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Abstract 

Energy-intensive artificial intelligence (AI) is prevailing and changing the world, which requires 

energy-efficient computing technology. However, traditional AI driven by von Neumann computing 

systems suffers from the penalties of high-energy consumption and time delay due to frequent data 

shuttling. To tackle the issue, brain-inspired neuromorphic computing that performs data processing in 

memory is developed, reducing energy consumption and processing time. Particularly, some advanced 

neuromorphic systems perceive environmental variations and internalize sensory signals for localized 

in-senor computing. This methodology can further improve data processing efficiency and develop 

multifunctional AI products. Memristive devices are one of the promising candidates for neuromorphic 

systems due to their non-volatility, small size, fast speed, low-energy consumption, etc. 

In this thesis, memristive devices based on chalcogenide and metal-oxide materials are fabricated for 

neuromorphic computing systems. Firstly, a versatile memristive device (Ag/CuInSe2/Mo) is 

demonstrated based on filamentary switching. Non-volatile and volatile features are coexistent, which 

play multiple roles of non-volatile memory, selectors, artificial neurons, and artificial synapses. The 

conductive filaments’ lifetime was controlled to present both volatile and non-volatile behaviours. 

Secondly, the sensing functions (temperature and humidity) are explored based on Ag conductive 

filaments. An intelligent matter (Ag/Cu(In, Ga)Se2/Mo) endowing reconfigurable temperature and 

humidity sensations is developed for sensory neuromorphic systems. The device reversibly switches 

between two states with differentiable semiconductive and metallic features, demonstrating different 

responses to temperature and humidity variations. Integrated devices can be employed for intelligent 

electronic skin and in-sensor computing. Thirdly, the memristive-based sensing function of light was 

investigated. An optoelectronic synapse (ITO/ZnO/MoO3/Mo) enabling multi-spectrum sensitivity for 

machine vision systems is developed. For the first time, this optoelectronic synapse is practical for 

front-end retinomorphic image sensing, convolution processing, and back-end neuromorphic 

computing. This thesis will benefit the development of advanced neuromorphic systems pushing 

forward AI technology.  

 

Keywords: Memristive device, resistive switching, memory, neuromorphic computing, in-sensor 

computing 
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Chapter 1. Introduction 

1.1 Background 

Energy-intensive artificial intelligence (AI) which is increasingly important in our daily life imposes 

increased pressure on current computing and energy systems. The power consumption trend is shown 

in Figure 1.1 The computing power consumption doubled around 24 months (about 2 years) by 2012. 

However, the power consumption demands doubled every 2 months in recent years. This may put 

excessive pressure on the power supply system soon. The root of the expensive energy budget for 

computers derives from the von Neumann architecture. It is used for current mainstream computers 

with separate memory and computing units. The frequent data shuttling between two units limits the 

computing speed (the ‘von Neumann bottleneck’) and increases energy consumption.2 To solve this 

issue, brain-inspired neuromorphic computing that co-locates memory and computation has been 

developed. This methodology realizes massive parallelism, avoiding energy consumption for data 

shuttling. Particularly, the artificial neural network executing neuromorphic computing can be equipped 

with sensory functions. Integrating sense, memory, and computing in one single chip further shortens 

or eliminates the transmission between sensory notes and memory-computing units. This can 

significantly improve processing efficiency, which is promising for AI systems that interact with 

surrounding environments.3    

 

Figure 1. The computing power demand trend over 40 years. The consumption is described in petaFLOPS days. 

Reprinted with permission.1 Copyright 2022, Springer Nature. 
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  To construct advanced neuromorphic computing systems, memristive devices (or memristors) are one 

of the promising candidates as building blocks. Their resistance (or conductance) is programable 

(resistor function), and subsequently remained for some time (memory function).4 The device shows 

commendable advantages compared to other technology, including low energy consumption (fJ)5, fast 

switching speed (ns),6 small size (2 nm),7 excellent area compaction (4F2), and three-dimensional (3D) 

integration, etc. The device endows complex dynamic electrical responses. It can be utilized as digital 

memory elements, programable weights in artificial synapses, biological neurons, and intelligent 

sensors.1,8 In memristive devices, filamentary switching and non-filamentary interfacial switching are 

two main types of configurations.9 For filamentary resistance switching, the switching mechanism is 

owing to the generation of single or multiple conductive filaments inside switching layers bridging the 

top electrode and the bottom electrode. The mobile ions are usually from the active metal of Ag, Cu, 

Ni, or an alloy.10 The dynamics of those ions are controllable to modulate volatile and nonvolatile 

properties, which can be employed to develop multifunctional devices.11 Particularly, filamentary 

memristive devices can reversibly switch between two states with differentiable semiconductive and 

metallic features, which endows different sensory responses. The tailorable lifetime and sensory 

function of conductive filaments are attractive for advanced neuromorphic computing. For interfacial 

switching, the Schottky barrier height and the bulk conductance of materials can be modulated by 

controlling the defect distribution.12 Metal-oxide materials are widely used due to their stable 

properties, straightforward process, excellent memristive properties, and compatibility with mature 

CMOS processes (CMOS, Complementary metal-oxide-semiconductor).13 Besides, metal-oxide 

semiconductors are usually sensitive to light. This kind of device is promising for machine vision 

systems that are particularly important in the AI world.14 

Although progress has been made in developing neuromorphic computing systems. Some gaps 

regarding novel memristive devices still exist, including versatile memristive devices with multiple 

functions to simply neuromorphic circuits, intelligent matter with reconfigurable temperature and 

humidity sensations for advanced neuromorphic systems, and optoelectronic synapse for monolithic 

neuromorphic machine vision. 
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1.2 Objectives 

The objective of this project is to develop advanced neuromorphic computing systems for energy-

efficient AI. Filamentary memristive devices based on chalcogenide materials were developed. The 

controllable lifetime of conductive filaments induced both volatile and non-volatile memory for a 

versatile memristive device. The resistive switching performances were improved by adding Ga into 

the switching layer of CuInSe2. The device reversibly switched between two states with differentiable 

semiconductive and metallic features, which showed different responses to temperature and humidity 

variations. Finally, an optoelectronic device promising for neuromorphic machine vision has been 

developed. The memristive devices can be utilized for sensory neuromorphic computing that is 

sensitive to temperature, humidity, and light. The main objectives are listed: 

(1) The development of a versatile memristor, the device of Ag/CuInSe2/Mo was fabricated.15 The 

lifetime of conductive filaments was tunable by controlling electric forces, which resulted in the 

coexistence of volatile and non-volatile memristive effects. A versatile memristor covering the 

multiple roles of non-volatile memory, selectors, artificial neurons, and artificial synapses was 

developed.  

(2) The development of intelligent matter (Ag/Cu(In, Ga)Se2/Mo), it showed reconfigurable 

temperature and humidity sensations for sensory neuromorphic computing.16 Different 

sensational features regarding the temperature and humidity were observed in the device under 

different resistance states.  

(3) Exploring the novel optoelectronic device for artificial vision systems, the device 

(ITO/ZnO/MoO3/Mo) enabling multi-spectrum sensitivity can be employed for front-end 

retinomorphic image sensing, convolutional processing, and back-end neuromorphic computing. 

1.3 Organization of the Thesis 

This thesis focused on advanced neuromorphic computing based on memristive devices. 

Chalcogenide and metal-oxide materials were employed as switching layers to construct devices 

enabling memory, sensing, and computing functions.  

Chapter 1 is an introduction covering the research background, objectives, and thesis organization.  
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Chapter 2 is the literature review. A review of memristive technology is presented, including the 

brief history, critical characteristics, memristive materials, and memristive mechanisms. Then, the 

investigating methods of resistive switching are reviewed. Imaging technology, spectroscopy 

technology, theoretical simulation, and compact mathematical models are discussed to investigate 

resistive switching mechanisms and accelerate the development of memristive systems. Finally, 

memristive devices for information processing, particularly based on neuromorphic computing, are 

summarized. The efficient artificial neural networks (ANN) implementing vector-matrix multiplication 

(VMM) and in-sensor computing based on memristive devices are elaborated.  

Chapter 3 developed a versatile memristor (Ag/CuInSe2/Mo). This device exhibited both volatile and 

non-volatile properties. It provided multiple functions covering non-volatile memory and neuromorphic 

computing. Particularly, the device emulated both short- and long-term synaptic plasticity, as well as 

neuron-like threshold switching. The leaky integrate-and-fire (LIF) neuron model and artificial synapse 

based on the device were studied. Such a versatile memristor enabled the functions of nonvolatile 

memory, selectors, artificial neurons, and artificial synapses, providing advantages regarding circuit 

simplification, fabrication processes, and manufacturing costs. 

Chapter 4 focused on an intelligent matter (Ag/Cu(In, Ga)Se2/Mo) that endows reconfigurable 

temperature and humidity sensations for sensory neuromorphic systems. The device reversibly 

switched between two states with differentiable semiconductive and metallic features, demonstrating 

different responses to temperature and humidity variations. The novel concept is that controlling 

materials states (with/without Ag filaments) enables reconfigurable sensory functions. More novel 

reconfigurable sensory intelligent matters can be potentially developed based on redox reaction 

materials, phase change materials, spin-transfer torque materials, and ferroelectric materials. This is 

promising for energy-efficient AI systems requiring temperature and humidity sensitivities. 

Chapter 5 presents an optoelectronic synapse (ITO/ZnO/MoO3/Mo) enabling multi-spectrum 

sensitivity. Synaptic plasticity triggered by photons can be simulated by the optoelectronic synapse, 

which is promising for photonic computing and information transmission. An ultra-low energy kernel 

generator fully controlled by photons for convolutional processing is developed. Meanwhile, the device 

shows memristive effects under electronic stimulations that implement brain-inspired neuromorphic 

computing with backpropagation algorithms. For the first time, this optoelectronic synapse is practical 
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for front-end retinomorphic image sensing, convolutional processing, and back-end neuromorphic 

computing. This work will benefit the development of advanced machine vision.   

Chapter 6 gives the summary and discussion of the completed research and future works based on 

current progresses.   

Chapter 7 lists the author’s research contributions and awards.  
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Chapter 2. Literature Review 

This chapter focuses on a literature review regarding memristive technology, including memristive 

effects, investigation methods, and neuromorphic computing.  

2.1 Memristive Effects 

2.1.1 The History of Memristive Effects 

Memristive devices (often named memristors) combine the functions of resistor and memory. 

Resistance (or conductance) can be programed into two or more distinguishable nonvolatile levels by 

applying electronic stresses.17 The fingerprint of a memristor was documented by Leon Chua and Sung 

Mo Kang: “A pinched-hysteresis loop under a bipolar periodic electronic signal”.18 This signature has 

been discovered in various electronic devices based on different materials and structures over more 

than a century. The first manufactured memristive device can track back to 1801.19 In the 1960s, 

pronounced memristive behaviors were observed with the help of advanced thin-film technology. A 

remarkably high electric field was achieved in metal/oxide/metal devices.20,21 In 1971, the memristor, 

considered the fourth electronic element, was theoretically reasoned from symmetry arguments.22 Apart 

from three known fundamental circuit elements: resistor, capacitor, and inductor, a fourth circuit 

element (named as memristor later) existed as shown in Figure 2. However, the lack of a physical 

model and practical device limited the application of this device although it showed valuable and 

interesting circuit properties. In 2008, the memristive effect was then experimentally confirmed along 

with a physical model by HP Laboratory.4 Frequently observed hysteretic I–V features in thin-film 

devices are now identified as memristive effects. Ever since memristive effects attracted extensive 

attention from both academia and industrial communities. The device has been proposed for high-

performance nonvolatile memory, learning neural networks, encryption, and radio-frequency 

communication.17  
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Figure 2. Four fundamental two-terminal passive circuit elements. Reprinted with permission.4 Copyright 2008, 

Springer Nature. 

2.1.2 Memristive Characteristics and Parameters 

Memristive devices are usually in a capacitor-like configuration consisting of a top electrode (metal 

or other conductive compound materials), a switching layer (semiconductor or insulator), and a bottom 

electrode as exhibited in Figure 3a.23 The simple structure is highly scalable in the crossbar and 3D 

stacking integrations (Figure 3b). The distinguishable states can be utilized for information storage and 

logic operations.24  Memristive devices typically have two stable resistive states, referred to as high 

resistive state (HRS) and low resistive state (LRS). Interestingly, some devices provide multiple 

resistive states that are represented by state 1, state 2, state 3, etc.25 The memristive devices with multi-

level resistance states show higher information storage density since one cell stores multiple bits. 

Whereas it is more difficult to distinguish each resistive state due to intrinsic variability, especially for 

large-scale integrated devices. Particularly, some memristive devices may show analog resistive 

switching (a special scenario of multiple states), in which the resistance (or conductance) changes 

gradually and linearly (or near-linearly). A series of conductance can store programable weights in 

ANNs for neuromorphic computing.26  
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Figure 3. (a) Diagram of a typical memristive device. (b) Integrated memristive devices in a crossbar. Reprinted 

with permission.23 Copyright 2008 Elsevier Ltd. (c) I-V curve of a unipolar switching. (d) I-V curve of a bipolar 

switching. Reprinted with permission.27 Copyright 2009, WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.  

 It is crucial to quantificationally characterize the memristive properties. One commonly used figure 

is the I-V curve of current versus voltage (I-V) that presents the SET/RESET voltages (operation 

voltages), current values (estimating energy consumption), and HRS/LRS ratio (resistive 

distinguishability). To get I-V curves, a sweep voltage (0→+V→-V→0) is applied to the device and 

current values are recorded. This test is called the direct current (DC) switching cycle test. Compliance 

currents (CCs) are usually imposed to constrain the current flowing through devices. This avoids 

unrecoverable breakdown due to striking currents.28 Applied electronic stresses induce the transition 

from HRS to LRS, referred to as a SET process. Similarly, the voltage changes the device resistance 

from LRS to HRS, it is called a RESET process. Memristive effects are categorized into unipolar and 

bipolar resistive switching according to electrical polarity. The unipolar switching is depicted in Figure 

3c, the SET and RESET operations are both triggered under the same electrical polarity. For the SET 

operation, switching devices to LRS is done by a higher voltage. The operation current is limited by 

CCs. The RESET operation is achieved by a small voltage without compliance currents. In comparison, 

the bipolar resistive switching is exhibited in Figure 3d. A positive voltage is employed to realize a 
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SET operation. A negative voltage changes the device back to the HRS, namely a RESET operation. 

An asymmetric structure in the capacitor-like device is usually needed to realize the bipolar mode. 

Notably, the two featured curves (Figure 3c and Figure 3d) are schematic illustrations for I-V 

behaviors with a specific switching direction. Experimental curves may deviate from the illustration 

depending on the device structure and test parameters. Notably, this I-V curve alone is not sufficient to 

evaluate the quality of memristive performances. Several other figures of merit, including endurance, 

retention time, switching speed, and variability, should be investigated as well.  

Endurance: The device endurance describes the maximum operation cycles ensuring a sufficient 

ratio of HRS/LRS. It shows the robustness of devices. Generally, the failure is accumulated over 

multiple operations instead of occurring in one single cycle.29 Different measurements are used to get 

endurance characteristics: ⅰ) DC switching multi-cycle test. ⅱ) Current-blind pulsed voltage stresses 

(PVS). ⅲ) Current-visible PVS. ⅳ) Multi potentiation/depression cyclic test. Method ⅰ is a preliminary 

test to identify resistive switching. Consecutive DC switching cycles are collected as shown in Figure 

4a.30 This measurement is reliable in which one can inspect resistive switching in every cycle. Besides, 

the statistics of SET voltage and RESET voltages can be obtained. The distribution plots of HRS and 

LRS are extracted from tested curves. Using a small voltage and corresponding currents calculates 

resistance values, as shown in Figure 4b. The value of HRS/LRS (sometimes called the ON/OFF ratio) 

reflecting the resistance states’ distinguishability can also be obtained. However, this method is very 

time-consuming as each cycle takes 30-60 s or even longer for low currents. Also, this method does not 

perform the electronic stresses in practical scenarios that use pulsed voltages for resistive switching 

operations. A better method is using PVS. Method ⅱ and ⅲ mimic the real operation scenario in 

integrated systems. In the inset of Figure 4c, a short SET pulse switches the device to the LRS, 

following a small pulse voltage to measure the resistance.31 Similarly, a short RESET pulse switches 

the device to the HRS, following the same small pulse voltage to measure the changed resistance. 

Notably, the current is not measured after every SET and RESET operation in method ⅱ. The currents 

are measured after a specific number of SET and RESTE PVS operations. This can shorten the overall 

experimental time as measuring current (especially low current) is usually time-consuming. The 

drawback of method ⅱ is that it cannot monitor every switching operation effectively. Because the 

collected data points are spaced. Method ⅲ also uses PVS to operate devices. The difference is that the 

currents are measured in every cycle of SET and RESET operations as shown in Figure 4d. This 
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method monitors every resistive switching operation mimicking practical scenarios. But this method is 

challenging to measure low current (<10 μA) for most equipment. The endurance test of 

potentiation/depression is discussed, which is vital for brain-inspired neuromorphic computing 

implementing VMM. Short consecutive pulses (for example 50 positive pulses) are used to mimic the 

synaptic potentiation operation. Each pulse follows a small pulse voltage to monitor the change of 

currents that can be used to calculate the conductance as shown in Figure 4e. Likewise, Short 

consecutive opposite voltage pulses (for example 50 negative pulses) are used to mimic the synaptic 

depression operation. Each pulse follows a small pulse voltage. One potentiation/depression operation 

is regarded as one cycle. Multiple cycles of the test are required to monitor the device’s endurance. 

Notably, each method has different purposes with advantages and disadvantages. The best option is to 

mix them up and characterize the device from different perspectives.  

 

Figure 4. (a) DC switching cycle test for 100 consecutive cycles. Reprinted with permission.30 Copyright 2021, 

The Authors. (b) Distribution of LRS and HRS over 100 cycles, the data is extracted from the DC switching cycle 

test. Reprinted with permission.32 Copyright 2022, The Authors. (c) Endurance test on the device with distinctive 

resistance levels by current-blind PVS. Reprinted with permission.31 Copyright 2022, American Chemical Society. 

(d) Endurance test on the device with distinctive resistance levels by current-visible PVS. Reprinted with 

permission.33 Copyright 2013, The Authors. (e) Endurance test of potentiation/depression behaviors. Reprinted 

with permission.34 Copyright 2022, The Authors. 



 

11 

 

 

Figure 5. (a) Illustration of the measurement setup for the state retention time. The inset is a typical experimental 

circuit. (b) State retention time under different program electronic stresses. Reprinted with permission.35 

Copyright 2019, The Author(s). (c) Typical state retention time of HRS and LRS. Reprinted with permission.36 

Copyright 2019, The Authors. (d) Multi-level state retention time. Reprinted with permission.37 Copyright 2022, 

The Authors. (e) Retention time under different temperatures. Reprinted with permission.38 Copyright 2021, The 

Authors. 

State retention time: Investigating state retention time is to check if the HRS and LRS are stably 

reserved over time after SET and RESET operations. To measure the state retention time, a small 

constant reading voltage (≈0.2 V or smaller) is applied to the device after a SET or RESET operation. 

The current is measured constantly to monitor the resistance (or conductance) changes over time. The 

reading voltage is usually orderly smaller than program voltages to avoid the resistance drifting during 

the test.38 Thus, current-time (or resistance-time, or conductance-time) curves should be presented for 

the state retention time characterization.29 A typical measurement setup is shown in Figure 5a. The 

memristive device (G) connects with a resistor in series. The resistor can have different values to 

modulate the electric forces applied on the memristive device, which modulates the changing margins 

of resistance and the retention time.11 The auxiliary resistor can also share voltage stresses to prevent 

the device breakdown owing to high-current striking.39 The current or the voltage on the device is 

measured to get conductance values. Typically, more attention is paid to the retention time of LRS. 

Because atomic rearrangement is generated during the SET process, which may vanish after a period. 
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In comparison, the HRS is the initial state of the device that is normally stabled. Figure 5b shows the 

SET conductance changes over time, the conductance and the retention time were different due to 

different electronic stresses of SET operations.35 In this specific case, the metallic conductive filaments 

(MCFs) were responsible for the resistive switching. Higher electronic stress induced stronger MCFs 

that exhibited higher conductance and longer retention time. This programable retention 

characterization shows potential applications in multifunctional devices.40   

Although the retention time of HRS is not specifically concerned, the figure of merit for both states 

is often presented as shown in Figure 5c.36 The HRS/LRS (or sometimes so-called ON/OFF) feature 

along with retention time are elaborated, indicating distinguishable states.41,42 Particularly, multi-level 

memristive devices show promising applications for high-density memory and computing systems.43 

The retention time of all resistive states should be measured to demonstrate the validity as shown in 

Figure 5d.37 To induce multi-level states, different electronic stresses, including various program 

voltages,37 program currents,43 and program durations (the width of program pulse),44 are utilized. A 

retention time longer than 10 years is usually required for nonvolatile memory.27 However, it is not 

doable to execute the state retention test for that long time. One strategy is to assess the retention 

characterization in the aggressive condition of elevated temperature instead of normal service 

conditions (room temperature). Atoms in memristive devices are more active under high temperatures, 

indicating the accelerated rearrangement speed of atoms. LRS retention time at high temperatures is 

shorter than the room temperature counterpart.45 The relationship between retention time and 

temperature is described by the following equation: 

ln(�) ∝
��

��
                                                                Eq. 1 

where t is retention time. Ea is the activation energy. k represents the Boltzmann constant. T represents 

the measurement temperature. In this method, several data points of retention time are collected at 

different temperatures (typically > 80 ℃). An extrapolating operation to ln(t)-1/T plots will be 

implemented based on the data points carrying failure information.46 In Figure 5e, the conductance 

variation over time is presented, and the extrapolating fitting is shown in the inset.38 The evaluated 

retention time was about 9 × 108 s which is much longer than the actual test time. Notably, memristive 

devices with short retention time (volatile resistive switching) ranging from some microseconds to a 

few seconds also show incredibly good prospects.11 The dynamics after removing the voltage stresses 
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can be employed for short-term plasticity learning,47 high-performance selectors,48 security 

applications,49 etc. For those volatile devices, the retention time is usually tested directly, for example 

in Figure 5a and Figure 5b.35 A fast measurement speed is required to catch the transition from the 

LRS to HRS in the volatile resistive switching.50     

Variability: The temporal (cycle-to-cycle) variation and spatial (device-to-device) variation are the 

two main variabilities in memristive arrays.51 The variation characterizations of VSET, VRESET, HRS, and 

LRS are crucial parameters that need to be identified. Wherein, VSET and VRESET distributions indicate 

the reliability of programing procedures. HRS and LRS variations are vital for the accuracy of memory 

and computing applications. The statistical analysis of device variabilities is essential to investigate 

memristive devices. The cycle-to-cycle variation is determined by intrinsic properties regarding 

materials used, defects distributed in materials, resistive mechanisms, device structure, etc. Also, the 

operation strategies influence device variability. For example, the CC can protect the device from 

damage or breakdown, which may also benefit the device’s stability since the failure is due to 

accumulated damage over multiple operations. As for the device-to-device variation, it is decided by 

the fabrication processes. The smooth surface, homogenous defects distribution, controllable thickness 

over a specific area, and uniform element composition in devices are important aspects of integrated 

devices with small spatial variations. The typical DC switching cycles are one of the important and 

frequently used methods to present the variations (Figure 6a). The SET/RESET voltages and the 

HRL/LRS were obtained. Figure 6a shows a typical multiple-cycle operation in one device, indicating 

the cycle-to-cycle variation. It should be noticed that the DC switching cycles of multiple devices can 

also be presented in the same figure to indicate the device-to-device variation, which is similar to 

Figure 6a.52 To quantitatively evaluate statistics variations, The cumulative probability plot and 

histogram are commonly employed as presented in Figure 6b and Figure 6c, respectively. The data is 

fitted by the Gaussian function to calculate the mean value (μ) and the standard deviation (σ). The HRS 

and LRS can be extracted from DC switching cycle curves (Figure 6a) or PVS operations. Figure 6b 

gives a typical cumulative probability plot of HRS and LRS, both cycle-to-cycle variations and device-

to-device variations.53 The figure indicated the resistance distribution range over two distinguished 

states. The SET and RESET voltages were obtained from DC switching cycle curves. Figure 6c shows 

the histogram features of operating voltages. In this specific case,30 48 devices were tested multiple 

cycles to collect the operation voltage variations. Cumulative probability plots and histograms are two 
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universal figures that depict statistical data points. Resistance and operation voltages (cycle-to-cycle 

and device-to-device) are presented by either cumulative probability plots or histogram figures. 

Synaptic potentiation and depression are very crucial for neuromorphic computing. The output 

computation accuracy is significantly influenced by the operational variations coming from both 

temporal and spatial aspects, which should be characterized properly. Cumulative probability plots are 

utilized, as shown in Figure 6d.54 The device-to-device variation was low and the integrated array 

demonstrated a high computing accuracy of over 95%, which heavily relies on a high yield of efficient 

devices (99.99%) and small variations.54 The cycle-to-cycle variation is also important. In Figure 6e,55 

100 consecutive potentiation/depression cycles are presented. The error bar was utilized to demonstrate 

the variation of each state. Another efficient way to indicate device-to-device variations is presented in 

Figure 6f,56 conductance map of the synaptic array after localized pulse programing to write the 

‘UMAS’ is demonstrated. This method can locate dead or stuck devices. In most papers, the cycle-to-

cycle variations, including SET voltage, RESET voltage, HRS, LRS, and potentiation and depression 

characteristics, are usually presented using the method mentioned above. The small device-to-device 

variation, especially for large-scale integrated devices, is still challenging. The large integration system 

usually requires high-vacuum deposition equipment, lithography, clean rooms, and professional test 

systems. Some work focuses more on conception demonstration using novel materials (polymers,57 

biomaterials,58 etc.) that are not compatible with lithography. Besides, some device preparation 

methods, such as spin coating,59 drop casting,43 electrodeposition,60 are hard to realize very 

homogeneous and uniform thin films, which is especially important to device-to-device variation. 

Scientists should vision and estimate the probability and strategies to forward novel memristive 

technology to practical applications.61    
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Figure 6. (a) Typical DC switching cycle test for multiple cycles, 500 cycles in this specific example. Reprinted 

with permission.62 Copyright 2022, American Chemical Society. (b) The cycle-to-cycle and device-to-device 

variations presented by cumulative probability plots of LRS and HRS. Reprinted with permission.53 Copyright 

2012, The Authors. (c) The histogram of device SET voltages and RESET voltages of 48 devices under multi-

cycle operations. Reprinted with permission.30 Copyright 2020, The Author(s). (d) Cumulative probability plots 

of 32 independent states. Reprinted with permission.54 Copyright 2020, The Author(s). (e) The variation of the 

potentiation/depression plasticity. Reprinted with permission.55 Copyright 2021, American Chemical Society. (f) 

Conductance map of the synaptic array after localized pulse programing to write the ‘UMAS’. Reprinted with 

permission.56 Copyright 2019, The Author(s). 

Switching speed: The switching speed reflects how fast a device can switch between different states. 

This parameter is important to computing and memory systems as it constrains the overall operating 

speed of whole systems. To measure the switching speed, typical V-t and I-t synchronous curves are 

recorded (Figure 7a).63 The switching time is determined by extracting the current changing features, 

demonstrating switching speed. The simplest way is shown in Figure 7b.64 The current and voltage are 

both recorded to get V-t and I-t synchronous curves. Usually, advanced semiconductor characterization 

systems equipped with pulse measure units are required, such as Keithley 4200A-SCS and Keysight 

B1500A semiconductor parameter analyzer. However, the SET transition is usually not self-limited. A 

memristive device is vulnerable under too-high currents. A series resistor can be utilized as a current 
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limiter as shown in Figure 7c.65 Advanced semiconductor characterization systems are expensive. And 

extra costs are often required, including ultra-fast pulse measure units, a probe station, a microscope, 

and maintenance services. Another method is to use a pulse generator and an oscilloscope (Figure 

7d).66 A pulse source switches the device between different states. The series resistor (RA) limits the 

current going through the device. The current is read out by measuring the voltage (completed by 

oscilloscope) on the series resistor of 50 Ω connecting with the bottom electrode. In this way, 

information on switching speed can be obtained.  

 

Figure 7. (a) Typical V-t and I–t synchronous curves corresponding to the switching process. Reprinted with 

permission.63 Copyright 2021, The Author(s). (b) Typical setup for testing memristors. Reprinted with 

permission.64 Copyright 2021, The Author(s). (c) Typical setup for testing memristors with a tandem resistor to 

limit the current. Reprinted with permission.65 Copyright 2016, The Author(s). (d) Typical setup testing 

memristors with a pulse generator and an oscilloscope. Reprinted with permission.66 Copyright 2012, IEEE. 

2.1.3 Memristive Mechanisms  

Distinguishable states of memristive devices are induced by external electronic stimuli. There are four 

fundamental mechanisms, including electrochemical redox reactions,27 phase changes,67 ferroelectric-

polarization modulations,68 and magnetic tunneling.69 Here, electronic redox reactions are discussed 



 

17 

 

since it is the major mechanism in this work. This mechanism is owing to redox reactions and ion 

migrations. Mobility ions that change the resistance are anions and cations. 

The anion-based resistive switching, mainly driven by oxygen ions (or equivalently oxygen 

vacancies), is a major part of the redox-based mechanism. It is often named as valence change memory 

(VCM).70 This mechanism is found in transition-metal oxides23 and perovskites71 consisting of oxygen 

ions or other mobility ions. Stable inert electrodes under electronic biases for both top and bottom 

electrodes are used. In particular, metal electrodes (e.g., Ta, Ti, Hf) possessing high oxygen affinity act 

as a reservoir layer of oxygen species.72,73 This benefits redox reactions/ion exchanges and the 

formation of oxygen vacancies that are generated under electronic activations as shown in Figure 8a. 

In general, oxygen vacancies can be induced into two forms of distribution. Firstly, the filamentary type 

of distribution (Figure 8b) is the non-uniformity of distributed oxygen vacancies (a new phase with 

high conductivity).74 This kind of resistive switching shows fast switching speed and a large HRS/LRS 

ratio. The growth of single or multiple localized filaments is involved during the switching process. 

The active switching region concentrates at the filaments’ tip, which means the values of LRS do not 

proportionally depend on the effective area of the devices.75 Secondly, interface-type resistive 

switching, the oxygen vacancies are mainly distributed at the interface of the electrode/switching layer. 

Electronic stimuli modulate Schottky barriers as shown in Figure 8c. One of the electrodes uses 

materials with high working functions that form a prominent Schottky barrier at the interface. In 

comparison, another electrode has a low working function to form Ohmic contact at the other end of 

the interface. Accumulated oxygen vacancies change the working function of switching layers, which 

changes the Schottky barrier height at the interface. A high Schottky barrier shows high resistance. At 

LRS, the electrode/oxide interface has lower barriers and smaller resistance (high conductance). 

Reversing the applied voltage re-establishes the barrier and recovers the original HRS. The interface-

type resistive switching is typically slow that is due to the lack of thermodynamics to accelerate ion 

migrations.9 Notably, the Schottky barrier height and bulk conductivity of switching layers both 

contribute to the overall resistance. Homogeneously distributed oxygen vacancies in the bulk of 

switching layers may also modulate the conductance of the devices.76 In contrast to the area-

independent LRS in filament-type switching, the LRS usually shows proportional relations to device 

areas as the active switching region is the whole interface of electrode/oxides.77 Notably, the filaments 

and interface modulation may contribute to the resistive switching collectively in some cases.78,79 
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Remarkable progress has been obtained in anion-based resistive switching regarding fundamental 

physics understanding and device performances. Theoretical simulation and visualizing technology 

have been successfully utilized for physical understanding.80 Meanwhile, the device achieved an 

endurance of 1012, a switching speed of <1 ns, and a small size of <10 nm.81    

For cation-based resistive switching, active metal (Ag, Cu) is usually employed as a top electrode, 

and inert metal (Au, Pt) is used as a bottom electrode.82 Electrochemical oxidation induced cations (Ag+ 

or Cu2+) to the switching layer. The switching layer usually shows good diffusivity to cations, Such as 

a-Si,10 metal oxide materials (HfO2,47 Ta2O5,83 etc.), chalcogenides (Ag2Se,84 GeSe,85 etc.), and 

biomaterials (silk fibroin,35 glucose,86 etc.). In some cases, the switching layer is doped with Ag atoms 

to improve resistive switching performances.47 The forming of conductive filaments is controlled by 

three processes. First, the electrochemical oxidation of the active electrode. Second, the cation 

migration via the active layer. Third, the reduction of cation ions.81 The conductive filaments are formed 

involving chemical reactions, cation drifting, and nucleation under electronic bias as shown in Figure 

8d. Conductive filaments connect the top and bottom electrodes, demonstrating LRS (Figure 8e). 

Notably, the redox rate and ion mobilities in specific solid electrolytes determine the growth modes of 

filaments.87,88 Specifically, a low ion mobility and redox rate make filaments grow from the top active 

electrode to the inert bottom electrode. In comparison, the filament growth in an opposite direction 

(bottom electrodes to top electrodes) is expected with high ion mobility and redox rate. Before the 

normal operation, a forming procedure is often required in which a high voltage is applied to the device 

to induce initiated channels. Besides, the forming procedure changes the nano-morphology in the 

electrolyte. The preformed channels act as easy transport pathways for cations.89 Interestingly, the 

dynamic of cations can be modulated by light,90 temperature,91 humidity,92 etc. demonstrating 

promising prospects for in-sensor computing systems. Moreover, the resistive switching can be 

controlled by the dynamics of both anions and cations simultaneously as shown in Figure 8f. 89,93 The 

anion-cation-hybrid resistive switching broadens the design of multifunctional memristive devices. 
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Figure 8. (a) Illustration of set operation in anion-based devices. (b) Illustration of filamentary-type resistive 

switching based on anions. (c) Illustration of interface-type resistive switching based on anions. (d) Illustration 

of set operation in cation-based devices. (e) Illustration of filamentary-type resistive switching based on cations. 

(f) Illustration of resistive switching based on hybrid anions and cations. 

2.1.4 Memristive Chalcogenides and Metal Oxides 

Typical memristive devices are in the form of electrode/switching layer/electrode two-terminal 

structures. The switching layer is crucial for memristive performance since it is the path for shuttling 

charge carriers during operation processes. Extensive investigations into memristive materials have 

been conducted. Chalcogenide materials,94 metal-oxide materials,95 carbon-based materials,96 natural 

biomaterials,58 and synthetic polymer materials97 are the five main categories used as switching layers. 

Here, switching layers based on chalcogenide and metal-oxide materials are discussed in detail.  
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Chalcogenide Materials: Resistive switching behaviors have been observed in many chalcogenide 

materials. Chalcogenides are materials consisting of one or more chalcogen anions (e.g., S, Se, or Te) 

and at least one electropositive element.98 Typical memristive devices based on chalcogenides are 

summarized in Table 1. Chalcogenides usually show high ion mobility that will benefit the 

formation/dissolution of conductive filaments. The real-time forming/rupture of a metal conductive 

filament was observed by a high-resolution transmission electron microscope (HRTEM) in the AgS2 

(Figure 9a−c).99 The forming and rupture of conductive filaments can be controlled by electronic 

voltages. The high-conductivity Ag2S argentite phase and Ag nanocrystal together generate conductive 

channels as shown in Figure 9b. Figure 9e shows another typical example of a chalcogenide-based 

device, the forming/rupture of metal conductive filaments was responsible for the resistive 

switching.27,100 The Ag conductive filament grows from the cathode (Pt) toward the anode, which is 

ascribed to the high ion diffusion coefficient in Ag−Ge−Se.101 The similar phenomenon has also been 

reported in Ag/As2S3:Ag/Au,102 Ag/GeSe:Ag/Ni,103 and Pt:Ir/GeS:Cu/Pt:Ir.104  

Another important resistive switching mechanism in chalcogenide-based devices is the phase change 

phenomenon. Conductivity switching is associated with the phase transition relating to temperature. 

This is a typical phenomenon observed in chalcogenides, such as Ag2Se,105 Ge2Sb2Te5,106 Cu2Se,107 and 

Ag2S.108 Rehman et al. reported the temperature-related resistive switching behavior in the Al/Cu2Se/Pt 

device.107 The device showed no resistive switching behavior at room temperature. However, an 

obvious resistive switching behavior was obtained at 125 °C which was close to the Cu2Se transition 

temperature (137 °C). The thermodynamic calculation revealed that the ordered or disordered Cu2Se 

was crucial to the mobility of Cu ion, which further influenced the formation/rupture of conductive 

filaments. Furthermore, transition metal dichalcogenides (TMDs) can be two-dimensional (2D) 

materials.109 They have intrinsic ultrathin geometry, inert chemical character, and tunable photoelectric 

properties.110 Sub-10 nm devices can be achieved, which is vital for high-integration density.111 

Memristive devices based on 2D materials can be either vertical or lateral configurations.112 TMDs with 

polymorphism realize a reversible transition between semiconducting, semi-metallic, and metallic 

conductivities, which can be utilized for resistive switching.113 Figure 9f shows the schematic diagram 

of the MoTe2-based vertical memristor device.114 This structure ensured that only vertical transport 

contributed to currents. The electric-field-induced phase transition was observed in Figure 9g. The 2H 

phase showed semiconducting behaviors corresponding to the HRS. Meanwhile, the Td phase showed 
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metallic behaviors corresponding to the LRS. The switching time was only 10 ns with the HRS/LRS 

ratio of 106. Moreover, the phase transition can also be induced by lithium intercalation as shown in 

Figure 9h.115 The localized 2H (semiconductor phase) - 1T′ (metallic phase) transition was realized 

by controlling Li+ migrating laterally under electric fields. The device showed excellent resistive 

switching behaviors. It demonstrated the electrical modulation of 2D materials with field-driven ionic 

processes.  

 

Figure 9. (a-c) TEM image of Ag2S-based memristor at the initial state, LRS, and HRS. (d) I−V characteristic of 

the device. Reprinted with permission.99 Copyright 2010 American Chemical Society. (e) The typical I−V 

characteristic and the corresponding electrochemical metallization process. Reprinted with permission.27 

Copyright 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (f) Schematic diagram of the vertical 

MoTe2-based device. (g) Atomic resolution scanning transmission electron microscopy image of the MoTe2. 

Reprinted with permission.114 Copyright 2018 Springer Nature. (h) Schematic diagram of local 2H-T′ phase 

transitions in LixMoS2 induced by Li+ migration. Reprinted with permission.115 Copyright 2018 Springer Nature. 
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Table 1. Summary chalcogenide-based memristive devices.  

Device HRS/LRS ratio Endurance Retention Switch speed (s) Ref. 

Au/ZnSe/ITO 10 2x102 104 s *** 116 

Ag/ZnSe-ZnS/ITO 50 1.4x102 104 s *** 117 

Ag/ZnS-Ag/ZnS/ITO >102 3x103 *** *** 118 

Cu/ZnS/graphene/Cu 103 102 3x103 *** 119 

Ag/MoSe2/FTO 12 50 *** *** 120 

Ag/MoSe2/PMMA/Cu 4x102 103 104 s *** 121 

Ag/MoS2/Au 10 102 104 s *** 122 

Ni/Al2O3/MoTe2/Ti 106 *** 100 s 10-8-10-7 114 

Au/Ti/ MoTe2/Au/Ti 10 105 105 s (85℃) 5 x 10-9-10-8 123 

Ag/Ag33Ge20Se47/Ni 103 1011 *** 10-7 124 

Ag/Ag10(As40S30Se30)90/Ag 102 20 *** *** 125 

Ag/γ-InSe/Au 103 50 105 s *** 126 

Pt/CuxTe1-x/Al2O3/Si <10 103 104 s (85℃) *** 127 

Pt/CuxSe1-x/Al2O3/Pt 107 104 104 s (85℃) *** 128 

Ag/Cu2ZnSnSe4/Mo 215 2x102 104 s *** 129 

Al/Cu2ZnSn(S,Se)4/Mo 27.5 2x102 *** *** 130 

Ag/Sb2Te3/Pt 5 103 103 s *** 131 

Te/Sb2Te3/Te 103 5x103 104 s 10-5-10-4 132 

Pt/Sb2Te3/GeTe (period)/TiN 10 104 104 s 6 x 10-8 133 

TiN/GeSbTe/TiN 10 70 *** *** 134 

TiN/Ge2Sb2Te5/TiN <10 104 104 s 1 x 10-5-8 x 10-5 106 

TiW/Ge2Sb2Te5/TiW 10 104 *** 5 x 10-10 135 

TiN/Ge2Sb2Te5/Cu/SiC/Pt 103 104 104 s 7.8 x 10-8 136 

Pt/Ge2Sb2Te5/Te/Pt 103 102 104 s (85℃) *** 137 

Ag/GeSbTe/TiN 103 102 104 s *** 138 

Pt/Ag/Ge2Sb2Te5/Pt 103 103 8 h *** 139 

Cu/N-Ge2Sb2Te5/Pt 107 104 104 s 10-5 140 

Ag/Ge2Sb2Te5/ZnS-SiO2/W-Ti 5x102 104 105 s *** 141 

Pt/TiGexSe1−x/TiN 6 2x106 104 s (85℃) 4 x 10-8 142 
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Chalcogenide materials can provide excellent resistive switching performances. They have been 

investigated in the development of data storage and computing applications. The high ion mobility of 

chalcogenides benefits the formation of conductive filaments and introduces a high HRS/LRS ratio. 

Filamentary resistive switching often suffers from severe variability due to the defect-based resistive 

mechanism.143 An in-depth investigation of resistive switching based on chalcogenides is needed for 

further development. 

Metal-Oxide Materials. Metal-oxide materials are considered one of the most important materials 

in both scientific and technological fields due to their excellent optical and electrical properties, 

materials stability, and easy formability.144 The investigation on the metal-oxide memristor can track 

back to 1962. Hickmott reported the hysteretic current−voltage phenomenon in an Al/Al2O3/Al device, 

elaborating on the resistive switching characteristic under applied electric fields.21 Subsequently, many 

metal oxides have been employed to construct memristor devices, such as TiO2,74 SiOx,145 ZnO,146 

NiO,147 HfO2,148 TaO5−x,93 Cu2O,149 GdOx,150 SrTiO3,79 Pr0.7Ca0.3MnO3,151 and so on, as summarized in 

Table 2. Dmitri B. Strukov et al. reported a physical model to explain resistive switching behaviors in 

a two-terminal Pt/TiO2/Pt device.4 Figure 10a shows the equivalent circuit of the boundary migration 

model. In this system, oxygen vacancies are treated as mobile +2 charged dopants. The boundary 

between the insulating TiO2 and low-resistance oxygen-deficient TiO2−x layers drifts under electric 

fields, leading to changes in overall resistance. The I−V characteristic is shown in Figure 10b. An 

obvious hysteresis loop confirms resistive switching behaviors. Schematic diagrams of the resistive 

switching mechanism based on the conductive channels model in the Ta2O5−x/TaO2−x device are shown 

in Figure 10c.152 The tantalum oxide clusters can generate a Ta-rich phase (TaO1−x phase) under 

electrical stimulation due to oxygen-vacancy migration. Metal oxides are good solid electrolytes for 

metallic ions (Ag+ and Cu2
+) as shown in Figure 10d based on the Ag/TiO2:Ag/Pt.153 The contact 

resistance and interface effects should be considered in metal oxide-based devices.154 Various top 

electrode materials with different work functions, including SrRuO3(SRO), Ag, Pt, Au, and Ti were 

employed to fabricate memristor devices.155 Only the Ti/Pr0.7Ca0.3MnO3(PCMO)/SrRuO3(SRO) device 

showed rectifying and resistive switching characteristics as shown in Figure 10e. Apart from the low 

function of the Ti electrode, high oxygen affinity induces the depletion of oxygen ions. The trapped 

states at the interface led to the modulation of Schottky-like barriers under different voltages, resulting 

in resistive switching behaviors. Furthermore, H. Y. Peng et al. reported that a single device can switch 
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between the filamentary and interfacial resistive switching modes.156 Different electrodes that affect the 

migration of oxygen vacancies can induce different resistive switching models.  

Metal-oxide resistive switching devices are very promising for commercialized products. The 

retention time over ten years has been reported.157 Meanwhile, excellent cycle endurance of 1012 

operation cycles has also been demonstrated.158 However, little work has been involved in the devices 

with sensory functions. A systematic investigation is crucial for future commercial extensions. 

 

Figure 10. (a) Equivalent circuit of boundary migration model. (b) I−V characteristic of the Pt/TiO2−x/Pt device. 

Reprinted with permission.4 Copyright 2008, Springer Nature. (c) Schematic diagrams of resistive switching 

mechanism based on conductive channels model in the Ta2O5−x/TaO2−x device. Reprinted with permission.152 

Copyright 2013, Springer Nature. (d) The high-resolution transmission electron microscopy (HRTEM) image of 

the Ag/TiO2:Ag/Pt device. Reprinted with permission.153 Copyright 2017 WILEY-VCH Verlag GmbH & Co. 

KGaA, Weinheim. (e) I−V characteristics of a Ti/Pr0.7Ca0.3MnO3(PCMO)/SrRuO3(SRO) device in linear and 

semilogarithmic current scales. Insets show electronic band diagrams of the Ti/PCMO interface. Reprinted with 

permission.155 Copyright 2004 American Institute of Physics. 
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Table 2. Summary metal-oxide-based memristive devices.  

Device  HRS/LRS ratio Endurance  Retention (s) Switch speed (s) Ref. 

Pt/TiO2/W 10 102 105 *** 159 

Ti/ZrO2-x/TiO2/Pt 102 2x103 104 *** 160 

Al/TiO1.7/TiO2/Al 20 106 *** 1x10-6 -5x10-6 161 

Pt/TiO2 Nanorod/Ti 102 107 105 5x10-8 162 

Al/TiO2/Al >10 4x103 106 (85℃) *** 163 

Al/a-TiO2/Al 50 102 104 *** 164 

Au/CoO-TiO2/Pt 10 103 104 (85℃) *** 165 

Pt/TiO2/HfO2/ITO 10 5x102 104 *** 166 

W/HfO2/TiN 10 107 104 (125℃) 10-5 167 

Pt/Zn0.99V0.01O/Pt 102 105 3.6x104(85 °C) 5x10-7 168 

Pt/ZnO:CO/ZnO:In 103 103 105 *** 169 

Pt/Ag/ZnO:Li/Pt 104 103 104 3x10-4-3.6x10-4 170 

Pt/ZnO:Cr/ITO 9.12 x 102 105 105 *** 171 

Ag/ZnO nanosheet/Pt/ 4 50 104 *** 172 

Pt/Ga2O3/ZnO/Pt 103 102 104 *** 173 

Ni/ZnO/n-type Si 10 102 104 *** 174 

ITO/HfOx/ITO 40 108 105 2x10-8 175 

Pt/HfO2/ITO/TiN 102 107 104 (125℃) 3.3x10-7-3.8x10-7 176 

Ti/HfOx/Pt 10 2.5x104 104 (85℃) 2x10-8 177 

TiN/HfOx//GeTe/Pt 103 105 104 (85℃) 5x10-7 178 

Cu/HfO2/Au 103 105 104 10-6 179 

Cu/WO3−x/ITO 105 103 5 × 105 5x10-4 180 

Ta/TaOx/Ru/TiN 10 107 104 (150℃) 10-5 181 

Ag/TaOx/TaOy/Pt 108 102 *** 3x10-8-7.5x10-8 182 

Ta/TaOx/Pt 10 108 *** 10-6 183 

Pt/NiO/Pt 105 102 105 *** 184 

Ag/SrTiO3:Fe/Pt 104 2.1x103 *** *** 185 

Au/High-entropy oxide/Pd >15 7x104 7.2x104(100℃) 2x10-6-3x10-6 186 

Ti/HfOx/AlOy/TiN 10 104 104 (85℃) *** 187 
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2.2 Investigation Methods for Resistive Switching 

To achieve large-scale commercialization of memristive devices, problems at the device level are major 

challenges in addition to issues at circuit design, algorithm development, and architecture construction. 

A robust understanding of thermal dynamics, electron transport, and ion migration is essential to 

improve memristive performances regarding endurance, variability, HRS/LRS ratio, switching speed, 

state retention time, etc. Materials characterization techniques, physical modeling, and electronic 

conduction mechanisms are crucial to comprehensively explain resistive switching phenomena and 

further improve the device’s performance.  

2.2.1 Transmission Electron Microscopy 

Ionic migrations are crucial in resistive switching. Therefore, visualization techniques on nano and 

atomic scales are required to further understand ionic dynamics, more insight into lattice variation, and 

conductive channel growth. Transmission electron microscopy (TEM) is a microscopic technique 

utilizing electron beams to realize visualizations at nano or even angstrom scales. This is an important 

piece of equipment to investigate the growth of metallic conductive filaments and resistive switching 

associated with oxygen vacancies.188 Particularly, in situ observation goes beyond the static observation 

for resistive switching, which is more favorable. It monitors the real-time evolution of microstructures 

in devices under electric stimuli. In general, it is difficult to directly observe the in-situ TEM image of 

a real memristive device. A careful design is required to obtain a modified setup reserving the essential 

attributes of resistive switching in real devices. The observed region should be thin enough so that the 

changes in the switching layer can be visualized by electron beams. And the resistive switching should 

be reserved in the tested structure. Figure 11a shows a typical experimental setup to study the growth 

of Ag conductive filaments in a SiO2 layer.88 The electric voltage applied on a resistive switching 

structure of Ag/SiO2/W. The filament growth process inside the SiO2 was recorded. The images of 

conductive filaments at LRS and HRS are shown in Figure 11b.87 It was clear that the bottom electrode 

and top electrode were connected by Ag metallic filaments, demonstrating the LRS. In comparison, 

after the RESET operation at the same region, the conductive filaments were dissolved and 

disconnected from the top and bottom electrodes, demonstrating the HRS.  
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Figure 11. (a) Schematic diagram of a typical in-situ TEM experimental setup, the studied device structure was 

Ag/SiO2/W. Reprinted with permission.88 Copyright 2014, Nature Publishing Group (b) In-situ observed metallic 

conductive filaments at the LRS and HRS. Reprinted with permission.87 Copyright 2012, Nature Publishing 

Group. (c) The cross-section image included a channel region observed at the LRS. The studied device structure 

was Pt/SiO2/Ta2O5-x/TaO2-x/Pt. (d) The oxygen profiles at the channel region (shown in c) were measured under 

the HRS (black) and LRS (red). Reprinted with permission.152 Copyright 2013, Nature Publishing Group. (e) A 

typical polymorphous HfOx region with completed conductive filaments. (f-g) FFT diffraction patterns of h-Hf6O 

and m-HfO2 region. Reprinted with permission.63    

Particularly, the element composition analysis tool studies the composition features in the switching 

layer, such as energy dispersive X-ray spectroscopy (EDS) and electron energy loss spectroscopy 

(EELS). It is immensely helpful to get an insight understanding of resistive change mechanisms. Figure 

11c exhibits the region of a nanoscale conductive channel obtained at the LRS.152 Figure 11d gives 

EELS lines corresponding to oxygen profiles of the conductive channel at the HRS and LRS. It 

confirmed that the oxygen concentration of LRS was lower than the HRS counterpart, indicating that 

the movement of oxygen vacancies resulted in resistive switching.152 Furthermore, electron diffraction 

patterns carry important crystallographic information. It is particularly useful for resistive switching 

investigations as crystallographic transitions often occur in memristive devices due to oxygen vacancies 
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migration and Joule heating effects.189 Figure 11e shows the cross-section of a Pt/HfO2/Pt device after 

a SET operation.63 Distinguishable crystallization regions were observed in the high-resolution image. 

Fast Fourier transform (FFT) diffraction patterns of two typical regions are presented in Figure 11e 

and f. The diffraction spots corresponded to h-Hf6O with high conductivity. This confirmed the crystal 

structure of the conductive channel which was difficult to observe by direct imaging. Ultra-high 

resolution and real-time investigation abilities are vital to get insights into resistive switching 

mechanisms. TEM, especially in situ TEM, is expensive. Some other auxiliary equipment (for example 

ion beam etching systems) is also required. Preparation usually takes a long time. Besides, the in situ 

tested sample is usually not the actual device, careful experiment design is important to mimic the 

operation in a real device and obtain reliable experimental results.  

2.2.2 Scanning Probe and X-ray Microscopy 

Scanning probe microscopy (SPM) catches the surface features, electronic properties, ferroelectric 

polarization, etc. on a nanoscale.190 Conductive atomic force microscopy (CAFM)191 and scanning 

tunneling microscopy (STM)192 are two main SPM techniques for investigating resistive switching 

mechanisms. CAFM measures the morphology and conductivity of the surface independently, which 

is a useful tool to investigate resistive switching phenomena. For the function of morphology 

characterizations, it is the same as an atomic force microscope (AFM). Optical and piezoresistive 

systems are utilized to monitor the cantilever’s deflection and reconstruct the surface morphology. The 

specialty of the CAFM is to characterize conductive distribution other than the solo morphology 

measurement in AFM. A typical setup of CAFM is shown in Figure 12a, a current-to-voltage 

preamplifier records the conductivity changes on the surface of samples.193 It achieves a remarkably 

high spatial resolution of conductive variations, which is helpful to investigate resistive switching. In 

Figure 12b, a small voltage of 50 mV was applied to the CAFM tip and monitored the current values 

during the scanning process to obtain the conductance distribution.147 Snowflake white areas indicated 

high conductivity areas. At the LRS, more white areas were observed, demonstrating high conductivity 

after a SET operation. Interestingly, the white regions usually overlapped with grain boundaries. This 

evidence confirmed that the forming/rupture of conductive filaments occurred at grain boundary 

areas.194  
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Figure 12. (a) Schematic diagram of an experimental setup for a typical CAFM. Reprinted with permission.193 

Copyright 2020, WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. (b) The AFM and C-AFM images of 

HRS and LRS, the CAFM image was posed on the AFM image. Reprinted with permission.147 Copyright 2008, 

AIP Publishing. (c) 3D reconstructed tomogram of a metallic conductive filament. Reprinted with permission.195 

Copyright 2013, IEEE. (d) Schematical diagram of STM for resistive switching investigation. (e) STM images (1 

μm × 1 μm) of TaOx film before and after scanning, corresponding SET and RESET operations. Reprinted with 

permission.196 Copyright 2016, American Chemical Society. 

The ionic-involved resistive switching often occurs in three dimensions. A technique enabling three-

dimensional (3D) characterization is needed to enhance the understanding of filamentary dynamics. A 

possible solution is to characterize CAFM-based 3D tomography (often named SPM tomography, 

scalpel SPM, or 3D CAFM).197 This technology visualizes conductive filaments.198 In memristive 

devices, the conductive filaments are usually covered by top electrodes and buried in switching layers. 

To expose hidden filaments, a controlled tip mechanically removes materials at a sub-nm vertical 

removal rate. The scan operation executes during the removal process to obtain a series of 2D profiles 

at different depth levels of materials. The collected profile data is used to construct a 3D tomogram. In 

Figure 12c, a 3D tomogram of Cu conductive filament in a conical shape is presented. This information 

was very useful to investigate the forming mechanism of this filament. It was involved with drifting 

and interacting Cu2+ species with Al-vacant sites and oxygen vacancies.195 Furthermore, CAFM can 
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achieve in situ resistive switching tests. The tip acts as the top electrode and directly mimics memristive 

operations. Besides, different working atmospheres (such as O2 and N2) can be used during the in-situ 

test.199 This is crucial to study reactions in the switching layer during the operation process.  

STM is another powerful visualization technology to investigate resistive switching mechanisms. It 

is built up based on quantum mechanical effects that work in a noncontact mode. Compared to CAFM 

using contact modes, STM provides advantages in testing soft materials and avoiding potential surface 

damage. Besides, the atomically sharp tip realizes higher resolutions.190 Schematic diagram of a 

scanning STM for resistive switching investigations is shown in Figure 12d.196 Redox reactions in 

oxides were realized without physical contact. Figure 12e shows surface characterizations measured 

by the STM.196 SET and RESET voltages applied on selected areas induced a distinguishable contract, 

indicating modulated resistance. With the assistance of XPS, the resistive switching was because of the 

reduction of Tax+ and the generation of oxygen vacancies. The disadvantage of STM compared to 

CAFM is that sufficient conductivity is required, especially for the HRS. This limits the application of 

STM since switching layers in memristive devices are usually insulators with low conductivity. Besides, 

STM systems are more expensive than CAFM systems. Because a vacuum atmosphere is needed for 

STM tests. Some key points should be considered before using the SPM technology to study resistive 

switching devices. Firstly, the voltage available in commercial equipment is usually lower than 10 V. 

It hinders the practical usage of this technique on devices that need high operation voltages. Secondly, 

the current measurement margin is small, mostly within 2-4 orders of magnitude. It may encounter 

problems in testing the device with a large ratio of HRS/LRS. Thirdly, a current limitation cannot be 

applied. An undesired failure of systems may be encountered during the SET operation. 
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Figure 13. (a) Schematic diagram of the experimental setup for a typical synchrotron-based scanning transmission 

X-ray microscopy (STXM) measurement. (b) The X-ray transmission intensity map. Reprinted with 

permission.200 Copyright 2016, American Chemical Society. (c) The XAS and XRD spectroscopy are shown in 

c_1 and c_2, respectively. c_3 shows the schematic diagram of the experimental setup for the X-ray multimodal 

imaging. (d) The conductive channel consists of W and O elements. Reprinted with permission.201 Copyright, 

2022 Wiley‐VCH GmbH. 

X-ray microscopy plays a key role in materials characterization, especially for nondestructive 

measurements. X-ray shows high penetration abilities and high spatial resolutions, which makes it can 

“see through” tiny defects and structure variations buried inside materials.202 For instance, the resistance 

switching is due to the variation of structures, and chemical states in switching layers. Whereas the 

changes are hidden behind electrodes and materials themselves. The ion beam etching in TEM systems 

and the scalpel process in 3D CAFM systems can expose the structure and chemical changes inside the 

devices. But they are destructive measurements and time-consuming. X-ray realizes non-destructive 

investigation of resistive switching by utilizing penetration and imaging abilities. Oxygen species are 

crucial for resistive switching mechanisms, particularly for metal-oxide-based memristive devices. The 

X-ray can realize spatial resolution at the nanoscale and the spectral resolution of meV level for O K-

edge.203 Figure 13a shows a typical setup for X-ray transmission measurements.200 Focused X-ray 

penetrated the top electrode, switching layer, the bottom electrode, and a Si3N4 window. A non-uniform 

ring-like region was found (Figure 13b). The contrast variation in the image was due to changes in 
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oxygen concentrations over the range of 3-5%.200 This can be related to the generation of oxygen 

vacancies that led to the defect states and enhanced conductivity. Furthermore, multiple spectra can be 

obtained by X-ray microscopy for robust insight investigations. The device structure can be constructed 

in a planar geometry to get better-detecting efficiency and accuracy.204 X-ray multimodal imaging 

experimental system is shown in Figure 13c.201 The spectra of X-ray absorption spectroscopy (XAS) 

and X-ray diffraction (XRD) were obtained simultaneously by a raster-scanned operation. It presented 

high accuracy and high spatial resolution of elements distributions. Figure 13d exhibits the distribution 

of W and O elements. The result confirmed that the migration of oxygen vacancies was responsible for 

resistive switching. Besides, the distribution feature of oxygen vacancies under different confinements 

of the electric field was investigated. This provided an insightful strategy to improve resistive switching 

stability and suppress device variations. The main drawback of X-ray microscopy investigating 

resistive switching is the slightly lower resolution compared to TEM and CAFM technology. Besides, 

the test usually requires access to advanced synchrotron radiation sources, which may be difficult for 

some research groups.  

2.2.3 Conduction Mechanisms Based on I-V Characteristic 

An in-depth study of I-V characteristics reveals the conduction mechanisms that benefit the exploration 

of working mechanisms.205 The DC switching cycle test (also referred to as the cyclic voltammetry test) 

is one of the essential measurements investigating resistive switching. It carries electrochemical 

reaction information that is crucial for redox-based resistive switching. Temperature and moisture are 

two crucial factors that affect electrochemical reactions, ionic migration kinetics, and electrolyte 

characteristics. Analyzing the electronic properties under controlled temperature and moisture 

variations benefits a better understanding of redox-based resistive switching behaviors. The technique 

is to fit experimental I-V curves with specific physical models to reveal resistive switching mechanisms. 

The Ohmic conduction, space-charge-limited-conduction (SCLC), and Schottky emission are discussed 

in detail.  

The SCLC has been frequently employed to study resistive switching phenomena.206 Three 

distinguishable regions can be observed for a trap-related SCLC model: ⅰ) A Ohmic region (I ∝ V) 

under small voltage values. This is governed by thermal-generated free carriers; ⅱ) A Child’s square 

law region (I ∝ V2) under large voltage values. Conduction is controlled by electrode-injected electrons; 
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ⅲ) Current increases steeply region (I ∝ Vx, x>2) under high voltage values. The trap-free is achieved 

and shows high conductivity.207 The conductive channels are often formed in this stage in memristive 

devices.208 For Ohmic conduction, the current value is proportional to the applied electric field as shown 

in Eq. 2.209   

������ = � × �                                                        Eq. 2 

where σ represents the electrical conductivity. V is the applied voltage. IOhmic is the current governed 

by Ohmic conduction. Take the log of Eq. 2. The following equation can be obtained. 

log(������) = log(�) + log (�)                            Eq. 3 

Based on the SCLC theory, the current under high voltage region can be described as Eq. 4.210     
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��                                                            Eq. 4                          

where I is the current. V is the voltage, respectively. εi represents permittivity. θ represents the ratio of 

free and trapped charges. µ represents electron mobility. The thickness presented by d. Similarly, Eq. 

4 can be transformed to  

 log(�) = log �
�

�
����

�

��� + 2����                          Eq. 5 

One frequently used method to investigate resistive switching is drawing the I-V plots in log-log scales 

(Figure 14a).211 Under low positive voltages, the slope was close to 1, indicating Ohmic conduction as 

described in Eq. 3. In comparison, a slope of 2 was obtained at a higher voltage governed by SCLC 

theory as described in Eq. 5. When further increased the voltage, the current increased sharply owing 

to the formation of high conductive oxygen vacancies filaments.211 Notably, a slope of 1 was obtained 

at the LRS under the positive voltage region in Figure 14a, indicating Ohmic conduction was 

dominated by high conductive channels.212 Under the negative, the slope was maintained as 1 under 

low voltages governed by Ohmic conduction. And a RESET operation was completed at a high negative 

voltage. Thus, the conduction mechanism transitions between the HRS and LRS can be depicted.     

The modulated Schottky barrier height is another important resistive switching mechanism. The 

relevant conduction mechanism can be confirmed by fitting typical I-V curves.213 The Schottky 

equation is shown below:214  
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where S is the device area; k is Boltzmann’s constant; m* represents the electron’s effective mass. T 

describes the value of absolute temperature. E represents the electric field. h represents Planck’s 

constant. ∅B represents the height of the junction energy barrier, and ε is the permittivity. Eq. 6 can be 

transformed into Eq. 7. 
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Then, the relationship between the V and the E is described by Eq. 8. 
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where L represents the thickness. One can get Eq. 9 from Eq. 7 and Eq. 8. 
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The conduction mechanism governed by Schottky emission can be confirmed by plotting the 

relationship between ln(I) (or ln(J), J is current density) and V1/2 (or E1/2, E is an electric field). The ln(I) 

and V1/2 are expected to have a linear relation under a fixed temperature.215 A supplement method is to 

test the I-V curves under different temperatures as shown in Figure 14b.216 Then, fitting the curves to 

get the relationship of ln(I) and V1/2. A linear relationship can be expected under different temperatures, 

providing better proof for the conduction mechanism. Eq. 7 can be transformed into Eq. 10.217 
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              Eq. 10 

Under fixed voltage, the plot of ln(1/T2)-1/T should show linear relation as shown in Figure 14c.216 

Different voltages can be used to depict the relationship between ln(1/T2) and 1/T. This provides more 

solid evidence for the electronic conduction governed by Schottky emission.  
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Figure 14. (a) Typical I-V curve in log-log scale. Reprinted with permission.211 Copyright 2010, AIP Publishing. 

(b) I-V curves tested under different temperatures. The inset shows ln(J)-V1/2 plots. (c) ln(J/T2)-1000/T plots under 

different reading voltages. Reprinted with permission.216 Copyright 2013, AIP Publishing. (d) The values of LRS 

under different temperatures. The inset shows temperature-dependent resistance for devices with varied sizes. (e) 

The values of HRS under different temperatures. The inset presents the plot of ln(I)-1/κT to calculate the 

activation energy. Reprinted with permission.218 Copyright 2008, AIP Publishing. (f) Cyclic voltammetry tests 

under different humidity levels. (g) Ion concentration (cion) under different humidity levels. The pH2O means the 

partial pressure of water. Reprinted with permission.219 Copyright 2013, American Chemical Society. 

For cation-based resistive switching, a linear relationship of I-V at LRS is usually expected. The 

slope of I-V plots in log-log scales is close to 1 due to Ohmic conduction controlled by high-

conductivity metallic filaments.220,221 Moreover, the resistance changes of HRS and LRS can be studied 

to further confirm the formation of metallic filaments based on cation migrations. The temperature-

dependent metallic resistance can be described by Eq. 11.  

�(�) = ��[1 + �(� − ��)]                                 Eq. 11 

where R0 is the value of resistance at the temperature of T0. α represents the temperature coefficient of 

resistance. As shown in Figure 14d, the resistance of LRS (also referred to as ON state) increased with 

increased temperatures. The temperature coefficient of resistance was positive, implying a typical 



 

36 

 

electron transportation feature in metallic materials.218 The measured α can be used to compare with 

metallic nanowires. The chosen nanowire should be the same materials of filaments that are suspected 

to form in the memristive device. This can provide extra evidence that metallic filaments are 

formed.222,223 In comparison, the HRS (also referred to as OFF) may show a different or opposite 

temperature coefficient of resistance. As shown in Figure 14e, a negative α was obtained as a 

semiconductor (ZrO2) was used as the switching layer. The resistance of semiconductors decreases with 

the increase of temperature as more thermal-excited carriers are generated at higher temperatures.  

 Moisture has been considered one of the principal factors in redox-based resistive switching.224 In 

the cation-based redox resistive switching, the half-cell reaction (M →Mx++xe-) occurs at the active 

electrode to generate cations.82 Cyclic voltammetry tests under different moisture levels can reveal a 

better microscopic understanding of electrochemical processes. As shown in Figure 14f, cyclic 

voltammetry tests were carried out at different moisture levels. The concentration of ions (cion) was 

measured as summarized in Figure 14g.219 Higher pH2O (the partial pressure of water) corresponded 

to higher ion concentrations. The results proved two points. First, the anodic oxidation was limited by 

the counter charge at Pt/SiO2 interface. Second, hydroxide ions instead of electrons acted as counter 

charges. This test resulted in a more comprehensive understanding of electrochemical processes in 

cation-based memristive devices. In the anion-based redox resistive switching, the moisture influences 

the redox reactions and ionic mobility. Cyclic voltammetry tests provide delicate information on redox 

reactions in those systems.225 This method revealed that oxygen ions/vacancies and cations both 

contributed to resistive switching, which was related to chemical redox and passivation.93,144 This 

information is vital for theoretical models and paves ways to further improve device performances. 

Conduction mechanism investigations are macroscopic and empirical. In some cases, the fitting 

results may be compatible with more than one conduction mechanism.226,227 Researchers need to 

consider other investigation methods (TEM, CAFM, STM, etc.), analyze device structures, and 

characterize materials to evaluate the accuracy of the resistive mechanism based on I-V characteristics.  

2.2.4 Theoretical Model Simulations 

Theoretical model simulations and experimental measurements should be paired and complement each 

other to study resistive switching. Theoretical simulations are employed to optimize device 

performances, interpret experimental results, predict properties, and accelerate projects. Theoretical 
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models should link the material properties, operation processes, and device performances. Theoretical 

simulations of memristive devices can be catalogued into two categories based on simulation scales, 

including the physical and the compact models. The physical model focuses on ionic migration, 

chemical reaction kinetics, defect characteristics, and materials’ electronic properties at a microscopic 

scale. It clarifies the switching mechanisms along with experimental characterizations, which provides 

in-depth knowledge to improve device performances.228,229 As for the compact model (also called the 

behavioral model), it emphasizes the description and reproduction of electronic properties without 

concerning much underlying physics. Empirical assumptions and mathematical fitting are utilized to 

rapidly reproduce devices’ behaviors. This method is suitable for diverse types of memristive 

devices.230 More importantly, the compact model can be extended to Simulation Program with 

Integrated Circuit Emphasis (SPICE) model that can be embedded into computer-aided design tools, 

which can be used for circuit simulations and system-level design. Notably, the combination of the 

physical model and compact model is preferred to depict memristive properties more accurately.231 

Physical models provide a deeper knowledge of resistive switching mechanisms regarding defects 

(generation, diffusion, and recombination), electron transportation, and inherent stochasticity as shown 

in Figure 15a. Experimental information about the properties of materials should be input into physical 

models to calibrate the models and improve simulation accuracy, including the crystal structure, band 

structure, work function, thermal conductivity, etc. Several simulation methods have been frequently 

used, such as First Principle (FP, also named ab initio), Molecular dynamics (MD), Kinetic Monte 

Carlo (KMC), and Finite Element (FE). FP calculations are good at simulating the conduction 

properties and the transition energy in memristive operations.232 As shown in Figure 15b, a supercell 

was constructed to calculate the activation barrier of defect formation energy and the defect energy 

level, which benefits the device design with better reliability and uniformity.233 Furthermore, the 

diffusion of oxygen vacancies and defects charging/discharging can also be investigated by FP 

simulations.234,235 The drawbacks of FP simulations are the difficulties of modeling complex structures, 

such as amorphous, polycrystalline, and multi-layered structures. 
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Figure 15. (a) Schematic diagram of physical models. (b) Schematic diagram of the FP simulation. (c) Schematic 

diagram of the MD simulation. (d) Schematic diagram of the KMC simulation. (e) Schematic diagram of the FE 

simulation. Reprinted with permission.9 Copyright 2019, The Author(s). 

Dynamic simulations are popular to investigate ionic migrations and relevant stochastic features, 

typical simulation techniques are MD236 and KMC simulations.237 MD (Figure 15c) can catch 

dynamical phenomena of atoms (oxygen vacancies,238 Ag atoms35) constructing filaments and atom 

chains that are responsible for resistive switching behaviors. In comparison, KMC (Figure 15d) is 

considered an event-driven and stochastic simulation technique. This method covers a big margin of 

time scale ranging from nanoseconds to years. The evolution of conductive channels and structure can 

be described by KMC.237,239 As shown in Figure 15e, FE employs mathematical models to quantify 

and understand resistive switching performances. It is usually a simplified model without concerning 

all variables in real devices.240 FE simulations are usually used with dynamic simulation techniques to 

describe ionic distribution accurately.241 The disadvantages of KMC and FE simulations are too many 

assumptions and simplified parameters, which may influence the simulation accuracy. Notably, the 

combination of multiple theories can build up physical models more accurately.242 The physical models 

should not be isolated from experimental results. The setup of parameters in simulation software must 

be based on experimental measurements as much as possible. A mutual corroboration between 

simulations and experiments should be achieved before proposing a model to explain the resistive 

switching performances. 
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Compact models are particularly important to circuit analysis and system-level design. A qualified 

compact model for memristive devices goes beyond basic electronic performances in CMOS transistors. 

The variability and endurance degradation features should also be considered. Firstly, analytical 

equations based on simplified physical images are developed. Then, index parameters are introduced 

to simulate degradation and stochastic characteristics.243 Finally, mathematical fitting with 

experimental results is carried out to identify the validity of the model and extract critical parameters 

of the model. The mathematical definition of memristive devices is shown below.4 

� = �(� ) × �                                                            Eq. 12 

A differential form is shown below: 

��

��
= �                                                                        Eq. 13 

where V means voltage. I means current. R is the generalized resistance depending on internal states. w 

represents the variable state. It was later generalized to nonlinear dynamical systems.244 

� = �(� ,�) × �                                                        Eq. 14   
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where w represents a series of state variables. R and f in general elaborate functions of time. The 

resistance changes (state variables of w) in memristive systems are derived from modulated doped 

regions, Schottky barriers, conductive filaments, and tunneling barriers (Figure 16a).245 The two 

models of modulated doped regions, and modulated Schottky barriers are usually used in anion-based 

resistive switching. The modulated conductive filaments and modulated tunneling barriers are usually 

used in filamentary-type resistive switching controlled by either anion-based switching or cation-based 

switching. The physical models can be described by electronic elements and corresponding equations, 

which is the foundation of compact models. Figure 16b shows the schematic diagram of a compact 

model that the resistance is governed by the moving of doped/undoped boundary proposed by HP Labs.4 

The applied voltage generated oxygen vacancies and drove them moving, resulting in two separated 

doped (low resistance) and undoped regions (high resistance) due to the drifting of the boundary. The 

process of modulated resistance is described as follow:4 
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where RON (the whole switching layer is doped) and ROFF (the whole switching layer is undoped) are 

the lowest and highest resistance of the device, respectively. w in this model is the length of the doped 

region (Figure 16b). μV is the average ion mobility. Bipolar switching was demonstrated in the model. 

More importantly, the model was verified by experimental results on a TiOx-based device.  

The modulated Schottky barrier is another important resistive switching mechanism. Two main 

models, barrier height246,247 and barrier area248 have been reported (Figure 16c). The applied voltage 

adjusts the distributed oxygen vacancies located at the interface, which modulates the resistance of the 

Schottky junctions. The Schottky barrier can be adjusted by applying electronic stimuli.249  
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where A* means the Richardson constant. ΦB represents the barrier height. KB represents Boltzmann’s 

constant. T is temperature.  

The barrier lowing is described by the following equation:249 
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                               Eq. 19 

where ΦB means lowered Schottky barrier height. ΦBno means the original Schottky barrier height. N 

means the concentration of oxygen vacancies. εSΦB represents the effective dielectric constant of the 

emission process. The modulated Schottky barrier height is responsible for resistive switching. Another 

model is due to the modulated area of the Schottky junction. The resistance of the device is consisting 

of two parts, including the Schottky junction and the conductive area governed by Ohmic contact or 

tunneling effects.248,250 As described by equations:248   
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where wBA is the state variable. α, β, γ, δ, η1, and η2 are all positive-valued parameters determined by 

material characteristics. The first term in Eq. 20 is the Schottky term. The second term in Eq. 20 is 

the tunneling term. Eq. 21 describes the change rate of wBA under applied voltages. 

 

Figure 16. (a) Schematic diagram of compact models. (b) The compact model that the resistance is governed by 

the moving of doped/undoped boundary. (c) The compact model that the resistance is governed by the modulated 

Schottky barriers. (d) The compact model that the resistance is governed by the modulated conductive filaments. 

(e) The compact model that the resistance is governed by the modulated tunneling barriers. 

Resistive switching behaviors controlled by conductive filaments have also been demonstrated by 

compact models. The state variants were due to morphological changes, including the thickness and 

length of filaments as shown in Figure 16d. Conductive filaments usually dominate the overall 

conductivity of devices. In real devices, multiple conductive filaments may exist in the devices. To 

simplify the model, one single cylinder-shaped filament with modulated thickness and length is 

projected. For the controllable filament thickness. The current following through conductive filaments 

is shown below:251 

��� = ��������
�                                                         Eq. 22 

where E is the electric field. σCF is the conductivity of the conductive filament. rCF is the diameter of 

the conductive filament. The evolution of conductivity filaments follows the equation shown below:251 
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where rCFmax means the maximum diameter of the conductive filament. rWork means the diameter of the 

effective device area. τForm is the nominal forming rate. τRed and τOx are the electrochemical reduction 

rate and the oxidation rate, respectively. Solving the above differential equations step-by-step will give 

the evolution process of the conductive filaments that dominates the overall resistance of devices. 

Furthermore, changes in the conductive length (or the gap between the filaments and electrode) have 

also been used to create a compact model. The modulated gap can be described by the following 

equation:252  
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where g means the distance between the top of conductive filaments to the electrode. f represents the 

escape-attempt frequency, the effective hopping distance described as a. Ea is the activation energy of 

VO. α1 is a fitting parameter. E is the electronic field. The first term corresponds to the diffusion flux. 

The second term corresponds to the drift flux. In some filamentary models, the modulated tunneling 

barriers dominate the resistance of the devices, as shown in Figure 16e. The device was SET to LRS 

before the bridging occurs by conductive filaments. Electrons tunnel through the very tunneling barrier 

and exhibit high conductivity.253 The tunneling barrier governing conduction can be described by the 

following equations.254  
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where meff is the effective electron tunneling mass, △W0 represents the tunnel barrier height. Planck’s 

constant is described as h. V is the tunneling voltage. A is the area of the filament/insulator interface. x 

is the tunneling gap. Besides, the tunneling gap can be modulated by electronic forces as shown in Eq. 

28, which changes the device resistance.255 
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where fitting parameters are ffb, frb, ifb, irb, afb, arb, xc, and b. In compact models, many assumptions and 

simplifications may be applied.  

Although compact models may give a decent accuracy for circuit simulations and design, it is 

recommended to consider device structures, experiment characterizations, and physical simulations 

before building compact models. This will give a more accountable and accurate compact model, 

benefiting the development of hardware systems. 

2.3 Memristive Devices for Neuromorphic Computing   

2.3.1 Neuromorphic Computing with Artificial Neural Network 

The development of neuroscience triggered the idea of constructing electronic hardware to mimic 

biological brain systems. Human brains rely on synapses and neurons for recognition and decision-

making tasks, which feature less energy consumption compared to conventional von Neumann 

computing systems (Figure 17a).256,257 Neuromorphic computing systems inspired by human brains 

process information in memory units, combining memory and computing (also referred to as in-

memory computing).258 This configuration does not need frequent data shuttling between memory and 

computing units as von Neumann architecture does, which benefits computing speed and energy 

efficiency.259 Deep learning has been explored for brain-inspired neuromorphic computing.260,261 ANN 

hardware implementing deep learning is gaining more and more popularity. Neural networks have input 

layers, hidden layers, and output layers consisting of artificial neurons and artificial synapses. Neurons 

receive, process, and transmit information. Artificial synapses connect neurons with different plasticity 

(weights). The illustration of a neural network is shown in Figure 17b. The memristive device can be 

used to build up ANN hardware implementing deep learning algorithms performing sophisticated 

computations. VMM is the main computing task in deep learning, which, however, is very resource-

expensive in traditional COMS systems.262 The schematic diagram of a memristive crossbar array is 

depicted in Figure 17c. Synaptic weights are stored in the form of memristive conductance. The current 

at each point follows Ohm’s law under specific input voltages. Besides, the current flowing through 

each column governed by Kirchhoff’s current law is the summation of currents from every cross point. 

This can efficiently execute VMM operations. The computing results are measured at once no matter 
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how big the matrix size, demonstrating huge parallelism. The data does not need to be moved between 

units. This technique can realize exceedingly high energy-efficient and fast computing speed.  

 

Figure 17. (a) Schematic diagram of a biological brain relying on neurons and synapses to realize computing 

functions. Reprinted with permission.256 Copyright 2020, Springer Nature. (b) Schematic diagram of fully 

connected neural networks. (c) Schematic diagram of a memristive crossbar array that implements VMM 

operations. Reprinted with permission.257 Copyright 2020, Springer Nature. (d) Schematic diagram of in-sensor 

computing architecture. (e) Schematic diagram of fully connected neural networks that are responsible for sensory 

signals. S means the stimuli response to sensory information. R is the sensory responsivity presented by 

conductance. I is the output current. Reprinted with permission.3 Copyright 2020, Springer Nature. 

Another very important extension of neuromorphic computing based on ANNs is in-sensor 

neuromorphic computing architectures.263 A substantial content of AI is to interact with surrounding 

environments and make the machine more like human beings.264 Human perceives environmental 

variation through hearing, vision, smell, taste, and touch that are correlated with acoustic sensors, 
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photodetectors (or light sensors), odor sensors (or gas sensors), and chemical sensors in machine 

respectively. Sensory signals need to be processed by computing processors for cognitive tasks, such 

as pattern recognition, decision-making, chemical identification, etc. In conventional architectures, 

sensory units, memory units, and computing units are separated from each other, resulting in high-

energy consumption due to frequent data transmission. Besides, sensing information is usually in the 

analogue form that is required to be transformed into the digital form for processing in digital COMS 

von Neumann systems, which generates a lot of redundant data and poses more pressure to memory 

and computing units. Analogue-to-digital converters (ADC) are necessary for transforming analogue 

data into digital data. This is very energy expensive and takes up large areas of computing chips. To 

overcome the problem, an advanced neuromorphic computing system called in-sensor computing is 

proposed to execute data-centric approaches.265 Reconfigurable sensor arrays enable sensing and 

computing abilities simultaneously. They can be employed to construct in-sensor neuromorphic 

systems implementing deep learning algorithms, as shown in Figure 17c. The outputs are determined 

by the sensory input and electronic programing operations. The illumination of sensory neural networks 

and corresponding matrix calculation is shown in Figure 17d.266 The output results of the vector can 

be described by the following equation.  
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                                                          Eq. 29 

where the sensory element is described by the vector S = [S1 S2 S3 … Sm]T. The responsivity of the 

array is presented by the matrix R. The synaptic and neural characteristics in the integrated systems are 

sensitive to external stimuli, combining the sensory and computing processes.267 The computing results 

are measured directly governed by Kirchhoff’s law, as shown below: 

�� = ∑ ���
�
��� = ∑ �����

�
���                               Eq. 30 

The responsivity of sensors is adjustable by external modulation, leading to the change of synaptic 

plasticity and neural spiking characteristics during the learning process. Thus, sensing and computing 

are combined in a single system. The in-sensor computing systems can simplify the hardware 
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configurations and poses low latency and high-energy efficiency. The technique shows promising 

prospects for autonomous vehicles, machine vision, speech recognition, and robotics.  

2.3.2 Memristive-based Neuromorphic Devices 

Memristive devices show promising prospects for neuromorphic systems. The modulated resistance in 

memristive devices usually relies on moving ions that are similar to neurotransmitter dynamics in 

biological neurons and synapses.268 The long-term potentiation and depression shown in Figure 18a, 

which is crucial for memory and learning. The conductance corresponding to synaptic weights can be 

modulated gradually over a certain margin, which is crucial for the training process of deep learning 

algorithms.269 The conductance modulation in neuromorphic computing systems can be described by 

the following equations.270 
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                                                         Eq. 33 

where Gp and Gd are the conductance, respectively. Gmax and Gmin are the maximum and minimum 

conductance, respectively. Pmax represents the maximum number of electronic pulses. Ap and Ad are the 

linearities of potentiation and depression respectively. The linearity of conductance, the ratio of 

Gmax/Gmin, and the state number are crucial factors influencing computing accuracy. Moreover, 

excitatory/inhibitory postsynaptic currents (EPSC/ IPSC), spike-rating-dependent plasticity (SRDP), 

and paired-pulse facilitation (PPF) are also important synaptic properties, which can support other 

brain-inspired neuromorphic systems, such as Spiking neural networks (SNNs),271 reservoir 

computing272, Hopfield neural networks,273 etc.  
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Figure 18. (a) Illustration of gradually modulated conductance that represents synaptic weights for ANNs. (b) 

Illustration of gradually modulated conductance that can be modulated by sensory signals for in-sensor computing. 

(c) Illustration of neural spiking in artificial neuromorphic systems. (d) Illustration of a biological brain consisting 

of synapses and neurons for information processing.  

For in-sensor neuromorphic computing systems, artificial synapses show sensing and computing 

capabilities. One typical example is that the external stimuli change the characteristics of 

potentiation/depression as shown in Figure 18b. The modulated ratio of Gmax/Gmin and nonlinearity 

change the output results.274,275 In particular, mini circuits enabling sensory and synaptic abilities have 

been developed for in-sensor neuromorphic computing.276 For example, the triboelectric nanogenerator, 

the photodetector, and the thermoelectric module act as the mechanical, photonic, and heat receptors, 

respectively. Stimulated signals from sensory units are transmitted to the gate of synaptic transistors or 

neural circuits to realize high-level data processing.277,278 However, the data is required to be transmitted 

among different units in circuits, indicating computing energy and delay penalty. Additionally, 

peripheral components perplex the system and increase manufacturing costs.14,279,280  

Neurons integrate signals from previous neurons via synapses and generate spiking. In hardware-

based neuromorphic computing systems, artificial neurons enabling neural activations are also essential 

for computing processes, which can be developed based on memristive devices. The currents measured 
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from the memristive crossbar based on VMM principles are collected by neural units. Neural activation 

functions can be carried out in CMOS-based arithmetic units separately, utilizing sigmoid or rectified 

linear unit (ReLu) functions.281 For fully-hardware controlled neuromorphic computing systems, 

artificial neurons are required. Several neural models have been developed, including the Hodgkin-

Huxley (HH) model,282 the integrate-and-fire (IF),283 and the leaky integrate-and-fire (LIF) model.284 

Among them, the LIF model has been widely investigated due to its simplicity, reliability, and capturing 

biological dynamics. The LIF neuron hardware is a combination of a ‘‘leaky’’ resistor term and a 

capacitor as shown in Figure 18c. The LIF neuron model can be described by the following equation:285 
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where C is the capacitance. Vc(t) is the voltage across the capacitor. I(t) is the current input from 

artificial synapses. R is a series resistor. Rm is the resistance of a memristive device. Some memristive 

devices have parasitic capacitance possessing integrating abilities, which further simplifies the 

circuits.50,250 Figure 18d illustrates the biological brain consisting of synapses and neurons which are 

the two main building blocks for neuromorphic computing systems. More insights and understanding 

of neuroscience should help explore new algorithms for brain-inspired systems. Furthermore, optimized 

artificial synapses and artificial neurons with better performances and novel properties can also 

accelerate the advances of neuromorphic systems.  

2.3.3 Neuromorphic Computing for Image Processing 

Image processing technology is prevailing, demonstrating great demand for medical diagnosis, 

autonomous vehicles, human-robot interaction, smart homes, etc.286 However, image processing, 

especially for cognitive tasks, is very resource and energy expensive. Neuromorphic computing with 

parallel processing provides significant computing efficiency compared to conventional von Neumann 

counterparts. Remarkable progress has been made to process images with memristive-based 

neuromorphic computing.256 The first hardware array-level neuromorphic network was reported by 

Dmitri Strukov et al.287 A 12 x 12 crossbar array (Pt/Al2O3/TiO2- x/Pt) is shown in Figure 19a. The 

integrated mini array physically performed VMM operations. This is a critical cornerstone for analog 

hardware with complex neuromorphic networks. Then, several expanded experimental demonstrations 

have been reported for neuromorphic computing.288–290 Convolutional neural network (CNNs) is a very 
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powerful architecture and shows elite abilities for image processing.291 A fully hardware-implemented 

CNN was developed by He Qian et al, as shown in Figure 19b.54 The array size consisted of 2048 

devices with a high yield of 99.99%. The systems performed MINST image recognition, reaching a 

high recognition accuracy of 96%. Notably, the crossbar array has the potential for high-density 3D 

integration that is more area efficient and benefits larger integration scales. Besides, photodetectors and 

processors are essential components for machine vision systems. Building a neuromorphic vision chip 

in a 3D vertical structure is energy-efficient and promising for edge computing applications.292 As 

shown in Figure 19c, a Lego-like chip consisting of multiple neuromorphic sensors and computing 

processors is demonstrated.293 Different components are connected by chip-to-chip optical 

communication. More importantly, the hetero-integrated design has replaceable chips and ANNs for 

neuromorphic computing, demonstrating unparalleled adaptability.  

 

Figure 19. (a) SEM image of an integrated 12 x 12 memristive crossbar. Reprinted with permission.287 Copyright 

2015, Nature Publishing Group. (b) Left, the photograph of a customized printed circuit board. Right, the 

processing element (PE) chip with a memristive array (2,048 devices) and on-chip decoder circuits. Reprinted 

with permission.54 Copyright 2020, The Author(s). (c) Schematic diagram of stackable hetero-integrated chips. 

Reprinted with permission.293 Copyright 2022, Springer Nature. 
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Advanced neuromorphic computing with sensory abilities for image processing has been 

explored.294,295 Modern image sensors can efficiently capture visual signals from surrounding 

environments. However, a lot of redundant data is generated, and analogue-to-digital conversion is 

required, resulting in operation latency and high energy consumption. Besides, as the number of pixels 

increases, the limitation of bandwidth hinders the shuttling of data and real-time processing. A neural 

network photodiode array was developed to realize parallel in-sensor computing, as shown in Figure 

20a.14 The photodiode acted as sensors and artificial synapses simultaneously, which utilized voltage-

modulated photovoltaic effects. The photocurrent intensity represents synaptic weights, the integrated 

array can realize the VMM operations for computation tasks. This is a pioneer strategy that can be 

extended to other physical inputs, such as tactile,296 auditories,297 and olfactory sensing.296 Another type 

of in-sensor computing for image processing is to capture the variants from environments and identify 

their influence. For example, human perception accuracy is affected by humidity levels. Thus, it is 

desirable to explore an intelligent device that is sensitive to humidity. So, it can mimic the adaptive 

behavior of human eyes in different environments. As shown in Figure 20b and c, the characteristics 

of artificial synapses constructing ANNs were adjusted by moisture.274 And the pattern recognition 

accuracy was modulated at different humidity levels. This technique reduced the circuitry complexity 

of traditional neuromorphic visual systems. It contributed to the promotion of developing artificial 

intelligence at a device level. Temperature is another key factor for AI systems. So far, intelligent 

sensory devices (also referred to as intelligence matter) enabling temperature and humidity sensations 

simultaneously for in-sensor neuromorphic computing have not been reported yet. Hence, designing 

and constructing two-terminal in-sensor computing devices with intelligent temperature and humidity 

sensations are attractive for advanced AI applications. Machine visions usually need front-end image 

processing (image sensing, image preprocessing) and back-end computational processing (cognitive 

pattern recognition, motion tracking, decision-making, etc.). The limitation of acquired progresses 

merely worked at one aspect of front-end image sensing or back-end computing.298–300 Developing a 

monolithic neuromorphic machine vision system that mimics the biological retinomorphic vision poses 

enormous potential to avoid bulky architectures, decrease fabrication costs, and improve energy 

efficiency. Figure 20d presents a monolithic machine vision system enabling sensing and 

neuromorphic computing abilities.301 A ferroelectric-semiconductor-transistor was employed due to 

broadband photo-response and linearly programmable plasticity. The technique demonstrated the 
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feasibility of sensing and computing. Notably, image preprocessing, such as contrast enhancement, 

feature extraction, and image compression, is a crucial step for image processing. While a monolithic 

visual system based on one device with front-end retinomorphic image sensing, convolution processing, 

and back-end neuromorphic computing, has not been reported. The technology poses very promising 

prospects for advanced neuromorphic machine visions.  

 

Figure 20. (a) Schematic diagram of an artificial neural network (ANN) photodiode array and the circuit of a 

single pixel. Reprinted with permission.14 Copyright 2020, The Author(s). (b) Schematic diagram of the in-sensor 

computing with memristive devices sensory to humidity. (c) The modulated characteristic of artificial synapses 

by moisture. Reprinted with permission.274 Copyright, 2021 Wiley‐VCH GmbH. (d) Schematic diagram of a 

memristive-based machine visions system enabling sensing and neuromorphic computing abilities. Reprinted 

with permission.301 Copyright, 2022 Wiley‐VCH GmbH. 
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Chapter 3. Versatile Memristor for Memory and Neuromorphic Computing 

The memristor is a promising candidate to implement high-density memory and neuromorphic 

computing. Based on the characteristic retention time, memristors are classified into volatile and non-

volatile types. However, a single memristor provides a specific function based on electronic 

performances, which poses roadblocks for further developing novel circuits. Versatile memristors 

exhibiting both volatile and non-volatile properties can provide multiple functions covering non-

volatile memory and neuromorphic computing. In this work, a versatile memristor with volatile/non-

volatile bifunctional properties was developed. Non-volatile functionality with a storage window of 4.0 

x 105 was obtained. Meanwhile, the device can provide threshold volatile functionalities with a storage 

window of 7.0 x 104 and a rectification ratio of 4.0 x 104. The leaky integrate-and-fire (LIF) neuron 

model and artificial synapse based on the device have been studied. This versatile memristor enables 

non-volatile memory, selectors, artificial neurons, and artificial synapses, which will provide 

advantages regarding circuit simplification, fabrication processes, and manufacturing costs. 

3.1 Introduction  

Modern computers need higher-density memory and more effective computation for integration into 

numerous areas of societal importance, including healthcare, education, and the economy. The 

memristor has been investigated to develop memory and computation systems due to its fast operation 

speed, low energy consumption, and small feature size.302 A memory density of up to 4.5 terabits per 

square inch was reported with a single-layer configuration, which is comparable to that of multilevel 

3D-NAND flash memory.7 The memristor is also considered an excellent emulator of biological 

synapses and neurons that are fundamental elements for brain-inspired neuromorphic computing.303 

The novel memory and computation systems can revolutionize the current computer capacity.304,305 

Versatile memristors enabling multiple functions simultaneously are attractive for memory and 

computing systems. So far, few previous reports have addressed versatile memristors. A single type of 

memristor taking multiple roles in circuits can provide many advantages in terms of circuit 

simplification, lowing energy consumption, and lowering manufacturing costs.274,306 Memristors are 

classified into non-volatile memory switching (MS) and volatile threshold switching (TS) based on the 

retention time.35 In the non-volatile MS, both LRS and HRS can be maintained for a long time after 
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removing the bias until a SET voltage or a RESET voltage is applied to modulate resistance states. In 

comparison, the volatile TS cannot maintain the LRS after the voltage is removed.11,90 The non-volatile 

MS shows promising prospects in developing high-density memory and in-memory computing.307 On 

the other hand, the volatile TS can be employed for synapse emulators, selectors, hardware security, 

and artificial neurons.11,308 Interestingly, Min Ji Yu et al. demonstrated memristive devices based on a 

Ag/Ag-GeTe/Ag structure, which can provide multi-functions of memory, selectors, and artificial 

synapses.309 However, the concentration of Te needs to be adjusted for different electronic functions. 

Volatile/non-volatile bifunctional memristors may endow chips with both data storage and computing 

abilities, indicating great prospects in novel circuits. For advanced data storage, a single system with 

volatile/non-volatile bifunctional memristors can provide both volatile and non-volatile performance, 

enabling multifunctional data processing strategies. Furthermore, bifunctional memristors can mimic 

both functions of artificial synapses and neurons for neuromorphic computing. The reported 

volatile/non-volatile bifunctional memristors with one or two functions have been studied, as shown in 

Table 3.310–327 However, versatile memristors covering multiple functions, such as non-volatile 

memory, selectors, artificial neurons, and artificial synapses have not been investigated. It is difficult 

to guarantee large storage windows (both volatile and non-volatile models), excellent endurance, and 

multiple functions simultaneously. More efforts regarding materials selection, device structure design, 

fabrication process, and physical models are needed to develop versatile memristors for multi-function 

circuits.  

To obtain volatile/non-volatile bifunctional memristors, the dynamics of Ag and Cu in the dielectric 

layer (switching layer) are crucial.328 Particularly, the switching layer significantly influences the 

diffusion of Ag or Cu ions, which is vital for both short- and long-term resistive switching properties.329 

CuInSe2 (CISe) has been extensively investigated in thin-film solar cells due to its excellent electronic 

and optical properties. Previous experimental results reported that Ag ions show good diffusivity in 

CISe layers.330,331 Besides, the injected Ag atoms can be stably reserved instead of reacting with the 

CISe host material, which is also crucial for reversible resistive switching behaviors. Therefore, we 

hypothesize that the dynamics of Ag ions in the CISe can be explored to develop CISe-based versatile 

memristors.  
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Table 3. The summary of the memristors with multiple functions. Vol-R means the ratio of volatile 

HRS/LRS. Vol-C means volatile switch cycles. N-Vol-R means the ratio of non-volatile HRS/LRS. N-

Vol-C means non-volatile switch cycles. N-Ret means non-volatile retention time. 

Device structure Vol-R Vol-C N-Vol-R N-Vol-C N-Ret Applications Ref. 

Ag/CuInSe2/Mo 7×104 400 4×105 160 104 s Synapse, neuron, 
selector, memory 

this 
work 

Cu/TaOx/δ-Cu/Pt 102 *** 105 *** 106 s Memory 310 
Au/Ti/h-BN/Cu *** 50 105 50 120 s Synapse, memory 311 

Ag/HfO2/Pt 105 300 105 300 2×104 s Synapse, memory 312 
Cu/ZrO2/TiO2/Ti *** *** 102 100 104 s Selector, memory 313 
Ag/IGZn/MnO/Pt 103 200 106 200 5×104 s Selector, memory 314 

Cu/ZrO2/Pt 102 100 10 100 104 s Selector, memory 315 
Cu/ZnO2/ZnO/ITO 10 100 40 100 104 s Memory 316 

Cu/SiOx/p++Si 45 50 103 50 105 s Synapse, memory 317 
Ag/AIZS/TiO2/Pt 105 200 105 120 104 s Synapse, memory 318 
Au/Ti/TiO2/Hf/Au 105 *** 102 30 2×103 s Selector, memory 319 

Ag/CoFe2O4 /Pt 102 100 103 500 103 s Selector, memory 320 
Ag/MXene/SiO2/Pt *** 100 103 100 104 s Synapse, memory 321 

Cu/AlN/TiN *** *** 10 100 104 s Synapse, memory 322 
Al/MnO2/steel *** *** *** 500 104 s Synapse, memory 323 

Pt/Co3O4/Pt *** *** *** 75 103 s Synapse, memory 324 
Al/Ti3C2/Pt *** *** 6×103 1000 104 s Synapse, memory 325 

Ag/CNT/TiO2/FTO *** *** 100 500 104 s Synapse, memory 326 
Pt/NCO/Pt *** *** *** 100 104 s Synapse, memory 327 

Here, a versatile memristor (Ag/CISe/Mo) array was demonstrated. Non-volatile functionalities with 

a storage window of 4.0 x 105 and a retention time of 10,000s were obtained, which can be used for 

non-volatile memory. Meanwhile, the device can provide diode-like volatile functionalities with a 

storage window of 7.0 x 104 and a rectification ratio of 4.0 x 104. This feature enables the device to be 

potentially utilized as selectors integrated with non-volatile memristors to alleviate sneak currents. The 

device can be operated for 400 switching cycles, ensuring a mean HRS/LRS ratio of over 104. The LIF 

neuron model due to its neuron-like threshold switching and artificial synaptic properties were 

investigated, demonstrating the applications of neuromorphic computing. The versatile memristor can 

play multiple roles in non-volatile memory, selectors, artificial neurons, and artificial synapses. The 

results will benefit the development of advanced data storage and neuromorphic computing systems. 
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3.2 Experimental Section 

3.2.1 Device Fabrication 

The proposed devices were fabricated by magnetron sputtering and electrodeposition methods. The 

fabrication flow chart is shown in Figure 21. The glass was used as substrate. Note, substrates with 

similar characteristics are all practicable for the fabrication process, including the silicon wafer covered 

by SiO2 oxide film and some flexible substrates. The bottom Mo electrode was deposited by DC 

sputtering (ATC ORION SERIES SPUTTERING SYSTEMS). The patterned Mo electrode was 

obtained with the help of a shadow mask. The width of the strip Mo electrode was 50 μm. Then, the 

electrodeposition was used to deposit the CISe thin film as a switching layer. For the solution 

preparation, 2.5 mM CuCl2·2H2O, 240 mM LiCl, 2.4 mM InCl3, and 4.5 mM H2SeO3 were dissolved 

in deionized water. Chemicals were purchased from Sigma-Aldrich. The electrolytic bath was buffered 

with a pHydrion buffer (pH 3.00). HCl drops were used to tune the solution pH to 2 - 3. After the 

deposition of the CISe switching layer, Ag strip electrodes were deposited by DC sputtering with the 

help of a shadow mask to form a crossbar configuration. 

 

Figure 21. The fabrication process of the Ag/CISe/Mo memristor with a crossbar configuration. 

Electrodeposition was carried out using an electrochemical workstation (CHI Model 660E Series 

Electrochemical Analyzer/Workstation) with a conventional 3-electrode setup. During the depositing 

process, a constant cathodic potential was applied to the working electrode. The deposition of 

compound CISe thin films is related to the individual chemical reactions.332 Selenide compounds can 
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directly occur due to large formation energies (△G: e.g., -386 kJ/mol for In2Se3, -104 kJ/mol for Cu2Se). 

It is hard to directly electrodeposit In metal from a single-bath solution. However, it is easy to co-

deposit compounds, such as Cu2Se, In2Se3, and CuInSe2.333 

The cyclic voltammetry (CV) test over the range of 0 V to -1 V was done to study the chemical 

reactions in the bath. CV curves in the electrolytic bath are shown in Figure 22a. For the first cycle, 

the small peak at approximately -0.1 V was attributed to the reaction of Se. Then, strong peaks 

corresponding to the generation of Cu, CISe, and H2 showed up. From the second cycle to the tenth 

cycle, the intensity of reduction peaks was decreased, especially for the reduction of Cu and H2. This 

phenomenon is because the deposited film covering the work electrodes increased the resistance.334 

Under the same potential, higher resistance corresponds to smaller current intensities. The hydrogen 

evolution was suppressed after the first cycle, which benefits the adhesiveness of the deposited thin 

film on substrates.335 The CISe film was formed after the negative potential of -0.66 V (vs. Ag/AgCl). 

Therefore, the potential was set at -0.66 V for the CISe deposition.  

A typical current-time (I-t) curve is shown in Figure 22b. At the very beginning of the deposition, 

the absolute value of current sharply decreased from about 6 mA to 0.7 mA within 50 s. This 

phenomenon is due to the forming of CISe on the surface of the Mo electrode, which significantly 

increased the overall resistance.336 Notably, the current remained almost constant after the first 50 s. 

The small current variance indicates stable electrochemical reactions and film growth. During the 

electrodeposition, two phases contribute to the interface where film growth occurs.337 One phase is the 

solution carrying ions toward the working electrode. Another phase is the boundary of the substrate 

covering the conductive coating that carries electrons. When the potential of the working electrode 

shifts from the equilibrium values to negative potentials. The reduction reactions of ions conveyed by 

the solution occur if a suitable potential is provided.338 This working mechanism determines that only 

the areas covered by Mo electrodes can grow CISe film, enabling the direct construction of switching 

layers on specific patterns.339 The deposition rate was approximately 23 nm/min. CISe film only grew 

on the patterned bottom electrode. Decreasing manufacturing costs and materials consumption are 

crucial for practical large-scale production. The electrodeposition endows remarkable advantages in 

terms of costs, deposition rates, morphology control, film uniformity, and template-based structure 

fabrication.337 Moreover, this method enables high utilization efficiency of materials because all reacted 
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elements are utilized to form films. This technique paves the way to construct integration arrays with 

high materials utilization efficiency and low manufacturing costs. 

 

Figure 22. (a) Cyclic voltammetry (CV) curves in an electrolytic bath for CISe deposition. The scan rate was 20 

mV/s. (b) Electrodeposition current versus time during the depositing process.  

3.2.2 Materials and Device Characterization Methods 

The optical micrograph was taken by an Oxford BX51M optical microscope and measurements were 

carried out by the ImageJ software. The morphology of CISe films was examined by Scanning Electron 

Microscopy (SEM, UltraPlus FESEMs) at the acceleration voltage of 10 kV. The composition of the 

thin film was measured by Energy Disperse Spectroscopy (EDS, UltraPlus FESEMs). To analyze the 

crystal structure of deposited films, Raman spectrum analysis was carried out by a Renishaw micro-

Raman spectrometer with a laser wavelength of 633nm (red, He-Ne). Grazing Incidence Xray 

Diffraction (GIXRD) on the CISe thin film was carried out using the PANalytical X’Pert PRO system 

(CuKα irradiation, λ = 1.5406 Å). The surface valence states of the CISe thin film were measured by 

X-ray photoelectron spectroscopy (XPS, Thermo-VG Scientific ESCALab 250). The electrical 

characterization of the prepared devices was performed with a 4200A-SCS Parameter Analyzer 

equipped with the probe station of MPI TS150. The test diagram can be found in Figure 21. 

3.2.3 Simulation Methods  

Simulation method for LIF neurons: The circuit was designed to demonstrate the functionalities of 

the LIF neurons based on the Ag/CISe/Mo device. The theoretical model of the Ag/CISe/Mo device 

was developed in Verilog-A based on experimental data under the volatile model. The key parameters 
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were extracted from experimental data, including HRS, LRS, VSET, and VRESET. The model can capture 

the resistive switching and volatile features of the actual device. The volatile memristor model was 

used in the LIF neuron circuit built up in the Cadence Virtuoso platform. The neuron circuit design is 

shown in Figure 23. Three artificial synapses were integrated into the circuit. A capacitor, a resistor, 

and an Ag/CISe/Mo memristor were used to mimic the function of neurons. The specifications of 

components employed in the circuit are listed in Table 4.  

Table 4. Component parameters used in the LIF neuron simulation. 

Component parameter Frequency Simulation Amplitude simulation 

VIN1 Amplitude = 1 V 

Period = 400 µs (2.5 KHz) 

Pulse width = 3 µs 

Delay = 0.3 ms 

Amplitude = 0.8 V 

Period = 100 µs (10 KHz) 

Pulse width = 3 µs 

Delay = 0.3 ms 

VIN1 Amplitude = 1V 

Period = 200 µs (5 KHz) 

Pulse width = 3 µs 

Delay = 6.7 ms 

Amplitude = 1V 

Period = 100 µs (10 KHz) 

Pulse width = 3 µs 

Delay = 3.3 ms 

VIN3 Amplitude = 1 V 

Period = 100 µs (10 KHz) 

Pulse width = 3 µs 

Delay = 13.1 ms 

Amplitude = 1.2 V 

Period = 100 µs (10 KHz) 

Pulse width = 3 µs  

Delay = 6.3 ms 

R1, R2, R3 140 MΩ 150 MΩ 

M1 LRS resistance = 2 MΩ with VSET = 0.8V 

HRS resistance = 300 GΩ 

Transition time from LRS to HRS, 400 µs 

Transition time from HRS to LRS, 10 µs 

SW1, SW2, SW3 Ideal switches that are closed only if the corresponding VIN is not at 0 V. 

They are used for simulating a current injection. 
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Figure 23. Circuit design for the simulation of artificial LIF neurons. The simulation was carried out on the 

Cadence Virtuoso platform. SW1-3 are switches. R1-4 are resistors. M1 is a threshold switching (TS) memristor. 

Pattern recognition simulation: The recognition simulation was carried out on the CrossSim platform 

written with Python.340,341 The numerical weights in the network were mapped onto the tested device 

conductance states. The nonlinearity and asymmetry of potentiation/depression curves were considered. 

The cycle-to-cycle variability was considered Gaussian noise during the simulation process. The 

conductance (weight) updating was based on the average value of conductance change (under a single 

pulse) with different initial conductance (G0). A neural network with the size of 64 × 40 × 10 was 

constructed to implement a backpropagation algorithm. The UCI small images were used as data set 

for training and testing processes.342 The neural network was trained for 30 epochs to get saturated 

accuracy. 

3.3 Results and Discussion 

3.3.1 Materials Characterizations 

Figure 24a presents the optical micrograph of the device. The left image in Figure 24a shows the 

patterned Mo bottom electrode with a width of approximately 50 μm. The Mo electrode covered with 

the CISe film is shown in the right image in Figure 24a. Only the areas covered with the Mo layer grew 

CISe, demonstrating a high materials utilization efficiency. The cross-section scanning electron 

microscopy (SEM) image is exhibited in Figure 24b. The thickness of the CISe thin film was 
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approximately 400 nm. The good adhesiveness exhibited in the image benefits electrical performance. 

To investigate the composition of the deposited CISe film, energy-dispersive X-ray spectroscopy 

(EDX) mapping is shown in Figure 24c. The composition deviated slightly from the stoichiometric 

ratio (Cu : In : Se = 1 : 1 : 2).343 Atomic percentages of Cu and In are lower than the stoichiometric ratio 

(25%), meanwhile, a slightly high content of Se was obtained. 

 

Figure 24.  Materials characterizations on the Ag/CISe/Mo device. (a) Optical micrograph of the device. (b) 

Cross-section SEM image of the device with a sandwich structure. (c) Surface composition EDX mapping of the 

deposited CISe thin film. The inset table presents the composition percentage (d) Raman spectrum of the 

deposited CISe. (e) The GIXRD spectrum of the CISe/Mo. (f) Wide-scan XPS spectrum of the CISe thin film. 

The Raman spectrum, GIXRD, and XPS were employed to investigate the crystalline structure and 

surface chemical states of the CISe. The Raman spectrum is shown in Figure 24d. The A1 vibration 

mode at 170 cm-1 and B1 vibration mode at 126 cm-1 were observed, corresponding to the tetragonal 

CISe structure.344 The GIXRD spectrum is shown in Figure 24e. The characteristic peaks of tetragonal 

CISe at 26.6°, 44.1°, 52.4°, and 59.7° corresponding to the (112), (204), (312), and (314) planes 

respectively (JCPDS file: 03-065-4869) were found.345 The GIXRD confirmed the crystalline structure 

of CISe, which was consistent with the Raman Spectrum result. Meanwhile, a strong peak at 40.5° was 

observed. This peak is assigned to the (110) plane of the Mo electrode (JCPDS file: 01-089-5156). The 
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surface chemical states of CISe were analyzed by XPS. The wide-scan XPS spectrum of the CISe thin 

film is exhibited in Figure 24f. The characteristic peaks of Cu 2p, In 3d, and Se 3d can be observed. 

High-resolution XPS spectra of the three main elements are shown in Figure 25. The Cu 2p peaks were 

located at 932.16 eV (2p3/2) and 952.09 eV (2p1/2) with a splitting orbital of 19.9 eV. This result 

confirmed the oxidation state of Cu was +1.346 Meanwhile, the peak positions of In were 444.75 eV 

(3d5/2) and 452.3 eV (3d3/2), indicating the oxidation state of In+3. The Se 3d peak at 54.71 eV (3d5/2) 

and 55.53 eV (3d3/2) demonstrated that the valance state of Se was -2.346 Additionally, two impurity 

peaks at 284.69 eV and 531.6 eV indicated the contamination of carbon and oxygen due to the sample 

exposure to the atmosphere.346  

 

Figure 25. High-resolution XPS spectra of different regions: (a) Cu 2p region; (b) In 3d region; (c) Se 3d region. 

The results confirm the chemical states of Cu, In, Se are +1, +3, -2, respectively15. 

Moreover, the permittivity ε of the CISe film was measured based on electrochemical impedance 

spectroscopy (EIS).347 To avoid the influence of Ag atoms, the EIS of the CISe was measured based on 

the Mo/CISe/Mo device. The Nyquist plot and Bode plot are shown in Figure 26. According to the 

Nyquist plot (Figure 26a), two separated semicircles were observed, corresponding to the bulk 

capacitor and the grain boundary capacitor.348 The Bode plots and fitting curves of modulus (|Z|) vs. 

frequency (f) and phase vs. frequency (f) are shown in Figure 26b and Figure 26c respectively. The 

equivalent circuit for fitting is shown in Figure 26d. Rs is the series resistor that corresponds to the 

series resistance on electrodes. The constant-phase elements (CPE) are described in Eq. 35:347 

���� =
�

�(��)�                                                      Eq. 35    

Where ZCPE is the impedance of the CPE. Q is a constant. j represents the imaginary number. ω 

represents the angular frequency (ω = 2 πf, f is the frequency). n represents a constant relating to the 
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angle of a capacitive line’s rotation on complex plane plots. The fitting process was executed on the 

ZView2 software. The solid lines shown in Figure 26 are fitting curves that matched well with 

experimental results. According to the fitting results, the capacitance can be calculated by the following                                                  

Eq. 36:349 

� = (�����)
�

�                                                          Eq. 36 

where C is capacitance, R is the resistance value of parallel resistance. n and Q are fitting parameters. 

The assignment of the two semicircles was according to the magnitude of the capacitance.348 Based on 

the “brickwork” model, the capacitance value derived from bulk (grain) falls in the order of 10-10F. 

Meanwhile, the capacitance value derived from the grain boundary ranges from 10-9 F to 10-6 F. In this 

work, the C1 (based on R1//CPE1) was 6.0 × 10-11 F which corresponded to the bulk (grain) capacitor. 

The C2 (based on R2//CPE2) was 2.3× 10-9 F which corresponded to the grain boundary capacitor. The 

permittivity is calculated with Eq. 37:350 

� =
�����

�
                                                                    Eq. 37       

Where ε is permittivity. K is electrostatic constant. d is the thickness. S is the area. The permittivity ε 

of 7.9 was calculated. The permittivity value slightly deviated from the reported value of 13.6 ± 0.8 due 

to the different status of the material, including composition, crystalline status, fabrication process, 

etc.351 The materials characterization results confirm that the single CISe phase has been formed by the 

single-bath electrodeposition at room temperature. The electrodeposition can construct CISe-based 

memristor arrays, which shows remarkable advantages. The electrodeposition process is much cheaper 

than vacuum-based processes. In addition, electrodeposition is based on oxidation/reduction processes 

on the electrodes driven by electrical potentials. The film selectively grows on areas where charge 

exchange occurs. This method enables high utilization efficiency of materials because all reacted 

elements are utilized to form films.  
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Figure 26. Impedance analysis. (a) Nyquist plot of CISe at room temperature. (b) The plot of the Modulus vs 

Frequency. (c) The plot of the Phase vs Frequency. (d) The equivalent circuit for fitting.  

3.3.2 Resistive Switching Behaviors 

A systematic analysis of resistive switching behaviors was implemented. The DC switching cycle 

test under different CCs is shown in Figure 27a. The voltage swept from -3 V to 3V. The pristine device 

showed high resistance. When the voltage swept from 0 V to 3 V, the current abruptly increased with 

a voltage of approximately 0.9 V. The device switched from the original HRS to LRS, corresponding 

to a SET process. As the voltage swept from 3 V to 0 V, the I-V curves under different CCs showed 

different characterizations. For the CC ≤ 10-4 A, the device switched back to the HRS spontaneously 

when the applied voltage stress was close to zero, demonstrating a signature feature of volatile TS 

performance.35 In comparison, the device switched back to the HRS under the negative region when 

higher CCs were applied. The result means that the LRS can be maintained after the voltage was 

removed and a negative voltage was required to RESET the device, indicating a non-volatile MS 

performance.35 Additionally, the RESET voltage shifted from positive to negative with the increase of 

CCs, demonstrating the transition from the volatile TS to the non-volatile MS.352 Figure 27b exhibits 

the probability for volatile TS as a function of CCs. The device can be switched between volatile TS 

and non-volatile MS modes by controlling the CCs.  
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Figure 27. Systematic analysis on resistive switching. (a) Typical I-V curve of the device under different CCs. 

(b) Probability for volatile TS as a function of CC. (c) Typical I-V curve of the device under a linear scale over 

the sweep voltage of -1 V to 1 V. (d) Retention time under different voltage amplitudes. (e) Retention time under 

different temperatures. (f) The Arrhenius plot of the retention time depending on the temperature. (g) Non-volatile 

switching under a pulsed-voltage operation. The operation voltage pulse was ± 3V with a duration of 1s. The read 

voltage was 0.2 V. The duty cycle of the pulse was 50%. The box plot was based on the first 165 cycles. (h) The 

HRS/LRS resistance distribution over 400 switching cycles. The data was extracted from the result of the DC 

switching cycle test. The sweep voltage was -1 V to 1 V. (i) The distribution of the device resistance under forward 

and reverse biasing over 400 switching cycles.  

Moreover, I-V curves and RESET voltage changes over the different thicknesses of CISe layers are 

shown in Figure 28. Under the same voltage stress, devices evolved from non-volatile to volatile 

characteristics when increasing the thickness of CISe, which was attributed to the different 

accumulations features of Ag atoms. Thicker and stronger conductive filaments were easier to form in 
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thinner switching layers, resulting in the RESET voltage shifting to negative regions. The non-volatile 

MS characteristics demonstrate the application for non-volatile memory. In the non-volatile mode, the 

HRS/LRS resistance distributions over 70 operation cycles (DC switching cycle test, the voltage swept 

from -3 V to 3 V) are shown in Figure 29a. An HRS/LRS ratio of 9 × 106 (Mean value) was obtained. 

Notably, the device can provide diode-like volatile properties (Figure 27c). When the voltage swept 

from 0 V to 1 V, the current abruptly increased under the voltages of approximately 0.9 V. The device 

switched from HRS to LRS, corresponding to a SET process. As the voltage swept from 1 V to 0 V, 

the LRS transformed to HRS under the voltages of approximately 0.2 V spontaneously, corresponding 

to a RESET process. This diode-like feature can be used as a selector that co-integrates with non-

volatile memory devices to suppress sneak currents in crossbar arrays.353 Besides, the volatile properties 

indicate promising prospects as artificial neurons.  

 

Figure 28. I-V curves and RESET voltage change over different thicknesses of CISe layers. Each device operated 

for 50 cycles. (a) I-V curves of the device Ag/CISe@100nm/Mo. (b) I-V curves of the device 

Ag/CISe@300nm/Mo. (c) I-V curves of the device Ag/CISe@1200nm/Mo. (d) The cumulative probabilities of 

the RESET voltages for the devices with different CISe thicknesses. 

The retention time of the Ag/CISe/Mo device under different voltages and temperatures has been 

studied. To measure the retention time, a short pulse was used to switch the device to the LRS. Then, a 

small read voltage of 0.1 V was applied to monitor the resistance evolution. The influence of pulse 
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voltage amplitudes on the retention time was studied, as shown in Figure 27d. When using the 

operation-pulse voltage of 1.0 V, the device went back to the HRS closely following the end of the 

pulse. In comparison, when the voltage was 2.0 V, the retention time extended to approximately 17 s. 

More interestingly, the retention time was significantly extended when the pulse voltage amplitude was 

3.0 V. As shown in Figure 29b, the LRS can be maintained for over 10,000 s when a pulse voltage of 

3.0 V with a pulse duration of 1 s was applied, demonstrating non-volatile switching characteristics.354 

This was because the higher voltage and longer pulse duration induced thicker and stronger conductive 

filaments due to more Ag atoms being pumped into the switching layer.355 Those stable Ag conductive 

filaments had a long lifetime and led to a long retention time. Figure 27e shows the retention time 

under different temperatures. The retention time decreased with the increase of temperatures. This is 

due to the increased mobility of Ag atoms at higher temperatures.356 Hence, the conductive filaments 

are easier to rupture and lead to the resistance states transition, which is consistent with previously 

reported results.47 The Arrhenius plot of the relaxation time vs temperature is shown in Figure 27f. The 

Arrhenius equation is used to analyze the relationship between rate constants and temperature. Here, it 

is used to investigate the minimum energy of molecules reaction, which is related to the interaction of 

Ag atoms and host materials.357 The Arrhenius equation is shown below: 

� = ��
�

��
���                                                              Eq. 38 

where k is the rate constant that equals 1/τ; τ is the retention time of LRS. A represents the pre-

exponential factor, kB represents the Boltzmann constant. Ea represents the activation energy. T 

represents the temperature. Taking a natural logarithm on the previous Eq. 38 gives Eq. 39:  

ln � = ln � −
��

��
(

�

�
)                                                 Eq. 39 

Eq. 39 was used to calculate the activation energy in the material system.358 The fitting result matched 

well with experimental results (Figure 27f). The activation energy was 0.76 eV which was higher than 

those in SiOxNy:Ag (0.27 eV) and Ag/Silk (0.52 eV).47 The activation energy is related to the energy 

barrier of Ag diffusion, which may benefit the stability of the device. The above results demonstrated 

that the device can be modulated between the volatile and non-volatile switching models.  
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Figure 29. (a) HRS and LRS resistance distributions over switching cycles. (b) Non-volatile memory behavior, 

the voltage amplitude was 3 V, the pulse duration was 1s. (c) I-V curve reproducibility of the device over 400 

switching cycles. (d) The distribution of SET and RESET voltages. The σSET (and σRESET) and μSET (and μRESET) are 

the standard deviation and the mean value, respectively. 

The endurance and stability of the device were investigated on both non-volatile and volatile 

switching models. For the non-volatile MS model, to mimic the voltage stresses applied on memory 

devices in practical applications, the resistance distribution under pulsed-voltage operation was carried 

out, as shown in Figure 27g. The device was operated normally for around 165 cycles, giving an 

HRS/LRS ratio of 4 × 105 (The mean value over 165 cycles). Then, abnormal resistive switching 

behaviours showed up, including invalid SET/RESET operation (the storage window was ≈ 0) and a 

small HRS/LRS ratio (approximately 100). The device degradation was due to heat damage over the 

switch operation. As can be seen in Figure 27g, the device was stuck in HRS after a few hundred 

cycles, which resulted in resistive switching failure. The CISe decomposes at a temperature higher than 

600 K, indicating relatively low stability.359 During the pulsed operation process, the generated heat 

will be accumulated. The heat may damage the structure of the CISe film, which hindered the diffusion 

of Ag atoms, and the device cannot switch to LRS. Ma et al. reported that repeated switching operations 

can cause phase segregation in the switching layer, resulting in resistive switching failure by stuck-in-
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HRS, which is similar to our devices.360 There is still room to improve the endurance of the device for 

practical application. Future work is necessary to improve the device endurance for practical 

applications, such as the electronic packaging process (prevent the damage of humidity and oxygen), 

optimization of the switching layer (such as thickness, roughness, crystal phase, et al), heat management 

of the device, and adjusting the device structure. For the volatile TS model, Figure 29c exhibits the DC 

switching cycle test for 400 operation cycles. The sweep voltage was from -1 V to 1 V. The distribution 

of LRS and HRS is shown in Figure 27h, the read voltage was 0.4 V. The overall HRS/LRS ratio was 

7 × 104 (Mean value over 400 cycles). No obvious degradation was observed for the first 250 cycles. 

When further operating the device, the device degenerated gradually, but it still can hold the HRS/LRS 

ratio of 1.5 × 104 (The mean value of the last 20 cycles). Figure 29d shows the distribution of SET and 

RESET voltages. The results were fitted with the Gaussian equation Eq. 40.  

� = �� + ��
�

(���)�

���                                                   Eq. 40 

where A is a constant, σ is the standard deviation and μ represents the mean value. The σSET/μSET and 

σRESET/μRESET were 11 % and 16 %. Figure 27i shows the forward and reverse resistance at ± 0.5 V over 

400 operation cycles, the results elaborated on the stability of the volatile TS regarding the rectification 

characteristic. The rectification ratio was as high as 4.0 × 104. The selector with a high rectification 

ratio can efficiently alleviate sneak currents in crossbar memristors.  

 

Figure 30. Device-to-device variability of HRS and LRS.  
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Table 5. The statistics summary of the HRS/LRS Ratio of the Ag/CISe/Mo device. 

Device Number HRS/LRS Ratio 
Mean value 

HRS/LRS Ratio 
Maximum value 

HRS/LRS Ratio 
Minimum value 

HRS/LRS Ratio 
Higher than 104 (%) 

Device 1 1.7 × 105 1.7 × 106 2.5 × 103 95 % 

Device 2 8.0 × 104 2.1 × 105 2.2 × 103 95 % 

Device 3 1.3 × 105 4.8 × 105 5.0 × 103 96 % 

Device 4 8.7 × 104 3.4 × 105 1.6 × 103 93 % 

Device 5 3.4 × 104 1.6 × 105 1.5 × 103 76 % 

Device 6 1.6 × 105 2.7 × 105 7.4 × 103 97 % 

Device 7 1.3 × 105 2.7 × 105 7.1 × 103 98 % 

Device 8 1.7 × 105 4.0 × 105 7.0 × 103 98 % 

Device 9 1.2 × 105 4.2 × 105 2.5 × 103 93 % 

Device 10 8.1 × 104 4.9 × 105 4.3 × 103 90 % 

Device 11 1.3 × 105 6.2 × 105 3.8 × 102 94 % 

Device 12 7.1 × 104 2.7 × 105 2.5 × 103 89 % 

A crossbar of 4 × 5 was fabricated. 12 of 20 devices can be operated over 100 cycles (DC switching 

cycle test, -1 V to 1 V). The yield was 60%. The LRS and HRS revolution over switching cycles is 

shown in Figure 30. The statistics analysis summary of the HRS/LRS ratio is shown in Table 5. The 

mean ratio of HRS/LRS varied between 3.4 × 104 and 1.7 × 105. Indeed, the device yield in this paper 

is lower than wafer-scale integrated memristor arrays (a high yield of 98%).30 Future work is needed to 

optimize the fabrication processes and device structures to realize practical applications. 

3.3.3 Artificial Neurons and Synapses 

Human brain activities rely on neural networks consisting of ~1015 synapses and ~1011 neurons. The 

working principle of neural networks and the equivalent hardware circuit are shown in Figure 31a. To 

mimic biological systems with artificial neural networks, the artificial neuron and artificial synapse are 

two main components. Artificial neurons generate spiking signals. Artificial synapses are connectors 

linking different neurons. The connection strength between neurons is determined by synapse weights 

(presented by the conductance of memristors).2 To realize neural functions by artificial devices, several 

neural models have been developed, including the Hodgkin–Huxley (HH) model, the integrate-and-fire 
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(IF), and the integrate-and-fire (LIF) model.2 Among them, the LIF model has been widely investigated 

due to its simplicity, reliability, and capturing biological dynamics. The LIF neuron hardware is a 

combination of a “leaky” resistor term and a capacitor as shown in the schematic diagram of Figure 

31a. The LIF neuron model is described by Eq. 41.285 

�
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����
                                             Eq. 41 

where C is the capacitance of the capacitor. The capacitor receives charges from synaptic inputs.361 

Vc(t) is the voltage across the capacitor reflecting the dynamic change of membrane potential. I(t) is the 

current input from artificial synapses. R is the series resistor. Rm is the resistance of the volatile TS 

memristor. The R+Rm is the “leaky” term. In a neural network, neurons receive inputs from other 

neurons with various amplitudes and frequencies through synapses. The received charges are stored 

and accumulated in the capacitor. The accumulation of charges in the capacitor will increase the voltage 

attributed to the memristor (M1). The SET process on the memristor occurs once the voltage applied 

on the memristor (M1) is higher than the SET voltage (VSET). The voltage across the resistor R4 

increases drastically due to the resistance reduction of the memristor (M1). Thus, a spiking action will 

be generated and sent out.285 Notably, the memristor used in the artificial neuron system should endow 

volatile properties so that it can go back to the initial state spontaneously after the spiking action.11 The 

neural circuit design is shown in Figure 23. By default, the volatile memristor (M1) was at HRS. The 

received inputs were stored and accumulated in the capacitor, resulting in the increased potential (VC) 

stored on the capacitor. VC can be calculated by Eq. 42.  

��  =  
�

�
∫ � ��                                                         Eq. 42 

where I represent input currents. C is the capacitance of the capacitor C1. Meanwhile, the charge stored 

in the capacitor slowly leaks through a conductive path consisting of M1 and R4. The leakage RC time 

constant (τ), was determined by C1, M1, and R4, according to Eq. 43. 

� =  � × (��� + ��)                                             Eq. 43 

where RM1 is the resistance of the memristor (M1). VOUT can be calculated from VC using                                  

Eq. 44. 

���� =  �� ×
��

������
                                               Eq. 44     
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VOUT is the voltage on the R4. The voltage on the memristor (M1) can be obtained with Eq. 45.   

����������  = �� − ����                                        Eq. 45     

Where Vmemristor is the voltage applied on the memristor (M1). R4 has a resistance of 4 MΩ that was 

much smaller than that of M1 at HRS. Vout ≈ 0V when M1 was at HRS according to Eq. 43. As increased 

electrons were stored in the capacitor, VC and Vmemristor increased gradually provided that the charging 

speed was faster than the leaky speed. When the Vmemristor was high enough, the memristor (M1) 

switched from HRS to LRS, which induced the abrupt increase of the VOUT. As memristor (M1) entered 

LRS and a non-zero VOUT was generated. C1 was rapidly discharged, and the VC decreased to 0 V. The 

VC dropped below the RESET voltage of 0.2 V. The memristor (M1) resumed HRS due to the volatile 

property. As a result, VOUT returns to 0 V as C1 starts to accumulate charges from input signals again. 

Notice that during the period when M1 stays in LRS, any incoming signals stored in C1 are rapidly 

discharged. This feature can mimic the refractory period in biosystems. The neuron responses under 

different input frequencies (with a fixed input voltage of 1 V) are shown in Figure 31b. Under a low 

frequency of 2.5 kHz, only 1 firing event happened with VOUT ≈ 0.55 V. In comparison, the spiking 

frequency increased when the input frequency increased to 5 KHz. This was because the accumulation 

of charges in the C1 capacitor was faster so that the memristor (M1) can be switched to LRS more 

frequently. Meanwhile, as the input signal frequency further increased to 10 kHz, the frequency of 

output spike signals increased correspondingly, demonstrating input-controlled spiking behaviors. On 

the other hand, the influence of input amplitudes (with a fixed frequency of 10 kHz) on neuron spiking 

performance has also been studied, as shown in Figure 31c. Neuron spiking was not generated under 

the input voltage of 0.8 V, because the charge accumulation was insufficient. Hence, the voltage on M1 

was not high enough to transform M1 into LRS and generate an output spike. In comparison, stable 

neuron spiking signals were obtained when the input voltage amplitude was 1 and 1.2 V. This neuron 

spiking under different frequencies and amplitudes can mimic the actions in biological neuron systems 

to implement neuromorphic computing.362  
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Figure 31. Schematic diagram of artificial neuron system and LIF neuron simulation results. (a) Diagram of 

biological artificial neuron system and the LIF neuron circuit. LGP means local graded potential that reflects the 

dynamics of the neural membrane potential. (b) The simulation of neural spiking response under different 

excitation frequencies. The b-1 shows the input signals. The b-2 shows the VC under different input signals. The 

b-3 shows the output signals. (c) The simulation of neural spiking response under different excitation amplitudes. 

The c-1 shows the input signals with different amplitudes. The c-2 shows the VC under different input signals. 

The b_3 shows the output signals. 

Synapses are crucial in biosystems, which have been investigated in the Ag/CISe/Mo device. The 

schematic diagram of a biological synapse is shown in Figure 32a. Biological synapses connect neurons 

by controlling the absorption and extrusion of neurotransmitters (K+, Na+, Ca+), inducing plasticity 

reactions. Synaptic plasticity is the change of synaptic strength under external stimuli over time. This 

phenomenon is the foundation of memory and learning activities in human brains. In artificial neural 

networks, synaptic plasticity can be mimicked by the memristor with adjustable conductance.47 When 

two spikes occur in rapid succession, synaptic strength changes by the second spike are enhanced. 

Because the interval time is too short for carriers to go back to their initial equilibrium states, namely 

paired-pulse facilitation (PPF). The plasticity of PPF is described by Eq. 46.363 

��� =
(�����)

��
× 100%                                          Eq. 46 

where G1 and G2 are the conductance of the device after the first pulse and the second pulse, respectively. 

The PPF was successfully simulated as shown in Figure 32b. The interval time between two pulses 
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was denoted as ΔT. The voltage amplitude was 1.0 V. Conductive (synaptic weight) changes depending 

on ΔT were obtained. The second pulse induced a larger conductance increase. Besides, the conductance 

returned to its original state gradually after the pulsed excitation. When the ΔT increased from 20 ms 

to 600 ms, the conductance change decreased accordingly. A shorter interval between two stimuli can 

reinforce the memory effects, demonstrating agreement with biological synapses. This follows an 

exponential relationship described by Eq. 47.364 

∆� = ���
�

∆�

�� + ���
�

∆�

�� + ��                                    Eq. 47 

Where c1, c2, and y0 are constants treated as fitting parameters. τ1 and τ2 are the fast and slow decaying 

terms, respectively. The fitting result is shown in Figure 32b (the pink line). The fast (τ1) and slow (τ2) 

decaying terms were 2.4 ms and 54.8 ms, respectively.  

 

Figure 32.  Artificial synaptic performance. (a) Schematic diagram of a synapse. (b) Experimental result of short-

term synaptic PPF behavior. (c) The potentiation and depression behaviors of the device. The pulse amplitudes 

for potentiation and depression operations were + 1 V and -1 V, respectively. The pulse duration was 50 ms. The 

read voltage was 0.1 V. 50 consecutive pulses were applied for both potentiation and depression operations. (d) 

Simulations of backpropagation algorithm for UCI Small image recognition (image size was 8 × 8 pixels). 
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Long-term potentiation and depression behaviors under pulsed-voltage programming schemes were 

obtained as shown in Figure 32c. The conductance increased as the positive-pulse voltage was used, 

corresponding to the potentiation process. In comparison, the conductance decreased under negative 

pulses, indicating the depression process. To demonstrate the feasibility of the Ag/CISe/Mo artificial 

synapse for neuromorphic computing, the backpropagation algorithm for pattern recognition was 

simulated based on a three-layer ANN. An 8 x 8 version of UCI Small images was employed as the 

training and test dataset.342 The recognition accuracy reached over 90 % after four training epochs as 

shown in Figure 32d. The pattern recognition accuracy was 90 ± 2% over 30 training epochs. The small 

accuracy fluctuation was due to the algorithm.340 The simulation results claim the potential and 

practicability of the artificial synapse for neuromorphic computing. Based on the above results, the 

versatile memristor can provide the functions of non-volatile memory, selectors, artificial neurons, and 

artificial synapses.  

3.3.4 Working Mechanism Investigations 

 

Figure 33. (a) Typical I-V curve of the Mo/CISe/Mo device. (b) The values of LRS at different temperatures for 

the Ag/CISe/Mo device. 

The resistive mechanism has been investigated systematically. To confirm that Ag dynamics dominated 

the resistive switching, the devices with different top electrodes and operation temperatures were 

studied. The electrical performance of the device with inert electrodes is shown in Figure 33a. No 

resistive switching was observed in the Mo/CISe/Mo device, confirming that Ag is essential for 

resistive switching. Furthermore, the LRS values of the Ag/CISe/Mo device under different 

temperatures were measured, as shown in Figure 33b. The resistance of LRS increased with the 
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increase of temperature, which is the signature feature of metallic conducting, claiming that the metallic 

conductive filaments governed the LRS.87 

 

Figure 34. Conduction mechanisms of the volatile TS and non-volatile MS in the Ag/CISe/Mo device. (a) Log 

(I) - log(V) curve, the voltage swept from 0 V → 1 V → 0 V. (b) Ln (|I|) - V1/2 curve, the voltage swept from 0 V 

→ -1 V. (c) Ln (|I|) – V1/2 curve, the voltage swept from -1 V → 0 V. (d) Log (I) - log(V) curve, the voltage swept 

from 0 V → 3 V → 0 V. (e) Ln (|I|) - V1/2, the voltage swept from 0 V → -3 V. (f) Ln (|I|) - V1/2,  the voltage 

swept from -3 V → 0 V. 

Moreover, the electrical mechanism of the versatile memristor was investigated. Ohmic conduction 

and interface-dominated conduction were observed in memristor devices.365 The switching layer of 

CISe was a p-type semiconductor.345 A Schottky barrier was formed at the interface of metal electrodes 

and the switching layer. Figure 34 summarizes the fitting results to elaborate conduction mechanisms 

in the Ag/CISe/Mo device with the volatile and non-volatile performance. Figure 34a shows the typical 

log (I) - log(V) curve under positive bias (0 V → 1 V → 0 V). When applying the voltage from 0 V to 

1 V, the slope was 0.99, close to 1, at the low voltage region (0 V to approximately 0.6 V). The current 

increased proportionally with the increase of voltage, indicating Ohmic conduction. Afterward, the 

slope increased to 2.79 at a voltage range of approximately 0.6 V to 0.9 V. The concentration of injected 

electrons exceeded the equilibrium concentration, indicating the SCLC effects.314 Further increasing 

the voltage led to an abrupt current increase. This was due to the formation of Ag conductive 
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filaments.366 After the device was switched to LRS, the slope was about 1.92 instead of 1.0. It did not 

follow Ohmic conduction due to the dynamic diffusion of Ag conductive filaments. When the voltage 

decreased to a certain value (approximately 0.2 V), the current decreased abruptly, demonstrating the 

rupture of Ag conductive filaments. When reversing the applied voltage, the device remained at the 

HRS. The ln (|I|) – V1/2 curves of the device at the negative region are shown in Figure 34b and c. A 

linear fit was obtained, indicating the conduction mechanism was governed by Schottky emission.214  

For the non-volatile MS performance in the device, the log (I) - log(V) curve under positive bias (0 

V → 3 V → 0 V) is shown in Figure 34d. The slope over the low voltage region (0 V-0.7 V) was 1.03, 

indicating Ohmic conduction. Then, a slope of 2.56 showed up over the high voltage region (0.7 V to 

1.0 V), indicating the SCLC conduction model. Further increasing the voltage, a sharp current increase 

was observed due to the formation of Ag conductive filaments. For the LRS, the slope was 1.01 

following the Ohmic conduction mechanism. The abrupt change was not found when the voltage swept 

from 3 V to 0 V. When reversing the voltage to the negative region, the slope was 0.97 in the low 

voltage region (0 V to approximately -1.7 V), which indicates the Ag conductive filament was stable 

and the device was still at LRS, as shown in Figure 34e. When the absolute value of voltage exceeded 

1.7 V, the current decreased suddenly. The conductive filament ruptured, and the device RESET to 

HRS. Figure 34f shows the ln (|I|) - V1/2 curve as the voltage sweeps from -3 V to 0 V. The linear 

behaviour demonstrated that the conduction mechanism was governed by Schottky emission.  

To elaborate on the conductivity evolution of the Ag/CISe/Mo device under different voltages, 

schematic diagrams of the resistive switching mechanism are shown in Figure 35. Based on the above 

discussion, the dynamics of Ag conductive filaments were responsible for the resistance switching. 

Additionally, the volatile and non-volatile behaviors were due to the different stability of conductive 

filaments, which were determined by voltage stress.355 For volatile resistive switching, as shown in 

Figure 35a, Ag atoms from the top electrode were oxidized into Ag+ under positive voltages (Figure 

35a1). This is described by Eq. 48.87  

�� → ��� − ��                                                       Eq. 48 

The ionized Ag+ penetrated the CISe film and migrated to the Mo electrode under the electrical field, 

as shown in Figure 35a2. Then the Ag+ ions were reduced into Ag atoms shown in Eq. 49:188  
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��� + �� → ��                                                      Eq. 49 

Conductive filaments connecting the top and bottom electrodes will form when sufficient Ag atoms 

were accumulated in the switching layer as shown in Figure 35a3. The resistance of the device 

decreased suddenly owing to the high-conductive Ag filaments. However, the conductive filament was 

slim and unstable, resulting in filament rupture due to the minimization of filament surface energy when 

the applied bias was small,35 as shown in Figure 35a4. When a reversed voltage was applied to the 

device, it remained at HRS since the inert Mo electrode cannot induce conductive filaments (Figure 

35a5 and a6). Thus, the device showed volatile TS characterizations. 

 

Figure 35. Illustration diagram of the volatile/non-volatile resistive switching. (a) Mechanism of conductive 

filament evolution for the volatile TS behaviors. (b) Mechanism of conductive filament evolution for the non-

volatile MS behaviors. 

With a higher operational voltage, more Ag atoms were oxidized into ions and then reduced into 

atoms, as shown in Figure 35b1 and b2. Hence, the conductive filament was thicker and stronger, as 

shown in Figure 35b3 and b4. The stable filaments did not break until the reversed voltage reached a 

certain value. Ag atoms were oxidized into Ag+ under negative voltages, inducing the dissolution of 

conductive filaments and the transition from LRS to HRS (Figure 35b5). As the negative voltage was 

further applied, the residual Ag atoms in the switching layer were further dissolved and the device 

recovered to the initial condition (Figure 35b6). Thus, the device showed non-volatile MS behaviors. 
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The versatile memristor with the adjustable retention time enables multi-functions for memory and 

computation. 

3.4 Summary 

In summary, a versatile memristor (Ag/CISe/Mo) array covering multiple functions was developed. 

Non-volatile functionalities with a storage window of 4.0 x 105 and a retention time of 10,000s were 

obtained, indicating the application of non-volatile memory. Besides, the Ag/CISe/Mo device showed 

diode-like volatile functionalities with a storage window of 7.0 x 104 and a rectification ratio of 4 x 104. 

The high rectification ratio can be used as selectors to suppress sneaky currents in memristor arrays. 

The device was operated stably over 400 cycles, ensuring a mean HRS/LRS ratio of over 104. The LIF 

neuron model based on the device has been studied, demonstrating potential as artificial neurons. 

Furthermore, the short-term synaptic PPF and long-term potentiation/depression performances were 

obtained in the same device. The image recognition simulation with an accuracy of 90 ± 2 % was 

achieved, indicating the practicability of the artificial synapse for neuromorphic computing. A versatile 

memristor taking the multiple roles of non-volatile memory, selectors, artificial synapses, and artificial 

neurons will provide many advantages regarding circuit simplification, fabrication processes, and 

manufacturing costs. The devices with different top electrodes, operation temperatures, switching layer 

thicknesses, and conduction mechanisms were investigated to reveal the resistive switching 

mechanism. It has been confirmed that the volatile/non-volatile bifunctional resistive switching was 

attributed to the dynamics of Ag atoms. Moreover, this work presented a novel bottom-up approach to 

fabricate crossbar arrays, where the CISe was grown locally by electrodeposition to form a patterned 

switching layer. This method can potentially decrease manufacturing costs and achieve high utilization 

efficiency of materials. The results will promote the development of advanced data storage and 

neuromorphic computing systems.  
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Chapter 4. Intelligent matter endows reconfigurable temperature and humidity 

sensations for in-sensor computing 

In the previous chapter, a versatile memristive device was developed by controlling the lifetime of 

conductive filaments. Here, the sensing function (temperature and humidity) will be explored based on 

the filamentary memristive device.  

Data-centric tactics with in-sensor neuromorphic computing go beyond the conventional computing-

centric tactic that is suffering from processing latency and excessive energy consumption. The 

multifunctional intelligent matter with dynamic smart responses to environmental variations paves the 

way to implement in-sensor neuromorphic computing with high energy efficiency. However, intelligent 

matter with humidity and temperature sensitivity has not been reported. In this work, a design is 

proposed based on a single memristive device to achieve reconfigurable temperature and humidity 

sensations. Opposite temperature sensations at the LRS and HRS were observed for sensory processing. 

Integrated devices mimicking intelligent electronic skin (e-skin) can work in three modes to adapt to 

different scenarios. Additionally, the device acts as a humidity-sensory artificial synapse that can 

implement high-level cognitive in-sensor neuromorphic computing. Intelligent matter with 

reconfigurable temperature and humidity sensations is promising for energy-efficient AI systems. 

4.1 Introduction 

Intelligent technology is fundamentally revolutionizing our daily life by updating the paradigm of 

computing systems inspired by energy-efficient human brains.8 Intelligence embracing learning and 

adapting abilities is mostly observed in biological organisms.367 The intensive proliferation of AI 

constantly advances modern technology limits, making machines behave more like intelligent 

creatures. However, two main technical barriers to more powerful intelligent machines are yet to be 

solved, namely, (i) a large amount of redundant and unstructured raw data from sensory nodes; and (ii) 

energy-inefficient and time-consuming data processing.3 To overcome the challenges, one strategy is 

shifting from a computing-centric tactic to a data-centric tactic by co-integrating various functional 

components into a single device for in-sensor computing, whereby the sensory data will be processed 

locally without data shuttling.263 To construct novel intelligent systems, intelligent matter enabling 

dynamic smart responses to the environment would inspire an entirely novel concept of AI.8 The 
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intelligent matter comprehending environmental variations enables reconfigurable sensation and 

memory abilities to external stimuli (mechanical stress, chemical molecules, light, temperatures, 

humidity, etc.). The reconfigurable functionalities go far beyond the capability of static matter 

(conventional sensors)368 and benefit intelligent systems interacting with environments.369 Intelligent 

matter is the basic building block for advanced in-sensor neuromorphic computing and AI technology.8 

 

Figure 36. Conceptual illustration of intelligent matter with reconfigurable temperature and humidity sensations. 

(a) Schematic diagram of a biological system with synergistic temperature and humidity sensations. (b) Schematic 

diagram of the switchable device with temperature and humidity sensations. MCF means metallic conductive 

filament. 

Developing intelligent matter with novel sensory functions and easy-integrability structures is 

important for in-sensor neuromorphic computing. Sensory signals consist of mechanical contacts 

(tactile, press, strain), photonic stimulations (spanning from the ultraviolet region to the near-infrared 

region), temperature changes, humidity variations, and chemical molecules.369 Thereinto, temperature 

and humidity are two main pieces of sensory information that are crucial for biological individuals. As 

shown in Figure 36a, the stimulation from the changes in temperature and humidity generates the 

excitation spikes that will be transmitted to the central processing unit of the brain. Then, the brain will 
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send orders to muscles and take actions to avoid damage or search for a safe spot, which is crucial for 

biological survival. In brain-inspired in-sensor neuromorphic computing systems, matter-level 

components equip sensory functions and capabilities of biological organs (synapses and neurons, etc.), 

which can implement high-level physiological learning and cognitive abilities.  

Table 6. Summary of the memristive devices-based intelligent matter for in-sensor neuromorphic 

computing. 

Sensing type Intelligent sensational matter  Application Ref. 

Tactile  Ferroelectric-gated synapse Realtime decisions and 279 

Ultraviolet light Reconfigurable phototransistor Neuromorphic vision 370 

Ultraviolet light Ferroelectric photosensor Real-time machine vision 280 

Ultraviolet light Light-mediated memristor Real-time collision detection 90 

Ultraviolet light Photo-induced phase transition Neuromorphic vision 371 

Ultraviolet light Reconfigurable photodiode Ultrafast machine vision 14 

Visible light Li+-mediated phototransistor Sensing-memory for retina perception 372 

Visible light Phototransistors Scotopic and photopic adaptation 373 

Chemical, Alcohol Covalent organic framework Gas identification system 374 

Humidity Porous zwitterionic sensor Locating water sources 275 

Temperature Floating gate synaptic transistor Temperature-facilitated learning 375 

Multi-modal: Tactile, 

green light 

Stretchable nanowire transistor Gesture recognition 376 

Multi-modal: 

Ultraviolet, humidity 

MXene-ZnO memristor Sensory neuromorphic vision 274 

Multi-modal: 

Temperature, humidity 

Filamentary memristor  Sensory neuromorphic vision This 

work 

Intelligent matter based on a single device with different sensory functionalities has been reported 

for in-sensor neuromorphic computing, as summarized in Table 6.14,90,274,275,279,280,370–376 One strategy 

for constructing intelligent matters is to develop three-terminal artificial synapses. External stimuli 

(such as tactile or light) imposed on the gate terminal induce ionic insertion or ferroelectric polarization 

modulation. The device presents sensory synaptic performances that can be utilized for in-sensor 

neuromorphic computing.279,372 Another strategy is to design two-terminal devices enabling sensory 
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reconfiguration and memorizing ability to changing environments. Notably, two-terminal devices show 

better integrability compared to their three-terminal counterparts. However, only a few works have 

reported the two-terminal intelligent matter.90,274 Furthermore, intelligent matter enabling temperature 

and humidity sensations simultaneously for in-sensor computing has not been reported yet. Hence, 

designing and constructing two-terminal in-sensor computing devices with intelligent temperature and 

humidity sensations are attractive for advanced AI applications. 

A memristive device was employed to design an intelligent matter with reconfigurable temperature 

and humidity sensations. The memristive device presents programmable and non-volatile resistance.4 

It can reversibly switch between different resistance (or conductance) states determined by the history 

of electrons following through it. Non-volatile internal states can be obtained by applying voltage or 

current excitations. Several mechanisms, such as phase change, ferroelectric polarization modulation, 

electrochemical redox reactions, and magnetic tunnelling have been reported to explain resistive 

switching phenomena.377 Variation occurs inside a memristive device during the resistive switching 

process. Therefore, different temperature and humidity sensations can be expected when the memristive 

device is at different states. Another specialty of this design is that the state switching is reversible, 

which means the intelligent computing exhibits reconfigurable sensory capabilities. A counterintuitive 

philosophy is utilized in this design. A memristive device is expected to be sensitive instead of resilient 

(in traditional ideology) to environmental changes.378 Besides, memristive devices have a simple 

capacitor-like sandwich structure that is beneficial to high integration density.379 With the rapid 

development of microsystems and nanosystems, such as microelectromechanical systems (MEMS),380 

lab-on-a-chip,381 biology at a single cell level,382 microfluidic systems,383 and microscale biological 

reactors.384 On-chip temperature sensors and microscale humidity gradient monitors are crucial. 

Demand has risen for microscale or even nanoscale temperature and humidity sensors. Particularly, the 

device reported in this work can be used as a sensory artificial synapse that can implement 

neuromorphic computing. State-of-the-art deep neural networks (DNNs) contain millions of weights or 

more, which must be mapped to on-chip synaptic memories. Therefore, high-density integration of 

synaptic devices is required.  

The filamentary resistive switching due to electrochemical redox reactions is one of the main working 

mechanisms. The pristine device is at a high resistant state (HRS) as shown in Figure 36b. The 
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temperature and humidity sensations are determined by the properties of the switching layer (generally 

insulators or semiconductors). After the SET process, the metallic conductive filament (MCF) bridging 

the top and bottom electrodes is generated inside the switching layer. The device is at a low resistance 

state (LRS). The electronic property at the LRS is dominated by the metallic filament, which shows 

different temperature and humidity sensations compared to its HRS counterparts. More specifically, the 

semiconductor switching layer presents a positive temperature coefficient of conductance, indicating 

that the conductance of the HRS increases with increased temperature. In comparison, the metal shows 

a negative temperature coefficient of conductance, which means the conductance of the LRS decreases 

with increased temperature.385 Besides, the humidity level affects electrochemical redox reactions 

during the SET process, which will change the conductivity of the metallic filament. The conductance 

at LRS thus is sensitive to humidity.219 The sensory performance is programable as it is reversible 

between the HRS and LRS. Those reconfigurable sensory properties can be utilized for in-sensory 

neuromorphic computing.  

In this work, a novel intelligent matter based on a memristive device with reconfigurable temperature 

and humidity sensations was developed. The device structure was Ag/ Cu (In, Ga) Se2 (CIGSe)/Mo, as 

shown in Figure 37a. The Ag acts as an active electrode that shows active chemical reactivity and can 

be induced into the CIGSe. Ag species exhibit good diffusivity in the CIGSe, which is crucial for the 

formation of conductive channels.15,331 The device showed reliable resistive switching behaviors, with 

an HRS/LRS ratio of 1700, an endurance of over 5000 cycles, and artificial synapse functions. The 

device showed different responses to the temperature and humidity sensations when the device was at 

different states. The in-sensor low-level data processing (temperature patterns detection, enhancement, 

and reconfiguration) and in-sensor high-level data processing (humidity-sensitive neuromorphic 

computing) were demonstrated. The intelligent matter showed a positive temperature coefficient of 

conductance at the HRS, while it exhibited a negative temperature coefficient of conductance at the 

LRS. The system with integrated intelligent matter can work in the LRS mode, HRS mode, and 

HRS&LRS mode due to different temperature sensations. This can be potentially used for advanced-

intelligence artificial skins for different working scenarios. Furthermore, high-level data processing 

under different humidity was demonstrated by implementing a neuromorphic computing simulation. 

The in-sensor computing can be extended to decision making, language processing, real-time predictive 

analytics, etc. The intelligent matter enabling reconfigurable temperature and humidity sensations 
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accelerates the neoteric technology toward advanced e-skin, neurorobotics, cyborg, and human-

machine interaction in the post-Moore era. 

4.2 Experimental Section 

4.2.1 Device Fabrication 

The Ag/CIGSe/Mo and Mo/CIGSe/Mo devices were fabricated by magnetron sputtering and 

electrochemical deposition. The Mo/CIGSe/Mo device was used as a comparative trial to investigate 

resistive switching mechanisms. The Mo layer was deposited by direct current sputtering (ATC ORION 

SERIES SPUTTERING SYSTEMS) as the bottom electrode. A shadow mask was used to obtain a 

patterned Mo electrode. Then, the CIGSe switching layer was formed via the electrodeposition process. 

To prepare the reaction bath, 2.5 mM CuCl2·2H2O, 2.4 mM InCl3, 6 mM GaCl3, 240 mM LiCl, 4.5 mM 

H2SeO3 were dissolved in DI water. All chemicals used in this experiment were purchased from Sigma-

Aldrich. Besides, pHydrion (pH 3.00) was employed as the buffer. HCl drops were added to adjust the 

electrolyte pH to 2 - 3. The electrodeposition process was carried out with an electrochemical 

workstation (CHI Model 660E Series Electrochemical Analyzer/Workstation). A conventional 3-

electrode setup was used. The CIGSe film was obtained by applying a constant potential (-0.63 V in 

this work) to the working electrode. Relative smooth and density CIGSe can be obtained on the 

patterned Mo electrode. Then, the Ag (or Mo) strip electrode was deposited on the top of the CIGSe to 

form a capacitor-like sandwich structure.  

4.2.2 Materials and Device Characterization Methods 

The optical micrograph of the device was taken by an optical microscope (Oxford BX51M). The 

surface morphology of the CIGSe film and the cross-section of the device was characterized by SEM 

(UltraPlus FESEMs). The composition information was measured by EDS (UltraPlus FESEMs). The 

GIXRD was carried out to characterize the crystalline structure of CIGSe (PANalytical X’Pert PRO 

system, CuKα irradiation, λ = 1.5406 Å). The Raman spectrum was measured by the Renishaw micro-

Raman spectrometer (laser wavelength of 633nm, red He-Ne). The electrical measurement of the 

fabricated devices was performed on a Keithley 2985A source meter. 
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4.2.3 Simulation Methods 

Theoretical material simulation: Density functional theory calculations were performed on the 

platform of CP2K software. The Gaussian Plane method was based on double-ζ MOLOPT basis sets 

(DZVP-MOLOPT-SR-GTH) and Goedecker-Teter-Hutter (GTH) pseudopotentials. The convergence 

criterion was 1 × 10-6 and the cut-off energy was set as 450 Ry. Periodic models with vacuum space 

were chosen to describe the interaction between CIGSe and Ag clusters. Firstly, the creation of the 

CIGSe model with vacuum space was optimized. And then, the Ag cluster was absorbed on the CIGSe 

model for ab intio molecular dynamics calculations (AIMD) in the ensemble-canonical ensemble 

(NVT). The time step was set as 1 fs for 2000 steps under the temperature of 303K. Similarly, the O- 

functional group generated due to the existence of H2O molecules was used to bind on the surface of 

CIGSe model (labeled as CIGSe-O), and further were applied by AIMD calculations under the same 

parameters. Metadynamics calculations of free energy were carried out to investigate the reaction 

mechanism, the temperature was set at 303 K. Based on two collective variables: the distance of Ag 

atom on XZ plane (CV1) and YZ plane (CV2). These simulations allow Ag atom to relax in Z direction 

with the minimum activation energy. 

4.3 Results and Discussion 

4.3.1 Material Characterizations 

Materials characterizations for the device are shown in Figure 37. The device has a capacitor-like 

sandwich structure that can be integrated into a high-density crossbar structure as presented in Figure 

37a. A cross-sectional SEM image of a device is shown in Figure 37b. The thickness of the CIGSe was 

approximately 230 nm. A dense and crack-free feature in the CIGSe can be observed. Figure 37c 

presents the surface morphology of the CIGSe film. The crystalline grain grew into flower-like grain 

particles. Surface composition mapping illustrated that the four elements (Cu, In, Ga, Se) were 

distributed uniformly (Figure 37d). No obvious composition segregation was observed in the deposited 

film. The atomic percentages of Cu, In, Ga, and Se were 27.1 %, 14.39 %, 7.71 %, and 50.89 % 

respectively. To clarify the crystalline structure of the materials, the Raman and GIXRD spectra were 

measured. Figure 37e shows the Raman spectrum of the CIGSe, in which the characteristic peak 

corresponding to the A1 mode can be found.386 The GIXRD pattern is shown in Figure 37f. The 
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characteristic peaks corresponding to (112), (220), and (312) crystal planes of a tetragonal structure 

(JCPDS 00-035-1102) were observed.387 Notably, the peak at approximately 40.5° corresponded to the 

(110) crystal plane of the Mo bottom electrode (JCPDS file: 01-089-5156).15 The Raman spectrum and 

GIXRD pattern confirmed that the CIGSe with a chalcopyrite structure was formed by the 

electrochemical deposition process. 

 

Figure 37. Materials characterizations. (a) Schematic diagram of the device structure. (b) Cross-section of the 

device. (c) Surface topography of the deposited CIGSe switching layer. (d) Surface composition mapping 

(Element: Cu, In, Ga, Se) of the CIGSe film. (e) Raman spectrum of the CIGSe thin film. (f) GIXRD spectrum 

of CIGSe/Mo. 

4.3.2 Resistive Switching and Sensory Characterizations 

The electronic characterizations of the device have been investigated systematically as shown in 

Figure 39. The DC switching cycle test is shown in Figure 39a. The sweep voltage was 0 → 2 V → -

2 V → 0 V. The pristine device exhibited the HRS, as the voltage swept from 0 to 2 V, the current 

increased sharply at the voltage of 0.18 V ~ 0.32 V. The device switched to the LRS, corresponding to 

a SET process.27,388 When the applied voltage swept from 0 to -2 V, the device returned to the HRS at 

the negative voltage of around -1.05 V ~ -0.54 V. The switching process was reversible and dependable. 

To investigate the operational stability, the cumulative probability of the operating voltage is shown in 
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Figure 39b. The coefficient of variations (CVs) of the SET and RESET voltages were 0.12 and 0.20, 

respectively. Moreover, DC switching cycle tests under different CCs were carried out as shown in 

Figure 38a. The CCs influence the LRS; smaller CC corresponds to a lower value of current (larger 

resistance). Resistance-state distributions are shown in Figure 38b. The device demonstrated a 

multistate feature, indicating the potential of ultrahigh multistate memory and tunable states for 

neuromorphic computing.389 The endurance of the device is shown in Figure 39c. The device can be 

operated reliably over 5000 cycles with a large memory window of 1700 (mean value of HRS/LRS 

ratio). The retention time in both states was measured as shown in Figure 38c. The switched states can 

be maintained for approximately 4500s, indicating a non-volatile feature.115 Additionally, the device-

to-device variation is shown in Figure 38d, indicating good process reliability. The above results 

demonstrate that the device shows reliable resistive switching properties, good endurance, and a large 

memory window. 

The device also presented synaptic functionalities, which are crucial for in-sensor neuromorphic 

computing. In biological neurological systems, synapses connect neurons, ensuring neurotransmitters 

can travel among neurons to transmit messages from neurons to neurons or from neurons to muscles. 

Synaptic plasticity (excitatory/inhibitory) represents the connection strength between neurons, which 

is fundamental for information transmission and processing.304 In artificial synapse systems based on 

electronic devices, the plasticity can be represented by modulated conductance. The paired-pulse 

facilitation (PPF) behavior is short-term plasticity. The synaptic strength change is enhanced by the 

second stimulation when two rapid-consecutive stimulations are imposed. It is due to the interval time 

between the two excitations being too short for carriers to return to initial equilibrium states. Figure 

39d shows the PPF behavior of the device. 340 It can be found that the PPF index decreased as the 

interval time increased, indicating that a shorter interval time of stimuli reinforces the memory effects. 

The pink line in Figure 39d is the fitting result. An exponential relationship was confirmed, which is 

consistent with the feature in biological systems. The potentiation responses under consecutive voltage 

pulses with different amplitudes are shown in Figure 39e. A monotonic increase in the pulse number 

was observed. It means that more pulses induced stronger potentiation effects. Additionally, the ratio 

of G100/G1 (G1 and G100 are the conductance after the first and 100th pulse respectively) increased with 

the increase of pulse voltage amplitudes. The G100/G1 ratio of 3.7 was obtained when the voltage 

amplitude of 1 V was used. In comparison, the G100/G1 ratio increased to 16.2 when the voltage 



 

88 

 

amplitude increased to 2 V. In a biological system, one of the essential synaptic functions is stimulation-

strength-depended responses. Higher stimulation resulted in higher potentiation effects. This feature 

can help biological identities to identify stronger stimulations and sometimes protect them from 

hazardous external stimulation.390 The experimental results were consistence with the feature in 

biological systems, in which stronger stimulations induce higher neural excitations.391,392 Furthermore, 

the potentiation/depression performance was observed in the device as shown in Figure 39f. When 

consecutive positive pulses were applied to the device, the conductance increased monotonously, 

corresponding to a potentiation process. In contrast, the conductance of the device decreased 

monotonously as negative pulses were applied, corresponding to a depression process. The performance 

is crucial for brain-inspired neuromorphic computing in artificial neural networks (ANNs) that can 

process data locally.379  

 

Figure 38. (a) DC switching cycle test under different compliance currents (CCs). 100 switching cycles for each 

test. (b) Resistance states distribution under different compliance currents (CCs). (c) The retention time of the 

HRS and LRS. (d) The device-to-device variation. The results are from the direct current (DC) switching cycle 

test. 
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Figure 39 Electronic characterizations. (a) DC switching cycle test for 60 cycles. (b) Cumulative probability of 

the operation voltages. CV represents the “coefficient of variation” which was defined as the standard deviation 

divided by the mean value. (c) The endurance of the device, which is presented by the resistance distribution 

under consecutive switching operations. The pulse duration was 200 ms. (d) Short-term synaptic paired-pulse 

facilitation (PPF) behavior. The pulse amplitude was 1V. Data points were extracted from the average values of 

five tests. The fitting equation was ��� = ���
���

�� + ���
���

�� + ��. The fitting parameters of A1, A2, y0, τ1, and 

τ2 were 639.4, 123.2, 22.9, 0.3 ms, and 5.4 ms respectively. (e) Conductance modulation under consecutive pulses 

with different amplitudes. The pulse number was 100. The pulse duration and pulse interval time were both 10 

ms. (f) Potentiation and depression performance of the device. (g) Conductance changes (LRS and HRS) under 

different temperatures. (h) Change of LRS/HRS ratio under different temperatures. L_H Ratio means the ratio of 

LRS/HRS. The X-axis and Y-axis are both in linear scale. For the inset, the X-axis and Y-axis are in linear scale 

and natural-logarithm scale, respectively. (i) Conductance changes (LRS and HRS) under different humidity 

levels. 
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The temperature and humidity sensory responses under different states of the intelligent matter were 

studied. As shown in Figure 39g, the temperature sensations at the LRS and HRS were measured. 

When the device was at LRS, the conductance value decreased (resistance increased) with the increase 

of temperature, indicating a negative temperature coefficient of conductance. On the contrary, when 

the device was at HRS, the conductance increased (resistance decreased) with an increased temperature. 

It demonstrated a positive temperature coefficient of conductance. Because the device can reversibly 

switch between the LRS and HRS, the temperature sensation was reconfigurable and programmable by 

the voltage. Additionally, the ratio of LRS/HRS increased monotonically with increased temperature, 

as shown in Figure 39h. The LRS/HRS ratio changed slowly with the temperature increase when the 

temperature was lower than around 350 ℃. In comparison, the ratio increased exponentially when the 

temperature was further increased (>350 ℃). As shown in the inset of Figure 39h, data points followed 

a linear feature in the linear and natural-logarithm scales. This exponential temperature sensation is 

analogous to that in biological systems, which can be considered a protection scheme to improve the 

survival rate.393 When the temperature of the surrounding environment surpasses a certain threshold 

point, the stimulation signal from sensory systems would be enhanced exponentially to alert the host 

that evasive action is required to escape from the current situation. Besides, the temperature can also 

potentially modulate short-term memory behaviors, which might be useful for temperature sensing.394 

Furthermore, the conductance changes of LRS and HRS under different humidity levels are presented 

in Figure 39i. The water molecules were penetrating the switching layer from the lateral sides.219,395 

The results were measured from low relative humidity (RH) to high RH. The HRS was insensitive to 

the humidity as the conductance was kept almost constant until the humidity level was too high. The 

conductance increased to a larger value at the humidity of 90%. In contrast, the conductance of the LRS 

increased constantly as the humidity increased, indicating a humidity-sensing functionality. To further 

confirm the reversibility of humidity sensation, the reversibility test of conductance changes is shown 

in Figure 40. The result confirmed that the effects of humidity on conductivity were reversible. It 

indicates that the device can be switched between humidity-sensitive and humidity-non-sensitive 

modes by switching the device between the HRS and LRS. The systematic electronic characterizations 

demonstrated that intelligent matter provided adjustable temperature and humidity sensations. 
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Figure 40. Reversibility test of conductance changes (LRS and HRS) under different humidity levels. 

4.3.3 Working Mechanism Investigations 

The working principle of the reconfigurable sensations has been investigated via experimental 

measurements and theoretical simulations. The typical log (I)-log(V) curve of the device over the 

positive voltage region is shown in Figure 41a. When the applied voltage was at the low-value region 

(Log(|V|): -2 → -0.9), the slope was around 1.13 which was nearly 1.0. The current increased 

proportionally to the applied voltage, which indicated the conduction mechanism was governed by 

Ohm’s law. When further increasing the voltage, the current increased abruptly (resistance decreased 

abruptly). The device was SET to the LRS from the HRS due to the formation of the silver filaments.10 

When the positive voltage was applied on the top Ag electrode, Ag atoms are oxidized into Ag+. The 

generated Ag+ moved to the counter electrode side and was reduced into the Ag atom. High-

conductivity Ag channels bridging the top and bottom electrodes were formed once enough Ag atoms 

were accumulated in the CIGSe switching layer, and the device showed the LRS. As shown in Figure 

41a, the slope of the log (I)-log(V) curve was 1.09, close to 1.00, when the device was at LRS (Log(|V|): 

-2 → 0.3 V), indicating that Ohm’s law governs the conduction mechanism, which is consistent with 

the filamentary model.10 When the voltage was reversed (negative voltage was applied), the inserted 

Ag atoms were reduced into Ag+, and the conductivity filaments were resolved. The device was RESET 
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to the HRS. Figure 41b exhibits the log (I)-log(V) curve over the negative voltage region. When the 

applied voltage was at the low-value region (Log(|V|): -2 → -0.2 V), the slope was around 1.01 which 

was close to 1.00, indicating Ohmic conduction that was the same as that of LRS over the positive 

region. It means the formed conductive filaments were stable under low negative voltages. When the 

negative voltage was high (Log(|V|) > 0.4), the current decreased suddenly, which indicated the 

conductive filaments ruptured and the device returned to HRS. When the device was at HRS under 

negative bias, the electrical conduction curve was fitted with the Schottky emission mechanism as 

shown in Figure 41c. To further confirm the transition between HRS and LRS was because of the Ag 

conductive filaments, a device of Mo/CIGSe/Mo with an inert top electrode was fabricated. The DC 

switching cycle test is shown in Figure 41d. No resistive switching phenomenon was observed, which 

confirmed that Ag atoms were essential for the resistance change. The resistive switching was derived 

from the formation/rupture of silver conductive filaments. 

 

Figure 41. (a) The DC switching cycle test of the device in the log (I)-log(V) scale (positive region). (b) The DC 

switching cycle test of the device in the log (I)-log(V) scale (negative region). (c) The DC switching cycle test of 

the device in the V1/2- Ln(I) scale (negative region). (d) The DC switching cycle test of the Mo/CIGSe/Mo. The 

sweep voltage was 0 → 1 V → -1 V → 0 V. 
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The principle of the opposite temperature sensations at the HRS and LRS was elaborated. As 

mentioned above, the foundation of resistive switching was the formation and rupture of the silver 

conductive channels, which implied that the electron conduction can be shifted between 

semiconductive and metallic states. At the HRS, the conductance was determined by the switching layer 

of CIGSe which is a p-type semiconductor.396 Ideally, at 0 K, semiconductors cannot conduct electrons 

or their conductivity is zero because all charge carriers are frozen in the valence band and below the 

Fermi level.385 With the increase of temperature, electrons in the valence band absorb thermal energy 

and jump to the conduction band, generating electron-hole pairs that act as charge carriers, as shown in 

Figure 42a (right). Electrical current will flow when voltage is applied due to the existence of charge 

carriers. Additionally, a higher temperature means that more thermal energy creates more electron-hole 

pairs and a higher density of charge carriers.385 Therefore, the conductance increased with the increased 

temperature when the device was at the HRS, indicating a semiconductive feature. In comparison, metal 

conducts electricity because many electrons in the metal can move freely.397 The main resistance for 

electrons’ directional migration is from the thermal vibration of metallic atoms that scatter moving 

electrons. Thus, the conductivity of metals decreases with the increase of temperature, as higher 

temperature corresponds to stronger atomic vibrations. As shown in Figure 42b, the metallic filaments 

were formed at LRS. The conductance was dominated by the high-conductivity metallic filaments that 

exhibit metallic features. Therefore, the overall conductivity of the device decreased as the temperature 

increased. The intelligent matter enables opposite temperature sensations derived from semiconductive 

(HRS) and metallic (LRS) modes.  
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Figure 42. Working mechanism. (a) Schematic diagram of the HRS under different temperatures, Conductance 

increased with the increase of temperatures. The letter “T” and “G” in the picture means the temperature and 

conductance, respectively. The upward arrow and downward arrow mean the increase and decrease of the relevant 

values. (b) Schematic diagram of the LRS under different temperatures. Conductance decreased with the increase 

of temperature. (c) Schematic diagram of HRS under different humidity levels. Conductance barely changed as 

modulating the humidity. The letter “H” and “G” in the picture means the humidity and conductance, respectively. 

The upward arrow means the increase of the relevant values. (d) Schematic diagram of LRS under different 

humidity levels. Conductance increased with the increase of humidity levels. (e) Illustration of the diffusion 

mechanism of Ag atoms at the bare and H2O-bonded surfaces. 



 

95 

 

As for the humidity sensory property, the device at different states showed different humidity 

sensitivities. The memristive device (based on the electrochemical metallization mechanism) operated 

under different humidity levels can be regarded as an electrochemical cell that is divided into two half-

cells.395 Both half-cell electrochemical reactions, including the anodic oxidation and cathodic reduction, 

occurred separately during the resistive switching process. When the positive voltage was applied, 

anodic oxidation took place at the Ag/CIGSe interface, which induced the Ag ions into the switching 

layer. The oxidation reaction of anodic oxidation to generate oxygen was also plausible.398 But the 

oxidability of Ag was higher than the hydroxyl counterpart, which means the oxidation of Ag 

dominated the anodic oxidation reaction. The cathodic reduction at the counter electrode (bottom 

electrode) was described below:219 

�

�
�� + ��� + 2�� → 2���                                   Eq. 50   

When the device was at the HRS, the electronic properties were dominated by the switching layer of 

CIGSe. The main functional group that can be bounded to the CIGSe crystal structure with the existence 

of H2O molecules was -O because oxygen molecules can be generated due to hydrolysis reaction under 

extra voltages.224,398 The -O functional group posed a robust interaction with the CIGSe crystal, 

indicating it can be bonded to the CIGSe surface. The work function (φ) was calculated by the following 

equation: 

� = ���� − ��                                                          Eq. 51 

where Evac and EF represent the vacuum level and Fermi level, respectively. The φ values of CIGSe and 

CIGSe-O were 5.40, and 5.15eV, respectively. A small variation of work function was observed before 

and after the bonding of the O- group. This means the CIGSe can show stable electronic features even 

with the existence of CIGSe-O (Figure 42c).399 However, when the humidity was too high, the 

conductance jumped to a high value compared to the pristine value (Figure 39i). The reason was that 

more hydroxyl ions and protons were generated and accumulated, which improves the conductivity of 

the switching layer.274 In comparison, the LRS showed humidity-sensitive features as shown in Figure 

42d. The electronic properties of the LRS were dominated by the Ag conductive filaments. A higher 

humidity level facilitated the oxidation rate of Ag atoms since the total cell reaction was limited by the 

counter-electrode reaction.395 A higher humidity level provided more residual water species and 
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improved the reaction kinetics of the electrochemical cell, leading to a higher injection rate of Ag ions. 

Additionally, the water species (mainly -H2O and -O) absorbed on the surface of grain boundaries 

lowered the barrier of Ag ions migration, which was confirmed by the atomistic simulation.224 Figure 

42e illustrates the diffusion mechanism of Ag atoms at the bare and O- bonded CIGSe crystalline 

surfaces. A higher humidity level was likely to cause more absorbed water molecules, which promoted 

the forming of thicker Ag metallic filaments corresponding to higher conductivity. The improved 

oxidation rate and migration of Ag ions in the presence of moisture both benefited the formation of 

thicker conductive filaments and higher conductivity (Figure 42d). Thus, a comprehensive explanation 

is provided to explain the intelligent temperature and humidity sensations. 

4.3.4 Intelligent In-sensor Neuromorphic Computing 

Intelligent low-level sensory and high-level cognitive in-sensor neuromorphic computing applications 

based on intelligent matter are demonstrated to clarify its promising prospects (Figure 45).3 The 

schematic diagram of the intelligent skin with tunable thermal sensitivities is shown in Figure 45a. 

When a point-source heat, such as a lighted candle, approaches the skin, the thermal energy is 

transmitted to the skin surface via thermal radiation. Thermal energy is received by thermal receptors 

and stimulated receptors then transmit relevant signals to the brain for further processing. The received 

thermal energy is distributed as a gradient on the surface. Because the radiation energy decays as it 

travels forward, further points receive less thermal energy. More specifically, the received heat 

decreases from the central point (the closest point to the thermal source) to the far point. A simplified 

model was built to mathematically demonstrate the thermal transmission distribution on a surface, as 

shown in Figure 43. The thermal source is assumed as a point. A constant amount of energy is spread 

out in an expanding sphere as it is transmitted away from the source. The thermal intensity at a certain 

point is described by Eq. 52.    

�� =
�

����                                                                  Eq. 52   

where SF is the thermal radiation intensity at a specific point F. P is the total energy released per second. 

r is the distance between the light source and the specific point (the length of SF in Figure 43). The 

thermal radiation intensity at point F is described by Eq. 53: 
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�����
� ��                                                           Eq. 53   

where SC is the thermal radiation intensity at the central point C. The normalized thermal radiation 

intensity is shown in Figure 44a. The thermal energy density decreased quickly as the points got away 

from the central point. Mathematical manipulation can extend the thermal energy distribution from a 

one-dimensional space to a two-dimensional plane, which describes the thermal distribution more 

accurately and visually, as shown in Figure 45b_1.  

 

Figure 43. Schematic diagram for the calculation of thermal transmission distribution in one direction. 

Additionally, the heat received by a specific point is proportional to the thermal energy density. The 

temperature increase due to the absorbed heat is described by :400 

� = ��∆�                                                              Eq. 54                                                            

where Q is heating transfer, m is substance mass, and c is specific heat capacity. To simplify the model, 

the temperature at the central point (C) was assumed as 100 ℃ (393 K). The temperature of other points 

proportionally decreases, as determined by the received heat. Integrated intelligent thermal sensors act 

as thermal receptors mimicking the human skin. The reconfigurable temperature sensation enables 

different sensation responses under different operational modes to adapt to different environments. The 

HRS mode means that the temperature-sensory signals were conductance (or current) changes from the 

device at the HRS. Likewise for the LRS mode. Meanwhile, the HRS&LRS mode means the 

temperature-sensory signals of the LRS/HRS ratio change due to temperature variations. As shown in 

Figure 45b_2, the thermal array worked in the LRS mode which showed a negative coefficient of 
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conductance. The output decreased at the points closer to the central point. Besides, the output intensity 

decreased gradually as it was closed to the central point, which was consistent with the sensation 

response of the linear characteristic in the LRS mode Figure 44a. In comparison, the output signals 

increased at the points closer to the central point under the HRS and HRS&LRS modes. It can be 

observed that nonlinear features showed up in the two modes, which is due to the exponential 

relationship between the conductance and the temperature Figure 44c and Figure 44d. Furthermore, 

the sensitivity between the HRS and HRS&LRS modes was different. The output at the central point 

under the HRS mode (around 1.4) was smaller than that for the LRS&HRS mode (around 2.4) in Figure 

45b_3 and Figure 45b_4. The tunable and controllable thermal sensations may provide a promising 

strategy for advanced intelligence artificial skins for different working scenarios.  

 

Figure 44. (a) Theoretical simulation of the thermal transmission distribution in one direction. (b) The change of 

GTem./G0 under different temperatures at the LRS model. (c) The change of GTem./G0 under different temperatures 

at the HRS model. (d) The change of RatioTem./Ratio0 under different temperatures at the HRS&LRS model. Ratio0 

is the ratio of LRS/HRS at room temperature (288K). 
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Figure 45. In-sensor neuromorphic computing. (a) Schematic diagram of the intelligence skin with tunable 

thermal sensitivities. (b) 1: The thermal transmission distribution on the surface of artificial skin from a point heat 

source. 2-3: The output distribution on the artificial skin in the LRS model, HRS model, and HRS&LRS model, 

respectively. (c) Schematic diagram of ANN for in-sensory neuromorphic computing for pattern recognition. (d) 

Neuromorphic computing accuracy under different humidity levels. 

The high-level cognitive in-sensor computing based on intelligent matter under different humidity 

levels has been investigated. As shown in Figure 46, the intelligent sensor exhibits different 

conductance modulation features under different humidity levels, acting as a sensory artificial synapse 

enabling synaptic potentiation and depression. The intelligent matter with synaptic functions (or named 

sensory artificial synapse) is fundamental for constructing artificial neural networks (ANNs) for brain-

inspired neuromorphic computing.379 The artificial synapse in ANNs stores intermediate synaptic 

weights as conductance, in which the matrix manipulation is implemented in the crossbar based on 

Kirchhoff’s current law and Ohm's law. This methodology borrowed from the human brain can achieve 

massive parallelism computation by detecting electronic signals directly. Sensory artificial synapses 

can complete state-of-the-art in-sensor neuromorphic computing. Sensory synapses can sense the 
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changes in humidity, which means the humidity affects computing results. Human perception accuracy 

is affected by humidity levels.274 Thus, it is desirable to explore an intelligent device that is sensitive to 

humidity. So, it can be cooperative with light- and proton-dependent signal processing systems for 

mimicking the adaption behavior of human eyes under different environments.274 This work is part of 

the investigation for developing bionic robots, which makes the artificial machine more like human 

beings. For example, humidity or other external environmental factors induce deteriorative eyesight, 

which will trigger extra caution regarding outdoor activities by cooperating with other auxiliary 

systems. Figure 45c demonstrates a schematic diagram of the ANN used for in-sensor neuromorphic 

computing. The in-sensor neuromorphic computing was carried out based on the backpropagation 

algorithm for pattern recognition. The ANN is fully connected with the input layer of 64 neurons, the 

hidden layer of 36 neurons, and the output layer of 10 neurons. Figure 45d shows the pattern 

recognition accuracy under different humidity levels. It can be observed that the accuracy increased 

and peaked at the humidity level of 55 % and then decreased with further increased humidity. The 

variants of humidity levels changed the features of potentiation and depression in the memristive 

device, especially the nonlinearity of conductance modulations.401 Lower nonlinearity can give a higher 

computing accuracy.379 The nonlinearity of the device was calculated to be 0.637 (RH 20%), 0.454 (RH 

40%), 0.314 (RH 55%), 0.473(RH 70%), and 0.665(RH 90%).402 The small nonlinearity for 55% RH 

gave a higher recognition accuracy.274 The results demonstrated that in-sensory neuromorphic 

computing was achieved by the intelligent matter acting in the role of sensory synapses in different 

humidity conditions. Notably, the pattern recognition simulation shown here was for conceptual 

elaboration based on the novel sensory synapse. Intelligent matter can potentially be used for advanced 

neuromorphic computing systems enabling multimodal sensory functions. The current intelligent 

device still suffers from the difficulty of decoupling the entangled temperature and humidity changes. 

The device can be individually used for either temperature or humidity sensing, demonstrating broader 

applications compared to the device with single sensing functions. More work is needed to investigate 

polynomial functions to track multiple variants at the same time, which can effectively deconvolute (or 

differentiate) the changes in temperature and humidity. 
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Figure 46. Electronic potentiation/depression characterizations under different humidity levels. 

4.4 Summary 

In summary, an intelligent matter enabling reconfigurable temperature and humidity sensations has 

been demonstrated for in-sensor neuromorphic computing. The delicate design was based on a 

memristive device with resistive switching capabilities to achieve reconfigurable sensory properties in 

a single device. Active Ag was employed as the top electrode to initiate filamentary resistive switching. 

CIGSe was used as the switching layer and showed good Ag mobility and semiconductive properties. 

External voltage triggered the formation/rupture of Ag MCF, which dominated the resistive switching. 

The device (Ag/CIGSe/Mo) can achieve an HRS/LRS ratio of 1700 and an endurance of 5000 cycles, 

indicating reliable resistive switching behaviors. Additionally, synaptic functions were realized, 

including PPF, and synaptic potentiation/depression behaviors. The existence and nonexistence of 

conductive filaments determined the metallic and semiconductive properties under different 

temperatures. Thus, opposite temperature coefficients of conductance were obtained at the LRS and 

HRS. Intelligent low-level sensory data processing was demonstrated. The intelligent matter with 

temperature sensations can work in the LRS mode, HRS mode, and HRS&LRS mode. Each mode has 

different sensation features and sensitivities. The reconfigurable sensation characteristics are promising 

for intelligent artificial skins for different working scenarios. Besides, water molecules influence the 

growth of conductive filaments, which affects the size of high-conductivity filaments and further 

modulates the value of LRS. The device acted as sensory artificial synapses that can be utilized for 
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high-level cognitive in-sensor computing. The humidity modulates the weight modulation (weight 

update margin and nonlinearity) of potentiation and depression characteristics, which affects the 

neuromorphic computing accuracy. An ANN was constructed to implement the backpropagation 

algorithm for pattern recognition. Different recognition accuracies were obtained under different 

humidity levels, demonstrating in-sensory computing capabilities. The intelligent sensor with 

reconfigurable temperature and humidity sensations benefits the development of innovative 

computational and sensory technology toward advanced e-skin, neurorobotics, cyborg, and human-

machine interaction. 
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Chapter 5. Broadband optoelectronic synapse enables compact monolithic 

neuromorphic machine vision for information processing 

The temperature and humidity sensing functions were investigated in the previous chapter. This chapter 

will extend the sensing function to light sensing and image processing with memristive devices, which 

is crucial for machine vision systems.  

Traditional machine vision is suffering from redundant sensing data, bulky structures, and high energy 

consumption. Biological-inspired neuromorphic systems are promising for compact and energy-

efficient machine vision. Multifunctional optoelectronics enabling multi-spectrum sensitivity for 

broadband image sensing, feature extraction, and neuromorphic computing are vital for machine 

visions. Here, we design an optoelectronic synapse that enables image sensing, convolutional 

processing, and computing. Multiple synaptic plasticity triggered by photons can implement photonic 

computing and information transmission. Convolutional processing is realized by ultra-low energy 

kernel generators fully controlled by photons. Meanwhile, the device shows the ability of conductance 

modulations under electronic stimulations that implement neuromorphic computing. For the first time, 

this two-terminal broadband optoelectronic synapse enables front-end retinomorphic image sensing, 

convolutional processing, and back-end neuromorphic computing. The integrated photonic information 

encryption, convolutional image pre-processing, and neuromorphic computing capabilities are 

promising for compact monolithic neuromorphic machine vision systems. 

5.1 Introduction 

The Von Neumann bottleneck and the difficulty of further shrinking device size triggered the rising of 

post-Moore techniques. Propelling computing technology beyond the scaling limits requires a 

comprehensive reconsideration of chip technologies ranging from fundamental physics, to material 

science, device design, electronic circuits, and architectures.403 In conventional machine vision systems, 

an integrated photoreceptive array, an analog-to-digital converter system, a memory unit, and a 

processing unit are needed to complete sensing and cognitive tasks. The physical separation of those 

units causes sensing data redundancy, data access delay, frequent date shuttling, and high energy 

consumption.263 Particularly, multiple components make the traditional machine vision system bulky 

with high fabrication costs. Innovative technology like biology-inspired neuromorphic systems may 
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provide solutions to these challenges. Neuromorphic machine vision enabling sensing and processing 

on-site can significantly improve processing efficiency by avoiding frequent data shuttling.404 

Developing optoelectronics devices for neuromorphic machine vision systems with broadband sensing 

and fast data processing abilities are crucial, which have the potential to revolutionize the fields of real-

time video analysis, autonomous vehicles, medical diagnosis, etc.8  

 

Figure 47. The concept of the artificial retina. (a) Image processing hierarchy in biological systems. (b) Schematic 

diagram of the biological synapse operated by electronic and photonic stimuli. (c) Schematic diagram of 

modulated heterojunction enabling photonic sensitivity and electronic plasticity. 

Neuromorphic machine visions with compact configurations are promising for energy-efficient 

sensing and computing systems.3,388 The simplified image processing hierarchy in human eyes is 

illustrated (Figure 47a).405 The light goes through the cornea and is projected on the innermost layer of 

the eyeball structure called the retina. High-density photoreceptive cells on the membrane of the retina 

can detect the photons and respond by generating neural spikes. The image pre-procession in the retina 

is vital for high-level object recognition, location, tracing, and so on.406 Particularly, the color of the 

object carries important information, which requires color-sensitive photoreceptors to detect light rays 

with different wavelengths.301 After being preprocessed appropriately (filtered, reflected, and 
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refracted), the received image is transformed into the visual cortex of the brain via optic nerves, where 

the image is processed into vision information.405 To realize neuromorphic vision systems, although 

challenging, it is essential to develop artificial optoelectronic synapses that can complete multi-

spectrum sensing and computational tasks.    

An optoelectronic synapse that is sensitive to both broadband photonic and electronic stimulations is 

essential for image sensing,407 pre-processing,408 transmitting signals,409 and neuromorphic 

computing.14 Whereas, a single broadband optoelectronic synapse device undertaking the above 

multiple tasks for compact monolithic neuromorphic vision systems is yet to come. Memristive-based 

optical devices can sense photonic signals and show memory functions. They are promising to develop 

compact machine vision systems with both image sensing and neuromorphic computing.410 Table 1 

summarizes memristive-based optoelectronic synapses for neuromorphic machine vision. Two-

terminal metal-oxide devices enable high-density crossbar and 3D integration. This is crucial for 

neuromorphic systems that require high-density artificial synapses and neurons integrated into a single 

chip.257 Besides, image sensing, especially broadband sensing, is vital for high-precision image 

recognition as images from the surrounding world are a mixture of multiple colors with different light 

wavelengths. Some light-sensitive materials, such as 2D materials,411 perovskite materials,412 phase 

change materials,413 are employed to construct optoelectronic synapses. A gate voltage is needed to 

modulate the defects distribution,414 ferroelectric orientations,415 or crystal structure413 to achieve 

broadband sensing, which will sacrifice the integration density compared to two-terminal counterparts. 

Furthermore, image preprocessing is executed before the actual cognitive recognition and other tasks.416 

The key feature of the image needs to be extracted to improve the processing accuracy and efficiency. 

Convolution image processing is an essential step for CNNs that is considered one of the most powerful 

deep learning algorithms.411 However, light-controlled kernel generators that can read out filtered 

images directly have not been demonstrated, which can avoid parasitic currents, decrease energy 

consumption, and increase processing speed by avoiding data shuttling. The sensed and preprocessed 

image is the input of the artificial neural networks that complete the neuromorphic computing for 

cognitive tasks. Artificial neural networks implementing vector-matrix multiplication (VMM) have 

achieved some pioneering progresses.54 Gradually modulated conductance is required to program the 

synaptic weight in artificial neural networks. So far, to our best knowledge, the broadband two-terminal 

optoelectronic synapse that can realize front-end retinomorphic image sensing, convolution processing, 
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and back-end neuromorphic computing, has not been reported. The technology poses very promising 

prospects for advanced neuromorphic machine vision.  

Table 1. Summary of memristive-based optoelectronic synapse for neuromorphic machine vision. 

Materials Two 
terminals 

Image 
sensing 

Broadband 
sensing 

Image 
preprocess 

Neuromorphic 
computing 

Ref. 

ZnO/MoO3 ✔  ✔ ✔ ✔ ✔ This 
work 

MXene-ZnO ✔ ✔ ✘ ✔ ✔ 
274 

MoOx ✔ ✔ ✘ ✔ ✘ 
417 

NiO/TiO2 ✔ ✔ ✘ ✘ ✘ 
418 

Ag-TiO2 ✔ ✘ ✘ ✔ ✔ 
419 

Pb(Zr0.2Ti0.8)O3 ✔ ✔ ✘ ✘ ✔ 
280 

FAPbI3 ✔ ✔ ✘ ✘ ✔ 
412 

PdSe2/MoTe2 ✘ ✔ ✔ ✔ ✘ 
411 

ZnO/In2O3 ✘ ✔ ✔ ✘ ✔ 
414 

α-In2Se3 ✘ ✔ ✔ ✘ ✔ 
420 

MoS2/BaTiO3 ✘ ✔ ✔ ✘ ✔ 
421 

AlGaN/GaN ✘ ✔ ✔ ✘ ✔ 
422 

WS2/PbZr0.2Ti0.8O3 ✘ ✔ ✔ ✘ ✘ 
415 

MoS2 ✘ ✔ ✘ ✔ ✘ 
407 

WSe2 ✘ ✔ ✘ ✘ ✔ 
14 

WS2 ✘ ✔ ✘ ✘ ✔ 
423 

VO2 ✘ ✔ ✘ ✘ ✔ 
413 

 
To develop a broadband compact optoelectronic synapse with multiple functions (Figure 47b), we 

designed a two-terminal device to mimic an optoelectronic synapse that is sensitive to photonic and 

electronic stimulations. The fabrication process was compatible with current available COMS 

techniques. The switching layer was ZnO/MoO3 whose conductance was tunable under photonic and 

electronic stimulations. The ZnO showed particularly good broadband photo-detective and non-volatile 

resistive switching properties.172,424,425 The MoO3 acted as a hole transport layer that will facilitate the 

photocurrent generation under light illuminations.426 Meanwhile, the Schottky-like contact was formed 

between ITO/ZnO (ITO, indium tin oxide) (Figure 47c). The oxygen vacancies in the ZnO can be 

moved under the applied electrode field.427 This changed the barrier height at the interface of ITO/ZnO 

and the resistance of bulk ZnO, which realized reversible resistive switching to mimic synaptic 
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plasticity. Besides, ITO as the top electrode was transparent which was essential for photonic-tunable 

devices. It also benefited the resistive switching stability as it can act as the oxygen ion reservoir.176  

In the fabricated broadband optoelectronic synapse, synaptic plasticity triggered by photons, 

including the EPSC, SADP, PPF, and SNDP was demonstrated. It was promising for image sensing, 

photonic computing, and information transmission. The energy consumption for the photonic operation 

was around 37 pJ, demonstrating low energy consumption. The broadband optoelectronic synapse 

exhibited different sensitivity to different wavelengths, demonstrating the function of broadband image-

sensing. Particularly, the current gains were constant over a certain voltage window under different 

light illumination, which was employed to develop an ultra-low energy kernel generator fully controlled 

by photons for convolution processing. This can realize the pre-processing of feature extraction. 

Meanwhile, the device showed reliable resistive switching under electronic stimulations. The 6 x 6 

device array was fabricated with small variations of 0.7 % (HRS) and 3.4 % (LRS). The 

potentiation/depression was obtained to implement neuromorphic computing. The image recognition 

accuracy was higher than 90 %, which confirmed the practicable application for cognitive tasks. The 

resistive switching mechanism was investigated. The modulated barrier height at the ITO/ZnO interface 

and the change of ZnO conductivity were responsible for the tunable conductance. This was due to the 

electronic-controlled oxygen vacancy migration. The device has a capacitor-like two-terminal structure. 

This benefits a high integration density. For the first time, this broadband optoelectronic synapse can 

be utilized for front-end retinomorphic image sensing, convolutional processing, and back-end 

neuromorphic computing for cognitive tasks. This technology is promising for compact monolithic 

neuromorphic machine vision systems enabling photonic information encryption, convolutional image 

processing, and neuromorphic computing. 

5.2 Experimental Section 

5.2.1 Device Fabrication 

The wafer covered with SiO2 oxide (280 nm) was used as the substrate. The device structure was 

ITO (Indium tin oxide)/ZnO/MoO3/SiO2/Si (from the top to the bottom). The substrate was 

ultrasonically cleaned in water, ethanol, and acetone sequentially. The electrode and switching layer 

materials were deposited by magnetic sputtering with a background pressure of 5x10-7 Torr. The target 
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was Mo metal, which was used as a bottom electrode by DC magnetic sputtering. 100 W was the 

sputtering power. 5 mTorr was the deposition pressure. The working gas was pure Ar. The MoO3 layer 

was deposited via reactive sputtering. 100 W was the sputtering power. 5 mTorr was the deposition 

pressure. The working gas was pure Ar/O2 (3/1). For the ZnO, radiofrequency (RF) magnetic sputtering 

was used. The target was ZnO. 200 W was the sputtering power. 5 mTorr was the deposition pressure. 

The working gas was Ar/O2 (24/1). A piece of shadow mask was utilized to fabricate the 100 μm device. 

The ITO was deposited by RF magnetic sputtering. The target was ITO. 100 W was the deposition 

power. 5 mTorr was the deposition pressure. The working gas was Ar/O2 (20/0.3). The deposition 

temperature was set to 200 ℃ (substrate temperature). 

5.2.2 Material and Device Characterization Methods  

Scanning Electron Microscopy (SEM, Hitachi SU5000 FESEM) images were measured. The 

accelerating voltage was 15.0 kV. The materials composition mapping was measured by EDX (Hitachi 

SU5000 FESEM). GIXRD (PANalytical X’Pert PRO system) was used to study the crystal structures 

of materials. The UV-vis absorption spectroscopies of materials were obtained by Shimadzu UV-2600i 

to investigate optical properties. XPS (Thermo-VG Scientific ESCALab 250) was employed to study 

the surface characteristics of materials. Besides, ultraviolet photoelectron spectroscopy (UPS, Thermo-

VG Scientific ESCALab 250) was utilized to measure the work function (Φ) of material surfaces. The 

electronic properties of the devices were measured by a Keysight B2985A equipped with the probe 

station of MPI TS150. The light illuminations with different wavelengths and powers were provided 

by LEDs driven by a waveform generator (Agilent 33220A). 

5.2.3 Simulation Methods 

Materials simulations: Density functional theory (DFT) simulations were employed to study 

electronic properties. The Vienna ab initio simulation package (VASP) was utilized. The core electrons 

and nucleus were described by the projector augmented wave (PAW) method. The Heyd-Scuseria-

Ernzerhof (HSE) hybrid function was utilized to describe electron exchange and correlation. In all 

calculations, the cut-off energy of 400 eV was used for the plane-wave basis restriction. K-points were 

sampled as 2×2×4 for the Brillouin-zone integration under the Monkhorst-Pack scheme. Forces applied 

on atoms were < 0.02 eV/Å in fully relaxed structures. The self-consistency accuracy (10-5 eV) was 
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obtained for electronic loops. To obtain the density of states (DOS) and band structure, the model of 

2×2×1 supercell was utilized. To calculate the work function of materials, 4-atomic-layer-thick slabs 

were used. A gap of ~20 Å between the surface and vacuum was inserted to prevent spurious 

interactions induced by periodic boundary conditions. 

Neuromorphic computing and convolution image processing: Neuromorphic computing for pattern 

recognition was carried out on the CrossSim platform. The code for the color recognition convolutional 

image processing was developed with MATLAB. In the convolutional image processing, 3*3 simple 

kernels with the functions of soft, vertical edge detection, horizontal edge detection, and edge 

sharpening were applied to 2D input images. The image was taken with a phone camera. The “Padding” 

was applied to produce the output that is the same size as the input counterpart (pad edges with extra 

“fake” of value 0). The stride of 1 was used during the convolution process. 

5.3 Results and Discussion 

5.3.1 Materials Characterizations 

 

Figure 48. (a) UV-visible absorption spectroscopy of the ITO thin film. Inset is the Tauc plot for calculating the 

optical band gap. (b) UV-visible absorption spectroscopy of the ZnO thin film. Inset is the Tauc plot for 

calculating the optical band gap. (c) UV-visible absorption spectroscopy of the MoO3 thin film. Inset is the Tauc 

plot for calculating the optical band gap. 
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Figure 49. (a-b) The surface morphology of ZnO with different magnifications. (c-d) The composition mapping 

of ZnO thin film. (e-f) The surface morphology of MoO3 with different magnifications. (g-h) The composition 

mapping of MoO3 thin film. 

The structure of the optoelectronic synapse was ITO/ZnO/MoO3/Mo/Si (from top to bottom). A 

transparent conductive film (ITO) was utilized as the top electrode so that the light can go through the 

top electrode and interact with the switching layer to realize photonic-controlled synaptic behaviors. 

The ITO showed good conductivity with a sheet resistance of 5 Ω/sq. The optical absorption 

spectroscopy of the ITO thin film (Figure 48a) showed a sharp decrease in the wavelength range of 

260-330 nm followed by a plateau region. The optical band gap was calculated based on the absorption 

spectrum described by the Tauc plot (the inset of Figure 48a).428 The band bap of ITO in this device 

was 4.21 eV. The transmittance spectroscopy of the ITO thin film shows that the transmittance to light 

with the wavelength higher than 390 nm surpassed 80 %. The high transmittance allowed more photons 

with a wide range of wavelengths to go through the top electrode, which benefited the photonic 

modulation of the device. The Tauc plots of optical absorption spectroscopies of ZnO (Figure 48b) and 

MoO3 thin films (Figure 48c) determined the band gaps of 3.29 eV (ZnO) and 3.88 eV (MoO3). This 

confirmed the strong absorption feature over the ultraviolet region. This can explain the reason the 

device was sensitive to ultraviolet light (390 nm). Particularly, the device also showed responses to 

light illumination with wavelengths of 460 nm and 570 nm. Because some defects (oxygen vacancies) 

in the switching layer induced impurity energy levels inside the forbidden band of ZnO and MoO3.200 

These defect energy levels can absorb photons with higher wavelengths and change the carrier density 

of the switching layer, demonstrating multi-spectrum sensitivity.429 
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Figure 50. (a-b) High-resolution XPS spectra of ZnO. (c-d) High-resolution XPS spectra of MoO3. (e) The XRD 

pattern for the multilayer device. (f) The work functions of switching layer MoO3 and ZnO measured using UPS. 

The film of ZnO was smooth and crack-free (Figure 49a and b). The composition distribution was 

homogeneous (Figure 49c and d). The surface of MoO3 (Figure 49e and f) was dense and crack-free. 

The round shape and uniform grain with a size of around 10 nm were observed (Figure 49f). The Mo 

and O elements were distributed homogeneously in the composition mapping of the MoO3 thin film 

(Figure 49g and h). Homogeneity films for constructing integrated array with small device-to-device 

variations is important.51 The thickness of MoO3 and ZnO were around 20 nm and 200 nm respectively, 

which were employed as the switching layer. The multi-layers showed good adhesiveness. To further 

study the chemical states of the material surface, XPS was employed. In the high-resolution XPS spectra 

of ZnO, two characteristic peaks of binding energy at 1044.9 eV and 1021.8 eV were observed, 

corresponding to Zn 2p3/2 and Zn 2p1/2 respectively (Figure 50a). The split of these spin-orbital 

components was approximately 23.1 eV, which confirmed the +2 oxidation state of Zn atoms.430 In the 

O 1s spectrum (Figure 50b), two peaks at 530.5 eV and 532.9 eV corresponded to the O2- in the Zn-O 

bonding and absorbed oxygen.430 The high-resolution scan of the Mo 3d core level spectra exhibited 

two characteristic peaks at 232.8 eV (Mo 3d5/2) and 235.9 eV (3d3/2) in the XPS spectra of MoO3 
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(Figure 50c). The split of these spin-orbital components was around 3.1 eV. The results fitted the Mo6+ 

state.417 Two O 1s peaks were assigned to the bonded (530.5eV) and absorbed (532.2 eV) oxygen 

(Figure 50d). Besides, GIXRD was utilized to further investigate the crystalline structure of the thin 

film as shown in Figure 50e. The intensive peak at 32.6° was attributed to the (100) plane of wurtzite-

structured ZnO.431 Weak peaks at 34.1° and 35.2° assigned to ZnO were also observed. The 

characteristic peaks at 40.5° and 45.7° corresponding to Mo (110) and MoO3 (200) can be found.129,432 

The results confirmed that only characteristic peaks of desired materials were detected, and no impurity 

phase was observed. Besides, the work functions of switching layers were measured (Figure 50f) to 

investigate the band gap alignment in the device. The above characterizations showed that high-quality 

materials regarding surface morphology, composition distribution, and crystal purity were fabricated. 

This is vital for high-performance optoelectronic devices.  

5.3.2 Retinomorphic image sensing and convolution processing. 

Optoelectronic synapse with multi-spectrum sensitivity has been investigated. The I–V curves were 

shown under different illuminations (Figure 51a). A typical hysteresis loop was observed, 

demonstrating memristive effects.17 The pristine device was at a HRS. It was switched to a LRS when 

positive voltages were applied. The device was switched back to HRS when negative voltages were 

applied (Figure 51a). The device exhibited an analog resistive switching. The resistance changed 

gradually instead of abruptly changes, which is crucial to mimic synaptic plasticity for neuromorphic 

computing.433 Besides, the resistive switching was asymmetric due to the asymmetric structure of the 

device. This feature benefits the alleviation of sneak currents in integrated crossbar arrays. Notably, the 

device was sensitive to multiple spectra maintaining resistive switching capabilities. The current under 

both HRS and LRS increased by different margins when the UV light (390 nm), blue light (460 nm), 

and green light (570 nm) were shined on the device. The changes in the HRS and LRS under different 

photonic stimuli are shown (Figure 51b). The error bar describes the cycle-to-cycle variation. The 

resistance of both HRS and LRS was decreased under light illumination compared to their dark 

counterparts. This reflects in the current increase under illumination (UV, green, blue) versus dark state 

(Figure 51b). Notably, UV (390 nm) induced more significant changes in device resistance compared 

to the blue light (460 nm), and green light (570 nm) counterparts. The device was insensitive to red 

light (620 nm). Because the photon of red light did not have enough energy to generate carriers.  
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Figure 51. Photonic stimulations on the optoelectronic synapse. (a) The I-V curves of resistive switching under 

illumination with different wavelengths. 10 cycles for each test. The light density was 8 μW/cm2. This power 

density was used in other tests if no specific instruction was given. (b) HRS and LRS under illumination with 

different wavelengths. Read voltage was -0.8 V. (c) Short-term synaptic PPF behavior under photonic 

stimulations. The light wavelength was 390 nm (ultraviolet, UV), pulse duration was 500 ms. ��� = ��
���

�� +

 ��
���

�� + ��. The fitting parameters α =5.349, β=18.916, τ1=1.803, τ1=0.279, y0=100.514. (d) EPSC responses 

under UV light with different power densities. The pulse frequency was 1 Hz. The duty cycle was 50%. (e) EPSC 

responses under the UV light with different pulse numbers. The pulse frequency was 1 Hz. The duty cycle was 

50%. (f) EPSC values under photonic stimulations with different wavelength and pulse numbers. (g) Recognition 

results in a dark condition and illumination at 390 nm 460 nm 570 nm 620 nm for 10 pulses (pulse frequency was 

1 Hz, duty cycle 50%, sample power density). (h) The decode results of the photoelectronic synapse to the 

American Standard Code for Information Interchange (ASCII). 
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Figure 52. (a) EPSC response of 2-pulsed photonic stimulations with different wavelengths. The pulse frequency 

was 1 Hz. The duty cycle was 50%. (b) EPSC response of 5-pulsed photonic stimulations with different 

wavelengths. The pulse frequency was 1 Hz. The duty cycle was 50%. (c) EPSC response of 10-pulsed photonic 

stimulations with different wavelengths. The pulse frequency was 1 Hz. The duty cycle was 50%. (d) Define the 

photonic pulses with different wavelengths to decode two-digit information of 00 (Red light, 620 nm), 01 (Green 

light, 570 nm), 10 (Blue light, 460 nm), and 11 (UV light 390 nm). One pulse with the duration of 0.5 s was used 

for the operation. 

Moreover, the synaptic plasticity of the device under different light illuminations has been studied. 

In biological systems, the transmission of neurotransmitters via synapses requires a certain delay time 

to relax after excitation. The net synaptic strength can be observed because of residual neurotransmitter 

ions in the last excitation. This is the characterization of PPF.434 The PPF feature was investigated in 

the device operated by UV photons.340 It can be found that the plasticity strength decreased 

exponentially with the increase of interval time between two consecutive pulses (Figure 51c). The inset 

presents the typical photocurrent characteristics under two photonic stimulations. The experimental 

results fitted well with the theoretical equation, demonstrating that the device can mimic the biological 

short-term PPF by photonic operations.435 Besides, the SADP was obtained. 10 pulses with different 

power densities were applied to the device (Figure 51d). The EPSC represented by currents following 
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through the device increased with the increase of the power density. This mimicked the biological 

function that stronger stimulations trigger higher amplitudes of responses. The EPSC changes under 

different pulse numbers were also presented (Figure 51e). Higher EPSC responses after more pulses 

were observed. This feature was like the SNDP in biological systems, in which multiple and repeated 

stimulations can induce stronger responses from biological individuals.436 Notably, the device was 

sensitive to multiple spectra. The EPSC response curves under different photonic wavelengths and 

pulse numbers are presented (Figure 52). Summarized EPSC values (Figure 51f) showed that the 

device was insensitive to red light (620 nm). In comparison, obvious responses were observed when 

the photonic wavelength was shorter than 570 nm. The UV light induced the strongest responses as the 

EPSC reached 0.8 A. The green light (570 nm) triggered the weakest responses compared to UV (390 

nm) and blue (460 nm) light counterparts. Moreover, more pulses induced stronger EPSC responses, 

which was consistent with the UV operations (Figure 51e). Our optoelectronic synapse is sensitive to 

broadband spectrums, which provides a chance to develop versatile advanced artificial vision systems. 

The broadband multi-spectra sensitivity of our optoelectronic synapse endows the device with the 

capability of colour recognition, image sensing, cognitive tasks, and optical communications. The 

optoelectronic synapse can recognize the colour of the rose pattern when a light goes through a mask 

(Figure 51g). The normalized output signals were 8, 35, and 100 for the green light, blue light, and UV 

light, respectively. The distinguishable output signals were practicable for colour recognition, which is 

crucial for artificial vision systems for high recognition accuracy, and object tracking. Information 

communication is another vital aspect in the AI world. The different responses of our optoelectronic 

synapse to different light wavelengths can be utilized for optical communications, which can realize 

data transmission that demonstrate better transmission speed and energy efficiency compared to 

electrical system counterparts. Specifically, the photonic wavelengths of 620 nm (Red), 460 nm 

(Green), 570 nm (Blue), 390 nm (UV) represent “00”, “01”, “10”, and “11” respectively (Figure 52d). 

The digital information in the form of binary code (“0” and “1”) can be demodulated, stored, and 

transmitted by photonic signals. The EPSC responses of Red, Green, Blue, and UV photons were 

around 0.20 nA (R), 0.23 nA (G), 0.33 nA (B), and 0.58 nA (U) respectively as presented in Figure 

52d. One pulse of light stimulation with the duration of 0.5 s was used. Based on the ASCII, four 

photonic pluses can be demodulated into four letters “CAMJ” (GRRU represented 01000011, GRRG 

represented 01000001, GRUG represented 01001101, GRBB represented 01001010). Particularly, the 
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energy consumption was low, the average electronic energy consumption for one letter was 

approximately 150 pJ. The low energy consumption makes the optoelectronic synapse appealing for 

energy-efficient systems. 

CNN is powerful and popular for image recognition.437 It consists of convolution layers, pooling 

layers, and fully connected classification layers (Figure 57a). Convolutional layers are used to pre-

process images to extract high-level features, which benefits dealing with complex images and 

achieving higher recognition accuracy. The pooling layers are employed to reduce the spatial size of 

inputs. This action speeds up processing procedures. The fully connected layer performs deep learning 

algorithms to complete image recognition tasks, which can be implemented by memristive-based 

hardware for neuromorphic computing.54 Therein, kernel operations occurring in convolution layers are 

vital for CNNs. The kernel can be a 2D matrix that “slides” over the input image pixel by pixel to 

complete the convolution operation. Different convolution kernels can achieve the functions of soft 

(blurring edge), edge detection (vertical edge highlight and horizontal edge highlight), sharpening edge, 

and more. Based on the optoelectronic synapse with multi-spectra sensitivity, a photonic kernel 

generator was developed to realize high-speed and low-energy convolutional processing. The flowchart 

of convolution image processing with the photonic kernel generator is illustrated in Figure 53a. The 

grayscale image can be considered as a matrix, in which each value presents the intensity of a specific 

pixel. The pixels can be normalized into voltages that are applied to the optoelectronic synapse array. 

The current can be directly obtained according to the equation I=V*G, where I is current, V is voltage, 

and G is conductance. More detailed operations are here. First, the pixel values of grayscale (0-255), 

for example, a 3x3 sub-image, were extracted. Secondly, the pixel values were normalized into voltage 

values. To shrink the processed data volume, the pixel values (0-255) were quantized into 21 points 

corresponding to 21 voltage values (0.5-1.1 V) uniformly. The voltage interval was 0.03 V which was 

the same as the value in the measurement setup. Thirdly, the currents carrying convolution computing 

results were measured based on the multiply-and-accumulate (MAC) operation.438 A software-based 

post-processing involving a database was required to transform the current signal into pixel value and 

reconstruct the image. To build up the database, the relationship among the pixel, voltage, and current 

needs to be identified. Any measured currents can track back the specific pixel to reconstruct the filtered 

image. 
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Figure 53. (a) Schematic diagram of a flowchart for convolutional image processing. (b) Illumination of the dot 

product calculation in convolutional image processing. 

For a specific position (Pij) in the image, the neighbouring 8 pixels were extracted to form a 3×3 

input sub-image. A dot product between the input pixels and the kernel was calculated to get P’ij as 

shown in Figure 53b. A striding action was required so that the kernel swept over the entire processed 

image. Over multiple iterations, a series of dot product results are obtained to reconstruct a pixel map 

(a convolved image or a filtered image). In a conventional system with separated memory and 

computing units, this is resource-expensive regarding energy consumption and processing time. Based 

on our optoelectronic synapse device sensitive to multiple spectra, a photonic kernel generator is 

developed. In GoogLeNet, 68% of energy is consumed by moving the feature maps.439  
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Based on our optoelectronic synapse device sensitive to multiple spectra, a photonic kernel generator 

is developed. The key to kernel operation based on the photonic generator is that the optoelectronic 

synapse is sensitive to multiple spectra so that the conductance can be modulated by lasers to complete 

convolution calculations. Furthermore, a better degree of freedom is expected since different photonic 

illumination can induce different conductance modulation amplitudes. This can complete complex and 

advanced convolution operations. The energy consumption for hardware-based image processing is 

much smaller than the traditional software counterpart.440 In this proposed configuration, the processed 

images are read out directly without frequent data transmission in traditional software-based systems, 

indicating more energy-efficient features.441 The lasers with different light wavelengths were employed 

to change the conductance of the optoelectronic synapse. Because the optoelectronic synapse exhibited 

different sensitivity to the photons with different wavelengths. Different conductance modulation was 

induced corresponding to 1.9 GD, 2.4 GD, and 3.6 GD by the illumination of green light, blue light, and 

UV light respectively, where GD means the conductance under a dark condition. Particularly, as shown 

in Figure 54a, the conductance enlargement by different lights was stable with a small variation over 

a range of voltages. The distributions of conductance change ratios for all three lights were measured 

(Figure 54b to Figure 54d). The GGreen/GDark ratio, GBlue/GDark ratio, and GUV/GDark ratio were 1.9, 2.4, 

and 3.6 respectively governed by Gaussian normal distribution. The Gaussian normal function was 

employed to describe the variance observed in the experimental measurements. The Gaussian Function 

is described as the following equation. 

� = �� +
�

���/�
�

��
(����)�

��                                Eq. 55 

where y0 and A are constant, w is the standard deviation, xc is the expected value. y0, A, w, and xc were 

considered as variances during the fitting procedure. This function can effectively describe random 

variation in experimental systems. The fitted parameters can be used to simulate and predict the system 

characteristics in specific applications.  
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Figure 54. (a) The distribution of GLight/GDark ratio over the applied voltage of 0.5 V to 1.1 V. The interval of 

measured voltages was 0.03 V. 21 points were measured over the window of voltage. (b) The probability plot of 

the GUV/GDark ratio. (c) The probability plot of the GBlue/GDark ratio. (d) The probability plot of the GGreen/GDark 

ratio. 

According to the responsivity of the optoelectronic to lights with different wavelengths, the 

conductance gain (the ratio of GLight/GDark) was constant over the voltage window of 0.5-1.1 V. Notably, 

the conductance gains were different when the device was shined with different lasers with different 

light wavelengths. This provided a chance to design more complicated kernels for various functions. 

For the proof-of-concept, the original image in grayscale is shown in Figure 57b. Four kernels were 

designed based on the optoelectronic synapse, as shown in Figure 55, corresponding to the kernel 

design shown in Figure 57c. The kernel values can be presented by the conductance-based operation. 

The operations of soft edge, vertical edge, horizontal edge, and sharpen edge were integrated into a 

crossbar. Currents carrying convolutional information can be measured directly. These current values 

can be used to reconstruct the convolved image based on the database as mentioned above. 
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Figure 55. Kernel design of image processing under the photonic operation. 

The conceptual circuit design is shown in Figure 56. The upper part demonstrates the procedure 

steps in convolutional image processing. The original image was transformed into a grayscale. Then 

the grayscale values were normalized into a voltage mapping representing the image. The pixel values 

were quantized into 21 values normalized into the voltage ranging from 0.5 V to 1.1 V. The interval 

voltage was 0.03 V which was the same as the measurement parameter. The bottom part of the diagram 

is the circuit design for hardware convolutional operations. Four kernel operation strategies were 

demonstrated. The current values difference among devices under different photonic stimulations were 

measured to obtain kernel operation results directly. This is more energy-efficient and has a shorter 

time delay since the data was not shuttled between different units (for example, memory and processing 

units in conventional configurations). Devices on cross points with green, blue, and purple spots are 

exposed to green, blue, and UV lasers, respectively. The devices without colourful spots are devices 

under dark conditions (no laser shines on them). For the dot product results, the current flowing through 

devices under dark conditions (without light illumination) can be described by the following equation: 

�� = � × ��                                                          Eq. 56 

where I means current, V means applied voltage, GD means the conductance of the device under dark 

conditions (without light illumination). Similarly, the current flow through the device under 

illumination can be described by the following equations. 

�� = � × ��                                                          Eq. 57                     

�� = � × ��                                                          Eq. 58 



 

121 

 

�� = � × ��                                                          Eq. 59           

where IU, IB, and IG are currents flowing through the device under the shining of UV light, blue light, 

and green light, respectively. GU, GB, and GG are the conductance of the device under the shining of 

UV light, blue light, and green light, respectively. The modulated conductance by light can achieve 

arithmetical functions that can be used for convolution calculating.  

 

Figure 56. Illustration of convolution image processing with crossbar hardware. 

Particularly, the conductance change margin can be identified over a range of applied voltage (Figure 

54a to Figure 54d). A positive index, for example, 0.9, was generated by GG (device conductance under 

green light illumination) minus GD (device conductance under dark conditions). In comparison, A 

negative index, for example, -0.9, was generated by GD minus GB. Similar rules were applied to generate 

indices of -0.5 and 4, which utilized different light wavelengths to induce different magnitudes of 
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conductance changes. Figure 56 (bottom part) shows the kernel design for image processing and the 

corresponding modulated device conductance by lasers. For the arithmetical methodology, the dot 

product result was obtained based on the following equation, in which the 3x3 matrix was flattened: 

��.�
� = ����,��� × ����,��� + ����,� × ����,� + ����,��� × ����,��� + ��,��� × ��,��� + ��,� × ��,� +

��,��� × ��,��� + ����,��� × ����,��� + ����,� × ����,� + ����,��� × ����,���                            Eq. 60 

Take horizontal edge operation as an example to demonstrate how the photonic kernel generator 

works (kernel shown in Figure 55), the above equation can be shown in the flowing version: 

��.�
� = ����,��� × 0.9 + ����,� × 0.9 + ����,��� × 0.9 + ��,��� × 0 + ��,� × 0 + ��,��� × 0 −

����,��� × 0.9 − ����,� × 0.9 − ����,��� × 0.9                                                                            Eq. 61 

In the actual operation circuit, pixel values were presented by voltage values. Notably, the 

relationship between pixel-voltage-current was identified to build up the database. The measured 

current can track back the specific pixel to reconstruct the filtered image. The result of the flowing 

equation needs to be solved: 

��,� = ����,��� × ����,���
� × 0.9 + ����,� × ����,�

� × 0.9 + ����,��� × ����,���
� × 0.9 + ��,��� ×

��,���
� × 0 + ��,� × ��,�

� × 0 + ��,��� × ��,���
� × 0 − ����,��� × ����,���

� × 0.9 − ����,� × ����,�
� ×

0.9 − ����,��� × ����,���
� × 0.9                                                                                                   Eq. 62 

As it is known that GGreen/GDark = 1.9, which means the conductance (or current) increased to 1.9 

times compared to the original value when the green laser shines on the device. Therefore, the equation 

can be transformed into the following equation:    

��,� = ����,��� × (����,���
� − ����,���

� ) + ����,� × (����,�
� − ����,�

� ) + ����,��� × (����,���
� −

����,���
� ) + ��,��� × (��,���

� − ��,���
� ) + ��,� × (��,�

� − ��,�
� ) + ��,��� × (��,���

� − ��,���
� ) + ����,��� ×

(����,���
� − ����,���

� ) + ����,� × (����,�
� − ����,�

� ) + ����,��� × (����,���
� − ����,���

� )               Eq. 63 

Thus, the convolution results can be measured based on the circuit shown in Figure 56. A similar 

principle is valid for the soft edge, vertical edge, and sharpen edge convolution operations. Particularly, 

the green laser was employed for the soft edge, vertical edge, and vertical edge. For the edge sharpening 

operation, green, blue, and UV were involved. 
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−0.5�� = �� − ��                                             Eq. 64 

 4�� = �� − �� + �� − ��                              Eq. 65 

 

Figure 57. Convolutional image processing. (a) Flow chart for convolutional computing based on CNNs. (b) The 

original image is grayscale. (c) Designed kernels for convolutional image processing using optoelectronic 

synapses. (d) Image processed by the kernel of “Soft”. (e) Image processed by the kernel of “Vertical”, detecting 

vertical edges. (f) Image processed by the kernel of “Horizontal”, detecting horizontal edges. (g) Image processed 

by the kernel of “Sharpen”, detecting edges. 

To demonstrate the realistic operation scenario, the variation of the light-modulated conductance was 

applied to the processed images. After the soft edge processing, the blurred image (Figure 57d) was 

obtained because of the average operation on each pixel. Blurring is important in image processing, 

which realizes smooth transitions between adjacent pixels instead of sharp changes.442 This is especially 

necessary for shrinking images, in which sharp details will be sacrificed. The smoothing process 
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distributes the pixel transition over more adjacent pixels to preserve edges in smaller images. 

Particularly, edge detection is vital for image processing to extract crucial information and object 

tracking for autonomous vehicles.443 The Prewitt kernel edge detectors of both vertical and horizontal 

filters were utilized for image processing.442 The vertical edge detection using our optoelectronic 

synapses is shown in Figure 57e. The vertical edges in the image became sharper. Meanwhile, the 

horizontal edges were more prominent after the horizontal edge detection (Figure 57f). Besides, the 

image edge sharpening was achieved (Figure 57g), and the intensity of edges was increased obviously.  

 

Figure 58. Comparison between software-based and hardware-based convolution image processing. 

Furthermore, to demonstrate the reliability of the photonic kernel generator using the optoelectronic 

synapses hardware, traditional software-based convolution image processing was carried out to 

compare with the hardware-based results as shown in Figure 58. In the arithmetical processing, the 

kernel values were ideally equal to designed values with a device-variation-free condition. A negligible 

difference was observed, indicating a tolerable device variance for convolutional image processing. 

Besides, the relationship between the experimental pixel values by hardware and the arithmetic pixel 

values of the processed image by software is shown in Figure 59. The slope was close to 1, which 

means a high coincidence between hardware and software-based processing results. The results 

demonstrate that the optoelectronic synapse is reliable for developing a photonic kernel generator for 

convolutional processing. 
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Figure 59. (a)  The comparison of the experimental pixel values and the arithmetic pixel values for the soft edge 

operation. (b)  The comparison of the experimental pixel values and the arithmetic pixel values for the vertical 

edge operation. (c)  The comparison of the experimental pixel values and the arithmetic pixel values for the 

horizontal edge operation. (d)  The comparison of the experimental pixel values and the arithmetic pixel values 

for the sharpen edge operation.  

5.3.3 Neuromorphic Computing for Cognitive Tasks 

The device also showed reliable synaptic performance under electronic operations. The typical 

memristive resistive switching was measured. In Figure 60a, no degradation was observed over 100 

cycles. The HRS and LRS distribution over multiple operations is shown in Figure 60b. A small 

variation was observed, indicating good robustness. To mimic biological synaptic behaviors, 50 

consecutive voltage pulses with various amplitudes were used (Figure 60c). Stronger plasticity was 

found when higher voltages were utilized, which mimicked SADP in biological individuals. When the 

stimulation was weak, for example, 0.2 V, the conductance change margin was very narrow (～2%). 

Instead, the ΔG/G0 was over 25 % when the higher voltage of 0.8 V was utilized.  
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Figure 60. Electronic stimulations. (a) The I-V curves of electrical resistive switching for 100 cycles. (b) The 

distribution of HRS and LRS over 100 operation cycles. (c) Potential performances depending on the input 

electronic pulse amplitudes. (d) Potential/depression performances under positive/negative electronic pulses. The 

pulse duration was 100 ms, and the duty cycle was 50 %. G0 represents the initial conductance of the device. ΔG 

represents the change of the conductance after the electronic pulses were applied to the device. (e) The statistical 

mapping of device-to-device variations in a 6 x 6 array. The colour bar represents the current value (unit: A) under 

different resistance states (f) Schematic diagram for handwritten recognition with neural networks. (g) The results 

of image recognition using neuromorphic computing based on the optoelectronic synapse. 

Furthermore, potentiation/depression performances were observed (Figure 60d). The conductance 

increased continually as consecutive positive pulses were applied. In contrast, the continued decrease 

of conductance was observed when negative pulses were applied. This can mimic the synaptic 

potentiation and depression features in biological individuals. This characterization can be utilized for 
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neuromorphic computing. The statistics of the asymmetric nonlinearity (ANL) factor over cycle-to-

cycle operations were analyzed as shown in Figure 61a. The ANL was calculated based on the 

following equation:402  

��� =
���

�

�
�����

�

�
�

���������
                                              Eq. 66                       

where GP and GD are the conductance under potentiation and depression operations, respectively. N is 

the number of pulses applied to the device for potentiation and depression operations. N was 50 in the 

test shown in this paper.The small ANL average factor of 0.6 and standard deviation of 0.2 were 

obtained in the optoelectronic device, which benefits the high computing accuracy of neuromorphic 

computing.51  

The device-to-device variation is important for memory and computing accuracy.379 The statistical 

mapping of device-to-device variations in a 6 x 6 array (Figure 60e). Distinctive HRS and LRS were 

obtained in the integrated device array. The statistics of device-to-device variation were analyzed by 

fitting with the Gaussian Function (Figure 61b). The values of σ/(μ*r) HRS and LRS were 0.7 % and 

3.4 % respectively. The results demonstrated small variations over the whole array, which is crucial for 

the computing accuracy based on the device.392 The device can be integrated into a high-density array, 

such as a crossbar array or stacked three-dimensional (3D) array, for implementing matrix-vector 

multiplication (MVM) (Figure 60f). Weights in neural networks were stored locally as device 

conductance during computing processes. By utilizing Ohm’s law and Kirchhoff’s current law, the 

results of MVM considered a core computing task in deep learning algorithms can be obtained by 

measuring currents.379 This methodology can realize parallelism as the current can be sensed at once 

regardless of the array size (corresponding to the matrix size in deep learning), which is energy-efficient 

compared to that of traditional digital computing systems.389 A neuromorphic computing on 

handwritten recognition was implemented. A three-layer neural network consisting of the input layer 

(784 neurons), hidden layer (300 neurons), and output layer (10 neurons) was built up. The 

backpropagation algorithm was used to train the neural network. After merely three integrations, the 

recognition accuracy reached 90 % as shown in Figure 60g, demonstrating promising prospects for 

cognitive tasks.    
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Figure 61. (a) The statistical analysis of ANL factor over cycle-to-cycle operations. (b) The statistical analysis 

of device-to-device variation. μ is expected value, σ is standard deviation, r is the ratio of HRS/LRS. 

5.3.4 Mechanism of Optoelectronic Performances 

 

Figure 62. Resistive switching mechanism. (a) The ZnO with (right) and without (left) oxygen vacancies. (b) 

Band structures of the ZnO. (c) Electrostatic potential curves along the z-axis, the vacuum level was normalized 

to 0 eV. (d) The fitting of Ln(I) vs. E1/2 for the device at HRS. (e) The fitting of Ln(I/T2) vs. 1000/T for the device 

at HRS. (f) Schematic diagram of energy band of HRS. (g) The fitting of Ln(I) vs. E1/2 for the device at LRS. (h) 

The fitting of Ln(I/T2) vs. 1000/T for the device at LRS. (i) Schematic diagram of energy band of LRS. 
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Systematic investigations were implemented to study the working mechanism with density functional 

theory (DFT) calculations and experimental measurements. The DFT theory was employed to 

investigate the electric properties of the switching layer. The models of the pure ZnO (left) and ZnO 

with oxygen vacancies (right) were constructed for the calculation (Figure 62a). ZnO was a wurtzite 

structure. Oxygen vacancies were induced intentionally to investigate the changes in electronic 

characteristics. Band structures of the ZnO were calculated (Figure 62b). The corresponding density 

of states (DOS) curves are shown in Figure 63. After the oxygen vacancies were induced, the band gap 

narrowed from 1.91 eV to 0.77 eV, indicating that oxygen vacancies increased the conductivity.444 

Notably, DFT calculations predict smaller band gap values compared to experimental measurement. 

This is due to the inaccurate evaluation of the repulsion effects between conduction levels and Zn 3d, 

resulting in the hybridization of the Zn 3d and O 2p levels.445 It still confirmed the trend of a narrower 

band gap and higher conductivity by inducing oxygen vacancies. Besides, the working function 

increased when oxygen vacancies were brought into ZnO (Figure 62c), which modulated the Schottky 

barrier height at the interfaces.446  

 

Figure 63. (a) The DOS curves of ZnO without (a) and with (b) oxygen vacancies.  

The Schottky emission describes activated electrons overcoming the energy barrier. Modulating the 

barrier height can induce resistive switching.12 The ln (I) of the device at HRS increased proportionally 

with the increase of E1/2 (Figure 62d), demonstrating the Schottky emission mechanism. Furthermore, 

the plot of Ln(I/T2) vs. 1000/T for the device at HRS demonstrated a linear relationship (Figure 62e), 

which was consistent with the result in Figure 62d. A schematic diagram of the energy band for the 

device at HRS is depicted in Figure 62f. The working function Mo and MoO3 were 4.6 eV and 4.9 eV 
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respectively.447 The interface of Mo/MoO3 was likely to be an ohmic contact, indicating low contact 

resistance. The work function of ZnO was 3.8 eV. The working function of ITO can be as high as 5.2 

eV.448 The Schottky barrier at the ZnO/ITO interface was higher. Because the working function 

difference at the ZnO/ITO interface was bigger than the MoO3/ZnO counterpart.449 The asymmetric 

curve (Figure 60a) indicated higher current values under positive voltages. The overall energy barrier 

height was lowered under positive voltages. The Schottky barrier at the ZnO/ITO interface was more 

dominant. For the LRS, the Schottky emission fitting of Ln(I) vs. E1/2 is plotted (Figure 62g). The linear 

relationship indicated that the device followed the Schottky emission at the LRS. The temperature-

dependent Schottky emission fitting also showed a linear relationship (Figure 62h). A schematic 

diagram of the energy band alignment at LRS is presented in Figure 62i. When positive voltages were 

applied, oxygen vacancies were generated at the ZnO/ITO interface, lowering the Schottky barrier 

height. 12 This will decrease the overall resistance of the device (LRS). Besides, generated oxygen 

vacancies decreased the resistance of bulk ZnO, which also benefited the smaller resistance of LRS.444 

Therefore, the modulated Schottky emissions at the ITO/ZnO interface and the bulk resistance of ZnO 

governed the resistive switching. Additionally, a RESET operation was completed by applying negative 

voltages to remove oxygen vacancies and recover the original barrier height. Particularly, the barrier 

height and ZnO conductivity changed gradually by migrating oxygen vacancies.12 The conductance of 

the device was modulated gradually, which was crucial for mimicking the plasticity of synapses.  

5.3.5 Monolithic Neuromorphic Machine Vision System 

Our optoelectronic synapse exhibited broadband spectrum sensitivity and electronic synaptic 

plasticity. Those features resemble the biological organs in the human visual system (Figure 64a). In 

human eyes, the retina shows a sensing ability to different colours owing to the functions of 

photoreceptors. The perceived signal is transformed into the visual cortex via neuron systems. The pre-

processing operations are also done in the retina to improve the processing efficiency in the visual 

cortex. The core cognitive tasks are completed in the visual cortex. It relies on a complicated neural 

network with many neurons and synapses to implement memory and computing tasks, including pattern 

recognition. Similarly, a crossbar array of optoelectronic synapses (Figure 64b) can achieve pixel-by-

pixel and broadband image sensing, corresponding to retinomorphic sensing. The integrated array can 

also play the role of kernel generator that can execute the convolution image processing. The processed 
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images are reconstructed based on the directly measured current. It can realize fast processing speed by 

avoiding redundant matrix calculations. Meanwhile, due to its compact bio-inspired structure, it was 

energy efficient due to the low-power consumption of the device under photonic operations. More 

importantly, the potentiation/depression function in the device is practicable for constructing artificial 

neural networks. This achieved VMM which was the most energy-consumption computing task for 

deep learning algorithms.379 Therefore, cognitive processing can be completed in the optoelectronic 

synapse array. This optoelectronic synapse can be used for front-end retinomorphic image sensing, 

convolutional processing, and back-end neuromorphic computing for cognitive tasks. It is very 

promising for constructing compact monolithic machine vision systems, which can improve image 

processing efficiency and decrease the fabrication costs of artificial vision systems. 

 

Figure 64. Monolithic neuromorphic machine vision system. (a) Schematic diagram of the retinomorphic sensing 

and processing in a human vision system. (b) Schematic diagram of the integrated optoelectronic synapse 

hardware for optical sensing, convolution processing, and neuromorphic computing. 
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5.4 Summary 

In this work, an optoelectronic synapse has been fabricated to develop compact monolithic 

neuromorphic vision systems for information processing. The device was a two-terminal device based 

on metal oxide materials that are compatible with traditional CMOS processes, demonstrating easy 

scalability and high integration density with current semiconductor technology. The optoelectronic 

synapse was sensitive to a broadband spectrum (ultraviolet and visible light regions). It can mimic the 

biological plasticity of EPSC, PPF, SADP, and SNDP, which was used for image sensing, photonic 

computing, and optical communication. A very low energy consumption of 37 pJ was obtained under 

photonic operations. Based on the multi-spectrum sensitivity and near-constant current gains under 

photonic stimulations, a photonic-controlled kernel generator was developed for convolution 

processing. This realized the pre-processing of feature extraction with high-energy efficiency and fast 

processing speed, which can improve the subsequent cognitive processing efficiency. Meanwhile, 

stable resistive switching under electronic stimulations was observed. The resistive switching 

mechanism was due to the modulated barrier height and the conductivity of ZnO by controlling the 

migration of oxygen vacancies. The potentiation/depression was employed to implement neuromorphic 

computing. A recognition accuracy of over 90 % was obtained, indicating a practical application for 

cognitive tasks. For the first time, this broadband two-terminal optoelectronic synapse can be utilized 

for front-end retinomorphic image sensing, convolution processing, and back-end neuromorphic 

computing. This technology is promising for monolithic neuromorphic machine vision systems. 
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Chapter 6. Conclusion and Outlook 

6.1 Conclusions  

The thesis focuses on the memristive devices for advanced neuromorphic computing systems. Two-

terminal memristive devices were fabricated based on chalcogenide and metal-oxide materials. Three 

major progresses are presented in three separate chapters. Firstly, a versatile memristive device 

(Ag/CISe/Mo) was demonstrated. The device showed non-volatile and volatile resistive switching 

simultaneously. It can be used for multiple roles of non-volatile memory, selectors, artificial neurons, 

and artificial synapses. Secondly, an intelligent matter (Ag/CIGSe/Mo) enabling reconfigurable 

temperature and humidity sensations was developed for sensory neuromorphic systems. Thirdly, an 

optoelectronic synapse (ITO/ZnO/MoO3/Mo) enabling multi-spectrum sensitivity for monolithic 

machine vision systems was developed. The developed techniques in this thesis will benefit the 

development of advanced neuromorphic systems pushing forward AI technology. More detailed 

observations are shown below: 

(1) A versatile memristive (Ag/CISe/Mo) array covering multiple functions was developed. Non-

volatile functionalities with a storage window of 4.0 x 105 and a retention time of 10,000s were 

obtained, indicating the application of nonvolatile memory. Besides, the Ag/CISe/Mo device 

showed diode-like volatile functionalities with a storage window of 7.0 x 104 and a rectification 

ratio of 4.0 x 104. The high rectification ratio can be used as selectors to suppress sneaky currents 

in memristive arrays. The LIF neuron model based on the device has been studied, demonstrating 

potential as artificial neurons. Furthermore, the short-term synaptic PPF and long-term 

potentiation/depression performances were obtained in the same device. The image recognition 

simulation with the accuracy of 90 ± 2% was achieved, indicating the practicability of the 

artificial synapse for neuromorphic computing. A versatile memristor taking the multiple roles 

of non-volatile memory, selectors, artificial synapses, and artificial neurons will provide many 

advantages regarding circuit simplification, fabrication processes, and manufacturing costs. The 

devices with different top electrodes, operation temperatures, switching layer thicknesses, and 

conduction mechanisms were investigated to reveal the resistive switching mechanism. It has 

been confirmed that the volatile/non-volatile bifunctional resistive switching is attributed to the 

dynamics of Ag atoms. Moreover, this work presents a novel bottom-up approach to fabricate 
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crossbar arrays, where the CISe was grown locally by electrodeposition to form a patterned 

switching layer. This method can potentially decrease manufacturing costs and achieve high 

utilization efficiency of materials.  

(2) An intelligent matter enabling reconfigurable temperature and humidity sensations has been 

demonstrated for in-sensor computing. The delicate design was based on a memristive device 

with resistive switching capabilities to achieve reconfigurable sensory properties in a single 

device. External voltage triggered the formation/rupture of Ag MCF, introducing resistive 

switching. The device (Ag/CIGSe/Mo) can achieve reliable resistive switching behaviors. The 

existence and nonexistence of conductive filaments determined the metallic and semiconductive 

properties under different temperatures. Thus, opposite temperature coefficients of conductance 

were obtained at the LRS and HRS. Intelligent low-level sensory data processing was 

demonstrated. The intelligent matter with temperature sensations can work in the LRS mode, 

HRS mode, and HRS&LRS mode. Each mode has different sensation features and sensitivities. 

The reconfigurable sensation characteristics are promising for intelligent artificial skins for 

different working scenarios. Besides, water molecules influence the growth of conductive 

filaments, which affects the size of high-conductivity filaments and further modulates the value 

of the LRS. The device acted as sensory artificial synapses that can be utilized for high-level 

cognitive in-sensor computing. An ANN was constructed to implement the backpropagation 

algorithm for pattern recognition. Different recognition accuracies were obtained under different 

humidity levels, demonstrating sensory neuromorphic computing capabilities.  

(3) An optoelectronic synapse has been fabricated to develop compact monolithic neuromorphic 

vision systems for information processing. The device has a two-terminal structure based on 

metal oxide materials that are compatible with traditional CMOS processes, demonstrating easy 

scalability and high integration density with current semiconductor technology. The 

optoelectronic synapse was sensitive to a broadband spectrum (ultraviolet and visible light 

regions). It can mimic the biological plasticity of EPSC, PPF, SADP, and SNDP, which was used 

for image sensing, photonic computing, and optical communication. A low energy consumption 

of 37 pJ was obtained under photonic operations. Based on the multi-spectrum sensitivity and 

near-constant current gains under photonic stimulations, a photonic-controlled kernel generator 



 

135 

 

was developed for convolution processing. This technique realized the pre-processing of feature 

extraction with high-energy efficiency and fast processing speed. It improves the subsequent 

cognitive processing efficiency. Meanwhile, stable resistive switching under electronic 

stimulations was observed. The potentiation/depression can be employed to implement 

neuromorphic computing. For the first time, this broadband two-terminal optoelectronic synapse 

can be utilized for front-end retinomorphic image sensing, convolution processing, and back-end 

neuromorphic computing.  

6.2 Outlook 

As for future work, some extra efforts can be made regarding in-depth mechanism exploration, device 

performance improvement, large-scale array-level study, and novel systems design. A better 

understanding of resistive switching and high-performance devices are the foundation for memristive 

systems. Besides, array-level integrated devices and system-level investigation are required to realize 

hardware-based computing. The detailed future work is listed below: 

(1) In-depth understanding of cation-based and anion-based resistive switching is crucial for further 

improving the device’s performance. It benefits the development of compact models. Especially, 

accurate SPICE models that are embeddable into the commercialized technology will accelerate 

the development of memristive systems. Some investigation by in-situ TEM to monitor the 

growth and shrinking of Ag filaments in the chalcogenides and migration of oxygen vacancies 

are be meaningful.450 Some other techniques, such as scanning probe microscopy and X-ray 

microscopy, may also provide essential information to supplement the picture of resistive 

switching mechanisms in both chalcogenides and metal oxides. 

(2) The performance of devices needs to be improved, especially for endurance and retention time. 

In this work, the endurance of thousands of cycles and retention time of ten thousand seconds 

were achieved, which is not practical for commercialized applications although it may be 

accountable for preliminary study.451 Further optimizing the device structure, including the thin 

film thickness, the electrode material, and the device size, can be helpful to get more robust and 

reliable resistive switching properties.  
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(3) More interesting properties based on the devices in this thesis can be explored. For example, the 

intelligent matter (Ag/CIGSe/Mo) shown in this thesis showed intelligent sensory functions to 

temperature and humidity. It also shows the potential of light sensitivity as Ag filaments interact 

with photons.90 Besides, the oxide-based device may show humidity sensitivity except for light 

sensing.452 Extra ability sensing can be added to current devices, which expands the applications 

of these devices. 

(4) Developing large-scale memristive arrays is essential for memristive-based computing systems. 

We have fabricated mini arrays (around 20-40 devices) in current research. This is for the 

preliminary investigations. More efforts are required to increase the integration density. To reach 

the goal, advanced lithography machines and thin film deposition techniques should be 

employed.453 Corresponding fabrication process needs to be explored before the array integration 

that exhibits high yield and good device-to-device variations. 

(5) Commercialized neuromorphic computers need system-level design and integration. After the 

success of fabricating high-density arrays. System design and integration implementing 

hardware computing will be considered.     
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