cycle curves. Figure 6c shows
the histogram features of operating voltages. In this specific case,’® 48 devices were tested multiple

cycles to collect the operation voltage variations. Cumulative probability plots and histograms are two
13



universal figures that depict statistical data points. Resistance and operation voltages (cycle-to-cycle

and device-to-device) are presented by either cumulative probability plots or histogram figures.

Synaptic potentiation and depression are very crucial for neuromorphic computing. The output
computation accuracy is significantly influenced by the operational variations coming from both
temporal and spatial aspects, which should be characterized properly. Cumulative probability plots are
utilized, as shown in Figure 6d.>* The device-to-device variation was low and the integrated array
demonstrated a high computing accuracy of over 95%, which heavily relies on a high yield of efficient
devices (99.99%) and small variations.** The cycle-to-cycle variation is also important. In Figure 6¢,*
100 consecutive potentiation/depression cycles are presented. The error bar was utilized to demonstrate
the variation of each state. Another efficient way to indicate device-to-device variations is presented in
Figure 6f,° conductance map of the synaptic array after localized pulse programing to write the
‘UMAS’ is demonstrated. This method can locate dead or stuck devices. In most papers, the cycle-to-
cycle variations, including SET voltage, RESET voltage, HRS, LRS, and potentiation and depression
characteristics, are usually presented using the method mentioned above. The small device-to-device
variation, especially for large-scale integrated devices, is still challenging. The large integration system
usually requires high-vacuum deposition equipment, lithography, clean rooms, and professional test
systems. Some work focuses more on conception demonstration using novel materials (polymers,’’

biomaterials,®

etc.) that are not compatible with lithography. Besides, some device preparation
methods, such as spin coating,” drop casting,*® electrodeposition,’” are hard to realize very
homogeneous and uniform thin films, which is especially important to device-to-device variation.
Scientists should vision and estimate the probability and strategies to forward novel memristive

technology to practical applications.®!

14



a 102 b C
_ AgIPEI-AgCIO /Pt S0k ;) PSS 200 + Count
104 I _RS variation ; { .

RESH] v 29§ u=-0868V hZ0164v
g » n F 3 0=0.253V C, =6.06%
] g sor > Cy =29.07%

o 104 5
5 2w} 3
o s LRS §
101 S 5
g 2ot 1 eycle-to-cycle
3 on_ 5 b device-to-device
10 —— 1th cycle o 3
— S cvees 010' 10° o’ 100 10° 10° 100 10° 10° 10"
2 A ) 1 2 Resistance (@) 20 -15 -10 05 0 20 25 30 35
Voltage (V) Voltage (V)
d e f
99.9 20F 100 cycles 100 cycles
g 90 & | potentiation distribution lepression distribution
H 8 st max
- ® T+ 75th percentile
£ w00 § 10+ L =" 25th percentie]
4 ° ~---75th percentile in
g 100 - ——--median
g I B 5+ | -~25th percentile | -
3 10 Q .
01 c ., ol 2,
b \ . L . b L1 %
056 10 15 20 25 50 35 40 0 10 20 30 40 500 10 20 30 40 50 60 70
Current (4A) Pulse number

Figure 6. (a) Typical DC switching cycle test for multiple cycles, 500 cycles in this specific example. Reprinted
with permission.®? Copyright 2022, American Chemical Society. (b) The cycle-to-cycle and device-to-device
variations presented by cumulative probability plots of LRS and HRS. Reprinted with permission.> Copyright
2012, The Authors. (c) The histogram of device SET voltages and RESET voltages of 48 devices under multi-
cycle operations. Reprinted with permission.’® Copyright 2020, The Author(s). (d) Cumulative probability plots
of 32 independent states. Reprinted with permission.* Copyright 2020, The Author(s). (¢) The variation of the
potentiation/depression plasticity. Reprinted with permission.> Copyright 2021, American Chemical Society. (1)
Conductance map of the synaptic array after localized pulse programing to write the ‘UMAS’. Reprinted with

permission.>® Copyright 2019, The Author(s).

Switching speed: The switching speed reflects how fast a device can switch between different states.
This parameter is important to computing and memory systems as it constrains the overall operating
speed of whole systems. To measure the switching speed, typical V-t and I-t synchronous curves are
recorded (Figure 7a).%® The switching time is determined by extracting the current changing features,
demonstrating switching speed. The simplest way is shown in Figure 7b.%* The current and voltage are
both recorded to get V-t and I-t synchronous curves. Usually, advanced semiconductor characterization
systems equipped with pulse measure units are required, such as Keithley 4200A-SCS and Keysight
B1500A semiconductor parameter analyzer. However, the SET transition is usually not self-limited. A

memristive device is vulnerable under too-high currents. A series resistor can be utilized as a current
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limiter as shown in Figure 7¢.%° Advanced semiconductor characterization systems are expensive. And
extra costs are often required, including ultra-fast pulse measure units, a probe station, a microscope,
and maintenance services. Another method is to use a pulse generator and an oscilloscope (Figure
7d).% A pulse source switches the device between different states. The series resistor (Ra) limits the
current going through the device. The current is read out by measuring the voltage (completed by
oscilloscope) on the series resistor of 50 Q connecting with the bottom electrode. In this way,

information on switching speed can be obtained.
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Figure 7. (a) Typical V-t and I-t synchronous curves corresponding to the switching process. Reprinted with
permission.®* Copyright 2021, The Author(s). (b) Typical setup for testing memristors. Reprinted with
permission.®* Copyright 2021, The Author(s). (¢) Typical setup for testing memristors with a tandem resistor to
limit the current. Reprinted with permission.®® Copyright 2016, The Author(s). (d) Typical setup testing

memristors with a pulse generator and an oscilloscope. Reprinted with permission.®® Copyright 2012, IEEE.

2.1.3 Memristive Mechanisms

Distinguishable states of memristive devices are induced by external electronic stimuli. There are four
fundamental mechanisms, including electrochemical redox reactions,?’ phase changes,®’ ferroelectric-

polarization modulations,® and magnetic tunneling.®® Here, electronic redox reactions are discussed
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since it is the major mechanism in this work. This mechanism is owing to redox reactions and ion

migrations. Mobility ions that change the resistance are anions and cations.

The anion-based resistive switching, mainly driven by oxygen ions (or equivalently oxygen
vacancies), is a major part of the redox-based mechanism. It is often named as valence change memory
(VCM).” This mechanism is found in transition-metal oxides?® and perovskites’! consisting of oxygen
ions or other mobility ions. Stable inert electrodes under electronic biases for both top and bottom
electrodes are used. In particular, metal electrodes (e.g., Ta, Ti, Hf) possessing high oxygen affinity act
as a reservoir layer of oxygen species.”>’®> This benefits redox reactions/ion exchanges and the
formation of oxygen vacancies that are generated under electronic activations as shown in Figure 8a.
In general, oxygen vacancies can be induced into two forms of distribution. Firstly, the filamentary type
of distribution (Figure 8b) is the non-uniformity of distributed oxygen vacancies (a new phase with
high conductivity).”* This kind of resistive switching shows fast switching speed and a large HRS/LRS
ratio. The growth of single or multiple localized filaments is involved during the switching process.
The active switching region concentrates at the filaments’ tip, which means the values of LRS do not
proportionally depend on the effective area of the devices.”” Secondly, interface-type resistive
switching, the oxygen vacancies are mainly distributed at the interface of the electrode/switching layer.
Electronic stimuli modulate Schottky barriers as shown in Figure 8c. One of the electrodes uses
materials with high working functions that form a prominent Schottky barrier at the interface. In
comparison, another electrode has a low working function to form Ohmic contact at the other end of
the interface. Accumulated oxygen vacancies change the working function of switching layers, which
changes the Schottky barrier height at the interface. A high Schottky barrier shows high resistance. At
LRS, the electrode/oxide interface has lower barriers and smaller resistance (high conductance).
Reversing the applied voltage re-establishes the barrier and recovers the original HRS. The interface-
type resistive switching is typically slow that is due to the lack of thermodynamics to accelerate ion
migrations.” Notably, the Schottky barrier height and bulk conductivity of switching layers both
contribute to the overall resistance. Homogeneously distributed oxygen vacancies in the bulk of
switching layers may also modulate the conductance of the devices.”® In contrast to the area-
independent LRS in filament-type switching, the LRS usually shows proportional relations to device
areas as the active switching region is the whole interface of electrode/oxides.”” Notably, the filaments

and interface modulation may contribute to the resistive switching collectively in some cases.”®”
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Remarkable progress has been obtained in anion-based resistive switching regarding fundamental
physics understanding and device performances. Theoretical simulation and visualizing technology
have been successfully utilized for physical understanding.’® Meanwhile, the device achieved an

endurance of 102, a switching speed of <1 ns, and a small size of <10 nm.?!

For cation-based resistive switching, active metal (Ag, Cu) is usually employed as a top electrode,
and inert metal (Au, Pt) is used as a bottom electrode.®? Electrochemical oxidation induced cations (Ag"
or Cu?") to the switching layer. The switching layer usually shows good diffusivity to cations, Such as
a-S1,'° metal oxide materials (HfO,,*” Ta»0s,* etc.), chalcogenides (Ag:Se,** GeSe,® etc.), and
biomaterials (silk fibroin,** glucose,®® etc.). In some cases, the switching layer is doped with Ag atoms
to improve resistive switching performances.*’” The forming of conductive filaments is controlled by
three processes. First, the electrochemical oxidation of the active electrode. Second, the cation
migration via the active layer. Third, the reduction of cation ions.?! The conductive filaments are formed
involving chemical reactions, cation drifting, and nucleation under electronic bias as shown in Figure
8d. Conductive filaments connect the top and bottom electrodes, demonstrating LRS (Figure 8e).
Notably, the redox rate and ion mobilities in specific solid electrolytes determine the growth modes of
filaments.®”#® Specifically, a low ion mobility and redox rate make filaments grow from the top active
electrode to the inert bottom electrode. In comparison, the filament growth in an opposite direction
(bottom electrodes to top electrodes) is expected with high ion mobility and redox rate. Before the
normal operation, a forming procedure is often required in which a high voltage is applied to the device
to induce initiated channels. Besides, the forming procedure changes the nano-morphology in the
electrolyte. The preformed channels act as easy transport pathways for cations.® Interestingly, the
dynamic of cations can be modulated by light,”° temperature,”! humidity,” etc. demonstrating
promising prospects for in-sensor computing systems. Moreover, the resistive switching can be
controlled by the dynamics of both anions and cations simultaneously as shown in Figure 8f. > The

anion-cation-hybrid resistive switching broadens the design of multifunctional memristive devices.
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Figure 8. (a) Illustration of set operation in anion-based devices. (b) Illustration of filamentary-type resistive
switching based on anions. (c) Illustration of interface-type resistive switching based on anions. (d) Illustration
of set operation in cation-based devices. (e) Illustration of filamentary-type resistive switching based on cations.

(f) Illustration of resistive switching based on hybrid anions and cations.

2.1.4 Memristive Chalcogenides and Metal Oxides

Typical memristive devices are in the form of electrode/switching layer/electrode two-terminal
structures. The switching layer is crucial for memristive performance since it is the path for shuttling
charge carriers during operation processes. Extensive investigations into memristive materials have
been conducted. Chalcogenide materials,”* metal-oxide materials,”® carbon-based materials,’® natural
biomaterials,’ and synthetic polymer materials®’ are the five main categories used as switching layers.

Here, switching layers based on chalcogenide and metal-oxide materials are discussed in detail.

19



Chalcogenide Materials: Resistive switching behaviors have been observed in many chalcogenide
materials. Chalcogenides are materials consisting of one or more chalcogen anions (e.g., S, Se, or Te)

and at least one electropositive element.”®

Typical memristive devices based on chalcogenides are
summarized in Table 1. Chalcogenides usually show high ion mobility that will benefit the
formation/dissolution of conductive filaments. The real-time forming/rupture of a metal conductive
filament was observed by a high-resolution transmission electron microscope (HRTEM) in the AgS,
(Figure 9a—c).” The forming and rupture of conductive filaments can be controlled by electronic
voltages. The high-conductivity Ag,S argentite phase and Ag nanocrystal together generate conductive
channels as shown in Figure 9b. Figure 9¢ shows another typical example of a chalcogenide-based
device, the forming/rupture of metal conductive filaments was responsible for the resistive
switching.?”'% The Ag conductive filament grows from the cathode (Pt) toward the anode, which is

ascribed to the high ion diffusion coefficient in Ag—Ge—Se.!%! The similar phenomenon has also been

reported in Ag/As>S;:Ag/Au,'” Ag/GeSe:Ag/Ni,'” and Pt:Ir/GeS:Cu/Pt:Ir.!%

Another important resistive switching mechanism in chalcogenide-based devices is the phase change
phenomenon. Conductivity switching is associated with the phase transition relating to temperature.
This is a typical phenomenon observed in chalcogenides, such as Ag>Se, ' Ge>SbyTes,!* Cu,Se,'”” and
Ag,S.'% Rehman et al. reported the temperature-related resistive switching behavior in the Al/Cu,Se/Pt
device.'”” The device showed no resistive switching behavior at room temperature. However, an
obvious resistive switching behavior was obtained at 125 °C which was close to the Cu,Se transition
temperature (137 °C). The thermodynamic calculation revealed that the ordered or disordered Cu,Se
was crucial to the mobility of Cu ion, which further influenced the formation/rupture of conductive
filaments. Furthermore, transition metal dichalcogenides (TMDs) can be two-dimensional (2D)
materials.!” They have intrinsic ultrathin geometry, inert chemical character, and tunable photoelectric
properties.'!'® Sub-10 nm devices can be achieved, which is vital for high-integration density.!!
Memristive devices based on 2D materials can be either vertical or lateral configurations.!'>? TMDs with
polymorphism realize a reversible transition between semiconducting, semi-metallic, and metallic
conductivities, which can be utilized for resistive switching.!"* Figure 9f shows the schematic diagram
of the MoTe»-based vertical memristor device.!'* This structure ensured that only vertical transport
contributed to currents. The electric-field-induced phase transition was observed in Figure 9g. The 2H

phase showed semiconducting behaviors corresponding to the HRS. Meanwhile, the T4 phase showed
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metallic behaviors corresponding to the LRS. The switching time was only 10 ns with the HRS/LRS
ratio of 10°. Moreover, the phase transition can also be induced by lithium intercalation as shown in
Figure 9h.'"® The localized 2H (semiconductor phase) - 1T’ (metallic phase) transition was realized
by controlling Li* migrating laterally under electric fields. The device showed excellent resistive
switching behaviors. It demonstrated the electrical modulation of 2D materials with field-driven ionic

processes.
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Figure 9. (a-c) TEM image of Ag,S-based memristor at the initial state, LRS, and HRS. (d) -V characteristic of
the device. Reprinted with permission.” Copyright 2010 American Chemical Society. (e) The typical I-V
characteristic and the corresponding electrochemical metallization process. Reprinted with permission.?’
Copyright 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (f) Schematic diagram of the vertical
MoTe;-based device. (g) Atomic resolution scanning transmission electron microscopy image of the MoTe;.
Reprinted with permission.!™ Copyright 2018 Springer Nature. (h) Schematic diagram of local 2H-T' phase

transitions in LixMoS; induced by Li* migration. Reprinted with permission.!'s Copyright 2018 Springer Nature.
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Table 1. Summary chalcogenide-based memristive devices.

Device HRS/LRS ratio  Endurance Retention Switch speed (s)  Ref.
Au/ZnSe/ITO 10 2x10? 10%s Hokok 116
Ag/ZnSe-ZnS/ITO 50 1.4x10? 10*s Kok 1n7
Ag/ZnS-Ag/ZnS/ITO >10?2 3x103 o ok 118
Cu/ZnS/graphene/Cu 103 102 3x10° ok 19
Ag/MoSe,/FTO 12 50 ok s 120
Ag/MoSe,/PMMA/Cu 4x10? 10° 10%s ok 121
Ag/MoS,/Au 10 10? 10%s ko 122
Ni/ALOs;/MoTe/Ti 108 ok 100 s 108-107 14
Au/Ti/ MoTey/Au/Ti 10 10° 10°s(85°C) 5x10°-10® 123
Ag/Agi3GeSeqr/Ni 10° 10! Hrx 107 124
Ag/Agio(As40S30S€30)90/Ag 10? 20 ook ok 125
Ag/y-InSe/Au 10° 50 105s ok 126
Pt/CusTe1x/ALO3/Si <10 103 10*s (85°C)  *** 127
Pt/CuySei.x/Al,O3/Pt 107 10* 10*s (85°C)  *** 128
Ag/CurZnSnSes/Mo 215 2x10? 10%s k% 129
Al/CuaZnSn(S,Se)s/Mo 27.5 2x10? *oxk ook 130
Ag/SbyTes/Pt 5 10° 103 s otk 131
Te/SbyTes/Te 10° 5x10° 10%s 105-10* 132
Pt/Sb,Tes/GeTe (period)/TiN 10 104 10%s 6x 108 133
TiN/GeSbTe/TiN 10 70 ok ook 134
TiN/Ge,Sb,Tes/TiN <10 10* 10%s 1x10°-8x10° 106
TiW/Ge,SbyTes/TiW 10 104 ook 5% 10710 135
TiN/Ge,Sb,Tes/Cu/SiC/Pt 103 10* 10*s 7.8x 108 136
Pt/Ge,Sb,Tes/Te/Pt 103 10? 104§ (85°C) 137
Ag/GeSbTe/TiN 10° 102 104 s 138
Pt/Ag/Ge,Sb,Tes/Pt 10° 103 8h *k % 139
Cu/N-Ge»Sb,Tes/Pt 107 10* 10*s 107 140
Ag/Ge,SbaTes/ZnS-SiO/W-Ti  5x10? 104 105s ok 141
Pt/TiGexSe1—«/TiN 6 2x10° 10*s (85°C) 4x 108 142
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Chalcogenide materials can provide excellent resistive switching performances. They have been
investigated in the development of data storage and computing applications. The high ion mobility of
chalcogenides benefits the formation of conductive filaments and introduces a high HRS/LRS ratio.
Filamentary resistive switching often suffers from severe variability due to the defect-based resistive
mechanism.'*3 An in-depth investigation of resistive switching based on chalcogenides is needed for

further development.

Metal-Oxide Materials. Metal-oxide materials are considered one of the most important materials
in both scientific and technological fields due to their excellent optical and electrical properties,
materials stability, and easy formability.'** The investigation on the metal-oxide memristor can track
back to 1962. Hickmott reported the hysteretic current—voltage phenomenon in an Al/Al>Os/Al device,
elaborating on the resistive switching characteristic under applied electric fields.?! Subsequently, many
metal oxides have been employed to construct memristor devices, such as TiO»,’* SiOy,'* ZnO,!46
NiO,' HfO,,'* TaOs-,”* Cu0,'** GdOy,"*° SrTi0s,” Pro7CaosMn0s,"*! and so on, as summarized in
Table 2. Dmitri B. Strukov et al. reported a physical model to explain resistive switching behaviors in
a two-terminal Pt/TiO,/Pt device.* Figure 10a shows the equivalent circuit of the boundary migration
model. In this system, oxygen vacancies are treated as mobile +2 charged dopants. The boundary
between the insulating TiO, and low-resistance oxygen-deficient TiO»— layers drifts under electric
fields, leading to changes in overall resistance. The I-V characteristic is shown in Figure 10b. An
obvious hysteresis loop confirms resistive switching behaviors. Schematic diagrams of the resistive
switching mechanism based on the conductive channels model in the Ta,Os—/TaO,-x device are shown
in Figure 10c.!? The tantalum oxide clusters can generate a Ta-rich phase (TaO; phase) under
electrical stimulation due to oxygen-vacancy migration. Metal oxides are good solid electrolytes for
metallic ions (Ag* and Cuy") as shown in Figure 10d based on the Ag/TiO,:Ag/Pt.!>3 The contact
resistance and interface effects should be considered in metal oxide-based devices.!** Various top
electrode materials with different work functions, including SrRuO3(SRO), Ag, Pt, Au, and Ti were
employed to fabricate memristor devices.!>® Only the Ti/Pro7CaosMnO3;(PCMO)/SrRuO;(SRO) device
showed rectifying and resistive switching characteristics as shown in Figure 10e. Apart from the low
function of the Ti electrode, high oxygen affinity induces the depletion of oxygen ions. The trapped
states at the interface led to the modulation of Schottky-like barriers under different voltages, resulting

in resistive switching behaviors. Furthermore, H. Y. Peng et al. reported that a single device can switch
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between the filamentary and interfacial resistive switching modes.'>® Different electrodes that affect the

migration of oxygen vacancies can induce different resistive switching models.

Metal-oxide resistive switching devices are very promising for commercialized products. The
retention time over ten years has been reported.!”’” Meanwhile, excellent cycle endurance of 10'
operation cycles has also been demonstrated.'>® However, little work has been involved in the devices

with sensory functions. A systematic investigation is crucial for future commercial extensions.
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Figure 10. (a) Equivalent circuit of boundary migration model. (b) I-V characteristic of the Pt/TiO,-/Pt device.
Reprinted with permission.* Copyright 2008, Springer Nature. (¢) Schematic diagrams of resistive switching
mechanism based on conductive channels model in the Ta;Os-x/TaO»— device. Reprinted with permission.'s?
Copyright 2013, Springer Nature. (d) The high-resolution transmission electron microscopy (HRTEM) image of
the Ag/TiO,:Ag/Pt device. Reprinted with permission.!>* Copyright 2017 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim. (e) I-V characteristics of a Ti/Pry7Cao3MnO3(PCMO)/SrRuO;(SRO) device in linear and
semilogarithmic current scales. Insets show electronic band diagrams of the Ti/PCMO interface. Reprinted with

permission.' Copyright 2004 American Institute of Physics.
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Table 2. Summary metal-oxide-based memristive devices.

Device HRS/LRS ratio  Endurance Retention (s) Switch speed (s) Ref.
Pt/Ti0/W 10 10? 103 oAk 159
T1/ZrO,/TiO,/Pt 10? 2x10° 104 oAk 160
Al/Ti0O,7/TiOx/Al 20 106 oAk 1x10°-5x10¢ 161
Pt/TiO, Nanorod/Ti 10? 107 10° 5x10°8 162
Al/TiO/Al >10 4x10° 106 (85°C) oAk 163
Al/a-TiOy/Al 50 10? 104 oAk 164
Au/CoO-TiO,/Pt 10 10° 10* (85°C) oAk 165
Pt/Ti0,/HfO,/ITO 10 5x10? 104 oAk 166
W/H{O,/TiN 10 107 10* (125°C) 103 167
Pt/Zn0.99V0.010/Pt 10? 10° 3.6x10%(85 °C) 5x107 168
Pt/Zn0O:CO/ZnO:In 10° 10° 103 otk 169
Pt/Ag/ZnO:Li/Pt 10* 10° 104 3x104-3.6x10* 170
Pt/ZnO:Cr/ITO 9.12x 10? 103 103 oAk 171
Ag/ZnO nanosheet/Pt/ 4 50 10* ke 172
Pt/Ga,03/ZnO/Pt 10° 10? 104 *oAk* 173
Ni/ZnO/n-type Si 10 10? 10* ok 174
ITO/HfOx/ITO 40 108 10° 2x10°% 175
Pt/HfO,/ITO/TiN 10? 107 10* (125°C) 3.3x107-3.8x107 176
Ti/HfOx/Pt 10 2.5x104 10* (85°C) 2x10°8 177
TiN/HfOx//GeTe/Pt 10° 10° 10* (85°C) 5x107 178
Cu/HfO»/Au 10° 10° 104 106 179
Cu/WOs—/ITO 10° 10° 5x10° 5x104 180
Ta/TaOx/Ru/TiN 10 107 10* (150°C) 107 181
Ag/TaO,/TaO,/Pt 108 10? oAk 3x108-7.5x108 182
Ta/TaO«/Pt 10 108 *ok* 10°¢ 183
Pt/NiO/Pt 103 10? 103 oAk 184
Ag/SrTiOs:Fe/Pt 10* 2.1x103 ke ok 185
Au/High-entropy oxide/Pd ~ >15 7x10* 7.2x10%100°C)  2x107-3x10°° 186
Ti/HfO/AlO,/TiN 10 10* 10* (85°C) ok 187
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2.2 Investigation Methods for Resistive Switching

To achieve large-scale commercialization of memristive devices, problems at the device level are major
challenges in addition to issues at circuit design, algorithm development, and architecture construction.
A robust understanding of thermal dynamics, electron transport, and ion migration is essential to
improve memristive performances regarding endurance, variability, HRS/LRS ratio, switching speed,
state retention time, etc. Materials characterization techniques, physical modeling, and electronic
conduction mechanisms are crucial to comprehensively explain resistive switching phenomena and

further improve the device’s performance.

2.2.1 Transmission Electron Microscopy

Ionic migrations are crucial in resistive switching. Therefore, visualization techniques on nano and
atomic scales are required to further understand ionic dynamics, more insight into lattice variation, and
conductive channel growth. Transmission electron microscopy (TEM) is a microscopic technique
utilizing electron beams to realize visualizations at nano or even angstrom scales. This is an important
piece of equipment to investigate the growth of metallic conductive filaments and resistive switching
associated with oxygen vacancies.'® Particularly, in sifu observation goes beyond the static observation
for resistive switching, which is more favorable. It monitors the real-time evolution of microstructures
in devices under electric stimuli. In general, it is difficult to directly observe the in-situ TEM image of
a real memristive device. A careful design is required to obtain a modified setup reserving the essential
attributes of resistive switching in real devices. The observed region should be thin enough so that the
changes in the switching layer can be visualized by electron beams. And the resistive switching should
be reserved in the tested structure. Figure 11a shows a typical experimental setup to study the growth
of Ag conductive filaments in a SiO, layer.®® The electric voltage applied on a resistive switching
structure of Ag/SiO,/W. The filament growth process inside the SiO, was recorded. The images of
conductive filaments at LRS and HRS are shown in Figure 11b." It was clear that the bottom electrode
and top electrode were connected by Ag metallic filaments, demonstrating the LRS. In comparison,
after the RESET operation at the same region, the conductive filaments were dissolved and

disconnected from the top and bottom electrodes, demonstrating the HRS.
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Figure 11. (a) Schematic diagram of a typical in-situ TEM experimental setup, the studied device structure was
Ag/Si02/W. Reprinted with permission. Copyright 2014, Nature Publishing Group (b) In-situ observed metallic
conductive filaments at the LRS and HRS. Reprinted with permission.” Copyright 2012, Nature Publishing
Group. (c) The cross-section image included a channel region observed at the LRS. The studied device structure
was Pt/Si0,/Tax0s.x/Ta0,./Pt. (d) The oxygen profiles at the channel region (shown in c¢) were measured under
the HRS (black) and LRS (red). Reprinted with permission.'? Copyright 2013, Nature Publishing Group. (e) A
typical polymorphous HfO, region with completed conductive filaments. (f-g) FFT diffraction patterns of h-HfsO

and m-HfO, region. Reprinted with permission.®

Particularly, the element composition analysis tool studies the composition features in the switching
layer, such as energy dispersive X-ray spectroscopy (EDS) and electron energy loss spectroscopy
(EELS). It is immensely helpful to get an insight understanding of resistive change mechanisms. Figure
11c exhibits the region of a nanoscale conductive channel obtained at the LRS.!>? Figure 11d gives
EELS lines corresponding to oxygen profiles of the conductive channel at the HRS and LRS. It
confirmed that the oxygen concentration of LRS was lower than the HRS counterpart, indicating that
the movement of oxygen vacancies resulted in resistive switching.'>? Furthermore, electron diffraction
patterns carry important crystallographic information. It is particularly useful for resistive switching

investigations as crystallographic transitions often occur in memristive devices due to oxygen vacancies
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migration and Joule heating effects.'® Figure 11e shows the cross-section of a Pt/HfO»/Pt device after
a SET operation.®® Distinguishable crystallization regions were observed in the high-resolution image.
Fast Fourier transform (FFT) diffraction patterns of two typical regions are presented in Figure 11e
and f. The diffraction spots corresponded to h-HfsO with high conductivity. This confirmed the crystal
structure of the conductive channel which was difficult to observe by direct imaging. Ultra-high
resolution and real-time investigation abilities are vital to get insights into resistive switching
mechanisms. TEM, especially in situ TEM, is expensive. Some other auxiliary equipment (for example
ion beam etching systems) is also required. Preparation usually takes a long time. Besides, the in situ
tested sample is usually not the actual device, careful experiment design is important to mimic the

operation in a real device and obtain reliable experimental results.

2.2.2 Scanning Probe and X-ray Microscopy

Scanning probe microscopy (SPM) catches the surface features, electronic properties, ferroelectric
polarization, etc. on a nanoscale.'” Conductive atomic force microscopy (CAFM)™! and scanning
tunneling microscopy (STM)!°? are two main SPM techniques for investigating resistive switching
mechanisms. CAFM measures the morphology and conductivity of the surface independently, which
is a useful tool to investigate resistive switching phenomena. For the function of morphology
characterizations, it is the same as an atomic force microscope (AFM). Optical and piezoresistive
systems are utilized to monitor the cantilever’s deflection and reconstruct the surface morphology. The
specialty of the CAFM is to characterize conductive distribution other than the solo morphology
measurement in AFM. A typical setup of CAFM is shown in Figure 12a, a current-to-voltage
preamplifier records the conductivity changes on the surface of samples.!” It achieves a remarkably
high spatial resolution of conductive variations, which is helpful to investigate resistive switching. In
Figure 12b, a small voltage of 50 mV was applied to the CAFM tip and monitored the current values
during the scanning process to obtain the conductance distribution.'*” Snowflake white areas indicated
high conductivity areas. At the LRS, more white areas were observed, demonstrating high conductivity
after a SET operation. Interestingly, the white regions usually overlapped with grain boundaries. This
evidence confirmed that the forming/rupture of conductive filaments occurred at grain boundary

areas.'”
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Figure 12. (a) Schematic diagram of an experimental setup for a typical CAFM. Reprinted with permission.!*?
Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (b) The AFM and C-AFM images of
HRS and LRS, the CAFM image was posed on the AFM image. Reprinted with permission.!4” Copyright 2008,
AIP Publishing. (c) 3D reconstructed tomogram of a metallic conductive filament. Reprinted with permission.!
Copyright 2013, IEEE. (d) Schematical diagram of STM for resistive switching investigation. (¢) STM images (1
pm % 1 pm) of TaOx film before and after scanning, corresponding SET and RESET operations. Reprinted with

permission.!®® Copyright 2016, American Chemical Society.

The ionic-involved resistive switching often occurs in three dimensions. A technique enabling three-
dimensional (3D) characterization is needed to enhance the understanding of filamentary dynamics. A
possible solution is to characterize CAFM-based 3D tomography (often named SPM tomography,
scalpel SPM, or 3D CAFM)."’ This technology visualizes conductive filaments.!*® In memristive
devices, the conductive filaments are usually covered by top electrodes and buried in switching layers.
To expose hidden filaments, a controlled tip mechanically removes materials at a sub-nm vertical
removal rate. The scan operation executes during the removal process to obtain a series of 2D profiles
at different depth levels of materials. The collected profile data is used to construct a 3D tomogram. In
Figure 12c, a 3D tomogram of Cu conductive filament in a conical shape is presented. This information
was very useful to investigate the forming mechanism of this filament. It was involved with drifting

and interacting Cu?* species with Al-vacant sites and oxygen vacancies.'”> Furthermore, CAFM can
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achieve in situ resistive switching tests. The tip acts as the top electrode and directly mimics memristive
operations. Besides, different working atmospheres (such as O, and N») can be used during the in-situ

t 199

test.””” This is crucial to study reactions in the switching layer during the operation process.

STM is another powerful visualization technology to investigate resistive switching mechanisms. It
is built up based on quantum mechanical effects that work in a noncontact mode. Compared to CAFM
using contact modes, STM provides advantages in testing soft materials and avoiding potential surface
damage. Besides, the atomically sharp tip realizes higher resolutions.!”® Schematic diagram of a
scanning STM for resistive switching investigations is shown in Figure 12d.!”® Redox reactions in
oxides were realized without physical contact. Figure 12e shows surface characterizations measured
by the STM.'? SET and RESET voltages applied on selected areas induced a distinguishable contract,
indicating modulated resistance. With the assistance of XPS, the resistive switching was because of the
reduction of Ta*" and the generation of oxygen vacancies. The disadvantage of STM compared to
CAFM is that sufficient conductivity is required, especially for the HRS. This limits the application of
STM since switching layers in memristive devices are usually insulators with low conductivity. Besides,
STM systems are more expensive than CAFM systems. Because a vacuum atmosphere is needed for
STM tests. Some key points should be considered before using the SPM technology to study resistive
switching devices. Firstly, the voltage available in commercial equipment is usually lower than 10 V.
It hinders the practical usage of this technique on devices that need high operation voltages. Secondly,
the current measurement margin is small, mostly within 2-4 orders of magnitude. It may encounter
problems in testing the device with a large ratio of HRS/LRS. Thirdly, a current limitation cannot be

applied. An undesired failure of systems may be encountered during the SET operation.
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Figure 13. (a) Schematic diagram of the experimental setup for a typical synchrotron-based scanning transmission
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X-ray microscopy (STXM) measurement. (b) The X-ray transmission intensity map. Reprinted with
permission.2®® Copyright 2016, American Chemical Society. (c) The XAS and XRD spectroscopy are shown in
¢ 1 and c 2, respectively. c_3 shows the schematic diagram of the experimental setup for the X-ray multimodal
imaging. (d) The conductive channel consists of W and O elements. Reprinted with permission.2®! Copyright,

2022 Wiley-VCH GmbH.

X-ray microscopy plays a key role in materials characterization, especially for nondestructive
measurements. X-ray shows high penetration abilities and high spatial resolutions, which makes it can
“see through” tiny defects and structure variations buried inside materials.?> For instance, the resistance
switching is due to the variation of structures, and chemical states in switching layers. Whereas the
changes are hidden behind electrodes and materials themselves. The ion beam etching in TEM systems
and the scalpel process in 3D CAFM systems can expose the structure and chemical changes inside the
devices. But they are destructive measurements and time-consuming. X-ray realizes non-destructive
investigation of resistive switching by utilizing penetration and imaging abilities. Oxygen species are
crucial for resistive switching mechanisms, particularly for metal-oxide-based memristive devices. The
X-ray can realize spatial resolution at the nanoscale and the spectral resolution of meV level for O K-
edge.?”® Figure 13a shows a typical setup for X-ray transmission measurements.’”’ Focused X-ray
penetrated the top electrode, switching layer, the bottom electrode, and a SisN4 window. A non-uniform

ring-like region was found (Figure 13b). The contrast variation in the image was due to changes in
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oxygen concentrations over the range of 3-5%.%% This can be related to the generation of oxygen
vacancies that led to the defect states and enhanced conductivity. Furthermore, multiple spectra can be
obtained by X-ray microscopy for robust insight investigations. The device structure can be constructed
in a planar geometry to get better-detecting efficiency and accuracy.?® X-ray multimodal imaging
experimental system is shown in Figure 13¢.?’! The spectra of X-ray absorption spectroscopy (XAS)
and X-ray diffraction (XRD) were obtained simultaneously by a raster-scanned operation. It presented
high accuracy and high spatial resolution of elements distributions. Figure 13d exhibits the distribution
of W and O elements. The result confirmed that the migration of oxygen vacancies was responsible for
resistive switching. Besides, the distribution feature of oxygen vacancies under different confinements
of the electric field was investigated. This provided an insightful strategy to improve resistive switching
stability and suppress device variations. The main drawback of X-ray microscopy investigating
resistive switching is the slightly lower resolution compared to TEM and CAFM technology. Besides,
the test usually requires access to advanced synchrotron radiation sources, which may be difficult for

some research groups.

2.2.3 Conduction Mechanisms Based on I-V Characteristic

An in-depth study of I-V characteristics reveals the conduction mechanisms that benefit the exploration
of working mechanisms.? The DC switching cycle test (also referred to as the cyclic voltammetry test)
is one of the essential measurements investigating resistive switching. It carries electrochemical
reaction information that is crucial for redox-based resistive switching. Temperature and moisture are
two crucial factors that affect electrochemical reactions, ionic migration kinetics, and electrolyte
characteristics. Analyzing the electronic properties under controlled temperature and moisture
variations benefits a better understanding of redox-based resistive switching behaviors. The technique
is to fit experimental I-V curves with specific physical models to reveal resistive switching mechanisms.
The Ohmic conduction, space-charge-limited-conduction (SCLC), and Schottky emission are discussed

in detail.

The SCLC has been frequently employed to study resistive switching phenomena.?’® Three
distinguishable regions can be observed for a trap-related SCLC model: i) A Ohmic region (I o< V)
under small voltage values. This is governed by thermal-generated free carriers; ii) A Child’s square
law region (I « V?) under large voltage values. Conduction is controlled by electrode-injected electrons;
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iii) Current increases steeply region (I &< V*, x>2) under high voltage values. The trap-free is achieved
and shows high conductivity.?’” The conductive channels are often formed in this stage in memristive
devices.??® For Ohmic conduction, the current value is proportional to the applied electric field as shown

in Eq. 2.2%
Tonmic =0 XV Eq. 2

where o represents the electrical conductivity. V is the applied voltage. Ionmic is the current governed

by Ohmic conduction. Take the log of Eq. 2. The following equation can be obtained.

log(Iopmic) = log(a) +log (V) Eq.3

Based on the SCLC theory, the current under high voltage region can be described as Eq. 4.1
_ 9 V2
I = 3 &uo = Eq. 4

where / is the current. V is the voltage, respectively. & represents permittivity. @ represents the ratio of
free and trapped charges. u represents electron mobility. The thickness presented by d. Similarly, Eq.

4 can be transformed to
9 1
log(1) = log (gsiHH E) +2logV Eq.5

One frequently used method to investigate resistive switching is drawing the I-V plots in log-log scales
(Figure 14a).”!" Under low positive voltages, the slope was close to 1, indicating Ohmic conduction as
described in Eq. 3. In comparison, a slope of 2 was obtained at a higher voltage governed by SCLC
theory as described in Eq. 5. When further increased the voltage, the current increased sharply owing
to the formation of high conductive oxygen vacancies filaments.?!' Notably, a slope of 1 was obtained
at the LRS under the positive voltage region in Figure 14a, indicating Ohmic conduction was
dominated by high conductive channels.?'? Under the negative, the slope was maintained as 1 under
low voltages governed by Ohmic conduction. And a RESET operation was completed at a high negative

voltage. Thus, the conduction mechanism transitions between the HRS and LRS can be depicted.

The modulated Schottky barrier height is another important resistive switching mechanism. The
relevant conduction mechanism can be confirmed by fitting typical I-V curves.?'® The Schottky

equation is shown below:2!4
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E
—q0p- 1)

* 2
= AnSqm (kT)” ,——7 Eq. 6

I 3

where S is the device area; k is Boltzmann’s constant; m* represents the electron’s effective mass. T’
describes the value of absolute temperature. £ represents the electric field. ~# represents Planck’s
constant. 7 represents the height of the junction energy barrier, and ¢ is the permittivity. Eq. 6 can be

transformed into Eq. 7.

1
_4(aVey 5 _ h3 495
In(1) = kT (E) x £z — (In 4mSqm*(kT)2 +or) Ea7
Then, the relationship between the J and the E is described by Eq. 8.
14
E = Z Eq. 8

where L represents the thickness. One can get Eq. 9 from Eq. 7 and Eq. 8.

1
(9 Veyys— R ), 4%
In(1) = kT (47t£L) xVz—(In (4nSqm*(kT)2) + kT ) Eq.9

The conduction mechanism governed by Schottky emission can be confirmed by plotting the
relationship between In(1) (or In(J), I is current density) and V" (or E'?, E is an electric field). The In(I)
and 7" are expected to have a linear relation under a fixed temperature.?'* A supplement method is to
test the I-V curves under different temperatures as shown in Figure 14b.2!¢ Then, fitting the curves to
get the relationship of In(I) and V. A linear relationship can be expected under different temperatures,

providing better proof for the conduction mechanism. Eq. 7 can be transformed into Eq. 10.2'7

Un() = Ln(*Z20) MB; i) x1 Eq. 10

Under fixed voltage, the plot of In(1/T%)-1/T should show linear relation as shown in Figure 14c.?'°

Different voltages can be used to depict the relationship between In(1/T°) and 1/T. This provides more

solid evidence for the electronic conduction governed by Schottky emission.
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Figure 14. (a) Typical I-V curve in log-log scale. Reprinted with permission.?'! Copyright 2010, AIP Publishing.
(b) I-V curves tested under different temperatures. The inset shows In(J)-V"?plots. (c) In(J/T?)-1000/T plots under
different reading voltages. Reprinted with permission.?!® Copyright 2013, AIP Publishing. (d) The values of LRS
under different temperatures. The inset shows temperature-dependent resistance for devices with varied sizes. (e)
The values of HRS under different temperatures. The inset presents the plot of In(I)-1/xT to calculate the
activation energy. Reprinted with permission.?!® Copyright 2008, AIP Publishing. (f) Cyclic voltammetry tests
under different humidity levels. (g) Ion concentration (cion) under different humidity levels. The pH,O means the

partial pressure of water. Reprinted with permission.?!” Copyright 2013, American Chemical Society.

For cation-based resistive switching, a linear relationship of I-V at LRS is usually expected. The
slope of I-V plots in log-log scales is close to 1 due to Ohmic conduction controlled by high-
conductivity metallic filaments.??*??! Moreover, the resistance changes of HRS and LRS can be studied
to further confirm the formation of metallic filaments based on cation migrations. The temperature-

dependent metallic resistance can be described by Eq. 11.
R(T) = Ry[1 + a(T — Ty)] Eq. 11

where Ry is the value of resistance at the temperature of 7y. a represents the temperature coefficient of
resistance. As shown in Figure 14d, the resistance of LRS (also referred to as ON state) increased with

increased temperatures. The temperature coefficient of resistance was positive, implying a typical
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electron transportation feature in metallic materials.?'® The measured o can be used to compare with
metallic nanowires. The chosen nanowire should be the same materials of filaments that are suspected
to form in the memristive device. This can provide extra evidence that metallic filaments are

formed.??*2%

In comparison, the HRS (also referred to as OFF) may show a different or opposite
temperature coefficient of resistance. As shown in Figure 14e, a negative a was obtained as a
semiconductor (ZrO,) was used as the switching layer. The resistance of semiconductors decreases with

the increase of temperature as more thermal-excited carriers are generated at higher temperatures.

Moisture has been considered one of the principal factors in redox-based resistive switching.??* In
the cation-based redox resistive switching, the half-cell reaction (M —M*"+xe") occurs at the active
electrode to generate cations.®? Cyclic voltammetry tests under different moisture levels can reveal a
better microscopic understanding of electrochemical processes. As shown in Figure 14f, cyclic
voltammetry tests were carried out at different moisture levels. The concentration of ions (Cion) Was
measured as summarized in Figure 14g.2!° Higher pH,O (the partial pressure of water) corresponded
to higher ion concentrations. The results proved two points. First, the anodic oxidation was limited by
the counter charge at Pt/SiO, interface. Second, hydroxide ions instead of electrons acted as counter
charges. This test resulted in a more comprehensive understanding of electrochemical processes in
cation-based memristive devices. In the anion-based redox resistive switching, the moisture influences
the redox reactions and ionic mobility. Cyclic voltammetry tests provide delicate information on redox
reactions in those systems.””> This method revealed that oxygen ions/vacancies and cations both
contributed to resistive switching, which was related to chemical redox and passivation.”*!'* This

information is vital for theoretical models and paves ways to further improve device performances.

Conduction mechanism investigations are macroscopic and empirical. In some cases, the fitting
results may be compatible with more than one conduction mechanism.????’ Researchers need to
consider other investigation methods (TEM, CAFM, STM, etc.), analyze device structures, and

characterize materials to evaluate the accuracy of the resistive mechanism based on I-V characteristics.

2.2.4 Theoretical Model Simulations

Theoretical model simulations and experimental measurements should be paired and complement each
other to study resistive switching. Theoretical simulations are employed to optimize device

performances, interpret experimental results, predict properties, and accelerate projects. Theoretical
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models should link the material properties, operation processes, and device performances. Theoretical
simulations of memristive devices can be catalogued into two categories based on simulation scales,
including the physical and the compact models. The physical model focuses on ionic migration,
chemical reaction kinetics, defect characteristics, and materials’ electronic properties at a microscopic
scale. It clarifies the switching mechanisms along with experimental characterizations, which provides
in-depth knowledge to improve device performances.??®?* As for the compact model (also called the
behavioral model), it emphasizes the description and reproduction of electronic properties without
concerning much underlying physics. Empirical assumptions and mathematical fitting are utilized to
rapidly reproduce devices’ behaviors. This method is suitable for diverse types of memristive
devices.?** More importantly, the compact model can be extended to Simulation Program with
Integrated Circuit Emphasis (SPICE) model that can be embedded into computer-aided design tools,
which can be used for circuit simulations and system-level design. Notably, the combination of the

physical model and compact model is preferred to depict memristive properties more accurately.?!

Physical models provide a deeper knowledge of resistive switching mechanisms regarding defects
(generation, diffusion, and recombination), electron transportation, and inherent stochasticity as shown
in Figure 15a. Experimental information about the properties of materials should be input into physical
models to calibrate the models and improve simulation accuracy, including the crystal structure, band
structure, work function, thermal conductivity, etc. Several simulation methods have been frequently
used, such as First Principle (FP, also named ab initio), Molecular dynamics (MD), Kinetic Monte
Carlo (KMC), and Finite Element (FE). FP calculations are good at simulating the conduction
properties and the transition energy in memristive operations.”*> As shown in Figure 15b, a supercell
was constructed to calculate the activation barrier of defect formation energy and the defect energy
level, which benefits the device design with better reliability and uniformity.?** Furthermore, the
diffusion of oxygen vacancies and defects charging/discharging can also be investigated by FP
simulations.?#?** The drawbacks of FP simulations are the difficulties of modeling complex structures,

such as amorphous, polycrystalline, and multi-layered structures.
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Figure 15. (a) Schematic diagram of physical models. (b) Schematic diagram of the FP simulation. (c) Schematic
diagram of the MD simulation. (d) Schematic diagram of the KMC simulation. (e) Schematic diagram of the FE
simulation. Reprinted with permission.” Copyright 2019, The Author(s).

Dynamic simulations are popular to investigate ionic migrations and relevant stochastic features,
typical simulation techniques are MD?** and KMC simulations.*” MD (Figure 15¢) can catch
dynamical phenomena of atoms (oxygen vacancies,”*® Ag atoms’) constructing filaments and atom
chains that are responsible for resistive switching behaviors. In comparison, KMC (Figure 15d) is
considered an event-driven and stochastic simulation technique. This method covers a big margin of
time scale ranging from nanoseconds to years. The evolution of conductive channels and structure can
be described by KMC.%7%? As shown in Figure 15¢, FE employs mathematical models to quantify
and understand resistive switching performances. It is usually a simplified model without concerning
all variables in real devices.?*® FE simulations are usually used with dynamic simulation techniques to
describe ionic distribution accurately.?*' The disadvantages of KMC and FE simulations are too many
assumptions and simplified parameters, which may influence the simulation accuracy. Notably, the
combination of multiple theories can build up physical models more accurately.?*? The physical models
should not be isolated from experimental results. The setup of parameters in simulation software must
be based on experimental measurements as much as possible. A mutual corroboration between
simulations and experiments should be achieved before proposing a model to explain the resistive
switching performances.
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Compact models are particularly important to circuit analysis and system-level design. A qualified
compact model for memristive devices goes beyond basic electronic performances in CMOS transistors.
The variability and endurance degradation features should also be considered. Firstly, analytical
equations based on simplified physical images are developed. Then, index parameters are introduced

to simulate degradation and stochastic characteristics.?*3

Finally, mathematical fitting with
experimental results is carried out to identify the validity of the model and extract critical parameters

of the model. The mathematical definition of memristive devices is shown below.*
V=Rw)XxI Eq. 12

A differential form is shown below:

aw
E =1 Eq. 13
where V' means voltage. / means current. R is the generalized resistance depending on internal states. w

represents the variable state. It was later generalized to nonlinear dynamical systems.?*

V=RWw,I)xI Eq. 14
= fw.D) Eq. 15

where w represents a series of state variables. R and f in general elaborate functions of time. The
resistance changes (state variables of w) in memristive systems are derived from modulated doped
regions, Schottky barriers, conductive filaments, and tunneling barriers (Figure 16a).>* The two
models of modulated doped regions, and modulated Schottky barriers are usually used in anion-based
resistive switching. The modulated conductive filaments and modulated tunneling barriers are usually
used in filamentary-type resistive switching controlled by either anion-based switching or cation-based
switching. The physical models can be described by electronic elements and corresponding equations,
which is the foundation of compact models. Figure 16b shows the schematic diagram of a compact
model that the resistance is governed by the moving of doped/undoped boundary proposed by HP Labs.*
The applied voltage generated oxygen vacancies and drove them moving, resulting in two separated
doped (low resistance) and undoped regions (high resistance) due to the drifting of the boundary. The

process of modulated resistance is described as follow:*
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t t
V() = Ron 222 + Ropp (1 - 22299 1(t)  Eq.16

aw(t) _ Rﬂ
pranill s 1(t) Eq. 17

where Ron (the whole switching layer is doped) and Rorr (the whole switching layer is undoped) are
the lowest and highest resistance of the device, respectively. w in this model is the length of the doped
region (Figure 16b). uy is the average ion mobility. Bipolar switching was demonstrated in the model.

More importantly, the model was verified by experimental results on a TiOx-based device.

The modulated Schottky barrier is another important resistive switching mechanism. Two main
models, barrier height**%24" and barrier area®*® have been reported (Figure 16c). The applied voltage
adjusts the distributed oxygen vacancies located at the interface, which modulates the resistance of the

Schottky junctions. The Schottky barrier can be adjusted by applying electronic stimuli.*’

(o) o
Ischottky= AA*T?e\ *BT/(eksT — 1) Eq. 18

where 4 * means the Richardson constant. @z represents the barrier height. K represents Boltzmann’s

constant. T is temperature.

The barrier lowing is described by the following equation:?*’

= _ 4/%
Q)B = Q)Bno 8”25203 Eq. 19

where @5 means lowered Schottky barrier height. @z, means the original Schottky barrier height. N
means the concentration of oxygen vacancies. esqz represents the effective dielectric constant of the
emission process. The modulated Schottky barrier height is responsible for resistive switching. Another
model is due to the modulated area of the Schottky junction. The resistance of the device is consisting
of two parts, including the Schottky junction and the conductive area governed by Ohmic contact or

tunneling effects.?*3>° As described by equations:2*®
I=(1- WBA)a[l - e‘ﬁV] + wg,ysi nh(8V) Eq. 20

d‘:;% = A(e™MV — e2") Eq.21
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where wg, is the state variable. a, £, 7, J, 11;, and #; are all positive-valued parameters determined by
material characteristics. The first term in Eq. 20 is the Schottky term. The second term in Eq. 20 is

the tunneling term. Eq. 21 describes the change rate of wg, under applied voltages.
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Figure 16. (a) Schematic diagram of compact models. (b) The compact model that the resistance is governed by
the moving of doped/undoped boundary. (c) The compact model that the resistance is governed by the modulated
Schottky barriers. (d) The compact model that the resistance is governed by the modulated conductive filaments.

(e) The compact model that the resistance is governed by the modulated tunneling barriers.

Resistive switching behaviors controlled by conductive filaments have also been demonstrated by
compact models. The state variants were due to morphological changes, including the thickness and
length of filaments as shown in Figure 16d. Conductive filaments usually dominate the overall
conductivity of devices. In real devices, multiple conductive filaments may exist in the devices. To
simplify the model, one single cylinder-shaped filament with modulated thickness and length is
projected. For the controllable filament thickness. The current following through conductive filaments

is shown below:?*!
Icp = Emocprée Eq. 22
where E is the electric field. ocr is the conductivity of the conductive filament. rcr is the diameter of

the conductive filament. The evolution of conductivity filaments follows the equation shown below:*!

At
TcFmax;_; = (TCFmaxi - Twork.)e TForm + Typrg Eq. 23
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_ Teq \ ,7eq Teq
TCFipy = (TCFi — TCFmax; TRed) €4 + Tcrmax; — Eq. 24

T T,
Teq = LRed TOX Eq. 25
TRed tTox

where 7crmax means the maximum diameter of the conductive filament. 7.+ means the diameter of the
effective device area. tr,m is the nominal forming rate. tz.s and 7oy are the electrochemical reduction
rate and the oxidation rate, respectively. Solving the above differential equations step-by-step will give
the evolution process of the conductive filaments that dominates the overall resistance of devices.
Furthermore, changes in the conductive length (or the gap between the filaments and electrode) have
also been used to create a compact model. The modulated gap can be described by the following

equation: >

Eq
ag _ 1 _—jp - aad*f . qaE
= 3¢ Tcr (—L_g_lo 2afsi W(ZkTCF)) Eq. 26

where g means the distance between the top of conductive filaments to the electrode. frepresents the
escape-attempt frequency, the effective hopping distance described as a. E, is the activation energy of
Vo. a; is a fitting parameter. £ is the electronic field. The first term corresponds to the diffusion flux.
The second term corresponds to the drift flux. In some filamentary models, the modulated tunneling
barriers dominate the resistance of the devices, as shown in Figure 16e. The device was SET to LRS
before the bridging occurs by conductive filaments. Electrons tunnel through the very tunneling barrier
and exhibit high conductivity.?>* The tunneling barrier governing conduction can be described by the

following equations.**

41X
_ 3@ (%)2 x e—T IZmeffAWOAV Eq. 27

I Tunnel ing —

where mey is the effective electron tunneling mass, AW, represents the tunnel barrier height. Planck’s
constant is described as /. V is the tunneling voltage. 4 is the area of the filament/insulator interface. x
is the tunneling gap. Besides, the tunneling gap can be modulated by electronic forces as shown in Eq.

28, which changes the device resistance.

e (x_;cfb ;) _xi)
[+

d o (-
d—f = frpSi 1h(1f—b) Xe Eq. 28
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where fitting parameters are fu, frs, i, i, ap, A, Xc, and b. In compact models, many assumptions and

simplifications may be applied.

Although compact models may give a decent accuracy for circuit simulations and design, it is
recommended to consider device structures, experiment characterizations, and physical simulations
before building compact models. This will give a more accountable and accurate compact model,

benefiting the development of hardware systems.
2.3 Memristive Devices for Neuromorphic Computing

2.3.1 Neuromorphic Computing with Artificial Neural Network

The development of neuroscience triggered the idea of constructing electronic hardware to mimic
biological brain systems. Human brains rely on synapses and neurons for recognition and decision-
making tasks, which feature less energy consumption compared to conventional von Neumann
computing systems (Figure 17a).2>%*7 Neuromorphic computing systems inspired by human brains
process information in memory units, combining memory and computing (also referred to as in-
memory computing).?3® This configuration does not need frequent data shuttling between memory and
computing units as von Neumann architecture does, which benefits computing speed and energy
efficiency.?’ Deep learning has been explored for brain-inspired neuromorphic computing.?®26! ANN
hardware implementing deep learning is gaining more and more popularity. Neural networks have input
layers, hidden layers, and output layers consisting of artificial neurons and artificial synapses. Neurons
receive, process, and transmit information. Artificial synapses connect neurons with different plasticity
(weights). The illustration of a neural network is shown in Figure 17b. The memristive device can be
used to build up ANN hardware implementing deep learning algorithms performing sophisticated
computations. VMM is the main computing task in deep learning, which, however, is very resource-
expensive in traditional COMS systems.?*> The schematic diagram of a memristive crossbar array is
depicted in Figure 17c. Synaptic weights are stored in the form of memristive conductance. The current
at each point follows Ohm’s law under specific input voltages. Besides, the current flowing through
each column governed by Kirchhoff’s current law is the summation of currents from every cross point.

This can efficiently execute VMM operations. The computing results are measured at once no matter
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how big the matrix size, demonstrating huge parallelism. The data does not need to be moved between

units. This technique can realize exceedingly high energy-efficient and fast computing speed.
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Figure 17. (a) Schematic diagram of a biological brain relying on neurons and synapses to realize computing
functions. Reprinted with permission.2¢ Copyright 2020, Springer Nature. (b) Schematic diagram of fully
connected neural networks. (c) Schematic diagram of a memristive crossbar array that implements VMM
operations. Reprinted with permission.?s” Copyright 2020, Springer Nature. (d) Schematic diagram of in-sensor
computing architecture. (¢) Schematic diagram of fully connected neural networks that are responsible for sensory
signals. S means the stimuli response to sensory information. R is the sensory responsivity presented by

conductance. I is the output current. Reprinted with permission.? Copyright 2020, Springer Nature.

Another very important extension of neuromorphic computing based on ANNs is in-sensor
neuromorphic computing architectures.?®® A substantial content of Al is to interact with surrounding

264

environments and make the machine more like human beings.”** Human perceives environmental

variation through hearing, vision, smell, taste, and touch that are correlated with acoustic sensors,
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photodetectors (or light sensors), odor sensors (or gas sensors), and chemical sensors in machine
respectively. Sensory signals need to be processed by computing processors for cognitive tasks, such
as pattern recognition, decision-making, chemical identification, etc. In conventional architectures,
sensory units, memory units, and computing units are separated from each other, resulting in high-
energy consumption due to frequent data transmission. Besides, sensing information is usually in the
analogue form that is required to be transformed into the digital form for processing in digital COMS
von Neumann systems, which generates a lot of redundant data and poses more pressure to memory
and computing units. Analogue-to-digital converters (ADC) are necessary for transforming analogue
data into digital data. This is very energy expensive and takes up large areas of computing chips. To
overcome the problem, an advanced neuromorphic computing system called in-sensor computing is
proposed to execute data-centric approaches.’®® Reconfigurable sensor arrays enable sensing and
computing abilities simultaneously. They can be employed to construct in-sensor neuromorphic
systems implementing deep learning algorithms, as shown in Figure 17c. The outputs are determined
by the sensory input and electronic programing operations. The illumination of sensory neural networks
and corresponding matrix calculation is shown in Figure 17d.2°° The output results of the vector can

be described by the following equation.

11 Rll R12 R13 le Sl
12 R21 R22 R23 RZm SZ

I = 13 = R X S = R31 R32 R33 oo R3m 53 Eq. 29
In Rn1 Ruz Rpz = Ryml LSy

where the sensory element is described by the vector S = [S; S2 S5 ... Sm]". The responsivity of the
array is presented by the matrix R. The synaptic and neural characteristics in the integrated systems are
sensitive to external stimuli, combining the sensory and computing processes.?®’ The computing results

are measured directly governed by Kirchhoff’s law, as shown below:
Ly = Xm=1Imn = Zin=1RmnSm Eq. 30

The responsivity of sensors is adjustable by external modulation, leading to the change of synaptic
plasticity and neural spiking characteristics during the learning process. Thus, sensing and computing

are combined in a single system. The in-sensor computing systems can simplify the hardware
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configurations and poses low latency and high-energy efficiency. The technique shows promising

prospects for autonomous vehicles, machine vision, speech recognition, and robotics.

2.3.2 Memristive-based Neuromorphic Devices

Memristive devices show promising prospects for neuromorphic systems. The modulated resistance in
memristive devices usually relies on moving ions that are similar to neurotransmitter dynamics in
biological neurons and synapses.”® The long-term potentiation and depression shown in Figure 18a,
which is crucial for memory and learning. The conductance corresponding to synaptic weights can be
modulated gradually over a certain margin, which is crucial for the training process of deep learning
algorithms.?® The conductance modulation in neuromorphic computing systems can be described by

the following equations.?”

P
G, =B <1 —e AP) + Gin Eq. 31
P—Pmax
Gd=—B<1—e 4a >+Gmax Eq. 32
B = Smax” Smin Eq. 33
1-e Apd

where G, and G, are the conductance, respectively. Guax and Guin are the maximum and minimum
conductance, respectively. Puq: represents the maximum number of electronic pulses. 4, and A, are the
linearities of potentiation and depression respectively. The linearity of conductance, the ratio of
Gmax/Gmin, and the state number are crucial factors influencing computing accuracy. Moreover,
excitatory/inhibitory postsynaptic currents (EPSC/ IPSC), spike-rating-dependent plasticity (SRDP),

and paired-pulse facilitation (PPF) are also important synaptic properties, which can support other

) 271
b

brain-inspired neuromorphic systems, such as Spiking neural networks (SNNs reservoir

272 273 et

computing’*, Hopfield neural networks, c.
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Figure 18. (a) Illustration of gradually modulated conductance that represents synaptic weights for ANNs. (b)
Ilustration of gradually modulated conductance that can be modulated by sensory signals for in-sensor computing.
(c) Ilustration of neural spiking in artificial neuromorphic systems. (d) Illustration of a biological brain consisting

of synapses and neurons for information processing.

For in-sensor neuromorphic computing systems, artificial synapses show sensing and computing
capabilities. One typical example is that the external stimuli change the characteristics of
potentiation/depression as shown in Figure 18b. The modulated ratio of Gue/Gmin and nonlinearity
change the output results.”’*?” In particular, mini circuits enabling sensory and synaptic abilities have
been developed for in-sensor neuromorphic computing.?’® For example, the triboelectric nanogenerator,
the photodetector, and the thermoelectric module act as the mechanical, photonic, and heat receptors,
respectively. Stimulated signals from sensory units are transmitted to the gate of synaptic transistors or
neural circuits to realize high-level data processing.?””*’® However, the data is required to be transmitted
among different units in circuits, indicating computing energy and delay penalty. Additionally,

peripheral components perplex the system and increase manufacturing costs. 427280

Neurons integrate signals from previous neurons via synapses and generate spiking. In hardware-
based neuromorphic computing systems, artificial neurons enabling neural activations are also essential

for computing processes, which can be developed based on memristive devices. The currents measured
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from the memristive crossbar based on VMM principles are collected by neural units. Neural activation
functions can be carried out in CMOS-based arithmetic units separately, utilizing sigmoid or rectified
linear unit (ReLu) functions.?®! For fully-hardware controlled neuromorphic computing systems,
artificial neurons are required. Several neural models have been developed, including the Hodgkin-
Huxley (HH) model,® the integrate-and-fire (IF),?** and the leaky integrate-and-fire (LIF) model.?
Among them, the LIF model has been widely investigated due to its simplicity, reliability, and capturing
biological dynamics. The LIF neuron hardware is a combination of a ‘‘leaky’’ resistor term and a

capacitor as shown in Figure 18c. The LIF neuron model can be described by the following equation:%3

AVe(t) _ 1oy Vel®
Coe =10 — i Eq. 34

where C is the capacitance. V,(?) is the voltage across the capacitor. /(?) is the current input from
artificial synapses. R is a series resistor. R,, is the resistance of a memristive device. Some memristive
devices have parasitic capacitance possessing integrating abilities, which further simplifies the
circuits.’*?*° Figure 18d illustrates the biological brain consisting of synapses and neurons which are
the two main building blocks for neuromorphic computing systems. More insights and understanding
of neuroscience should help explore new algorithms for brain-inspired systems. Furthermore, optimized
artificial synapses and artificial neurons with better performances and novel properties can also

accelerate the advances of neuromorphic systems.

2.3.3 Neuromorphic Computing for Image Processing

Image processing technology is prevailing, demonstrating great demand for medical diagnosis,
autonomous vehicles, human-robot interaction, smart homes, etc.?®® However, image processing,
especially for cognitive tasks, is very resource and energy expensive. Neuromorphic computing with
parallel processing provides significant computing efficiency compared to conventional von Neumann
counterparts. Remarkable progress has been made to process images with memristive-based
neuromorphic computing.*® The first hardware array-level neuromorphic network was reported by
Dmitri Strukov e al.”®” A 12 x 12 crossbar array (Pt/Al,O3/TiOx. «/Pt) is shown in Figure 19a. The
integrated mini array physically performed VMM operations. This is a critical cornerstone for analog
hardware with complex neuromorphic networks. Then, several expanded experimental demonstrations

have been reported for neuromorphic computing.?*®2°° Convolutional neural network (CNNs) is a very
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powerful architecture and shows elite abilities for image processing.?’! A fully hardware-implemented
CNN was developed by He Qian et al, as shown in Figure 19b.>* The array size consisted of 2048
devices with a high yield of 99.99%. The systems performed MINST image recognition, reaching a
high recognition accuracy of 96%. Notably, the crossbar array has the potential for high-density 3D
integration that is more area efficient and benefits larger integration scales. Besides, photodetectors and
processors are essential components for machine vision systems. Building a neuromorphic vision chip
in a 3D vertical structure is energy-efficient and promising for edge computing applications.?> As
shown in Figure 19c, a Lego-like chip consisting of multiple neuromorphic sensors and computing
processors is demonstrated.”® Different components are connected by chip-to-chip optical
communication. More importantly, the hetero-integrated design has replaceable chips and ANNs for

neuromorphic computing, demonstrating unparalleled adaptability.
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Figure 19. (a) SEM image of an integrated 12 x 12 memristive crossbar. Reprinted with permission.?8” Copyright
2015, Nature Publishing Group. (b) Left, the photograph of a customized printed circuit board. Right, the
processing element (PE) chip with a memristive array (2,048 devices) and on-chip decoder circuits. Reprinted
with permission.>* Copyright 2020, The Author(s). (¢) Schematic diagram of stackable hetero-integrated chips.

Reprinted with permission.?** Copyright 2022, Springer Nature.
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Advanced neuromorphic computing with sensory abilities for image processing has been
explored.?*?*> Modern image sensors can efficiently capture visual signals from surrounding
environments. However, a lot of redundant data is generated, and analogue-to-digital conversion is
required, resulting in operation latency and high energy consumption. Besides, as the number of pixels
increases, the limitation of bandwidth hinders the shuttling of data and real-time processing. A neural
network photodiode array was developed to realize parallel in-sensor computing, as shown in Figure
20a.'* The photodiode acted as sensors and artificial synapses simultaneously, which utilized voltage-
modulated photovoltaic effects. The photocurrent intensity represents synaptic weights, the integrated
array can realize the VMM operations for computation tasks. This is a pioneer strategy that can be

2% auditories,”®” and olfactory sensing.?’® Another type

extended to other physical inputs, such as tactile,
of in-sensor computing for image processing is to capture the variants from environments and identify
their influence. For example, human perception accuracy is affected by humidity levels. Thus, it is
desirable to explore an intelligent device that is sensitive to humidity. So, it can mimic the adaptive
behavior of human eyes in different environments. As shown in Figure 20b and c, the characteristics
of artificial synapses constructing ANNs were adjusted by moisture.”’* And the pattern recognition
accuracy was modulated at different humidity levels. This technique reduced the circuitry complexity
of traditional neuromorphic visual systems. It contributed to the promotion of developing artificial
intelligence at a device level. Temperature is another key factor for Al systems. So far, intelligent
sensory devices (also referred to as intelligence matter) enabling temperature and humidity sensations
simultaneously for in-sensor neuromorphic computing have not been reported yet. Hence, designing
and constructing two-terminal in-sensor computing devices with intelligent temperature and humidity
sensations are attractive for advanced Al applications. Machine visions usually need front-end image
processing (image sensing, image preprocessing) and back-end computational processing (cognitive
pattern recognition, motion tracking, decision-making, etc.). The limitation of acquired progresses
merely worked at one aspect of front-end image sensing or back-end computing.?*3% Developing a
monolithic neuromorphic machine vision system that mimics the biological retinomorphic vision poses
enormous potential to avoid bulky architectures, decrease fabrication costs, and improve energy
efficiency. Figure 20d presents a monolithic machine vision system enabling sensing and
neuromorphic computing abilities.’*! A ferroelectric-semiconductor-transistor was employed due to

broadband photo-response and linearly programmable plasticity. The technique demonstrated the
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feasibility of sensing and computing. Notably, image preprocessing, such as contrast enhancement,
feature extraction, and image compression, is a crucial step for image processing. While a monolithic
visual system based on one device with front-end retinomorphic image sensing, convolution processing,
and back-end neuromorphic computing, has not been reported. The technology poses very promising

prospects for advanced neuromorphic machine visions.
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Figure 20. (a) Schematic diagram of an artificial neural network (ANN) photodiode array and the circuit of a
single pixel. Reprinted with permission.'* Copyright 2020, The Author(s). (b) Schematic diagram of the in-sensor
computing with memristive devices sensory to humidity. (¢) The modulated characteristic of artificial synapses
by moisture. Reprinted with permission.2™ Copyright, 2021 Wiley-VCH GmbH. (d) Schematic diagram of a
memristive-based machine visions system enabling sensing and neuromorphic computing abilities. Reprinted

with permission.3*! Copyright, 2022 Wiley-VCH GmbH.
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Chapter 3. Versatile Memristor for Memory and Neuromorphic Computing

The memristor is a promising candidate to implement high-density memory and neuromorphic
computing. Based on the characteristic retention time, memristors are classified into volatile and non-
volatile types. However, a single memristor provides a specific function based on electronic
performances, which poses roadblocks for further developing novel circuits. Versatile memristors
exhibiting both volatile and non-volatile properties can provide multiple functions covering non-
volatile memory and neuromorphic computing. In this work, a versatile memristor with volatile/non-
volatile bifunctional properties was developed. Non-volatile functionality with a storage window of 4.0
x 10° was obtained. Meanwhile, the device can provide threshold volatile functionalities with a storage
window of 7.0 x 10* and a rectification ratio of 4.0 x 10*. The leaky integrate-and-fire (LIF) neuron
model and artificial synapse based on the device have been studied. This versatile memristor enables
non-volatile memory, selectors, artificial neurons, and artificial synapses, which will provide

advantages regarding circuit simplification, fabrication processes, and manufacturing costs.

3.1 Introduction

Modern computers need higher-density memory and more effective computation for integration into
numerous areas of societal importance, including healthcare, education, and the economy. The
memristor has been investigated to develop memory and computation systems due to its fast operation
speed, low energy consumption, and small feature size.>*> A memory density of up to 4.5 terabits per
square inch was reported with a single-layer configuration, which is comparable to that of multilevel
3D-NAND flash memory.” The memristor is also considered an excellent emulator of biological
synapses and neurons that are fundamental elements for brain-inspired neuromorphic computing.®®

The novel memory and computation systems can revolutionize the current computer capacity.’%43%

Versatile memristors enabling multiple functions simultaneously are attractive for memory and
computing systems. So far, few previous reports have addressed versatile memristors. A single type of
memristor taking multiple roles in circuits can provide many advantages in terms of circuit
simplification, lowing energy consumption, and lowering manufacturing costs.?’**% Memristors are
classified into non-volatile memory switching (MS) and volatile threshold switching (TS) based on the

retention time.* In the non-volatile MS, both LRS and HRS can be maintained for a long time after
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removing the bias until a SET voltage or a RESET voltage is applied to modulate resistance states. In
comparison, the volatile TS cannot maintain the LRS after the voltage is removed.'”° The non-volatile
MS shows promising prospects in developing high-density memory and in-memory computing.>*” On
the other hand, the volatile TS can be employed for synapse emulators, selectors, hardware security,
and artificial neurons.!!3% Interestingly, Min Ji Yu et al. demonstrated memristive devices based on a
Ag/Ag-GeTe/Ag structure, which can provide multi-functions of memory, selectors, and artificial
synapses.’” However, the concentration of Te needs to be adjusted for different electronic functions.
Volatile/non-volatile bifunctional memristors may endow chips with both data storage and computing
abilities, indicating great prospects in novel circuits. For advanced data storage, a single system with
volatile/non-volatile bifunctional memristors can provide both volatile and non-volatile performance,
enabling multifunctional data processing strategies. Furthermore, bifunctional memristors can mimic
both functions of artificial synapses and neurons for neuromorphic computing. The reported
volatile/non-volatile bifunctional memristors with one or two functions have been studied, as shown in
Table 333" However, versatile memristors covering multiple functions, such as non-volatile
memory, selectors, artificial neurons, and artificial synapses have not been investigated. It is difficult
to guarantee large storage windows (both volatile and non-volatile models), excellent endurance, and
multiple functions simultaneously. More efforts regarding materials selection, device structure design,
fabrication process, and physical models are needed to develop versatile memristors for multi-function

circuits.

To obtain volatile/non-volatile bifunctional memristors, the dynamics of Ag and Cu in the dielectric
layer (switching layer) are crucial.®*® Particularly, the switching layer significantly influences the
diffusion of Ag or Cu ions, which is vital for both short- and long-term resistive switching properties.>*
CulnSe; (CISe) has been extensively investigated in thin-film solar cells due to its excellent electronic
and optical properties. Previous experimental results reported that Ag ions show good diffusivity in
CISe layers.?3%33! Besides, the injected Ag atoms can be stably reserved instead of reacting with the
CISe host material, which is also crucial for reversible resistive switching behaviors. Therefore, we
hypothesize that the dynamics of Ag ions in the CISe can be explored to develop CISe-based versatile

memristors.
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Table 3. The summary of the memristors with multiple functions. Vol-R means the ratio of volatile
HRS/LRS. Vol-C means volatile switch cycles. N-Vol-R means the ratio of non-volatile HRS/LRS. N-

Vol-C means non-volatile switch cycles. N-Ret means non-volatile retention time.

Device structure Vol-R  Vol-C  N-Vol-R N-Vol-C N-Ret Applications Ref.
Ag/CulnSe/Mo 7x10* 400 4x103 160 10%s Synapse, neuron, this
selector, memory work
Cu/TaOy/6-Cu/Pt 102 HAE 103 ok 10%s Memory 310
Au/Ti/h-BN/Cu ek 50 10° 50 120's Synapse, memory 3
Ag/HfO,/Pt 10° 300 10° 300 2x10% s Synapse, memory 312
Cuw/ZrO,/TiOy/Ti ok ok 10? 100 10%s Selector, memory 313
Ag/IGZn/MnO/Pt 103 200 106 200 5%10%s Selector, memory 314
Cu/ZrOy/Pt 10? 100 10 100 10%s Selector, memory 315
Cuw/ZnO2/ZnO/ITO 10 100 40 100 10s Memory 316
Cu/SiOx/p**Si 45 50 103 50 105s Synapse, memory 317
Ag/AIZS/TiOy/Pt 103 200 103 120 10%s Synapse, memory 318
Aw/Ti/TiO2/Hf/Au 103 ook 10% 30 2x10% s Selector, memory 319
Ag/CoFeyO4 /Pt 102 100 103 500 103s Selector, memory 320
Ag/MXene/Si0,/Pt ook 100 103 100 104s Synapse, memory 321
Cu/AIN/TiN ek ek 10 100 10%s Synapse, memory 322
Al/MnO,/steel ok ok ke 500 10%s Synapse, memory 323
Pt/Co304/Pt ek ek Hokok 75 10%s Synapse, memory 324
Al/Ti3Co/Pt ok ok 6x10° 1000 10%s Synapse, memory 325
Ag/CNT/TiO»/FTO ek ek 100 500 10%s Synapse, memory 326
Pt/NCO/Pt ek ek Hokok 100 10%s Synapse, memory 327

Here, a versatile memristor (Ag/CISe/Mo) array was demonstrated. Non-volatile functionalities with
a storage window of 4.0 x 10° and a retention time of 10,000s were obtained, which can be used for
non-volatile memory. Meanwhile, the device can provide diode-like volatile functionalities with a
storage window of 7.0 x 10* and a rectification ratio of 4.0 x 10*. This feature enables the device to be
potentially utilized as selectors integrated with non-volatile memristors to alleviate sneak currents. The
device can be operated for 400 switching cycles, ensuring a mean HRS/LRS ratio of over 10%. The LIF
neuron model due to its neuron-like threshold switching and artificial synaptic properties were
investigated, demonstrating the applications of neuromorphic computing. The versatile memristor can
play multiple roles in non-volatile memory, selectors, artificial neurons, and artificial synapses. The

results will benefit the development of advanced data storage and neuromorphic computing systems.
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3.2 Experimental Section

3.2.1 Device Fabrication

The proposed devices were fabricated by magnetron sputtering and electrodeposition methods. The
fabrication flow chart is shown in Figure 21. The glass was used as substrate. Note, substrates with
similar characteristics are all practicable for the fabrication process, including the silicon wafer covered
by SiO; oxide film and some flexible substrates. The bottom Mo electrode was deposited by DC
sputtering (ATC ORION SERIES SPUTTERING SYSTEMS). The patterned Mo electrode was
obtained with the help of a shadow mask. The width of the strip Mo electrode was 50 um. Then, the
electrodeposition was used to deposit the CISe thin film as a switching layer. For the solution
preparation, 2.5 mM CuCl,-2H,0, 240 mM LiCl, 2.4 mM InCls, and 4.5 mM H,SeOs were dissolved
in deionized water. Chemicals were purchased from Sigma-Aldrich. The electrolytic bath was buffered
with a pHydrion buffer (pH 3.00). HCI drops were used to tune the solution pH to 2 - 3. After the
deposition of the CISe switching layer, Ag strip electrodes were deposited by DC sputtering with the

help of a shadow mask to form a crossbar configuration.
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Figure 21. The fabrication process of the Ag/CISe/Mo memristor with a crossbar configuration.

Electrodeposition was carried out using an electrochemical workstation (CHI Model 660E Series
Electrochemical Analyzer/Workstation) with a conventional 3-electrode setup. During the depositing
process, a constant cathodic potential was applied to the working electrode. The deposition of

compound CISe thin films is related to the individual chemical reactions.>*? Selenide compounds can
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directly occur due to large formation energies (AG: e.g., -386 kJ/mol for In,Ses, -10* kJ/mol for CusSe).
It is hard to directly electrodeposit In metal from a single-bath solution. However, it is easy to co-

deposit compounds, such as CuSe, In,Ses, and CulnSe». >3

The cyclic voltammetry (CV) test over the range of 0 V to -1 V was done to study the chemical
reactions in the bath. CV curves in the electrolytic bath are shown in Figure 22a. For the first cycle,
the small peak at approximately -0.1 V was attributed to the reaction of Se. Then, strong peaks
corresponding to the generation of Cu, CISe, and H, showed up. From the second cycle to the tenth
cycle, the intensity of reduction peaks was decreased, especially for the reduction of Cu and H,. This
phenomenon is because the deposited film covering the work electrodes increased the resistance.’**
Under the same potential, higher resistance corresponds to smaller current intensities. The hydrogen
evolution was suppressed after the first cycle, which benefits the adhesiveness of the deposited thin
film on substrates.>* The CISe film was formed after the negative potential of -0.66 V (vs. Ag/AgCl).
Therefore, the potential was set at -0.66 V for the CISe deposition.

A typical current-time (I-t) curve is shown in Figure 22b. At the very beginning of the deposition,
the absolute value of current sharply decreased from about 6 mA to 0.7 mA within 50 s. This
phenomenon is due to the forming of CISe on the surface of the Mo electrode, which significantly
increased the overall resistance.?*® Notably, the current remained almost constant after the first 50 s.
The small current variance indicates stable electrochemical reactions and film growth. During the
electrodeposition, two phases contribute to the interface where film growth occurs.**” One phase is the
solution carrying ions toward the working electrode. Another phase is the boundary of the substrate
covering the conductive coating that carries electrons. When the potential of the working electrode
shifts from the equilibrium values to negative potentials. The reduction reactions of ions conveyed by
the solution occur if a suitable potential is provided.>*® This working mechanism determines that only
the areas covered by Mo electrodes can grow CISe film, enabling the direct construction of switching
layers on specific patterns.®* The deposition rate was approximately 23 nm/min. CISe film only grew
on the patterned bottom electrode. Decreasing manufacturing costs and materials consumption are
crucial for practical large-scale production. The electrodeposition endows remarkable advantages in
terms of costs, deposition rates, morphology control, film uniformity, and template-based structure

fabrication.**” Moreover, this method enables high utilization efficiency of materials because all reacted
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elements are utilized to form films. This technique paves the way to construct integration arrays with

high materials utilization efficiency and low manufacturing costs.
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Figure 22. (a) Cyclic voltammetry (CV) curves in an electrolytic bath for CISe deposition. The scan rate was 20

mV/s. (b) Electrodeposition current versus time during the depositing process.

3.2.2 Materials and Device Characterization Methods

The optical micrograph was taken by an Oxford BX51M optical microscope and measurements were
carried out by the ImageJ software. The morphology of CISe films was examined by Scanning Electron
Microscopy (SEM, UltraPlus FESEMs) at the acceleration voltage of 10 kV. The composition of the
thin film was measured by Energy Disperse Spectroscopy (EDS, UltraPlus FESEMs). To analyze the
crystal structure of deposited films, Raman spectrum analysis was carried out by a Renishaw micro-
Raman spectrometer with a laser wavelength of 633nm (red, He-Ne). Grazing Incidence Xray
Diffraction (GIXRD) on the CISe thin film was carried out using the PANalytical X’Pert PRO system
(CuKo irradiation, A = 1.5406 A). The surface valence states of the CISe thin film were measured by
X-ray photoelectron spectroscopy (XPS, Thermo-VG Scientific ESCALab 250). The electrical
characterization of the prepared devices was performed with a 4200A-SCS Parameter Analyzer

equipped with the probe station of MPI TS150. The test diagram can be found in Figure 21.

3.2.3 Simulation Methods

Simulation method for LIF neurons: The circuit was designed to demonstrate the functionalities of
the LIF neurons based on the Ag/CISe/Mo device. The theoretical model of the Ag/CISe/Mo device

was developed in Verilog-A based on experimental data under the volatile model. The key parameters
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were extracted from experimental data, including HRS, LRS, Vser, and Vreser. The model can capture
the resistive switching and volatile features of the actual device. The volatile memristor model was
used in the LIF neuron circuit built up in the Cadence Virtuoso platform. The neuron circuit design is
shown in Figure 23. Three artificial synapses were integrated into the circuit. A capacitor, a resistor,
and an Ag/CISe/Mo memristor were used to mimic the function of neurons. The specifications of

components employed in the circuit are listed in Table 4.

Table 4. Component parameters used in the LIF neuron simulation.

Component parameter | Frequency Simulation Amplitude simulation

Vini Amplitude=1V Amplitude=0.8 V
Period =400 ps (2.5 KHz) | Period =100 ps (10 KHz)
Pulse width =3 us Pulse width =3 us
Delay = 0.3 ms Delay = 0.3 ms

Vini Amplitude = 1V Amplitude = 1V
Period =200 ps (5 KHz) Period = 100 us (10 KHz)
Pulse width =3 ps Pulse width =3 ps
Delay = 6.7 ms Delay = 3.3 ms

Vins Amplitude=1V Amplitude =1.2 V
Period = 100 ps (10 KHz) | Period = 100 pus (10 KHz)
Pulse width =3 us Pulse width =3 ps
Delay = 13.1 ms Delay = 6.3 ms

RI, R2, R3 140 MQ 150 MQ

Ml LRS resistance = 2 MQ with Vszr = 0.8V
HRS resistance = 300 GQ
Transition time from LRS to HRS, 400 ps
Transition time from HRS to LRS, 10 us

Swi, Sw2, SW3 Ideal switches that are closed only if the corresponding Vv is not at 0 V.
They are used for simulating a current injection.
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Figure 23. Circuit design for the simulation of artificial LIF neurons. The simulation was carried out on the
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Cadence Virtuoso platform. SW1-3 are switches. R1-4 are resistors. M1 is a threshold switching (TS) memristor.

Pattern recognition simulation: The recognition simulation was carried out on the CrossSim platform
written with Python.***3*! The numerical weights in the network were mapped onto the tested device
conductance states. The nonlinearity and asymmetry of potentiation/depression curves were considered.
The cycle-to-cycle variability was considered Gaussian noise during the simulation process. The
conductance (weight) updating was based on the average value of conductance change (under a single
pulse) with different initial conductance (Go). A neural network with the size of 64 x 40 x 10 was
constructed to implement a backpropagation algorithm. The UCI small images were used as data set
for training and testing processes.*** The neural network was trained for 30 epochs to get saturated

accuracy.
3.3 Results and Discussion

3.3.1 Materials Characterizations

Figure 24a presents the optical micrograph of the device. The left image in Figure 24a shows the
patterned Mo bottom electrode with a width of approximately 50 um. The Mo electrode covered with
the CISe film is shown in the right image in Figure 24a. Only the areas covered with the Mo layer grew
CISe, demonstrating a high materials utilization efficiency. The cross-section scanning electron

microscopy (SEM) image is exhibited in Figure 24b. The thickness of the CISe thin film was
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approximately 400 nm. The good adhesiveness exhibited in the image benefits electrical performance.
To investigate the composition of the deposited CISe film, energy-dispersive X-ray spectroscopy
(EDX) mapping is shown in Figure 24c. The composition deviated slightly from the stoichiometric

ratio (Cu: In: Se=1:1:2).3* Atomic percentages of Cu and In are lower than the stoichiometric ratio

(25%), meanwhile, a slightly high content of Se was obtained.
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Figure 24. Materials characterizations on the Ag/CISe/Mo device. (a) Optical micrograph of the device. (b)
Cross-section SEM image of the device with a sandwich structure. (c) Surface composition EDX mapping of the
deposited CISe thin film. The inset table presents the composition percentage (d) Raman spectrum of the

deposited CISe. (e) The GIXRD spectrum of the CISe/Mo. (f) Wide-scan XPS spectrum of the CISe thin film.

The Raman spectrum, GIXRD, and XPS were employed to investigate the crystalline structure and
surface chemical states of the CISe. The Raman spectrum is shown in Figure 24d. The A1 vibration
mode at 170 cm™ and B1 vibration mode at 126 cm™ were observed, corresponding to the tetragonal
CISe structure.*** The GIXRD spectrum is shown in Figure 24e. The characteristic peaks of tetragonal
CISe at 26.6°, 44.1°, 52.4°, and 59.7° corresponding to the (112), (204), (312), and (314) planes
respectively (JCPDS file: 03-065-4869) were found.*** The GIXRD confirmed the crystalline structure
of CISe, which was consistent with the Raman Spectrum result. Meanwhile, a strong peak at 40.5° was

observed. This peak is assigned to the (110) plane of the Mo electrode (JCPDS file: 01-089-5156). The
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surface chemical states of CISe were analyzed by XPS. The wide-scan XPS spectrum of the CISe thin
film is exhibited in Figure 24f. The characteristic peaks of Cu 2p, In 3d, and Se 3d can be observed.
High-resolution XPS spectra of the three main elements are shown in Figure 25. The Cu 2p peaks were
located at 932.16 eV (2p3»2) and 952.09 eV (2pi») with a splitting orbital of 19.9 eV. This result
confirmed the oxidation state of Cu was +1.3*¢ Meanwhile, the peak positions of In were 444.75 eV
(3ds) and 452.3 eV (3dsp), indicating the oxidation state of In™. The Se 3d peak at 54.71 eV (3dsp)
and 55.53 eV (3ds») demonstrated that the valance state of Se was -2.34¢ Additionally, two impurity
peaks at 284.69 eV and 531.6 eV indicated the contamination of carbon and oxygen due to the sample

exposure to the atmosphere.#¢
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Figure 25. High-resolution XPS spectra of different regions: (a) Cu 2p region; (b) In 3d region; (c) Se 3d region.

The results confirm the chemical states of Cu, In, Se are +1, +3, -2, respectively'?.

Moreover, the permittivity € of the CISe film was measured based on electrochemical impedance
spectroscopy (EIS).**” To avoid the influence of Ag atoms, the EIS of the CISe was measured based on
the Mo/CISe/Mo device. The Nyquist plot and Bode plot are shown in Figure 26. According to the
Nyquist plot (Figure 26a), two separated semicircles were observed, corresponding to the bulk
capacitor and the grain boundary capacitor.>*® The Bode plots and fitting curves of modulus (|Z[) vs.
frequency (f) and phase vs. frequency (f) are shown in Figure 26b and Figure 26c¢ respectively. The
equivalent circuit for fitting is shown in Figure 26d. Rs is the series resistor that corresponds to the

series resistance on electrodes. The constant-phase elements (CPE) are described in Eq. 35:3%

1
ZCPE = W Eq. 35

Where Zcpg is the impedance of the CPE. Q is a constant. j represents the imaginary number. w

represents the angular frequency (w = 2 xf, f'is the frequency). n represents a constant relating to the
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angle of a capacitive line’s rotation on complex plane plots. The fitting process was executed on the
ZView2 software. The solid lines shown in Figure 26 are fitting curves that matched well with
experimental results. According to the fitting results, the capacitance can be calculated by the following

Eq. 363

1
C = (R*™Q)n Eq. 36

where C is capacitance, R is the resistance value of parallel resistance. n and Q are fitting parameters.
The assignment of the two semicircles was according to the magnitude of the capacitance.*® Based on
the “brickwork” model, the capacitance value derived from bulk (grain) falls in the order of 10-°F.
Meanwhile, the capacitance value derived from the grain boundary ranges from 10° F to 10 F. In this
work, the C; (based on Ri//CPE,) was 6.0 x 10"!' F which corresponded to the bulk (grain) capacitor.
The C, (based on R,//CPEy) was 2.3x 10 F which corresponded to the grain boundary capacitor. The
permittivity is calculated with Eq. 37:3°

4mtKdC
£ =
N

Eq. 37

Where ¢ is permittivity. K is electrostatic constant. d is the thickness. S is the area. The permittivity €
of 7.9 was calculated. The permittivity value slightly deviated from the reported value of 13.6 £ 0.8 due
to the different status of the material, including composition, crystalline status, fabrication process,
etc.’! The materials characterization results confirm that the single CISe phase has been formed by the
single-bath electrodeposition at room temperature. The electrodeposition can construct CISe-based
memristor arrays, which shows remarkable advantages. The electrodeposition process is much cheaper
than vacuum-based processes. In addition, electrodeposition is based on oxidation/reduction processes
on the electrodes driven by electrical potentials. The film selectively grows on areas where charge
exchange occurs. This method enables high utilization efficiency of materials because all reacted

elements are utilized to form films.
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Figure 26. Impedance analysis. (a) Nyquist plot of CISe at room temperature. (b) The plot of the Modulus vs
Frequency. (c) The plot of the Phase vs Frequency. (d) The equivalent circuit for fitting.

3.3.2 Resistive Switching Behaviors

A systematic analysis of resistive switching behaviors was implemented. The DC switching cycle
test under different CCs is shown in Figure 27a. The voltage swept from -3 V to 3V. The pristine device
showed high resistance. When the voltage swept from 0 V to 3 V, the current abruptly increased with
a voltage of approximately 0.9 V. The device switched from the original HRS to LRS, corresponding
to a SET process. As the voltage swept from 3 V to 0 V, the I-V curves under different CCs showed
different characterizations. For the CC < 10* A, the device switched back to the HRS spontaneously
when the applied voltage stress was close to zero, demonstrating a signature feature of volatile TS
performance.® In comparison, the device switched back to the HRS under the negative region when
higher CCs were applied. The result means that the LRS can be maintained after the voltage was
removed and a negative voltage was required to RESET the device, indicating a non-volatile MS
performance.® Additionally, the RESET voltage shifted from positive to negative with the increase of
CCs, demonstrating the transition from the volatile TS to the non-volatile MS.3% Figure 27b exhibits
the probability for volatile TS as a function of CCs. The device can be switched between volatile TS

and non-volatile MS modes by controlling the CCs.
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Figure 27. Systematic analysis on resistive switching. (a) Typical I-V curve of the device under different CCs.
(b) Probability for volatile TS as a function of CC. (c) Typical I-V curve of the device under a linear scale over
the sweep voltage of -1 V to 1 V. (d) Retention time under different voltage amplitudes. (e) Retention time under
different temperatures. (f) The Arrhenius plot of the retention time depending on the temperature. (g) Non-volatile
switching under a pulsed-voltage operation. The operation voltage pulse was + 3V with a duration of 1s. The read
voltage was 0.2 V. The duty cycle of the pulse was 50%. The box plot was based on the first 165 cycles. (h) The
HRS/LRS resistance distribution over 400 switching cycles. The data was extracted from the result of the DC

switching cycle test. The sweep voltage was -1 V to 1 V. (i) The distribution of the device resistance under forward

Moreover, I-V curves and RESET voltage changes over the different thicknesses of CISe layers are
shown in Figure 28. Under the same voltage stress, devices evolved from non-volatile to volatile
characteristics when increasing the thickness of CISe, which was attributed to the different

accumulations features of Ag atoms. Thicker and stronger conductive filaments were easier to form in




thinner switching layers, resulting in the RESET voltage shifting to negative regions. The non-volatile
MS characteristics demonstrate the application for non-volatile memory. In the non-volatile mode, the
HRS/LRS resistance distributions over 70 operation cycles (DC switching cycle test, the voltage swept
from -3 V to 3 V) are shown in Figure 29a. An HRS/LRS ratio of 9 x 10° (Mean value) was obtained.
Notably, the device can provide diode-like volatile properties (Figure 27c). When the voltage swept
from 0 V to 1 V, the current abruptly increased under the voltages of approximately 0.9 V. The device
switched from HRS to LRS, corresponding to a SET process. As the voltage swept from 1 Vto 0 V,
the LRS transformed to HRS under the voltages of approximately 0.2 V spontaneously, corresponding
to a RESET process. This diode-like feature can be used as a selector that co-integrates with non-

volatile memory devices to suppress sneak currents in crossbar arrays.>>* Besides, the volatile properties

indicate promising prospects as artificial neurons.
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Figure 28. I-V curves and RESET voltage change over different thicknesses of CISe layers. Each device operated
for 50 cycles. (a) I-V curves of the device Ag/CISe@100nm/Mo. (b) I-V curves of the device

Ag/CISe@300nm/Mo. (c) I-V curves of the device Ag/CISe@1200nm/Mo. (d) The cumulative probabilities of
the RESET voltages for the devices with different CISe thicknesses.

The retention time of the Ag/CISe/Mo device under different voltages and temperatures has been
studied. To measure the retention time, a short pulse was used to switch the device to the LRS. Then, a

small read voltage of 0.1 V was applied to monitor the resistance evolution. The influence of pulse
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voltage amplitudes on the retention time was studied, as shown in Figure 27d. When using the
operation-pulse voltage of 1.0 V, the device went back to the HRS closely following the end of the
pulse. In comparison, when the voltage was 2.0 V, the retention time extended to approximately 17 s.
More interestingly, the retention time was significantly extended when the pulse voltage amplitude was
3.0 V. As shown in Figure 29b, the LRS can be maintained for over 10,000 s when a pulse voltage of
3.0 V with a pulse duration of 1 s was applied, demonstrating non-volatile switching characteristics.*>*
This was because the higher voltage and longer pulse duration induced thicker and stronger conductive
filaments due to more Ag atoms being pumped into the switching layer.’>* Those stable Ag conductive
filaments had a long lifetime and led to a long retention time. Figure 27¢ shows the retention time
under different temperatures. The retention time decreased with the increase of temperatures. This is
due to the increased mobility of Ag atoms at higher temperatures.’>® Hence, the conductive filaments
are easier to rupture and lead to the resistance states transition, which is consistent with previously
reported results.” The Arrhenius plot of the relaxation time vs temperature is shown in Figure 27f. The
Arrhenius equation is used to analyze the relationship between rate constants and temperature. Here, it
is used to investigate the minimum energy of molecules reaction, which is related to the interaction of

Ag atoms and host materials.*®” The Arrhenius equation is shown below:

k = Ae BT Eq. 38

where k is the rate constant that equals 1/z; 7 is the retention time of LRS. 4 represents the pre-
exponential factor, kp represents the Boltzmann constant. £, represents the activation energy. T

represents the temperature. Taking a natural logarithm on the previous Eq. 38 gives Eq. 39:
Eq 1
lnk—lnA—g(;) Eq. 39

Eq. 39 was used to calculate the activation energy in the material system.*® The fitting result matched
well with experimental results (Figure 27f). The activation energy was 0.76 eV which was higher than
those in SiONy:Ag (0.27 eV) and Ag/Silk (0.52 eV).*” The activation energy is related to the energy
barrier of Ag diffusion, which may benefit the stability of the device. The above results demonstrated

that the device can be modulated between the volatile and non-volatile switching models.
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Figure 29. (a) HRS and LRS resistance distributions over switching cycles. (b) Non-volatile memory behavior,
the voltage amplitude was 3 V, the pulse duration was 1s. (c) I-V curve reproducibility of the device over 400
switching cycles. (d) The distribution of SET and RESET voltages. The oser (and oreser) and pser (and preser) are

the standard deviation and the mean value, respectively.

The endurance and stability of the device were investigated on both non-volatile and volatile
switching models. For the non-volatile MS model, to mimic the voltage stresses applied on memory
devices in practical applications, the resistance distribution under pulsed-voltage operation was carried
out, as shown in Figure 27g. The device was operated normally for around 165 cycles, giving an
HRS/LRS ratio of 4 x 10° (The mean value over 165 cycles). Then, abnormal resistive switching
behaviours showed up, including invalid SET/RESET operation (the storage window was ~ 0) and a
small HRS/LRS ratio (approximately 100). The device degradation was due to heat damage over the
switch operation. As can be seen in Figure 27g, the device was stuck in HRS after a few hundred
cycles, which resulted in resistive switching failure. The CISe decomposes at a temperature higher than
600 K, indicating relatively low stability.** During the pulsed operation process, the generated heat
will be accumulated. The heat may damage the structure of the CISe film, which hindered the diffusion
of Ag atoms, and the device cannot switch to LRS. Ma et al. reported that repeated switching operations

can cause phase segregation in the switching layer, resulting in resistive switching failure by stuck-in-
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HRS, which is similar to our devices.*® There is still room to improve the endurance of the device for
practical application. Future work is necessary to improve the device endurance for practical
applications, such as the electronic packaging process (prevent the damage of humidity and oxygen),
optimization of the switching layer (such as thickness, roughness, crystal phase, et al), heat management
of the device, and adjusting the device structure. For the volatile TS model, Figure 29c exhibits the DC
switching cycle test for 400 operation cycles. The sweep voltage was from -1 V to 1 V. The distribution
of LRS and HRS is shown in Figure 27h, the read voltage was 0.4 V. The overall HRS/LRS ratio was
7 x 10* (Mean value over 400 cycles). No obvious degradation was observed for the first 250 cycles.
When further operating the device, the device degenerated gradually, but it still can hold the HRS/LRS
ratio of 1.5 x 10* (The mean value of the last 20 cycles). Figure 29d shows the distribution of SET and
RESET voltages. The results were fitted with the Gaussian equation Eq. 40.

_=w?

Yy =Yg+ Ae 20° Eq. 40

where A4 is a constant, ¢ is the standard deviation and u represents the mean value. The oser/iuser and
oreser/ureser were 11 % and 16 %. Figure 27i shows the forward and reverse resistance at + 0.5 V over
400 operation cycles, the results elaborated on the stability of the volatile TS regarding the rectification
characteristic. The rectification ratio was as high as 4.0 x 10*. The selector with a high rectification

ratio can efficiently alleviate sneak currents in crossbar memristors.
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Figure 30. Device-to-device variability of HRS and LRS.
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Table 5. The statistics summary of the HRS/LRS Ratio of the Ag/CISe/Mo device.

Device Number HRS/LRS Ratio HRS/LRS Ratio HRS/LRS Ratio HRS/LRS Ratio

Mean value Maximum value  Minimum value  Higher than 10* (%)
Device 1 1.7 x 10° 1.7 x 10° 2.5 x10° 95 %
Device 2 8.0 x 10* 2.1 x10° 2.2 x10° 95 %
Device 3 1.3x10° 48 x10° 5.0 x10° 96 %
Device 4 8.7 x 10* 3.4 x10° 1.6 x 10° 93 %
Device 5 3.4 x 10* 1.6 x 10° 1.5 x10° 76 %
Device 6 1.6 x 10° 2.7 x10° 7.4 x 10° 97 %
Device 7 1.3x10° 2.7 x10° 7.1 x 10 98 %
Device 8 1.7 x10° 4.0x10° 7.0 x 10° 98 %
Device 9 1.2 x10° 42 x10° 2.5 % 10° 93 %
Device 10 8.1 x10* 49 x10° 43 x10° 90 %
Device 11 1.3x10° 6.2 x 10° 3.8 x 10? 94 %
Device 12 7.1 x 10* 2.7 x 10 2.5 %103 89 %

A crossbar of 4 x 5 was fabricated. 12 of 20 devices can be operated over 100 cycles (DC switching
cycle test, -1 V to 1 V). The yield was 60%. The LRS and HRS revolution over switching cycles is
shown in Figure 30. The statistics analysis summary of the HRS/LRS ratio is shown in Table 5. The
mean ratio of HRS/LRS varied between 3.4 x 10* and 1.7 x 10°. Indeed, the device yield in this paper
is lower than wafer-scale integrated memristor arrays (a high yield of 98%).>° Future work is needed to

optimize the fabrication processes and device structures to realize practical applications.

3.3.3 Artificial Neurons and Synapses

Human brain activities rely on neural networks consisting of ~10'° synapses and ~10'" neurons. The
working principle of neural networks and the equivalent hardware circuit are shown in Figure 31a. To
mimic biological systems with artificial neural networks, the artificial neuron and artificial synapse are
two main components. Artificial neurons generate spiking signals. Artificial synapses are connectors
linking different neurons. The connection strength between neurons is determined by synapse weights
(presented by the conductance of memristors).? To realize neural functions by artificial devices, several

neural models have been developed, including the Hodgkin—Huxley (HH) model, the integrate-and-fire
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(TF), and the integrate-and-fire (LIF) model.> Among them, the LIF model has been widely investigated
due to its simplicity, reliability, and capturing biological dynamics. The LIF neuron hardware is a
combination of a “leaky” resistor term and a capacitor as shown in the schematic diagram of Figure

31a. The LIF neuron model is described by Eq. 41.%%

AVe(®) _ 1y Vel
Cog =10 — o Eq. 41

where C is the capacitance of the capacitor. The capacitor receives charges from synaptic inputs.*¢!

Ve(t) is the voltage across the capacitor reflecting the dynamic change of membrane potential. /(2) is the
current input from artificial synapses. R is the series resistor. R,, is the resistance of the volatile TS
memristor. The R+R,, is the “leaky” term. In a neural network, neurons receive inputs from other
neurons with various amplitudes and frequencies through synapses. The received charges are stored
and accumulated in the capacitor. The accumulation of charges in the capacitor will increase the voltage
attributed to the memristor (M1). The SET process on the memristor occurs once the voltage applied
on the memristor (M1) is higher than the SET voltage (Vser). The voltage across the resistor R4
increases drastically due to the resistance reduction of the memristor (M1). Thus, a spiking action will
be generated and sent out.”® Notably, the memristor used in the artificial neuron system should endow
volatile properties so that it can go back to the initial state spontaneously after the spiking action.!' The
neural circuit design is shown in Figure 23. By default, the volatile memristor (M1) was at HRS. The
received inputs were stored and accumulated in the capacitor, resulting in the increased potential (V¢)

stored on the capacitor. V¢ can be calculated by Eq. 42.

Ve = <[ldt Eq. 42

where [ represent input currents. C is the capacitance of the capacitor C1. Meanwhile, the charge stored

in the capacitor slowly leaks through a conductive path consisting of M1 and R4. The leakage RC time
constant (1), was determined by C1, M1, and R4, according to Eq. 43.

T = C X (RMl +R4) Eq. 43
where RM1 is the resistance of the memristor (M1). Vour can be calculated from V¢ using

Eq. 44.

Ry

Vour = Ve X
ouT € Rui4Rs

Eq. 44
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Vour is the voltage on the R4. The voltage on the memristor (M1) can be obtained with Eq. 45.

Vimemristor = Ve — Vour Eq. 45

Where Viemristor 18 the voltage applied on the memristor (M1). R4 has a resistance of 4 MQ that was
much smaller than that of M1 at HRS. V= 0V when M1 was at HRS according to Eq. 43. As increased
electrons were stored in the capacitor, V¢ and Vyemrisior increased gradually provided that the charging
speed was faster than the leaky speed. When the Viemrisior was high enough, the memristor (M1)
switched from HRS to LRS, which induced the abrupt increase of the Voyr. As memristor (M1) entered
LRS and a non-zero Voyrwas generated. C1 was rapidly discharged, and the V¢ decreased to 0 V. The
Vc dropped below the RESET voltage of 0.2 V. The memristor (M 1) resumed HRS due to the volatile
property. As a result, Vour returns to 0 V as C1 starts to accumulate charges from input signals again.
Notice that during the period when M1 stays in LRS, any incoming signals stored in C1 are rapidly
discharged. This feature can mimic the refractory period in biosystems. The neuron responses under
different input frequencies (with a fixed input voltage of 1 V) are shown in Figure 31b. Under a low
frequency of 2.5 kHz, only 1 firing event happened with Vour = 0.55 V. In comparison, the spiking
frequency increased when the input frequency increased to 5 KHz. This was because the accumulation
of charges in the C1 capacitor was faster so that the memristor (M1) can be switched to LRS more
frequently. Meanwhile, as the input signal frequency further increased to 10 kHz, the frequency of
output spike signals increased correspondingly, demonstrating input-controlled spiking behaviors. On
the other hand, the influence of input amplitudes (with a fixed frequency of 10 kHz) on neuron spiking
performance has also been studied, as shown in Figure 31c. Neuron spiking was not generated under
the input voltage of 0.8 V, because the charge accumulation was insufficient. Hence, the voltage on M1
was not high enough to transform M1 into LRS and generate an output spike. In comparison, stable
neuron spiking signals were obtained when the input voltage amplitude was 1 and 1.2 V. This neuron
spiking under different frequencies and amplitudes can mimic the actions in biological neuron systems

to implement neuromorphic computing.*%*
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Figure 31. Schematic diagram of artificial neuron system and LIF neuron simulation results. (a) Diagram of
biological artificial neuron system and the LIF neuron circuit. LGP means local graded potential that reflects the
dynamics of the neural membrane potential. (b) The simulation of neural spiking response under different
excitation frequencies. The b-1 shows the input signals. The b-2 shows the V¢ under different input signals. The
b-3 shows the output signals. (c) The simulation of neural spiking response under different excitation amplitudes.
The c-1 shows the input signals with different amplitudes. The c-2 shows the V¢ under different input signals.

The b_3 shows the output signals.

Synapses are crucial in biosystems, which have been investigated in the Ag/CISe/Mo device. The
schematic diagram of a biological synapse is shown in Figure 32a. Biological synapses connect neurons
by controlling the absorption and extrusion of neurotransmitters (K*, Na*, Ca"), inducing plasticity
reactions. Synaptic plasticity is the change of synaptic strength under external stimuli over time. This
phenomenon is the foundation of memory and learning activities in human brains. In artificial neural
networks, synaptic plasticity can be mimicked by the memristor with adjustable conductance.*” When
two spikes occur in rapid succession, synaptic strength changes by the second spike are enhanced.
Because the interval time is too short for carriers to go back to their initial equilibrium states, namely

paired-pulse facilitation (PPF). The plasticity of PPF is described by Eq. 46.%%

PPF =251 100% Eq. 46

1

where G; and G are the conductance of the device after the first pulse and the second pulse, respectively.

The PPF was successfully simulated as shown in Figure 32b. The interval time between two pulses
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was denoted as AT. The voltage amplitude was 1.0 V. Conductive (synaptic weight) changes depending
on 4T were obtained. The second pulse induced a larger conductance increase. Besides, the conductance
returned to its original state gradually after the pulsed excitation. When the AT increased from 20 ms
to 600 ms, the conductance change decreased accordingly. A shorter interval between two stimuli can
reinforce the memory effects, demonstrating agreement with biological synapses. This follows an

exponential relationship described by Eq. 47.3¢4
_Ar _ar
AG =cie 1 + e 2 + Y Eq. 47
Where ¢, ¢z, and yy are constants treated as fitting parameters. z; and 7, are the fast and slow decaying

terms, respectively. The fitting result is shown in Figure 32b (the pink line). The fast (z;) and slow (z)

decaying terms were 2.4 ms and 54.8 ms, respectively.
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Figure 32. Artificial synaptic performance. (a) Schematic diagram of a synapse. (b) Experimental result of short-
term synaptic PPF behavior. (c) The potentiation and depression behaviors of the device. The pulse amplitudes
for potentiation and depression operations were + 1 V and -1 V, respectively. The pulse duration was 50 ms. The
read voltage was 0.1 V. 50 consecutive pulses were applied for both potentiation and depression operations. (d)

Simulations of backpropagation algorithm for UCI Small image recognition (image size was 8 x 8 pixels).

73



Long-term potentiation and depression behaviors under pulsed-voltage programming schemes were
obtained as shown in Figure 32c. The conductance increased as the positive-pulse voltage was used,
corresponding to the potentiation process. In comparison, the conductance decreased under negative
pulses, indicating the depression process. To demonstrate the feasibility of the Ag/CISe/Mo artificial
synapse for neuromorphic computing, the backpropagation algorithm for pattern recognition was
simulated based on a three-layer ANN. An 8 x 8 version of UCI Small images was employed as the
training and test dataset.>*> The recognition accuracy reached over 90 % after four training epochs as
shown in Figure 32d. The pattern recognition accuracy was 90 = 2% over 30 training epochs. The small
accuracy fluctuation was due to the algorithm.’*® The simulation results claim the potential and
practicability of the artificial synapse for neuromorphic computing. Based on the above results, the
versatile memristor can provide the functions of non-volatile memory, selectors, artificial neurons, and

artificial synapses.

3.3.4 Working Mechanism Investigations
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Figure 33. (a) Typical I-V curve of the Mo/CISe/Mo device. (b) The values of LRS at different temperatures for
the Ag/CISe/Mo device.

The resistive mechanism has been investigated systematically. To confirm that Ag dynamics dominated
the resistive switching, the devices with different top electrodes and operation temperatures were
studied. The electrical performance of the device with inert electrodes is shown in Figure 33a. No
resistive switching was observed in the Mo/CISe/Mo device, confirming that Ag is essential for
resistive switching. Furthermore, the LRS wvalues of the Ag/CISe/Mo device under different

temperatures were measured, as shown in Figure 33b. The resistance of LRS increased with the
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increase of temperature, which is the signature feature of metallic conducting, claiming that the metallic

conductive filaments governed the LRS.%’
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Figure 34. Conduction mechanisms of the volatile TS and non-volatile MS in the Ag/CISe/Mo device. (a) Log
(I) - log(V) curve, the voltage swept from 0 V— 1V — 0 V. (b) Ln (]I|) - V% curve, the voltage swept from 0 V
— -1 V. (c) Ln (|]I)) - V"2 curve, the voltage swept from -1 V — 0 V. (d) Log (I) - log(V) curve, the voltage swept
from 0V — 3V — 0 V. (e) Ln (|I]) - V!2, the voltage swept from 0 V — -3 V. (f) Ln (]I) - V"2, the voltage
swept from -3V —>0 V.

Moreover, the electrical mechanism of the versatile memristor was investigated. Ohmic conduction
and interface-dominated conduction were observed in memristor devices.*®® The switching layer of
CISe was a p-type semiconductor.’* A Schottky barrier was formed at the interface of metal electrodes
and the switching layer. Figure 34 summarizes the fitting results to elaborate conduction mechanisms
in the Ag/CISe/Mo device with the volatile and non-volatile performance. Figure 34a shows the typical
log (I) - log(V) curve under positive bias (0 V— 1 V — 0 V). When applying the voltage from 0 V to
1V, the slope was 0.99, close to 1, at the low voltage region (0 V to approximately 0.6 V). The current
increased proportionally with the increase of voltage, indicating Ohmic conduction. Afterward, the
slope increased to 2.79 at a voltage range of approximately 0.6 V to 0.9 V. The concentration of injected
electrons exceeded the equilibrium concentration, indicating the SCLC effects.’'* Further increasing

the voltage led to an abrupt current increase. This was due to the formation of Ag conductive
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filaments.**® After the device was switched to LRS, the slope was about 1.92 instead of 1.0. It did not
follow Ohmic conduction due to the dynamic diffusion of Ag conductive filaments. When the voltage
decreased to a certain value (approximately 0.2 V), the current decreased abruptly, demonstrating the
rupture of Ag conductive filaments. When reversing the applied voltage, the device remained at the
HRS. The /n (|I]) — V" curves of the device at the negative region are shown in Figure 34b and c. A

linear fit was obtained, indicating the conduction mechanism was governed by Schottky emission.?'4

For the non-volatile MS performance in the device, the log (I) - log(V) curve under positive bias (0
V — 3V — 0V)is shown in Figure 34d. The slope over the low voltage region (0 V-0.7 V) was 1.03,
indicating Ohmic conduction. Then, a slope of 2.56 showed up over the high voltage region (0.7 V to
1.0 V), indicating the SCLC conduction model. Further increasing the voltage, a sharp current increase
was observed due to the formation of Ag conductive filaments. For the LRS, the slope was 1.01
following the Ohmic conduction mechanism. The abrupt change was not found when the voltage swept
from 3 V to 0 V. When reversing the voltage to the negative region, the slope was 0.97 in the low
voltage region (0 V to approximately -1.7 V), which indicates the Ag conductive filament was stable
and the device was still at LRS, as shown in Figure 34e. When the absolute value of voltage exceeded
1.7 V, the current decreased suddenly. The conductive filament ruptured, and the device RESET to
HRS. Figure 34f shows the In (|I|) - V! curve as the voltage sweeps from -3 V to 0 V. The linear

behaviour demonstrated that the conduction mechanism was governed by Schottky emission.

To elaborate on the conductivity evolution of the Ag/CISe/Mo device under different voltages,
schematic diagrams of the resistive switching mechanism are shown in Figure 35. Based on the above
discussion, the dynamics of Ag conductive filaments were responsible for the resistance switching.
Additionally, the volatile and non-volatile behaviors were due to the different stability of conductive
filaments, which were determined by voltage stress.>> For volatile resistive switching, as shown in
Figure 35a, Ag atoms from the top electrode were oxidized into Ag™ under positive voltages (Figure

35al). This is described by Eq. 48.%7
Ag - Agt —e” Eq. 48
The ionized Ag" penetrated the CISe film and migrated to the Mo electrode under the electrical field,

as shown in Figure 35a2. Then the Ag" ions were reduced into Ag atoms shown in Eq. 49:188
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Agt+e” > Ag Eq. 49

Conductive filaments connecting the top and bottom electrodes will form when sufficient Ag atoms
were accumulated in the switching layer as shown in Figure 35a3. The resistance of the device
decreased suddenly owing to the high-conductive Ag filaments. However, the conductive filament was
slim and unstable, resulting in filament rupture due to the minimization of filament surface energy when
the applied bias was small,**> as shown in Figure 35a4. When a reversed voltage was applied to the
device, it remained at HRS since the inert Mo electrode cannot induce conductive filaments (Figure

35a5 and a6). Thus, the device showed volatile TS characterizations.
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Figure 35. Illustration diagram of the volatile/non-volatile resistive switching. (a) Mechanism of conductive
filament evolution for the volatile TS behaviors. (b) Mechanism of conductive filament evolution for the non-

volatile MS behaviors.

With a higher operational voltage, more Ag atoms were oxidized into ions and then reduced into
atoms, as shown in Figure 35b1 and b2. Hence, the conductive filament was thicker and stronger, as
shown in Figure 35b3 and b4. The stable filaments did not break until the reversed voltage reached a
certain value. Ag atoms were oxidized into Ag" under negative voltages, inducing the dissolution of
conductive filaments and the transition from LRS to HRS (Figure 35b5). As the negative voltage was
further applied, the residual Ag atoms in the switching layer were further dissolved and the device

recovered to the initial condition (Figure 35b6). Thus, the device showed non-volatile MS behaviors.

77



The versatile memristor with the adjustable retention time enables multi-functions for memory and

computation.

3.4 Summary

In summary, a versatile memristor (Ag/CISe/Mo) array covering multiple functions was developed.
Non-volatile functionalities with a storage window of 4.0 x 10° and a retention time of 10,000s were
obtained, indicating the application of non-volatile memory. Besides, the Ag/CISe/Mo device showed
diode-like volatile functionalities with a storage window of 7.0 x 10* and a rectification ratio of 4 x 10*.
The high rectification ratio can be used as selectors to suppress sneaky currents in memristor arrays.
The device was operated stably over 400 cycles, ensuring a mean HRS/LRS ratio of over 10*. The LIF
neuron model based on the device has been studied, demonstrating potential as artificial neurons.
Furthermore, the short-term synaptic PPF and long-term potentiation/depression performances were
obtained in the same device. The image recognition simulation with an accuracy of 90 + 2 % was
achieved, indicating the practicability of the artificial synapse for neuromorphic computing. A versatile
memristor taking the multiple roles of non-volatile memory, selectors, artificial synapses, and artificial
neurons will provide many advantages regarding circuit simplification, fabrication processes, and
manufacturing costs. The devices with different top electrodes, operation temperatures, switching layer
thicknesses, and conduction mechanisms were investigated to reveal the resistive switching
mechanism. It has been confirmed that the volatile/non-volatile bifunctional resistive switching was
attributed to the dynamics of Ag atoms. Moreover, this work presented a novel bottom-up approach to
fabricate crossbar arrays, where the CISe was grown locally by electrodeposition to form a patterned
switching layer. This method can potentially decrease manufacturing costs and achieve high utilization
efficiency of materials. The results will promote the development of advanced data storage and

neuromorphic computing systems.
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Chapter 4. Intelligent matter endows reconfigurable temperature and humidity

sensations for in-sensor computing

In the previous chapter, a versatile memristive device was developed by controlling the lifetime of
conductive filaments. Here, the sensing function (temperature and humidity) will be explored based on

the filamentary memristive device.

Data-centric tactics with in-sensor neuromorphic computing go beyond the conventional computing-
centric tactic that is suffering from processing latency and excessive energy consumption. The
multifunctional intelligent matter with dynamic smart responses to environmental variations paves the
way to implement in-sensor neuromorphic computing with high energy efficiency. However, intelligent
matter with humidity and temperature sensitivity has not been reported. In this work, a design is
proposed based on a single memristive device to achieve reconfigurable temperature and humidity
sensations. Opposite temperature sensations at the LRS and HRS were observed for sensory processing.
Integrated devices mimicking intelligent electronic skin (e-skin) can work in three modes to adapt to
different scenarios. Additionally, the device acts as a humidity-sensory artificial synapse that can
implement high-level cognitive in-sensor neuromorphic computing. Intelligent matter with

reconfigurable temperature and humidity sensations is promising for energy-efficient Al systems.

4.1 Introduction

Intelligent technology is fundamentally revolutionizing our daily life by updating the paradigm of
computing systems inspired by energy-efficient human brains.® Intelligence embracing learning and
adapting abilities is mostly observed in biological organisms.’®” The intensive proliferation of Al
constantly advances modern technology limits, making machines behave more like intelligent
creatures. However, two main technical barriers to more powerful intelligent machines are yet to be
solved, namely, (i) a large amount of redundant and unstructured raw data from sensory nodes; and (ii)
energy-inefficient and time-consuming data processing.’> To overcome the challenges, one strategy is
shifting from a computing-centric tactic to a data-centric tactic by co-integrating various functional
components into a single device for in-sensor computing, whereby the sensory data will be processed

263

locally without data shuttling.”> To construct novel intelligent systems, intelligent matter enabling

dynamic smart responses to the environment would inspire an entirely novel concept of AL® The
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intelligent matter comprehending environmental variations enables reconfigurable sensation and
memory abilities to external stimuli (mechanical stress, chemical molecules, light, temperatures,
humidity, etc.). The reconfigurable functionalities go far beyond the capability of static matter

)368

conventional sensors and benefit intelligent systems interacting with environments. ntelligen
tional d benefit intelligent syst teracting with ts.3%° Intelligent

matter is the basic building block for advanced in-sensor neuromorphic computing and Al technology.®
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Figure 36. Conceptual illustration of intelligent matter with reconfigurable temperature and humidity sensations.
(a) Schematic diagram of a biological system with synergistic temperature and humidity sensations. (b) Schematic
diagram of the switchable device with temperature and humidity sensations. MCF means metallic conductive

filament.

Developing intelligent matter with novel sensory functions and easy-integrability structures is
important for in-sensor neuromorphic computing. Sensory signals consist of mechanical contacts
(tactile, press, strain), photonic stimulations (spanning from the ultraviolet region to the near-infrared
region), temperature changes, humidity variations, and chemical molecules.*® Thereinto, temperature
and humidity are two main pieces of sensory information that are crucial for biological individuals. As
shown in Figure 36a, the stimulation from the changes in temperature and humidity generates the
excitation spikes that will be transmitted to the central processing unit of the brain. Then, the brain will
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send orders to muscles and take actions to avoid damage or search for a safe spot, which is crucial for

biological survival. In brain-inspired in-sensor neuromorphic computing systems, matter-level

components equip sensory functions and capabilities of biological organs (synapses and neurons, etc.),

which can implement high-level physiological learning and cognitive abilities.

Table 6. Summary of the memristive devices-based intelligent matter for in-sensor neuromorphic

computing.
Sensing type Intelligent sensational matter Application Ref.
Tactile Ferroelectric-gated synapse Realtime decisions and 27
Ultraviolet light Reconfigurable phototransistor =~ Neuromorphic vision 370
Ultraviolet light Ferroelectric photosensor Real-time machine vision 280
Ultraviolet light Light-mediated memristor Real-time collision detection %0
Ultraviolet light Photo-induced phase transition ~ Neuromorphic vision 371
Ultraviolet light Reconfigurable photodiode Ultrafast machine vision 14
Visible light Li*-mediated phototransistor Sensing-memory for retina perception 37
Visible light Phototransistors Scotopic and photopic adaptation 373
Chemical, Alcohol Covalent organic framework Gas identification system 374
Humidity Porous zwitterionic sensor Locating water sources 275
Temperature Floating gate synaptic transistor ~ Temperature-facilitated learning 375
Multi-modal:  Tactile, Stretchable nanowire transistor ~ Gesture recognition 376
green light
Multi-modal: MZXene-ZnO memristor Sensory neuromorphic vision 274
Ultraviolet, humidity
Multi-modal: Filamentary memristor Sensory neuromorphic vision This
Temperature, humidity work

Intelligent matter based on a single device with different sensory functionalities has been reported

for in-sensor neuromorphic computing, as summarized in Table 6,!4°0-274275:2719.280370-376 Qpe strategy

for constructing intelligent matters is to develop three-terminal artificial synapses. External stimuli

(such as tactile or light) imposed on the gate terminal induce ionic insertion or ferroelectric polarization

modulation. The device presents sensory synaptic performances that can be utilized for in-sensor

neuromorphic computing.?”**”? Another strategy is to design two-terminal devices enabling sensory
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reconfiguration and memorizing ability to changing environments. Notably, two-terminal devices show
better integrability compared to their three-terminal counterparts. However, only a few works have
reported the two-terminal intelligent matter.”®*’* Furthermore, intelligent matter enabling temperature
and humidity sensations simultaneously for in-sensor computing has not been reported yet. Hence,
designing and constructing two-terminal in-sensor computing devices with intelligent temperature and

humidity sensations are attractive for advanced Al applications.

A memristive device was employed to design an intelligent matter with reconfigurable temperature
and humidity sensations. The memristive device presents programmable and non-volatile resistance.*
It can reversibly switch between different resistance (or conductance) states determined by the history
of electrons following through it. Non-volatile internal states can be obtained by applying voltage or
current excitations. Several mechanisms, such as phase change, ferroelectric polarization modulation,
electrochemical redox reactions, and magnetic tunnelling have been reported to explain resistive
switching phenomena.’”” Variation occurs inside a memristive device during the resistive switching
process. Therefore, different temperature and humidity sensations can be expected when the memristive
device is at different states. Another specialty of this design is that the state switching is reversible,
which means the intelligent computing exhibits reconfigurable sensory capabilities. A counterintuitive
philosophy is utilized in this design. A memristive device is expected to be sensitive instead of resilient
(in traditional ideology) to environmental changes.’’”® Besides, memristive devices have a simple
capacitor-like sandwich structure that is beneficial to high integration density.’”® With the rapid
development of microsystems and nanosystems, such as microelectromechanical systems (MEMS),*?
lab-on-a-chip,®! biology at a single cell level,*®? microfluidic systems,*®* and microscale biological
reactors.’® On-chip temperature sensors and microscale humidity gradient monitors are crucial.
Demand has risen for microscale or even nanoscale temperature and humidity sensors. Particularly, the
device reported in this work can be used as a sensory artificial synapse that can implement
neuromorphic computing. State-of-the-art deep neural networks (DNNs) contain millions of weights or
more, which must be mapped to on-chip synaptic memories. Therefore, high-density integration of

synaptic devices is required.

The filamentary resistive switching due to electrochemical redox reactions is one of the main working

mechanisms. The pristine device is at a high resistant state (HRS) as shown in Figure 36b. The
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temperature and humidity sensations are determined by the properties of the switching layer (generally
insulators or semiconductors). After the SET process, the metallic conductive filament (MCF) bridging
the top and bottom electrodes is generated inside the switching layer. The device is at a low resistance
state (LRS). The electronic property at the LRS is dominated by the metallic filament, which shows
different temperature and humidity sensations compared to its HRS counterparts. More specifically, the
semiconductor switching layer presents a positive temperature coefficient of conductance, indicating
that the conductance of the HRS increases with increased temperature. In comparison, the metal shows
a negative temperature coefficient of conductance, which means the conductance of the LRS decreases
with increased temperature.®®® Besides, the humidity level affects electrochemical redox reactions
during the SET process, which will change the conductivity of the metallic filament. The conductance
at LRS thus is sensitive to humidity.?!” The sensory performance is programable as it is reversible
between the HRS and LRS. Those reconfigurable sensory properties can be utilized for in-sensory

neuromorphic computing.

In this work, a novel intelligent matter based on a memristive device with reconfigurable temperature
and humidity sensations was developed. The device structure was Ag/ Cu (In, Ga) Se, (CIGSe)/Mo, as
shown in Figure 37a. The Ag acts as an active electrode that shows active chemical reactivity and can
be induced into the CIGSe. Ag species exhibit good diffusivity in the CIGSe, which is crucial for the
formation of conductive channels.!>**! The device showed reliable resistive switching behaviors, with
an HRS/LRS ratio of 1700, an endurance of over 5000 cycles, and artificial synapse functions. The
device showed different responses to the temperature and humidity sensations when the device was at
different states. The in-sensor low-level data processing (temperature patterns detection, enhancement,
and reconfiguration) and in-sensor high-level data processing (humidity-sensitive neuromorphic
computing) were demonstrated. The intelligent matter showed a positive temperature coefficient of
conductance at the HRS, while it exhibited a negative temperature coefficient of conductance at the
LRS. The system with integrated intelligent matter can work in the LRS mode, HRS mode, and
HRS&LRS mode due to different temperature sensations. This can be potentially used for advanced-
intelligence artificial skins for different working scenarios. Furthermore, high-level data processing
under different humidity was demonstrated by implementing a neuromorphic computing simulation.
The in-sensor computing can be extended to decision making, language processing, real-time predictive

analytics, etc. The intelligent matter enabling reconfigurable temperature and humidity sensations
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accelerates the neoteric technology toward advanced e-skin, neurorobotics, cyborg, and human-

machine interaction in the post-Moore era.
4.2 Experimental Section

4.2.1 Device Fabrication

The Ag/CIGSe/Mo and Mo/CIGSe/Mo devices were fabricated by magnetron sputtering and
electrochemical deposition. The Mo/CIGSe/Mo device was used as a comparative trial to investigate
resistive switching mechanisms. The Mo layer was deposited by direct current sputtering (ATC ORION
SERIES SPUTTERING SYSTEMS) as the bottom electrode. A shadow mask was used to obtain a
patterned Mo electrode. Then, the CIGSe switching layer was formed via the electrodeposition process.
To prepare the reaction bath, 2.5 mM CuCl,-2H»0, 2.4 mM InCls;, 6 mM GaCls, 240 mM LiCl, 4.5 mM
H,SeOs were dissolved in DI water. All chemicals used in this experiment were purchased from Sigma-
Aldrich. Besides, pHydrion (pH 3.00) was employed as the buffer. HCI drops were added to adjust the
electrolyte pH to 2 - 3. The electrodeposition process was carried out with an electrochemical
workstation (CHI Model 660E Series Electrochemical Analyzer/Workstation). A conventional 3-
electrode setup was used. The CIGSe film was obtained by applying a constant potential (-0.63 V in
this work) to the working electrode. Relative smooth and density CIGSe can be obtained on the
patterned Mo electrode. Then, the Ag (or Mo) strip electrode was deposited on the top of the CIGSe to

form a capacitor-like sandwich structure.

4.2.2 Materials and Device Characterization Methods

The optical micrograph of the device was taken by an optical microscope (Oxford BX51M). The
surface morphology of the CIGSe film and the cross-section of the device was characterized by SEM
(UltraPlus FESEMs). The composition information was measured by EDS (UltraPlus FESEMs). The
GIXRD was carried out to characterize the crystalline structure of CIGSe (PANalytical X’Pert PRO
system, CuKa irradiation, A = 1.5406 A). The Raman spectrum was measured by the Renishaw micro-
Raman spectrometer (laser wavelength of 633nm, red He-Ne). The electrical measurement of the

fabricated devices was performed on a Keithley 2985A source meter.
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4.2.3 Simulation Methods

Theoretical material simulation: Density functional theory calculations were performed on the
platform of CP2K software. The Gaussian Plane method was based on double-{ MOLOPT basis sets
(DZVP-MOLOPT-SR-GTH) and Goedecker-Teter-Hutter (GTH) pseudopotentials. The convergence
criterion was 1 x 10-6 and the cut-off energy was set as 450 Ry. Periodic models with vacuum space
were chosen to describe the interaction between CIGSe and Ag clusters. Firstly, the creation of the
CIGSe model with vacuum space was optimized. And then, the Ag cluster was absorbed on the CIGSe
model for ab intio molecular dynamics calculations (AIMD) in the ensemble-canonical ensemble
(NVT). The time step was set as 1 fs for 2000 steps under the temperature of 303K. Similarly, the O-
functional group generated due to the existence of H,O molecules was used to bind on the surface of
CIGSe model (labeled as CIGSe-0), and further were applied by AIMD calculations under the same
parameters. Metadynamics calculations of free energy were carried out to investigate the reaction
mechanism, the temperature was set at 303 K. Based on two collective variables: the distance of Ag
atom on XZ plane (CV1) and YZ plane (CV2). These simulations allow Ag atom to relax in Z direction

with the minimum activation energy.
4.3 Results and Discussion

4.3.1 Material Characterizations

Materials characterizations for the device are shown in Figure 37. The device has a capacitor-like
sandwich structure that can be integrated into a high-density crossbar structure as presented in Figure
37a. A cross-sectional SEM image of a device is shown in Figure 37b. The thickness of the CIGSe was
approximately 230 nm. A dense and crack-free feature in the CIGSe can be observed. Figure 37c
presents the surface morphology of the CIGSe film. The crystalline grain grew into flower-like grain
particles. Surface composition mapping illustrated that the four elements (Cu, In, Ga, Se) were
distributed uniformly (Figure 37d). No obvious composition segregation was observed in the deposited
film. The atomic percentages of Cu, In, Ga, and Se were 27.1 %, 14.39 %, 7.71 %, and 50.89 %
respectively. To clarify the crystalline structure of the materials, the Raman and GIXRD spectra were
measured. Figure 37¢ shows the Raman spectrum of the CIGSe, in which the characteristic peak

corresponding to the Al mode can be found.*®*® The GIXRD pattern is shown in Figure 37f. The
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characteristic peaks corresponding to (112), (220), and (312) crystal planes of a tetragonal structure
(JCPDS 00-035-1102) were observed.*®” Notably, the peak at approximately 40.5° corresponded to the
(110) crystal plane of the Mo bottom electrode (JCPDS file: 01-089-5156)."° The Raman spectrum and
GIXRD pattern confirmed that the CIGSe with a chalcopyrite structure was formed by the

electrochemical deposition process.
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Figure 37. Materials characterizations. (a) Schematic diagram of the device structure. (b) Cross-section of the
device. (c) Surface topography of the deposited CIGSe switching layer. (d) Surface composition mapping
(Element: Cu, In, Ga, Se) of the CIGSe film. (e¢) Raman spectrum of the CIGSe thin film. (f) GIXRD spectrum
of CIGSe/Mo.

4.3.2 Resistive Switching and Sensory Characterizations

The electronic characterizations of the device have been investigated systematically as shown in
Figure 39. The DC switching cycle test is shown in Figure 39a. The sweep voltage was 0 -2V — -
2 V — 0 V. The pristine device exhibited the HRS, as the voltage swept from 0 to 2 V, the current
increased sharply at the voltage of 0.18 V ~ 0.32 V. The device switched to the LRS, corresponding to
a SET process.?”** When the applied voltage swept from 0 to -2 V, the device returned to the HRS at
the negative voltage of around -1.05 V ~ -0.54 V. The switching process was reversible and dependable.

To investigate the operational stability, the cumulative probability of the operating voltage is shown in
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Figure 39b. The coefficient of variations (CVs) of the SET and RESET voltages were 0.12 and 0.20,
respectively. Moreover, DC switching cycle tests under different CCs were carried out as shown in
Figure 38a. The CCs influence the LRS; smaller CC corresponds to a lower value of current (larger
resistance). Resistance-state distributions are shown in Figure 38b. The device demonstrated a
multistate feature, indicating the potential of ultrahigh multistate memory and tunable states for
neuromorphic computing.*®® The endurance of the device is shown in Figure 39c. The device can be
operated reliably over 5000 cycles with a large memory window of 1700 (mean value of HRS/LRS
ratio). The retention time in both states was measured as shown in Figure 38c. The switched states can
be maintained for approximately 4500s, indicating a non-volatile feature.!'> Additionally, the device-
to-device variation is shown in Figure 38d, indicating good process reliability. The above results
demonstrate that the device shows reliable resistive switching properties, good endurance, and a large

memory window.

The device also presented synaptic functionalities, which are crucial for in-sensor neuromorphic
computing. In biological neurological systems, synapses connect neurons, ensuring neurotransmitters
can travel among neurons to transmit messages from neurons to neurons or from neurons to muscles.
Synaptic plasticity (excitatory/inhibitory) represents the connection strength between neurons, which
is fundamental for information transmission and processing.>** In artificial synapse systems based on
electronic devices, the plasticity can be represented by modulated conductance. The paired-pulse
facilitation (PPF) behavior is short-term plasticity. The synaptic strength change is enhanced by the
second stimulation when two rapid-consecutive stimulations are imposed. It is due to the interval time
between the two excitations being too short for carriers to return to initial equilibrium states. Figure
39d shows the PPF behavior of the device. ** It can be found that the PPF index decreased as the
interval time increased, indicating that a shorter interval time of stimuli reinforces the memory effects.
The pink line in Figure 39d is the fitting result. An exponential relationship was confirmed, which is
consistent with the feature in biological systems. The potentiation responses under consecutive voltage
pulses with different amplitudes are shown in Figure 39¢. A monotonic increase in the pulse number
was observed. It means that more pulses induced stronger potentiation effects. Additionally, the ratio
of G100/G; (G1 and G are the conductance after the first and 100™ pulse respectively) increased with
the increase of pulse voltage amplitudes. The Gp/G; ratio of 3.7 was obtained when the voltage

amplitude of 1 V was used. In comparison, the G;p/G; ratio increased to 16.2 when the voltage
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amplitude increased to 2 V. In a biological system, one of the essential synaptic functions is stimulation-
strength-depended responses. Higher stimulation resulted in higher potentiation effects. This feature
can help biological identities to identify stronger stimulations and sometimes protect them from
hazardous external stimulation.*®® The experimental results were consistence with the feature in
biological systems, in which stronger stimulations induce higher neural excitations.**!*? Furthermore,
the potentiation/depression performance was observed in the device as shown in Figure 39f. When
consecutive positive pulses were applied to the device, the conductance increased monotonously,
corresponding to a potentiation process. In contrast, the conductance of the device decreased
monotonously as negative pulses were applied, corresponding to a depression process. The performance

is crucial for brain-inspired neuromorphic computing in artificial neural networks (ANNSs) that can

process data locally.”
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Figure 38. (a) DC switching cycle test under different compliance currents (CCs). 100 switching cycles for each
test. (b) Resistance states distribution under different compliance currents (CCs). (c) The retention time of the
HRS and LRS. (d) The device-to-device variation. The results are from the direct current (DC) switching cycle

test.
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Figure 39 Electronic characterizations. (a) DC switching cycle test for 60 cycles. (b) Cumulative probability of
the operation voltages. CV represents the “coefficient of variation” which was defined as the standard deviation
divided by the mean value. (c¢) The endurance of the device, which is presented by the resistance distribution
under consecutive switching operations. The pulse duration was 200 ms. (d) Short-term synaptic paired-pulse

facilitation (PPF) behavior. The pulse amplitude was 1V. Data points were extracted from the average values of
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five tests. The fitting equation was PPF = A;e ™1 + A,e 2 + y,. The fitting parameters of A, Az, yo, T1, and

T, were 639.4,123.2,22.9, 0.3 ms, and 5.4 ms respectively. (¢) Conductance modulation under consecutive pulses
with different amplitudes. The pulse number was 100. The pulse duration and pulse interval time were both 10
ms. (f) Potentiation and depression performance of the device. (g) Conductance changes (LRS and HRS) under
different temperatures. (h) Change of LRS/HRS ratio under different temperatures. L _H Ratio means the ratio of
LRS/HRS. The X-axis and Y-axis are both in linear scale. For the inset, the X-axis and Y-axis are in linear scale
and natural-logarithm scale, respectively. (i) Conductance changes (LRS and HRS) under different humidity

levels.
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The temperature and humidity sensory responses under different states of the intelligent matter were
studied. As shown in Figure 39g, the temperature sensations at the LRS and HRS were measured.
When the device was at LRS, the conductance value decreased (resistance increased) with the increase
of temperature, indicating a negative temperature coefficient of conductance. On the contrary, when
the device was at HRS, the conductance increased (resistance decreased) with an increased temperature.
It demonstrated a positive temperature coefficient of conductance. Because the device can reversibly
switch between the LRS and HRS, the temperature sensation was reconfigurable and programmable by
the voltage. Additionally, the ratio of LRS/HRS increased monotonically with increased temperature,
as shown in Figure 39h. The LRS/HRS ratio changed slowly with the temperature increase when the
temperature was lower than around 350 °C. In comparison, the ratio increased exponentially when the
temperature was further increased (>350 °C). As shown in the inset of Figure 39h, data points followed
a linear feature in the linear and natural-logarithm scales. This exponential temperature sensation is
analogous to that in biological systems, which can be considered a protection scheme to improve the
survival rate.*”> When the temperature of the surrounding environment surpasses a certain threshold
point, the stimulation signal from sensory systems would be enhanced exponentially to alert the host
that evasive action is required to escape from the current situation. Besides, the temperature can also
potentially modulate short-term memory behaviors, which might be useful for temperature sensing.**
Furthermore, the conductance changes of LRS and HRS under different humidity levels are presented
in Figure 39i. The water molecules were penetrating the switching layer from the lateral sides.?!%>%
The results were measured from low relative humidity (RH) to high RH. The HRS was insensitive to
the humidity as the conductance was kept almost constant until the humidity level was too high. The
conductance increased to a larger value at the humidity of 90%. In contrast, the conductance of the LRS
increased constantly as the humidity increased, indicating a humidity-sensing functionality. To further
confirm the reversibility of humidity sensation, the reversibility test of conductance changes is shown
in Figure 40. The result confirmed that the effects of humidity on conductivity were reversible. It
indicates that the device can be switched between humidity-sensitive and humidity-non-sensitive
modes by switching the device between the HRS and LRS. The systematic electronic characterizations

demonstrated that intelligent matter provided adjustable temperature and humidity sensations.
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Figure 40. Reversibility test of conductance changes (LRS and HRS) under different humidity levels.

4.3.3 Working Mechanism Investigations

The working principle of the reconfigurable sensations has been investigated via experimental
measurements and theoretical simulations. The typical log (I)-log(V) curve of the device over the
positive voltage region is shown in Figure 41a. When the applied voltage was at the low-value region
(Log(|V]): -2 — -0.9), the slope was around 1.13 which was nearly 1.0. The current increased
proportionally to the applied voltage, which indicated the conduction mechanism was governed by
Ohm’s law. When further increasing the voltage, the current increased abruptly (resistance decreased
abruptly). The device was SET to the LRS from the HRS due to the formation of the silver filaments.!'
When the positive voltage was applied on the top Ag electrode, Ag atoms are oxidized into Ag”. The
generated Ag" moved to the counter electrode side and was reduced into the Ag atom. High-
conductivity Ag channels bridging the top and bottom electrodes were formed once enough Ag atoms
were accumulated in the CIGSe switching layer, and the device showed the LRS. As shown in Figure
41a, the slope of the log (I)-log(V) curve was 1.09, close to 1.00, when the device was at LRS (Log(|V]):
-2 — 0.3 V), indicating that Ohm’s law governs the conduction mechanism, which is consistent with
the filamentary model.!® When the voltage was reversed (negative voltage was applied), the inserted
Ag atoms were reduced into Ag", and the conductivity filaments were resolved. The device was RESET
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to the HRS. Figure 41b exhibits the log (I)-log(V) curve over the negative voltage region. When the
applied voltage was at the low-value region (Log(|V|): -2 — -0.2 V), the slope was around 1.01 which
was close to 1.00, indicating Ohmic conduction that was the same as that of LRS over the positive
region. It means the formed conductive filaments were stable under low negative voltages. When the
negative voltage was high (Log(|]V|) > 0.4), the current decreased suddenly, which indicated the
conductive filaments ruptured and the device returned to HRS. When the device was at HRS under
negative bias, the electrical conduction curve was fitted with the Schottky emission mechanism as
shown in Figure 41c. To further confirm the transition between HRS and LRS was because of the Ag
conductive filaments, a device of Mo/CIGSe/Mo with an inert top electrode was fabricated. The DC
switching cycle test is shown in Figure 41d. No resistive switching phenomenon was observed, which
confirmed that Ag atoms were essential for the resistance change. The resistive switching was derived

from the formation/rupture of silver conductive filaments.
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Figure 41. (a) The DC switching cycle test of the device in the log (I)-log(V) scale (positive region). (b) The DC
switching cycle test of the device in the log (I)-log(V) scale (negative region). (c) The DC switching cycle test of
the device in the V- Ln(I) scale (negative region). (d) The DC switching cycle test of the Mo/CIGSe/Mo. The
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The principle of the opposite temperature sensations at the HRS and LRS was elaborated. As
mentioned above, the foundation of resistive switching was the formation and rupture of the silver
conductive channels, which implied that the electron conduction can be shifted between
semiconductive and metallic states. At the HRS, the conductance was determined by the switching layer
of CIGSe which is a p-type semiconductor.® Ideally, at 0 K, semiconductors cannot conduct electrons
or their conductivity is zero because all charge carriers are frozen in the valence band and below the

Fermi level.*®

With the increase of temperature, electrons in the valence band absorb thermal energy
and jump to the conduction band, generating electron-hole pairs that act as charge carriers, as shown in
Figure 42a (right). Electrical current will flow when voltage is applied due to the existence of charge
carriers. Additionally, a higher temperature means that more thermal energy creates more electron-hole
pairs and a higher density of charge carriers.3®® Therefore, the conductance increased with the increased
temperature when the device was at the HRS, indicating a semiconductive feature. In comparison, metal
conducts electricity because many electrons in the metal can move freely.*’ The main resistance for
electrons’ directional migration is from the thermal vibration of metallic atoms that scatter moving
electrons. Thus, the conductivity of metals decreases with the increase of temperature, as higher
temperature corresponds to stronger atomic vibrations. As shown in Figure 42b, the metallic filaments
were formed at LRS. The conductance was dominated by the high-conductivity metallic filaments that
exhibit metallic features. Therefore, the overall conductivity of the device decreased as the temperature

increased. The intelligent matter enables opposite temperature sensations derived from semiconductive

(HRS) and metallic (LRS) modes.
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Figure 42. Working mechanism. (a) Schematic diagram of the HRS under different temperatures, Conductance
increased with the increase of temperatures. The letter “T” and “G” in the picture means the temperature and
conductance, respectively. The upward arrow and downward arrow mean the increase and decrease of the relevant
values. (b) Schematic diagram of the LRS under different temperatures. Conductance decreased with the increase
of temperature. (c) Schematic diagram of HRS under different humidity levels. Conductance barely changed as
modulating the humidity. The letter “H” and “G” in the picture means the humidity and conductance, respectively.
The upward arrow means the increase of the relevant values. (d) Schematic diagram of LRS under different

humidity levels. Conductance increased with the increase of humidity levels. (e) Illustration of the diffusion
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As for the humidity sensory property, the device at different states showed different humidity
sensitivities. The memristive device (based on the electrochemical metallization mechanism) operated
under different humidity levels can be regarded as an electrochemical cell that is divided into two half-
cells.**® Both half-cell electrochemical reactions, including the anodic oxidation and cathodic reduction,
occurred separately during the resistive switching process. When the positive voltage was applied,
anodic oxidation took place at the Ag/CIGSe interface, which induced the Ag ions into the switching
layer. The oxidation reaction of anodic oxidation to generate oxygen was also plausible.’*® But the
oxidability of Ag was higher than the hydroxyl counterpart, which means the oxidation of Ag
dominated the anodic oxidation reaction. The cathodic reduction at the counter electrode (bottom

electrode) was described below:>"”
20z + Hy0 + 2¢™ - 20H~ Eq. 50

When the device was at the HRS, the electronic properties were dominated by the switching layer of
CIGSe. The main functional group that can be bounded to the CIGSe crystal structure with the existence
of H>,O molecules was -O because oxygen molecules can be generated due to hydrolysis reaction under
extra voltages.??*3*® The -O functional group posed a robust interaction with the CIGSe crystal,
indicating it can be bonded to the CIGSe surface. The work function (¢) was calculated by the following

equation:
© =E,qc — Er Eq. 51

where E,.. and Er represent the vacuum level and Fermi level, respectively. The ¢ values of CIGSe and
CIGSe-O were 5.40, and 5.15eV, respectively. A small variation of work function was observed before
and after the bonding of the O- group. This means the CIGSe can show stable electronic features even
with the existence of CIGSe-O (Figure 42c).3*® However, when the humidity was too high, the
conductance jumped to a high value compared to the pristine value (Figure 39i). The reason was that
more hydroxyl ions and protons were generated and accumulated, which improves the conductivity of
the switching layer.?’* In comparison, the LRS showed humidity-sensitive features as shown in Figure
42d. The electronic properties of the LRS were dominated by the Ag conductive filaments. A higher
humidity level facilitated the oxidation rate of Ag atoms since the total cell reaction was limited by the

counter-electrode reaction.®*® A higher humidity level provided more residual water species and
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improved the reaction kinetics of the electrochemical cell, leading to a higher injection rate of Ag ions.
Additionally, the water species (mainly -H,O and -O) absorbed on the surface of grain boundaries

lowered the barrier of Ag ions migration, which was confirmed by the atomistic simulation.?2*

Figure
42¢ illustrates the diffusion mechanism of Ag atoms at the bare and O- bonded CIGSe crystalline
surfaces. A higher humidity level was likely to cause more absorbed water molecules, which promoted
the forming of thicker Ag metallic filaments corresponding to higher conductivity. The improved
oxidation rate and migration of Ag ions in the presence of moisture both benefited the formation of
thicker conductive filaments and higher conductivity (Figure 42d). Thus, a comprehensive explanation

is provided to explain the intelligent temperature and humidity sensations.

4.3.4 Intelligent In-sensor Neuromorphic Computing

Intelligent low-level sensory and high-level cognitive in-sensor neuromorphic computing applications
based on intelligent matter are demonstrated to clarify its promising prospects (Figure 45).°> The
schematic diagram of the intelligent skin with tunable thermal sensitivities is shown in Figure 45a.
When a point-source heat, such as a lighted candle, approaches the skin, the thermal energy is
transmitted to the skin surface via thermal radiation. Thermal energy is received by thermal receptors
and stimulated receptors then transmit relevant signals to the brain for further processing. The received
thermal energy is distributed as a gradient on the surface. Because the radiation energy decays as it
travels forward, further points receive less thermal energy. More specifically, the received heat
decreases from the central point (the closest point to the thermal source) to the far point. A simplified
model was built to mathematically demonstrate the thermal transmission distribution on a surface, as
shown in Figure 43. The thermal source is assumed as a point. A constant amount of energy is spread
out in an expanding sphere as it is transmitted away from the source. The thermal intensity at a certain

point is described by Eq. 52.

Sp=— Eq. 52

4712

where SF is the thermal radiation intensity at a specific point F. P is the total energy released per second.
r is the distance between the light source and the specific point (the length of SF in Figure 43). The
thermal radiation intensity at point F is described by Eq. 53:
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Sp=—=2_g. Eq.53

- x2+d0

where Sc is the thermal radiation intensity at the central point C. The normalized thermal radiation
intensity is shown in Figure 44a. The thermal energy density decreased quickly as the points got away
from the central point. Mathematical manipulation can extend the thermal energy distribution from a
one-dimensional space to a two-dimensional plane, which describes the thermal distribution more

accurately and visually, as shown in Figure 45b 1.

Thermal Source (S) dy ' k .
;' Of—‘* R Central Point (C)

X :

«J Far Point (F)

Figure 43. Schematic diagram for the calculation of thermal transmission distribution in one direction.

Additionally, the heat received by a specific point is proportional to the thermal energy density. The

temperature increase due to the absorbed heat is described by :*
Q = mcAT Eq. 54

where Q is heating transfer, m is substance mass, and c is specific heat capacity. To simplify the model,
the temperature at the central point (C) was assumed as 100 °C (393 K). The temperature of other points
proportionally decreases, as determined by the received heat. Integrated intelligent thermal sensors act
as thermal receptors mimicking the human skin. The reconfigurable temperature sensation enables
different sensation responses under different operational modes to adapt to different environments. The
HRS mode means that the temperature-sensory signals were conductance (or current) changes from the
device at the HRS. Likewise for the LRS mode. Meanwhile, the HRS&LRS mode means the
temperature-sensory signals of the LRS/HRS ratio change due to temperature variations. As shown in

Figure 45b 2, the thermal array worked in the LRS mode which showed a negative coefficient of
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conductance. The output decreased at the points closer to the central point. Besides, the output intensity
decreased gradually as it was closed to the central point, which was consistent with the sensation
response of the linear characteristic in the LRS mode Figure 44a. In comparison, the output signals
increased at the points closer to the central point under the HRS and HRS&LRS modes. It can be
observed that nonlinear features showed up in the two modes, which is due to the exponential
relationship between the conductance and the temperature Figure 44c and Figure 44d. Furthermore,
the sensitivity between the HRS and HRS&LRS modes was different. The output at the central point
under the HRS mode (around 1.4) was smaller than that for the LRS&HRS mode (around 2.4) in Figure
45b 3 and Figure 45b 4. The tunable and controllable thermal sensations may provide a promising

strategy for advanced intelligence artificial skins for different working scenarios.
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Figure 44. (a) Theoretical simulation of the thermal transmission distribution in one direction. (b) The change of
Grem./Go under different temperatures at the LRS model. (c) The change of Grem/Go under different temperatures
at the HRS model. (d) The change of Ratiotem/Ratiog under different temperatures at the HRS&LRS model. Ratiog
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Figure 45. In-sensor neuromorphic computing. (a) Schematic diagram of the intelligence skin with tunable
thermal sensitivities. (b) 1: The thermal transmission distribution on the surface of artificial skin from a point heat
source. 2-3: The output distribution on the artificial skin in the LRS model, HRS model, and HRS&LRS model,
respectively. (c) Schematic diagram of ANN for in-sensory neuromorphic computing for pattern recognition. (d)

Neuromorphic computing accuracy under different humidity levels.

The high-level cognitive in-sensor computing based on intelligent matter under different humidity
levels has been investigated. As shown in Figure 46, the intelligent sensor exhibits different
conductance modulation features under different humidity levels, acting as a sensory artificial synapse
enabling synaptic potentiation and depression. The intelligent matter with synaptic functions (or named
sensory artificial synapse) is fundamental for constructing artificial neural networks (ANNSs) for brain-
inspired neuromorphic computing.’” The artificial synapse in ANNs stores intermediate synaptic
weights as conductance, in which the matrix manipulation is implemented in the crossbar based on
Kirchhoff’s current law and Ohm's law. This methodology borrowed from the human brain can achieve
massive parallelism computation by detecting electronic signals directly. Sensory artificial synapses

can complete state-of-the-art in-sensor neuromorphic computing. Sensory synapses can sense the
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changes in humidity, which means the humidity affects computing results. Human perception accuracy
is affected by humidity levels.?” Thus, it is desirable to explore an intelligent device that is sensitive to
humidity. So, it can be cooperative with light- and proton-dependent signal processing systems for
mimicking the adaption behavior of human eyes under different environments.?’* This work is part of
the investigation for developing bionic robots, which makes the artificial machine more like human
beings. For example, humidity or other external environmental factors induce deteriorative eyesight,
which will trigger extra caution regarding outdoor activities by cooperating with other auxiliary
systems. Figure 45c demonstrates a schematic diagram of the ANN used for in-sensor neuromorphic
computing. The in-sensor neuromorphic computing was carried out based on the backpropagation
algorithm for pattern recognition. The ANN is fully connected with the input layer of 64 neurons, the
hidden layer of 36 neurons, and the output layer of 10 neurons. Figure 45d shows the pattern
recognition accuracy under different humidity levels. It can be observed that the accuracy increased
and peaked at the humidity level of 55 % and then decreased with further increased humidity. The
variants of humidity levels changed the features of potentiation and depression in the memristive
device, especially the nonlinearity of conductance modulations.*”! Lower nonlinearity can give a higher
computing accuracy.’”® The nonlinearity of the device was calculated to be 0.637 (RH 20%), 0.454 (RH
40%), 0.314 (RH 55%), 0.473(RH 70%), and 0.665(RH 90%).**> The small nonlinearity for 55% RH
gave a higher recognition accuracy.”’ The results demonstrated that in-sensory neuromorphic
computing was achieved by the intelligent matter acting in the role of sensory synapses in different
humidity conditions. Notably, the pattern recognition simulation shown here was for conceptual
elaboration based on the novel sensory synapse. Intelligent matter can potentially be used for advanced
neuromorphic computing systems enabling multimodal sensory functions. The current intelligent
device still suffers from the difficulty of decoupling the entangled temperature and humidity changes.
The device can be individually used for either temperature or humidity sensing, demonstrating broader
applications compared to the device with single sensing functions. More work is needed to investigate
polynomial functions to track multiple variants at the same time, which can effectively deconvolute (or

differentiate) the changes in temperature and humidity.
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Figure 46. Electronic potentiation/depression characterizations under different humidity levels.

4.4 Summary

In summary, an intelligent matter enabling reconfigurable temperature and humidity sensations has
been demonstrated for in-sensor neuromorphic computing. The delicate design was based on a
memristive device with resistive switching capabilities to achieve reconfigurable sensory properties in
a single device. Active Ag was employed as the top electrode to initiate filamentary resistive switching.
CIGSe was used as the switching layer and showed good Ag mobility and semiconductive properties.
External voltage triggered the formation/rupture of Ag MCF, which dominated the resistive switching.
The device (Ag/CIGSe/Mo) can achieve an HRS/LRS ratio of 1700 and an endurance of 5000 cycles,
indicating reliable resistive switching behaviors. Additionally, synaptic functions were realized,
including PPF, and synaptic potentiation/depression behaviors. The existence and nonexistence of
conductive filaments determined the metallic and semiconductive properties under different
temperatures. Thus, opposite temperature coefficients of conductance were obtained at the LRS and
HRS. Intelligent low-level sensory data processing was demonstrated. The intelligent matter with
temperature sensations can work in the LRS mode, HRS mode, and HRS&LRS mode. Each mode has
different sensation features and sensitivities. The reconfigurable sensation characteristics are promising
for intelligent artificial skins for different working scenarios. Besides, water molecules influence the
growth of conductive filaments, which affects the size of high-conductivity filaments and further

modulates the value of LRS. The device acted as sensory artificial synapses that can be utilized for
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high-level cognitive in-sensor computing. The humidity modulates the weight modulation (weight
update margin and nonlinearity) of potentiation and depression characteristics, which affects the
neuromorphic computing accuracy. An ANN was constructed to implement the backpropagation
algorithm for pattern recognition. Different recognition accuracies were obtained under different
humidity levels, demonstrating in-sensory computing capabilities. The intelligent sensor with
reconfigurable temperature and humidity sensations benefits the development of innovative
computational and sensory technology toward advanced e-skin, neurorobotics, cyborg, and human-

machine interaction.
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Chapter 5. Broadband optoelectronic synapse enables compact monolithic

neuromorphic machine vision for information processing

The temperature and humidity sensing functions were investigated in the previous chapter. This chapter
will extend the sensing function to light sensing and image processing with memristive devices, which

is crucial for machine vision systems.

Traditional machine vision is suffering from redundant sensing data, bulky structures, and high energy
consumption. Biological-inspired neuromorphic systems are promising for compact and energy-
efficient machine vision. Multifunctional optoelectronics enabling multi-spectrum sensitivity for
broadband image sensing, feature extraction, and neuromorphic computing are vital for machine
visions. Here, we design an optoelectronic synapse that enables image sensing, convolutional
processing, and computing. Multiple synaptic plasticity triggered by photons can implement photonic
computing and information transmission. Convolutional processing is realized by ultra-low energy
kernel generators fully controlled by photons. Meanwhile, the device shows the ability of conductance
modulations under electronic stimulations that implement neuromorphic computing. For the first time,
this two-terminal broadband optoelectronic synapse enables front-end retinomorphic image sensing,
convolutional processing, and back-end neuromorphic computing. The integrated photonic information
encryption, convolutional image pre-processing, and neuromorphic computing capabilities are

promising for compact monolithic neuromorphic machine vision systems.

5.1 Introduction

The Von Neumann bottleneck and the difficulty of further shrinking device size triggered the rising of
post-Moore techniques. Propelling computing technology beyond the scaling limits requires a
comprehensive reconsideration of chip technologies ranging from fundamental physics, to material
science, device design, electronic circuits, and architectures.*”* In conventional machine vision systems,
an integrated photoreceptive array, an analog-to-digital converter system, a memory unit, and a
processing unit are needed to complete sensing and cognitive tasks. The physical separation of those
units causes sensing data redundancy, data access delay, frequent date shuttling, and high energy

263

consumption.”® Particularly, multiple components make the traditional machine vision system bulky

with high fabrication costs. Innovative technology like biology-inspired neuromorphic systems may

103



provide solutions to these challenges. Neuromorphic machine vision enabling sensing and processing
on-site can significantly improve processing efficiency by avoiding frequent data shuttling.**
Developing optoelectronics devices for neuromorphic machine vision systems with broadband sensing
and fast data processing abilities are crucial, which have the potential to revolutionize the fields of real-

time video analysis, autonomous vehicles, medical diagnosis, etc.®

4 b Photonic A\
Electric £

Stimuli

Figure 47. The concept of the artificial retina. (a) Image processing hierarchy in biological systems. (b) Schematic
diagram of the biological synapse operated by electronic and photonic stimuli. (¢) Schematic diagram of

modulated heterojunction enabling photonic sensitivity and electronic plasticity.

Neuromorphic machine visions with compact configurations are promising for energy-efficient
sensing and computing systems.»*® The simplified image processing hierarchy in human eyes is
illustrated (Figure 47a).* The light goes through the cornea and is projected on the innermost layer of
the eyeball structure called the retina. High-density photoreceptive cells on the membrane of the retina
can detect the photons and respond by generating neural spikes. The image pre-procession in the retina
is vital for high-level object recognition, location, tracing, and so on.**® Particularly, the color of the
object carries important information, which requires color-sensitive photoreceptors to detect light rays

301

with different wavelengths.””' After being preprocessed appropriately (filtered, reflected, and
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refracted), the received image is transformed into the visual cortex of the brain via optic nerves, where
the image is processed into vision information.*”® To realize neuromorphic vision systems, although
challenging, it is essential to develop artificial optoelectronic synapses that can complete multi-

spectrum sensing and computational tasks.

An optoelectronic synapse that is sensitive to both broadband photonic and electronic stimulations is

8 409

essential for image sensing,*”’ pre-processing,*® transmitting signals, and neuromorphic
computing.'* Whereas, a single broadband optoelectronic synapse device undertaking the above
multiple tasks for compact monolithic neuromorphic vision systems is yet to come. Memristive-based
optical devices can sense photonic signals and show memory functions. They are promising to develop
compact machine vision systems with both image sensing and neuromorphic computing.*'® Table 1
summarizes memristive-based optoelectronic synapses for neuromorphic machine vision. Two-
terminal metal-oxide devices enable high-density crossbar and 3D integration. This is crucial for
neuromorphic systems that require high-density artificial synapses and neurons integrated into a single
chip.?’ Besides, image sensing, especially broadband sensing, is vital for high-precision image

recognition as images from the surrounding world are a mixture of multiple colors with different light
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wavelengths. Some light-sensitive materials, such as 2D materials,*'’' perovskite materials,*'* phase

413

change materials,*'” are employed to construct optoelectronic synapses. A gate voltage is needed to

5

modulate the defects distribution,*'* ferroelectric orientations,* or crystal structure*'® to achieve

broadband sensing, which will sacrifice the integration density compared to two-terminal counterparts.
Furthermore, image preprocessing is executed before the actual cognitive recognition and other tasks.*'¢
The key feature of the image needs to be extracted to improve the processing accuracy and efficiency.
Convolution image processing is an essential step for CNNs that is considered one of the most powerful
deep learning algorithms.*!! However, light-controlled kernel generators that can read out filtered
images directly have not been demonstrated, which can avoid parasitic currents, decrease energy
consumption, and increase processing speed by avoiding data shuttling. The sensed and preprocessed
image is the input of the artificial neural networks that complete the neuromorphic computing for
cognitive tasks. Artificial neural networks implementing vector-matrix multiplication (VMM) have
achieved some pioneering progresses.** Gradually modulated conductance is required to program the

synaptic weight in artificial neural networks. So far, to our best knowledge, the broadband two-terminal

optoelectronic synapse that can realize front-end retinomorphic image sensing, convolution processing,
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and back-end neuromorphic computing, has not been reported. The technology poses very promising

prospects for advanced neuromorphic machine vision.

Table 1. Summary of memristive-based optoelectronic synapse for neuromorphic machine vision.

Materials Two Image Broadband Image Neuromorphic  Ref.
terminals  sensing  sensing preprocess  computing
Zn0O/Mo0Os3 v v v v v This
work
MXene-ZnO v v X v v 274
MoOx v v X v X 7
NiO/TiO, v s X X X 418
Ag-TiO; v X X v v 4
Pb(Zr02Tip3)Os3 v v X X v 280
FAPbI; v v X X v 412
PdSe,/MoTe; X v v v X 41l
Zn0O/In,0;3 X v v X v 414
a-In,Ses X v v X v 20
MoS.,/BaTiO; X v v X v 421
AlGaN/GaN X v v X v 422
WS,/PbZro 2 Tio 303 X v v X X e
MOSz X ‘/ X \/ X 407
WSe: X v X X v 14
WS, X v X X v a3
VO, X v X X v 413

To develop a broadband compact optoelectronic synapse with multiple functions (Figure 47b), we
designed a two-terminal device to mimic an optoelectronic synapse that is sensitive to photonic and
electronic stimulations. The fabrication process was compatible with current available COMS
techniques. The switching layer was ZnO/MoQOj; whose conductance was tunable under photonic and
electronic stimulations. The ZnO showed particularly good broadband photo-detective and non-volatile
resistive switching properties.!’>#4425 The MoOs acted as a hole transport layer that will facilitate the
photocurrent generation under light illuminations.*** Meanwhile, the Schottky-like contact was formed
between ITO/ZnO (ITO, indium tin oxide) (Figure 47c). The oxygen vacancies in the ZnO can be
moved under the applied electrode field.**” This changed the barrier height at the interface of ITO/ZnO

and the resistance of bulk ZnO, which realized reversible resistive switching to mimic synaptic
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plasticity. Besides, ITO as the top electrode was transparent which was essential for photonic-tunable

devices. It also benefited the resistive switching stability as it can act as the oxygen ion reservoir.!”

In the fabricated broadband optoelectronic synapse, synaptic plasticity triggered by photons,
including the EPSC, SADP, PPF, and SNDP was demonstrated. It was promising for image sensing,
photonic computing, and information transmission. The energy consumption for the photonic operation
was around 37 pJ, demonstrating low energy consumption. The broadband optoelectronic synapse
exhibited different sensitivity to different wavelengths, demonstrating the function of broadband image-
sensing. Particularly, the current gains were constant over a certain voltage window under different
light illumination, which was employed to develop an ultra-low energy kernel generator fully controlled
by photons for convolution processing. This can realize the pre-processing of feature extraction.
Meanwhile, the device showed reliable resistive switching under electronic stimulations. The 6 x 6
device array was fabricated with small variations of 0.7 % (HRS) and 3.4 % (LRS). The
potentiation/depression was obtained to implement neuromorphic computing. The image recognition
accuracy was higher than 90 %, which confirmed the practicable application for cognitive tasks. The
resistive switching mechanism was investigated. The modulated barrier height at the ITO/ZnO interface
and the change of ZnO conductivity were responsible for the tunable conductance. This was due to the
electronic-controlled oxygen vacancy migration. The device has a capacitor-like two-terminal structure.
This benefits a high integration density. For the first time, this broadband optoelectronic synapse can
be utilized for front-end retinomorphic image sensing, convolutional processing, and back-end
neuromorphic computing for cognitive tasks. This technology is promising for compact monolithic
neuromorphic machine vision systems enabling photonic information encryption, convolutional image

processing, and neuromorphic computing.
5.2 Experimental Section

5.2.1 Device Fabrication

The wafer covered with SiO, oxide (280 nm) was used as the substrate. The device structure was
ITO (Indium tin oxide)/ZnO/Mo0s/SiO»/Si (from the top to the bottom). The substrate was
ultrasonically cleaned in water, ethanol, and acetone sequentially. The electrode and switching layer

materials were deposited by magnetic sputtering with a background pressure of 5x107 Torr. The target
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was Mo metal, which was used as a bottom electrode by DC magnetic sputtering. 100 W was the
sputtering power. 5 mTorr was the deposition pressure. The working gas was pure Ar. The MoQOj layer
was deposited via reactive sputtering. 100 W was the sputtering power. 5 mTorr was the deposition
pressure. The working gas was pure Ar/O» (3/1). For the ZnO, radiofrequency (RF) magnetic sputtering
was used. The target was ZnO. 200 W was the sputtering power. 5 mTorr was the deposition pressure.
The working gas was Ar/O, (24/1). A piece of shadow mask was utilized to fabricate the 100 um device.
The ITO was deposited by RF magnetic sputtering. The target was ITO. 100 W was the deposition
power. 5 mTorr was the deposition pressure. The working gas was Ar/O, (20/0.3). The deposition

temperature was set to 200 °C (substrate temperature).

5.2.2 Material and Device Characterization Methods

Scanning Electron Microscopy (SEM, Hitachi SU5000 FESEM) images were measured. The
accelerating voltage was 15.0 kV. The materials composition mapping was measured by EDX (Hitachi
SU5000 FESEM). GIXRD (PANalytical X’Pert PRO system) was used to study the crystal structures
of materials. The UV-vis absorption spectroscopies of materials were obtained by Shimadzu UV-2600i
to investigate optical properties. XPS (Thermo-VG Scientific ESCALab 250) was employed to study
the surface characteristics of materials. Besides, ultraviolet photoelectron spectroscopy (UPS, Thermo-
VG Scientific ESCALab 250) was utilized to measure the work function (@) of material surfaces. The
electronic properties of the devices were measured by a Keysight B2985A equipped with the probe
station of MPI TS150. The light illuminations with different wavelengths and powers were provided
by LEDs driven by a waveform generator (Agilent 33220A).

5.2.3 Simulation Methods

Materials simulations: Density functional theory (DFT) simulations were employed to study
electronic properties. The Vienna ab initio simulation package (VASP) was utilized. The core electrons
and nucleus were described by the projector augmented wave (PAW) method. The Heyd-Scuseria-
Ernzerhof (HSE) hybrid function was utilized to describe electron exchange and correlation. In all
calculations, the cut-off energy of 400 eV was used for the plane-wave basis restriction. K-points were
sampled as 2x2x4 for the Brillouin-zone integration under the Monkhorst-Pack scheme. Forces applied

on atoms were < 0.02 eV/A in fully relaxed structures. The self-consistency accuracy (10 eV) was
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obtained for electronic loops. To obtain the density of states (DOS) and band structure, the model of
2x2x1 supercell was utilized. To calculate the work function of materials, 4-atomic-layer-thick slabs
were used. A gap of ~20 A between the surface and vacuum was inserted to prevent spurious

interactions induced by periodic boundary conditions.

Neuromorphic computing and convolution image processing: Neuromorphic computing for pattern
recognition was carried out on the CrossSim platform. The code for the color recognition convolutional
image processing was developed with MATLAB. In the convolutional image processing, 3*3 simple
kernels with the functions of soft, vertical edge detection, horizontal edge detection, and edge
sharpening were applied to 2D input images. The image was taken with a phone camera. The “Padding”
was applied to produce the output that is the same size as the input counterpart (pad edges with extra

“fake” of value 0). The stride of 1 was used during the convolution process.
5.3 Results and Discussion

5.3.1 Materials Characterizations
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Figure 48. (a) UV-visible absorption spectroscopy of the ITO thin film. Inset is the Tauc plot for calculating the
optical band gap. (b) UV-visible absorption spectroscopy of the ZnO thin film. Inset is the Tauc plot for
calculating the optical band gap. (c) UV-visible absorption spectroscopy of the MoO3 thin film. Inset is the Tauc
plot for calculating the optical band gap.
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Figure 49. (a-b) The surface morphology of ZnO with different magnifications. (c-d) The composition mapping
of ZnO thin film. (e-f) The surface morphology of MoOs with different magnifications. (g-h) The composition
mapping of MoOs thin film.

The structure of the optoelectronic synapse was ITO/ZnO/Mo0O3/Mo/Si (from top to bottom). A
transparent conductive film (ITO) was utilized as the top electrode so that the light can go through the
top electrode and interact with the switching layer to realize photonic-controlled synaptic behaviors.
The ITO showed good conductivity with a sheet resistance of 5 €)/sq. The optical absorption
spectroscopy of the ITO thin film (Figure 48a) showed a sharp decrease in the wavelength range of
260-330 nm followed by a plateau region. The optical band gap was calculated based on the absorption
spectrum described by the Tauc plot (the inset of Figure 48a).*?® The band bap of ITO in this device
was 4.21 eV. The transmittance spectroscopy of the ITO thin film shows that the transmittance to light
with the wavelength higher than 390 nm surpassed 80 %. The high transmittance allowed more photons
with a wide range of wavelengths to go through the top electrode, which benefited the photonic
modulation of the device. The Tauc plots of optical absorption spectroscopies of ZnO (Figure 48b) and
MoO:s thin films (Figure 48c) determined the band gaps of 3.29 eV (ZnO) and 3.88 ¢V (M0Q3). This
confirmed the strong absorption feature over the ultraviolet region. This can explain the reason the
device was sensitive to ultraviolet light (390 nm). Particularly, the device also showed responses to
light illumination with wavelengths of 460 nm and 570 nm. Because some defects (oxygen vacancies)
in the switching layer induced impurity energy levels inside the forbidden band of ZnO and MoO3.2%
These defect energy levels can absorb photons with higher wavelengths and change the carrier density

of the switching layer, demonstrating multi-spectrum sensitivity.**’
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Figure 50. (a-b) High-resolution XPS spectra of ZnO. (c-d) High-resolution XPS spectra of MoOs. (e) The XRD

pattern for the multilayer device. (f) The work functions of switching layer MoO3 and ZnO measured using UPS.

The film of ZnO was smooth and crack-free (Figure 49a and b). The composition distribution was
homogeneous (Figure 49c and d). The surface of MoOs (Figure 49¢ and f) was dense and crack-free.
The round shape and uniform grain with a size of around 10 nm were observed (Figure 49f). The Mo
and O elements were distributed homogeneously in the composition mapping of the MoOs3 thin film
(Figure 49g and h). Homogeneity films for constructing integrated array with small device-to-device
variations is important.®' The thickness of MoOj; and ZnO were around 20 nm and 200 nm respectively,
which were employed as the switching layer. The multi-layers showed good adhesiveness. To further
study the chemical states of the material surface, XPS was employed. In the high-resolution XPS spectra
of ZnO, two characteristic peaks of binding energy at 1044.9 ¢V and 1021.8 eV were observed,
corresponding to Zn 2ps» and Zn 2pi, respectively (Figure 50a). The split of these spin-orbital
components was approximately 23.1 eV, which confirmed the +2 oxidation state of Zn atoms.*** In the
O 1s spectrum (Figure 50b), two peaks at 530.5 eV and 532.9 eV corresponded to the O* in the Zn-O
bonding and absorbed oxygen.*** The high-resolution scan of the Mo 3d core level spectra exhibited

two characteristic peaks at 232.8 eV (Mo 3d5/2) and 235.9 eV (3d3/2) in the XPS spectra of MoO;

111



(Figure 50c). The split of these spin-orbital components was around 3.1 eV. The results fitted the Mo®*
state.*” Two O 1s peaks were assigned to the bonded (530.5eV) and absorbed (532.2 eV) oxygen
(Figure 50d). Besides, GIXRD was utilized to further investigate the crystalline structure of the thin
film as shown in Figure 50e. The intensive peak at 32.6° was attributed to the (100) plane of wurtzite-
structured ZnO.*! Weak peaks at 34.1° and 35.2° assigned to ZnO were also observed. The
characteristic peaks at 40.5° and 45.7° corresponding to Mo (110) and MoO; (200) can be found.!?°43
The results confirmed that only characteristic peaks of desired materials were detected, and no impurity
phase was observed. Besides, the work functions of switching layers were measured (Figure 50f) to
investigate the band gap alignment in the device. The above characterizations showed that high-quality
materials regarding surface morphology, composition distribution, and crystal purity were fabricated.

This is vital for high-performance optoelectronic devices.

5.3.2 Retinomorphic image sensing and convolution processing.

Optoelectronic synapse with multi-spectrum sensitivity has been investigated. The I-V curves were
shown under different illuminations (Figure S51a). A typical hysteresis loop was observed,
demonstrating memristive effects.!” The pristine device was at a HRS. It was switched to a LRS when
positive voltages were applied. The device was switched back to HRS when negative voltages were
applied (Figure 51a). The device exhibited an analog resistive switching. The resistance changed
gradually instead of abruptly changes, which is crucial to mimic synaptic plasticity for neuromorphic
computing.**3 Besides, the resistive switching was asymmetric due to the asymmetric structure of the
device. This feature benefits the alleviation of sneak currents in integrated crossbar arrays. Notably, the
device was sensitive to multiple spectra maintaining resistive switching capabilities. The current under
both HRS and LRS increased by different margins when the UV light (390 nm), blue light (460 nm),
and green light (570 nm) were shined on the device. The changes in the HRS and LRS under different
photonic stimuli are shown (Figure 51b). The error bar describes the cycle-to-cycle variation. The
resistance of both HRS and LRS was decreased under light illumination compared to their dark
counterparts. This reflects in the current increase under illumination (UV, green, blue) versus dark state
(Figure 51b). Notably, UV (390 nm) induced more significant changes in device resistance compared
to the blue light (460 nm), and green light (570 nm) counterparts. The device was insensitive to red
light (620 nm). Because the photon of red light did not have enough energy to generate carriers.
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Figure 51. Photonic stimulations on the optoelectronic synapse. (a) The I-V curves of resistive switching under
illumination with different wavelengths. 10 cycles for each test. The light density was 8 uW/cm?. This power
density was used in other tests if no specific instruction was given. (b) HRS and LRS under illumination with

different wavelengths. Read voltage was -0.8 V. (¢) Short-term synaptic PPF behavior under photonic

—AT
stimulations. The light wavelength was 390 nm (ultraviolet, UV), pulse duration was 500 ms. PPF = ae 71 +

—-AT

Be 72 + y,. The fitting parameters o =5.349, f=18.916, 7,=1.803, 7,=0.279, y=100.514. (d) EPSC responses
under UV light with different power densities. The pulse frequency was 1 Hz. The duty cycle was 50%. (¢) EPSC
responses under the UV light with different pulse numbers. The pulse frequency was 1 Hz. The duty cycle was
50%. (f) EPSC values under photonic stimulations with different wavelength and pulse numbers. (g) Recognition
results in a dark condition and illumination at 390 nm 460 nm 570 nm 620 nm for 10 pulses (pulse frequency was
1 Hz, duty cycle 50%, sample power density). (h) The decode results of the photoelectronic synapse to the
American Standard Code for Information Interchange (ASCII).
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Figure 52. (a) EPSC response of 2-pulsed photonic stimulations with different wavelengths. The pulse frequency
was 1 Hz. The duty cycle was 50%. (b) EPSC response of 5-pulsed photonic stimulations with different
wavelengths. The pulse frequency was 1 Hz. The duty cycle was 50%. (c) EPSC response of 10-pulsed photonic
stimulations with different wavelengths. The pulse frequency was 1 Hz. The duty cycle was 50%. (d) Define the
photonic pulses with different wavelengths to decode two-digit information of 00 (Red light, 620 nm), 01 (Green
light, 570 nm), 10 (Blue light, 460 nm), and 11 (UV light 390 nm). One pulse with the duration of 0.5 s was used

for the operation.

Moreover, the synaptic plasticity of the device under different light illuminations has been studied.
In biological systems, the transmission of neurotransmitters via synapses requires a certain delay time
to relax after excitation. The net synaptic strength can be observed because of residual neurotransmitter
ions in the last excitation. This is the characterization of PPF.*** The PPF feature was investigated in
the device operated by UV photons.** It can be found that the plasticity strength decreased
exponentially with the increase of interval time between two consecutive pulses (Figure 51c). The inset
presents the typical photocurrent characteristics under two photonic stimulations. The experimental
results fitted well with the theoretical equation, demonstrating that the device can mimic the biological
short-term PPF by photonic operations.* Besides, the SADP was obtained. 10 pulses with different
power densities were applied to the device (Figure 51d). The EPSC represented by currents following
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through the device increased with the increase of the power density. This mimicked the biological
function that stronger stimulations trigger higher amplitudes of responses. The EPSC changes under
different pulse numbers were also presented (Figure 51e). Higher EPSC responses after more pulses
were observed. This feature was like the SNDP in biological systems, in which multiple and repeated
stimulations can induce stronger responses from biological individuals.**® Notably, the device was
sensitive to multiple spectra. The EPSC response curves under different photonic wavelengths and
pulse numbers are presented (Figure 52). Summarized EPSC values (Figure 51f) showed that the
device was insensitive to red light (620 nm). In comparison, obvious responses were observed when
the photonic wavelength was shorter than 570 nm. The UV light induced the strongest responses as the
EPSC reached 0.8 A. The green light (570 nm) triggered the weakest responses compared to UV (390
nm) and blue (460 nm) light counterparts. Moreover, more pulses induced stronger EPSC responses,
which was consistent with the UV operations (Figure 51¢). Our optoelectronic synapse is sensitive to

broadband spectrums, which provides a chance to develop versatile advanced artificial vision systems.

The broadband multi-spectra sensitivity of our optoelectronic synapse endows the device with the
capability of colour recognition, image sensing, cognitive tasks, and optical communications. The
optoelectronic synapse can recognize the colour of the rose pattern when a light goes through a mask
(Figure 51g). The normalized output signals were 8, 35, and 100 for the green light, blue light, and UV
light, respectively. The distinguishable output signals were practicable for colour recognition, which is
crucial for artificial vision systems for high recognition accuracy, and object tracking. Information
communication is another vital aspect in the Al world. The different responses of our optoelectronic
synapse to different light wavelengths can be utilized for optical communications, which can realize
data transmission that demonstrate better transmission speed and energy efficiency compared to
electrical system counterparts. Specifically, the photonic wavelengths of 620 nm (Red), 460 nm
(Green), 570 nm (Blue), 390 nm (UV) represent “00”, “01”, “10”, and “11” respectively (Figure 52d).
The digital information in the form of binary code (“0” and “1”) can be demodulated, stored, and
transmitted by photonic signals. The EPSC responses of Red, Green, Blue, and UV photons were
around 0.20 nA (R), 0.23 nA (G), 0.33 nA (B), and 0.58 nA (U) respectively as presented in Figure
52d. One pulse of light stimulation with the duration of 0.5 s was used. Based on the ASCII, four
photonic pluses can be demodulated into four letters “CAMJ” (GRRU represented 01000011, GRRG

represented 01000001, GRUG represented 01001101, GRBB represented 01001010). Particularly, the
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energy consumption was low, the average electronic energy consumption for one letter was
approximately 150 pJ. The low energy consumption makes the optoelectronic synapse appealing for

energy-efficient systems.

CNN is powerful and popular for image recognition.**’

It consists of convolution layers, pooling
layers, and fully connected classification layers (Figure 57a). Convolutional layers are used to pre-
process images to extract high-level features, which benefits dealing with complex images and
achieving higher recognition accuracy. The pooling layers are employed to reduce the spatial size of
inputs. This action speeds up processing procedures. The fully connected layer performs deep learning
algorithms to complete image recognition tasks, which can be implemented by memristive-based
hardware for neuromorphic computing.>* Therein, kernel operations occurring in convolution layers are
vital for CNNs. The kernel can be a 2D matrix that “slides” over the input image pixel by pixel to
complete the convolution operation. Different convolution kernels can achieve the functions of soft
(blurring edge), edge detection (vertical edge highlight and horizontal edge highlight), sharpening edge,
and more. Based on the optoelectronic synapse with multi-spectra sensitivity, a photonic kernel
generator was developed to realize high-speed and low-energy convolutional processing. The flowchart
of convolution image processing with the photonic kernel generator is illustrated in Figure 53a. The
grayscale image can be considered as a matrix, in which each value presents the intensity of a specific
pixel. The pixels can be normalized into voltages that are applied to the optoelectronic synapse array.
The current can be directly obtained according to the equation I=V*G, where I is current, V is voltage,
and G is conductance. More detailed operations are here. First, the pixel values of grayscale (0-255),
for example, a 3x3 sub-image, were extracted. Secondly, the pixel values were normalized into voltage
values. To shrink the processed data volume, the pixel values (0-255) were quantized into 21 points
corresponding to 21 voltage values (0.5-1.1 V) uniformly. The voltage interval was 0.03 V which was
the same as the value in the measurement setup. Thirdly, the currents carrying convolution computing
results were measured based on the multiply-and-accumulate (MAC) operation.*® A software-based
post-processing involving a database was required to transform the current signal into pixel value and
reconstruct the image. To build up the database, the relationship among the pixel, voltage, and current
needs to be identified. Any measured currents can track back the specific pixel to reconstruct the filtered

image.
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Figure 53. (a) Schematic diagram of a flowchart for convolutional image processing. (b) Illumination of the dot

product calculation in convolutional image processing.

For a specific position (Pij) in the image, the neighbouring 8 pixels were extracted to form a 3x3
input sub-image. A dot product between the input pixels and the kernel was calculated to get P’ij as
shown in Figure 53b. A striding action was required so that the kernel swept over the entire processed
image. Over multiple iterations, a series of dot product results are obtained to reconstruct a pixel map
(a convolved image or a filtered image). In a conventional system with separated memory and
computing units, this is resource-expensive regarding energy consumption and processing time. Based
on our optoelectronic synapse device sensitive to multiple spectra, a photonic kernel generator is

developed. In GoogLeNet, 68% of energy is consumed by moving the feature maps.**
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Based on our optoelectronic synapse device sensitive to multiple spectra, a photonic kernel generator
is developed. The key to kernel operation based on the photonic generator is that the optoelectronic
synapse is sensitive to multiple spectra so that the conductance can be modulated by lasers to complete
convolution calculations. Furthermore, a better degree of freedom is expected since different photonic
illumination can induce different conductance modulation amplitudes. This can complete complex and
advanced convolution operations. The energy consumption for hardware-based image processing is
much smaller than the traditional software counterpart.*?® In this proposed configuration, the processed
images are read out directly without frequent data transmission in traditional software-based systems,
indicating more energy-efficient features.**! The lasers with different light wavelengths were employed
to change the conductance of the optoelectronic synapse. Because the optoelectronic synapse exhibited
different sensitivity to the photons with different wavelengths. Different conductance modulation was
induced corresponding to 1.9 GP, 2.4 GP, and 3.6 GP by the illumination of green light, blue light, and
UV light respectively, where GP means the conductance under a dark condition. Particularly, as shown
in Figure 54a, the conductance enlargement by different lights was stable with a small variation over
a range of voltages. The distributions of conductance change ratios for all three lights were measured
(Figure 54b to Figure 54d). The Ggreen/Gpark 1atio, Gaiue/Gpark ratio, and Guv/Gpark ratio were 1.9, 2.4,
and 3.6 respectively governed by Gaussian normal distribution. The Gaussian normal function was
employed to describe the variance observed in the experimental measurements. The Gaussian Function

is described as the following equation.

(x—x¢)?

e w2 Eq. 55

g A

Y=Y T 7 7
where yy and A are constant, w is the standard deviation, x. is the expected value. yy, 4, w, and x. were
considered as variances during the fitting procedure. This function can effectively describe random
variation in experimental systems. The fitted parameters can be used to simulate and predict the system

characteristics in specific applications.
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Figure 54. (a) The distribution of Grigh/Gpark ratio over the applied voltage of 0.5 V to 1.1 V. The interval of
measured voltages was 0.03 V. 21 points were measured over the window of voltage. (b) The probability plot of

the Guv/Gpark ratio. (c) The probability plot of the Ggiue/Gpark ratio. (d) The probability plot of the Ggreen/Gpark
ratio.

According to the responsivity of the optoelectronic to lights with different wavelengths, the
conductance gain (the ratio of Grigh/Gpark) Was constant over the voltage window of 0.5-1.1 V. Notably,
the conductance gains were different when the device was shined with different lasers with different
light wavelengths. This provided a chance to design more complicated kernels for various functions.
For the proof-of-concept, the original image in grayscale is shown in Figure 57b. Four kernels were
designed based on the optoelectronic synapse, as shown in Figure 55, corresponding to the kernel
design shown in Figure 57c. The kernel values can be presented by the conductance-based operation.
The operations of soft edge, vertical edge, horizontal edge, and sharpen edge were integrated into a
crossbar. Currents carrying convolutional information can be measured directly. These current values

can be used to reconstruct the convolved image based on the database as mentioned above.
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Ideal convolution matrix and equivalent 3x3 conductance matrix
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Figure 55. Kernel design of image processing under the photonic operation.

The conceptual circuit design is shown in Figure 56. The upper part demonstrates the procedure
steps in convolutional image processing. The original image was transformed into a grayscale. Then
the grayscale values were normalized into a voltage mapping representing the image. The pixel values
were quantized into 21 values normalized into the voltage ranging from 0.5 V to 1.1 V. The interval
voltage was 0.03 V which was the same as the measurement parameter. The bottom part of the diagram
is the circuit design for hardware convolutional operations. Four kernel operation strategies were
demonstrated. The current values difference among devices under different photonic stimulations were
measured to obtain kernel operation results directly. This is more energy-efficient and has a shorter
time delay since the data was not shuttled between different units (for example, memory and processing
units in conventional configurations). Devices on cross points with green, blue, and purple spots are
exposed to green, blue, and UV lasers, respectively. The devices without colourful spots are devices
under dark conditions (no laser shines on them). For the dot product results, the current flowing through

devices under dark conditions (without light illumination) can be described by the following equation:
I’ =vxGP Eq. 56

where I means current, V means applied voltage, G® means the conductance of the device under dark
conditions (without light illumination). Similarly, the current flow through the device under

illumination can be described by the following equations.
1Y =vxgY Eq. 57

1B =V xGE Eq. 58
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1=V xG" Eq. 59

where 1V, 1B, and € are currents flowing through the device under the shining of UV light, blue light,
and green light, respectively. GY, GB, and GO are the conductance of the device under the shining of
UV light, blue light, and green light, respectively. The modulated conductance by light can achieve

arithmetical functions that can be used for convolution calculating.
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Figure 56. Illustration of convolution image processing with crossbar hardware.

Particularly, the conductance change margin can be identified over a range of applied voltage (Figure
54a to Figure 54d). A positive index, for example, 0.9, was generated by G¢ (device conductance under
green light illumination) minus GP (device conductance under dark conditions). In comparison, A
negative index, for example, -0.9, was generated by G® minus G®. Similar rules were applied to generate

indices of -0.5 and 4, which utilized different light wavelengths to induce different magnitudes of
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conductance changes. Figure 56 (bottom part) shows the kernel design for image processing and the
corresponding modulated device conductance by lasers. For the arithmetical methodology, the dot

product result was obtained based on the following equation, in which the 3x3 matrix was flattened:

Dij = Di—1,j-1 X ki—1,j—1 + Dic1,j X Kicqj + Dic1jer X Kicgjur +Pijo1 X kijoq + 05 X kijj +

Dij+1 X Kijo1 + Dis1,j—1 X Kiz1,j—1 + Pis1,j X Kig1,j + Digrjr1 X Kigr,j41 Eq. 60

Take horizontal edge operation as an example to demonstrate how the photonic kernel generator

works (kernel shown in Figure 55), the above equation can be shown in the flowing version:

Pij = Pi-1,j-1 X 0.9+ Di_1; X 0.9+ Di_1j41 X09+p; ;1 X0+ p;j X0+p; g X0—

Pit+1,j—1 X 0.9 = Pi41j X 0.9 = Piyq j11 X 0.9 Eq. 61
In the actual operation circuit, pixel values were presented by voltage values. Notably, the

relationship between pixel-voltage-current was identified to build up the database. The measured

current can track back the specific pixel to reconstruct the filtered image. The result of the flowing

equation needs to be solved:

Lijj=Vi_1j- 1 X GE 1j-1 X094+ V;_ 1]><Gl 1,; X 09 +V;_ 1]+1><GL 1,j+1 X094V ;4 X

Gl] 1XO+V XG XO+V]+1XGLJ+1XO Vl+1,]—1XGL+1,_]—1X0'9_V1+1,]XGl+1,]x

0.9 = Vigq,j41 X Gi+1’j+1 x 0.9 Eq. 62
As it is known that Ggreen/Gpark = 1.9, which means the conductance (or current) increased to 1.9

times compared to the original value when the green laser shines on the device. Therefore, the equation

can be transformed into the following equation:

Lij =Viqj-1X (Gia—lj—l - G2 1,j-1) T Vie1j X (G 1~ iD—lj) + Vie1,j+1 X (GiG—1j+1 -

G 1j+1) T Vij- 1X(Gl]1 11 1) +V X(Gi' )+V11+1X(GU+1 1]+1)+Vz+11 1 X
(Gl+1] 1 Gl+1] 1)+ Vg X (Gl+1] Gy ) T Vie1j41 X (GP1 J+1 GiG+1,j+1) Eq. 63
Thus, the convolution results can be measured based on the circuit shown in Figure 56. A similar
principle is valid for the soft edge, vertical edge, and sharpen edge convolution operations. Particularly,

the green laser was employed for the soft edge, vertical edge, and vertical edge. For the edge sharpening

operation, green, blue, and UV were involved.

122



—0.56P = G% - G& Eq. 64

4GP =GV - GP + GB - GP Eq. 65
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Figure 57. Convolutional image processing. (a) Flow chart for convolutional computing based on CNNs. (b) The
original image is grayscale. (c) Designed kernels for convolutional image processing using optoelectronic
synapses. (d) Image processed by the kernel of “Soft”. (e) Image processed by the kernel of “Vertical”, detecting
vertical edges. (f) Image processed by the kernel of “Horizontal”, detecting horizontal edges. (g) Image processed

by the kernel of “Sharpen”, detecting edges.

To demonstrate the realistic operation scenario, the variation of the light-modulated conductance was
applied to the processed images. After the soft edge processing, the blurred image (Figure 57d) was
obtained because of the average operation on each pixel. Blurring is important in image processing,
which realizes smooth transitions between adjacent pixels instead of sharp changes.*? This is especially

necessary for shrinking images, in which sharp details will be sacrificed. The smoothing process
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distributes the pixel transition over more adjacent pixels to preserve edges in smaller images.
Particularly, edge detection is vital for image processing to extract crucial information and object
tracking for autonomous vehicles.*** The Prewitt kernel edge detectors of both vertical and horizontal
filters were utilized for image processing.*** The vertical edge detection using our optoelectronic
synapses is shown in Figure 57e. The vertical edges in the image became sharper. Meanwhile, the
horizontal edges were more prominent after the horizontal edge detection (Figure 57f). Besides, the

image edge sharpening was achieved (Figure 57g), and the intensity of edges was increased obviously.

Vertical edge Horizontal edge Sharpen edge
l .

Software

Hardware

Figure 58. Comparison between software-based and hardware-based convolution image processing.

Furthermore, to demonstrate the reliability of the photonic kernel generator using the optoelectronic
synapses hardware, traditional software-based convolution image processing was carried out to
compare with the hardware-based results as shown in Figure 58. In the arithmetical processing, the
kernel values were ideally equal to designed values with a device-variation-free condition. A negligible
difference was observed, indicating a tolerable device variance for convolutional image processing.
Besides, the relationship between the experimental pixel values by hardware and the arithmetic pixel
values of the processed image by software is shown in Figure 59. The slope was close to 1, which
means a high coincidence between hardware and software-based processing results. The results
demonstrate that the optoelectronic synapse is reliable for developing a photonic kernel generator for

convolutional processing.
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for the sharpen edge operation.

5.3.3 Neuromorphic Computing for Cognitive Tasks

The device also showed reliable synaptic performance under electronic operations. The typical
memristive resistive switching was measured. In Figure 60a, no degradation was observed over 100
cycles. The HRS and LRS distribution over multiple operations is shown in Figure 60b. A small
variation was observed, indicating good robustness. To mimic biological synaptic behaviors, 50
consecutive voltage pulses with various amplitudes were used (Figure 60c). Stronger plasticity was
found when higher voltages were utilized, which mimicked SADP in biological individuals. When the
stimulation was weak, for example, 0.2 V, the conductance change margin was very narrow (~2%).

Instead, the AG/GO was over 25 % when the higher voltage of 0.8 V was utilized.
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Figure 60. Electronic stimulations. (a) The I-V curves of electrical resistive switching for 100 cycles. (b) The
distribution of HRS and LRS over 100 operation cycles. (c) Potential performances depending on the input
electronic pulse amplitudes. (d) Potential/depression performances under positive/negative electronic pulses. The
pulse duration was 100 ms, and the duty cycle was 50 %. Go represents the initial conductance of the device. AG
represents the change of the conductance after the electronic pulses were applied to the device. (e) The statistical
mapping of device-to-device variations in a 6 x 6 array. The colour bar represents the current value (unit: A) under
different resistance states (f) Schematic diagram for handwritten recognition with neural networks. (g) The results

of image recognition using neuromorphic computing based on the optoelectronic synapse.

Furthermore, potentiation/depression performances were observed (Figure 60d). The conductance
increased continually as consecutive positive pulses were applied. In contrast, the continued decrease
of conductance was observed when negative pulses were applied. This can mimic the synaptic

potentiation and depression features in biological individuals. This characterization can be utilized for
126



neuromorphic computing. The statistics of the asymmetric nonlinearity (ANL) factor over cycle-to-
cycle operations were analyzed as shown in Figure 61a. The ANL was calculated based on the
following equation:**

ANL = M Eq. 66

Gmax—Gmin

where Gp and Gp are the conductance under potentiation and depression operations, respectively. N is
the number of pulses applied to the device for potentiation and depression operations. N was 50 in the
test shown in this paper.The small ANL average factor of 0.6 and standard deviation of 0.2 were
obtained in the optoelectronic device, which benefits the high computing accuracy of neuromorphic

computing.’!

The device-to-device variation is important for memory and computing accuracy.’” The statistical
mapping of device-to-device variations in a 6 x 6 array (Figure 60¢). Distinctive HRS and LRS were
obtained in the integrated device array. The statistics of device-to-device variation were analyzed by
fitting with the Gaussian Function (Figure 61b). The values of o/(x*r) HRS and LRS were 0.7 % and
3.4 % respectively. The results demonstrated small variations over the whole array, which is crucial for
the computing accuracy based on the device.3** The device can be integrated into a high-density array,
such as a crossbar array or stacked three-dimensional (3D) array, for implementing matrix-vector
multiplication (MVM) (Figure 60f). Weights in neural networks were stored locally as device
conductance during computing processes. By utilizing Ohm’s law and Kirchhoff’s current law, the
results of MVM considered a core computing task in deep learning algorithms can be obtained by
measuring currents.’” This methodology can realize parallelism as the current can be sensed at once
regardless of the array size (corresponding to the matrix size in deep learning), which is energy-efficient

compared to that of traditional digital computing systems.*’

A neuromorphic computing on
handwritten recognition was implemented. A three-layer neural network consisting of the input layer
(784 neurons), hidden layer (300 neurons), and output layer (10 neurons) was built up. The
backpropagation algorithm was used to train the neural network. After merely three integrations, the
recognition accuracy reached 90 % as shown in Figure 60g, demonstrating promising prospects for

cognitive tasks.
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Figure 61. (a) The statistical analysis of ANL factor over cycle-to-cycle operations. (b) The statistical analysis
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5.3.4 Mechanism of Optoelectronic Performances

a

Without oxygen vacancy With oxygen vacancy
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Figure 62. Resistive switching mechanism. (a) The ZnO with (right) and without (left) oxygen vacancies. (b)
Band structures of the ZnO. (c) Electrostatic potential curves along the z-axis, the vacuum level was normalized
to 0 eV. (d) The fitting of Ln(T) vs. E'”? for the device at HRS. (€) The fitting of Ln(I/T?) vs. 1000/T for the device
at HRS. (f) Schematic diagram of energy band of HRS. (g) The fitting of Ln(I) vs. E'”? for the device at LRS. (h)
The fitting of Ln(I/T?) vs. 1000/T for the device at LRS. (i) Schematic diagram of energy band of LRS.
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Systematic investigations were implemented to study the working mechanism with density functional
theory (DFT) calculations and experimental measurements. The DFT theory was employed to
investigate the electric properties of the switching layer. The models of the pure ZnO (left) and ZnO
with oxygen vacancies (right) were constructed for the calculation (Figure 62a). ZnO was a wurtzite
structure. Oxygen vacancies were induced intentionally to investigate the changes in electronic
characteristics. Band structures of the ZnO were calculated (Figure 62b). The corresponding density
of states (DOS) curves are shown in Figure 63. After the oxygen vacancies were induced, the band gap
narrowed from 1.91 eV to 0.77 eV, indicating that oxygen vacancies increased the conductivity.**
Notably, DFT calculations predict smaller band gap values compared to experimental measurement.
This is due to the inaccurate evaluation of the repulsion effects between conduction levels and Zn 3d,
resulting in the hybridization of the Zn 3d and O 2p levels.*® It still confirmed the trend of a narrower
band gap and higher conductivity by inducing oxygen vacancies. Besides, the working function

increased when oxygen vacancies were brought into ZnO (Figure 62c), which modulated the Schottky

barrier height at the interfaces.*®
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Figure 63. (a) The DOS curves of ZnO without (a) and with (b) oxygen vacancies.

The Schottky emission describes activated electrons overcoming the energy barrier. Modulating the
barrier height can induce resistive switching.'? The /n (I) of the device at HRS increased proportionally
with the increase of £/ (Figure 62d), demonstrating the Schottky emission mechanism. Furthermore,
the plot of Ln(I/T?) vs. 1000/T for the device at HRS demonstrated a linear relationship (Figure 62¢),
which was consistent with the result in Figure 62d. A schematic diagram of the energy band for the

device at HRS is depicted in Figure 62f. The working function Mo and MoO; were 4.6 ¢V and 4.9 eV
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respectively.*¥’

The interface of Mo/MoOs was likely to be an ohmic contact, indicating low contact
resistance. The work function of ZnO was 3.8 eV. The working function of ITO can be as high as 5.2
eV.*8 The Schottky barrier at the ZnO/ITO interface was higher. Because the working function
difference at the ZnO/ITO interface was bigger than the MoOs/ZnO counterpart.**® The asymmetric
curve (Figure 60a) indicated higher current values under positive voltages. The overall energy barrier
height was lowered under positive voltages. The Schottky barrier at the ZnO/ITO interface was more
dominant. For the LRS, the Schottky emission fitting of Ln(I) vs. E"?is plotted (Figure 62g). The linear
relationship indicated that the device followed the Schottky emission at the LRS. The temperature-
dependent Schottky emission fitting also showed a linear relationship (Figure 62h). A schematic
diagram of the energy band alignment at LRS is presented in Figure 62i. When positive voltages were
applied, oxygen vacancies were generated at the ZnO/ITO interface, lowering the Schottky barrier
height. 2 This will decrease the overall resistance of the device (LRS). Besides, generated oxygen
vacancies decreased the resistance of bulk ZnO, which also benefited the smaller resistance of LRS.**
Therefore, the modulated Schottky emissions at the ITO/ZnO interface and the bulk resistance of ZnO
governed the resistive switching. Additionally, a RESET operation was completed by applying negative
voltages to remove oxygen vacancies and recover the original barrier height. Particularly, the barrier
height and ZnO conductivity changed gradually by migrating oxygen vacancies.'? The conductance of

the device was modulated gradually, which was crucial for mimicking the plasticity of synapses.

5.3.5 Monolithic Neuromorphic Machine Vision System

Our optoelectronic synapse exhibited broadband spectrum sensitivity and electronic synaptic
plasticity. Those features resemble the biological organs in the human visual system (Figure 64a). In
human eyes, the retina shows a sensing ability to different colours owing to the functions of
photoreceptors. The perceived signal is transformed into the visual cortex via neuron systems. The pre-
processing operations are also done in the retina to improve the processing efficiency in the visual
cortex. The core cognitive tasks are completed in the visual cortex. It relies on a complicated neural
network with many neurons and synapses to implement memory and computing tasks, including pattern
recognition. Similarly, a crossbar array of optoelectronic synapses (Figure 64b) can achieve pixel-by-
pixel and broadband image sensing, corresponding to retinomorphic sensing. The integrated array can

also play the role of kernel generator that can execute the convolution image processing. The processed
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images are reconstructed based on the directly measured current. It can realize fast processing speed by
avoiding redundant matrix calculations. Meanwhile, due to its compact bio-inspired structure, it was
energy efficient due to the low-power consumption of the device under photonic operations. More
importantly, the potentiation/depression function in the device is practicable for constructing artificial
neural networks. This achieved VMM which was the most energy-consumption computing task for
deep learning algorithms.?” Therefore, cognitive processing can be completed in the optoelectronic
synapse array. This optoelectronic synapse can be used for front-end retinomorphic image sensing,
convolutional processing, and back-end neuromorphic computing for cognitive tasks. It is very
promising for constructing compact monolithic machine vision systems, which can improve image
processing efficiency and decrease the fabrication costs of artificial vision systems.
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Figure 64. Monolithic neuromorphic machine vision system. (a) Schematic diagram of the retinomorphic sensing
and processing in a human vision system. (b) Schematic diagram of the integrated optoelectronic synapse

hardware for optical sensing, convolution processing, and neuromorphic computing.
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5.4 Summary

In this work, an optoelectronic synapse has been fabricated to develop compact monolithic
neuromorphic vision systems for information processing. The device was a two-terminal device based
on metal oxide materials that are compatible with traditional CMOS processes, demonstrating easy
scalability and high integration density with current semiconductor technology. The optoelectronic
synapse was sensitive to a broadband spectrum (ultraviolet and visible light regions). It can mimic the
biological plasticity of EPSC, PPF, SADP, and SNDP, which was used for image sensing, photonic
computing, and optical communication. A very low energy consumption of 37 pJ was obtained under
photonic operations. Based on the multi-spectrum sensitivity and near-constant current gains under
photonic stimulations, a photonic-controlled kernel generator was developed for convolution
processing. This realized the pre-processing of feature extraction with high-energy efficiency and fast
processing speed, which can improve the subsequent cognitive processing efficiency. Meanwhile,
stable resistive switching under electronic stimulations was observed. The resistive switching
mechanism was due to the modulated barrier height and the conductivity of ZnO by controlling the
migration of oxygen vacancies. The potentiation/depression was employed to implement neuromorphic
computing. A recognition accuracy of over 90 % was obtained, indicating a practical application for
cognitive tasks. For the first time, this broadband two-terminal optoelectronic synapse can be utilized
for front-end retinomorphic image sensing, convolution processing, and back-end neuromorphic

computing. This technology is promising for monolithic neuromorphic machine vision systems.

132



Chapter 6. Conclusion and Outlook

6.1 Conclusions

The thesis focuses on the memristive devices for advanced neuromorphic computing systems. Two-
terminal memristive devices were fabricated based on chalcogenide and metal-oxide materials. Three
major progresses are presented in three separate chapters. Firstly, a versatile memristive device
(Ag/CISe/Mo) was demonstrated. The device showed non-volatile and volatile resistive switching
simultaneously. It can be used for multiple roles of non-volatile memory, selectors, artificial neurons,
and artificial synapses. Secondly, an intelligent matter (Ag/CIGSe/Mo) enabling reconfigurable
temperature and humidity sensations was developed for sensory neuromorphic systems. Thirdly, an
optoelectronic synapse (ITO/ZnO/MoOs/Mo) enabling multi-spectrum sensitivity for monolithic
machine vision systems was developed. The developed techniques in this thesis will benefit the
development of advanced neuromorphic systems pushing forward Al technology. More detailed

observations are shown below:

(1) A versatile memristive (Ag/CISe/Mo) array covering multiple functions was developed. Non-
volatile functionalities with a storage window of 4.0 x 10° and a retention time of 10,000s were
obtained, indicating the application of nonvolatile memory. Besides, the Ag/CISe/Mo device
showed diode-like volatile functionalities with a storage window of 7.0 x 10* and a rectification
ratio of 4.0 x 10*. The high rectification ratio can be used as selectors to suppress sneaky currents
in memristive arrays. The LIF neuron model based on the device has been studied, demonstrating
potential as artificial neurons. Furthermore, the short-term synaptic PPF and long-term
potentiation/depression performances were obtained in the same device. The image recognition
simulation with the accuracy of 90 + 2% was achieved, indicating the practicability of the
artificial synapse for neuromorphic computing. A versatile memristor taking the multiple roles
of non-volatile memory, selectors, artificial synapses, and artificial neurons will provide many
advantages regarding circuit simplification, fabrication processes, and manufacturing costs. The
devices with different top electrodes, operation temperatures, switching layer thicknesses, and
conduction mechanisms were investigated to reveal the resistive switching mechanism. It has
been confirmed that the volatile/non-volatile bifunctional resistive switching is attributed to the

dynamics of Ag atoms. Moreover, this work presents a novel bottom-up approach to fabricate
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crossbar arrays, where the CISe was grown locally by electrodeposition to form a patterned
switching layer. This method can potentially decrease manufacturing costs and achieve high

utilization efficiency of materials.

An intelligent matter enabling reconfigurable temperature and humidity sensations has been
demonstrated for in-sensor computing. The delicate design was based on a memristive device
with resistive switching capabilities to achieve reconfigurable sensory properties in a single
device. External voltage triggered the formation/rupture of Ag MCF, introducing resistive
switching. The device (Ag/CIGSe/Mo) can achieve reliable resistive switching behaviors. The
existence and nonexistence of conductive filaments determined the metallic and semiconductive
properties under different temperatures. Thus, opposite temperature coefficients of conductance
were obtained at the LRS and HRS. Intelligent low-level sensory data processing was
demonstrated. The intelligent matter with temperature sensations can work in the LRS mode,
HRS mode, and HRS&LRS mode. Each mode has different sensation features and sensitivities.
The reconfigurable sensation characteristics are promising for intelligent artificial skins for
different working scenarios. Besides, water molecules influence the growth of conductive
filaments, which affects the size of high-conductivity filaments and further modulates the value
of the LRS. The device acted as sensory artificial synapses that can be utilized for high-level
cognitive in-sensor computing. An ANN was constructed to implement the backpropagation
algorithm for pattern recognition. Different recognition accuracies were obtained under different

humidity levels, demonstrating sensory neuromorphic computing capabilities.

An optoelectronic synapse has been fabricated to develop compact monolithic neuromorphic
vision systems for information processing. The device has a two-terminal structure based on
metal oxide materials that are compatible with traditional CMOS processes, demonstrating easy
scalability and high integration density with current semiconductor technology. The
optoelectronic synapse was sensitive to a broadband spectrum (ultraviolet and visible light
regions). It can mimic the biological plasticity of EPSC, PPF, SADP, and SNDP, which was used
for image sensing, photonic computing, and optical communication. A low energy consumption
of 37 pJ was obtained under photonic operations. Based on the multi-spectrum sensitivity and

near-constant current gains under photonic stimulations, a photonic-controlled kernel generator
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was developed for convolution processing. This technique realized the pre-processing of feature
extraction with high-energy efficiency and fast processing speed. It improves the subsequent
cognitive processing efficiency. Meanwhile, stable resistive switching under electronic
stimulations was observed. The potentiation/depression can be employed to implement
neuromorphic computing. For the first time, this broadband two-terminal optoelectronic synapse
can be utilized for front-end retinomorphic image sensing, convolution processing, and back-end

neuromorphic computing.

6.2 Outlook

As for future work, some extra efforts can be made regarding in-depth mechanism exploration, device

performance improvement, large-scale array-level study, and novel systems design. A better

understanding of resistive switching and high-performance devices are the foundation for memristive

systems. Besides, array-level integrated devices and system-level investigation are required to realize

hardware-based computing. The detailed future work is listed below:

M

2

In-depth understanding of cation-based and anion-based resistive switching is crucial for further
improving the device’s performance. It benefits the development of compact models. Especially,
accurate SPICE models that are embeddable into the commercialized technology will accelerate
the development of memristive systems. Some investigation by in-situ TEM to monitor the
growth and shrinking of Ag filaments in the chalcogenides and migration of oxygen vacancies
are be meaningful.**° Some other techniques, such as scanning probe microscopy and X-ray
microscopy, may also provide essential information to supplement the picture of resistive

switching mechanisms in both chalcogenides and metal oxides.

The performance of devices needs to be improved, especially for endurance and retention time.
In this work, the endurance of thousands of cycles and retention time of ten thousand seconds
were achieved, which is not practical for commercialized applications although it may be
accountable for preliminary study.**! Further optimizing the device structure, including the thin
film thickness, the electrode material, and the device size, can be helpful to get more robust and

reliable resistive switching properties.
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More interesting properties based on the devices in this thesis can be explored. For example, the
intelligent matter (Ag/CIGSe/Mo) shown in this thesis showed intelligent sensory functions to
temperature and humidity. It also shows the potential of light sensitivity as Ag filaments interact
with photons.”® Besides, the oxide-based device may show humidity sensitivity except for light
sensing.*? Extra ability sensing can be added to current devices, which expands the applications

of these devices.

Developing large-scale memristive arrays is essential for memristive-based computing systems.
We have fabricated mini arrays (around 20-40 devices) in current research. This is for the
preliminary investigations. More efforts are required to increase the integration density. To reach
the goal, advanced lithography machines and thin film deposition techniques should be
employed.** Corresponding fabrication process needs to be explored before the array integration

that exhibits high yield and good device-to-device variations.

Commercialized neuromorphic computers need system-level design and integration. After the
success of fabricating high-density arrays. System design and integration implementing

hardware computing will be considered.
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Figure 4c
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Figure 5a-b
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Figure 7a

Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging
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Figure 7c

Voltage divider effect for the improvement of variability and endurance of TaOx memristor
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Figure 7d

Intrinsic Switching Behavior in HfO2 RRAM by Fast Electrical Measurements on Novel 2R Test Structures
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Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging
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