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Abstract 

The deposition and design of nanometre-scale oxide films is an integral component of the 

ongoing nanomaterial revolution, from cell phones, to batteries, to photovoltaics. Atmospheric-

pressure spatial atomic layer deposition (AP-SALD) and chemical vapour deposition (AP-CVD) 

are two techniques that show great promise for commercialization, due to their speed and the 

vast array of materials and stoichiometries they can produce. However, this flexibility comes at 

the cost of complexity; the presence of oxygen during film deposition induces defects which may 

have advantageous or deleterious effects dependent on the application of the film. Machine 

learning is a statistical technique that allows us to make sense of such complex systems of 

interaction, without the need for expensive ab-initio simulations. Through this work, I 

demonstrate our capacity to deposit entirely new materials with our lab-scale AP-SALD/CVD 

system, and develop several characterization methods that will permit us to leverage the 

flexibility of that system to maximum effect. I developed a system for measuring the resistance 

of our films in-situ, demonstrating the effects of atmospheric oxygen on film properties, as well 

as implementing machine learning into our in-situ reflectance system providing accurate real-

time measurements of film thickness and band gap. Next, I designed a gaussian process 

regression tool to assist researchers in finding accurate optical model parameters with our 

spectroscopic ellipsometer, much more quickly than previously possible. Lastly, I implemented a 

basic computer vision tool for tracking the degradation of perovskite and calcium thin films in 

real-time. To my knowledge, this work represents the first time that machine learning has been 

leveraged to improve the deposition of films by AP-SALD and to enhance the characterization of 

their properties and performance. 
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1 Introduction 

Nanomaterials are being used more and more every year, in devices we use every day. The 

screens of our cell phones and televisions, the transistors in our computers, diodes, batteries, 

photovoltaics, nanomaterials are everywhere. In order to meet increasing demands for energy 

efficiency and high-performance it has become necessary to design nanomaterials with specific 

properties for individual applications. To keep such specificity of design within the realm of 

commercial viability, rapid deposition techniques are needed. Two such techniques are 

atmospheric-pressure spatial atomic layer deposition (AP-SALD) and atmospheric-pressure 

chemical vapour deposition (AP-CVD). Because these are performed in atmosphere, there is no 

time-consuming vacuum purge step – particularly important in the case of AP-SALD, as regular 

atomic layer deposition (ALD) needs to be purged multiple times throughout the deposition. To 

fully leverage the flexibility of this system, it would either be necessary to fully model the 

interactions between all the various compounds used to determine the best conditions for 

producing a given film, or use statistical techniques such as machine learning (ML). Simulations 

of atomic interactions can be very time-consuming, and rely inherently upon assumptions and 

simplifications that may result in a loss of prediction accuracy, but also allow us to fully 

understand the interactions at play within our system. ML can be built on a foundation of real 

data, collected from real films and so explicitly captures dynamics we may fail to account for in 

a simulation, but is also a “black box” where data goes in and results come out – without 

necessarily enhancing our understanding of the relationships therein. However, we are interested 

here in the applications of the films produced using AP-SALD/CVD, and so it is more important 

that we be able to accurately predict the properties of real films than understand how those 

properties arose.  
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This manuscript will outline my research towards using ML tools, specifically Gaussian 

Process Regression (GPR) and Convolutional Neural Networks (CNN), to predict the material 

properties of thin metal chalcogenide films produced using our AP-SALD/CVD system. These 

films can then be tailored for use in specific devices, such as photovoltaics, anti-viral coatings, or 

wearable electronics. The first phase of this research involved the improvement of our lab’s AP-

SALD system, and development of in-situ measurement tools to help ensure the reliability of the 

system when it came time to create the ML training dataset. The second phase of my research 

involved the development and initial utilization of this dataset, creating an ML model for use 

with a Film Sense FS-10X ellipsometer to rapidly and precisely fit films of widely varying 

composition. Some of these films were then tested within devices, specifically passivation layers 

for use in perovskite photovoltaics. The effectiveness of these passivation layers was determined 

visually using a CNN model which can detect degradation of the subject film when using either a 

real perovskite or test material.  

1.1 Thesis Objective 

At the end of this thesis I will have answered the question of how we can use our AP-SALD 

system and machine learning techniques to accelerate the advance of materials science at the 

nanometre scale, with a focus on characterization of novel thin films. There is a large degree of 

variability between AP-SALD systems, as there are few commercially-produced systems 

available at this time. This means that the correlation between the parameters used to control our 

system and the properties of the films produced by said system is poorly understood. Even just 

using our system there are fourteen process parameters which directly affect the film, 

discounting completely the library of chemical precursors we can select. The lack of data and 

complex data-space makes the AP-SALD a challenging process to optimize; fortunately ML 
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techniques have been applied to similar problems [1], [2]. ML has shown to be an incredibly 

useful tool for materials scientists as well as process engineers, like when screening large sets of 

data either from databases or experiments to find novel new materials [3]–[8]. Some researchers 

have applied machine learning techniques to conventional atomic layer deposition (ALD) 

processes [9], and some used ML in conjunction with simulation techniques like Density 

Functional Theory (DFT) to optimize the ALD cycles [10], [11]. In both cases conventional 

ALD was used, which is a vacuum technique and so is unaffected by the presence of oxygen 

annealing during deposition (unlike AP-SALD), which changes the role of multiple process 

parameters but requires significantly longer to produce films of equal thickness compared to our 

technique. This means that films produced with AP-SALD are better suited for rapidly exploring 

large composition and parameter data-spaces. Both the above works limited themselves to a 

single combination of precursor chemicals, with fewer alterations to the process parameters. 

This research will focus on the methods used to generate and relate large sets of data in a 

system of zinc, aluminium, copper, oxygen and nitrogen precursors. These films are produced 

with varying amounts of the precursor chemicals, including binary oxide films, at various 

deposition conditions. We already have the capability to measure the thickness and optical 

properties (refractive index, bandgap) of the film during and after production, and techniques for 

measuring resistivity directly were developed but eventually discarded for reasons that will be 

explained in the relevant chapters. Ellipsometry and absorbance measurements proved to be 

critical in the study of these films, providing the thickness, band gap, roughness, and even 

information on the resistivity and plasma frequency of the films. Herein lay the first challenge 

towards developing an accurate ML program, developing a dataset comprehensive and accurate 

enough to build an accurate ML model. This stage was completed in parts, with the initial film 
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preparation and measurements consuming nearly an entire year. Once the initial data had been 

collected, however, initial versions of each network could be created – speeding up the creation 

of the subsequent iteration through online learning. The first ML model created was designed to 

provide initial guesses for the modelling parameters used by the ellipsometer. This sped up the 

collection of ellipsometry data massively, as each sample had to be fit only once, not iteratively 

to reduce fitting error to acceptable levels. By using an existing optical model, we were able to 

leverage the underlying assumptions behind the GPR model, that a function exists which 

describes the relation between input and output parameters. This model also accounts for the 

natural variability that is inherent to any measurement technique that relies upon solving a 

complex inverse problem, such as ellipsometry. 

Machine learning techniques are not just useful for producing films, however, they can 

also be of great use when testing device and film stacks. For example, ALD alumina films have 

been used as passivation layers before, protecting humidity- and oxygen-sensitive films like 

perovskite photovoltaics. In this research we tested the humidity-resistance of multiple 

passivation layers, using either real perovskite film stacks or an evaporated calcium layer as the 

water-sensing layer. By using a CNN, the degradation of these films was able to be monitored in 

real-time, providing much more precise measurements of the water vapour transmission rate 

(WVTR) than is possible by eye alone.  

1.2 Thesis Outline 

Part A of this manuscript is a review of the literature relating to AP-SALD, the selection of a 

new precursor chemical and subsequent deposition of some of the first thermal AP-SALD 

copper/oxide films, and the development of an in-situ resistance sensing technique initially 
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conceived to increase the amount of data collected from each film deposited. These techniques 

were later discarded in favour of more advanced tools, but they form part of a potential feedback 

system to better control the AP-SALD process. Part B explains the work I completed in order to 

refine our in-situ reflectance measurement system, produce the ML model designed to speed up 

the process of collecting data from the ellipsometer, and the ways in which basic computer vision 

can be used to automate time-intensive material degradation tests. Both of these sections will be 

preceded with a targeted review of the subject, including relevant background as well as 

contemporary research, and the final section of my report will be a projection of how this work 

can be used in future research.   
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Part A - AP-SALD and In-Situ Data Collection 

The first main aspect of this project was the development of various tools for creating and 

characterizing films using our AP-SALD system. First, I will review the AP-SALD process, and 

some of its uses as demonstrated by us and our collaborators. Then I will discuss my efforts to 

expand our library of materials to include copper and its oxides in response to the COVID-19 

pandemic, and to develop a method of measuring film resistance in-situ.   
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2 Literature Review: Atmospheric-Pressure Spatial Atomic Layer 

Deposition 

Atomic layer deposition is a variant of the chemical vapour deposition (CVD) process for 

creating nanometre-thick films, usually metal chalcogens such as zinc oxide. All of the 

techniques presented here involve reactions between two or more chemical precursors diluted in 

an inert carrier gas such as nitrogen. Each specific compound is formed by a unique and complex 

combination of chemical reactions, which can make it challenging to understand exactly what is 

occurring during the deposition [12]. Which reactions occur is based on the thermodynamics of 

those reactions, and competing reactions can occur within the same deposition if the conditions 

are not selected well. Of these reactions, the following are most relevant to the compounds we 

most often produce in our lab: 

• Pyrolysis: Decomposition of a molecule due to thermal energy breaking the chemical bonds, 

without interacting chemically with another compound. This can be useful for breaking down 

a precursor in preparation for a reaction, but can also lead to degradation of the deposited 

film.  

• Hydrolysis: A decomposition reaction like pyrolysis, but initiated by a reaction between a 

compound and water. Water is a commonly-used source of oxygen for depositing oxide 

films, and so can perform multiple roles simultaneously.  

• Reduction and Oxidation: These two kinds of reactions always occur together, involving an 

exchange of electrons between reactants, and are often referred to by the combined term 

“Redox Reaction”. The reactant which gains electrons is said to be reduced, and the 

compound which loses electrons is oxidized, but oxygen does not have to be involved for this 
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reaction to occur. Redox reactions are particularly important when one of the elements in the 

reaction has multiple oxidation states; copper is an example of a material that can form 

multiple oxides or a pure metal depending on its electronegativity.  

• Disproportionation: Often a kind of redox reaction where a reactant is simultaneously 

oxidized and reduced, but refers to any reaction where one compound breaks down into two 

different products. For example, in some cases we used hydrogen peroxide instead of water 

as the oxygen source, which breaks down into water and oxygen gas – increasing the 

concentration of oxygen in the reaction volume.  

Which of these reaction types dominates the process, and therefore the stoichiometry of the final 

film, can be tuned through the addition of energy in the form of heat, plasma, or ultraviolet light.  

We can predict which compounds will be produced depending on the thermodynamics of the 

reaction involved, specifically whether the free energy change of the reaction (𝐺𝑟) is negative, 

which is dependent on the Gibbs free energy of each reactant and product (𝐺𝑓) through the 

simple equation: 

𝐺𝑟 = ∑𝐺𝑓,𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 − ∑𝐺𝑓,𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠 

𝐺𝑓 depends not only on the properties of the compound itself, but also on the temperature, 

pressure, and molar concentration of each material. It is through these last three parameters that 

we can exert control over the reaction taking place, however, discovering new reactants with 

more favourable properties is outside the scope of this research. Many different classes of 

compounds have been used as precursors over the years, but modern precursors are often highly 

volatile and reactive metallo-organic compounds. Due to their volatility, these precursors can 

often be used at significantly lower temperatures than previous chemicals, but also necessitates 

(1) 
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careful separation from the environment. Some specific risks associated with metallo-organic 

precursors are discussed in depth in Chapter 3, where I describe the process we use to select a 

new precursor. The reaction dynamics described above apply to all vapour-phase reactions and 

deposition techniques including our AP-SALD system, which is an evolution of conventional 

ALD designed for greater commercial applicability. CVD, ALD, and AP-SALD are three very 

similar vapour-phase deposition techniques, but each has its unique advantages and 

disadvantages.  

• CVD, illustrated in Figure 2.1, is a process where the precursor chemicals are injected 

simultaneously into a vacuum chamber and allowed to react on the surface of the substrate. 

This technique offers high growth rates, as the reaction rate is not limited by the amount of 

precursor adsorbed to the surface. However, the films have difficulty adhering to high aspect 

ratio features, and can have defects such as pores in the film. More critically, as the reaction 

in CVD occurs much more rapidly, we cannot obtain as fine control of the thickness of the 

film, especially for very thin films. Because the precursors mix throughout the deposition, 

there is no reason to purge the vacuum chamber until the deposition is complete. Given that it 

takes a significant amount of time to reach the level of vacuum needed for thin film 

deposition processes, the reduced number of purge cycles has been a boon for the 

commercialization of CVD. 
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• ALD, shown in Figure 2.2, differs from CVD in that each of the precursor chemicals is 

deposited onto the substrate separately, and each deposition is separated by a purge step. 

These purge steps can take a long time, as all excess precursor must be removed from the 

vacuum chamber. Injecting the precursors one at a time allows a thin layer of precursor to 

adhere to the entire substrate. Since the precursor which did not adhere to the substrate is 

removed, the reaction is limited by how much can adsorb onto the substrate. This is called a 

self-limiting reaction. It is this self-limiting nature that gives ALD much finer control over 

the final film thickness, as each deposited layer is one atom thick. ALD is a much slower 

process than CVD due to the lengthy purge cycles, but produces films with few defects that 

can adhere to high aspect-ratio features.  

Figure 2.1: Chemical Vapour Deposition process in vacuum, precursor 

compounds are introduced simultaneously and allowed to react on the 

substrate. 
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• AP-SALD, shown in Figure 2.3, is a proposed solution to the issue of long purge times – 

separating the precursor flows in space rather than time [13]. Instead of long purge cycles 

between each precursor addition, all precursors are directed to flow onto the substrate at the 

same time by a specially designed reactor head. The substrate is then made to oscillate 

beneath this reactor head, sequentially exposing each part of the substrate to the precursors. 

To prevent mixing of the precursors above the substrate, the flows are separated by inert gas 

curtains and the excess precursor is removed using a vacuum. This technique can be 

performed in atmospheric conditions, as the inert gas separates the precursors from the 

environment and one another before they react on the substrate [14]. In the close-up portion 

of Figure 2.3 we can see how the successive layers of each precursor react with one another, 

building up multiple ALD cycles in a single oscillation of the stage. Conventionally, AP-

SALD is operated in the same self-limiting manner as conventional ALD, however it is 

possible to weaken the separation between the precursor flows or increase the total flow, 

such that there is some mixing of the precursors in the gas phase and the system operates as 

an atmospheric-pressure CVD system instead.  

Figure 2.2: Vacuum or conventional Atomic Layer Deposition, 

precursors are allowed to adsorb onto the surface sequentially, 

limiting the rate of reaction. 
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The quality and morphology of films created using AP-SALD depends heavily on both 

process parameters set by the user, such as the temperature of the substrate and the flow rates of 

each precursor vapour, as well as local conditions such as humidity and the number of 

depositions performed that day. As the system is not purged of the precursor compounds it is 

possible for the concentration of the reactive species to increase over time within the tubes 

delivering them to the reactor, and therefore affecting the growth rate of the film. Even when 

creating an undoped, homogenous film, it can be difficult to select the correct process parameters 

which will result in a film with the desired properties. 

Figure 2.3: Oscillating-stage style Atmospheric-Pressure Spatial Atomic Layer 

Deposition. Precursors adsorb to the substrate sequentially, separated in space 

rather than time. 
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Figure 2.4: Labelled schematic of the lab-scale AP-SALD system in use at the University of Waterloo 

 Stage temperature, reactor-substrate spacing, oscillation speed, number of oscillations, 

nitrogen curtain strength, and the total of carrier and bubbler flow rates are selected for each 

deposition in our system, illustrated in Figure 2.4. These seven parameters are constant for all of 

the lines that deliver the different chemical precursors at each point in time for the sake of 

producing uniform depositions, but the precursor parameters can vary between each chemical 

precursor line. The two parameters that we can vary between precursor lines are the percentage 

of carrier flow flowing through the bubbler, and which channels of the reactor the precursor-

laden flow passes through. A minimum of two precursors is required, so more than ten 

parameters can vary between depositions. Added to the time-dependent variability in growth 

rates, there is a very large data-space that must be understood to attain proper process control.  
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These precursors can come in either liquid or solid forms, and the means by which each mix 

with the nitrogen flows varies, as can be seen in Figure 2.5. Liquid precursors are selected to be 

incredibly volatile, and so as the nitrogen gas flows into the liquid and disturbs it, some amount 

will evaporate into the gas flow and be carried along with it. Higher flow rates mean a greater 

amount of mixing will occur in the liquid, and so the carrier gas can be saturated easily. Solid 

precursors are, by nature, a lot less volatile and need to have heat added to vaporize the 

precursor, and higher nitrogen flow rates are needed to bring that precursor to the reactor before 

it condenses. However, the degree to which the nitrogen carrier gas can be saturated is dependent 

on the amount of precursor that can be vaporized at a given temperature, which is itself limited 

by the decomposition temperature of the precursor. This has limited the adoption of solid 

precursors outside of a few applications, one of which will be discussed below in Chapter 3.  

Figure 2.5: How liquid and solid precursors are mixed with inert nitrogen gas to be delivered to 

the AP-SALD reactor.  
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Once the precursor has mixed with the inert carrier gas and flows to the reactor, the other 

process parameters come into play. For example, using diethyl zinc as a precursor, zinc oxide 

films can be produced at temperatures ranging from 25 [15] to 600oC [16]. The exact 

temperature range depends also on the oxygen source and even the specific reactor design being 

used [17], but will also affect the purity, crystallinity, and band gap of the final film [18]. In an 

AP-SALD process, even within the ALD temperature window the film growth can be moved 

from ALD to CVD mode by adjusting the flow rates of the precursors/exhaust and the reactor-

substrate spacing to either promote or inhibit gas mixing before the precursors adsorb to the 

substrate. Since zinc oxide has a wide range of applications, including in gas sensors [19], 

photocatalysts [20], photovoltaics [21]–[24], batteries [25], and transistors [26]–[29], varying a 

film’s properties to tailor it to an application could result in better devices. For example, high 

surface roughness is good for gas sensing, but could lead to scattering of light if that same film is 

used in a photovoltaic device. High levels of oxygen defects in the crystal may shift the band gap 

out of the ideal range for an LED, but may also lead to an increase in the conductivity of the 

film.  

In order to quantify the effect of process parameters on film properties, the properties of the 

film must be measured. Performing these measurements in-situ allows us to observe if and how 

these properties evolve through the course of a deposition. For example, as mentioned earlier 

ALD is a self-limiting technique and so would be expected to have a linear relationship between 

the film thickness and the number of deposition cycles, whereas for AP-CVD, this relationship is 

expected to depend on the oscillation speed of the substrate. By measuring the thickness of the 

film while it is being deposited, signs of CVD-mode growth can be detected and steps taken to 

reduce the amount of precursor reacting at once.  To be useful as an in-situ measurement 
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technique, any apparatus selected must not only provide useful information about the film, but 

also be compact enough to be integrated into the existing system, and fast enough to take a 

measurement without pausing the deposition.  In our lab, preliminary work had already been 

performed towards integrating in-situ optical reflectance [30] and resistance measurements [31], 

which were further developed and refined by me. As described within his PhD thesis, my 

colleague Kissan Mistry selected optical reflectance as one of the in-situ techniques because of 

“the use of optical fibres to measure and collect the light as well as its simplicity” [32]. The 

optical fibre was placed within the oscillation path of the substrate, as it passes out of the reactor 

area – capturing data every 5-10 cycles to balance comprehensive data collection with minimal 

measurement time. This data was then fit to either a Tauc-Lorentz or Cauchy optical model to 

extract data about the thickness or band gap, and it was with this fitting process that I was able to 

improve the system using ML – as will be discussed in Chapter 5 of this thesis. 

The challenges of process control aside, AP-SALD has advantages over conventional ALD 

beyond simple deposition speed. While the effect of atmospheric exposure upon the film 

properties has so far not been studied to the point of predictability, it is known that AP-SALD 

films do indeed have different properties compared to conventionally-produced films. For 

example, collaborators in Grenoble found that aluminium-doped zinc oxide (AZO) films 

produced using AP-SALD had electron mobilities an order of magnitude lower than films 

produced using conventional ALD  [33]. This they attribute to the presence of additional oxygen 

at the grain boundaries of the film, oxygen that they suggest comes from the atmosphere and 

scatters electrons as they attempt to cross this highly-defective region of the film. However, the 

presence of additional oxygen is not simply a trap for electrons moving in the film, it can also be 

a source of electrons, increasing the carrier concentration within the film up to the point of 
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demonstrating metallic behaviour depending on the deposition temperature used [31]. Since this 

effect is at least partially dependent upon parameters under the control of the AP-SALD 

operator, we can leverage the additional tunability to produce films for a wide array of devices. 

In photovoltaics, AP-SALD films have been used to form the light-collection layer [34], 

moisture/oxygen barrier layer [35], and electron transport layers [36]. In the last few years the 

use of AP-SALD films has also been trialled in cantilever gas sensors [37], as a viricidal coating 

[38], and memristors [39]. Not to mention, given that AP-SALD seems particularly well-suited 

for producing degenerately-doped semiconductors which exhibit metallic behaviours, it is likely 

that they will be integral in the development of materials with a nonlinear optical response [40], 

[41]. As shall be discussed in Chapter 9, such materials are very useful for producing devices 

like optical transistors – which may be a growth industry as researchers seek to expand the reach 

of Moores Law.  
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3 New Precursor Selection and First Thermal AP-SALD Copper films 

3.1 Introduction 

There are many factors in selecting a precursor compound for an ALD process, beyond the 

quotidian concerns of accessibility, affordability and being able to produce the relevant film. 

First, and most critical for atmospheric techniques, we want it to be comparatively safe – suitable 

for use inside a fume hood, at least in limited quantities. The precursor should also ideally be 

very easy to get into the vapour phase with minimal heating or agitation, and sufficiently reactive 

that a full reaction can occur during each deposition cycle. These drives can conflict, of course. 

Diethylzinc, used in many ALD and CVD processes for the formation of ZnO films has a vapour 

pressure of 2.77 KPa [42], but is pyrophoric and will combust violently if exposed to air, even 

posing an explosion risk in sufficient volume. Tetrakis(dimethylamino)tin(IV), or TDMASn for 

short has a much lower vapour pressure of just 13.33 Pa [43] and is not pyrophoric, but it is 

highly toxic, burning skin and damaging any cells it comes into contact with. There is a wide 

body of research on the development of suitable precursors, which does not need to be reviewed 

here, but because of this oftentimes there will be more than one precursor capable of creating a 

desired film. 

At the beginning of the COVID-19 pandemic, our group started searching for a way to apply 

our film-producing process to the efforts fighting against the disease. Copper and its oxides have 

been widely reported as being highly viricidal [44]–[46] and antibacterial [47], [48], and prior 

work performed by me had already shown that our system is capable of depositing films on more 

porous polymer substrates [31]. Accordingly, we decided to investigate the viricidal properties of 

several films produced in our lab, including ZnO, but also wanted to attempt deposition of 
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copper and Cu2O [38]. My task was to find a copper precursor that we could use to coat polymer 

layers within N95 masks, which would further increase the need for a non-toxic precursor which 

could be used at temperatures low enough to deposit on plastic. Of course, copper films are also 

useful for more than just viricidal coatings, having been used in devices ranging from solar 

panels [34], [49] to photocatalysts [50]–[52]. Many precursors have been cited as being used to 

deposit metallic copper and/or its oxides [53], but most of these required additional techniques 

like exposing the film to plasma during deposition. Three of these had been reported to be 

capable of depositing copper at comparatively low temperatures, with either no added reducing 

compound, or one that was commonly available. CuCl, copper(II)hexafluoroacetylacetonate 

(Cu(hcaf)2), and hexafluoroacetylacetonate copper(I) trimethylvinylsilane (CupraSelectTM) were 

the top three contenders based on their feasibility. CuCl had to be removed from the selection 

process, as it was commonly used in conjunction with water or hydrogen gas, which upon 

reaction would form HCl – a strong acid that would degrade the polymer fabric quickly. Both 

CupraSelectTM and Cu(hcaf)2 require heating before they become volatile enough to enter the 

flow of nitrogen; Cu(hcaf)2 in particular as it is solid at room temperature, however the organic 

ligands attached to the copper in both cases are ringed carbon structures which are strong enough 

to withstand heating without decomposition [54]. In this chapter, the deposition of metallic 

copper using CupraSelectTM and Cu(hcaf)2 is studied, to determine if our high-throughput AP-

SALD deposition technique can produce films of sufficient quality for inclusion in viricidal 

masks. 

3.2 Experimental Methods and Materials 

All depositions were performed on a custom-built AP-SALD system, as detailed in Chapter 

2, although initial trials were performed with a static stage to prevent the copper from oxidizing 
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in atmosphere as it oscillates. The AP-SALD stage was held steady for twenty minutes during 

each deposition and heated to temperatures ranging from 100-275⁰C. Trials with an oscillating 

stage were performed at speeds ranging from 5-30 mm/s and allowed to run for the same twenty 

minutes. CupraSelectTM was purchased from Epi Valence and Cu(hcaf)2 was purchased from 

Strem. These copper precursors were challenging to bring into solution in the nitrogen carrier 

gas, so a flow rate of 450 SCCM was maintained through the bubbler, with only 50 SCCM used 

as carrying gas for a total flow rate per channel of 500 SCCM, and the metal bubbler was heated 

to temperatures between 50-90⁰C. In conventional ALD processes, Cu(hcaf)2 had been noted to 

produce metallic copper films using pyridine and H2 as reducing agents at room temperature 

[55], and methanol, ethanol [56], diethylzinc [57], or water [58] as reducing agents at high 

temperatures (180-300⁰C). Pyridine, water and diethylzinc were tested as co-reactants in this 

work. The co-reactants were introduced to the reactor by bubbling them at 10-200 SCCM, with 

the remainder of the 500 SCCM total being nitrogen carrying gas. The spacing between the 

reactor and the substrate was varied between 0.01-0.09 mm to allow different amounts of oxygen 

to interact with the film surface during deposition. Grazing incidence X-Ray Diffraction (XRD) 

measurements were performed using a Malvern Panalytical XPert-Pro system, between ⁰2θ 

values of 20.05 and 99.95, with a step size of 0.1 ⁰2θ, each measurement being performed for 4.5 

seconds with a copper anode.  

3.3 Results and Discussion 

CupraSelectTM was difficult to source at the beginning of the pandemic and was expensive 

when it was available, although since the inception of this work another research group did 

demonstrate its ability to selectively form copper and its oxides [59]. CupraSelectTM had been 

shown in the literature to be capable of producing metallic copper without a reducing agent [60]. 
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In this case we deposited films at a range of temperatures between 50-250⁰C, and were able to 

obtain copper above 125⁰C when 450 SCCM nitrogen was flowed through the CupraSelectTM 

which was heated to 60⁰C, no other precursor was needed. Two metallic films produced with the 

CupraSelectTM are shown in Figure 3.1. The greatest visible proportion of copper was produced 

at 200⁰C, as shown in Figure 3.1a) and c). This film has very visible metallic copper, but when 

placed on a light background it is easy to see the presence of cupric oxide as a black layer. Films 

produced at lower temperatures had less visible copper, and more visible cupric oxide, as shown 

in Figure 3.1b) and d). Even on a dark background the colour of the copper is visibly muted 

Figure 3.1: Two films deposited using CupraSelectTM as the copper precursor. a) and c) show a film 

deposited at 200⁰C on a black and white background respectively. b) and d) show a film deposited at 

125⁰C on the same backgrounds. On the black background the metallic copper is more easily visible, 

whereas the copper oxides are more easily seen on paper. 



- 22 - 

 

compared to the film deposited at 200⁰C. In a vacuum process, CupraSelectTM has been found to 

disproportionate at 200⁰C [54], releasing the trimethylvinylsilane ligand, which enhances the rate 

at which metallic copper is formed. Perhaps at lower temperatures the reaction kinematics do not 

allow for this reduction reaction, leaving more copper to form an oxide rather than pure metal. 

All of the CupraSelectTM films had poor adhesion to the glass, which is demonstrated in Figure 

3.1b) and d), as a patch can be seen where simple contact with nitrile gloves was sufficient to 

remove the film. Various surface treatments were tested, including UV-ozone cleaning, and 

washing the glass with acetone to try and remove any contaminants, or depositing a layer of ZnO 

first to provide a different reaction surface. None of these treatments were effective, and the 

resulting film could always be removed with a simple swipe with paper towel or contact with a 

gloved hand. The most commonly cited reason for this poor adhesion is a decomposition of the 

precursor on contact with the substrate, with the fluorine atoms bonding with the surface before 

the copper [61], [62]. 

Due to the poor adhesion of the films deposited with CupraSelectTM, as well as its high 

cost, we decided to switch our efforts to the other copper precursor we had identified, Cu(hcaf)2. 

As with the CupraSelectTM, a wide array of deposition temperatures were tested and the region 

between 180-215⁰C was identified as the most promising for producing metallic copper. Below 

this temperature and no film was produced, and above this temperature the film was increasingly 

oxidized. Many thin-film devices have temperature-sensitive elements, that might be degraded 

by such high deposition temperatures. Given that both DEZ and pyridine have been shown to 

reduce copper oxides to metallic copper, as mentioned previously, the next logical step was to 

attempt to react the Cu(hcaf)2 with either of these to see if there is an effect on the deposition 

process. 
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Figure 3.2 shows four films deposited at 200⁰C with Cu(hcaf)2 bubbled at 450 SCCM, 

with various co-reactants. Figure 3.2a) and b) were deposited with no co-reactant and diethylzinc 

as a co-reactant, respectively. Upon visible inspection of these films, there were noticeable 

regions of metallic copper, indicated with black rectangles, but the other two showed just mixed 

copper oxides. Pyridine, which was introduced to the reactor at 10 SCCM, had the opposite of 

the intended effect. While literature indicated that it functioned as a reducing agent, in Figure 

3.2c) we can see dark spots where the cuprous oxide was oxidized further into cupric oxide, with 

no metallic copper visible at all. In Figure 3.2d) we introduced deionized water to the reactor at a 

Figure 3.2: Four films deposited using Cu(hcaf)2 at 200⁰C with various co-reactants, metallic copper 

highlighted in parts a) and b). a) shows a film deposited with Cu(hcaf)2 alone, with no co-reactant. b) 

shows a film deposited with 10 SCCM of DEZ added to the reactor. c) shows a film deposited with 10 

SCCM of pyridine added as a reducing agent, and d) shows a film with 20 SCCM of deionized water 

added, which acted as an oxidant. 
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rate of 20 SCCM, and the effect is quite clear. There is a large central band of cupric oxide, with 

an outer region of thick cuprous oxide. As water is commonly used as an oxidant in AP-SALD 

systems this result was expected. Notably, all of the films deposited using Cu(hcaf)2 showed 

much better adhesion to the glass substrate than the depositions with CupraSelectTM. As 

mentioned, previous studies have suggested that the adhesion of CupraSelectTM is limited by the 

presence of fluorine impurities at the substrate surface [54]. However, it is only the 

trimethylvinylsilane ligand that differentiates these two precursors, and Cu(hcaf)2 has double the 

fluorine of CupraSelectTM. It is possible that under atmospheric conditions these 

trimethylvinylsilane ligands remain as impurities within the film, reducing its density and 

therefore its adhesion. 

Figure 3.3: X-ray diffraction scan of three copper-containing samples deposited at 200⁰C. In blue is a film deposited with the 

Cu(hcaf)2 precursor alone, in green the same conditions were used but diethylzinc was tested as a reducing agent, and in red is a 

film deposited with CupraSelectTM and no co-reactant. 
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Figure 3.3 compares the three copper-containing films deposited at 200⁰C with different 

precursor combinations using XRD measurements. The green line, representing the film 

deposited with DEZ as a reducing agent, shows much less intense peaks in locations 

corresponding to metallic copper when compared to the blue line – the Cu(hcaf)2 film deposited 

with no co-reactant. While there are no distinct peaks visible within the XRD pattern that might 

indicate crystalline ZnO, an amorphous oxide layer could still result in the increased adhesion 

without measurable peaks of its own. Alternatively, as we know our pure ZnO films to be 

polycrystalline under these conditions, the zinc may be evenly dispersed through the film rather 

than a distinct layer, disrupting the crystal lattice of the copper. This would result in less intense 

and broader Cu/CuOx peaks compared to the films deposited without DEZ, supported by 

Scherrer’s equation, which indicates a smaller crystallite size. While this could possibly be 

because the copper particles are suspended in a matrix of ZnO, which has a much higher growth 

rate due to the volatility of the precursor, DEZ is more commonly deposited with water as an 

oxidant, so our growth rates here would be expected to be much lower. The XRD patterns 

indicate that there is a mixture of copper and copper oxide in all three films, and while it is 

challenging to separate the cuprous oxide and cupric oxide peak at 36⁰2θ, only the 

CupraSelectTM film showed another cupric oxide peak at 48⁰2θ – and a very faint one at that. The 

lack of visible cuprous oxide in the CupraSelectTM film (Figure 3.1c) suggests that the 36⁰2θ 

peak in this film is from the cupric oxide, and not cuprous. The resistivity of the Cu(hcaf)2 film 

deposited with no co-reactant at 200⁰C (Figure 3.2a)) was measured using a four-point probe 

system, attached to a Keithley 2400 SMU, in order to test the films applicability outside the 

initially envisioned viricidal mask project. Because of the size of the probe, there was significant 

variation in the measured resistance in different parts of the film, as the relative proportions of 
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each component material changed within the measurement area. Based on a thickness value of 

100 nm obtained using a FilmSense ellipsometer, the calculated resistivity ranged from 71.7-782 

Ωcm. The reported values of the resistivity of Cu2O is between 10,000 and 108 Ωcm, and those 

of cupric oxide between 0.01-1 Ωcm [63]. For copper metal the reported resistivity is lower still 

– 1.68x10-6 Ωcm at room temperature [64]. The film deposited using Cu(hcaf)2 and no co-

reactant at 200⁰C was imaged using a Zeiss Gemini Ultra Plus scanning electron microscope, to 

see if there were any visible problems with the film’s morphology that could be impacting the 

measured resistance. As we can see in Figure 3.4, there are indeed dark areas visible in the film. 

Energy-dispersive X-ray spectroscopy measurements were taken at one such location (Selected 

Area 1) and a nearby patch of brighter film (Selected Area 2) to ascertain the difference. These 

EDX spectra are shown as insets in Figure 3.4. The copper EDX signal was clear in the bright 

area and very weak in the dark area. This indicates that the dark areas are regions where the film 

is much thinner and/or discontinuous, thus the large resistance observed for the films is attributed 

to the mixture of metallic copper and copper oxide present in the film and the discontinuous 

nature of the film morphology. 

.  
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Figure 3.4: Electron microscope image of the 200⁰C film deposited with no co-reactant. Energy-dispersive x-ray spectroscopy 

scans show there are large gaps in the film based on the intensity of the copper peak in selected area 1 vs. 2. 
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3.4 Conclusions 

Two copper precursors were selected and compared, Cu(hcaf)2, and CupraSelectTM. Of 

these, CupraSelectTM had the greatest versatility, being able to produce visible metallic copper at 

temperatures as low as 125⁰C. However, the films produced by this precursor had extremely poor 

adhesion to the glass substrate, making them impractical for use in devices. We were the first 

researchers to demonstrate the production of copper films using the Cu(hcaf)2 precursor in a 

thermal AP-SALD process, and the better adhesion of these films will allow us to test these films 

in devices such as perovskite solar cells. When attempting to measure the thickness of these 

films, their mixed-oxide nature was also one of the earliest indications of a need for more 

advanced ellipsometry techniques – a topic that will be covered in great detail in Chapter 7.  
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4 In-Situ Electrical Characterization 

4.1 Introduction 

The electrical properties of films are particularly important for all kinds of nanoelectronic 

devices. In-situ resistance measurements of thin films have previously been used to study their 

phase changes [65], degradation [66], and formation [67]–[69]. Conventionally, a four-point 

probe system is used for in-situ resistance measurements, which can only be used to find the 

resistance of the film as a whole. However, film properties can change throughout a deposition 

procedure and can also vary across the film either due to growth conditions [70], [71]  or as a 

deliberately induced gradient [72]. Any of these spatial variations in electrical properties can 

only be found ex-situ [73]. In this chapter, a novel in-situ characterization technique is presented 

to measure the spatially variant electrical properties of a film as it is deposited by AP-SALD, and 

was presented in our paper “In-situ spatial and temporal electrical characterization of ZnO thin 

films deposited by atmospheric pressure chemical vapour deposition on flexible polymer 

substrate”[31].  It has been shown that the resistance of a thin film can change dramatically as 

the film growth conditions begin to favour epitaxial growth over island formation, and this 

transition point is strongly influenced by the deposition temperature [68], [69]. To determine 

how this process affected the growth of our films we developed an in-situ technique for 

measuring how the resistance of the film changes over time and across the width of the film.  
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4.2 Experimental Methods and Materials 

4.2.1 PCB and Control System 

Kissan Mistry (PhD student) and Manfred Kao (MSc student) designed a novel polyimide 

printed circuit board (PCB) design shown in Figure 4.1. The PCB has twenty pairs of 0.12 mm 

diameter gold-coated copper traces (each pair is shown in Figure 4.1 and Figure 4.2 in red), and 

the resistance of any film deposited atop the PCB is measured between each paired trace. 

This PCB is placed on the heated, oscillating substrate stage shown in Figure 4.2 and held in 

place with both polyimide tape and with vacuum suction. A 15 mm length of each trace (area 

shown in blue) is exposed to the AP-SALD process; the remaining area is masked by an 

additional layer of polyimide. By controlling the area between the traces that would be exposed 

Figure 4.1: PCB design for in-situ resistance measurements – Source: Olivia Marchione 

[https://www.nature.com/articles/s41598-020-76993-4] 
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to the deposition process and measuring the films thickness, it was possible to determine the 

resistivity of the films and compare films deposited under different conditions.  

My responsibility was the writing of the Matlab and programmable automation controller (PAC) 

programs integrating the AP-SALD, a Keysight B2901A source measurement unit, and a 

physical switching unit that controls which of the twenty trace pairs was measured. This 

measurement occurred during a pause in the deposition, with the exposed traces outside the 

reaction volume to prevent measurement irregularities. The resistance for each trace pair was 

measured 100 times, and the average of all measurements was recorded after discarding any 

outliers.  

Figure 4.2: In-situ electrical measurement system. A flexible polyimide PCB substrate is placed on the 

oscillating substrate stage of the AP-SALD/SCVD system and electrical resistance is measured at 20 trace 

pairs, shown in red, across the substrate throughout the deposition of a thin film. measurements – Source: 

Olivia Marchione [https://www.nature.com/articles/s41598-020-76993-4] 
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4.2.2 Film Deposition and Characterization 

ZnO was deposited onto the PCB using alternating flows of diethylzinc (DEZ) and water, each 

produced by bubbling nitrogen through them at a rate of 150 SCCM. The bubbled precursor 

flows are further diluted with pure nitrogen at a flow ratio of 15:85 (bubbled precursor flow:pure 

N2 flow). Two water and one DEZ flows were directed onto our specialized substrate, which was 

heated to a temperature of 100°C, 125°C, 150°C, or 175°C. The PCBs were found to be suitable 

for deposition temperatures below 180°C. Above 180°C, a finite resistance could be measured in 

the bare PCBs. 500 oscillations were performed for each deposition. Ideally, the reactor-substrate 

distance of 100±10µm would be maintained for all depositions. However, as polyimide tape was 

used to secure the PCB’s to the stage, this reactor spacing varies somewhat, and the active area 

of the PCB had to be kept lower still to prevent impacts between the tape and reactor head. 

Based on previous studies of ZnO with a similar AP-CVD system [74], [75]. The final film 

thicknesses were measured using a Dektak 8. Atomic force microscopy (AFM) measurements 

were taken with a Dimension 3100 scanning probe microscope in tapping mode, and analysed 

using Gwyddion. 

4.3 Results and Discussion 

The spatial and temporal variations in resistance can be shown in a couple ways. Using 

Figure 4.3a as an example, when we deposited a film at 175°C we can generate a full three-

dimensional plot of the spatial and temporal resistance variations. On the other hand, for easy 

interpretability, Figure 4.3b-d show only every tenth resistance measurement from all four 

depositions in two dimensions. Some trends can be seen consistently for all these depositions. 

Firstly, the resistance at the outermost trace pairs is always much higher than in the centre of the 

PCB. This is because of the polyimide tape used to secure the PCB allowing precursor to escape 
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at the outside edge rather than deposit onto the substrate. This is confirmed by visually observing 

the films after the deposition; films produced on these PCB’s are noticeably thicker in the centre. 

This shows that we can get useful data about film uniformity using this method. In Figure 4.3e 

we can see an example of how this kind of in-situ sensing can be used for identifying and 

correcting problems during the deposition process.  
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Figure 4.3: (a) All resistances measured throughout the deposition of a ZnO film on the polymer 

substrate at 175°C. A selection of resistances measured across the polymer substrate during the 

deposition of a ZnO film at (b) 100°C, (c) 125°C, (d) 150°C, and (e) 175⁰C measurements – Source: 

Olivia Marchione [https://www.nature.com/articles/s41598-020-76993-4] 
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The four red arrows indicate locations where the vacuum holding the PCB to the heated stage 

was aligned with the copper traces, creating areas where the film grew much more rapidly due to 

excessive precursor mixing. Turning off the vacuum allowed the film growth to stabilize, and the 

large resistance discrepancies vanished with further deposition cycles. This kind of monitoring 

allows for identifying other faults in the AP-CVD deposition process, such as blockages inside 

the reactor head, and allows us to observe how induced thickness gradients affect the films 

properties.  

 The growth behaviour of AP-CVD films deposited on this substrate differs from films 

grown on glass or silicon. Polymers tend to be permeable at the scale of these reactions, in the 

initial few AP-CVD cycles the reactants permeate within the film. Metal oxide films 

preferentially bind to hydroxyl-terminated surfaces, so subsequent deposition cycles nucleate on 

areas with high precursor concentrations within the polymer rather than uniformly as we would 

expect [76], [77]. This results in very noisy initial resistance measurements, which gradually 

become more uniform as the film thickness increases and the whole area between the traces is 

covered.   

 

Figure 4.4: Change in resistance over time at the centre of the film for depositions at (a) 150°C on a linear plot and (b) all 

deposition temperatures on a log-linear plot. Three distinct growth regions are highlighted in (a). measurements – Source: 

Olivia Marchione [https://www.nature.com/articles/s41598-020-76993-4] 
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 Figure 4.4a) shows the change in resistance measured at the central trace pair for the 150°C film 

over 500 oscillations, here we can see how the film evolves over time. Initially the film has not 

diffused into the polymer substrate and so growth is slow and resistance is very high. Once the 

film begins to coalesce into a solid sheet, after about 80 oscillations, the resistance lowers 

considerably. This precipitous resistance drop is more consistent with Volmer-Weber growth, 

which is observed during CVD and is characterized by the formation and coalescence of isolated 

islands and not epitaxial growth [78]. True epitaxial growth would result in a constant decrease 

in resistance, as an entire monolayer is deposited each cycle. In Figure 4.4b) we can also observe 

that this region of incomplete nucleation is temperature-dependent, with films deposited at high 

temperatures coalescing into a full film much faster than those deposited at lower temperatures. 

Since the diffusion and nucleation behaviour of organometallic precursors on polymers is highly 

temperature dependent [77], it is likely that the higher temperature enables chemisorption of the 

diethylzinc onto the surface of the polyimide directly, or that sufficient diffusion and reaction 

happens much earlier than at lower deposition temperatures. Another notable observation from 

this research was that the resistance of the film does not vary linearly with the thickness, as can 

be seen in Figure 4.4. If the material properties of the film are constant throughout the 

deposition, once the film covers the whole substrate we would expect this to be the case. For the 

third growth region, it is seen that the resistance becomes most linear for the film deposited at 

175°C, compared to the lower-temperature depositions. This could be because at high 

temperatures the remaining organic ligands from the diethylzinc are desorbed more quickly, or 

because the substrates are heated in atmosphere, oxygen interstitials are introduced to the film 

changing the resistivity, with films deposited at higher temperatures having greater 

concentrations of oxygen [79]. Fortunately, this technique provides a lot of data about the 
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changes in the films electrical properties during the deposition. Atomic force microscopy (AFM) 

could not be performed on the flexible substrate, as it was too soft and deformed under the 

tapping tip. However, using the 150°C film for comparison, similar depositions under the same 

conditions on a silicon substrate showed the island nucleation and coalescence we expect to see. 

AFM images of these depositions are shown in Figure 4.5, we can see a) bare Si, b) small 

isolated islands after 5 oscillations, and c) many islands beginning to coalesce after 30 

oscillations. This is much sooner than the 80 oscillations for coalescence seen on the PCB, but as 

previously mentioned the precursors need to infiltrate the polymer first, delaying initial island 

formation.  

Growth rates have been reported to be constant throughout the deposition, on various 

substrates [80], [81], even in CVD mode. Thus, by measuring the final film thicknesses, we can 

determine the approximate resistivities and growth rates. We can only approximate these values, 

as the films produced were non-uniform, and the soft substrate prevented accurate measurements 

using AFM, so a Dektak profilometer had to be used on an area of film that had been etched 

away. TABLE I compares the growth rate and room temperature resistivities for the four films 

deposited on the polyimide substrate. As we can see, the high-temperature films had higher 

Figure 4.5: AFM images of (a) a bare silicon wafer and silicon wafers with (b) 5 oscillations and (c) 30 oscillations of ZnO 

deposition at 150°C. Island formation and coalescence is observed. measurements – Source: Olivia Marchione 

[https://www.nature.com/articles/s41598-020-76993-4] 
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growth rates, but also had much higher resistivity. The resistivity values given here were 

measured at room temperature, as the resistivity of ZnO is known to show non-linear dependence 

on temperature. This can be seen in Figure 4.6, where the resistance of the 150°C film was 

monitored ex-situ as the temperature of a hotplate was increased from room temperature to 

180°C. All of the resistivities are consistent with reported values for ZnO, which range from 

1.4x10-4 Ωcm [82] to 75x106 Ωcm [83] depending on the crystallinity and defect concentration 

of the film, and the high growth rates confirm that the system was operating under AP-CVD 

conditions. 

TABLE I: FILM PROPERTIES AT SELECTED DEPOSITION TEMPERATURES 

 

The low-temperature films had lower resistance, but were more resistive at high temperatures, as 

can be seen in Figure 4.7. The 175°C and 150°C films are behaving like a semiconductor, where 

there are insufficient free carriers for conductivity at low temperatures (blue line). However, at 

high temperatures (red line) there is enough thermal energy in the system to excite electrons 

from the valence to conduction band of the material.  Conversely, the films deposited at  

 

 

Deposition Temperature Film Thickness (nm) Growth Rate (nm/cycle) Resistivity (Ωcm) 

100°C 920 ± 90 0.92 ± 0.09 145 ± 14 

125 °C 1400 ± 400 1.40 ± 0.4 13 ± 4 

150 °C 2200 ± 400 2.20 ± 0.4 600 ± 109 

175 °C 5500 ± 400 5.50 ± 0.4 170000 ± 12000 
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Figure 4.6: Change in resistance of trace pair 10 from the 150°C film as it is heated on a hot plate from room temperature to 

180°C. measurements – Source: Olivia Marchione [https://www.nature.com/articles/s41598-020-76993-4] 

lower temperatures have so many charge carriers that they behave like metals. When heated the 

resistivity increases as the free electrons collide leading to a shorter mean free path. The exact 

source of charge carriers in zinc oxide is under debate, with oxygen interstitials and vacancies 

both put forward as the dominant source. Since the low temperature films here behave as though 

they have more charge carriers, these results seem to suggest that oxygen vacancies are the 

dominant source in these particular films [84], [85].  Figure 4.7 also helps to confirm that the 

spatial variations in the measured resistance are due to physical differences within the film, as 

with the exception of Figure 4.7a, the room temperature resistance profiles clearly correlate very 

closely to their as-deposited counterparts.  
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Figure 4.7: Resistance across the PCB’s measured as deposited and at room temperature, films deposited at a) 100°C, b) 125°C, 

c) 150°C, and d) 175°C measurements – Source: Olivia Marchione [https://www.nature.com/articles/s41598-020-76993-4] 

4.4 Conclusion  

In conclusion, my collaborators and I developed a novel in-situ method for observing the 

nucleation, growth, and electrical properties of AP-CVD films grown on polymer substrates. 

This method can resolve the changes in resistance over both time and space, providing more 

information than conventional four-probe resistance measurements. We saw that the initial 

diffusion of the ALD precursors into polymer substrates is highly temperature-dependent, and 

that this diffusion resulted in higher than expected resistances for longer than would be expected 

on conventional rigid substrates. There was also a demonstrated switch from a metal- to 

semiconductor-like relationship between temperature and resistance dependent upon deposition 

temperature, due to changing defect levels within the film.  
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Part B  - Machine Learning in Materials Science 

While we are interested in eventually developing new oxide materials using our AP-SALD 

system, through the process of developing a dataset which could be used to develop such a 

model we quickly found that our labs measurement techniques weren’t able to keep up with the 

broad range of material properties. Small changes in composition, crystallinity, or surface 

morphology can have comparatively large effects on the properties of the film, and many 

measurement techniques depend upon models which do away with such details. Since we cannot 

develop materials with specific properties without being able to predict what those properties 

may be, and we cannot make those predictions without first being able to measure the properties 

of existing films, I had to focus my work on these foundational tools. In Chapter 5 of my thesis I 

will first review the state of the art when it comes to applying ML techniques to sensing and to 

material property predictions, as well as review the function of the two major ML models I used. 

Then I discuss how we developed a new in-situ reflectance spectrometry approach for our AP-

SALD system, enhancing the accuracy of its thickness measurements through use of a gaussian 

process regression model in Chapter 6. Next, in Chapter  7 I will discuss how I again used 

gaussian process regression to improve our lab’s ellipsometric spectrometer, and broaden the 

range of film compositions that it can be usefully applied to. In Chapter 0, I will describe another 

sensing tool that I helped develop, using computer vision for the purposes of determining 

whether or not a device or film with an AP-SALD encapsulation layer had degraded or not. 

Lastly, in Section 9.1 I will discuss how my work can be further developed into the originally-

envisioned tool for discovering new film compositions.  
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5 Literature Review: Data Collection for Machine Learning in Materials 

Science 

Schleder et. al. discuss three paradigms in material science, beginning with empirical science, 

moving through theoretical and computational science, and ending with data-driven or machine 

learning assisted science [86]. ML techniques can broadly be broken down into three basic tasks, 

regression, classification, and clustering. Briefly, regression is the process of finding a 

continuous mathematical relation between some inputs and an output variable, whereas 

classification and clustering are methods of sorting inputs into specific groups. In classification 

tasks these groups are predefined, and in clustering tasks the groups are found by the algorithm 

itself based on similarity between inputs. Some ML tasks fall outside these three categories, like 

autoencoding, image upscaling, or text or image generation, but those are not relevant to the 

work presented within this thesis. There are also three general types of tasks ML techniques are 

most commonly used for in the field materials science specifically; improving sensing techniques 

and reducing noise, predicting the properties of a material, and identifying potential novel new 

material compositions, see TABLE II for more detail. In the first and second case, most of the 

problems encountered are regression tasks. As will be discussed in Chapter 6, when seeking to 

improve the signal provided by a measurement technique like reflectance spectroscopy, there 

does exist some continuous relation between the input and output data. If the signal is noisy, 

there still exists a line that represents the true data, and if the input/output relationship is 

unknown we still know that it exists.  Similarly, when determining the properties of a real 

material from data about its composition or fabrication, we know that those properties exist 

along a smooth curve and that those properties are a function of the input variables. These 

functions may be very high-dimensional and complex, and so challenging to discover 
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empirically, but that is why an understanding of the materials themselves is necessary to 

effectively apply ML techniques – to ensure that the model is well-constructed. In the third case 

we see more classification and clustering problems, as when trying to find new materials, we are 

most often interested if the predicted material falls into a specific category, such as n- or p-type 

semiconductors, or linear and nonlinear optical materials.   

Since large amounts of data are required to apply ML techniques, experimental data [87] 

can be used alone or in conjunction with pre-existing databases [88] such as the Materials 

Genome Initiative (www.mgi.gov). Increasingly, other computational tools such as density 

functional theory (DFT) [89] or data mining [90] of scientific literature are also used with ML to 

accelerate material property prediction or discovery. In fact, there are many different sources for 

materials data which can be used with different ML algorithms in order to find new materials. 

Some examples are given in TABLE II, which shows that both simulations and pre-existing 

databases are commonly used for generating data when applying ML techniques to materials 

science. However, our AP-SALD system was built in-house and is a relatively novel technique, 

so no database of material properties and deposition parameters exists and simulations are 

unlikely to encompass the full variability within the deposition process. Accordingly, it was 

necessary to produce a database of film properties myself before applying any ML methods to 

extract properties or guide the deposition process. My intention is to make this database freely 

available for future researchers through an open-source repository such as GitHub, as AP-SALD 

is a promising technique despite the comparative lack of knowledge about how to control the 

properties of the resulting film.  
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TABLE II: MATERIAL SCIENCE USING MACHINE LEARNING AND VARIOUS DATA SOURCES 

Network Structure Data Used References 

Convolutional Network 

Graphene Geometry [91] 

Molecular Dynamics Simulations [92] 

Simulated Data [93] 

Deep Network 

Chemical Compositional/Configuration [94] 

DFT Simulations [95] 

Material Databases [96] 

Shallow Network 

Composition/Atomic Ordering [97] 

Composition/Melting Point [98] 

Inorganic Crystal Structure Database [99] 

Cambridge Structure Database [100] 

DFT Simulations [101] 

Generative Network 

Inverse Molecular Design [102] 

Tomography Images [103] 

Materials Databases [104] 

Gaussian Network 

Lattice Parameters [105] 

Atomic Descriptors [106] 

Composition and Fatigue Data [107] 

Data Mining DFT Simulations/Database [108], [109] 

Comparison/Multiple 

Networks 

DFT Simulations [110], [111] 

Alloy Composition [112] 

Formation Energy [113] 

Data from Literature [114] 

Random Forest/Regression 

Tree 

DFT Simulations [115], [116] 

Materials Genome Project Database [117] 

MaterialsProject Database [118] 

Clustering/Support Vector 

Machines 

Shape/Atomic Location [119] 

Data from Failed Experiments [120] 

   

5.1 Materials Science and Characterization 

There are many useful data collection techniques which are used to characterize thin films, 

in particular optical techniques which tend to be both quick and non-destructive. Of all the many 

available techniques, we have implemented reflectance spectroscopy, ellipsometry, 

photoluminescence spectroscopy, and absorbance measurements into our lab workflow.  
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5.1.1 Reflectance Spectroscopy 

In-situ monitoring of the thickness and optical properties of the film had already been 

introduced by Kissan Mistry (PhD student), using an OceanHDX spectrometer and DH-2000 

light source. Reflectance itself is, quite literally, the fraction of incident light that is reflected 

from a surface and is often reported over an entire spectrum of incident wavelengths. Our 

broadband light source emits light of high enough energy that it can determine the properties of 

sub-micron semiconductor films, as the bandgap of these films often lies in the UV-visible light 

range. Coupling this light source with a high dynamic range spectrometer, able to distinguish 

high and low reflectance values even in the presence of noise allows us to fit our measured 

reflectance spectrum to a three-layer Fresnel optical model, pictured below in Figure 5.1.  

The three layers within the model are; the substrate, the film, and then the air separating 

the film from the probe of the spectrometer, also included are the boundaries between each layer, 

which both refract and reflect the incident light. Each layer is comprised of a material with a 

Figure 5.1: Schematic of the in-situ reflectance spectrometer, and three-layer Fresnel model. The oscillating 

stage is programmed to pause outside the reactor head of the AP-SALD system for the duration of the 

measurement, to ensure that no errors are introduced by the motion.  
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refractive index (n) and an extinction coefficient (k), which are used to calculate the complex 

refractive index (n̂) through the formula: 

𝑛̂ = 𝑛 + 𝑖𝑘 

 The values n and k are known for air and the substrates we use in the lab, and so any deviation 

in the measured complex refractive index must be due to the deposited film. We can calculate the 

reflectance as a function of wavelength (𝑅(𝜆)) using the three Fresnel reflectance equations, two 

to find the reflections at the boundaries of the film (𝑟̂12(𝜆)) and (𝑟̂23(𝜆)), and one to describe the 

phase change in the light passing through the film (β(𝜆, 𝑑)).  

𝑟̂12(𝜆) =
𝑛̂2 − 𝑛1

𝑛̂2 + 𝑛1
 

 

𝑟̂23(𝜆) =
𝑛̂3 − 𝑛̂2

𝑛̂3 + 𝑛̂2
 

 

𝛽(𝜆, 𝑑) =
4𝜋𝑛̂2𝑑

𝜆
 

 

𝑅(𝜆) = |
𝑟̂12(𝜆) + 𝑟̂23(𝜆)𝑒

−𝑖𝛽

1 + 𝑟̂12(𝜆)𝑟̂23(𝜆)𝑒−𝑖𝛽
|

2

 

 

As we can see, β also depends on the thickness of the film, ‘d,’ which is not known while the 

film is still being deposited, so without a reliable thickness estimate we cannot fit the film’s 

reflectance to our known models. In Chapter 6, I introduce a simple feed-forward artificial neural 

network (ANN) to provide more accurate thickness estimates based on the measured reflectance 

spectra, providing better fitting, but this value can be estimated with knowledge of the growth 

rate of the material and the number of ALD cycles performed. Figure 5.2 shows an example 

(2) 

(3) 

(4) 

(5) 

(6) 
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reflectance spectrum in blue, and a corresponding fitted spectrum in red. This fitted spectrum is 

pulled from a database of films, based on a basic search algorithm comparing its known 

thickness to the initial thickness estimate we provided. The spectra from the database are then 

compared to the measured spectrum with a Levenberg-Marquardt fitting algorithm. Whichever 

spectrum from the database is most similar to the measured data is extracted, and since its 

thickness and optical properties are known, we can say that the measured film has those same 

properties given a reasonably high goodness of fit value. The spectra presented in Figure 5.2 

correspond to a goodness of fit value of 91.5%, more than sufficient for this purpose.  

Figure 5.2: Reflectance spectrum of a ZnO film deposited at 150⁰C and measured from 250-800nm 

(blue) compared to the best-fit spectrum of a film with a known thickness and complex refractive 

index (red).  
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Once the best-fit spectrum has been found, we can then easily find the actual thickness, optical 

band gap, and transparency of the film, as well as show trends in the surface roughness of the 

film by fitting to a more complex optical model. These models, such as the Tauc-Lorentz and 

Drude optical models, will be discussed in-depth in Section 5.1.3, as they can be applied to 

multiple optical characterization techniques. Recently, other researchers have begun to apply 

ML-based approaches to improve their reflectance measurements, as fitting complex optical 

models can take several iterations to find the correct film thickness and optical properties if they 

are not initialized well. Lee et. al. applied artificial neural networks to determine the thickness, 

refractive index, and extinction coefficient of silicon dioxide films on a commercial silicon wafer 

[121]. By implementing their ANN, they were able to increase the speed at which their 

measurements could be made, which meant that it became feasible to map the variations in the 

thickness of the oxide layer of each sample used. This has great implications for process control 

when producing such wafers, as high uniformity will result in more predictable performance in 

whichever device the wafer is used to construct. In addition, Grau-Luque et. al. use a very similar 

technique to us, but expand the number of substrates their ML model works with [122]. Where 

we focused primarily on ZnO films deposited on borosilicate glass, they used ML-empowered 

reflectance spectroscopy to determine the properties of alumina films deposited on substrates 

made of three materials commonly used in the production of flexible photovoltaic cells. While 

the substrate is not the layer of interest, its optical properties do affect the overall reflectance 

spectrum within the Fresnel model. As with our research, they also incorporated the technique as 

an in-situ measurement for a spatial ALD system, although their functions in a roll-to-roll 

configuration for use with flexible substrates. Rather than using a form of regression analysis, 

they used a combination of principal component analysis (PCA) and linear discriminant analysis 
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(LDA). Both of these techniques focus on reducing the dimensionality of the data, rather than 

trying to model the underlying relationship itself, and the films were then classified based on 

their thickness. This is faster than trying to model thickness as a continuous variable as I will 

show in Chapter 6, but is limited to the pre-set thicknesses given to the classifier and so is even 

more limited in range than our feed-forward ANN model. In all cases, the data had to be limited 

in some fashion in order for the ML models to be useful. Each reflectance spectrum can 

correspond to an almost infinite combination of film thicknesses, optical properties, and 

substrates. Accordingly, the dataset to encompass all of this variability would be nearly infinitely 

large, and the distinction between various spectra may be limited. By constraining the number of 

substrates and films within the dataset, the amount of data required can be reduced – although 

care must be taken not to reduce the amount of data to the point where the model can no longer 

be well-trained.  

5.1.2 Ellipsometry 

Spectroscopic ellipsometry, or simply ellipsometry, is another common non-destructive 

technique for measuring the thickness and properties of semiconductor thin films using light. 

Similar to reflectance spectroscopy, ellipsometry works by shining a beam of light with known 

wavelengths onto a film, and measuring how that beam changes as it passes through and reflects 

from a three-layer system of air, film, and substrate. However, where reflectance relies on 

measuring the intensity of the light at each measured wavelength, ellipsometry works by 

measuring changes in the polarization of light [123]. By its nature, light contains an electric field 

that oscillates perpendicular to its direction of travel, and the polarization of that light beam is 

characterized by the amplitude (a), orientation (θ) and phase (φ) of that field. As shown in Figure 

5.3, if the electric field oscillates in many orientations the light is said to be unpolarized, if it 
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oscillates in only one then the light is said to be linearly polarized, and between these two 

extremes lies elliptically polarized light, and its special case – circularly polarized light. In both 

cases the electrical field oscillates along only two planes, perpendicular both to one another and 

the direction of travel. In the case of circularly polarized light, the amplitude of both fields is the 

same and their phase is offset by π/2, but in elliptically polarized light the amplitude and phase 

can vary.  

 

As suggested by the name, ellipsometry specifically relies on the use of elliptically 

polarized light. When linearly polarized light is reflected at a wide angle from a surface, such as 

a semiconductor film, it is reflected as elliptically polarized light with one field oriented parallel 

to the plane of incidence (p-polarized), and the other perpendicular to it (s-polarized). 

Ellipsometry measurements utilize two ellipsometric parameters; psi (Ψ), which correlates to the 

Figure 5.3:Graphical diagram of; a) unpolarized, b) linearly polarized, c) 

circularly polarized, and d) elliptically polarized light. 
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magnitude of the p- and s-polarized fields, and delta (Δ), which is a measurement of the phase 

difference between those two fields. The polarization state of light is commonly described using 

the Stokes vector (S), and can be calculated from the ellipsometric parameters and the angle of 

the source polarizer (P) through the following matrix relation: 

𝑆 = [

𝑆0

𝑆1

𝑆2

𝑆3

] = [

1 −𝑁
−𝑁 1

 0   0
 0   0

0    0
0    0

𝐶 𝑆
−𝑆 𝐶

] ∙ [

1
cos 2𝑃
sin 2𝑃

0

] 

 

𝑁 = cos 2Ψ 

 

𝐶 =  sin 2Ψ cos ∆ 

 

𝑆 =  sin 2Ψ sin ∆  

 

A modified version of the Fresnel equations from Section 5.1.1 can be used to find the 

ellipsometric parameters if the thickness and complex index of refraction of the film are known.  

However, as with reflectance spectroscopy, the direct inverse calculation of  n̂ is impossible 

except in certain very niche and simplified cases. This again means that the measured values of 

N, C, and S will have to be compared to either a database of films with known properties, or the 

results of an optical model, such as those which will be discussed in the next section. To 

determine if the fitted parameters are sufficiently close to the measured parameters, the fit 

difference (FD) between the modelled and experimental data is calculated, where X is the 

number of wavelengths measured by the device: 

(7) 

(8) 

(9) 

(10) 
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𝐹𝐷 =  √
1

𝑋 ∙ 3
∑[(𝑁𝑚𝑜𝑑𝑖 − 𝑁𝑒𝑥𝑝𝑖)2 + (𝐶𝑚𝑜𝑑𝑖 − 𝐶𝑒𝑥𝑝𝑖)2 + (𝑆𝑚𝑜𝑑𝑖 − 𝑆𝑒𝑥𝑝𝑖)2]

𝑋

𝑖=1

 

The value of FD should generally be below 0.05 in order for a modelled set of parameters to be 

considered a “good fit” for the experimental data, and very thin films should have an FD value in 

the range of ~0.001. In practice, however, it can be hard to attain a value of FD this low for a 

couple of reasons. Firstly, there are a lot of assumptions made about the film in order to simplify 

its representation within the ellipsometer’s program, depending on which mathematical model is 

selected to represent it. One of these assumptions is that only the thickness, and perhaps the 

roughness, of the film varies across its surface. The more parameters are allowed to vary by 

location, the more locations need to be fit simultaneously to prevent over-defining the problem, 

but this has a significant computational and time cost. However, if we examine Figure 5.4 we 

can see the significant effects allowing for this variation can have, even using the same optical 

model. Example a) was taken from the centre of the film, with comparatively little variation as 

shown by the solid red dots which are present in smooth, consistent arcs. Here, only the 

thickness was allowed to vary between measurements, with all of the other model parameters 

kept consistent. While the modelled data (represented with hollow circles) is also very neat, we 

can see that each point diverges significantly from the measured values. This is particularly 

noticeable in the green and red wavelengths; the significant difference between the measured and 

modelled values of S and N at these wavelengths contributing to the incredibly high FD value of 

0.09327. Contrast this to example b), taken from the edge of the film where some areas were 

exposed to oxygen entering the reaction area from the edges of the reactor. Despite the measured 

data having a lot more variability, an acceptable FD of 0.01826 was found by allowing the 

thickness, surface roughness, band gap, and through-thickness 𝑛̂ (also known as percent grade) 

(11) 
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to vary. All of these properties are affected by the amount of oxygen present in the film, and 

mixing from the air flowing into the reactor volume, and so should be represented within the 

film. While caution should still be taken to make sure that these values all fall within expected 

ranges for a film, the increased cost of allowing the parameters to vary is clearly worth it. 

Secondly, databases are only available for the most commonly-used materials, and so often an 

optical model must be used. However, if using an optical model a great many parameters are 

needed to represent a film; the example in Figure 5.4 was comparatively simple needing only 

eight including the thickness. Each one of these parameters must be given an initial value, which 

can then be refined using the ellipsometers on-board Levenberg-Marquardt fitting algorithm, 

which can prove to be a time-consuming process of trial-and-error, especially for 

multicomponent-oxide films. In the case of these multi-oxide films, we often do not have a 

reasonable initial estimate for what the parameter values may be, and while the Levenberg-

Marquardt algorithm is very efficient at minimizing error, it is very sensitive to these initial 

conditions. Figure 5.5 shows a simplified, idealized relation between FD and a single film 

Figure 5.4: Two sets of 25 measurements taken from different locations on the same ZnO film. In example a) all model 

parameters were held constant, with only thickness varying. In example b) four model parameters were allowed to vary between 

measurements, resulting in a significantly lower value of FD. 
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parameter, the thickness, with an obvious global minimum, and two local minima. Even in this 

case it is clear that if the initial estimate for thickness were too high or too low, that the 

Levenberg-Marquardt fitting algorithm would get stuck in one of the local error minima. With a 

real film, where there can be a great many parameters with varying effects on FD and 

interdependencies, this problem becomes compounded.  

In Chapter 7, I will describe how I streamlined this process using a Gaussian Process 

Regression (GPR) ML technique, based on a large set of films that I produced myself using our 

AP-SALD system. However, I am not the first person to try to apply ML techniques to the 

problem of finding the parameters of an optical model for ellipsometry. Some researchers, like 

Arunachalam [124]and Alcaire [125] et. al. seek to bypass the use of a material model altogether, 

moving directly from raw ellipsometry data to an estimate of the films thickness. In the first 

paper, the researchers used TiO2 films deposited using conventional ALD as the basis for their 

ML model, which used a classifier algorithm to group films of similar thicknesses. By grouping 

Figure 5.5: Idealized schematic of Fit Difference vs one model 

parameter, showing local minima. 
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the films within classes representing a division of 1 nm, with the thickness measurements 

constrained to multiples of 0.2 nm, they were able to predict the thickness of the films with 

almost 89% accuracy within a range of 1.5 nm, but with much better thickness estimates at very 

low thicknesses compared to conventional ellipsometric models [124]. They compared five 

different classification algorithms, of which the k-nearest neighbours [126] model was found to 

best meet their needs as it was easily trained and robust to overfitting. This approach allowed for 

rapid prediction of film thicknesses, which is invaluable for in-situ measurements, however by 

using a classification algorithm they have artificially introduced granularity to the model. This is 

perfectly acceptable in cases where the difference of 1 nm film thickness is inconsequential, but 

still somewhat limits its applicability. The model also does not account for surface roughness, as 

it is generally assumed that conventional ALD films will be very smooth and defect-free, which 

is not always a reasonable assumption in the case of AP-CVD. Alcaire et. al [125] took a 

different and novel approach to leveraging the capabilities of ellipsometry and ML for process 

control. They selected an ellipsometer with a high phase modulation frequency that was able to 

quickly find a reduced selection of ellipsometry parameters over a wide area – mapping the film 

quickly but at only a single wavelength. The wavelength was selected by finding where the 

parallel and perpendicular parameters overlapped at a high angle, meaning that small changes in 

film thickness would result in proportionally larger changes to the measured parameters. The 

researchers were careful to select measurement conditions that maximized the information 

contained within this single wavelength, particularly selecting a measurement angle that 

increased the variability in Ψ and Δ. All of this effort meant that they were able to produce a set 

of images from the ellipsometer which contained a large amount of information about the film, 

without increasing measurement time. From these images, they were able to apply techniques 
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from computer vision to determine whether or not a film met the standards set for commercial 

applications. Because the data was so dense, it was apparent where there were significant 

deviations in the properties or thickness of the films, and such deviations represented flaws in the 

deposition process. Accordingly, they were able to use a classifier to determine whether or not a 

given sample was acceptable (flawless) or flawed (striated) and replace visual inspection 

techniques with an automated system able to process films much more rapidly. In general, the 

focus has been on improving the speed of acquiring thicknesses from ellipsometry data, without 

needing to perform the iterative fitting that is necessary when fitting a model by hand. However, 

this relies on the assumption that the largest variation in film properties is due to the thickness, 

and not changes in film properties – a limitation that is then imposed upon the data used to train 

the ML algorithm. Other researchers, such as Liu et. al. [127] attempt to bypass this problem 

using large amounts of simulated data to broaden the materials that their ML algorithm can work 

with. Also bypassing conventional optical models, they instead supplemented their raw 

ellipsometry data with the reflectance and transmittance of each film within their dataset which 

have similar dependencies upon the optical properties of the film itself. Their algorithm, called 

SUNDIAL, uses a paired forward and inverse structure to predict film properties from 

ellipsometry data, and then attempts to reconstruct the ellipsometry parameters from the film 

properties. This utilizes both the forward and inverse solutions to the ellipsometry equations, and 

the model improves itself iteratively until both calculation directions result in sufficiently similar 

data. Their model proved to be faster and more accurate than conventional ellipsometry models, 

but the use of simulated data for training is itself a potential problem for applying the algorithm 

more broadly. For example, in the case of the lab AP-SALD system, it is possible for 

contaminants to be introduced to a film either deliberately or accidentally, or for the surface 
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roughness to be unexpectedly high due to ingress of atmospheric oxygen into the reactor. These 

are not going to be captured in simulated data, which is produced based on certain assumptions, 

assumptions that may not hold true for real films. This is less of a concern in well-isolated and 

well-understood film deposition techniques, such as the plasma-enhanced CVD method used in 

the above paper, but represents a significant flaw when wanting to study a new technique with a 

series of unknown unknowns making model fitting more challenging than the ideal simulated 

case.  

5.1.3 Optical Models for Reflectance and Ellipsometry 

As mentioned in the previous two sections, it is common practice to use some kind of 

optical model to convert raw optical parameters like the reflectance of a film at a given 

wavelength to the complex index of refraction and thickness, and then into other useful 

quantities like the band gap. There are far too many optical models to recount here, each tailored 

to a specific application or desired set of material properties, and these models can also be 

combined into what is known as a “multi-oscillator” model. These models are often described as 

“oscillators” when in combination, because they simplify electron motion as being a loaded 

spring/damper system bound to individual nuclei, with each component oscillator describing one 

force acting upon this system, forming constructive and destructive interference at different 

energies. More complex films also need more complex optical models, as different component of 

that film can form peaks at different wavelengths, or overlap into composite peaks that must be 

deconvoluted to determine the contributions of each constituent. In this section I will focus on 

three specific optical models that I have used consistently throughout my research, the Cauchy, 

Tauc-Lorentz, and Drude models which are used to find the properties of insulators, 

semiconductors, and conductors respectively.  
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One of the earliest optical models, developed by A.L. Cauchy in 1837, the Cauchy 

transmission equation describes a material that either does not absorb light in the wavelengths 

being analysed, or only does so weakly [128]. The index of refraction as a function of 

wavelength (𝑛(𝜆)) is most often calculated using three model parameters, (A, B, and C), but can 

be a linear combination of any number of oscillators in the form: 

𝑛(𝜆) = 𝐴 + 
𝐵

𝜆2
+ 

𝐶

𝜆4
+ ⋯ 

If the absorption of the film is negligible, then the extinction coefficient 𝑘(𝜆) = 0 at all 

wavelengths. However, films that are only weakly absorbing can also be represented with a 

modification of the Cauchy formula for 𝑛(𝜆) using analogous coefficients (D, E, and F). Because 

this formula is a linear combination of components inversely proportional to the wavelength, a 

plot of complex index of refraction vs wavelength will show a rapid decrease to A as the 

wavelength goes to infinity, as can be seen in red in Figure 5.6: Parameterization of an alumina 

film deposited using the lab AP-SALD to the Cauchy optical model within the FS-1 

ellipsometer.. In this case the film was non-absorbing, and so there was no need to find the 

extinction coefficient, and the agreement between measured (dashed) and modelled (solid) is 

clear. As this model has comparatively few parameters, only three plus the thickness for a 

completely non-absorbing film, it is still often used when simply trying to find the thickness of 

the film. However, the accuracy of the Cauchy model is still dependent on refraction being the 

dominant optical mechanism present, so caution must be taken when using it to find the 

thickness of non-insulating films. Fitting algorithms only look at the mathematical difference 

between measured and modelled data points; if the model is poorly-suited, and so the found 

(12) 
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parameters are meaningless, it is still possible to force good fitting with an equally poor estimate 

of thickness.  

 Unlike insulators, semiconductor materials often absorb light at wavelengths we are 

intereted in probing with optical techniques due to their comparatively small band gap. If light of 

equal or greater energy than this gap is incident upon the material, the energy from that light will 

be absorbed and transferred into one of the electrons. This means that the extinction coefficient 

must be included in the overall model, and one of the most common optical models for 

semiconductors is the Tauc-Lorentz model developed in 1996 [129]. This model is significantly 

Figure 5.6: Parameterization of an alumina film deposited using the lab AP-SALD to the 

Cauchy optical model within the FS-1 ellipsometer. 
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more complex, comprising of real and imaginary components and is based on the Tauc model of 

density of states [130], using the following model parameters: 

• εi,r: are the imaginary and real components of the relative permittivity of the material 

respectively. The complex relative permittivity is simply the square of the complex index 

of refraction.  

• A: the amplitude of the Lorentz oscillator 

• E0: the energy value in eV at the center of the Lorentz oscillator 

• C: the broadening of the oscillator 

• Einf: the value of the dielectric function at a wavelength of infinity, accounting for 

absorption outside the range of the oscillator 

In addition, the Tauc-Lorentz model requres the band gap of the film (Eg) as part of its 

formulation, but is limited in that it cannot account for any absorption occuring at energy values 

less than the band gap, meaning that it does not model intra-band absorption well. It also 

performs better with amorphous materials, as opposed to crystalline, but is still applicable to 

more orderly microstructures. The imaginary component of the Tauc-Lorentz model is given as a 

function of energy (E) by the formula: 

𝜀𝑖(𝐸) =  {

1

𝐸

𝐴𝐸0𝐶(𝐸 − 𝐸𝑔)
2

(𝐸2 − 𝐸0
2)2 + 𝐶2𝐸2

  𝑓𝑜𝑟 𝐸 >  𝐸𝑔

0                                        𝑓𝑜𝑟 𝐸 ≤ 𝐸𝑔

 

The real component involves the calculation of several additional parameters (𝛼, 𝑎𝑎𝑡𝑎𝑛, 𝑎𝑙𝑛, 𝛾, 

and 𝜁4), which are simply combinations of parameters we have already seen, used to ensure the 

(13) 
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formula doesn’t take up the whole page. The expanded integral form of the real portion of the 

Tauc-Lorentz model is: 

𝜀𝑟(𝐸) =  𝐸𝑖𝑛𝑓 + 
𝐴 ∙ 𝐶 ∙ 𝑎𝑙𝑛

2 ∙ 𝜋 ∙ 𝛼 ∙ 𝐸0
∙ 𝑙𝑛 [

𝐸0
2 + 𝐸𝑔

2 + 𝛼 ∙ 𝐸𝑔

𝐸0
2 + 𝐸𝑔

2 − 𝛼 ∙ 𝐸𝑔

] −
𝐴

𝜋
∙
𝑎𝑎𝑡𝑎𝑛

𝜁4 ∙ 𝐸0

∙ [𝜋 − tan−1 (
2 ∙ 𝐸𝑔 + 𝛼

𝐶
) + tan−1 (

𝛼 − 2 ∙ 𝐸𝑔

𝐶
)] +

4 ∙ 𝐴 ∙ 𝐸0 ∙ 𝐸𝑔 ∙ (𝐸2 − 𝛾2)

𝜋 ∙ 𝜁4 ∙ 𝛼
× 

[tan−1 (
𝛼 + 2 ∙ 𝐸𝑔

𝐶
) + tan−1 (

𝛼 − 2 ∙ 𝐸𝑔

𝐶
)] −

𝐴 ∙ 𝐸0 ∙ 𝐶 ∙ (𝐸2 + 𝐸𝑔
2)

𝜋 ∙ 𝜁4 ∙ 𝐸
∙ 𝑙𝑛 (

|𝐸 − 𝐸𝑔|

𝐸 + 𝐸𝑔
)

+
2 ∙ 𝐴 ∙ 𝐸0 ∙ 𝐶

𝜋 ∙ 𝜁4
× 𝐸𝑔 ∙ 𝑙𝑛

[
 
 
 

|𝐸 − 𝐸𝑔| ∙ (𝐸 + 𝐸𝑔)

√(𝐸0
2 − 𝐸𝑔

2)
2
+ 𝐸𝑔

2 ∙ 𝐶2
]
 
 
 

 

Together, these formulae provide the real and imaginary portions of the refractive index for 

many semiconductor materials, as shown in Figure 5.7.  

(14) 
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One of the defining differences between how metals and semiconductors respond to incident 

light is the presence of free electrons within the metal. These electrons form a “sea” within the 

material and oscillate at a specific frequency. When light at this frequency is incident upon the 

material it begins to increase the magnitude of these oscillations. This creates a dipole between 

the metal nuclei and the moving electrons, affecting the permittivity of the material to the 

incident light. To model this behaviour, we need to use the Drude optical model where the 

resonant (or plasma) frequency is given by the term 𝜔𝑝 and the restoring or damping force 

between the electrons and atoms is referred to as G. Similar to the Tauc-Lorentz model above, 

we break the formulation into real and imaginary parts, respectively given by the formulae: 

𝜀𝑟(𝜔) =  𝐸𝑖𝑛𝑓 −
𝜔𝑝

2

𝜔2 + 𝐺2
 (15) 

Figure 5.7: Refractive index of nitrogen-doped AZO film calculated using the Tauc-Lorentz optical 

model. 
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𝜀𝑖(𝜔) =
𝜔𝑝

2 ∙ 𝐺

𝜔 ∙ (𝜔2 + 𝐺2)
 

As will be discussed in Section 9.2, the formulation of the Drude model allows for the real part 

of the permittivity of the material to go below zero, and the crossover point is the plasma 

frequency; this is very useful for the creation of certain kinds of optoelectronic devices.  

 Roughness is a challenging quantity to model mathematically; as illustrated in Figure 5.8 

it represents an additional layer between the air and film that causes scattering of the incident 

light, however it is important for us to be able to reliably measure it. The roughness of a film can 

be calculated in several ways detailed in the relevant part of Chapter 7, but in general they rely 

on finding the average height of the peaks in comparison to the valleys using some form of 

physical contact such as through atomic force microscopy. For optical measurements we instead 

use an approximation of the roughness to account for this scattering, as the size of the light probe 

is too large to measure individual peaks. In the case of the ellipsometer we used, the Bruggeman 

effective medium approximation is used. This represents the roughness as a fourth layer in the 

stack, with properties exactly midway between that of the film and of air, illustrated in Figure 

5.8c) as a faded layer between the two media. This generalizes well to the roughness of the film 

as found using AFM measurements, but is somewhat artificial and so care must be taken when 

using it. General practice is not to include the roughness in a film if it did not significantly 

improve the fit difference of the measurement, as it is a potential source of fitting errors.  

(16) 



- 64 - 

 

 

5.1.4 Absorbance Spectroscopy 

Whereas reflectance measured the amount of light that was reflected by a sample at each 

given wavelength, as might be evident from the name, absorbance spectroscopy measures the 

relative quantity of light absorbed by a material as it passes through a sample. In our lab, we 

have a Horiba QM-8075 spectrometer that performs absorbance measurements between 200 and 

900 nm, in addition to other kinds of spectroscopy such as photoluminescence. In our system the 

light source emits light in the ultraviolet-visible range, which is filtered by a monochromator that 

reduces the light incident upon the sample to a single wavelength. The light at this wavelength is 

attenuated by some amount by the film, before entering another monochromator to filter out any 

errant ambient light that entered the sample chamber and then a detector. To isolate the effect of 

the film on the absorbance, we measure a bare borosilicate glass slide and one with the film atop, 

and find the difference in intensity between those two measurements. The amount of light 

absorbed by a film at each wavelength is called the absorption spectrum, and it can tell us a lot 

about the material properties. The incident photons are absorbed by interacting with the electrons 

within the material, transferring their energy and raising the electrons from the valence to the 

Figure 5.8: Roughness and its approximation within an optical model. 
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conduction bands. Light that has less energy than the band gap will not be absorbed, save 

through the influence of defects creating trap states within the band gap. Therefore, if we know 

the thickness of the material, we can calculate the energy at which the light starts being absorbed, 

meaning we can find the band gap of the film. In Chapter 7 we use this to validate the band gap 

values produced by our ellipsometer, as this absorbance technique is a more direct measurement 

technique that does not rely on a mathematical model to approximate that band gap.  

5.2 Machine Learning  

To quote ChatGPT, a powerful and popular machine learning web application when asked 

to introduce this section, “Machine learning has the power to transform our lives in countless ways. 

As an AI language model that uses natural language processing, I am a prime example of the power 

of machine learning. With training from millions of documents and other sources, I have the ability 

to understand and interpret human language with remarkable accuracy. I can respond to a wide 

range of questions, identify patterns and relationships in data, and generate text that is both 

coherent and informative. This level of intelligence is something that would have been 

unimaginable just a few decades ago, and it represents just the tip of the iceberg in terms of what 

machine learning has to offer. With continued progress and development, it is clear that this 

technology will play an increasingly important role in shaping our world, from healthcare and 

education to business and beyond.” 

ML as a field started back in the 1950’s with Frank Rosenblatt’s Perceptron model [131], 

which was based on theories about how neurons function. The Perceptron still forms the basic 

building block with which modern neural networks are built, and so a basic understanding of 

how it operates will make later sections more comprehensible. The function of any machine 
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learning algorithm is to take an input (𝑥𝑖), usually represented as an n-dimensional vector, and 

relate it correctly to an output (𝑦𝑖). If we were to plot the input, each dimension (𝑖𝑘) would be an 

axis on that graph, and the number of dimensions can be arbitrarily large. We treat all 

dimensions independently, giving each a weight (𝑤𝑘), then the weighted inputs are summed and 

passed to an activation function which gives an output (𝑦̂𝑖). Perceptrons can be represented 

mathematically by the formula; 

𝑦̂𝑖 = 𝑓 (∑ 𝑥𝑖,𝑘 ∙ 𝑤𝑘

𝑛

𝑘=1

) 

The term machine learning was later introduced because the while the weights (𝑤𝑘) are initially 

random, they are updated through a process called ‘training’. During training a set of inputs with 

known outputs are fed into the perceptron, if the perceptron predicts the output correctly, nothing 

happens. If the prediction at time (𝑡) was incorrect, however, the weights are changed by an 

amount depending on the learning rate (𝑟) according to the formula; 

𝑤𝑘(𝑡 + 1) =  𝑤𝑘(𝑡) + 𝑟 ∙ (𝑦𝑖 − 𝑦̂𝑖(𝑡))𝑥𝑖,𝑘 

The goal of the Perceptron algorithm was to mimic the operation of biological systems, 

ideally leading to computers capable of performing any task of which a human is capable. 

However, one major disadvantage of the Perceptron is that it can only find linear separations 

between the two classes because any output is just a linear combination of inputs. Marvin 

Minsky and Seymour Papert [132] famously came close to killing the nascent field of AI 

research when they showed that it was mathematically impossible for a perceptron to solve a 

simple exclusive-or (XOR) classification. The solution to this problem was to build an algorithm 

of multiple Perceptrons, where the outputs of one layer feed into the inputs of another and to 

(17) 

(18) 



- 67 - 

 

introduce an additive bias term to each neuron (b). These Multilayer Perceptrons are the first 

example of a neural network, and have been mathematically proven to be able to approximate 

any continuous function, if the network is sufficiently large [133], [134]. Much as with the 

regular Perceptron we rely on training the network to set all the internal weights so that we 

obtain the smallest error between 𝑦 and 𝑦̂ for any given input. However, we do not use equation 

(18) to calculate the change in the weights, instead we take advantage of the chain rule and use 

two techniques called backpropagation [135] and gradient descent. We first define a cost or 

objective function such as the mean squared error; 

𝐸(𝑤, 𝑏) =
1

2
(𝑦(𝑥) − 𝑦̂(𝑥, 𝑤, 𝑏))2 

It is important to note that the input 𝑥𝑖 of a neuron is equivalent to the output of the previous 

neuron 𝑦̂𝑖−1. This means that to find the error in a neuron, the output of the previous neuron must 

be known. This is why the technique is called backpropagation, because it begins at the output 

and work backwards to the input layer, which is more efficient for most ML applications. 

Calculating the gradient of the error function with respect to each of the input weights tells us 

how much changing each weight will affect the final error; the gradient will be higher for 

weights with a greater effect on the overall error.  

(19) 
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Hyperparameters are those parts of the algorithm which cannot be learned and must be set by 

the programmer. These are usually higher-level than the ML parameters, and include things like 

the number of hidden layers and the learning rate of the model. They are often optimised by the 

programmer by running various models with different hyperparameters and selecting the best 

[136]. Two main challenges can arise if the hyperparameters governing the gradient descent 

algorithm are poorly selected. First, as we can see from the left side of Figure 5.9, there may be 

many minima within the error surface. We are only interested in the global minimum. Also, as 

we can see from the image on the right, the rate at which we descend the error surface must be 

carefully controlled. While large adjustments converge at the minimum faster, there is also a 

high probability that the algorithm will begin to oscillate about the minimum, never reaching a 

single value. Of course, a rate which is too low will extend the run time of the program, which 

may impact its utility. One of the most common methods for avoiding local minima is stochastic 

gradient descent [137], [138]. Where in regular gradient descent, the gradient is calculated after 

all the training data has been fed through the algorithm (one epoch), in stochastic gradient 

descent it is calculated after each training sample. The theory is that the gradient calculated from 

Figure 5.9: Two-  and Three-dimensional representations of common issues arising from poor hyperparameter selection during gradient 

descent. 
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each sample will sum to the gradient of the whole dataset, but with small perturbations that will 

be able to move the algorithm out of local minima. To balance learning speed but also avoid 

oscillations about the minima, we can use an adaptive learning rate, which reduces how far we 

move along the gradient after each iteration. Also, to speed gradient descent up, we can use 

‘momentum’, where the previous gradient is factored in to the calculation at each iteration [139], 

[140]. Error gradients can also be helpful when it comes to understanding the decisions made by 

an ANN. A common complaint is that the system of weights and biases used to predict an output 

is incomprehensible to humans. Gradient analysis, a technique available in programs such as 

KERAS, allows us to add human intuition and guidance back into the process [141]. Gradient 

analysis transforms the error gradient into information that a researcher can understand and 

interpret. This way, if attempting to minimize or maximize a certain value, a researcher can 

guide the algorithm to where they predict this point to be, by analysing which changes bring the 

algorithm closest to the desired point.  

 Using these more advanced techniques, a greater variety of problems can be solved. 

Machine learning tasks are generally broken down into three types, classification, clustering, and 

regression, summarized visually in Figure 5.10. Classification is the earliest machine learning 

task, recall the Perceptron, which was a linear classification algorithm. Classification is the 

process of dividing a dataset into one or more distinct classes. Classification is still one of the 

more common applications of machine learning, for example identifying traffic signs in 

autonomous cars [142], or identifying hand written characters, even complex calligraphy [143]. 
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Clustering is very similar to classification, but instead of dividing the data into predefined 

classes, the algorithm attempts to find relationships between them independently. For example, 

separating all the images available online into separate groups relevant to any particular search 

would be an arduous task, but clustering algorithms are capable of finding similar images and 

presenting them to the user without assigning specific labels [144]. Regression problems can 

again be thought of as an evolution of classification algorithms, except in this case instead of 

discrete groupings, the output of the algorithm are continuous functions. For example, regression 

models can be used to predict financial performance of stocks and currencies, based on prior 

observations [145].  

 One of the most noticeable differences between ML models optimised for these different 

tasks is in the selection of the activation function in the output layer. All neurons for all sorts of 

ML models, have an activation function, their purpose is to transform the sum of the neurons’ 

inputs into an output which can be either interpreted by another neuron or as part of the output of 

the network. Four of the most common activation functions are shown in Figure 5.11. While 

neurons in the hidden layers of deep neural networks will often use the rectified linear (ReLU) 

[146] or Leaky ReLU [147] activation functions for efficiency, neurons at the output can use a 

wide variety of activation functions. Regression problems will most often use a linear activation 

 

 

 

      

      

      

      

Figure 5.10: Illustrations of the three types of ML problem, a) Classification, b) Clustering, and c) Regression 
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function at the output layer, but must still use nonlinear activation functions in the hidden layers.  

This is because networks with only linear activations can only ever give linear functions as an 

output (linear transformations of linear functions will always be themselves linear). Binary 

classifiers, like the perceptron, will use a simple step function as the activation function. Since 

the output of a neuron with a step activation will always be either one or zero, it is very good at 

deciding between two classes (e.g.: 1 = “cat”, 0 = “not cat”). However, when there are more than 

two classes involved in a problem, more than one neuron may activate at once, and the algorithm 

is incapable of determining which is the correct output. To correct for these issues, we often use 

nonlinear activation functions such as the logistic function and its variants, sigmoid, tanh, or 

softmax when performing more complex classification and clustering tasks. Neurons with 

Figure 5.11: Four common nonlinear activation functions 
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sigmoid and tanh activation functions behave similarly, the difference is that tanh has a steeper 

gradient than sigmoid [148], but the sigmoid function is bound between 0 ≤ 𝑦 ≤ 1, and so better 

represents probabilities. For supervised classification problems with a known number of classes, 

the softmax activation function is also a good choice, as its outputs are also bound between 0 ≤

𝑦 ≤ 1, but divides each output by the sum of all outputs [149]. Essentially, softmax directly 

gives us the probability that a given input belongs to all target classes, but where other activation 

functions give only one output per input softmax gives one output per class for each input. Of 

course, there are many different activation functions that I have not covered here, it is still an 

active field of research as almost any differentiable nonlinear function will work, and better 

alternatives are being found all the time. However, the ones presented here are found as part of 

most available ML packages, and are therefore still very commonly used.  

Figure 5.12 shows a very abstract schematic of an ANN, with the input, output and first/last 

hidden layers shown. The hidden layers are simply any layer which is not either an input or 

output; hidden layers are referred to as such because we cannot directly see their inputs and 

outputs. The number of hidden layers is called the depth of the network, deep neural networks 

(DNN) generally refer to any network with more than three hidden layers. The number of 

neurons in each layer is referred to as the width, and increasing either of these values will allow 

the network to approximate more complex functions. However, since each neuron is connected 

to all neurons in the layers before and after (referred to as a fully-connected layer) we often 

prefer to increase the depth of the network and not the width, as wider networks are 

exponentially more complex.   
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There are many different algorithms in the ML toolbox, many of which are specialised 

towards solving very specific types of problems. For example, convolutional neural networks 

which will be discussed in Section 5.2.2 are most often used for image recognition problems, and 

have specialized features to assist with solving this kind of problem. Most of these techniques 

fall under the umbrella of deep learning, or DNNs, and training these networks is much more 

complicated than for a single neuron. Below are some important tricks and definitions which can 

be used to improve the training of any network, such as bagging, boosting, and transfer learning, 

and will be referred to throughout the rest of this report. 

• Bagging: This is short for bootstrap aggregating, and is a method for reducing the variance in 

the predictions of an ML algorithm. This meta-algorithm allows you to generate additional 

training data from the original dataset by sampling from it with replacement to create a large 

number of datasets of the same size and distribution. Training the algorithm on these slightly 

altered datasets will not make the model better at predicting specific results [150], as the 

                                    

Figure 5.12:Generalized data flow within a neural network 
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sampling process is completely random but it all comes from the same initial data. Because 

the model is trained on the same data through different iterations, but at different stages and 

with some missing, it gets better at learning the broader trends and not the individual 

differences between samples. 

• Boosting: Another meta-algorithm for improving the performance of an ML algorithm, but 

in this case it is the predictive capability which is improved, and not the variance. Boosting 

works by training multiple models, each of which may not perform well by itself, but then 

taking a weighted vote of the outputs of all models. This result is mathematically proven to 

be more accurate than the individual models used during training, as the error in any one 

prediction is offset by the error in another [151], however this may not extend to testing 

error.  

•  Convolution: Is the mathematical operation of multiplying two functions to produce a third 

which directly expresses how the shape of one is affected by the other. In the case of ANN’s, 

a convolution is usually the multiplication of two matrices, one input and one filter in order 

to detect specific features within the input. For example, generalizing a square image of 100 

pixels/side as a 100x100 matrix, convoluting that image with a filter may allow an algorithm 

to detect the edges of all objects in that image, or apply a blurring effect [152]. This is the 

process from which the convolutional neural network derives its name.  

• Cross-Validation: Is the process of testing the ML algorithm on data that was not used to 

train it, to ascertain whether it has effectively learned the patterns present in the data, or has 

just memorized the training input. Commonly the training data will be randomly divided into 

‘n’ sub-sets, and ‘n-1’ of these are used to train the model, whereas the last is used for 
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validation. The model is then trained ‘n’ times, so each sub-set gets used for validation one 

time. Ideally each sub-set will contain a representative distribution of the entire dataset [153].  

• Data Density: A measure of how well represented an area is within a given dataset. In areas 

where there is a lot of data, ML algorithms can very accurately interpolate between these data 

points and their predictions will be stronger. Conversely, where the data is sparser there can 

be a greater uncertainty in the prediction. Figure 5.13 is a simple 2D representation where the 

shaded blue areas are the limits of where the ML algorithm predicts the true curve may lie. A 

low data density is not always negative; when ML is designed with the aim of exploring 

unknown areas of the data space, areas of high uncertainty are good candidates for further 

experimentation or simulations [87].  

Figure 5.13:Predicted curve with varying data density 
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• Kernel: Commonly referred to as ‘the kernel trick’, this is a way of transforming data using 

a function (kernel) so that it is linearly separable, but in a higher dimensional space. For 

example, we want to classify two groups of data, but in two dimensions they are represented 

by a pair of concentric circles, as illustrated in Figure 5.14. Clearly there is no straight line 

which can separate these two groups. However, adding in a third dimension can transform 

the data points so that they can be separated by a linear plane. This method is more efficient 

than simply trying to find a non-linear separator, and there are many functions which can be 

used as a kernel, depending on the dataset and problem [154]. Gaussian Process Regression 

(GPR) is a kind of regression model that uses a kernel to improve its accuracy, as will be 

discussed in Section 5.2.1. 

• Training: The overall process of setting the weights and biases of the neurons in a net is 

referred to as “Training”, but this also refers to a specific phase of that process and the data 

used to perform it. This occurs in three phases, each using a unique set of data comprised of 

corelated inputs and outputs. In the first phase a network is given a set of inputs, and its 

accuracy compared to known outputs is compared using some error function. The weights 

and biases are adjusted through backpropagation, and it is given another set of inputs. This 

Figure 5.14: The effect of adding extra dimensions on previously non linearly separable data through the kernel trick.: 
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phase is referred to as training. Next, the model is validated against a portion of that data that 

was held back and not used for training, this is the validation phase. Validation is important, 

because the model could be memorizing the correlated inputs and outputs during training, so 

exposing it to new data exposes this fact as the model will provide a very poor result on the 

new data. At the conclusion of the validation phase, model hyperparameters will be adjusted, 

and we say that training has completed one epoch. Training usually occurs over multiple 

such epochs, until the validation error is sufficiently low. Once the model hyperparameters, 

weights, and biases have all been selected a third set of data is introduced. This is the testing 

phase, and the error of the model here is the best indicator of its performance when it will be 

introduced into a live environment.  

• Transfer Learning: Is a process for speeding up the training of new ML models by simply 

re-using an already trained ML model to solve a new problem. For example, in image 

recognition the algorithm must learn to recognize basic features like edges and shapes before 

it can begin to classify the images as being of a specific object. Transfer learning is the 

process of using an algorithm which has already learned these lower-level tasks to extract 

different but related higher-level data. This saves a significant amount of training time vs 

creating a new model for each task, as long as the lower-level features are common between 

the two models [155], [156]. An example of this process is explained in Chapter 7, where I 

leveraged transfer learning to massively expand the number of material combinations we 

could successfully measure using our lab’s ellipsometer.  
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5.2.1 Gaussian Process Regression 

  We have already discussed “classical” regression in Section 5.2, and Gaussian process 

regression (GPR) is a further advancement of that technique, utilizing a unique probabilistic 

approach to predict the underlying relation between sets of inputs and outputs. Linear regression, 

shown on the left of Figure 5.15 assumes that the underlying relation is linear, and finds the best 

fit by minimizing the error between the line and each of the data points. GPR, shown on the 

right, instead assumes that all of the data points are distributed with heterogenous noise 

dependent on x via a normal distribution, as opposed to noise with an independent and identically 

distributed distribution [157].  

This is quite simple to visualize in two dimensions, but real problems usually have an array of 

dependent and independent variables; the multivariable gaussian function is described by the 

probability density function: 

𝒩(𝑥|𝜇, 𝛴) =
1

(2𝜋)𝐷 2⁄ |𝛴|1 2⁄
𝑒𝑥𝑝 [−

1

2
(𝑥 − 𝜇)𝘛𝛴−1(𝑥 − 𝜇)] 

Figure 5.15: Linear regression (left) vs Gaussian process regression (right) over the same arbitrary data points. 

(20) 
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Where D is the number of dimensions, 𝑥 is the output variable, 𝜇 is a vector representing the 

mean and Σ is the covariance matrix of dimension D. Covariance is a statistical term which 

represents the mutual variability of a pair of variables, and the covariance matrix being square 

means we have the variance of each individual variable down the diagonal, and each variable 

pair is represented off-diagonal. Simply put, a positive covariance means that the two variables 

are positively correlated, and a negative covariance means they are inversely correlated, with the 

magnitude of the covariance being the mean of the variances common between the two. From the 

covariance matrix, we can start to express some degree of knowledge about the underlying 

function – the beginning of the probabilistic model underpinning GPR.  

The next thing to note about GPR when compared to linear regression, or even nonlinear 

regression, is that it does not assume that there is one function that will accurately describe the 

relations between the inputs and the outputs. Rather, it assumes that there are many such 

functions, and seeks to find the one that is the most likely to represent the underlying reality. In 

Figure 5.15 above, we can see shaded areas to the sides of the presumed function line, which 

represents the range of possible functions. If we were to add a new data point to that line, we 

would have to update our assumptions about which functions are possible, we have constrained 

our prior assumptions through the addition of new data. This process holds true even in the case 

of noisy data, as even random noise is more likely to fall close to the actual function given our 

initial assumption that the data falls within a normal distribution of said function. We can further 

tune the probability distribution to better fit any knowledge we have about the form of the 

function we are trying to find by changing the kernel used to smooth the input data. The radial 

basis function is commonly used, but packages such as Matlab or KERAS may have additional 
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kernels available to the operator, and the selection of which kernel to use can be part of the 

hyperparameter optimization process.  

5.2.2 Convolutional Neural Networks 

Convolutional neural networks, or CNN’s are most commonly used for image recognition 

tasks, such as handwriting recognition, because they are very good at identifying and extracting 

important features from large sets of data [152]. The basic function of each layer in a CNN is 

designed to mimic human sight, in fact CNN’s are the artificial system best suited to vision-

based tasks which humans perform well such as identifying hazards while driving. Inputs are 

given to a CNN in the form of a matrix, often each cell representing the relative strength of red, 

blue, or green in each pixel of an image.  

The first operation performed by a CNN is to convolute the input matrix with another, smaller 

matrix called a filter. The values within this filter matrix are adjusted during training, and each 

input is exposed to multiple filters. The purpose of these filters is to extract important data from 

the input, such as the presence of different shaped curves which may later combine to form a 

specific letter; this output is called a feature map. A simple example of this is shown in Figure 
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Figure 5.16: Convoluting an input and filter to find a feature map of a simple binary matrix 
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5.16, here a 3x3 filter is applied to a 6x6 input, moving by either one column or row to fill a 4x4 

feature map. Convolution is a linear process, and as discussed in the section on how ANN’s 

function, adding nonlinearity vastly increases the number of problems we can solve with an 

ANN. Accordingly, the ReLU activation function is commonly applied in this convolution layer 

as it requires relatively little computational power and this layer can often be very large.  

The next step in a CNN is to reduce the size of each feature map while retaining as much 

data as possible. This is performed using a process called pooling, where a selection criterion is 

applied to subsets of the feature map so that only useful data is passed forward to the next layer. 

There are three common techniques for pooling data, taking the maximum, average, or minimum 

of the selected subset. Using the feature map from Figure 5.16, applying a 2x2 pool Figure 5.17 

shows how the feature map can be transformed with these three pooling techniques. Not only 

does this make the input more manageable, it makes the network less likely to overfit the results 

by trimming unnecessary data, and makes the network more easily able to handle small changes 

in the input. Older CNN’s would misclassify images if the inputs were shifted by as much as a 

pixel, and this layer helps prevent that. There may be many iterations of convolution and pooling 

layers, but eventually the outputs of the last pooling layer are fed into a more conventional ANN. 

This ANN takes the simplified features fed to it by the convolutional and pooling layers and then 

usually uses softmax to classify the image based on the previously identified features. Real 

CNN’s deal with much larger inputs and have much more complex filters than those shown here, 
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and the feature maps are correspondingly complex. Observing feature maps, we can often see a 

hierarchy, where the first convolution may produce uninterpretable filters, but subsequent layers 

are recognizable as being part of a larger image  

While CNN’s are most known for commercial image recognition and self-driving cars, 

the ubiquitous image CaptchaTM problems online show what data programmers are looking to 

work with; it should be no surprise that they have many applications in materials science as well.  

For example, scientists trained a CNN to predict the toxicity, activity, and solvation free energies 

of compounds using only 2D images of compounds, outperforming conventional DNN’s which 

had been trained on much more detailed data [158]. One major advantage of CNN’s is that they 

are very good at transfer learning; low-level features such as chemical bond length and 

orientation can easily be applied to molecules on which the original algorithm was not trained 

[159]. In both the above papers, the coordinates of molecules were mapped to an 80x80 pixel 

image and passed into a CNN with three fully-connected layers and 16 convolutional filters. 

Because the network wasn’t given a lot of chemical information, it was possible to observe it 

learning the features of the molecules which lead to its properties. For example, the CNN learned 

without prompting that both toxicity and activity are highly dependent on the functional groups 

present within the molecule. This kind of spontaneous learning is invaluable for potentially 

complex systems where the interdependencies between parameters may not be known 

beforehand.  

5.2.3 Material Science with ML 

Material property prediction is an iterative process, as once the predictions from an ML 

model have been tested, they can be used to further improve that model until a desired level of 



- 83 - 

 

accuracy has been reached. There are four main steps in applying ML techniques to material 

science; 

1. Feature Engineering: The process of transforming the desired inputs into a form 

which can be more easily interpreted by an ML model. For example, representing the 

bond angles and functional groups of a complex molecule as a series of numbers, or 

representing the pixels of an image as relative colour ratios. This can also include 

evaluating the importance of certain features, for example using principal component 

analysis, and reducing the number of inputs to make the resulting model more 

efficient. In some cases this can be done manually, or another algorithm can be used.  

2. Model Training: This is the phase where the dataset created in step one is split into 

training, test, and validation sets. The training data is fed into one or more ML 

models with varying hyperparameters until the point where the test dataset can be 

passed through the algorithm with minimum predictive error. In this phase both the 

desired input and output are known.  

3. Model Evaluation: In the model evaluation phase, the validation data set is used to 

compare the different ML models from step two, and the one with the best predictive 

properties is selected.  

4. Prediction: The ML model selected in step three is then given completely new data, 

consisting of just the input data. If the model has been properly trained, it should be 

able to predict the desired properties well. These predictions can be verified with 

further experiments, creating a new, larger dataset which can be used to start the 

process over again.  
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Within these four steps there is a lot of variation in the type of features and ML architectures that 

can be used. TABLE III lists a number of properties found using ML, and the specific types of 

algorithms used. The goal of this type of algorithm is usually to guide materials scientists, and 

take some of the guesswork and trial-and-error out of the process of designing specific materials, 

and careful model design can allow meaningful predictions to be made even if the dataset is 

incomplete or ‘sparse’ [160]. MATCALO is an example program, which relates intrinsic 

material properties, and the changes made by various processing techniques to allow engineers to 

create materials tailored to specific tasks [161]. This case is quite interesting, because different 

processing techniques can have either complimentary or negating effects when applied together. 

Being able to predict the most efficient set of processing steps will save time and money in 

producing complex alloys like those used in the aerospace industry. Here regression decision 

trees were used as the ML architecture, where each leaf in the tree represents the value of the 

predicted property if the processing steps follow from the root of the tree to that leaf. The 

algorithm used then works in reverse to a normal decision tree, starting at the leaves with desired 

properties, before selecting the best roots. Applying restrictions and desired property values to 

the system forces the algorithm to select only the best candidates, for example it may be 

desirable to minimize the processing temperature due to some limitation of the intended use of 

the material. This approach may be useful when trying to use an ANN to optimize the growth 

conditions of our thin films. 
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TABLE III: MATERIAL PROPERTY PREDICTION AND CHARACTERIZATION USING MACHINE LEARNING 

Property of Interest Algorithm References 

Nanomaterial Solubility  Regression [162] 

CNT/Nanofibre Morphology ANN [163], [164] 

Magnetic Property  ANN [165] 

Toxicity 

Decision Tree/Random 

Forest/Support Vector Machine 

(SVM) 

[166]–[168] 

Biological Activity ANN/Linear Regression [169]   

Catalytic Activity 
ANN/Bayesian Linear 

Regression 
[170]–[172] 

Nanorod Dye Adsorption ANN [173] 

Electron Transfer Properties 
ANN/K-Means /Random 

Forest/Regression 
[174] 

Reactivity 
ANN/Recurrent Neural 

Network (RNN) 
[175]–[177] 

3D/Crystal Structure 
ANN/Deep Neural Network 

(DNN)/Regression 
[178], [179] 

Grain Boundaries/Defect & Phase Evolution 
Convolutional Neural network 

(CNN)/Clustering 
[97], [180] 

Raman Spectra 

Clustering/Principal 

Component Analysis 

(PCA)/Regression 

[181]–[183]  

Quantum Dot Charge/State CNN/DNN [184] 

Band Gap & Alignment ANN/DNN/SVM [185] 

Perovskite Lattice Constants 
ANN/Random 

Forest/Regression 
[186]–[188] 

High Entropy Alloy Phase 
ANN/K Nearest-Neighbours 

(KNN)/SVM 
[189] 

Nanoparticle Lattice Orientation CNN [190] 

Graphene Mechanical Properties 
ANN/Decision 

Tree/KNN/SVM 
[191] 

Structure-Property Relationships for 

Hexagonal Boron Nitride and Graphene 
ANN/CNN [192] 

Nanoparticle Formation Regression/SVM [193] 

Dielectric Breakdown Regression [194] 
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As mentioned previously, discovering new materials is most often a classification task, 

but that is not the entire picture. These algorithms often consist of more than one ML algorithm 

working in tandem, one acting as a predictor to find what the structure or property of a material 

will be given a set of inputs, and another to classify that material as part of the desired group or 

not. The work done by Wen et. al. in [87] is a good example of exploring a wide range of data to 

find new materials. In this paper the authors were searching for new high-entropy Al-Co-Cr-Cu-

Fe-Ni alloys, eventually finding a new alloy with 10% greater hardness than any used in the 

training data. One advantage they used in their model was online learning, where the 

hypothesized alloy from each iteration of the ML model was synthesized and its measured 

hardness was added to the training data for the next iteration. This is a good way to fill areas of 

the dataset which are sparse. The ML algorithm then predicted both the hardness of new alloys 

and a utility function which selected the best candidate for further experimentation. This decision 

was based on the predicted hardness, and would prefer experiments in less-explored regions of 

the data. When using more property data, they found which properties are highly correlated, and 

removed the ones with higher error, streamlining the model and increasing accuracy while 

decreasing the time to get a result. To streamline the model further, they compared models which 

were trained not to use all available features, and found the three most important features. This 

paper is particularly relevant to my research because it highlights some common pitfalls in 

materials discovery, and ways to avoid them. While I will likely be using fewer materials to 

compose the new thin film materials I aim to discover, the greater number of processing 

variables means I must take care when selecting features to feed into the model. Also, the idea of 

combining multiple models together to find the materials most statistically likely to have desired 

properties will be very helpful to avoid the ‘black box’ problem often associated with ML 
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models, where the model gives accurate results but the process of obtaining those results is 

unintelligible to an observer.  

ML techniques can also be used to assist materials researchers in other ways, such as de-

noising measurements, making them less sensitive to initial guesses [195] and extracting extra 

information vs traditional techniques for the same data [196]. In these two sources they used ML 

to improve signal-to-noise ratio of AFM, but have done the same with SPM [197] and STM data 

[196]. Using ML in tandem with conventional data-collection techniques also captures 

fast/dynamic information, which is hard to do with conventional filtering. ML can also be used 

to automate tasks which are trivial but time consuming for humans, such as grain edge detection 

in perovskite materials [198], where the researchers used classifiers to detect boundaries in the 

same manner as the human eye. Finally, ML can be used to speed up ab-initio simulations [199] 

while retaining accuracy by identifying data the simulation produces but is not needed, and 

extracting only relevant data. Alternatively, instead of speeding up a single simulation, ML can 

be used to cut down the number of simulations needed [200]. The authors trained an ML 

algorithm on simulation data, and used Bayesian inference to determine the accuracy of ML 

predictions. If the predictions were accurate, the results of the ML model were used, saving time 

over simulating all necessary datasets.   
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6 Neural Network Assisted In-Situ Optical Characterization and 

Feedback Control 

6.1 Introduction 

AP-SALD is in the early stages of commercialization, but critically it still lacks process 

control capable of leveraging its unique ability to form oxides of such varied compositions. 

Optical measurement techniques, such as reflectance spectrometry, are ideal for incorporating 

into commercial processes because they are capable of making rapid measurements without 

damaging the sample being measured. As discussed in Chapter 2, in-situ optical characterization 

was already implemented into the AP-SALD system by another PhD student, Kissan Mistry. 

Using a reflectance spectrometer, the thickness, optical band gap, transparency, and changes in 

surface roughness of the film can be found by fitting a model to the measured spectrum. In 

Section 5.1.1 we briefly discussed other researchers work on using ML to fit reflectance, focused 

on industrial applications, but these are more recent advancements. Conventionally a naive 

optimization approach like a grid search might be used as a means to narrow in on the correct 

fitting parameters, rather than exhaustively searching through all possible combinations. A more 

robust means to narrow in on the optimal optical model parameters would be to use a curve-

fitting model like the Levenberg-Marquardt algorithm. Unlike the grid search method, this is an 

iterative algorithm, meaning it is run repeatedly in an effort to narrow in on the most accurate 

values, but this does mean that it can get stuck in local error minima. The first step with this 

algorithm is to provide an initial estimate for each parameter of interest, thickness and refractive 

index for example, as well as pairs of independent and dependent variables. This might be a 

measured spectrum (independent), and what the spectrum would look like given the specific 
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parameters fed into the model. Over each iteration, the algorithm adjusts the values of the 

parameters of interest in order to lower the sum of the square of the deviance between the 

dependent and independent variables. The Levenberg-Marquardt algorithm is the method most 

commonly used in commercial optical model fitting software, as it is generally very good at 

finding the parameters with the least resulting error as long as the initial parameter estimates are 

close to the actual values. Despite its iterative nature, it is much more efficient than a grid search 

algorithm for problems with many different parameters.  

It has been shown that the properties of thin oxide films grown by AP-SALD are different to 

those produced using more conventional ALD and CVD techniques. For instance, it has been 

shown that the presence of atmospheric oxygen during depositions caused increased grain-

boundary scattering [201], [202], consistent with our results from Chapter 4 [31]. The ways in 

which AP-SALD films differ from those produced with conventional ALD is a unique 

opportunity to create films tailored for specific applications, but complicates the process of 

creating and fitting an optical model to the reflectance data, requiring a more flexible fitting 

method with fewer limiting assumptions. As discussed in section 5.1, most non-destructive 

measurement techniques rely on mathematical models where various film properties are already 

known, and it is our objective to automate this process.  While it would be tempting to use a 

Levenberg-Marquardt algorithm to fit each and every parameter of an optical model in turn, this 

is an incredibly computationally expensive process. Since this program needed to be built in 

Matlab in order to integrate with our control system, any such design would be complex to build, 

and still run too slowly to produce accurate in-situ results given that the AP-SALD must pause 

for the length of any measurement, diverging from ideal deposition conditions.  
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Rather than using previously-reported material properties, and finding the thickness 

through an optical model, we chose to invert this structure with the help of a database of known 

films. This database contains the complex refractive index, thickness, and full reflectance 

spectrum of thousands of films calculated using the Tauc-Lorentz optical model. The Tauc-

Lorentz model was selected, as it is a common model for describing the response of 

semiconductor films to light, as described in Section 5.1.3. By using a combination of grid 

search and ML methods to estimate the thickness of the film based on the raw reflectance data 

and the number of AP-SALD deposition cycles, we were able to use a Levenberg-Marquardt 

fitting algorithm to match our measured spectra with those in the database, as illustrated in 

Figure 6.1. Having matched our measured spectrum to one with a known refractive index and 

thickness, we could then use a Tauc plot to track the evolution of a films optical band gap in real-

time. By leveraging the power of ML to provide accurate thickness estimates, we were able to 

produce real-time measurements of both the films thickness, complex refractive index, and band 

gap, faster and more accurately than with our previously-implemented conventional grid-search 

algorithms. Being able to monitor the evolution of a film’s properties during deposition enabled 

greater process control, including observation of the nucleation period, nanoscale thickness 

control, and growth rate control. These facilitate tailoring films towards specific applications. 

While this initial study was limited to ZnO films, this material has a broad range of applications 

as a semiconductor material. Being able to match its bandgap to adjacent films in a stack and 

precisely control its thickness will result in more efficient devices, critical in the age of increased 

anxiety surrounding climate change and the need for greener technology.  
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6.2 Experimental Methods and Materials 

6.2.1 Film Deposition and Characterization Techniques 

The AP-SALD process is detailed in Chapter 2, but for the films here we limited our 

analysis to ZnO films produced between 100⁰C and 200⁰C, controlling the flow rate by adjusting 

the relative proportion of gas flowing through the diethylzinc bubbler before reaching the 

reactor. These conditions are representative of the most common depositions we perform on our 

system, and as discussed in Chapter 2, still represent a diversity of film properties. We used an 

Ocean Optics HDX UV-Visible spectrometer, coupled with a DH200 light source and QR600 

bifurcated probe to acquire the spectra. The probe was mounted perpendicular to the film 

surface, and the deposition was made to pause for the duration of the measurement time, a 

fraction of a second, to ensure that the same spot was measured consistently. The spectrometer 

Figure 6.1: Workflow schematic between the reflectometer, search algorithm, and film database. 
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was calibrated using a bare silicon wafer, and the borosilicate glass substrate was also measured 

to ensure proper differentiation between it and the film during measurement. While allowing the 

precursor flow to continue has an effect on film uniformity in the direction of oscillation, as the 

precursors continue to flow during this time, the response time on the valves and MFC’s is too 

slow to ensure that the deposition is not interrupted. This does not affect the area being 

measured, but would limit the utility of our approach when depositing films for device stacks, in 

addition it would result in an increased annealing time for the film, altering its properties. This 

fact further reinforces the importance of measurement speed, one of the major focuses of this 

work. The measured spectrum has a lot of noise, as in order to make the measurements fast 

enough to be used in-situ, we have to compromise on the length of time for which each 

measurement is taken. 

6.2.2 Reflectance Measurement Methods 

Figure 6.1 is a process flow diagram, illustrating how two spectra are compared, one 

(blue) is the measured spectrum, and the other (red) comes from a database of films with known 

thicknesses and optical constants, computed using the Tauc-Lorentz optical model. There were 

three iterations of the search algorithm component, each of which was designed to provide an 

initial thickness estimate based on the measured reflectance spectrum and the number of AP-

SALD cycles. The results of each search algorithm were then passed to a Levenberg-Marquardt 

(LM) fitting algorithm to refine the thickness estimate and improve the goodness of fit between 

the measured and modelled spectra. The post-LM fit thicknesses from each iteration were used to 

train the next. 

The first version of our search algorithm, which was retained in some form throughout 

the development of the project was a simple grid-search algorithm. This algorithm functions by 
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choosing evenly spaced values along each axis of the data, and evaluating the outputs at that 

point, represented in Figure 6.1 in a 2-D plane. The combination of inputs with the output closest 

to the desired or real value is then selected. This algorithm is useful because it searches across all 

possible combinations without potential bias from the end user, but with more input axes the 

time to compute the best combination gets longer and longer, limiting its utility. The grid search 

algorithm we used outputs an estimate of the thickness of the film in nanometres, using the 

number of cycles as the initial input, searching a domain that includes thicker films with each 

measurement. The second iteration was a simple feed-forward neural network with a single 

hidden layer. This algorithm used both the number of cycles and the raw reflectance spectra as 

inputs, passing through the hidden layer and providing a thickness estimate. Because this is a 

very shallow network, three different training methods were tested to ensure the lowest MSE 

value, the Levenberg-Marquardt, Bayesian Regularization, and Scaled Conjugate Gradient 

methods, which were the three default options in Matlab. Finally, due to the high degree of noise 

in our measurements, we used a Gaussian Process Regression model to predict the thickness of 

the film. Because we know that thickness is a smooth function with respect to cycle number, the 

underlying assumptions of the GPR model made it an attractive solution to the problem of noisy 

training data, given that the outliers will be used to train the model without assuming that they 

are an accurate representation of the films thickness – it allows for varying levels of noise at 

different values of x unlike most other regression methods.  

6.2.3 Machine Learning Methods 

Proper treatment of the data is integral to getting meaningful results from an ANN of any 

type. In this work, the input data was an array of raw reflectance data, the number of cycles, and 

the desired output is a guess for the film thickness, d. R(λ) is the full reflected spectrum with 
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1,878 individual data points for every measurement, corresponding to a wavelength range of 250 

to 800 nm, and can include a lot of meaningless noise. Initially I used all 1,878 inputs, training 

ANN’s of a specific width three times, once with each training algorithm. In most cases this led 

to a model which stopped improving over subsequent training iterations at poor training MSE 

values, and in the cases where a model was successfully fit, the training R2 and MSE were both 

high. This means that the general shape of the predicted function may be accurate, but there was 

a large variation in the individual predictions. Because the large number of inputs led to long 

training times and poor ANN performance, it was decided to pool the input data, averaging each 

block of six values, reducing the noise. Unfortunately, the amount of data we had available was 

limited by the initial challenges of the grid search model. If we attempted to train any kind of 

neural network on data that is mostly noise, we could have no confidence in its accuracy. 

Therefore, we were limited to using only those films for which we had reasonable confidence in 

at least some of the thickness data. For the first-generation ANN, this dataset was comprised of 

the results of 20 films deposited under different conditions, measured every five cycles. This was 

supplanted with another 30 films for training the GPR model, as that first-generation ANN 

provided a significant boost in our program’s accuracy. As previously mentioned, the initial 

thickness estimate provided by the search algorithm is fed into a Levenberg-Marquardt (LM) 

fitting algorithm, produced using the lsqcurvefit function within Matlab. This algorithm 

iteratively adjusts the thickness, searching through a database comprised of spectra produced 

using the Tauc-Lorentz optical model until one is found that matches the measured spectrum. 

The LM algorithm is very sensitive to the initial estimate, or else it may easily fall into a local 

error minimum and give a poor fit. Iterating over only the thickness is far faster than attempting 

to fit all of the Tauc-Lorentz parameters individually, but further reinforces the necessity of an 
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accurate initial thickness estimate. This database also includes the index of refraction and 

absorption coefficient for the films, and from those values and the thickness the band gap can be 

calculated using a Tauc plot – given that we know ZnO has a direct band gap.  The search 

algorithm only finds the initial thickness estimate for the LM-fitting algorithm to refine, as this 

algorithm is very sensitive to initial conditions. Thickness is the ideal sorting parameter because 

n and k vary by wavelength, but thickness is unique per film. It also has a comparatively greater 

effect on the shape of the spectrum, as we are only looking at ZnO here. The range of thicknesses 

is greater than the range of the optical constants, as it is not bound to any range save that of what 

can be practically grown in a single deposition, whereas optical parameters are constrained by 

the properties of the material itself. As shown in Figure 6.1 we select a film from the database 

(red) based on how well it matches the measured spectrum (blue) based on the LM algorithm, 

and report the goodness of fit (GOF) between the two curves. A basic measure of the total error 

at each point, a GOF of 1 would indicate a perfect match between the two spectra and allows us 

to monitor how well our program is predicting the thickness of that film.  
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6.3 Results and Discussion 

6.3.1 Grid Search Algorithm 

All versions of the reflectance fitting program use the number of AP-SALD oscillations 

passed as an initial estimated thickness, serving as a baseline for the search algorithm on the 

films searched within the database of ZnO reflectance spectra. This was particularly important 

for the grid search algorithm. Having a baseline means we can move the grid to search in areas 

of the database more likely to contain the actual thickness. For example, it is not worth searching 

for spectra corresponding to films 100’s of nanometres thick if only 5 AP-SALD oscillations 

have occurred. Figure 6.2 shows the estimated thickness throughout the deposition of a ZnO film 

at a temperature of 100℃. It demonstrates the difference between a naïve grid search (Figure 

6.2a), and one where the range of thicknesses searched was limited (Figure 6.2b), first to within 

Figure 6.2: Estimated film thicknesses based on a grid search around an assumed growth rate of 1 

nm/oscillation, either a) unconstrained, or b) constrained to within ±5nm for the first 30nm, and then to within 

±50nm.  
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±5nm of the presumed 1nm/oscillation growth rate until the film was 30nm thick, and then to 

within ±50nm. Since the naïve version searched the database of ZnO reflectance spectra 

unconstrained, simply finding the fitted spectrum with the best goodness of fit with no regard for 

realistic growth dynamics, there were large spikes in thickness where the LM fitting found a 

higher goodness of fit at an unrealistic thickness, as shown in Figure 6.2a. This lead to the 

implementation of a grid-search algorithm as in Figure 6.2b where the thickness is searched to 

only within a specific range to eliminate large thickness spikes of several hundred nm. The 

growth predicted in Figure 6.2b is much better, but still shows several unrealistic thickness 

measurements: 

• The nucleation period is followed by an abrupt increase in thickness at oscillation 10. 

• Several instances of a reduction in thickness. 

• Multiple other instances of small spikes in thickness, often followed by a plateau or drop. 

Further refinements of the grid search algorithm allowed us to begin measuring film properties 

through the deposition process with reasonable accuracy. This version of the grid search 

algorithm used 0.2*oscillation number as the lower bound, and 5*oscillation number as the 

upper. In addition, a “boxcar” technique was applied to the measured reflectance data, where 

instead of reporting a single reflectance value at each wavelength, a moving average is taken. 

Here the width of the boxcar was five measurements, meaning that at each wavelength the 

average of the reflectance at that wavelength and the reflectance at two nm above and below was 

reported. This has the effect of smoothing the reflectance data, but if the boxcar is too wide the 

details of the plot can be erased. Figure 6.3 shows how much better this version of the grid 

search algorithm performed compared to earlier attempts. This algorithm allowed for 

measurements of the films thickness and band gap that were very accurate under linear growth 
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conditions, but still did not handle nonlinearities well.

 

Figure 6.3b and c show how this real-time data monitoring allowed us to accurately track 

film properties beyond the thickness under those linear growth conditions. However, the use of 

thickness bounds restricts the range of deposition conditions under which the algorithm can 

function (i.e., changes in the flow rate, temperature, or deposition errors which change the 

deposition rate may not be accounted for). The comparatively low GOF values at low 

thicknesses show the models struggle to represent the nucleation stage accurately, when growth 

has not yet reached the point where a monolayer is formed each oscillation. All our attempts still 

showed that initial “jump” once the film was thick enough, as shown in Figure 6.4, which results 

in a poor GOF value. Accordingly, these measurements were omitted from the data reported in 

our paper and Figure 6.3. This is a non-physical nonlinearity, but the measurement technique we 

described does hold true for films of sufficient thickness.  

 

Figure 6.3: a) Reflectance spectrum changes with film growth up to 30 oscillations, b) changes in measured thickness and 

goodness of fit, and c) evolution of band gap and real refractive index over the same interval – Source: Kissan Mistry 

[https://iopscience.iop.org/article/10.1088/2632-959X/ab976c] 
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6.3.2 Feed-Forward Artificial Neural Network 

We noticed a consistent relationship between the shape of the reflectance spectrum and the 

thickness, measured post-deposition using AFM, as shown in Figure 6.3a. It is this relationship 

that inspired us to incorporate ML methods. Visible patterns in data are a good sign that there is 

a mathematical relation underlying it – the relation that the optical model seeks to replicate. By 

allowing ML methods to find the initial thickness estimate, and combining it with the LM fitting 

algorithm, it was hypothesized that we could retain the accuracy of the improved grid search 

method but under nonlinear growth conditions. The first version of the ML model used a shallow 

neural network, with a single hidden layer between the inputs and outputs. This hidden layer can 

have any specified number of neurons inside it, its “width”, created using the Matlab tool nftool. 

Theoretically, an infinitely wide network can model any regression problem, but the 

computational cost increases massively the wider a network gets, which is why most research is 

done using “deeper” networks, with multiple hidden layers in series. The strength of the 

prediction provided by nftool is indicated by two statistical measures, the coefficient of 

determination ‘R2’, and the mean squared error (MSE). R2 measures how well explained the 

variance of the output is by the variance of the input in a linear regression model such as the one 

Figure 6.4: Nonlinearity after the nucleation phase still visible, even with the most advanced grid-

search algorithm we developed. 
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used here, and the best possible value of R2 is one. R2 is a good statistical measure because it is 

easily interpretable and can be compared easily between models. An R2 value of 0.75 means that 

75% of the variance of the output is explained by the model, and an R2 of 0.99 corresponds to 

99% explainable variance. MSE, which has an optimal value of zero, is found by calculating the 

error between the prediction provided by the neural network being trained, and its actual value 

from the training dataset, squaring it, and averaging this value for all outputs. It is not a measure 

of the variance of the input and output parameters, but instead the accuracy of the results as 

produced by a given model. The scale of the MSE will depend on the scale of the variable being 

measured, as it is based on the absolute difference between measured and predicted values of that 

variable. We trained the feed-forward ANN using three training algorithms, Levenberg-

Marquardt, Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG) 

backpropagation using networks of varying width – the results of which are summarized in 

TABLE IV. In this table, based on the high R2 values and testing MSE, we can see that many of 

the models overfit the data, memorizing the output rather than learning the relationship.   
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TABLE IV: COMPARISON OF THE PERFORMANCE OF FEED-FORWARD ANN'S OF VARYING WIDTH, TRAINED USING 

LEVENBERG-MARQUARDT, BAYESIAN REGULARIZATION, AND SCALED CONJUGATE GRADIENT ALGORITHMS. 

W
id

th
 

Training 

Algorithm 

Training 

MSE (nm2) 

Training 

R2 

Validation 

MSE (nm2) 

Validation 

R2 

Testing 

MSE (nm2) 
Testing  R2 

5 

LM 
0.034 0.999 43.29 0.9951 32.15 0.9976 

BR 
0.000001 0.999   27.13 0.994 

SCG 
35.77 0.9969 48.44 0.9953 64.60 0.9921 

10 

LM 
0.397 0.99 35 0.99 31 0.99 

BR 
2.649 0.9998   11.57 0.9989 

SCG 
4.428 0.9996 12.97 0.9987 24.69 0.9977 

15 

LM 
0.059 0.999 32.8 0.997 46.14 0.996 

BR 
0.0244 0.999   0.9479 0.999 

SCG 
23.25 0.998 48.52 0.995 37.26 0.997 

20 

LM 
6x10-27 1 37 0.9957 23 0.9984 

BR 
1 0.999   12 0.998 

SCG 
18 0.999 95 0.983 156 0.985 

25 

LM 
9x10-27 0.999 65 0.995 41 0.995 

BR 
1.3 0.999   6.9 0.998 

SCG 
160 0.985 247 0.981 279 0.976 

50 

LM 
32 0.997 182 0.992 267 0.9708 

BR 
0.00002 0.999   6 0.999 

SCG 
294 0.974 498 0.956 367 0.976 
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Levenberg-Marquardt is a common optimization technique, and is faster than the other two, 

however, it is comparatively inefficient and takes a lot of processing power. Bayesian 

Regularization starts with an LM process, but then also seeks to minimize the errors and weights 

within the system. This means that models trained using this algorithm tend to generalize well, 

and are less prone to overfitting on small or noisy datasets. Scaled Conjugate Gradient is good 

for larger problems, as gradients are a more memory-efficient calculation than solving the 

Jacobian matrices required for the prior two methods. From all this, we expected BR to perform 

the best, as our dataset was both small and noisy. Comparing the MSE and R2 values for all three 

algorithms trained across varied widths, we saw that the 15-neuron-wide network outperformed 

all the others when trained with BR. The algorithms that overfit on the training data are obvious 

from this as well; this can be seen wherever the validation and testing MSE are significantly 

higher than the training value, although R2 remains fairly close to one for all trained models. For 

instance, if we look at the 20-neuron-wide network trained using the Levenberg-Marquardt 

algorithm, we can see that the training MSE is an incredibly low 6x10-27 nm2, nearly thirty orders 

of magnitude lower than the testing MSE of 23 nm2. We also see how the width of the network 

can have an adverse effect on the accuracy, as the MSE for both LM and SCG-trained models 

balloons when the network is more than 20 neurons wide. This is partially due to the nature of 

Figure 6.5:Example of fitted film thickness deposited at 150⁰C using first generation ANN, with significantly smoother 

fitted thickness values above 60 nm compared to the model with no ML-assisted fitting 
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our dataset, as these algorithms are suboptimal for small and noisy sets of data. As can be seen in 

Figure 6.5, the first-generation ANN was not significantly better than the grid search algorithm, 

in large part because it relied on thickness data supplied by that algorithm – garbage in, garbage 

out. Notably this iteration of the search algorithm did not show zero film growth in the 

nucleation phase, instead showing wildly oscillating thickness data. This shows that it “knows” 

that the thickness is nonzero, but because it was not supplied with good training data in this 

region it was unable to provide a reasonable estimate either. There is promise in this method, but 

it is currently unconstrained, similar to the first-generation grid search. 

As shown in Figure 6.6 the first-generation ANN performed worse than the grid-search 

algorithm at high thicknesses too. The initial training dataset did not include films of greater than 

150nm thickness, and so the ANN was incapable of extrapolating beyond this value. NN models 

aren’t good at extrapolation in general, it is an inherent part of how they operate – data must be 

selected to encompass the full range of values for the target variable. Since we already have good 

results from the grid-search algorithm outside the nucleation phase, we decided to limit the next 

version of the ANN to measuring films from 0-50nm before switching to the grid-search method, 
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Figure 6.6: Plot of film thickness deposited at 150⁰C vs oscillation number, comparing ML-assisted 

fitting and basic grid-search methods at high oscillations – image courtesy of Kissan Mistry 
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eliminating the future problem of needing larger and larger datasets to encompass even thicker 

films. Grid-search as an algorithm is not bound by thickness, so its upper limit is bound only by 

our database of ZnO films, not by its own method of operation. We still bind the domain in 

which the grid-search operates in order to speed up the calculation, as per Section 6.3.1, but there 

are further improvements we can make to the structure of the ML model itself. 

6.3.3  Gaussian Process Regression 

As discussed in Section 5.2.1, Gaussian Process Regression (GPR) is designed to work with 

noise that varies with respect to the independent variable, predicting a centreline based on the 

training data and assuming that any predictions which result in an outlier are less likely than 

those falling close to said line . This is a probabilistic binding of the predictions, but is not a hard 

limit, so it can find a trend that isn’t visible from the raw data, and makes this kind of algorithm 

better suited for working within the limits of our dataset. Figure 6.7a is an example of how a 

GPR algorithm is capable of finding a relationship underlying noisy data, and Figure 6.7b shows 

the training histogram for the algorithm presented herein.  
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Figure 6.7: a) Actual (blue) vs predicted (yellow) values for reflectance data during training of the v2 GPR model, noise 

reduction at low thicknesses is visible. b) Training histogram for the v2 GPR model, iteration with lowest observed MSE 

indicated in yellow 

The testing MSE for the GPR model was 3.397 nm2, as can be seen on the training histogram in 

Figure 6.7b. This is the iteration of the algorithm that had the best performance measured by 

MSE, although subsequent iterations had similar values. An MSE of 3.97 nm2 is higher than the 

MSE of the v1 model, which seems worse. However, Figure 6.7a shows us what is really 

happening; because the GPR model explicitly searches for a smooth line that explains any noise, 

it was able to better approximate the real thickness values at the expense of having higher error 

between the measured and predicted variable. The reason the MSE was so low for the v1 ANN 

was that it learned to replicate the noise present in the grid-search-provided data, and therefore it 

also provided unreliable thickness measurements. This is a disadvantage of algorithms that are 

designed to approach data with no presuppositions about it – those suppositions may be an 

integral part of understanding the reality behind the data. Once the thickness reached a certain 

value, because the training data was more consistently accurate, the GPR model successfully 

converged to the results of the grid search algorithm. Since the data at this point was not noisy, 

there was no advantage to using the GPR algorithm, and as discussed earlier, the grid search 
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algorithm doesn’t need to extrapolate when used to estimate the thickness of thicker films. 

Therefore, as the estimates from the GPR and grid search algorithms were shown to reliably be 

equivalent after 50nm, this was the thickness selected as the transition point between the two 

search methods. While the GPR algorithm was still trained using the data from the grid-search 

algorithm, it is biased towards creating a smooth line with no “jumps”, and tries to find the most 

likely smooth line based on what data it does have, the end result of which can be seen in Figure 

6.8. In this example for a ZnO film deposited at 150℃, we can see that the initial spikes are 

gone, replaced with a smooth curve where growth rate steadily increases to the steady-state. In 

addition, instead of a nonlinearity as we leave the nucleation region, we now have a smooth 

curve showing growth starting at about 5 oscillations, and it continues to grow at around 

1nm/oscillation as predicted, and there is a smooth transition at 50nm when switching from GPR 

back to grid-search. This result manages to capture the full growth mechanism of the film, by 

combining the two algorithms into one structure. Since grid-search methods search the whole 

data-space, they take a few seconds to find the best result, especially when not bound effectively. 

However, the GPR model was able to provide a reasonable thickness estimate in less time than it 

Figure 6.8: Fitted Thickness of ZnO film deposited at 150⁰C vs Oscillation Number using the second-generation GPR algorithm. 
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takes for the reflectance spectrometer to take another measurement, on the order of a couple of 

milliseconds. 

6.3.4 Automatic Feedback for AP-SALD System 

By using GPR and GS algorithms in tandem, not only are our thickness estimates 

substantially more accurate, but it means that the film can be analysed in real-time. Conventional 

ALD processes can take several minutes to complete a deposition cycle, leaving plenty of time 

for a measurement to be taken. On the other hand, AP-SALD/CVD takes a couple seconds or 

less to complete each deposition cycle – necessitating this focus on measurement speed. Figure 

6.9 shows how we were able to see the instantaneous response of an AP-CVD deposition 

performed at 150⁰C to changing proportions of diethylzinc delivered to the reactor, something 

that could not be done if each measurement took longer than a single oscillation of the stage. In 

addition, because of this better fitting we can directly observe the nucleation period, deposit very 

Figure 6.9: Changes in ZnO growth rate due to increased DEZ-laden nitrogen flow ratio through the bubbler, ratio of 

DEZ:Carrier indicated for each section – image courtesy of Kissan Mistry 
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thin films with nanoscale control (including nanolaminate structures), and very importantly, 

implement growth rate control and feedback mechanisms.  

Because we now have accurate measurements of the film thickness through all stages of 

the deposition, it became feasible to implement a control system for the AP-SALD using this 

tool. We implemented a PI controller that would measure the thickness of the film at intervals of 

5 oscillations, giving the growth rate time to adjust to alterations to the control variable. Since 

altering the temperature would alter the properties of the film itself, in potentially undesirable 

ways, we selected the flow rate through the DEZ bubbler to be the control variable. This works 

in the AP-CVD regime, but under ALD conditions the maximum growth rate is limited by the 

rate at which each layer is saturated. It is possible to lower the growth rate of an AP-SALD film 

by depositing less than a full layer each oscillation, but there is no advantage in doing so. We 

also know that once the growth rate has reached its new equilibrium, there are no processes that 

could cause a sudden change in the rate. Viewing the growth rate as the target variable and 

precursor bubbler flow rate as the control variable (CV(t)), it was possible to develop a control 

algorithm using only proportional and integral (PI) control, given by the formula; 

𝐶𝑉(𝑡) =  𝐾𝑃𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0

 

In this case Kp and Ki are the proportional and integral gains, respectively, e is the error of the 

target variable at either time t, or at a point in the integration 𝜏, between 0 and the current time t. 

The proportional control is the simplest part, but also provides the bulk of the adjustments to the 

control variable. Proportional control functions by simply taking the difference between the 

actual and desired values of the target variable, and multiplying that by some value (Kp) to get 

the amount by which the control variable (CV) should be changed. If Kp is too low, the error is 

(21) 
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corrected too slowly, and if it is too high then the target variable will oscillate around the setpoint 

as the error value changes sign. Proportional control is also susceptible to what is called steady-

state error, because eventually the error gets so small that the constant gain is not large enough to 

elicit a change in CV, while still being non-zero. This error can be very small, but since we desire 

growth rate control in part to attain precise thickness control under varied deposition conditions, 

it can add up over time, and this time-based accumulation of error is why we needed to add the 

integral control part of the algorithm. For this part of the algorithm, the gain Ki tends to be much 

smaller than Kp, as the error term is the cumulative error from the beginning of the deposition 

until the current time. That means that the longer the deposition, and the bigger the effect of the 

steady-state error, the bigger the integral term gets in response. Over time this will correct the 

steady-state error, and bring the growth rate to the target value, but because Ki is so small its 

effects are only noticeable over longer time-scales than those on which the proportional control 

operates. The values of Kp and Ki were tuned using the Ziegler–Nichols method, a mathematical 

technique where we set Ki to zero, and increased Kp until the output (measured thickness) began 

to oscillate. The value of Kp where this occurs is called the ultimate gain (Ku), and the period of 

oscillation is denoted Tu. By the Ziegler-Nichols method, we then set the proportional and 

integral gains to be Kp = 0.45 Ku and Ki = 0.54 Ku/Tu. Through this method, we could reliably 

reach the growth rate setpoint within 15-20 oscillations after it was set – even accounting for the 

natural growth rate lag mentioned at the beginning of this section as shown in Figure 6.10.  
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6.4 Conclusion 

In conclusion, my collaborators and I tested several algorithms to allow us to use in-situ 

reflectance to accurately measure the thickness of ZnO films in real-time. By combining the 

power of a GPR model with the speed of a grid-search algorithm, and the accuracy LM fit we 

were able to reliably find the thickness of the film at all stages of the deposition. These 

measurements were fast enough that the deposition was not disturbed, and accurate enough that 

we were able to implement a PI controller which allowed us to much more precisely control the 

thickness of our films than was previously possible.   

Figure 6.10: Response time of a ZnO film deposition at 150⁰C controlled by our in-situ PI algorithm 
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7 ML-Empowered Ellipsometry 

7.1 Introduction 

In contrast to the reflectance spectroscopy system presented in Chapter 6, the 

spectroscopic ellipsometry measurements herein were performed ex-situ. The FS-1 Ellipsometer 

acquired by the lab has the capability to measure and analyze across multiple sites on the film, a 

process that would take too long if performed in-situ. The onboard software also contains more 

advanced optical models, allowing us to extract a greater range of material properties, about a 

wider variety of films.  

One of the primary advantages of our lab’s AP-SALD system is its ability to deposit 

films with an astounding array of compositions. Multiple metallic precursors can be introduced 

to the reactor in varying proportions, allowing us to produce films that are just lightly doped, to 

degeneratively doped, all the way through multi-oxide films. However, the greater the 

complexity of the film itself, the more difficult it is to fit to an optical model through trial and 

error, as the number of parameters needed is increased and their ranges are less likely to be 

reported in literature.  

Machine learning techniques have been applied to the problem of fitting optical models 

for ellipsometry data, however the main focus seems to be on simply determining the thickness 

[124], [203], [204] or refractive index [127] directly, bypassing the optical model. This is an 

excellent approach for industrial applications, where you know that the films are being produced 

with consistent properties, but it is only from the optical models that we could determine what 

those properties are if they are unknown. Because AP-SALD systems like ours have been used to 

deposit insulating [35], [205], semiconducting [31], [36], [206]–[208], and even metallic films 
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like the copper presented in Chapter 3, we must use an optical model to ensure that our films are 

being measured accurately. Various kinds of ML algorithms have been employed to attempt to 

solve the problem of fitting ellipsometry data to various thin films, and a common approach is to 

use classification algorithms like K-nearest-neighbours, logistic regression, and support vector 

machines [124], [204]. Classification algorithms are robust against over-fitting, as the final 

output is placed into one of a specified number of “classes”, based on a probability value 

determined by the algorithm. However, this means that there will always be some degree of 

uncertainty in the predictions, as this method relies on constraining continuous variables into a 

discrete space. Deep neural network architectures have also been used to solve this problem 

without artificially discretizing the final answer [127], [203], but in order to obtain the necessary 

training data the researchers had to use simulated data. Since the intent of this study is to 

determine the relation between the AP-SALD process parameters and the composition and 

properties of our films, there is not yet sufficient understanding of the processes involved to 

create a suitable simulated dataset.  

So far, the intended application of ML techniques to spectroscopic ellipsometry 

measurements has been fairly limited, and so it was appropriate to use the methods previously 

outlined. However, we wish to use ML to enhance our materials-discovery pipeline, and so we 

need a method that is both broadly applicable and designed to retain the expert in the loop, so 

confidence in its output may be maintained. The single longest stage when fitting a complex 

optical model by hand is finding initial conditions that are close enough to the film’s actual 

properties that a conventional fitting algorithm can find the optimal values, and so we intend to 

automate this first step – accelerating materials discovery and retaining the confidence of applied 

expert knowledge.  
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The first stage of this project was to collect enough measurements of real films to begin 

training an ML model, and to that end metal-oxide films containing varying concentrations of 

aluminium, copper, zinc, nitrogen, and oxygen were deposited using our AP-SALD system onto 

7x7cm borosilicate glass slides. Temperatures, flow rates, and the number of oscillations were all 

varied, and we leveraged our labs capacity to create thickness gradients [35] to maximize the 

information contained within each film – seeing how optical properties vary with thickness when 

composition is held constant with only a single deposition. Because the data was so varied, it was 

necessary to leverage transfer learning techniques to make sure that all input data was as accurate 

as possible. As previously mentioned, it is hard to fit a multicomponent film like nitrogen and 

copper-doped zinc oxide, but if we know the properties of a comparable ZnO film we can 

leverage that knowledge to obtain initial estimates for the film’s properties. Different ML models 

are evaluated and a GPR model is found to work best. By combining a GPR ML model with a 

Tauc-Lorentz oscillator optical model we were able to get a baseline ML model, to which we 

iteratively added other optical models (Drude, Multi-Oscillator) until the full dataset could be 

analyzed.  

Using the developed GPR model, we were able to predict the optical model parameters of 

a film based on its AP-SALD deposition parameters and raw ellipsometry data. The predicted 

optical model parameters were then used as initial guesses to accurately fit the ellipsometry data 

to the optical model using the ellipsometer’s onboard software. This approach resulted in a 

43.25% reduction in the average final fit difference compared to manual fitting and the 

processing time for samples of unknown composition was also significantly shortened, from 

hours to only minutes. The system was built with expansion in mind, and so by applying the 
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same transfer learning techniques already applied the model can be expanded to include 

materials not yet made in our lab. 

7.2 Experimental Methods and Materials  

7.2.1 AP-SALD Depositions 

Using our AP-SALD/CVD system we deposited films of varying thickness and composition, 

by altering the ratio of precursors, deposition temperature, and number of oscillations. Where the 

general mechanics of AP-SALD/CVD depositions are covered extensively in Chapter 2, we 

made specific decisions as to the range of the deposition parameters. We deposited films at 

temperatures ranging from 50-250⁰C, using flow rates of between 0-50 SCCM for diethylzinc 

and trimethylaluminium, 0-200 SCCM for water and ammonium, and 450 SCCM for 

Cupraselect™. The spacing between the reactor and the substrate was constrained to between 

0.04mm and 0.15mm, with a difference of between 0-0.1mm between the two sides. As has been 

previously mentioned, one of the critical advantages of our AP-SALD system is our ability to 

seamlessly switch between ALD and CVD deposition modes by altering how much the precursor 

compounds are allowed to mix before adsorbing to the substrate. Figure 7.1a and b illustrate the 

difference between these two modes, with uniform AP-SALD films having lower growth rates 

due to the decreased contact between precursors; any additional precursor delivered to the 

substrate after a fully adsorbed layer is formed is wasted in AP-SALD mode. As the precursors 

are allowed to mix before adsorption in AP-CVD mode, the growth rate of the film is much more 

sensitive to the concentration and flow rate of each precursor. Because of this dependency on 

flow rate, we can deliberately alter the growth rate along the width of the substrate by altering 

how much the precursors mix at each point. This can be accomplished through the use of a 

specially designed reactor, or by simply tilting the reactor head as shown in Figure 7.1c, the 
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method we chose here. Uniform films can be produced using AP-CVD mode as well, but AP-

SALD can only produce uniform films, and so the reactor is kept parallel to the substrate as 

shown in Figure 7.1d and f.  

7.2.2 Sample Preparation 

Because thickness has a very large effect on how a film responds to light when compared to 

other optical model parameters for films of similar composition, it is very worthwhile to make 

sure that the data for this variable is as comprehensive as possible. These gradient depositions 

allow us to create films with the same or similar properties across their width, while varying the 

thickness by over 100nm, with only a single deposition. To encompass all of this variability, 

each borosilicate glass slide was cut into 1x1cm squares, and each square was then measured in 

25 locations by the ellipsometer as shown in Figure 7.1g. By taking so many measurements from 

each sample, we were able to leverage a feature of our FS-1 ellipsometer whereby a model is fit 

over all the points measured on a single sample. In this manner we can hold the value of some 

optical model parameters constant between measurements, while allowing others to vary. While 

this would theoretically decrease how well each individual point is fit if the optical properties of 

the film vary wildly, this technique can be very useful for finding accurate values of parameters 

that are harder to fit well. For example, the plasma frequency of degenerate AZO films tends to 

shoot to zero or infinity if measured over a single point, but can be more reliably found if 

analysed over multiple error surfaces. A film which has been fit using this multi-sampling 

method can be further refined measurement-by-measurement if that is necessary to improve the 

fitting, while retaining the values of those parameters that needed to be found using multiple 

measurements.  
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Figure 7.1: Schematic of how samples are prepared for inclusion within the training dataset. a) AP-CVD-mode deposition, with 

limited mixing occurring below the reactor head. b) A similar deposition occurring in AP-SALD-mode, where each precursor 

adsorbs fully before reacting with the next. c) How we can leverage the precursor mixing of an AP-CVD deposition to produce 

gradient films, where differing mixing rates lead to differing deposition rates along the width of the substrate. d) AP-SALD 

cannot produce gradient films, as the rate of reaction is limited by the complete adsorption of precursor onto the substrate. e) 

and f) AP-CVD gradient and AP-SALD uniform film produced at the same temperature of 200℃ using 250 oscillations. g) 

Schematic of how each film sample is broken down and measured to provide hundreds of measurements per film. 
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7.2.3 Data Preparation 

At each of these 25 points, the FS-1 provides a total of twelve ellipsometric parameters 

measured over six wavelengths, Ψ1-6 and Δ1-6 as described in Section 5.1.2. Before any ML 

models could be trained, it was necessary to manually fit 3000 such measurements using the 

onboard program, to provide the initial training data. We started with zinc or aluminium mono-

oxide films, as well as lightly-doped AZO films, as we have the greatest experience with fitting 

models for such samples given that they only require a Tauc-Lorentz oscillator to be accurately 

modelled. Any unused parameters were assumed to be zero in this initial training set, as adding 

unnecessary parameters can decrease fitting accuracy while increasing fitting complexity. When 

it was time to train an ML model, the raw ellipsometry data was combined with a vector 

containing the number of oscillations over which the film was deposited (N), the deposition 

temperature (T), and a set of binary values indicating which precursors were used to create the 

film (P1-4). The selection of these additional parameters will be discussed shortly, but they each 

encode important information about the film being measured. Figure 7.2 shows how we combine 

these two sets of data into an input vector, which is then passed to our ML model, which gives an 

output consisting of the various parameters of the multi-oscillator model.  
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Figure 7.2: ML model workflow, showing how the output of the model is iteratively improved using the ellipsometers inbuilt LM 

fitting before it's used to train the next iteration. 

In Figure 7.2, the various components of the multi-oscillator model have been differentiated by 

colour. In black are the universal parameters, which can be used in any model; thickness, 

roughness, and % grade. The first two are self-explanatory, but % grade is a mathematical 

abstraction that is very useful for AP-SALD/CVD films and will be explained in detail later. In 

green are shown the parameters of the Tauc-Lorentz model, which has already been discussed in 

Section 5.1.3, but in brief is a common optical model for semiconductors providing important 

information such as the material’s band gap. In red are the two additional parameters needed to 

complete the Drude component of the multi-oscillator model, plasma frequency (wp) and 

damping (G). These parameters are used to represent the behaviour of free electrons in metals 

and degenerate semiconductors, those which have been so highly doped that they exhibit metallic 

properties. Lastly, in grey, are the parameters for a Lorentz oscillator. Unused in this experiment, 

it is useful for materials which exhibit a second notable interband transmission peak greater than 

the band gap. So far this has not been shown to be necessary to accurately model any films we 

have produced, but it may be necessary for future materials added to our library.  

  



- 119 - 

 

7.2.4 Machine Learning Methods 

In total, 13,326 ellipsometry measurements were taken to form the database that we used 

to develop our ML model, a figure not evenly divisible by 25 due to difficulty physically 

breaking the films into perfectly square pieces. Of this total, 3000 were fit manually and from 

these 3000 measurements, 1000 were selected to compare various ML models, and another 1000 

measurements were selected to determine what additional data from the AP-SALD would 

improve the models’ performance (these sets of 1000 were allowed to overlap). This distribution 

of initial training samples is shown in the upper portion of Figure 7.3. First, we compared the 

RMSE and R2 values of four different ML models trained using thirty cycles of Bayesian  

Figure 7.3: Division of the total measurements taken for this work, the bulk were reserved for validation and testing, but the 

differences between various iterations of the model are shown. 
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hyperparameter optimization; linear regression, random forest, artificial neural network, and 

gaussian process regression. The first three model types have been used by prior researchers to 

solve similar problems in ellipsometry, and based on prior experience we know that GPR can 

perform very well in these tasks. Comparing the various models in this initial stage will help us 

determine if we are moving forward with the best technique for solving our problem, and 

training is comparatively fast because the dataset is small. In addition, because the dataset is 

small, models that are prone to overfitting will do so, and the models which are better at 

predicting the underlying relationships instead will be more apparent. After we found the model 

that best represented the data, we explored whether the AP-SCVD input data we were adding to 

the raw ellipsometry inputs was affecting the accuracy in any meaningful way. Using the model 

selected in part 1, we trained a version of it with and without all the additional input data (N, T, 

P1-4). Minimizing the number of inputs broadens the applicability of the model outside our lab – 

the relationship between say, temperature and roughness may be unique to our system, but each 

additional piece of data carries a lot of additional information about the film. However, the actual 

effect of each of these data on the accuracy of the final model needs to be determined.  Once we 

understood which model worked best, and that our inputs were optimal, we proceeded to train an 

initial version of the ML model using all 3000 measurements. This version used the raw 

ellipsometry data, deposition temperature, number of oscillations, and composition as inputs. 

After training it using five-fold cross validation and stochastic gradient descent we were able to 

get a model that would provide us with the Tauc-Lorentz model parameters, thickness, and 

roughness of the film.  

As discussed in Section 5.2, transfer learning lets you expand upon an existing model by 

training it on new data, using the existing weights and biases within the network as an initial 
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guess. This works best the more closely related the two sets of training data are, and ours are 

very closely related because the films all have certain elements in common. There is always 

going to be a high correlation between the number of oscillations and thickness, no matter how 

else the film changes, for example. Each iteration was trained using data from the previous 

versions, as well as 1000 new samples that highlight the new properties we are looking to 

predict. We chose to expand the model in the order that we did, to leverage our experience with 

fitting ZnO and alumina films using the Tauc-Lorentz model. Because we are using transfer 

learning to iteratively expand the model’s capabilities, we need to make as sure as possible that 

the ML model is being trained on accurate data. Because we know the ranges of all the Tauc-

Lorentz parameters that we expect to see in these films, we can confirm that the model is 

working as intended. We then expanded the model to include the % Grade (Iteration 1 in Fig 

Figure 7.3), as we knew that this was a parameter that would be present in all our films by the 

nature of AP-SALD, and it has a large impact on the fit difference. After that we expanded the 

model outputs to give us the Drude parameters, plasma frequency and damping (Iteration 2 in 

Figure 7.3), by training the model on degenerate semiconductors and Cu-doped ZnO. The 

composition of these films is very similar to those of the prior iterations, but their properties are 

such that they do have free electrons. Lastly, as we had introduced films with some copper 

content in the prior iteration, we expanded the model inputs to include films that were primarily 

or entirely copper-based (Iteration 3 in Figure 7.3). These films have a much stronger 

dependence on the Drude parameters than the Tauc-Lorentz, unlike the other films. To ensure 

that the full range of copper compositions was represented in the data we deposited pure Cu 

films of known thickness in a thermal evaporator, then measured them using the ellipsometer. 

We then oxidized them and repeated the process several times, allowing us to fit an optical 
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model and focus only on the unknown parameters, such as the plasma frequency and the band 

gap of the oxides. Some copper oxide films were deposited using the AP-SALD and included in 

this training set, and we used our experience fitting the evaporated copper to ensure model 

validity. For both manual fitting and when verifying the ML model, it is necessary to make sure 

that the parameters are within reasonable bounds, as confirmed in the literature and presented in 

TABLE V and TABLE VI.  

TABLE V: BAND GAP AND INTERBAND TRANSMISSION VALUES FOR MATERIALS USED IN THIS STUDY 

Material Eg (eV) 

ZnO 3.18-3.29 

 3.13  

3.27 

3.37 

3.3 

3.31-3.35 

[209] 

[210] 

[21] 

[17], [211] 

[212] 

[213] 

4.105 

3.4 

3.15 

3.28 

3.51 

3.35-3.39 

[50] 

[214] 

[215] 

[216] 

[217] 

[218] 

Al2O3 5.5 

7.3 

3.88 

[219] 

[220] 

[221] 

6.5-7 

4.3 

4.64-6.24 

[222] 

[223] 

[224] 

AZO 3.4 

3.65-3.76 

3.08-3.325 

2.5 

3.25-3.29 

[52] 

[225] 

[209] 

[226] 

[227] 

3.06-3.12 

3.3-3.48 

3.62-3.69 

3.87 

[215] 

[216] 

[228] 

[217] 

Cu 2.6, 3.9, 5.2 [229]   

CuO 1.986-2.355 

1.2-3.85 

[230]  

[231] 

1.2-2.7 

2.03-2.8 

[232] 

[233] 

Cu2O 1.92-2.02 

2.1 

2.58 

2.0 

[234] 

[235] 

[236] 

[52], [232] 

2.7-3.02 

1.93-2.48 

1.2-4.9 

[233] 

[237] 

[238] 

Cu:ZnO 3.444-3.954 

2.64-3.76 

[50] 

[209] 

1.5-2.5 [239] 
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As can be seen, the same material can have very different properties depending on morphology, 

stoichiometric ratio, and deposition technique. Alumina, for example, has reported band gap 

values ranging from 3.88-7.3 eV which is because defects in the material can provide energy 

levels within the band gap of the bulk, allowing electrons to move to the conduction band. All of 

the films in TABLE V and TABLE VI were produced using thin-film deposition methods, but 

there is not enough data on films produced using AP-SALD/CVD to rely on that alone. Different 

deposition techniques are susceptible to different kinds of defects, as we saw in Chapter 0 when 

the atmospheric nature of our AP-SALD/CVD induced a greater than expected number of 

oxygen interstitials in the crystal lattice of the ZnO. Understanding the intricacies of how these 

material properties are found, and what can affect them, is a large part of why retaining an expert 

in the loop is so critical for this application.  

TABLE VI: DRUDE PARAMETERS, PLASMA FREQUENCY AND DAMPING FOR ALL RELEVANT MATERIALS 

Material AZO Cu ZnO CuO 

Wp (eV) 0.6529-0.6563 

0.892 

1.7473 

0.9537 

0.35-0.7 

1.28-1.7 

7.61-9.59 

[225] 

[240] 

[241] 

[226] 

[40] 

[242] 

[228] 

7.98-9.30 

7.39 

8.76 

[243] 

[244] 

[245] 

 

0.0728-0.3658 [246] 4-5 [247] 

G (eV) 0.04486-0.064 

0.01-0.33 

0.096-0.28 

[241] 

[40] 

[242] 

0.0092-0.126 

0.00446 

0.0477 

[243] 

[244] 

[245] 

N/A 0.01-0.5 [247] 
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The ML model is blind to what an acceptable band gap for ZnO is, and some films that we 

analysed have much higher or lower band gaps. If the ML model provides an estimate of the 

band gap of ZnO that is far outside the bounds presented in TABLE V, then I know that the 

result is an error that will have to corrected during the manual refinement phase. If this happens, 

we pin the value of the erroneous parameter to something that is reasonable based on our 

knowledge of our films, say 3.3 eV for the band gap of ZnO. Then we fit all of the other model 

parameters without allowing the pinned value to change, iterating through them all until the fit 

difference is reasonable and the other parameters are also within a reasonable range. We fit the 

erroneous value after all the other parameters because the error surface of the Levenberg-

Marquardt algorithm changes as all the parameters change. We assume that the pinned value is 

close to the error minimum of this surface, but not at the minimum itself and so allowing the 

other parameters to adjust first means that the Levenberg-Marquardt algorithm is more likely to 

find the actual minimum.  

7.3 Results and Discussion 

As previously mentioned, the first stage of developing the best possible ML model for our 

application was testing various kinds of ML models, and comparing their performance. Of the 

four models we compared, three had been used by prior researchers to solve similar problems in 

ellipsometry measurements, although none had tried to create a system that produced all the 

parameters of an optical model. The last was a GPR method, with which we have experience 

working, and seems well-suited to this kind of problem. After all, the optical model that we are 

fitting is a smooth mathematical equation describing the behaviour of the material, based on its 

optical properties, and all our data falls close to the true value of the equation because it is 

constrained by the acceptable fit difference. As part of the hyperparameter optimization process, 
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Matlab would automatically test the performance of four different GPR kernels in order to find 

the covariance matrix; rational quadratic, squared exponential, Mattern 5/2, and Exponential. 

TABLE VII summarizes the results of this stage of the experiment, and it can be seen that overall 

the GPR model performed the best with the exception of the % grade parameter. It was at this 

point that the decision was made to include % grade in a future iteration of the ML model, 

because much as with the reflectance data in Chapter 6, the better-performing ANN was likely 

learning the noise present in the original data. Here the noise came from the fact that % grade 

was not needed to get an acceptable fit for many of the films in this initial data-set, and 

attempting to add it unnecessarily would increase the complexity of the fitting and add potential 

errors. Leaving it out of those measurements where it was unnecessary was the best decision for 

preserving the integrity of our dataset.  

TABLE VII: R2 AND RMSE VALUES OF FOUR ML MODELS COMPARED, BEST RESULTS HIGHLIGHTED IN BOLD 

 

 

Linear 
Regression 

Random Forest Artificial Neural 
Network 

Gaussian 
Process 

Regression 
R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

% Grade 0.50 5.9636 0.54 5.739 0.94 2.087 0.85 3.257 
Roughness (nm) 0.93 2.617 0.87 3.709 0.94 2.613 0.97 1.731 
Thickness (nm) 0.97 25.129 0.96 26.35 0.98 19.19 0.98 18.51 
Einf (eV) 0.11 1.077 0.59 0.734 0.76 0.565 0.81 0.498 
A 0.60 40.99 0.79 26.67 0.86 23.94 0.90 20.52 
E0 (eV) 0.60 1.731 0.62 1.675 0.85 1.067 0.85 1.038 
C 0.85 2.313 0.82 2.545 0.82 2.551 0.93 1.601 
Eg (eV) 0.88 0.1597 0.93 0.1194 0.96 0.089 0.97 0.077 

Linear regression performed worst across the board, which makes a lot of sense in this case. 

While we have a regression problem, none of the output variables are linear with respect to the 

inputs, with the exception of thickness being linearly dependent upon the number of cycles. GPR 

makes statistical assumptions about the spread of the data points from some real value, and does 

not constrain the shape of the relationship. The ANN was also performing linear regression, but 
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because there are multiple layers of linear regression the individual linear functions were able to 

sum to a nonlinear relation, resulting in improved performance.  

At this juncture, it should be explained what exactly % grade is, and why it matters to our 

films. It is a mathematical representation of how the optical properties of a film can change 

between the surface and the bulk, and AP-SALD films are expected to have this sort of graded 

profile for a couple of reasons, illustrated in Figure 7.4. Firstly, incompletely reacted precursor 

ligands at the surface; these would normally desorb during later deposition cycles, but this can 

leave some at the surface after a deposition is complete. There are also usually unreacted 

hydroxyl groups at the film surface, producing a thin reactive layer. Secondly, AP-SALD/CVD 

depositions require elevated temperatures in atmosphere, representing a chance for oxygen 

interstitials and vacancies to form and migrate. As the initial layers are annealed for longer and 

sealed from the atmosphere by subsequent layers, these processes have more time in which to 

occur. This effect is expected to be more prominent in thicker films. 

Figure 7.4: Illustration of the common causes of graded optical properties in AP-SALD films. 

This is a large part of what makes AP-SALD films unique, but also uniquely challenging to fit 

with conventional methods. In particular, any copper-containing film will have a graded optical 

profile, as the surface oxidizes very quickly, but all our films are annealed in oxygen as an 

inherent part of the deposition process. This parameter also must be fit last, as it can have a very 
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large effect on a film’s fit difference and if you find the % grade first you can create an artificial 

error minimum, and not represent the true properties of the film.  

Now that we showed that our initial assumptions about the suitability of the GPR method to 

solving our problem were valid, it was time to determine if the data we collected from the 

deposition process itself was improving the model or making it needlessly more complex. We 

trained a GPR model five times and averaged the validation RMSE of each trial in an attempt to 

make sure the differences between the values were not a result of a single poorly initialized 

training session. We did this first using only the raw ellipsometry data, then iteratively added 

deposition parameters to the training. TABLE VIII compares these average RMSE values over 

three of the most important model parameters, thickness, roughness, and band gap – as these not 

only have a large effect on the model performance but are also properties we are actively 

interested in determining. We already knew that, of the known deposition parameters, 

composition, number of cycles, and deposition temperature have the greatest effect on the 

material properties of the film. For example, we expect that a film which has been deposited for 

1000 cycles will be significantly thicker than one deposited for only 500, but that the degree of 

this difference will also depend on the temperature and material being deposited. We do not need 

to know the relative strength of these interactions, only whether or not the model has been 

improved by their inclusion.  
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TABLE VIII: RMSE COMPARISON OF GPR MODELS PRODUCED WITH COMBINATIONS OF DATA ABOUT THE 

DEPOSITION PROCESS, BEST RESULTS SHOWN IN BOLD. 

 

We can see from this table that, for example, adding the number of cycles alone improved 

the RMSE of the thickness and adding the deposition temperature almost halved the RMSE of 

the predicted band gap. However, the version that included all three deposition parameters had a 

slight advantage over any other combination, which again makes sense given that all three have a 

significant effect on a film’s properties.  

  

Raw 
Only 

+ 
Composition 

+ 
Temperature 

+ 
Cycles 

+ 
Composition 

Cycles 

+ 
Composition 

Temperature 

+ 
Temperature 

Cycles 

All 

Roughness 
(nm)  3.325 3.227 3.033 3.139 3.159 3.080 3.166 2.147 

Thickness 
(nm) 15.58 14.70 14.24 14.01 13.92 14.04 14.03 13.83 

Bandgap (eV) 0.1130 0.1118 0.0693 0.0746 0.0684 0.0655 0.0645 0.0625 

0.0326 0.0287 0.0102 0.0106 0.0141
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Figure 7.5: Average fit difference of all films in each iteration 
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Now that we are confident the model has been initialized as well as possible, it was time to 

begin the process of iteratively expanding the capabilities of the model. Figure 7.5 below shows 

the average fit difference of each series of measurements after manual refinement, as the inbuilt 

ellipsometry software was not able to provide pre-refinement fit differences for comparison. The 

fit difference of the manual iteration and three transfer learning iterations is based on the training 

data for each, and the testing fit difference is based on a random selection of 1000 measurements 

that were not used to train any part of the model. We can see that the largest reduction in the fit 

difference comes with the addition of the % grade parameter, but as discussed previously this is 

expected as it is a component of all our films produced using the lab AP-SALD system. 

There is a slight rise upon introducing the Drude parameters, but the fit difference is still 

excellent for films of this thickness. It is most likely due to the fact that the Drude parameters 

had a strong tendency to either collapse to zero or explode to their set maximum value, making 

them slightly more difficult to fit. This most often occurs in the degeneratively-doped 

semiconductor films, so is likely due to the comparatively small number of free electrons 

compared to metallic films. The second, slightly larger rise for the testing dataset is just because 

Figure 7.6: Raw ellipsometry data and average fit difference of two films used in this study. On the left is a 50nm ZnO film 

produced under uniform ALD conditions, and on the right is a Cu:N:ZnO film produced under gradient CVD conditions with a 

thickness ranging from ~250-300nm. 
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none of the samples contained therein were used for training at all. It is still an excellent result, 

and the fact that the loss of accuracy is so low for such a comparatively small dataset shows how 

representative we were able to make the initial stages of the training data. Comparing the fit 

difference of the testing and manual sets, we can see that the average fit difference has been 

reduced to only 43.25% of the original value and that with a much broader range of film 

compositions compared to the manual data.  

In addition to improved accuracy, by using this algorithm, we were able to reduce the time 

to fit of a four-precursor film from over an hour of manual fitting, to less than ten minutes. This 

is because we are providing an initial guess to the ellipsometers Levenberg-Marquardt algorithm 

that is significantly closer to the actual values of the film, even if that film’s exact composition is 

unknown. We can also expand this model to new precursor compounds as needed, using the 

same transfer learning technique. Figure 7.6 shows an example of how fitting different samples 

can vary in complexity. Given that each sample needs to be fit iteratively, there is a significant 

difference in the length of time it takes to fit the film shown in the image on the left vs. the one 

on the right, and even so there can be a loss of accuracy when manually fitting a more complex 

or thicker sample. The image on the left is a ZnO film, approximately 50nm thick, produced 

under AP-SALD conditions. Accordingly, it is very uniform, and the variation between 

measurement points can be accounted for by altering a single variable – in this case thickness. 

All other model parameters could be held constant, and we obtained an excellent fit difference 

across all 25 points of 0.00344. The image on the right, on the other hand is the raw data from a 

Cu:N:ZnO film produced under gradient AP-CVD conditions. There is no consistent pattern 

visible in the raw ellipsometry data, and not only did each point need to be fit individually – all 

of the MO model parameters had to be allowed to vary. That represents 10 times the parameters 
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that needed to be fit, over 25 times the number of iterations. While the properties of each 

measurement could be used as a baseline estimate for fitting the next, this still relies on each 

fitted parameter being accurate across all 25 samples. Being able to reduce the number of 

iterations needed to get an accurate estimate of the parameter values through the use of ML 

represents a time saving of more than an hour of work.  

One of the most significant challenges facing the use of ML techniques is the so-called 

“Black Box” problem, where we cannot ascertain how a given model reaches the conclusions 

that it does. This has proven to be a problem in the past, especially when datasets used to train a 

model contain implicit biases not recognized by the programmers working on it even leading to 

the perpetuation of systemic issues such as sexism and racism [248]. Fortunately, our model is 

only working in materials science, and isn’t likely to cause harm to anyone but we still need to 

ensure that the results it has given are reflective of the reality of our films. As previously 

discussed, even after Levenberg-Marquardt refinement, it is possible to find an error minimum 

that is not reflective of the real properties of the film. To check the accuracy of our optical 

model, we used both atomic force microscopy and absorbance measurements to test the 

roughness and band gap of our materials respectively.  

Figure 7.7 shows three AFM images prepared using Gwyddion, all taken from the same film 

in different locations, the film was deposited at 175⁰C for 200 oscillations, with 23 SCCM DEZ, 

10 SCCM TMA, 45 SCCM H2O, and a total volumetric flow of 150 SCCM in each reactor 

Figure 7.7: AFM image procured from three different 10x10µm areas of an AZO film. a) Edge of the deposition area, b) 

centre of the deposition area, and c) outside the deposition area, where precursors flowed out from below the reactor. 
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channel. There are multiple measures for roughness, none of which are used directly by the 

ellipsometer which approximates roughness using the Bruggeman Effective Medium 

Approximation (EMA) as discussed in Section 5.1.3. The two relevant for this section are the 

root mean square (RMS) roughness, measured against the mean line of the surface, and average 

peak height (APH), which considers the average valley depth. The formula for the APH 

roughness is self-explanatory, but if we define (𝑙𝑟) as the measurement length and (𝑧(𝑥)) as the 

profile height function, the RMS roughness is given by: 

𝑅𝑅𝑀𝑆 = √
1

𝑙𝑟
∫ 𝑧(𝑥)2𝑑𝑥

𝑙𝑟

0

 

Figure 7.7a was taken from the very edge of the deposition area, where we expect roughness 

to be higher due to oxygen ingress at the sides of the reactor causing reactions above the surface 

of the film, which can be verified by the presence of a large powder inclusion in the lower-left. 

This sample had an average roughness of 14 nm according to the ellipsometer, and when 

analysed using the AFM and Gwyddion the RMS roughness was 14.6 nm. Figure 7.7b is a 

sample from the centre of the film, and had an EMA roughness of 6.8 nm, which correlated well 

with the RMS roughness of 6.9 nm determined by AFM, while having a similar thickness to the 

sample from Figure 7.7a. Figure 7.7c was taken from outside the main deposition area, and so 

the film is formed of distinct islands, with areas of bare glass visible as deep striations between, a 

feature that is not visible on uniform ALD or CVD films. This sample had an EMA roughness of 

24.7 nm, which was much higher than the AFM-measured RMS roughness of 8.1 nm, but aligns 

well with the average roughness peak height of 24.4 nm determined by AFM. This makes a lot of 

sense, because RMS roughness is calculated using the height deviations from the mean line, and 

areas with no film would by necessity bring the mean value down without representing much 

(22) 
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about the film, whereas the average peak height is measured compared to the valley depth – in 

this case the substrate. While it was infeasible to perform these measurements for all our 

samples, there was very good agreement between the EMA and measured roughness for all the 

samples we did measure.  

We are also interested in confirming the optical band gaps of our materials, as this is a 

parameter of great interest when designing new materials for specific applications. By using 

absorbance spectroscopy and the film thicknesses provided by the ellipsometer, we can produce 

a Tauc plot giving us the optical band gap as shown in Figure 7.8. For a random selection of 

twenty samples from all iterations, the band gaps provided by the ML-assisted ellipsometry 

model had very good agreement with the measured band gaps, with a testing RMSE of 0.108 eV. 

This difference can be partially explained by the fact that it was only possible to take one 

absorbance measurement per sample, and so we had to compute the Tauc plot using the average 

thickness from the ellipsometer model, and compare it to the average band gap from the 25 

ellipsometry measurements. The above examples are very good matches, selected from samples 

with comparatively uniform thicknesses. Alas due to that limit of the absorbance spectrometer, 

Figure 7.8: Tauc plots of three samples of varying composition and thickness, from left-to-right we have Cu2O, ZnO and AZO films with the band 

gap indicated in blue. 
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films that had a large variation in thickness did not produce an absorbance band gap as close to 

the ellipsometer-provided value. On the left, we see one of our copper oxide films which had a 

measured band gap of 2.07 eV, and after refinement the ellipsometry model predicted an average 

band gap of 2.07 eV. In the centre we have a simple ZnO film for which the measured band gap 

of 3.26 eV is again very similar to the result provided by the ellipsometer model, 3.30 eV. 

However, on the right we see an example of a potential multi-oxide film, produced using our 

alumina and zinc precursors. The measured band gap is 3.17 eV, consistent with AZO in the 

tables above but closer to the range of pure ZnO than Al2O3. After refinement, the ellipsometer 

provided a band gap of 3.82 eV, still consistent with AZO – but outside the bounds of ZnO’s 

commonly reported band gap values. These are both reasonable results for the bandgap of an 

AZO film of unknown composition, and there is no way to determine which is more accurate 

without further testing to determine the exact composition of the film, which would be 

prohibitively expensive to perform on such a large database. This highlights the challenges that 

we face when using optical techniques to measure a film’s properties, and why retaining the 

expert in the loop will always be better than naively trusting any algorithm.  

7.4 Conclusions 

Through the course of this project I was able to develop a GPR model that allows us to 

analyse films of arbitrary composition with our ellipsometer with greater accuracy and speed 

than previously possible, which can be applied to other groups with similar deposition systems. 

The underlying assumptions of the GPR model mean that it is well-suited for working in concert 

with the LM algorithm used by the ellipsometer software to find the optical model parameters 

that best describe a film. In addition, we ensure that this procedure provides accurate results by 

retaining an expert-in-the-loop to verify the predictions of each parameter based on domain 
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knowledge. The average fit difference of our samples fell from 0.0326 to 0.0141, and the time to 

fit a sample fell from an average of over an hour, to less than ten minutes. This is because each 

parameter now has a more accurate initial estimate for the LM algorithm to refine, provided by 

the GPR model, rather than starting from scratch each time.  
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8 Computer Vision for Perovskite and Calcium Film Degradation 

Detection 

8.1 Introduction 

Many nanoscale devices contain compounds which are sensitive to exposure to air and 

water, rapidly degrading their performance. The commercial adoption of one such device 

structure is currently limited almost entirely by this degradation; perovskite materials can be 

used to construct photovoltaics (PV) that are not only incredibly efficient, with all-perovskite 

tandem PV’s theorized to reach an efficiency close to or even exceeding 30% [249], [250], but 

they are also much cheaper to produce than silicon PV’s. However, silicon PV’s can remain in 

service for over 25 years before needing to be replaced, whereas first-generation perovskite PV’s 

degraded in minutes [251]. Current developments allow for cells which retain their efficiency for 

1000’s of hours under ambient conditions [252], however, this still fails to reach the threshold 

for commercial viability, and often comes at the cost of the device’s efficiency. 

Encapsulation of environmentally-sensitive devices is a promising method for increasing 

their longevity, particularly films with a low water vapour transmission rate (WVTR) that can 

isolate the active layer from water for as long as possible. Conventional ALD has previously 

been used to produce thin film encapsulation layers that have very low water vapour 

transmission rate (WVTR) values [253], [254], some of which are also capable of withstanding 

mechanical stress with low loss of performance [255] due to the very high quality of the ALD 

film. Machine learning techniques have already been utilized to optimize and design other kinds 

of encapsulation layers, for example Hartono et. al. used a random forest algorithm to determine 

the ideal composition of such a layer [256]. Interestingly, they were able to parameterize non-
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numerical data like the colour of the perovskite as a continuous numerical variable, allowing for 

the implementation of a regression algorithm. With most degradation mechanisms, colour 

change is a critical component of identifying when a desired compound has been replaced by one 

that is detrimental to device performance. In the case of perovskite films this can be achieved 

with absorbance measurements, but can also be detected with the naked eye. ALD films are ideal 

for this kind of encapsulation because they conform to the deposition surface near-perfectly and 

can be formed without pinholes and few defects, flaws which can make an otherwise well-

isolating material more susceptible to the ingress of water. However, conventional ALD is an 

expensive and time-consuming deposition process, not only invalidating the commercial 

advantages of perovskite PV’s, but making these encapsulation layers difficult to test, as holding 

a perovskite film at elevated temperatures for the length of a conventional ALD deposition may 

cause irreversible damage to that film before any testing can occur. Perovskite materials also 

often include highly-toxic lead, so it would be more sustainable to find an analogous material 

upon which to perform these experiments. In addition, the better a barrier performs the harder it 

is to get an accurate idea of exactly when it begins to fail. Early perovskite cells failed in 

minutes, but if the cell is able to last for days there will inevitably be gaps in coverage if 

manually imaging the progression of its degradation, particularly overnight.  

First, I developed a spatially-resolved CNN which was able to successfully track the 

degradation of a perovskite film sealed with an AP-SALD encapsulation layer that had varied 

properties along one axis. This method was then improved upon by the introduction of calcium 

WVTR samples which could be tested more safely, and a new CNN was trained with greater 

spatial resolution to provide an accurate estimate of the area of the film which has degraded. By 

developing a method to track the degraded portions of a film in real-time, we can potentially 



- 138 - 

 

overcome a major limitation of calcium WVTR testing which is the assumption that the rate of 

degradation is linear. In the case of the perovskite films, the single greatest advantage this work 

provides is precise tracking of barrier effectiveness over several days. In combination with our 

gradient AP-CVD process, we can now more effectively design barrier layers, and obtain precise 

knowledge regarding their performance. In the case of the calcium WVTR testing, we have 

allowed for real-time, autonomous monitoring of the rate of change of the degraded area.   

8.2 Experimental Methods and Materials 

8.2.1 Sample Preparation 

Figure 8.1 illustrates the schematics of the two film stacks used in this work, including 

the gradient and uniform alumina barrier layers and the active layers of perovskite and calcium 

in a) and b) respectively. The perovskite layer is 315 nm thick, and is composed of 

formamidinium lead iodide, which was spin-coated onto a borosilicate glass slide. The 

perovskite layer was fabricated in a nitrogen glove box by combining: 

• 1.4 M lead iodide  

• 1.25 M formamidinium iodide 

• 0.0987 M caesium iodide   

• 0.0833 M guanidinium iodide 

• 76% volume dimethylformamide 

Figure 8.1: Film stacks used in phase one and two of this work, showing a) perovskite films with gradient alumina and b) calcium films with 

uniform alumina and added background layer.  
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• 24% volume dimethyl sulfoxide 

This solution was filtered to remove any solute or contaminant particles larger than 0.45 µm. At 

the end of the spin-coating process, the perovskite layer was precipitated using a 50/50 solution 

of chlorobenzene and chloroform, and then annealed at 140⁰C for half an hour. This layer was 

coated with a gradient-thickness zinc-doped alumina film using our AP-CVD in the same 

configuration as for the films used in Chapter 7. This film was deposited at 130⁰ to prevent 

damage to the perovskite layer, and was produced using 38 SCCM of TMA, 10 SCCM of DEZ, 

combined in the same channel with a nitrogen carrier flow of 235 SCCM. Water was used as the 

oxidant, which was introduced at 100 SCCM, combined with 275 SCCM of carrier nitrogen. The 

gradient thickness, ranging from 40 – 70 nm was produced by varying the reactor height on one 

side from 100 – 200 µm during a deposition of 60 oscillations. The 100 nm calcium layer was 

deposited in our evaporator, and topped with a similar alumina layer to the perovskite samples 

above but in the uniform AP-SALD configuration, these alumina layers had varied thicknesses, 

being deposited for between 50 – 300 oscillations. 
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8.2.2 Film Degradation Detection 

  The perovskite film, shown below in Figure 8.2, degrades through the formation of lead 

iodide, catalysed by the presence of water within the film. The visual change as this reaction 

occurs in the film is noticeable with the naked eye; the film changing from green-black to yellow 

as the lead iodide precipitates out of the perovskite layer.  

In this image, the gradient alumina barrier layer is thickest on the left, and we can see that the 

degradation begins from the side of the film which is thinner, with a notable pinhole in the 

lower-right of the 48hr image. The perovskite degraded much more quickly in this area, as the 

atmospheric water was able to more easily penetrate the thinner encapsulation. The perovskite 

films were kept in a consistent 60% relative humidity environment, and at room temperature 

until the entire area was degraded to lead iodide. Throughout this time the films were imaged at 

several-hour intervals, and these photos were subsequently separated into 50x50 pixel areas for 

use within our network. In comparison to the perovskite layer, calcium is a lot more reflective 

and the appearance of the film can change based on the ambient light conditions as can be seen 

in Figure 8.3. It also degrades to be completely clear, meaning that the background against which 

the image is taken will change the ease with which we can identify degraded samples. As the 

Figure 8.2: The same perovskite film with alumina barrier layer pictured after 0, 48, and 92 hours at 60% relative humidity and 

room temperature. 
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area of the film that has degraded at a given point in time is critical to the WVTR calculation, we 

reduced the size of the square sub-samples to 20x20 pixels. WVTR is calculated through the 

formula:  

WVTR (g m-2 d-1) = n.Ca 
𝑀(𝐻2𝑂)

𝑀(𝐶𝑎)
 .h. 

𝑑𝐴

𝑑𝑡
 

Where the property of interest for us is  
𝑑𝐴

𝑑𝑡
, or the change in degraded area with respect to 

time. Conventionally this is taken as a constant, as it is challenging to accurately measure with 

any real precision. If we were able to track the degraded area in real-time, we could ascertain this 

rate of change to a significantly greater degree of precision, hence the smaller size of the squares 

in this phase of the project. In Equation 23, n is the molar equivalency between calcium and 

water (n=2), δCa is the density of calcium, in our evaporator this is a standard 1.55 g∙cm−3, 

M(H2O)=18 g.mol-1 and M(Ca)=40 g.mol-1 are the molar densities of the two reacting species, 

and h is the thickness of the calcium film, measured to be 200nm through the evaporator’s inbuilt 

quartz crystal microbalance. 

Figure 8.3: Three calcium films imaged at 1 and 72 hours. Varying ambient lighting conditions resulted 

in a much less reliable colour difference between intact and degraded films, so a red background layer 

was added for ease of identification of degraded and intact areas. 

(23) 
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The variation in the appearance of the calcium film made it a lot harder to identify which 

of the squares contained degraded or intact film with a simple colour rule. However, because the 

calcium film degrades to be completely clear, we can add additional colour data to the 

background – making it easier to sort the training data into degraded and intact sub-samples, but 

also improving the ability of the CNN to distinguish the samples too. Red was selected as the 

background because Matlab breaks colour down into three channels, red, green, and blue.  Intact 

perovskite films contain a lot of green, but a blue background would combine with degraded 

perovskite to produce green. Red is not as notable in the intact perovskite, and as yellow is a 

combination of red and green as far as the computer is concerned, the combination of degraded 

perovskite and red background (orange) still represents a relative lowering of the value in the 

green channel. This was intended to be useful for a potential future project wherein the two 

phases of this project were combined into a single algorithm able to identify visually degraded 

samples of both films. Through the nature of the CNN architecture within Matlab, we need to 

feed images of a specific size measured in pixels. To overcome this limitation, we mounted a 

fixed-focus camera to the top of the humidity chamber. This ensures that the ration of pixels:mm 

remains constant throughout all our tests. 
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8.2.3 Machine Learning Methods 

Figure 8.4 is a generalized schematic of how the CNN integrates into our workflow. First the 

image of the film is broken down into small squares, in this case 50x50 pixels as we are looking 

at a perovskite film, whose location is indexed within Matlab. These squares are then passed to 

the CNN, the depth of which was determined through experimentation and based on the 

percentage of squares it classified correctly. The final layer of the CNN has a softmax activation 

function, which produces a set of relative probabilities that the square belongs to each class. The 

class with the highest probability is identified and reported, and a map of the film is created with 

degraded and intact areas labelled. In the case of the perovskite films it was necessary to include 

a class labelled “no film”, as the spin-coating method used to deposit that material covers a 

circular area, leaving the corners of the glass slide with no film to degrade.  

Figure 8.4: Schematic of the convolutional neural network developed for phase one of this work. 
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As could be seen in Figure 8.2 these corners remain visually distinct from even degraded film, 

but look more like degraded film than intact, and so the extra class was created to ensure that we 

were not overestimating the degraded area. Beyond providing mapping capabilities to our 

program, breaking the image of the film down into squares provides additional training data for 

the algorithm – hundreds of data points per film rather than just one. By shifting the window 

used to select which 50x50 pixel area is made into a square we could further increase the amount 

of training data and help ensure that the CNN was learning the colour change and edge detection 

that we can see are indicative of degraded films and no hidden features that may be 

counterproductive to our goal. These smaller images can also be processed much faster than 

larger ones, as our intent is to create a real-time monitoring system for precise barrier 

performance measurements.  

8.3 Results and Discussion  

Usually CNN’s have to be comparatively deep networks, as they are often used for very complex 

image-recognition tasks. It should come as no surprise that correctly identifying the face of a 

specific individual under varying lighting conditions and with different cameras requires more 

computing power than detecting a simple colour change in images of specified size and under 

controlled conditions. That said, a network that is not complex enough will fail to accomplish 

even that. Using the same set of 10,000 50x50 pixel squares, four CNN’s of increasing depth 

were trained and the performance of each network was measured using the number of squares 

that were sorted correctly into one of the three categories, degraded, intact, and no film. One-

third of the squares in each training epoch were held back for validation, and a further 2000 

squares were not used in training at all to provide a final testing result, as summarized below in 

TABLE IX. 
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TABLE IX: TRAINING, VALIDATION, AND TESTING PERFORMANCE OF FOUR CNN ALGORITHMS OF INCREASING 

DEPTH 

Depth 3 5 10 25 

Training 90.3% 93.8% 98.1% 98.5% 

Validation 87.6% 88.1% 35.9% 11.2% 

Testing 86.5% 84.9% 33.7% 12.4% 

 

Here we defined depth as the number of convolution layers before the output layer, and we 

can see that the deeper networks actually performed worse during the testing and validation 

phases. This suggests that the networks were overfitting, and simply memorizing which squares 

belonged in which class – in a sense they were too powerful for the task at hand. In the end, we 

selected the three-layer network, as it performed slightly better when exposed to new samples 

compared to the five-layer network. Both classified the input images almost instantaneously, so 

both would have been appropriate for our application. Figure 8.5 shows how this algorithm 

worked in practice. On the right we have one of our gradient films imaged at several hour 

increments. Also indicated are the direction of increasing barrier thickness, and the area we 
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cropped to show the functionality of the CNN. The CNN was able to accurately track the 

progress of this degradation over 100 hours, starting with the defect in the lower-right of the film 

at 28 hours. This defect induced increased degradation in the surrounding areas of the film, 

meaning we see a slight degradation gradient from bottom to top, perpendicular to the alumina 

thickness gradient. One important result from this experiment is that the alumina layer must be 

free of stress-induced cracking, a common problem in thick AP-SALD films. This occurs 

Figure 8.5: Final results of the perovskite degradation CNN, it can be seen that as time 

progresses the degraded squares marked in red show the same progression as the unedited 

film images. 
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because the varying layers apply stress to one another, much as with a composite at the macro-

scale, but these stresses are small enough to not affect films below several hundred nanometres.  

For the calcium samples, we used the same network architecture for two reasons. Firstly, the 

problem is not significantly different in terms of what we are asking the CNN to do, and 

secondly, we initially intended to create a hybrid algorithm that would process both kinds of 

films. As previously mentioned, the major change in the network itself was reducing the input 

image squares from 50x50 pixels, to 20x20 to more precisely track the degraded area, indicated 

on Figure 8.6 in green. For the calcium WVTR network, initial performance was poor because 

Figure 8.6: Processed vs original image of a calcium film trained with no added background. Green denotes areas 

classified as degraded. Notable features indicated, 1) is an angled line that was well captured by the algorithm, 2) is 

an open area of degraded film not captured by the algorithm, and 3) is an area of pinhole-defects that were also not 

well-resolved. 



- 148 - 

 

the difference between degraded and intact film was hard to detect even manually. The calcium 

film is so reflective that it takes on the colour of its environment much more readily than the 

perovskite films. Figure 8.6 has a classification accuracy of less than 20%; the network got very 

good at detecting the dark edges at the upper edge of the degraded areas (1), but would not detect 

any degradation within the exposed areas (2). We can also see that it did not detect many of the 

small pinholes throughout the film, particularly in the upper centre of the film (3), although some 

of these pinholes are so small it may not be justifiable to sort those squares into the “degraded” 

class regardless. Looking at the size of the green coloured pixels, it can be seen why it was so 

challenging to manually sort the 20x20 pixel areas into the correct classes. However, as the area 

of the degraded film is needed as accurately as possible for WVTR measurements, the small 

square size is necessary.  

At this juncture, we added a red coloured background to our testing rig to improve both our 

ability to sort the squares manually and to provide greater contrast between the intact and 

degraded film. We re-trained the calcium WVTR CNN on over 120,000 20x20 pixel squares 

including the new background, split 6:3:3 between training, validation, and testing sets. As we 

can see in Figure 8.7, adding in the red background and re-training the model with the new data 

produced a much more accurate model, predicting the correct class 97.2% of the time compared 

to manual sorting. We can see from the image above, that the areas that are indicated as intact are 

very obviously calcium with no red background detected, save for small pinholes below the 

detection threshold. A possible solution for this would be to add in a third “partially-degraded” 

class to encompass these edge-cases, or to further reduce the size of the pixel squares being 

analysed. The network tends to assume that any square with more than 50% visible background 

is fully degraded, which was the metric I used when sorting the squares manually, and therefore 



- 149 - 

 

the future addition of a “partially-degraded” class should improve performance. The main 

advantage of this method over conventional image analysis programs such as ImageJ is that it is 

fully autonomous, but further work shall be done to improve the accuracy of our method and 

better account for the pinholes in films such as the one above. If we can approach the accuracy of 

conventional techniques with this autonomous method, then we will finally have a tool for 

ascertaining the validity of one of the core assumptions of the calcium WVTR test – that 
𝑑𝐴

𝑑𝑡
 is 

linear. As it stands, because the pinholes are only smaller than our detection limit in the early 

stages of degradation, the accuracy of the autonomous area detection changes with time. In an 

attempt to broaden the applicability of the calcium WVTR network we tested combining squares 

with and without the added background, and while the performance when classifying films 

without the background was improved to 67%, the accuracy of the model when analysing films 

Figure 8.7: Re-trained calcium WVTR network using a red background to enhance visual contrast between degraded and intact 

films. 
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with the background was reduced to 82.3%. This is likely because of the same difficulty with 

manually separating the dataset into the correct classes, a classic example of “garbage in, 

garbage out”.  

8.4 Conclusions 

I developed two separate algorithms using computer vision techniques to assist us in 

combinatorial testing of encapsulation layers. The first iteration focused on autonomously 

mapping the degradation of perovskite films, and the second on calcium films used for WVTR 

testing. While there is significant work remaining to improve the precision of these models, they 

are both able to accurately determine if a sample is degraded or intact. This allows us to 

accelerate the design of new device stacks, by depositing films with graded properties and 

measuring which areas remain intact the longest – rather than depositing one film for each set of 

properties.    
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9 Conclusions and Next Stages 

I have demonstrated in this work several means by which machine learning can be used to 

enhance materials science research in combination with our thin-film deposition technique. First, 

I lay the groundwork for my research by expanding the library of materials we can deposit within 

our lab, selecting a new organometallic precursor and allowing us to deposit copper and its 

oxides. Copper is the first metal that we have been able to produce in our lab, and its oxides have 

lower band gaps than our existing library of materials – and are already being used by other 

researchers to optimize their own device stacks.  

Next, I developed and refined a method for measuring the resistance of our films in-situ, 

discovering along the way that by simply shifting the deposition temperature we can shift even 

simple zinc oxide films from semiconducting to metallic behaviour, likely through creation of 

oxygen defects in the film.  

I then helped develop another in-situ measurement technique using a reflectance 

spectrometer to measure the thickness and band gap of our films. The Levenberg-Marquardt 

algorithm we used to fit the measured spectrum to an optical model suffered from poor 

initialization until I developed a machine learning method to extract an initial thickness estimate 

from the raw reflectance data. Over the course of several iterations, these machine-learning 

enhanced reflectance measurements predicted the thickness so accurately and with enough speed 

that we were able to implement a PI controller to control the rate of deposition in real-time.  

Using a similar machine-learning method combined with spectroscopic ellipsometry I 

created a mechanism for measuring the properties of arbitrarily complex films accurately and 

quickly. Manually fitting films with multiple dopants to an optical model is a challenging and 
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time-consuming process. Conflicting information exists about the properties of undoped films, 

and so it was quickly apparent that we needed a method to approximate these properties first, 

retaining an expert in the loop to interpret how these approximations fit with our knowledge of 

the film. Great care had to be taken when developing the gaussian process regression model we 

used, applying transfer learning methods and ensuring that each iteration of the model was 

trained on the most accurate and comprehensive data possible. We verified film properties like 

the roughness and band gap of the film through the use of atomic force microscopy and 

absorbance spectroscopy and found that using optical-model estimates provided by the GPR 

model, we were able to measure these films using ellipsometry more accurately and within a 

fraction of the time compared to manual fitting.  

Lastly, I applied computer vision techniques to assist with measuring the rate of degradation 

of water-sensitive films, and thereby the effectiveness of the barrier layers we deposited atop 

them using our AP-SALD system. Both perovskite and calcium films were imaged throughout 

the process of degrading. The pictures were sliced up into even squares, sorted into classes and 

used to train a convolutional neural network. The resulting convolutional neural networks were 

capable of accurately tracking which areas of the films were degraded and which were intact, 

allowing us to automate a testing process that can take several days to run to completion. 

Because the location of the degraded film is also tracked, we can now also do combinatorial 

testing where properties of the barrier films vary by location, providing more data in less time 

and resulting in significantly longer-lasting devices. 

Through the course of this work, plans changed and new research directions were 

discovered. Initially, the plan had been to fully implement an ML-based system for controlling 

the AP-SALD - allowing us to simply specify a set of film properties and have the process 
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parameters selected for us. With the addition of the copper precursor the range of possible 

materials that we can produce increased massively. As mentioned previously it is capable of 

producing metallic copper, as well as cupric and cuprous oxide individually and as a mixture of 

any number of phases. Using these materials as components in a multi-oxide film, like Cu:ZnO 

or Cu:AZO increased the range of possible properties massively compared to the original 

intended data-space involving just Al and Zn oxides. Accordingly, this increased the complexity 

of accurately finding the film properties using our laboratory equipment by a similar magnitude, 

and the amount of time and data needed for the previously-described sections of the report. 

Unfortunately, there was not sufficient time to accomplish my original goals, but in Section 9.1 I 

will expand upon my plans for how this might be accomplished. In Section 9.2 I will explain an 

exciting new application for our AP-SALD films, especially highly-doped films like those we 

can create with these new copper-based materials – εNZ materials which display nonlinear 

optical properties. These properties allow for the production of novel devices like optical 

transistors, which can be made much smaller than the current limit of FET designs, being much 

simpler in structure and less susceptible to temperature as there is no current flowing through the 

device.  

9.1 Machine-Learning Integrated Control System 

The first problem we aim to solve with machine learning is the prediction of what the 

material properties of a film are going to be, once the deposition parameters are entered into the 

AP-SALD/CVD system. As previously mentioned, this is a complex multivariable problem, each 

deposition parameter can have multiple effects on the final film, and the interrelations between 

even just two parameters and the final film properties would be incredibly complex to try and 

characterize analytically. Since we have eight deposition parameters and four independent 
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variables, it may be necessary to alter the dataset so that the ML model is a simple as possible. 

The use of autoencoders and principal component analysis will show which parameters or 

combinations of parameters actually have an effect on the material properties we are looking at, 

hopefully allowing us to further reduce the number of input dimensions, beyond what is possible 

with manual experimentation. We have already made significant strides in this direction with the 

three measurement techniques described in the preceding report, and the compilation of the film 

property database used for training the ellipsometry ML model.  

Initially we had conceived of using a recurrent neural network for this task, as we would be 

able to adjust and update the film deposition parameters in real-time. However, essentially 

having to repeat the development of the ML model presented in Chapter 7 for each time-step 

while varying the deposition parameters throughout to encompass the effects of each potential 

control variable is a significant proposition that would monopolize the lab-scale SALD for years. 

Much simpler would be to assume that the process can be controlled using only the parameters 

used in the beginning, and that they remain constant throughout the deposition. This assumption 

will allow us to use the database we compiled for the ellipsometry ML model as a starting point, 

but instead of including the ellipsometry data as an input and the material properties as an output 

we would be using the properties as an input and the deposition parameters as an output. We 

already have all of this data, however there may be multiple sets of outputs that are equally 

viable based on the desired inputs. One solution to this would be to place constraints on what the 

model is allowed to produce, such as limiting what materials and temperature ranges can be 

used. This would be easier to program, and also give the user greater control over the deposition 

process. However, this could still be accomplished in conjunction with the second potential 

solution, the use of a generative adversarial network (GAN).  
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A GAN is a unique ML formed of two networks working in opposition, hence the 

‘adversarial’ part of their name [257], [258]. The first network is called a ‘generator’, and its job 

is to learn how to create convincing but artificial outputs, given a set of inputs. The second is 

referred to as a ‘discriminator’, and its job is to determine if its inputs are real or generated by the 

first network. GAN’s can be comprised of any kind of ANN but are most commonly a paired 

CNN/inverse CNN. GAN/CNN pairs are often used to generate artificial images which are 

convincing to the human eye, such as Edmond de Belamy, the first work of art created by an AI 

which sold for $432,500 in 2018. While later image generation techniques have surpassed the 

performance of GAN’s when creating artwork, they are still well-designed to solve any problem 

which can be solved both forwards and in reverse. This is particularly useful when there is an 

imbalance between the number of potential inputs and outputs, or as in our case when we want to 

generate one workable solution where many potential ones exist.  

GAN’s are comparatively complex to train, as you must create two separate but 

interdependent networks, each of which may be many layers deep, and this has slowed their 

adoption outside computer science. A common failing of GAN’s is called modal collapse, where 

the generator only produces results around a single point which has fooled the discriminator in 

the past, where the data may have a much broader range. The first step to training a GAN is to 

train the discriminator as you would any ANN, so it can recognize the inputs. Next, randomly 

modify an input sample, and train the generator to reconstruct the original input, learning latent 

variables from the input which may not be apparent upon initial observation. Feed both the 

reconstructed and original outputs into the discriminator, which will then determine which input 

is real. The classification error of the discriminator is then backpropagated into both networks, 

the weights in the discriminator are adjusted to minimize this value while the generator is 
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adjusted to maximize it. While GAN’s may be most commonly used in image processing tasks, it 

does not mean they cannot be applied effectively to materials science. Relating the 

microstructure of a material to its properties is a comparatively simple problem to solve, but 

trying to predict a materials microstructure from its properties is a much more complex task 

[259]. A GAN forms the backbone of the computational process outlined, since the material 

properties are learned from observing the microstructures without pre-processing, the most 

information possible is preserved before being fed into the generator. The latent variables learned 

by the generator are used as design targets, and the algorithm generates a microstructure with 

those properties. This method is both faster and more informative than current microstructure 

characterization and reconstruction techniques. In a similar manner, because multiple sets of 

deposition parameters could provide the same material properties, the ability of a GAN to solve 

this kind of inverse problem is appealing.  

9.2 Discovery of New ε-Near Zero Materials 

Through the development of our ellipsometry model in Chapter 7 we noted that 

degeneratively-doped semiconductors such as AZO can exhibit metal-like properties represented 

by the Drude component of the multi-oscillator model [260].  AZO in particular is notable for 

how easy it is to tailor the dielectric permittivity of the material in the infrared and near-infrared 

[261],  an effect characterized by the increase in carriers and switch to metallic behaviour like we 

saw in our ZnO films in Chapter 0. These carriers can come from many sources, but as we 

suggested in that chapter oxygen defects within the film lattice are a significant contributor, and 

one that our AP-SALD system is ideally suited to manipulate. In addition, while conventional 

ALD has been used to deposit AZO films with very high defect concentrations [262], as we   

know, this is a much slower process than our AP-SALD/CVD machine. ε-near zero materials 
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(ENZ) are still very experimental, but they have several applications in advanced computing and 

communications where the rapid fabrication capacity of an AP-SALD system will be integral to 

rapid commercial development. 

One particularly useful application for these ε-near zero materials is in the development of 

optical transistors. It is becoming increasingly difficult to manufacture smaller metal-oxide 

semiconductor field effect transistors (MOSFET) because they are becoming so small that 

electrons may tunnel through the device instead of allowing it to switch effectively, issues with 

effectively cooling such small devices, and that’s not to mention the difficulty of reliably 

manufacturing devices on the near-atomic scale. ENZ materials have a unique property where 

their optical properties change when illuminated around the wavelength where their dielectric 

permittivity (ε) is near or equal to zero, which occurs at the plasma frequency of the material as 

modelled by the Drude optical model. In practice a first, “switch” pulse of light at the plasma 

frequency interacts with free electrons within the material, polarizing the surface plasmons and 

scattering light for a given length of time, the “probe” pulse. The switch-probe pulse interactions 

allow us to construct a device similar in function to a transistor but using optical pulses to 

transmit data and not electrons, illustrated below in Figure 9.1. In a conventional MOSFET we 
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create a channel through which electrons can pass by applying a voltage to the switch terminal, 

and the field effect creates a channel of negatively-charged semiconductor between the two 

terminals. In an optical transistor the probe beam passes through the device in one way when it’s 

off, then the switch beam polarizes the material, changing the value of the extinction coefficient, 

bending the second probe pulse in a different manner. By changing where the detector for the 

probe pulse is, we can ensure we only detect one of these beams resulting in a signal that is either 

on or off based on the length of time since the last switch pulse. AZO is a particularly good ENZ 

material for several reasons, firstly its band gap is non-parabolic, so its plasma frequency is more 

susceptible to electron temperature and therefore, the change in optical properties is greater for a 

given pump pulse. In addition, AZO has a low free electron density so the electron heat capacity 

is lower, further amplifying this effect in comparison to metals which are often also considered 

for ENZ applications. Lastly, the plasma frequency of AZO is often in the near infra-red, where 

Figure 9.1: Metal-oxide semiconductor field effect transistor (top) vs. ENZ 

optical transistor (bottom) 
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many commercial pulsed lasers are available, meaning that we would not need to buy specialist 

lasers for the switch or probe pulses.  

There are challenges in both the realms of material science and commercial scale-up that 

must be solved before optical transistors can replace MOSFETs in computers. Through utilizing 

our experience of creating optical models for ellipsometry, and our ability to tailor film 

properties and doping levels through altering our AP-SALD/CVD deposition parameters we are 

well-placed for optimizing these materials and then producing them at scale. Given our library of 

precursors, capacity for creating gradient films, and existing material property database we can 

use ML methods to tune the plasma frequency and carrier density of these films, and test them in 

collaboration with other groups already working in the field. Accelerating the adoption of optical 

transistors will allow for the current rapid pace of increasing computer power to continue for 

much longer than with conventional MOSFET’s, and presents an intriguing opportunity for an 

additional commercial spin-off for our lab.  
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