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Abstract

Fluid flow in deformable fractures is important to many natural and industrial geologi-
cal engineering applications including contaminant transport, geothermal energy, and hy-
draulic stimulation. Large-scale simulations of flow through fractures are almost exclusively
based on the Poiseuille flow model which contains the ingrained assumptions of laminar
quasi-steady-state flow conditions with negligible inertia. The high flow rates involved in
industrial applications bring these assumptions into question, but the only alternative is
the Navier-Stokes equations which are computationally prohibitive at reservoir scales. This
thesis seeks to address the gap in available models by introducing a new reduced-dimension
model that is capable of capturing inertial and transient flow behaviours without the com-
putational burden of the Navier-Stokes equations.

First, a new fracture flow model is derived from the higher-dimensional Navier-Stokes
equations by integrating over the fracture aperture and making simplifying assumptions
which are less restrictive than those of Poiseuille flow. This new model, dubbed the GG22
fracture flow model, yields a two-field model (fluid flux and pressure) governed by the
conservation of mass and momentum. The GG22 model conserves energy and is shown to
include both Poiseuille flow and Forchheimer flow as limiting cases. The performance of the
GG22 model is verified against the existing Poiseuille flow model and the solution to the full
Navier-Stokes equations in three benchmarks problems. The GG22 model demonstrates
complex transient and inertial behaviours not previously captured and produces up to 400%
improvements in error over Poiseuille flow in steady-state flow conditions for 1 ≤ Re ≤ 100.
The GG22 model is demonstrated to be superior in all tested applications where the inertial
forces are greater than viscous forces (Re ≥ 1) and when aperture varies in space and/or
time.

Next, a simulator to solve the GG22 governing equations in rigid fractures is devel-
oped. Novel numerical methods were developed as the GG22 model is more complex
than Poiseuille flow. Since the GG22 model is derived from the Navier-Stokes equations,
numerical methods developed for the Navier-Stokes equations may be adapted, but the
new model contains its own idiosyncrasies which must be addressed. An explicit multi-
step finite volume method is developed and verified. The method is based on deriving
a Poisson equation for pressure with an additional continuity correction to overcome nu-
merical instabilities. The critical timestep is derived and shown to be a function of the
fundamental frequency of the fracture-fluid system and the maximum fluid velocity. The
results show excellent agreement with analytical solutions, and the method demonstrates
a first-order rate of fluid flux convergence in time and a second-order rate of pressure con-
vergence in space. Applying the model to a travelling aperture wave simulating seismic
excitation reveals the changes in behaviours introduced by inertia and transience. These
behaviours include lower average fluxes, higher pressures, and phase-shifts in the fluid
response compared to the predictions of Poiseuille flow.

Finally, the GG22 model is numerically coupled with mechanical deformation of a rock
mass to simulate the complex industrial applications of interest. A monolithic fully-coupled
hydro-mechanical finite element - finite volume model with cohesive fracture propagation
is developed and verified. The Newton-Raphson solution algorithm demonstrates poor
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iterative convergence behaviour, so an adaptive steepest descent line-search with Aitken
relaxation is introduced to improve the rate of convergence. The hydro-mechanical model
is applied to fracture flow between oscillating elastic plates. The combined effects of inertia
and transience are demonstrated to create phase-shifts in the fluid response, larger fluid
pressures and rock mass stresses compared to the Poiseuille flow predictions, and induce
wave-like behaviour even in a quasi-static rock mass.

The hydro-mechanically coupled fracture propagation model is used to examine the role
of inertia and turbulence in the propagation of planar KGD-like and axisymmetric radial
hydraulic fractures with constant fluid injection rates. In KGD-like fracture, inertial effects
are negligible at flow rates that could be expected in practice. If the injection rate is large
enough to invoke turbulence, then significantly different fracture propagation behaviour is
observed. Turbulence in KGD-like fractures leads to shorter fractures with larger apertures
due to the increased fluid resistance. In radial fractures, the effects of inertia and turbulence
only manifest near the wellbore and lead to changes in fracture shape, but have little impact
on tip behaviour or fracture length. Turbulence creates increased wellbore pressures and
apertures while inertial effects decrease the wellbore pressure and aperture. Turbulent and
inertial effects near the wellbore account for the majority of the pressure loss along the
fracture and provide a potential explanation for the empirically observed phenomenon of
entrance losses. Turbulent and inertial forces have significant effects on injection pressure
predictions, and predictions which neglect these phenomena are likely to exhibit significant
deviations from the true pressure behaviour. Using water as the injection fluid, turbulence
is the dominant mechanism that leads to departures from the Poiseuille flow solution at high
Re. The solution departs immediately upon the manifestation of turbulence (Re ≥ 2×103),
while inertial effects manifest at higher flow rates (Re ≥ 2× 104). Using slickwater as the
injection fluid, the opposite trend is observed: inertial effects manifest first at modest
flow rates (Re ≥ 104), while turbulent effects are delayed to higher flow rates (Re ≥
2× 104).

In general, high Reynolds number flow is more common in industrial fracture flow applica-
tions than considered by current models. The threshold for departure from the Poiseuille
flow solution is low and the differences in the solutions are large. This thesis provides a
new model to bridge the gap between the physically restrictive Poiseuille flow model and
the computationally prohibitive Navier-Stokes equations for the simulation of coupled flow
processes in fractures. This new model provides a resource for the analysis and viability of
many different applications including geothermal energy, carbon storage, seismic analysis,
and contaminant transport among many others. It is recommended that the GG22 model
be adopted for the modelling of fracture flow applications in all cases.
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Chapter 1

Introduction

1.1 Flow Through Fractures

Fractures are mechanical separations in a rock mass that divide the matrix into smaller
pieces. The flow of fluid through fractures is an important aspect of many natural and
industrial processes. In contaminant transport and groundwater flow, fractures form the
primary pathway for flow through low permeability rock masses [1, 2]. Flow in fractures is
known to enhance the permeability of porous media under seismic loads [3, 4]. In engineered
processes like hydraulic stimulation and geothermal heat extraction, large volumes of fluid
are rapidly forced through thin fractures and fracture networks [5, 6, 7], as illustrated in
Figure 1.1.

Models and simulations of flow in fractures, be they deformable or rigid, are almost exclu-
sively based on Poiseuille flow – the analytical solution to the incompressible Navier-Stokes
equations for steady flow between rigid parallel plates. It states that the pressure gradient
is related to the mean velocity by

∇p = −12µ

w2
v = −12µ

w3
q (1.1)

in which w is the aperture between the plates, µ is the kinematic viscosity, v is the mean
velocity, and ∇p is the pressure gradient [8, 9]. Equation (1.1) is often presented in terms
of the fluid flux, q, where it has earned the name “the cubic law” due to its ubiquity in
modelling fracture flow. Throughout this thesis, the terms “Poiseuille flow” and “the cubic
law” will be used interchangeably.

In simulations involving deformable fractures, conservation of mass is derived at the frac-
ture scale using a control volume, such that

ẇ = −∇ · q (1.2)

in which q is the fluid flux given by the cubic law in equation (1.1). This upscaled statement
of conservation of mass admits both time and spatially varying aperture, in contrast to
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(a) Hydraulic Stimulation (b) Enhanced Geothermal System

Figure 1.1: Engineered fracture flow applications

the assumptions underpinning Poiseuille flow. Equation (1.1) and (1.2) are widely used in
fracture flow modelling and have been extended to many applications, including two-phase
flow [10], non-wetting fluid flow [11], and hydraulic stimulation with proppant transport
[12, 13] to name a few.

Computationally, Poiseuille flow is advantageous for modelling fractures at the reservoir
scale. At the scale of an individual fracture, it is more common to use the full Navier-Stokes
equations to model flow behaviour in the viscous flow regime through non-parallel fracture
geometries, and to model the non-linear flow behaviour that arises at higher flow rates
[14, 15, 16]. At the reservoir scale, the width of a single fracture is many orders of magnitude
smaller than the reservoir, and so it often computationally prohibitive to use the full Navier-
Stokes equations to model flow behaviour. Hence the development of reduced-dimension
flow models, like Poiseuille flow (among others [17, 18]), which decrease the computational
burden. Especially in multiphysics problems like hydraulic stimulation [7, 12, 13, 19] or
enhanced geothermal energy production [6, 20, 21], the computational cost of coupling
the full Navier-Stokes equations with other processes like rock mass deformation, heat
transfer, or crack propagation is often prohibitive. The standard unmodified cubic law
model is ubiquitous for modelling flow behaviour in these problems.

Despite its widespread use, fracture flow models based on Poiseuille flow have a number
of limitations. The underpinning assumptions are often violated, including: a) that flow is
steady, b) that the aperture can be locally approximated by parallel plates (even beyond
consideration for surface roughness), c) that inertial forces are negligible, d) that flow is
laminar, and e) that the rock matrix is impermeable. The assumption of impermeable
walls is often violated when Poiseuille flow is applied to modelling flow through fractured
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porous media, but this issue has previously been addressed by modifying Poiseuille flow to
account for the fluid leak-off through permeable fracture walls [22, 23, 24]. Previous works
which have examined fluid-driven crack propagation with alternative flow assumptions
like turbulent flow [25, 26] or non-Newtonian fluids [27, 28], have shown that laminar
flow conditions occur in a majority of industrial cases, and suggest that inertial terms
are only important at very early times when the injection rate is constant. However,
these analyses do not address the inertial effects from non-parallel plate geometries, or the
complex transient effects that arise from new hydraulic stimulation techniques like pressure
pulsing [29] or dynamic stress effects induced by seismicity [3, 4].

There is therefore a need for a new model of fracture flow that is capable of capturing
the transient and inertial physics of flow through non-parallel apertures at moderate to
large Reynolds numbers. It would also be advantageous if such a model is not burdened
by the same computational expense that accompanies the full Navier-Stokes equations. In
this thesis, the derivation of such a model is presented and verified against numerical and
analytical solutions. It is applied to common industrial fracture flow scenarios to examine
the behaviour of inertial, transient, and turbulent fluid physics.

1.2 The Applicability of Poiseuille Flow

Poiseuille flow has been extensively studied analytically, numerically, and experimentally.
Much of the work has focused on the validity of Poiseuille flow as it applies to surface
roughness and tortuosity, and modifications to Poiseuille flow have been proposed to ad-
dress these factors [14, 30, 31, 32]. Several studies of Poiseuille flow have devised criteria
for when Poiseuille flow-based models are appropriate [9, 33]. These recommendations on
the range of applicability of Poiseuille flow for fractures are often violated in modern mod-
elling works. For example, in Rivas & Gracie [13] and Gee & Gracie [34], flow rates are
applied in excess of the limits on the range of applicability. In Parchei-Esfahani et al. [29]
hydraulic stimulation via pressure pulsing was modeled, but transient effects in the fluid
were neglected by adopting the quasi-static Poiseuille flow, despite the dynamic nature of
the problem.

The range of applicability of Poiseuille flow must be Re ≤ 1 for the flow to be in the
laminar regime in non-parallel fractures. Poiseuille flow departs significantly from the
true fluid behaviour in fractures of varying aperture at even moderate Reynolds numbers
(Re ≥ 1). Experimental results of fracture flow have shown that Poiseuille flow using
the average aperture of the fracture produces relatively accurate results up to a Reynolds
number Re ≤ 10, after which flow becomes non-linear [8, 35, 36, 37]. More recent reviews
have shown that the onset of non-linear flow behaviour can range from 0.1 ≤ Re ≤ 60,
depending on mechanical factors such as shear dilation, confining stresses, and surface
roughness [38]. The only flow model which has attempted to account for the inertial
non-linear flow behaviour observed at higher Reynolds numbers is Forchheimer flow, a
non-linear extension originally developed for non-Darcian flow through porous media and
adapted to fracture flow [39]. Forchheimer flow relies on an empirical coefficient to capture
the nonlinear behaviour, and while there have been attempts to calibrate this empirical
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(a) ε << w (b) ε ∼ λ ∼ w (c) ε ∼ w, λ > w

Figure 1.2: Different classes of fractures based on the ratios of surface roughness, aperture,
and wavelength.

coefficient [35, 36], Forchheimer flow rarely sees any use in modern fracture flow simulations.
In practice, the flow rates of interest in industrial applications regularly exceed Re ≥ 100.
For example, in a wellbore with a diameter of 15cm, a flow rate of 1L/s generates Reynolds
numbers in excess of Re > 2000 assuming water as the injection fluid. Thus, industrial
applications regularly exceed even the most generous upper bounds on the applicability of
Poiseuille flow.

1.3 Conceptual Fracture Models

There are numerous ways to conceptually conceive of a rock mass fracture. At its core, the
conceptual model adopted by most modelling works is to consider a fracture as a fluid filled
volume between the rock mass in which flow is unobstructed. Figure 1.2 illustrates three
different theoretical classes of fractures which are described by combinations of hydraulic
aperture, w, surface asperities, ε, and wavelength, λ.

The first class, illustrated in Figure 1.2a, is the case where the asperities are small compared
to the aperture. In this class, the fracture is conceptually a pipe or channel with some
surface roughness – fluid flow transverse to the axis of the fracture is relatively minimal.
This class of fracture is reasonably well approximated by the cubic law, except at high
Reynolds numbers when the flow becomes turbulent.

The second class, illustrated in Figure 1.2b, is the case in which the asperities, wavelength,
and aperture are all approximately the same order. Most natural fractures fall within
this second class. Asperities of this order are often lumped together with the first class
and called “surface roughness”. There have been many efforts to modify the cubic law to
account for the deviations caused by these asperities by introducing factors and correlations
with the surface roughness [14, 30, 31]. However, the transverse component of flow in this
second class of fractures is significant, especially at higher Reynolds numbers, and can never
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be adequately described by a reduced dimension model which removes the transverse flow
component.

The third class of fractures, illustrated in Figure 1.2c, is the conceptual model adopted
throughout this thesis. Asperities and aperture may be of similar order, and consequently
the change in aperture is large and important, but the wavelength over which the aperture
changes is large and the transverse component of flow is small. The walls of the fracture
are typically considered smooth, but small surface roughness (akin to the first class of
fracture) may exist such that it does not significantly impact the flow in the middle of the
channel. This class of fracture is the standard idealized geometry adopted for fractures in
most modern fracture flow modelling works [5, 6, 7, 40] as it permits models to neglect the
transverse flow component.

1.4 Purpose and Objectives

Thus, given the need for a new fracture flow model to balance the needs of physical accuracy
with computational expense, the objectives of this thesis are presented in this section.

1.4.1 Objective 1: Develop a new reduced-dimension model for
fracture flow that captures inertial, transient, and turbu-
lent behaviours

The first objective is to develop a mathematical model for fracture flow that is capable
of capturing inertial, transient, and turbulent flow behaviours in fractures without the
computational expense that accompanies the full Navier-Stokes equations. The devel-
oped mathematical model consists of a set of partial differential equations which govern
the conservation of fluid mass and the conservation of fluid momentum in a deformable,
propagating fracture. This new model is labeled the “GG22 flow model” after its publi-
cation reference [41]. The new model is derived from the higher-dimension Navier-Stokes
equations by integrating over the fracture aperture and making simplifying assumptions
to generate a reduced-dimension model. The model is then verified against analytical
and numerical solutions. It is shown that the GG22 model recovers the Poiseuille flow
model under Poiseuille flow conditions and performs no worse than Poiseuille flow in all
tested fracture flow situations [41]. Furthermore, the GG22 model conserves energy in
non-parallel plate geometries where Poiseuille flow does not. This objective is completed
in Chapter 2 which is based on the article:

B. Gee and R. Gracie, “Beyond Poiseuille flow: A transient energy-conserving model for
flow through fractures of varying aperture,” Advances in Water Resources, vol. 164, p.
104192, 2022.
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1.4.2 Objective 2: Develop a simulator for fluid flow in rigid
fractures

Following the derivation of the new model, the second objective is to develop a simulator to
solve non-trivial fracture flow problems in rigid fractures. The increased physical accuracy
of the GG22 model comes at the cost of increased complexity, albeit much less than the full
Navier-Stokes equations. The single constitutive equation of Poiseuille flow is replaced with
a set of two coupled partial differential equations. Consequently, novel numerical methods
are required to solve the equations and simulate the flow behaviour. Luckily, the Navier-
Stokes equations and GG22 model share similarities in form, so existing numerical methods
from computational fluid dynamics may be adopted. However, the GG22 model contains
several idiosyncrasies which must be addressed. This objective is completed by developing
an explicit multi-step finite volume method for the GG22 model. The algorithm involves the
derivation of a Poisson equation for pressure, and the introduction of a continuity correction
to overcome numerical instabilities. The method is then verified against analytical solutions
and then applied to non-trivial boundary value problems. This objective is described in
Chapter 3 which is based on the article:

B. Gee and R. Gracie, “Beyond the cubic law: A finite volume method for convective and
transient fracture flow,” International journal for numerical methods in fluids, vol. 94, no.
11, pp. 1841–1862, 2022.

1.4.3 Objective 3: Develop a multi-physics simulator for fluid
flow coupled with rock mass deformation and fracture prop-
agation

Next, the third objective is to develop a multi-physics simulator that couples the numerical
model with mechanical rock mass deformation and fracture propagation. A mixed finite
element - finite volume model is developed to solve the coupled hydro-mechanical GG22
equations. Finite elements are used for the rock mass under in-situ stresses, and a cohesive
zone model with a cubic traction-separation law is introduced to model the quasi-brittle
crack propagation behaviour. A monolithic numerical method is derived and numerical
convergence issues are addressed. The model is applied to sample problems and compared
against the Poiseuille flow and analytical solutions, as well as the propagation of KGD-
like planar fractures. This objective is completed in Chapter 4 which is based on the
article:

B. Gee and R. Gracie, “Inertial and turbulent flow in hydro-mechanically coupled planar
fractures,” Submitted to International Journal for Numerical and Analytical Methods in
Geomechanics, February 2023.
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1.4.4 Objective 4: Investigate the role of inertia and turbulence
encountered in hydraulic stimulation and fracture propa-
gation

The final objective was to apply the coupled hydro-mechanical model to hydraulic stimu-
lation and examine how the phenomena of inertia and turbulence manifest during fracture
propagation. The model is applied to fracture propagation of an axisymmetric/radial frac-
ture from a wellbore. A single sample problem setup is considered and the various layers of
physics are applied one at a time to isolate their contribution. The problem is investigated
with both water and slickwater as the fracturing fluid. It is shown that these phenomena
have significant effects on the near-wellbore behaviour of the system and significantly im-
pact both pressure and aperture. It is observed that turbulence manifests at lower flow
rates than inertia in water, but the opposite trend is observed in slickwater. This objective
is described in Chapter 5 which is based on the article:

B. Gee and R. Gracie, “The Influence of Turbulence and Inertia in Radial Fracture Flow,”
Submitted for publication, April 2023.
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Chapter 2

The GG22 Fracture Flow Model

2.1 Introduction

In this chapter, an improved fracture flow model, labeled the GG22 flow model, is de-
rived and verified. It overcomes many of the limitations of the Poiseuille flow model by
capturing the inertial and transient behaviour of fluid flow through fractures of varying
and deformable aperture in inertia dominant flow (Re > 1). Whereas previous modelling
efforts have focused on modifying Poiseuille flow [14, 30, 31], we start from the full set
of Navier-Stokes equations and make simplifying assumptions, thereby deriving a reduced
dimension flow model which simplifies the fracture volume into a fracture plane. The new
reduced dimension model is verified against the full Navier-Stokes solution and compared
to Poiseuille flow in the cases of transient flow, and spatially and temporally varying aper-
ture fields. The new proposed model captures inertial behaviour previously neglected,
conserves energy in fractures where Poiseuille flow does not, and more accurately models
transient and steady-state flows through fractures with spatially varying aperture.

In Section 2.2, a reduced dimension formulation for flow through fractures of deformable
aperture is developed, and the cases of laminar and turbulent flow are discussed. Section
2.3 provides a physical interpretation of each term in the reduced dimension model and
examines a number of corollaries which can be derived from the reduced dimension model.
Next, Section 2.4 verifies the model with several analytical and numerical problems in which
the reduced dimension model is compared against both Poiseuille flow and the full Navier-
Stokes solutions. The models are compared both qualitatively and quantitatively.

2.2 Model Derivation

This section develops a reduced dimension set of governing equations for flow through de-
formable thin varying channels starting from the two-dimensional Navier-Stokes equations.
The methodology is adapted from the models for flow through an elastic artery set out by
Olufsen et al. [42] and Smith et al. [43].
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Figure 2.1: Symmetrical fluid-solid domain.

2.2.1 Derivation of the reduced dimensions governing equations

Consider the flow of fluid through a thin fracture that is wide in the z-direction. The flow
of fluid is governed by the two-dimensional Navier-Stokes equations. The problem domain
is illustrated in Figure 2.1. Let x and vx(x, y, t) be the coordinate and velocity along the
longitudinal axis. Let y and vy(x, y, t) be the transverse coordinate and velocity. The
fracture is characterized by a scalar aperture, w(x, t), which is positive and non-zero at all
points in the domain. Flow in the out-of-plane direction is negligible, vz ≈ 0.

Assumption 1 The flow is assumed to be symmetrical across the longitudinal centerline
of the fracture.

Assumption 2 The fluid is incompressible and Newtonian.

Assumption 3 The rock mass is an impermeable solid, such that no fluid leak-off occurs
through the fracture walls.

The two-dimensional Navier-Stokes equations for an incompressible Newtonian fluid are
given as

∇ · v⃗ = 0 (2.1)

ρf

(
∂v⃗

∂t
+ v⃗ · ∇v⃗

)
= −∇p+ µ∇2v⃗ (2.2)

in which ∇p = ∇P − ρfgk⃗ is the modified pressure which includes gravity effects. Next,
we will non-dimensionalize all quantities such that y = w

2
y∗, x = λx∗, vx = V v∗x, vy = Uv∗y,

t = λ
V
t∗, p = ρfV

2p∗ in which w is a characteristic aperture, V is a characteristic velocity
in the longitudinal direction, and U is a characteristic velocity in the transverse direction.
Let λ be a characteristic length defined as λ = w

2
V
U
. Expanding the non-dimensionalized
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equations, we find

∂v∗x
∂x∗ +

∂v∗y
∂y∗

= 0 (2.3)

∂v∗x
∂t∗

+ v∗x
∂v∗x
∂x∗ + v∗y

∂v∗x
∂y∗

= −∂p∗

∂x∗ +
4µλ

ρfV w2

(
U2

V 2

∂2v∗x
∂x∗2 +

∂2v∗x
∂y∗2

)
(2.4)

U2

V 2

(
∂v∗y
∂t∗

+ v∗x
∂v∗y
∂x∗ + v∗y

∂v∗y
∂y∗

)
= −∂p∗

∂y∗
+

U2

V 2

2µ

ρfwU

(
U2

V 2

∂2v∗y
∂x∗2 +

∂v∗y
∂y∗2

)
(2.5)

Assumption 4 The transverse velocity is much smaller than the longitudinal velocity,
vx >> vy, V >> U . Therefore, this derivation is not applicable to flows which have a
significant transverse flow component.

Assuming the transverse velocity is small compared to the longitudinal velocity allows us
to state that U2

V 2 ≈ 0. This implies that the longitudinal viscous forces are negligible, and

that ∂p∗

∂y∗
= 0, such that the pressure is constant across the aperture. The equations are

reduced to

∂v∗x
∂x∗ +

∂v∗y
∂y∗

= 0 (2.6)

∂v∗x
∂t∗

+ v∗x
∂v∗x
∂x∗ + v∗y

∂v∗x
∂y∗

= −∂p∗

∂x∗ +
4µλ

ρfV w2

∂2v∗x
∂y∗2

(2.7)

Equations (2.6) and (2.7) contain three unknowns in two equations, so we will make further
assumptions and manipulations to remove v∗y from these equations. Next, we will integrate
equations (2.6) and (2.7) over the aperture. Let ww∗ = w be the non-dimensionalized
fracture aperture. We will first examine the integration of equation (2.6). Since x∗ is
independent from y∗, the integral may be written as

2
∂

∂x∗

∫ w∗/2

0

v∗xdy
∗ − ∂w∗

∂x∗ (v
∗
x)

∣∣∣∣
w∗/2

+ 2

∫ w∗/2

0

∂v∗y
∂y∗

dy∗ = 0 (2.8)

2
∂

∂x∗

∫ w∗/2

0

v∗xdy
∗ − ∂w∗

∂x∗ (v
∗
x)

∣∣∣∣
w∗/2

+ 2(v∗y)

∣∣∣∣w∗/2

0

= 0 (2.9)

Assumption 5 No-slip conditions are assumed at the fracture surface, and the shear dis-
placement of the fracture surface is assumed to be small compared to its transverse move-

ment, such that vx

∣∣∣∣
w/2

= u̇x

∣∣∣∣
w/2

≈ 0, in which u̇x is the longitudinal rock mass veloc-

ity. Therefore, this derivation is not applicable to flows in which the longitudinal move-
ment/shear displacement of the fracture surfaces is large.

No-slip conditions are assumed at the fracture surface, which implies that the fluid velocity
at the wall is equal to the velocity of the wall. The shear velocity of the wall is then assumed
to be small compared to its transverse movement, such that it is negligible. The boundary
condition is therefore stated as

v∗x

∣∣∣∣
w∗/2

= 0 (2.10)
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While longitudinal movement of the rock mass is assumed to be small, transverse movement
is not neglected. The rate of aperture change, ẇ∗, is equal to the sum of the transverse
velocity of each fracture surface. Therefore, due to symmetry and the no-slip boundary
condition, the transverse velocity at the fracture surface is

v∗y

∣∣∣∣
w∗/2

=
1

2

∂w∗

∂t∗
(2.11)

Next, let the non-dimensional fluid flux through the fracture be defined as

q∗ = 2

∫ w∗/2

0

v∗xdy
∗ = w∗v∗x (2.12)

in which v∗x is the mean velocity over the aperture. Simplifying equation (2.9) with equa-
tions (2.10), (2.11), and (2.12), the continuity equation is given as

∂q∗

∂x∗ +
∂w∗

∂t∗
= 0 (2.13)

Next, we will examine the conservation of momentum given by equation (2.7). Integrating
the equation over the aperture gives

∂

∂t∗

(
2

∫ w∗/2

0

v∗xdy
∗

)
− ∂w∗

∂t
v∗x

∣∣∣∣
w∗/2

+ 2

∫ w∗/2

0

(
v∗x

∂v∗x
∂x∗ + v∗y

∂v∗x
∂y∗

)
dy∗

= −w
∂p∗

∂x∗ +
4µλ

ρfV w2

[
2

∫ w∗/2

0

∂2v∗x
∂y∗2

dy∗

] (2.14)

The first term in equation (2.14) may be simplified using equation (2.12), such that

∂

∂t∗

(
2

∫ w∗/2

0

v∗xdy
∗

)
=

∂q∗

∂t∗
(2.15)

while the second term disappears through the no-slip boundary condition (2.10). The third
term in (2.14) can be simplified through the continuity equation (2.6) and integration by
parts. This operation is the one-dimensional equivalent to inversing the simplification of the
convective term in the incompressible Navier-Stokes equation, where∇·(v⃗v⃗) = v⃗∇·v⃗+v⃗·∇v⃗,
and ∇ · v⃗ = 0 from continuity.

2

∫ w∗/2

0

(
v∗x

∂v∗x
∂x∗ + v∗y

∂v∗x
∂y∗

)
dy∗ = 2

∫ w∗/2

0

(
v∗x

∂v∗x
∂x∗ − v∗x

∂v∗y
∂y∗

)
dy∗ (2.16)

From equation (2.6), ∂v∗x
∂x∗ = −∂v∗y

∂y∗
,

= 2

∫ w∗/2

0

(
v∗x

∂v∗x
∂x∗ − v∗x

(
−∂v∗x
∂x∗

))
dy∗ (2.17)

=
∂

∂x∗

(
2

∫ w∗/2

0

(v∗x)
2dy∗

)
(2.18)
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We can further simplify this term by assuming that we know something about the shape
of the velocity profile across the aperture.

Assumption 6 Let the velocity v∗x(x
∗, y∗, t∗) be expressed as v∗x(x

∗, y∗, t∗) = v∗x(x
∗, t∗)

·N
(
y∗

w∗ , x
∗), in which N is a shape function describing the velocity profile over the aperture.

N is expressed as a function of the position along the aperture, y∗/w∗.

We will introduce a momentum correction factor, α, which will allow us to express (2.18) as
a function of the dimensionless fluid flux and aperture. The momentum correction factor
is determined as

2

∫ w∗/2

0

(v∗x)
2dy∗ = 2

∫ w∗/2

0

(v∗xN)
2
dy∗ = α

(q∗)2

w∗ (2.19)

α(x∗) =
2

w∗

∫ w∗/2

0

(
N

(
y∗

w∗ , x
∗
))2

dy∗ (2.20)

Thus, assuming we know the velocity profile across the aperture, we can determine the
momentum correction factor. The momentum correction factor can be interpreted as
a measure of how much more momentum is forced into a control volume by the non-
constant velocity profile compared to a uniform velocity profile. α = 1 would indicate a
perfectly uniform velocity profile, which would be physically inadmissible due to the no-
slip boundary conditions, therefore α > 1 for all physically admissible velocity profiles.
In plug flow conditions, where v∗xmax ≈ v∗x, α → 1. For fully developed duct flow with a
parabolic velocity profile in which v∗xmax = 1.5v∗x, α = 1.2. α > 1.2 indicates a sharper
velocity profile than parabolic, in which the maximum velocity is greater than 1.5v∗x. The
momentum correction factor is a unitless scalar but is not necessarily a constant if the
velocity profile changes along the fracture.

Last, consider the shear stress term from equation (2.14).

κ

[
2

∫ w∗/2

0

∂2v∗x
∂y∗2

dy∗

]
= 2κ

∂v∗x
∂y∗

∣∣∣∣w∗/2

0

, κ =
4µλ

ρfV w2 (2.21)

From the symmetry condition at the centerline, the shear stress is subject to the boundary
condition

∂v∗x
∂y∗

∣∣∣∣
0

= 0 (2.22)

So that the shear stress term becomes

f v∗ = 2κ
∂v∗x
∂y∗

∣∣∣∣
w∗/2

(2.23)

and is therefore a body force term equal to the shear stress that is exerted on the fracture
walls by the fluid. Combining the various terms, the conservation of momentum is therefore
given as

∂q∗

∂t∗
+

∂

∂x∗

(
α
(q∗)2

w∗

)
= −w∗ ∂p

∗

∂x∗ + f v∗ (2.24)
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2.2.2 Dimensional form of the governing equations

The parameter κ = κ(λ), λ = λ(U) is the only part of the formulation that is dependent
on the transverse velocity, U . We can remove this dependence by transferring the system
of equations back to dimensional form.

∂q

∂x
+

∂w

∂t
= 0 (2.25)

∂q

∂t
+

∂

∂x

(
α
q2

w

)
= − w

ρf

∂p

∂x
+ f v (2.26)

α =
2

w

∫ w/2

0

N2dy (2.27)

f v =
2µ

ρf

∂vx
∂y

∣∣∣∣
w/2

(2.28)

2.2.3 Flow cases - fully laminar and turbulent flow

To calculate the friction force and momentum correction factor, there must be an assump-
tion about the shape of the velocity profile. In this section, we will examine the cases of
fully developed laminar and turbulent flow through parallel plates.

Fully developed laminar flow

In fully developed laminar flow through parallel plates, the velocity profile is parabolic,
such that

vx = vmax

(
1−

(
2y

w

)2
)
, {−w

2
≤ y ≤ w

2
}, vx =

2

3
vmax (2.29)

Thus, we can calculate the momentum correction factor and the dissipation force.

α =
6

5
(2.30)

f v = −12µ

ρf

q

w2
(2.31)

In laminar flow, we expect that the friction term will take the general form of (2.31) with
respect to the flow and geometry parameters, but that the numerical coefficient will change
depending on the velocity profile. We therefore introduce the viscous friction coefficient,
β, where

f v = −β
µ

ρf

q

w2
(2.32)

β = −2
w2

q

∂vx
∂y

∣∣∣∣
w/2

(2.33)
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in which β = 12 for the aforementioned parabolic velocity profile. For apertures that are
not uniform and flow that is not fully-developed, the parameters α and β would not be
constants and would instead take a general form α = α(Re,∇w), β = β(Re,∇w). It is
not possible to derive an analytical expression for α and β, as the velocity profiles are in
general a function of both the upstream and downstream flow conditions and geometries.
Therefore we will assume that all laminar flow follows a parabolic velocity profile and use
constant coefficients and check the validity of that assumption later.

Fully turbulent flow

Turbulent flow is a phenomenon that occurs at high Reynolds numbers in which random
violent eddies form and dissipate due to the instability of the velocity profile to minor
perturbations at high flow rates. This is a different phenomenon from the fundamentally
two-dimensional behaviour of stable eddy formation around surface asperities, and is in-
stead a stochastic and chaotic phenomenon. In pipe flow, the laminar regime tends to
break down around Re ≈ 2 × 103, which equates to an equivalent Reynolds number of
1400 based on the equivalent hydraulic diameter of a fracture [26].

For turbulent flow, we can apply the same derivation to the time-averaged Navier-Stokes
equations [44]. Repeating the non-dimensionalization, we again recover that ∂p

∂y
= 0. The

equation governing the conservation of momentum therefore becomes

∂q′

∂t
+

∂

∂x

(
α
q′2

w

)
= − w

ρf

∂p′

∂x
+ f v − f t (2.34)

f t =

∫ w/2

−w/2

(
∂

∂x
(v2x) +

∂

∂y
(vxvy)

)
dy (2.35)

in which i′ denotes the time averaged flow variables, and i denotes the random fluctuations
of the flow variables. f v now represents the momentum dissipation due to viscous forces,
while f t represents the momentum dissipation due to turbulent eddy motion. The turbulent
force can be simplified using the no-slip boundary condition, (2.10), such that

f t =
∂

∂x

(∫ w/2

−w/2

(v2x)dy

)
(2.36)

It is difficult to say anything more about the velocity fluctuations from an analytical
standpoint. They cannot be evaluated without an empirical correlation or full CFD solu-
tion. Fractures and ducts share similarities in their geometry, although fractures contain
much higher surface roughness and aperture variations. For simplicity, we will assume
that fractures and ducts have similar behaviour, which will let us combine the viscous and
turbulent forces into a single dissipation force and adopt the form of the Darcy-Weisbach
equation:

f = f v + f t =
1

2

fD
w2

q2 (2.37)

in which fD is the Darcy friction factor. We can now make use of the many empirical friction
models that have been proposed over the years to capture friction losses in turbulent duct
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flow. Here we will propose adopting the phenomenological Colebrook-White equation for
duct flow [45],

1√
fD

= −2 log

(
ϵ

3.7Dh

+
2.51

Re
√
fD

)
if Re > 4000 (2.38)

in which the hydraulic diameter, Dh, can be expressed in terms of the aperture as Dh = 2w
and linearly interpolating the friction factor in the transitional regime (2000 < Re < 4000).
More complex friction laws which more accurately capture the complete transition between
laminar and turbulent flow, for example the Yang-Dou model [46], could easily be adopted
instead. The Colebrook-White equation is based on steady-state turbulent flow through
pipes and is suggested for simplicity. It should be replaced with a more appropriate model
in cases where unsteady turbulent flow is important.

Lastly, to calculate the momentum correction factor, α, the velocity profile in turbulent
flow may be roughly approximated using a power law expression [44]:

v′x ≈ 8

7
v′x

(
1− 2y

w

) 1
7

, {0 ≤ y ≤ w

2
} (2.39)

This approximate profile fails close to the walls as the velocity gradient is asymptotic, but
since we have incorporated the viscous force into the Darcy-Weisbach friction force, the
approximate profile is sufficient to calculate the momentum correction factor. We find
that α = 64

63
— the plug flow velocity profile characteristic of turbulent flow results in a

momentum correction factor much closer to 1 than the parabolic laminar profile.

2.2.4 General case

The governing set of equations in fracture flow may be summarized as follows:

∂w

∂t
+

∂q

∂x
= 0 (2.40)

∂q

∂t
+

∂

∂x

(
α
q2

w

)
= − w

ρf

∂p

∂x
− 1

2

fD
w2

q|q| (2.41)

α = α(Re,∇w) ≈

{
6
5

if Re < 2000
64
63

if Re > 4000
(2.42)

fD =

{
2β
Re
, β = β(Re,∇w) ≈ 12 if Re < 2000

1√
fD

= −2 log( ϵ
7.4w

+ 2.51
Re

√
fD
) if Re > 4000

(2.43)

Re =
ρfvxw

µ
=

q

ν
(2.44)

The model summarized in this section will be refered to as the GG22 Fracture Flow Model
[41]. In general, one additional governing equation (typically the equilibrium of forces)
is required to describe the relationship between the deformation of the aperture and the
fluid pressure, w = w(p). The GG22 model is more complex than Poiseuille flow, as it is
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described by two fields instead of one and requires solving a second non-linear differential
equation. However, it does not come with the same computational burden as the full
Navier-Stokes equations, as the assumptions about the behaviour over the cross section
allow us to reduce the fracture volumes to fracture planes.

2.2.5 Extension to planes

Consider the case of a two-dimensional plane with deformable aperture which lies upon
the x − z cartesian plane. The same set of assumptions can be made and the same
derivation can be followed for a domain in which vz ̸= 0 to derive a planar version of
the general GG22 equations. The velocity components are non-dimensionalized according
to vx = V v∗x, vz = V v∗z and vy = Uv∗y. The coordinate systems are non-dimensionalized

according to x = λx∗, z = λz∗ and y = w
2
y∗, in which λ = w

2
V
U

. Following the same
procedure as before, the governing set of equations is given by

∂w

∂t
+∇ · q = 0 (2.45)

∂q

∂t
+∇ ·

(α
w

· qq
)
= − w

ρf
∇p− 1

2

fD
w2

{q} · |{q}| (2.46)

Re =
||q||
ν

(2.47)

q =

[
qx
qz

]
(2.48)

{q} =

[
qx 0
0 qz

]
(2.49)

α =

[
αx 0
0 αz

]
(2.50)

2.3 Physical Interpretations and Implications of the

Model

In this section, the physical interpretation and implications of each term in the new formu-
lation will be explored, the cases under which we can recover Poiseuille and Forchheimer
flows will be examined, and conservation of energy in the fluid will be discussed.

2.3.1 Physical interpretation of each term

Consider the derived equation for conservation of momentum in fully developed laminar
flow, which can be expanded and rearranged as

∂p

∂x
= −ρf

w

∂q

∂t
− ρfq

2

w2

∂α

∂x
− α

2ρfq

w2

∂q

∂x
+ α

ρfq
2

w3

∂w

∂x
− βµ

q

w3
(2.51)

Let us examine the physical interpretation of each term in the equation of motion:
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Term 1 Transient flux term, −ρf
w

∂q
∂t

This term relates a component of the pressure gradient to changes in fluid flux over time.
If the fluid flux is not constant over time, then there is an additional component to the
pressure gradient that is required to overcome the fluid inertia and change the fluid flux.
This temporal component of the flux is not captured by Poiseuille flow, which assumes
steady state flow.

Term 2 Velocity profile term, −ρf q
2

w2
∂α
∂x

This term relates a component of the pressure gradient to the change in the velocity profile
along the length of the fracture and is associated with inertial convective forces. In fully-
developed parallel plate flow, the velocity profile does not change along the length of the
fracture, and so this term disappears. Factored by q2, this term becomes more important
in high Re flows, and less important in viscous flows. If α is increasing along the fracture,
it indicates that the velocity profile is becoming sharper - i.e the maximum velocity is
increasing relative to the average velocity. If α is decreasing along the fracture, then
the velocity profile is becoming blunter — moving towards a plug flow profile with the
maximum velocity decreasing relative to the average velocity. The negative sign indicates
that an increase in maximum velocity results in a decrease in pressure, and a decrease in
the maximum velocity results in an increase of pressure. This term therefore enables a
transfer of energy from kinetic energy in the form of velocity to potential energy in the
form of pressure (further discussion on the conservation of energy in Section 2.3.3).

Term 3 Spatial flux/moving boundary term, −α
2ρf q

w2
∂q
∂x

This term relates a component of the pressure gradient to the flux gradient and is associated
with convective forces. This term determines how much the momentum must change due
to expansion and contraction of the fracture aperture. From continuity, this term can also
be written as

−α
2ρfq

w2

∂q

∂x
= α

2ρfq

w2

∂w

∂t
(2.52)

such that if the aperture exists in a perfectly rigid and static domain (ẇ = 0), the flux
must be constant along the length of the fracture and this term disappears.

Term 4 Aperture gradient term, α
ρf q

2

w3
∂w
∂x

This term relates a component of the pressure gradient to the aperture gradient, as the
change in aperture will create a change in velocity. This term means that the formulation
is not restricted to the assumption of parallel plate flows and is a major improvement over
Poiseuille flow. Factored by q2, this term becomes more important in high Re flows, and
less important in viscous flows. Like the velocity profile term, this term enables a transfer
between kinetic energy and fluid pressure.

The aperture term is interesting because it allows for a positive pressure gradient to develop
in a diverging flow field (aperture increasing in the direction of flow) in which friction losses
are small. Such behaviour is impossible under the Poiseuille flow model but can be shown
to occur in reality at even moderate Reynolds number flows in varying aperture, such as
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those considered later in Section 2.4.3. Figure 2.2 plots the ratio between the GG22 and
Poiseuille flow pressure gradients for steady-state laminar flow between rigid non-parallel
plates as a function of aperture gradient and Reynolds number:

∇pGG22

∇pPF

=
α∂w

∂x
− β

Re
−12
Re

, α = 1.2, β = 12 (2.53)

A ratio of 1 indicates that the pressure gradients of both models are identical, while
deviations from 1 indicate the relative change caused by the aperture gradient term in
the GG22 model. The zero contour indicates where the GG22 model predicts no change
in pressure, because pressure increases due to slowing of the fluid at the same rate that
pressure is dissipated by friction. The negative contours at positive aperture gradient and
high Reynolds number indicate the region in which such positive pressure gradients would
be expected.

Figure 2.2: Ratio of gradients between the Poiseuille flow and GG22 models assuming
steady laminar flow conditions in a rigid aperture with constant α = 1.2 and β = 12.
Ratios not equal to one indicate changes in the pressure gradient due to deviations in
aperture.

Term 5 Viscous friction term, −βµ q
w3

This term relates a component of the pressure gradient to viscous friction dissipation and
is the only term to appear in the Poiseuille flow formulation. In steady-state laminar
parallel plate flow, all terms except this one disappear and the Poiseuille flow formulation
is recovered. The negative sign indicates that, in the absence of other factors, fluid flows
in the opposite direction of the pressure gradient. Viscous forces do work on the fluid,
dissipating the potential energy that exists in the form of fluid pressure.

2.3.2 Quasi-steady flow conditions

In this section, we will consider what happens to the GG22 model under steady flow
conditions and show that previously proposed flow models exist within the solution space
of the GG22 model.
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Poiseuille flow

Consider the case of steady laminar flow through rigid parallel plates, such that q̇ = 0, ẇ =
0, q,x = 0, w,x = 0, and α,x = 0. In this case, we can reduce the governing equations (2.40)
and (2.41) to

− w

ρf

∂p

∂x
− 12µ

ρf

q

w2
= 0 (2.54)

which we can rearrange to find

∂p

∂x
= −12µ

w3
q (2.55)

thus recovering the Poiseuille flow constitutive relationship between pressure and fluid flux.
Therefore, we can conclude that Poiseuille flow exists within the solution space of the GG22
model.

Forchheimer Flow

Forchheimer flow is a non-linear extension to Darcy flow through porous media [39]. In
fracture flow, this relationship takes the form

∂p

∂x
= −12µ

w3
q + γq2 (2.56)

in which γ is an empirical coefficient. While Forchheimer flow does not see much use in
modern models, there have been efforts to determine the value of the empirical coefficient
γ for fracture flow [35, 36]. Forchheimer flow offers the advantage of being a two-field
model (u− p), as opposed to the three-fields required by the GG22 model (u− q − p). In
this section, we will recast the GG22 model as a two-field model to derive an analytical
expression for the previously empirical coefficient.

If we assume that the flow is steady, q̇ = 0, and the aperture is rigid, ẇ = 0, ∂q
∂x

= 0, then
we can express the pressure gradient as

∂p

∂x
= −12µ

w3
q +

(
α
ρf
w3

∂w

∂x
− ρf

w2

∂α

∂x

)
q2 (2.57)

Comparing (2.56) and (2.57), the empirical coefficient can be expressed as

γ = α
ρf
w3

∂w

∂x
− ρf

w2

∂α

∂x
(2.58)

so that the constitutive relationship between pressure and fluid flux can be expressed
as

∂p

∂x
= −12µ

w3
(1− F0)q (2.59)

F0 =

(
α

ρf
12µ

∂w

∂x
− ρfw

12µ

∂α

∂x

)
q (2.60)
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in which F0 is the nonlinear coefficient known as the Forchheimer number. The Forchheimer
number is a function of the flow rate, q, the fracture geometry, w,∇w, and the distribution
of fluid velocity across the aperture, α. As the fluid flux goes to zero, so too does the
Forchheimer number, and the standard Poiseuille flow formulation is recovered.

Forchheimer flow offers the advantage of being a two-field model, but this advantage is
accompanied by physical restrictions, albeit fewer restrictions than Poiseuille flow. This
formulation for Forchheimer flow is only applicable to rigid fractures and quasi-steady state
flow conditions.

2.3.3 Conservation of energy

Consider Bernoulli’s principle between points A and B along a rigid fracture of varying
aperture in steady-state laminar flow. The total energy of the fluid at each point is the
sum of potential energy and kinetic energy, which are functions of the fluid pressure and
fluid velocity, respectively. The points are assumed to be at the same elevation. We will
integrate over the cross sections A and B to examine the conservation of energy of the bulk
fluid. We can therefore state the conservation of energy over the cross section as

1

2
ρf

∫ wA/2

−wA/2

v2dy +

∫ wA/2

−wA/2

pdy =
1

2
ρf

∫ wB/2

−wB/2

v2dy +

∫ wA/2

−wA/2

pdy + f (2.61)

in which f > 0 is the energy dissipated by viscous forces. Assuming the velocity profile does
not change between cross sections A and B (constant α), we can rearrange this expression
to determine that the pressure difference between any two points in a fracture is equal
to the energy dissipated by viscous friction, plus an additional transfer of energy between
kinetic energy and fluid pressure.

∆p = pB − pA =
1

2
αρfq

2

(
1

w2
A

− 1

w2
B

)
− f (2.62)

When Poiseuille flow is adopted, we can integrate the constitutive equation between points
A and B to find that the pressure difference is

∆p =

(
pA +

∫ B

A

∂p

∂x
dx

)
− pA (2.63)

∆p = −12µqξ, ξ =

∫ B

A

w−3dx > 0 (2.64)

Comparing the terms in (2.62) and (2.64), it is clear that Poiseuille flow only contains a
single term to describe the dissipation by viscous friction, such that f = 12µqξ. There is no
additional term to transfer energy between kinetic and potential energy, and therefore the
Poiseuille flow constitutive model does not conserve energy when applied to flow through
varying aperture fields. The lost energy may be small if the difference in aperture is small,
but it is still non-zero.
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Next, consider the case of adopting the GG22 model, assuming constant α and β. The
pressure difference between any two points can be determined as

∆p =

(
pA +

∫ B

A

∂p

∂x
dx

)
− pA (2.65)

∆p = αρfq
2ξ2 − βµqξ (2.66)

ξ2 =

∫ B

A

w−3∂w

∂x
dx =

1

2

(
1

w2
A

− 1

w2
B

)
(2.67)

∆p = αρfq
21

2

(
1

w2
A

− 1

w2
B

)
− βµqξ (2.68)

Comparing (2.62) and (2.68), it can be observed that the GG22 model contains the addi-
tional term to transfer energy between kinetic energy and fluid pressure. Therefore, the
GG22 model conserves energy in non-uniform aperture fields, while the Poiseuille flow
model does not. The assumption of constant α is made to simplify the presentation of the
analysis, and energy is still conserved in the case of non-constant α.

2.4 Comparisons of Navier-Stokes, GG22, and Poiseuille

Flow Models

In this section, we will examine the solutions of the full Navier-Stokes, the GG22, and
the Poiseuille flow models in three different simple flow problems in which closed-form
solutions to the Poiseuille and GG22 models are readily derived. These comparisons will
demonstrate the shortcomings of the Poiseuille flow model and quantitatively measure the
error in adopting the GG22 and Poiseuille flow models.

2.4.1 Transient fluid flow between parallel plates

Consider the flow through a channel of length L that is defined by rigid static parallel
plates with aperture w0, as illustrated in Figure 2.3. The pressure at the outlet is fixed
at pout = p0, while the pressure at the inlet oscillates such that pin = p0 + sinΩt. The
resulting flow rate between the inlet and outlet, q, is then a function of time. This example
demonstrates that the transient inertial behaviour of the fluid is important.

Assuming that the flow is laminar, this problem may be solved analytically for all three flow
models. The solution is expressed in terms of the dimensionless flux, q∗, defined as

q∗(t) =
12µL

w3
0

q(t) (2.69)

The solution to the Navier-Stokes model and the GG22 model are identical and given
by

q∗ =
−ϕ

Ω2 + ϕ2

(
ΩcosΩt− ϕ sinΩt− Ωe−ϕt

)
, ϕ =

12µ

ρfw2
0

(2.70)
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Figure 2.3: Domain for oscillating pressure inlet condition between parallel plates

in which ϕ is the fundamental frequency of the fluid-fracture system. The Poiseuille flow
solution is given by

q∗ = sinΩt (2.71)

The Navier-Stokes and GG22 solution is a function of the fundamental frequency of the
fluid, ϕ, and the excitation frequency, Ω. The Poiseuille flow solution, as it assumes quasi-
steady state conditions, is only a function of the excitation frequency.

The solutions for different ratios of excitation frequency compared to natural frequency
are illustrated in Figure 2.4. When the excitation frequency is small compared to the
fundamental frequency (Ω << ϕ), the GG22 and Navier-Stokes solutions converge to the
quasi-steady state Poiseuille flow solution and the flow rate changes synchronously with
the inlet pressure. When the excitation frequency is large compared to the fundamental
frequency (Ω >> ϕ), the inertial forces are large and very little flow occurs. When the ex-
citation and fundamental frequency are similar (Ω ∼ ϕ), there is strong coupling behaviour
in the response of the fluid which affects the magnitude of the flow rate and causes the
flow rate to lag the boundary condition.

The expected range of the fundamental frequency ϕ is large due to the variability of
aperture in rock mass systems. Assuming the properties of water, ϕ ranges from ∼12
MHz for apertures of 1 µm to 0.12 Hz for apertures of 1 cm. Consider for example
the range of excitation frequencies associated with seismic waves, ranging from 10-150 Hz
[4]. Coupling effects are thus expected in fractures with apertures greater than 100 µm
(ϕ = 1200Hz,Ω/ϕ = 0.125). This example demonstrates how transient inertial fluid forces
can affect the flow rate, and how the Poiseuille flow model is incapable of capturing this
behaviour.

2.4.2 Transient fluid flow between oscillating parallel plates

Consider the flow through a submerged channel of length 2L in which the aperture is
defined by parallel plates that oscillate at a fixed amplitude, A, and frequency, Ω, such
that w = w0(1 +A sinΩt), as illustrated in Figure 2.5. The pressure at the outlets is fixed
at pout = p0, and the flux q must be zero at the center of the channel due to symmetry.
This problem captures both inertial transient and inertial convective effects since the flux
is not constant along the length of the domain.
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Figure 2.4: Dimensionless flow rate through parallel plates with oscillating inlet pressure

Figure 2.5: Domain for flow in and out of submerged channel with oscillating parallel plates
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While the GG22 and Poiseuille flow solutions may be solved analytically by assuming
laminar flow, the Navier-Stokes solution for this problem is non-trivial both analytically
and numerically due to the moving boundaries. This example will therefore only compare
the results of the GG22 and Poiseuille flow solutions.

For both flow models, the fluid flux is given by the continuity equation, such that

q = −ẇx (2.72)

The pressure profile along the channel for the Poiseuille flow solution is

p = p0 +
12µẇ

w3

L2

2

[(x
L

)2
− 1

]
(2.73)

The pressure profile along the channel for the GG22 solution, assuming constant α and β,
is

p = p0 +

(
ρf

(
ẅ

w
− 2α

(
ẇ

w

)2
)

+
βµ

w3
ẇ

)
L2

2

[(x
L

)2
− 1

]
(2.74)

To compare the models, we can examine the dimensionless pressure at the centerline (x =
0),

p∗ =
p(0, t)− p0

6Ωµ

(w0

L

)2
(2.75)

The dimensionless pressure at the centerline, p∗, for each model can then be simplified
to

Poiseuille p∗ =
−A cosΩt

(1 + A sinΩt)3
(2.76)

GG22 p∗ =
Ω

ϕ

(
A sinΩt

1 + A sinΩt
+ 2α

(
A cosΩt

1 + A sinΩt

)2
)

− A cosΩt

(1 + A sinΩt)3
, ϕ =

12µ

ρfw2
0

(2.77)

The dimensionless pressure at the centerline for an amplitude of A = 0.25 is plotted as a
function of time in Figure 2.6. Changing the amplitude of the oscillations increases the
peak pressures but does not otherwise change the behaviour of the solutions.

First consider the behaviour of the quasi-steady Poiseuille flow model. In the Poiseuille
flow model, flow only ever moves due to the presence of a pressure gradient. Since the
conservation of mass forces fluid in and out of the channel, the pressure gradient develops
to accommodate this flow. When the aperture reaches a peak or a trough, there is a zero-
pressure gradient at that instant as the fluid momentarily stops before reversing direction.
The time history for pressure incurs a phase shift towards the aperture troughs because
the smaller apertures require larger gradients to move the fluid.

Next, consider the behaviour of the GG22 model which depends on the fundamental fre-
quency of the fluid, ϕ. When the oscillation frequency is small compared to the fundamental
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Figure 2.6: Dimensionless pressure at the centerline of parallel plates oscillating with an
amplitude of A = 0.25.

frequency (Ω < ϕ), the behaviour trends towards the quasi-static Poiseuille solution. When
the oscillation frequency is large compared to the fundamental frequency (Ω > ϕ), inertial
effects dominate the response and the solution deviates significantly from Poiseuille flow.
Conservation of mass forces fluid in and out of the channel very quickly, but the inertial
forces try to resist this motion. The pressure gradient thus becomes synchronized with the
aperture oscillations but in the opposite direction to the Poiseuille flow gradient. When
fluid is being forced into the channel, the pressure increases at the centerline, to try and
push the fluid back out. When fluid is being forced out of the channel, the pressure de-
creases at the centerline, forming a large negative backpressure which sucks the fluid back
in.

This example illustrates the complex inertial convective behaviours that arise in problems
in which fracture aperture varies in time and which the Poiseuille flow model is incapable
of capturing.

2.4.3 Steady state fluid flow in channels of varying aperture

Consider the steady state flow through a rigid fracture of varying aperture, as shown in Fig-

ure 2.7. The domain is defined by a periodic aperture, such that w(x) = w0

(
1− ε cos

(
2πx
λw0

))
,

in which 0 ≤ ε < 1 is the characteristic amplitude, and λ is the characteristic wavelength
relative to the aperture. The sinusoidal aperture adopted here represents an anti-mated
fracture and is not necessarily representative of natural fracture geometry. It is instead
adopted due to its convenient mathematical properties. Fluid flows through the fracture
at a constant rate of q. The pressure at the outlet is fixed at a constant pressure p.

The GG22 and Poiseuille flow solutions can be solved analytically. The solution is ex-
pressed in terms of the dimensionless pressure distribution, p∗, as a function of the non-
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Figure 2.7: Domain for steady state flow through a fracture of varying aperture

Figure 2.8: Computational Domain for CFD simulation of steady-state flow through a
fracture of varying aperture.

dimensionalized coordinate λx∗ = x.

p∗ =
w2

0

ρfq
2 (p− p) = −ξ∗(1) + ξ∗(x∗), 0 ≤ x∗ ≤ 1 (2.78)

ξ(x∗) =

∫ x∗

0

∂p∗

∂x∗dx
∗ (2.79)

Poiseuille
∂p∗

∂x∗ = −λ
12

Re

1

(1− ε cos(2πx∗))3
(2.80)

GG22
∂p∗

∂x∗ = 2παε
sin(2πx∗)

(1− ε cos(2πx∗))3
− λ

12

Re

1

(1− ε cos(2πx∗))3
(2.81)

The solution to the Navier-Stokes equations for this problem is approximated using ANSYS
FLUENT CFD software. The computational domain is illustrated in Figure 2.8. Pressure
is prescribed at the outlet while the fluid flux is prescribed at the inlet using a fully
developed parabolic velocity profile. The computational domain contains an inlet and
outlet section with constant aperture. Symmetry is assumed along the centerline of the
model. The range of tested Reynolds number is limited to ensure that the flow remains
within the laminar regime, such that unsymmetric phenomena like turbulence and vortex
shedding are not expected. The interior of the domain is three wavelengths long and
whose sinusoidal aperture is defined by piecewise line segments at a resolution of λ/60.
The domain of interest is the central region 0 ≤ x ≤ λ, as illustrated in Figure 2.8.

To compare the two-dimensional pressure field obtained from CFD with the one-dimensional
models, the average pressure over the aperture for a given position, x, in the two-dimensional
model is computed at 61 evenly spaced cross sections along the domain of interest. The
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gradient of the extracted average pressures is computed using central differencing, with a
second order forward and backward differencing scheme used at each end point. The error
between the full Navier-Stokes solution and the reduced dimension models, ϵ, is calculated
as

ϵi =

√√√√√√
∫ 1

0

(
∂p∗NS

∂x∗ − ∂p∗i
∂x∗

)2
dx∗∫ 1

0

(
−12λ

Re(1−ε)3

)2
dx∗

(2.82)

in which
∂p∗NS

∂x∗ is the gradient of the average pressure from the full CFD model, and
∂p∗i
∂x∗

from either reduced dimension model. The error is normalized by the pressure gradient
through a parallel plate channel of width w = 1− ε.

The CFD simulations were run using the 3rd order MUSCL flux interpolation scheme and
a second order pressure interpolation scheme. The CFD simulations were solved using
ANSYS FLUENT’s pressure-based coupled solver. A coarser mesh was applied to the
inlet and outlet sections while a fine structured mesh was applied to the sinusoidal sections
between −λ ≤ x ≤ 2λ. The mesh was refined for each combination of ε and λ at Re = 0.01
until the outputted average pressures converged to a relative change < 10−4 from the
previous mesh. The number of cells ranged from 8×104 in shortest domains, up to 5×105

in the longest domains.

The CFD model was run for amplitudes ranging from ε = 0 to ε = 0.7, wavelengths from
λ = 1 to λ = 20, and Reynolds numbers ranging from Re = 0.01 to Re = 1000. All cases
converged to a steady-state solution. While some cases displayed stable eddy formation,
no cases displayed any indication of vortex shedding or developing turbulence. Figure
2.9 shows a selection of pressure contours throughout the fractures in which the GG22
model performs well and performs poorly. Figure 2.10 shows the corresponding transverse
velocity contours and streamlines within the fractures. As seen in figures 2.9 and 2.10, the
reduced dimension models perform well in cases where the transverse pressure gradients
and transverse velocities are small. The reduced dimension models perform poorly in
cases where the transverse pressure gradients are not negligible, the transverse velocities
are not small, and fundamentally two-dimensional phenomena are observed. Such two-
dimensional phenomena include the development of eddies within the aperture peaks, and
the longitudinal velocity maintaining its speed as it exits the narrowed aperture regions,
demonstrating behaviour akin to a jet rather than fracture flow.

Figure 2.11 shows the distribution of the pressure gradient over a selection of wavelengths
and Reynolds number at ε = 0.3. Lastly, Figure 2.12 shows the error curves as a function
of Reynolds number for tested wavelengths and amplitudes, while Figure 2.13 shows the
relative improvement in error between the GG22 and Poiseuille flow models.

The case of ε = 0 corresponds to parallel plates, which both the Poiseuille and GG22
models capture exactly. This case provides an estimate of the error that results from: the
convergence of the non-linear CFD solver, the CFD mesh, the resolution of the extracted
average pressure curve, and the calculation of the numerical gradient. This error of 10−4

is at least an order of magnitude smaller than the error observed in any of the other cases,
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(a) ε = 0.3, λ = 15, Re = 0.1 (b) ε = 0.5, λ = 5, Re = 500

(c) ε = 0.3, λ = 15, Re = 10 (d) ε = 0.5, λ = 10, Re = 500

(e) ε = 0.3, λ = 15, Re = 100 (f) ε = 0.5, λ = 15, Re = 500

Figure 2.9: Examples of pressure contours from the CFD cases. Figures 2.9a and 2.9c
are examples where the GG22 model performs well and the pressure gradient is negative
throughout the fracture. Figure 2.9e is an example where the GG22 model performs well,
but a positive pressure gradient develops due to expansion of the fracture and slowing of
the fluid velocity. Figures 2.9b, 2.9d, 2.9f are examples where the GG22 model performs
poorly, due to significant transverse pressure gradients and positive longitudinal pressure
gradients associated with the formation of eddies.
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(a) ε = 0.3, λ = 15, Re = 0.1 (b) ε = 0.5, λ = 5, Re = 500

(c) ε = 0.3, λ = 15, Re = 10 (d) ε = 0.5, λ = 10, Re = 500

(e) ε = 0.3, λ = 15, Re = 100 (f) ε = 0.5, λ = 15, Re = 500

Figure 2.10: Examples of transverse velocities and streamlines from the CFD cases. Figures
2.10a, 2.10c, and 2.10e are examples where the GG22 model performs well. Despite the
different pressure contours illustrated in Figure 2.9, the transverse velocities are all small,
and the streamlines follow the aperture. Figures 2.9b, 2.9d, 2.9f are examples where the
GG22 model performs poorly, due to significant transverse velocities and the development
of stable eddies within the aperture peaks. Fluid flows out of the aperture troughs like a
jet.
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(a) λ = 5, Re = 0.1
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(b) λ = 5, Re = 10
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(c) λ = 5, Re = 100
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(d) λ = 10, Re = 0.1
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(e) λ = 10, Re = 10
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(f) λ = 10, Re = 100
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(g) λ = 15, Re = 0.1
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(h) λ = 15, Re = 10
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(i) λ = 15, Re = 100

Figure 2.11: Pressure gradients from the reduced dimension models compared with the
gradient of the average pressure for selected wavelengths and Reynolds numbers at ε = 0.3.
The GG22 model shows the greatest improvements in the weak inertial regime. While error
increases with the Reynolds number, it decreases as the wavelength increases and still shows
a significant improvement over the Poiseuille flow model.
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Figure 2.12: Error in the gradient of the average pressure from the full Navier-Stokes
simulation compared to the reduced dimension models. Each subplot illustrates the error,
ϵ, as a function of Reynolds number, Re, for a corresponding wavelength, λ, and amplitude
ε. GG22 always performs at least as well if not better than Poiseuille flow. The exception
to this rule is the quadrant with short wavelengths and high Reynolds numbers, in which
neither model performs particularly well.
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Figure 2.13: Improvement in the error of the gradient of the average pressure when using
the GG22 model as opposed to Poiseuille flow. In the weak inertial regime, 1 < Re < 100,
improvements of up to 400% are observed.

so the error observed in the other cases is attributed to the differences in the models and
not the method by which the error is calculated.

As illustrated in Figure 2.12, the GG22 model always performs at least as well as the
Poiseuille flow model. The exception to this trend is the quadrant with high Reynolds
numbers and short wavelengths, in which the Poiseuille model has lower error not because
it is a better approximation of the physics, but rather because neither model performs well.
The error increases with increasing amplitude and decreases with increasing wavelength. As
expected, the error for any given wavelength and amplitude are linear piecewise continuous
functions of the Reynolds number. At low Reynolds numbers the error is constant and
with increasing Reynolds numbers the error increases logarithmically. The transition point
between the two behaviours occurs somewhere between 1 < Re < 100. We therefore define
three flow regimes based on the Reynolds number: the viscous regime (Re < 1), the weak
inertial regime (1 < Re < 100), and the strong inertial regime (Re > 100).

In the viscous regime (Re < 1), where inertial forces are negligible, the solution to the
Navier-Stokes equations is not a function of the Reynolds number and is instead only
a function of the geometry. Viscous forces dominate over inertial forces, such that the
non-linear terms in the GG22 model are small and the GG22 model tends towards the
Poiseuille flow model, and hence why no improvement in the error is observed. Error in
this regime is generally small (< 5%) and both reduced dimension models are generally
good at predicting the pressure profile, though error increases when the wavelength is short.
This behaviour is as expected and is consistent with observations from previous studies of
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Figure 2.14: Error in the viscous regime as a function of amplitude, ε and wavelength,
λ. Error in this regime does not depend on Reynolds number and is only a function of
geometry.

Poiseuille flow [8, 9, 38]. Figure 2.14 shows the error in the viscous regime as a function of
amplitude and wavelength.

In the weak inertial regime (1 < Re < 100), inertial forces start to influence the pressure
gradient. The error in the Poiseuille flow model increases logarithmically starting at a
Reynolds number of Re ≈ 1 for all aperture wavelengths and amplitudes. The GG22
model performs much better than Poiseuille flow, showing up to 400% improvements in
error. The GG22 model also eventually demonstrates logarithmically increasing error, but
the transition point is much later than that of the Poiseuille flow model. As the wavelength
increases, so too does the Reynolds number at which the GG22 transitions from constant
to logarithmically increasing error.

The comparably poor accuracy of the Poiseuille flow model in the weak inertial regime is
noteworthy because fracture flows in this domain are regularly encountered during indus-
trial processes such as hydraulic fracturing but are also possible during natural phenomena
like seismic events. Furthermore, the Poiseuille flow model demonstrates significant devia-
tions from the Navier-Stokes behaviour for fractures with even modest deviations from the
assumed parallel plate geometry. The errors associated with such modest deviations (as
opposed to those from surface roughness) have been presumed to be small in the majority
of hydraulic fracture and discrete fracture network analyses. The results here demonstrate
that significant deviations between the Poiseuille flow and Navier-Stokes behaviour exists
in common scenarios. The GG22 model is significantly more accurate in the weak inertial
regime for fractures with modest spatial variations in aperture.

In the strong inertial regime (Re > 100), error in both models is generally large as neither
model is particularly good at predicting the pressure gradient. The GG22 model still
sees improvements in error of at least 10% and up to 300% at long wavelengths. At
short wavelengths in this regime, fundamentally two-dimensional phenomena, such as the
development of stable eddies, are observed in the Navier-Stokes solution, which is not the
kind of behaviour that the reduced dimension models have been developed to capture. The
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Figure 2.15: Frequency of velocity profile coefficients extracted from Navier-Stokes CFD
solutions. Both the momentum correction factor and the viscous friction factor are heavily
clustered around the parabolic velocity profile values of α = 1.2 and β = 12.

CFD solutions show that at high Reynolds numbers and larger amplitudes, the velocity
profile resembles a jet in which flow is contained to a thin region around the centerline.
This suggests that improvements in error may be possible if an effective hydraulic aperture
is adopted at high Reynolds number, rather than using the geometric aperture.

Calculating the full Navier-Stokes solution also means that we have access to the velocity
profiles throughout each fracture. We can use these velocity profiles to calculate the true
values of the momentum correction factor α, and the viscous friction factor, β in each
tested case. Figure 2.15 shows the histograms of each factor extracted from the CFD
profiles. Any cases which exhibited negative flow in the longitudinal direction are ignored,
as they invalidate the assumptions behind these coefficients. Both factors are heavily
clustered around the parabolic velocity profile values of α = 1.2 and β = 12. The strong
inertial regime shows slightly higher standard deviations, but the mean values remain close
to the ideal parabolic profiles. While the pressure gradient predictions may be improved
using the calculated values of α and β, it is not possible to determine a general empirical
equation for the two factors from these cases. The factors display some correlation with
aperture curvature in the viscous regime, but it is not possible to differentiate whether this
is a correlation with aperture curvature or simply the aperture due to the cyclical nature
of the sinusoidal aperture. The factors also display some correlation to wavelength, λ,
and amplitude, ε, but these are parameters specific to the considered domain. Therefore,
we recommend that the momentum correction factor, α, and the viscous friction factor,
β, be considered as constants within the laminar flow regime, such that the factors only
change when the flow transitions into the transitional and turbulent flow regimes. For the
remainder of this thesis, β will be taken as β = 12.

This example shows the quantitative improvement in the ability of the GG22 model to
predict the pressure gradient in the case of steady state laminar flow through rigid non-
parallel apertures. Error in both models increases with Reynolds number and decreases as
the wavelength increases. While the error in the GG22 and Poiseuille models is similar in
the viscous regime (Re < 1), the GG22 model shows significant improvement in the weak
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inertial regime (1 ≤ Re ≤ 100). While the error increases in both models in the strong
inertial regime (Re > 100), the GG22 model still shows improvements over Poiseuille flow,
especially at longer wavelengths.

2.5 Conclusions

In this chapter, a new reduced-dimension model for flow through deformable fractures
has been derived and verified. By integrating the higher-order Navier-Stokes equations
over the aperture of the fracture and making simplifying assumptions, we can remove the
transverse component of flow from these equations. We thereby create a reduced-dimension
set of governing equations which do not require discretization across the aperture and thus
reducing the computational burden compared to the full Navier-Stokes equations while
still capturing inertial, turbulent, and transient flow behaviours.

The GG22 model is demonstrated to capture complex inertial and transient behaviours
under transient fluid boundary conditions and moving solid boundary conditions, and
conserve energy in non-parallel plate geometries. The GG22 model recovers the Poiseuille
flow model under Poiseuille flow conditions, and the non-linear extension to Forchheimer
flow is explored. The error between the full Navier-Stokes solution and reduced-dimension
models is quantified for steady-state laminar flow through sinusoidally varying aperture
fields. The GG22 model demonstrates up to 400% improvements in error over the Poiseuille
flow model. The error in the GG22 model increases at higher Reynolds numbers, but
decreases with increased wavelength.

At the cost of increased complexity, the GG22 model is demonstrated to be superior to the
Poiseuille flow model in all tested conditions. The next step in our investigation of inertial,
turbulent, and transient behaviours in fracture flow is to develop a mathematical method
to solve non-trivial boundary value problems and explore how fluid behaviour changes as
a result of these phenomena.
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Chapter 3

Numerical Methods for Solving the
GG22 Model

3.1 Introduction

Having derived the GG22 model governing equations, we need a method to obtain solutions
for non-trivial boundary value problems. The purpose of this chapter is to develop and
verify a novel numerical method to solve the governing equations of the GG22 model
subject to a given time and space varying aperture field that is uncoupled from the fluid
behaviour.

The GG22 and Navier-Stokes models share many similarities. Both models: are two-field
models; are governed by the conservation of mass and momentum; and do not have an
equation that directly governs the fluid pressure. This is fortunate, as it allows the GG22
model to make use of the abundance of literature on numerical methods for solving the in-
compressible Navier-Stokes equations. To name a few, these methods include the fractional
step method [47, 48], the pressure Poisson equation [49, 50], pressure-velocity coupling algo-
rithms like SIMPLE [51] and PISO [52] among others [53, 54], and artificial compressibility
[55] among many others. However, the GG22 model has several idiosyncrasies which must
also be addressed: the GG22 model does not include diffusion, which makes the conser-
vation of momentum an advective equation; the conservation of momentum contains an
additional non-linear body force term which accounts for momentum dissipated by both
viscous forces and turbulent eddy motion; and the GG22 model contains integrated me-
chanical coupling terms which govern how the fluid responds to changes in the aperture.
The lack of diffusion and the non-linear body force term lead to unstable simulations, so
additional corrective measures must be developed to adapt existing numerical methods for
the GG22 model.

It is popular to solve Poiseuille flow equations using implicit finite element methods [7,
13, 29, 56], as the governing equation simplifies to a parabolic diffusion equation. Due to
the advective nature of the GG22 equations, the finite volume method is instead adopted
due to its relative ease of handling advective equations compared to the finite element
method [57, 58, 59]. Implicit methods are popular for both Poiseuille flow and the Navier-
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Stokes models, as the diffusive terms in both models lead to an undesirable restriction in
explicit methods between the critical timestep, ∆tcrit, and the characteristic mesh size,
∆x, in which ∆tcrit ∝ ∆x2 [59]. As the GG22 model does not contain diffusive terms, it
avoids this undesirable restriction, and allows for the use of fast, low-cost explicit methods.
Furthermore, many applications of the GG22 model (such as pressure pulsing) are fast
processes which naturally require small timesteps, providing synergy to the use of an
explicit solution scheme.

In Section 3.3, an explicit finite volume method is presented. Next, Section 3.4 discusses
the stability of the numerical scheme through a perturbation analysis and methods to
address the instabilities are discussed. Section 3.5 and 3.6 verify the method against
known analytical solutions, and examine the convergence properties of the method. Last,
the response of the GG22 model to a travelling aperture wave is solved and explored for
the first time using the developed method in Section 3.8.

3.2 Governing Equations

This section summarizes the GG22 governing equations derived in Chapter 2. The equa-
tions governing the GG22 model are [41]

∂w

∂t
+

∂q

∂x
= 0 (3.1)

∂q

∂t
+

∂

∂x

(
α
q2

w

)
= − w

ρf

∂p

∂x
− 1

2

fD
w2

q|q| (3.2)

in which equation (3.1) represents the conservation of fluid mass, and equation (3.2) rep-
resents the conservation of fluid momentum through a fracture of varying aperture. They
are functions of the primary variables, fluid flux q(x, t) [m2/s], and fluid pressure p(x, t)
[Pa]. The fracture aperture is denoted by w(x, t) [m] and in this chapter is considered a
given field.

The equation of momentum is supplemented by two dimensionless coefficients which depend
upon the fluid flow regime and Reynolds number. The first coefficient, α, is the momentum
correction factor. The momentum correction factor is a function of the shape of the fluid
velocity profile across the aperture. The momentum correction factor is defined as

α = α(Re,∇w) ≈

{
6
5

if Re ≤ 2000
64
63

if Re ≥ 4000
(3.3)

Re =
ρfvw

µ
=

ρf |q|
µ

(3.4)

in which Re ≤ 2000 defines the laminar flow regime and Re ≥ 4000 defines the turbulent
flow regime. The momentum correction factor is calculated assuming a parabolic velocity
profile in the laminar regime, and assuming a power law velocity profile in the turbulent
regime.
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The second coefficient, fD, is the Darcy friction factor, defined as

fD =

{
24
Re

if Re ≤ 2000
1√
fD

= −2 log( ϵ
7.4w

+ 2.51
Re

√
fD
) if Re ≥ 4000

(3.5)

in which ϵ/w [m/m] is the relative roughness of the fracture. In the laminar regime, the
friction factor is determined analytically and accounts for viscous dissipation by a steady-
state parabolic velocity profile. In the turbulent regime the friction factor is approximated
by adopting phenomenological the Colebrook-White equation [45]. In the transitional
regime, 2000 < Re < 4000, the momentum correction and Darcy friction factors are
linearly interpolated.

3.3 Numerical Formulation

In this section, an explicit finite volume method for the GG22 equations is developed. Like
the Navier-Stokes equations, the GG22 model has no equation which governs the pressure.
Due to the similarities, explicit techniques developed for the Navier-Stokes equations can
be applied to the GG22 model. Unlike the Navier-Stokes equations, there is no diffusion in
the GG22 model, which means that the explicit formulation is not plagued by the timestep
restriction tcrit ∝ ∆x2 of explicit Navier-Stokes formulations. However, additional special
treatment is required to address the unique instabilities that arise in the GG22 equations.
The result is a fast and computationally efficient numerical formulation.

3.3.1 Pressure Poisson equation

The primary issue with the explicit formulation is that the governing equations do not
contain an equation to explicitly update the pressure. The second issue is that while the
momentum equation can update the fluxes, there is no guarantee that the updated fluxes
will satisfy continuity. A common technique, adopted here, is to create a new equation
which may be used to explicitly update the pressure and also ensures that the updated
pressure field enforces continuity on the updated fluxes. This new equation is known as
the Pressure Poisson Equation (PPE) [49, 50, 57].

To derive the PPE for the GG22 model, the transient terms in the momentum equation
are first discretized in time. A two-level backwards Euler method is adopted. On the
right-hand side of the equation, the friction and convective terms are lagged and evaluated
at timestep n− 1, while the pressure term is evaluated at the current timestep n.

1

∆t
(qn − qn−1) = −(Hn−1)−

(
w

ρf

∂p

∂x

)n

(3.6)

H =
∂

∂x

(
α
q2

w

)
+

1

2

fD
w2

q|q| (3.7)

Next, the spatial derivative (divergence) of the momentum equation is taken, giving

1

∆t

∂

∂x
(qn − qn−1) = − ∂

∂x
(Hn−1)− ∂

∂x

(
w

ρf

∂p

∂x

)n

(3.8)
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Using the continuity equation, (3.1), the divergence of q is replaced by the time derivative
of w in equation (3.8). Thus, the PPE can be used to update the pressures at timestep n
based on the fluxes at timestep n − 1, and on the rate of aperture change at timesteps n
and n− 1:

∂

∂x

(
w

ρf

∂p

∂x

)n

= − ∂

∂x
(Hn−1)− 1

∆t

(
−∂w

∂t

n

+
∂w

∂t

n−1)
(3.9)

Pressure boundaries, Γp, are Dirichlet conditions on the PPE. Flux boundaries, Γq, act as
Neumann boundary conditions on the PPE. An appropriate Neumann boundary condition
may be derived from the governing equations [49, 50]. By evaluating the momentum
equation at the flux boundary, we find

w

ρf

∂p

∂x

∣∣∣∣
Γq

= −∂q

∂t

∣∣∣∣
Γq

− ∂

∂x

(
α
q2

w

) ∣∣∣∣
Γq

− 1

2

fD
w2

q|q|
∣∣∣∣
Γq

(3.10)

in which q is the prescribed flux at the boundary.

3.3.2 Flux update and continuity correction

Once the pressures at timestep n have been determined, the fluxes can be easily updated
using the momentum equation, according to

qn∗ = qn−1 −∆t

(
Hn−1 +

w

ρf

∂pn

∂x

)
(3.11)

in which qn∗ is the uncorrected flux.

Here the derivation of the GG22 finite volume method deviates from the Navier-Stokes
methods. The developed PPE is supposed to enforce continuity in the fluxes when up-
dated, but there are two issues that arise. First, in the derivation of equation (3.9), we
made use of the relationship q,x = −ẇ. However the combined flux and friction term, H,
when expanded by the divergence operator, also contains the divergence of the flux. The
continuity equation has not been directly substituted into these terms, and thus continuity
was not rigorously enforced in the derivation of the PPE. The resulting fluxes therefore
only satisfy continuity if the previous fluxes exactly satisfy continuity. The second issue
is that small errors (such as round-off) arise in the fluxes. The fluxes at timestep n − 1
may satisfy continuity to numerical precision, but they do not satisfy continuity exactly.
Experience has demonstrated that the formulation is susceptible to small perturbations
which will accumulate and propagate in an unbounded fashion (explored further in section
3.4). The solution proposed in this article is to introduce an additional step to the explicit
scheme, which corrects the fluxes such that continuity is satisfied.

The fluxes are corrected by minimizing the differences between the new corrected fluxes,
qn, from the current fluxes, qn∗, while constraining the new fluxes to enforce continuity.
This problem can be addressed by introducing a Lagrange multiplier [57]. The problem is
therefore to find the saddle point of the Lagrangian

L =
1

2

∫ L

0

(qn − qn∗)2 dx−
∫ L

0

λ

(
∂

∂x
(qn) +

∂

∂t
(wn)

)
dx (3.12)
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Figure 3.1: Staggered finite volume mesh. The top row shows the domain of non-uniform
aperture divided into m uniform flux cells, while the bottom row shows the domain divided
into m+1 pressure cells. Aperture is taken at the interfaces of the flux cells and is assumed
to be linear over the cell.

in which λ = λ(x) is the Lagrange multiplier. This process yields an additional equation
for the Lagrange multiplier:

∂2λ

∂x2
=

∂

∂t
(wn) +

∂

∂x
(qn∗) (3.13)

subject to the boundary conditions λ = 0 on Γp, and λ,x = 0 on Γq. Full details of the
derivation are available in Appendix A. After solving for λ, the fluxes can then be corrected
according to

qn = qn∗ − ∂λ

∂x
(3.14)

3.3.3 Finite volume discretization

The governing equations are discretized in space using the finite volume method. A stag-
gered grid method is adopted [57, 59], and the domain is discretized into two meshes — one
for the fluxes, and an offset grid for the pressures. The finite volume mesh discretization
is illustrated in Figure 3.1.

The domain is discretized into m uniform flux cells of length ∆x. The aperture field is
discretized into m + 1 points taken at the flux cell faces, such that the aperture at the
cell faces is continuous. qi denotes the flux in each cell while wi− 1

2
denotes the aperture at

the left face while wi+ 1
2
denotes the aperture at the right face. The aperture is assumed

40



to vary linearly over each cell, such that wi = w = 1
2

(
wi− 1

2
+ w1+ 1

2

)
. The domain is

discretized into m + 1 pressure cells, which are offset from the flux cells, such that nodes
of the pressure cells are aligned with the faces of the flux cells. The pressure cells at the
ends of the domain are of length 1

2
∆x. The nodes of the cells at the beginning and end of

the domain are placed at x = 0 and x = L, rather than being placed at the centroid of the
cell, to ensure the pressure cell nodes remain aligned with the flux cell faces.

The finite volume method yields a system of discrete equations from the semi-discrete
equations (3.9), (3.11), and (3.13). Starting with the pressure cells, the PPE is integrated
over each cell from the starting position x = xe

1 to the end position x = xe
2.∫ xe

2

xe
1

∂

∂x

(
w

ρf

∂p

∂x

)n

dx = −
∫ xe

2

xe
1

∂

∂x
(H)n−1 dx−

∫ xe
2

xe
1

1

∆t

(
−ẇn + ẇn−1

)
dx (3.15)

wn

ρf

∂pn

∂x

∣∣∣∣xe
2

xe
1

= −Hn−1

∣∣∣∣xe
2

xe
1

− 1

∆t

(
−ẇn + ẇn−1

) ∣∣∣∣xe
2

xe
1

(3.16)

The pressure gradient is discretized using a central difference scheme. Special consid-
erations are necessary in the end cells to account for boundary conditions, which are
documented in Appendix B. The left-hand side simplifies to

wn

ρf

∂pn

∂x

∣∣∣∣xe
2

xe
1

=
1

ρf∆x
[wi−1pi−1 − (wi + wi−1)pi + wipi+1]

n (3.17)

The right-hand side consists of the convective term, the friction term, and the continuity
terms. The convection term expands and requires that the derivatives of α, q, and w be
evaluated at each face of the cell. All three of these derivatives are determined numerically
using central difference. All the terms on the right-hand side are combined into a single
source term,

Spi

(
qn−1
i , ẇi

n, ẇi
n−1
)
= −Hn−1

∣∣∣∣xe
2

xe
1

− 1

∆t

(
−ẇn + ẇn−1

) ∣∣∣∣xe
2

xe
1

(3.18)

which is detailed in Appendix B. The result is a system of discrete equations for the pressure
at timestep n:

wi−1p
n
i−1 − (wi + wi−1)p

n
i + wip

n
i+1 = ρf∆x · Spi (3.19)

Next, the time-discretized equation of momentum (3.6) is integrated over the flux cells.∫ xe
2

xe
1

qndx =

∫ xe
2

xe
1

qn−1dx−∆t

∫ xe
2

xe
1

∂

∂x

(
α
(qn−1)2

wn−1

)
dx

−∆t

∫ xe
2

xe
1

1

2

fD
(wn−1)2

(qn−1)|qn−1|dx−∆t

∫ xe
2

xe
1

wn

ρf

∂pn

∂x
dx

(3.20)

qni = qn−1
i − ∆t

∆x

(
α
(qn−1)2

wn−1

) ∣∣∣∣xe
2

xe
1

− ∆t

2

fD

(wn−1
i )2

(qn−1
i )|qn−1

i | − ∆t

∆xρf
(wp)n

∣∣∣∣xe
2

xe
1

(3.21)
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To interpolate the fluxes at the cell faces for the convection term, the quadratic QUICK
scheme is used. Let the fluxes at each cell face be denoted as q(xe

1) = qi,1 and q(xe
2) = qi,2.

Thus, the fluxes are updated according to

qni = qn−1
i − ∆t

∆x

[
α(qi,2)

wi+ 1
2

(qn−1
i,2 )2 − α(qi,1)

wi− 1
2

(qn−1
i,1 )2

]

− ∆tfD(qi)

2(wn−1
i )2

(qn−1
i )|qn−1

i |

− ∆t

∆xρf
(wn

i+ 1
2
pni+1 − wn

i− 1
2
pni )

(3.22)

While the PPE yields a set of discrete equations which must be solved simultaneously, the
flux update is performed based on the local flux and pressure balance.

Last, the continuity correction is also discretized using the finite volume method over the
flux cells. ∫ xe

2

xe
1

∂2λi

∂x2
dx =

∫ xe
2

xe
1

∂

∂t
(wn

i )dx+

∫ xe
2

xe
1

∂

∂x
(qn∗)dx (3.23)

∂λi

∂x

∣∣∣∣xe
2

xe
1

= ∆xẇi
n +

(
qn∗i,2 − qn∗i,1

)
(3.24)

The left hand side is discretized using central differencing, with special considerations in
the end cells for boundary conditions provided in Appendix A. The following discrete set
of equations for λ are obtained.

λi−1 − 2λi + λi+1 = (∆x)2ẇi
n +∆x

(
qn∗i,2 − qn∗i,1

)
(3.25)

The continuity correction (3.14) requires the gradient of λ, so the gradient is then recon-
structed from the discretized values of λ using central differencing.

3.3.4 Summary of the explicit algorithm

For each timestep, n,

• Start with known fields w(x, t) and qn−1(x) which satisfy the continuity equation.

• Determine the pressures, pn, by solving the global system of equations (3.19) given
inputs wn, wn−1, ẇn, ẇn−1, qn−1.

• Determine the uncorrected fluxes, qn∗, using equation (3.22) given inputs wn, wn−1, qn−1, pn.

• Determine the Lagrange multipliers, λ, by solving the global system of equations
(3.25) given inputs ẇn, qn∗.

• Determine the corrected fluxes, qn, using equation (3.14) given inputs qn∗, λ.

• Set n = n− 1 and proceed to the next timestep.
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The resulting explicit algorithm is fast and low-cost. The global system of equations to
solve for pressure and the continuity correction are both banded matrices which provide
favourable inversion properties. The computational time is governed primarily by the
number of timesteps rather than the cost of each timestep.

3.3.5 Critical timestep

It has been shown that one of the conditions to ensure boundedness of the solution is
that all flux coefficients in the discretized flux update (3.22) have the same sign [59]. For
the purpose of approximating the critical timestep, the QUICK interpolation scheme is
replaced with the Upwind Differencing Scheme (UDS), which removes the contribution
of the cells qi+2 and qi−2. Ensuring that all coefficients have the same sign yields the
approximated critical timestep,

∆tcriti ≤
(vmax

∆x
+ ϕ
)−1

, vmax =
αqn−1

i

wn−1
i

, ϕ =
fDq

n−1
i

2(wn−1
i )2

(3.26)

The first term of the critical timestep comes from the convection term, in which vmax is
the maximum longitudinal fluid velocity. This term is standard to other explicit critical
timesteps in that the maximum timestep is limited to the rate at which information can
propagate through the mesh. The second term is related to the friction body source term.
ϕ is the fundamental frequency of the fracture-fluid system, thus the maximum timestep
is also limited by the fundamental period of the system.

3.4 Perturbation Analysis

In this section, we show that the explicit finite volume formulation without the continuity
correction is unstable due to the amplification of small errors.

Consider the case of steady-state flow in a rigid channel of uniform aperture, subject
to a constant pressure gradient of ∆p/L. Assume the system is at steady-state so that
the flux in all cells is equal to the steady-state flux qss while the algorithm continues to
march forward in time. The flow is assumed to be in the fully laminar regime, such that

qss = − w3
0

12µ
∆p
L
. For simplicity, convective terms are neglected.

Let there be a small error introduced in each flux volume, such that qni = qss+bni ϵ, in which
bni ∈ R is a random multiplier of the small error ϵ. The error ϵ is very small, ϵ << qss,
arising for example from round-off error. Furthermore, bni−1 ̸= bni ̸= bni+1, so that continuity
is no longer exactly satisfied, although it may still be satisfied to numerical tolerance.

While the flux is updated based on the local flux and pressure balance, the pressure Poisson
equation requires solving a global set of equations and is therefore difficult to generalize.
We will consider a domain discretized into only two flux volumes, as shown in Figure 3.2.
This is the simplest possible system which contains both free pressure and flux degrees of
freedom (two free fluxes and one free pressure). We will now march the algorithm forward
in time and examine the behaviour of these random errors.
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Figure 3.2: Rigid channel of uniform aperture discretized into two flux volumes for pertur-
bation analysis.

Starting with the pressure, the source term and the single free pressure at timestep n+ 1
are

Sn+1
p2 =

−12∆xµ

w2
0

(bn2 − bn1 )ϵ (3.27)

pn+1
2 =

1

2
∆p+

24∆xµ

w3
0

(bn2 − bn1 )ϵ (3.28)

The fluxes at the following timestep are

qn+1
1 = qss +

(
(1− ζ)bn1 − 2ζ(bn2 − bn1 )

)
ϵ = qss + bn+1

1 ϵ (3.29)

qn+1
2 = qss +

(
(1− ζ)bn2 + 2ζ(bn2 − bn1 )

)
ϵ = qss + bn+1

2 ϵ (3.30)

ζ =
12µ∆t

ρfw2
0

= ϕ∆t (3.31)

in which ζ > 0 is a dimensionless viscous friction parameter of the discretized system. We
now have an iterative sequence for the growth of the error multipliers bi which depend on
the errors at the previous timestep and the parameters of the system. For the errors to
diminish over time, the following condition must be satisfied:∣∣∣∣bn+1

i

bni

∣∣∣∣ < 1 (3.32)

Using the iterative sequence (3.29), the stability condition for cell 1 is

−1 <
bn+1
1

bn1
< 1 (3.33)

−1 <
(1− ζ)bn1 − 2ζ(bn2 − bn1 )

bn1
< 1 (3.34)(

1

ζ
+

1

2

)
> C >

1

2
, C =

bn2
bn1

(3.35)

Likewise, the stability condition for cell 2 is(
1

ζ
+

1

2

)
>

1

C
>

1

2
(3.36)
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and thus both the ratio
bn1
bn2

and its reciprocal must fall within the same positive range.

The first requirement of these stability conditions is the timestep restriction, ζ < 2 to ensure

that
(

1
2
+ 1

ζ

)
> 1, otherwise one of the reciprocals must always be outside the acceptable

range. Second, these conditions can only be met if both bn1 and bn2 have the same sign.
As the error multipliers are random real numbers arising from uncontrollable errors, it
is impossible to guarantee that the error multipliers meet these conditions. Therefore,
in general, the algorithm is not stable as small random errors introduced by for example
round-off error will always grow.

3.4.1 Perturbation analysis with artificial diffusion

In this section, artificial diffusion is introduced as a means to control the perturbations.
The momentum equation becomes

∂q

∂t
+

∂

∂x

(
α
q2

w

)
= − w

ρf

∂p

∂x
− 1

2

fD
w2

q|q| − β
∂2q

∂x2
(3.37)

in which β is the artificial diffusion coefficient. The diffusion term is discretized using
central differencing. Repeating the perturbation analysis, it is found that the parameters
which satisfy the stability condition (3.32) are given by

9γ − ζ − 2

9γ − 2ζ
< Ci <

9γ − ζ

9γ − 2ζ
, (9γ − 2ζ) > 0 (3.38)

9γ − ζ − 2

9γ − 2ζ
> Ci >

9γ − ζ

9γ − 2ζ
, (9γ − 2ζ) < 0 (3.39)

in which C1 =
bn2
bn1
, and C2 =

bn1
bn2

= 1
C1
. γ = β∆t

∆x2 > 0 is the diffusion parameter of the

discretized system.

Artificial diffusion provides conditional stability. By choosing parameters γ
ζ
= 2

9
and ζ < 2,

the stability condition becomes −∞ < Ci < ∞ and the error will always decrease over
time. For all other ratios of γ

ζ
, the bounds are finite and therefore dependent on the

magnitude of C. The primary disadvantage of artificial diffusion is that it introduces the
undesirable ∆tcrit ∝ ∆x2 correlation, which imposes harsh restrictions on the timestep
size. Therefore, we will instead examine the alternative proposed solution of introducing
a continuity correction.

3.4.2 Perturbation analysis with continuity correction

Applying the continuity correction to the previous perturbation analyses, the Lagrange
multipliers are found to be [

λ1

λ2

]
= −∆x

8

[
1
3

]
(bn+1

2 − bn+1
1 )ϵ (3.40)
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Figure 3.3: Domain for time convergence of flux with oscillating pressure inlet condition
between parallel plates.

along with the boundary conditions λ
∣∣
x=0,L

= 0. The gradient of the Lagrange multiplier

is reconstructed using λ1, λ2, and the boundary conditions, such that

∂λ

∂x

∣∣∣∣
i=1

=
1

2

(
λ1 − λ|x=0

1
2
∆x

+
λ2 − λ1

∆x

)
(3.41)

∂λ

∂x

∣∣∣∣
i=2

=
1

2

(
λ2 − λ1

∆x
+

λ|x=L − λ2

1
2
∆x

)
(3.42)

The continuity corrected flux field is

(q1)
n+1 = (q2)

n+1 = qss +
1

2

(
bn+1
1 + bn+1

2

)
ϵ (3.43)

When the time-stepping algorithm is propagated forward, we find

qn+2
i = qss + (1− ζ)(bi)

n+1ϵ (3.44)

so that the error will decrease in an exponential manner by a factor of (1 − ζ) with each
subsequent timestep. ζ is subject to the restriction that ζ < 2, which introduces a timestep
restriction that ∆t < 2

ϕ
. Satisfying the critical timestep (3.26) implicitly satisfies this

condition, as ∆tcrit ≤ 1
ϕ
, neglecting the convection term.

3.5 Convergence Analysis: Time-varying Flow Through

a Channel

In this section, the temporal convergence of flux is investigated by simulating flow through
a rigid channel of length L with uniform aperture w0 and oscillating inlet pressure. The
problem domain is illustrated in Figure 3.3.

The outlet pressure is fixed at p0, while the inlet pressure oscillates at p(x = 0, t) =
p0 + sinΩt, in which Ω is the excitation frequency. The resulting flux in the channel is
constant along the channel but varies with time. In the laminar regime (Re < 2000), the
exact flux, qex, is given by

12µL

w3
0

qex =
−ϕ

Ω2 + ϕ2

(
ΩcosΩt− ϕ sinΩt− Ωe−ϕt

)
, ϕ =

12µ

ρfw2
0

(3.45)
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Figure 3.4: Flux convergence rates with respect to time for two different excitation fre-
quencies with oscillating pressure boundary conditions. m is the rate of convergence, such
that the algorithm displays O(∆tm) convergence with timestep refinement.

in which ϕ is the fundamental frequency of the channel. In this example, the dimensions
of the domain are selected as L = 100m, w0 = 5mm, and ϕ = 0.48s−1. Excitation
frequencies of Ω = ϕ and Ω = 0.1ϕ are considered for a time of tend = 20/Ω. While
a single flux cell is sufficient to exactly represent the linear pressure and constant flux
distributions, a single cell is not susceptible to perturbations, so 10 flux cells are used to
test the continuity correction. The error is taken as the normalized root-mean-square error
between the numerical and exact solutions over time.

The convergence rates of the two different excitation frequencies are illustrated in Figure
3.4. While the error is greater with higher excitation frequencies, the numerical method
displays an ideal O(∆t1) rate of convergence for both frequencies, which is expected with
the two-level backwards Euler method.

Figure 3.4 also illustrates the ideal critical timestep. The critical timestep provides a
guideline for the maximum stable timestep, but the continuity correction provides ad-
ditional stability that may allow the solution to proceed, as shown by the datapoint at
∆t = 2.6s = 1.25∆tcrit. If the spurious oscillations created by exceeding the critical
timestep are small, then the continuity correction dampens any oscillations to acceptable
numerical accuracy. However, timesteps that are too large will still cause instabilities, as
shown by the datapoints at ∆t > 2.6s.

3.6 Convergence Analysis: Steady-state Flow Through

a Non-uniform Fracture

In this section, the spatial convergence of pressure is investigated. The problem domain
is illustrated in Figure 3.5. The pressure at the outlet of a rigid channel of length L is
fixed at p = 0. The flux at the inlet is fixed at a constant q. The domain is defined by a
sinusoidal aperture, such that w(x) = w0

(
1− ε cos

(
2πx
L

))
, in which 0 ≤ ε < 1. The steady-
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Figure 3.5: Domain for spatial convergence of pressure for steady state flow through a
channel with sinusoidal aperture.

state pressure gradient is given analytically, and the pressure distribution is determined by
numerically integrating the pressure gradient. The exact pressure and pressure gradients
are

p = −ξ(L) + ξ(x) (3.46)

ξ(x) =

∫ x

0

∂p

∂x
dx (3.47)

∂p

∂x
=

ρfq
2

w2
0

(
2παε sin

(
2πx
L

)
L
(
1− ε cos

(
2πx
L

))3 − fD

2w0

(
1− ε cos

(
2πx
L

))3
)

(3.48)

The dimensions of the domain are selected as L = 100m, w0 = 5mm, ε = 0.5, ρf =
1000kg/m3, µ = 10−3Pa · s, and the boundary condition q is adjusted to give the desired
Reynolds number. Reynolds numbers of Re = 0.1, 100, 3000, 5000 are considered. These
correspond respectively to: the viscous regime, in which inertial forces are negligible; the
weak inertial regime, in which flow is laminar but inertial forces are not negligible; the
transitional regime, in which flow is transitioning between laminar and turbulent flows;
and the turbulent regime in which flow is fully turbulent [41]. As the PPE is independent
of time, only a single timestep is necessary to solve the pressure distribution, provided
that the steady-state flux distribution is prescribed as the initial condition. The pressure
distribution is determined with increasingly refined mesh size and the normalized root
mean square error between the numerical and analytical pressures are calculated.

The convergence rates of the pressure and pressure gradient in the different regimes are
illustrated in Figure 3.6. The pressure displays O(∆x2) convergence in all regimes, which
is expected given the second-order accurate central differencing scheme that was used
to discretize the PPE. The pressure gradient, which is reconstructed from the pressure
using central differencing, displays an O(∆x1.5) rate of convergence in all regimes except
for the viscous regime, in which it exhibits an O(∆x2) rate of convergence. The linear
viscous friction term dominates in the viscous regime, which may explain the higher rate
of convergence, while the non-linear convection term dominates at higher Re.
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Figure 3.6: Convergence rates of pressure and pressure gradient with respect to space in
four flow regimes. m is the rate of convergence, such that the algorithm displays O(∆xm)
convergence with mesh refinement.

Figure 3.7: Domain for flow through a submerged channel with oscillating aperture.

3.7 Example: Transient Flow Through Oscillating Chan-

nel

Sections 3.5 and 3.6 examine flow cases in which the aperture field is static. This section
examines the case of uniform moving aperture. The problem domain is illustrated in Figure
3.7. Consider the flow through a submerged channel of length 2L in which the aperture
oscillates at a fixed frequency, Ω, and amplitude, ε, such that the aperture is given by
w = w0(1 + ε sin(Ωt)). The pressure at the outlets is fixed at p = p0 and the flux at
the centerline must be zero due to symmetry. Fluid is forced in and out of the channel
by continuity, and the pressure profile develops to accommodate the flow. Unlike previous
examples, this example captures pressure and flux fields which vary in both time and space.
In the laminar regime, the analytical solution to the GG22 model is

q(x, t) = −ẇ(t)x {0 ≤ x ≤ L} (3.49)

p(x, t) = p0 +

(
ρf

(
ẅ

w
− 2α

(
ẇ

w

)2
)

+
12µ

w3
ẇ

)
L2

2

((x
L

)2
− 1

)
{0 ≤ x ≤ L} (3.50)

The properties of the fluid are selected as µ = 10−3Pa · s and ρf = 1000kg/m3. The
properties of the aperture are selected as w0 = 10mm, and ε = 0.25, which correspond to
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(b) Ω = ϕ
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Figure 3.8: Comparison of numerical and exact solutions pressure at the centerline in a
submerged channel with oscillating aperture. The numerical and exact solutions show
excellent agreement at all three excitation frequencies, though error increases with the
excitation frequency. The cubic law solution is also plotted.

a fundamental frequency of ϕ = 0.12s−1. The length of the domain is set at 1m and is
chosen to restrict the maximum Reynold’s number and ensure that the solution remains in
the laminar regime where the analytical solution is valid. The numerical scheme is tested
at three different excitation frequencies, Ω = 0.1ϕ, ϕ, 5ϕ. The domain is subdivided into
10 flux cells, and 400 timesteps are used in all three cases. The problem is simulated for a
total time period of 20/Ω.

The pressure at the centerline of the domain for all three excitation frequencies is compared
to the analytical solution in Figure 3.8. The numerical scheme shows excellent agreement
with the analytical solution in all three regimes. The largest differences are observed in the
case of Ω = 5ϕ, as the nonlinear convection terms become more important as the excitation
frequency increases. Figure 3.8 also illustrates the cubic law analytical solution, showing
how the inertial effects in the GG22 model lead to a departure from the cubic law solution
as the excitation frequency increases.

3.8 Example: Travelling Aperture Wave

In this final example, a problem with moving non-uniform aperture is examined. The
problem domain is illustrated in Figure 3.9.

Consider the flow between two equal head reservoirs which are connected by a fracture
of length L. The fluid is initially at rest, at which point a travelling wave propagates
along the fracture, as might be induced by a seismic event. The aperture is defined as
w = w0

(
1 + ε sin

(
2πn
L
x+ Ωt

))
in which n is the wave number, Ω is the wave frequency,

and ε is the relative amplitude of the wave. The speed of the wave is given by v = Ωλ, in
which λ is the wavelength given by λ = L

n
. The pressures at both ends of the fracture are

fixed at p = p0. Unlike previous examples, an analytical solution is not readily available
for the chosen boundary conditions.

The properties of the fluid are selected as µ = 10−3Pa · s and ρf = 1000kg/m3. The
properties of the aperture are selected as w0 = 0.5mm, and ε = 1/2000, which correspond
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Figure 3.9: Domain for flow through a channel with a travelling aperture wave.

to a fundamental frequency of ϕ = 48s−1. The length of the domain is set to 1km. The
speed of the travelling wave is fixed at v = 3km/s, the approximate speed of a shear wave
propagating through a granite rock mass, and wavelengths of λ = 1, 0.5, 0.33, ..., 0.1km
are examined (n = 1, 2, 3, ..., 10 respectively). These wavelengths correspond to wave
frequencies of Ω = 3, 6, 9, ..., 30s−1. A mesh of 500 flux cells and 5000 timesteps are used
in all cases. The problem is simulated for a total time period of 10π/Ω.

The results are illustrated in Figures 3.10. Figure 3.10a illustrates the spatial average
flux over time and shows that the net fluid flux is in the negative direction, despite the
wave travelling in the positive direction. This is attributed to the effects of continuity, as
q,x = −ẇ. The spatially averaged fluid flux demonstrates a dynamic steady-state solution,
in which the fluid displays regular dynamic oscillations around a mean steady-state flux.
The cubic law solutions do not display any oscillations, and the average flux is constant in
time.

Figure 3.10b shows the distribution of aperture and flux for n = 2 throughout the fracture
at the final timestep. The spatial distribution of flux is governed primarily by the wave-
length. Fluid is drawn towards the crest of an aperture wave, creating positive flow through
the troughs and negative flow under the peaks. Two stagnation points are created in each
wavelength which directly align with the the inflection points of the aperture wave.

Figure 3.10c illustrates the pressure and flux distribution according to both models through
the fracture for n = 2. The spatial distribution of fluxes is similar between the two
models, but there is a small phase-shift which is not visible at the current scale, as the
spatial variations in flux are much greater than the spatial average flux. The selected
properties lead to a maximum Reynolds number of 750. The maximum flux is proportional
to aperture, amplitude, and wave speed, but is independent of wavelength. The GG22
pressures demonstrate larger peak pressures and significant phase shifts due to the inertial
effects. The maximum pressure is proportional to the wavelength, wave speed, amplitude,
and the inverse square of the aperture.

Figure 3.10d illustrates the relationship between the maximum pressure in the fracture
over time and the mean steady-state spatial average flux as functions of the wavelength.
While the cubic law predicts that the pressure has a linear relationship with wavelength,
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Figure 3.10: Pressure and flux behaviours of the fluid for a travelling aperture wave with
fixed velocity but varying wavelengths. In Figure 3.10b, vectors indicate the direction of
flow.
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and the mean flux is independent of wavelength, the more complex GG22 model shows that
both variables have non-linear relationships to wavelength. At long wavelengths, higher
pressures are required to overcome inertial forces and on average produce less net fluid
movement. At shorter wavelengths, greater mean fluxes are produced than those predicted
by the cubic law.

3.9 Conclusions

In this chapter, a multi-step explicit finite volume method to solve the one-dimensional
GG22 equations has been developed and verified. The method is based on deriving a
Poisson equation for pressure, a technique commonly used in explicit methods for the
Navier-Stokes but adapted for the idiosyncrasies of the GG22 model. The method is
verified with three examples and demonstrates the expected rates of convergence with
timestep and mesh refinement. The numerical method is then applied to a travelling
aperture wave problem between two reservoirs which illustrates new fluid phenomena not
captured by Poiseuille flow. These phenomena include increased fluid pressures, decreased
fluxes, sensitivity to excitation wavelength and frequency, and phase-shifts in the fluid
response.

This numerical model illustrates the different fluid behaviours that arise in response to
excitation through the aperture or otherwise, but it does not capture the effects that
the fluid has on the aperture. The next step in our investigation is thus to develop a
hydro-mechanically coupled model to examine the mutual interaction between rock mass
deformation and fracture flow.
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Chapter 4

Solving the Hydro-Mechanically
Coupled GG22 Model

4.1 Introduction

In Chapter 3 we developed a numerical method to solve the GG22 model in which the
aperture was uncoupled from the fluid response. In this chapter, we wish to examine the
combined hydro-mechanical response of a coupled system. While there are many different
physical effects which can influence fracture propagation, the purpose of this model is to
examine the influence of a new fluid model. With this context, we focus on developing
a simulator with the minimum number of physical effects required to examine the hydro-
mechanical response. Thus, this chapter presents the development and verification of a
coupled numerical hydro-mechanical model with a cohesive fracture zone and examines
the application of this model to the propagation of a planar hydraulic fracture.

There are many hydro-mechanically coupled models for hydraulic fracture propagation
based on Poiseuille flow using analytical, semi-analytical, and numerical methods. Ana-
lytical methods based on the fracture tip asymptotics typically rely low permeability rock
masses with leak-off and linear elastic fracture mechanics [5, 7]. Numerical methods allow
for more adaptability in the physics captured and have been extended to include proppant
transport [13, 60], porous media [61, 62], and rock mass nonlinearities like nonlocal plas-
ticity [63, 64] among many others. Advancements in hydraulic fracturing simulations have
included improvements in the numerical techniques, including eXtended finite element
methods (XFEM) [19, 65, 66, 56], boundary integral methods [67, 68], and phase-field
models [69, 70] among others. The efforts focused on improving the physics of fluid flow
consist primarily of nonlinear fluid rheologies, rather than addressing the underlying is-
sues of Poiseuille flow. There is a limited number of studies which address fluid inertia
[27], but they have relied on physically inconsistent approximations, which were the best
available options at the time. Turbulent flow is a more common topic than inertia in the
context of hydraulic fracture propagation [26, 71, 72, 73]. The treatment of turbulence in
the GG22 model is consistent with these studies, in that the laminar linear friction term is
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replaced with a nonlinear quadratic friction term, but the interactions of turbulence with
fluid inertia have been completely neglected.

In order to develop new numerical methods to solve the GG22 equations, we must consider
discretization in space, discretization in time, and solution methodology. Previous hy-
draulic fracturing studies provide invaluable guidance on which methods have favourable
properties, but the GG22 model is accompanied by unique challenges [74]. In terms of
spatial discretization, as established in Chapter 3, the GG22 model is similar in form to
the Navier-Stokes equations but lacks a diffusive term, thus lending itself naturally to the
finite volume method (FVM) [74]. The finite element method (FEM) is the most common
method adopted for the equilibrium equation, and is thus adopted here. In terms of dis-
cretization in time and solution methodology, it has been well-established that staggered
or sequential solution schemes for hydraulic fracturing can be unstable, and the accuracy
of the solution is dependent on the order in which the fields are solved [19, 75]. Attempt-
ing to add mechanical coupling to the explicit method develop in Chapter 3 yields similar
results and the explicit method appears to lack stability. Implicit time integration is more
stable than explicit time integration, and monolithic solution algorithms in the context of
hydraulic fracturing have been shown to be both more robust and more accurate than their
sequential counterparts [13, 19]. Therefore, in this chapter we adopt and develop a mono-
lithic implicit FEM - FVM scheme which couples the GG22 flow model to the mechanical
deformation of the rock mass.

Section 4.2 presents the governing equations of the fractured rock mass which are coupled
with the GG22 equations. Next, Section 4.3 presents a coupled FEM-FVM discretization
scheme for the system. Section 4.4 examines solution methodology and determines how best
to solve the system of discretized nonlinear equations. In Section 4.5, the coupled model
is applied to the flow problem of a submerged channel between oscillating elastic plates.
This example problem serves as verification and illustrates the characteristics types of
behaviour which arise from inertia in a hydro-mechanically coupled fracture system. Lastly,
in Section 4.6, the GG22 model is applied to one-dimensional planar hydraulic fractures
in the viscous- and toughness-dominant fracture regimes, and the relative importance of
inertia and turbulence are established in this context.

4.2 Governing Equations of a Rock Mass with Prop-

agating Fractures

Consider an impermeable rock mass under in-situ stresses in which fluid flows through
discrete fractures which may propagate, as illustrated in Figure 4.1a. The rock mass
domain, Ωs, is considered as a two-dimensional body. The apertures are small relative to
their length, such that the differences in pressure and fluid velocity are small across the
fracture aperture, and the fluid domain, Ωf may be approximated as a lower dimensional
body, such that Ωf ≡ Γc in which Γc is the solid fracture boundary.
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(a) Mathematical Domain. (b) Cubic cohesive traction-separation law.

Figure 4.1: Mathematical domain for an impermeable rock mass under in-situ stress with
discrete fluid-filled fractures. Fracture propagation is controlled by the fracture process
zone ahead of the fracture tip which follows a cubic traction-separation law.

The rock mass is modeled as a quasi-static impermeable elastic medium. Deformation of
the rock mass is governed by the equilibrium equation,

0 = ∇ · σ(u) on Ωs (4.1)

σ − σ0 = C : ε (4.2)

in which u(x, y, t) is the rock mass deformation, σ is the Cauchy stress tensor, σ0 is the
in-situ stress tensor, C is the elasticity tensor, and ε is the linear strain tensor. Within the
rock mass domain are discrete fractures which may propagate. The fractures are defined by
an aperture which may change as a result of deformation in the rock mass, such that

w = w0 + nΓc · u
∣∣∣∣
Γc

(4.3)

in which w0 is some initial residual aperture that might arise from contact between non-
uniform fracture faces and asperities. The propagation of the fractures is modelled using
a cohesive-zone model. A cubic traction-separation law [76] is adopted, as illustrated in
Figure 5.1b. The traction-separation law is defined as a function of the aperture according
to

tcoh(w) =

{
27
4
fu∆(1− 2∆ +∆2), w ≤ wc

0, w > wc

, ∆ =
w

w c
(4.4)

wc =
48

27

Gc

fu
(4.5)

in which fu is the cohesive strength of the rock mass, Gc is the fracture energy, and wc is the
critical aperture which defines the boundary between the cohesive zone and the physical
fracture tip. Fracture propagation in a cohesive-zone model is significantly influenced by
fluid lag and vaporization behind the crack tip [77, 78]. This effect has been neglected in
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favour of simplifying the model physics and isolating the effects of the new fluid model but
should be otherwise included.

Fluid flows through the fractures, exerting pressure, p on the rock mass, while cohesive
tractions, tcoh resist fracture opening, such that the rock mass is subjected to the boundary
conditions

σ · nΓ±
c
= (−p+ tcoh)I · nΓ±

c
on Γ±

c (4.6)

in which nΓ±
c
is the corresponding normal to the positive or negative face of the fracture,

Γ±
c .

4.3 Discretization

4.3.1 Quasi-static rock mass equilibrium

The rock mass is discretized using the finite element method. The weak form of the
equilibrium equation in the rock mass is presented as

∫
Ωs

∇δu : σdΩ +

∫
Γc

δu · pI · nΓcdΓ−
∫
Γc

δu · tcohI · nΓcdΓ = 0 (4.7)

where the test function, δu, is subject to the restriction δu = 0 on Γu. To develop a set of
discrete equations, we introduce the following finite element approximations.

u = Nu (4.8)

{ε} = Bu (4.9)

{σ} = DBu (4.10)

p = ψp (4.11)

in which {ε} and {σ} are the strain and stress in Voigt form, and N,B, and D are the
standard finite element shape function, shape function gradient, and elasticity matrices.
ψ is a shape function to map the discretized pressure, p, onto the rock mass. u and p
are vectors of nodal displacements and pressures respectively. In the following section,
fluid pressure is discretized using the finite volume method, creating a piecewise-constant
approximation of the pressure field, p. The pressure cell centroids align with the rock mass
nodes, therefore a Heaviside approximation is used to project the pressure onto the rock
mass.
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By substituting the discrete approximations into the weak form of the governing equation,
the following residual and forcing vectors can be defined.

Ru = Fu + Fp + Fh = 0 (4.12)

Fu =

∫
Ωs

B⊤DBdΩu (4.13)

Fp =

∫
Γc

N⊤nΓcψdΓp (4.14)

Fh = −
∫
Γc

N⊤tcoh(w)I · nΓcdΓ (4.15)

A discrete form of the aperture can also be defined, such that

w = w0 + nΓc · u
∣∣∣∣
Γc

(4.16)

w = w0 + nΓc ·

(
N

∣∣∣∣
Γ+
c

−N

∣∣∣∣
Γ−
c

)
u (4.17)

w = w0 + nΓc · JNKu (4.18)

in which w0 is an equivalent initial residual aperture which arises from an initial fracture
permeability k0. The initial permeability and residual aperture are related according to
the Poiseuille flow relationship, w0 =

√
12k0.

4.3.2 Conservation of fluid momentum

The fluid is discretized with the finite volume method on a staggered grid, as illustrated
in Figure 4.2. The conservation of fluid momentum is discretized over the flux cells by
integrating across the cell i from local face xi,1 to local face xi,2. For a discretized field τ in
a given cell i, τi denotes τ evaluated at the cell centroid, whilst τi,j denotes τ interpolated
to the face j of cell i.

∫ xi,2

xi,1

∂q

∂t
dx+

∫ xi,2

xi,1

∂

∂x

(
α
q2

w

)
dx+

∫ xi,2

xi,1

w

ρf

∂p

∂x
dx+

∫ xi,2

xi,1

1

2

fD
w2

q2dx = 0 (4.19)

Each term is integrated individually. First, the transient term integrates as∫ xi,2

xi,1

∂q

∂t
dx = ∆xq̇i (4.20)

q̇i =
1

2∆t

(
3qni − 4qn−1

i + qn−2
i

)
(4.21)

in which (4.21) is a second order backwards Euler approximation of the rate of flux
change.
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Figure 4.2: Schematic diagram of fluid and solid meshes. The solid mesh (top) consists of
two-dimensional finite elements while the fluid mesh consists of one-dimensional staggered
finite volumes of non-constant width. The flux cells (middle), qi, are aligned with the edges
of the domain, while the pressure cells (bottom), pi are staggered with a half-cell at each
edge of the domain. The finite volume cells are associated with apertures, wi, controlled
by the deformation of the rock mass.
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Next, the convective term integrates as∫ xi,2

xi,1

∂

∂x

(
α
q2

w

)
dx =

(
α
q2

w

) ∣∣∣∣xi,2

xi,1

(4.22)

=

[
α(qi,2)

wi,2

(qi,2)
2 − α(qi,1)

wi,1

(qi,1)
2

]
(4.23)

The second order QUICK scheme is used to interpolate the fluxes at the cell faces.

Next, the friction term integrates as∫ xi,2

xi,1

1

2

fD
w2

q2dx ≈ ∆x
fD(qi)

2(wi)2
(qi)|qi| (4.24)

based on the finite volume assumption that both aperture and flux are approximately
constant across the cell.

Last, the pressure term can be approximated as∫ xi,2

xi,1

w

ρf

∂p

∂x
dx ≈ 1

ρf
w
∂p

∂x
∆x =

wi

ρf

pi+1 − pi
∆x

∆x =
wi

ρf
(pi+1 − pi) (4.25)

based on the assumption that aperture and pressure gradient are approximately constant
across the cell.

Thus the following residual and forcing vectors can be defined for the conservation of fluid
momentum.

Rm = 0 = Ft + Fc + Fmp + Ff (4.26)

(Ft)i =
∆x

2∆t

(
3qni − 4qn−1

i + qn−2
i

)
(4.27)

(Fc)i =

[
α(qi,2)

wi,2

(qi,2)
2 − α(qi,1)

wi,1

(qi,1)
2

]
(4.28)

(Fmp)i =
wi

ρf
(pi+1 − pi) (4.29)

(Ff )i = ∆x
fD(qi)

2(wi)2
(qi)|qi| (4.30)

4.3.3 Conservation of fluid mass

Last, the conservation equation is discretized over the pressure cells by integrating across
the cell from local face xi,1 to local face xi,2.
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∫ xi,2

xi,1

∂w

∂t
dx+

∫ xi,2

xi,1

∂q

∂x
dx = 0 (4.31)

∆x
∂wi,1

∂t
+ q

∣∣∣∣xi,2

xi,1

= 0 (4.32)

∆x
∂wi,1

∂t
+ (qi − qi−1) = 0 (4.33)

ẇi,1 =
1

2∆t

(
3wn

i,1 − 4wn−1
i,1 + wn−2

i,1

)
(4.34)

in which aperture is assumed to be approximately constant over each flux cell for the
purposes of integration, and (4.34) is a second order backwards Euler approximation of the
rate of flux change.

Thus the following residual and forcing vectors can be defined for the conservation of
fluid mass. These forcing vectors are applicable to all interior pressure cells, but special
treatment is required for the half-width boundary cells.

Rc = 0 = Fw + Fq (4.35)

(Fw)i =
∆x

2∆t

(
3wn

i− 1
2
− 4wn−1

i− 1
2

+ wn−2
i− 1

2

)
(4.36)

(Fq)i = (qi − qi−1) (4.37)
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4.3.4 Summary of discretized system and residuals

The fully discretized system of equations is thus

R =

Ru

Rm

Rc

 =

 Fu + Fp + Fh

Ft + Fc + Fmp + Ff

Fw + Fq

 = 0 (4.38)

Fu =

∫
Ωs

B⊤DBdΩu (4.39)

Fp =

∫
Γc

N⊤nΓcψdΓp (4.40)

Fh = −
∫
Γc

N⊤tcoh(w)I · nΓcdΓ (4.41)

(Ft)i =
∆x

2∆t

(
3qni − 4qn−1

i + qn−2
i

)
(4.42)

(Fc)i =

[
α(qi,2)

wi,2

(qi,2)
2 − α(qi,1)

wi,1

(qi,1)
2

]
(4.43)

(Fmp)i =
wi

ρf
(pi+1 − pi) (4.44)

(Ff )i = ∆x
fD(qi)

2(wi)2
(qi)|qi| (4.45)

(Fw)i =
∆x

2∆t

(
3wn

i,1 − 4wn−1
i,1 + wn−2

i,1

)
(4.46)

(Fq)i = (qi − qi−1) (4.47)

4.4 Solution Methods

In this section, the performance of several different solution methodologies to solve the set
of discretized equations are considered.

To solve a set of non-linear coupled discretized equations, one may adopt a staggered ap-
proach (in which each field or subset of fields are solved sequentially), or a monolithic
approach (in which all fields are solved simultaneously). In both approaches, iteration is
required to converge to a solution. Staggered approaches are often considered in multi-
physics problems, as they allow a user to take advantage of powerful preexisting solvers for
each set of physics. Staggered solutions typically require more iterations to converge than
a monolithic solver for the trade-off of easier implementation and adaptability. Monolithic
solutions are often more cumbersome to implement and require the derivation and imple-
mentation of a large and complex Jacobian matrix that is unique to each coupled problem,
but typically converge faster than sequential methods. It has been well-established in the
context of porous media [79, 80] and hydraulic fracturing simulation [75, 19] that naive
staggering schemes lack robustness and do not converge to a solution. Complex splits are
required to overcome the instabilities [19]. Staggering schemes are further complicated in
the GG22 model, since much like the Navier-Stokes equations from which it is derived,
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there is no governing equation which directly controls the pressure. While techniques do
exist to create a governing equation for pressure, such as previously adopted by the authors
in developing an explicit finite volume scheme to solve the GG22 model [74], attempts to
couple said explicit scheme with rock mass deformation resulted in divergence issues consis-
tent with previous studies of similar problems. The Navier-Stokes equations are regularly
solved using sequential schemes, so the difficulty with fracture flow arises from coupling
the flow equations with the equilibrium equations and fracture propagation in the rock
mass. Monolithic approaches have thus become the method of choice for hydraulic fractur-
ing problems as they are consistently demonstrated to be more robust and converge where
staggered solutions diverge, and thus a monolithic method is adopted here.

4.4.1 Newton-Raphson method

Having adopted a monolithic approach, the natural choice of solution method is to adopt
the Newton-Raphson method. First, the vector of nodal degrees of freedom d for iteration
k is defined as

dk =

uq
p


k

= dk−1 +∆dk (4.48)

in which ∆dk is the solution increment. The solution increment is determined by solving
the linearized the system of non-linear equations,

Jk∆dk +Rk = 0 (4.49)

in which Jk is the Jacobian / tangent matrix. When expanded, the Jacobian takes the
form

Jk =

 ∂Ru

∂u
∂Ru

∂q
∂Ru

∂p
∂Rm

∂u
∂Rm

∂q
∂Rm

∂p
∂Rc

∂u
∂Rc

∂q
∂Rc

∂p


k

=

Kuu 0 Kup

Kmu Kmq Kmp

Kcu Kcq 0


k

(4.50)

The resulting system Jacobian is non-symmetric and non-positive definite with zeros along
its diagonal. The system is still rank-independent and therefore invertable. The definitions
of the various component matrices are documented in Appendix C.

The Newton-Raphson method has been shown to work well for the two-field (u−p) hydro-
mechanical Poiseuille flow problem [19]. The Newton-Raphson method also works well
for the three-field (u − q − p) hydro-mechanical GG22 model in problems that are not
overly stiff (e.g. large initial apertures or cohesionless fractures), and in such problems
often demonstrates even better convergence behaviour than the two-field model because
the harsh cubic non-linearity is balanced by inertial terms. However, the hydro-mechanical
GG22 model becomes problematic for stiff problems, and may encounter severe convergence
issues. Whereas in the Poiseuille flow problem there is a direct feedback between pressure
and deformation, the three-field model passes that feedback through the flux which must
simultaneously satisfy both the conservation of momentum and the conservation of mass.
Consider for example, a hydraulic fracturing problem where the solution contains a mono-
tonic positive rate of aperture growth (ẇ > 0, q,x < 0∀t). Suppose that in one iteration,
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the unconverged aperture is updated such that ẇk < 0, then in the next iteration the flux
is updated to satisfy the the continuity equation, such that (q,x)k+1 > 0. This will then
reverberate into the pressure via the momentum equation then back into the rock mass,
moving the solution away from the radius of convergence and often causing the solution
to diverge. Furthermore, the relationships are strongly two-way coupled, so a positive flux
gradient will equally encourage the solution towards a negative rate of aperture change.
While these issues can in part be rectified with strategic initialization in each timestep,
additional measures to improve robustness are required.

4.4.2 Aitken relaxation

The first measure to adopt is Aitken’s ∆2 relaxation between iterations. Aitken relaxation
was originally developed to improve the rate of convergence of a linearly converging series
by extrapolating the solution based on the previous two solution steps [81]. It is com-
putationally inexpensive and easy to implement while providing invaluable improvements
in robustness and convergence in both staggered and monolithic schemes [34]. Care must
be taken when implementing Aitken’s relaxation, as the relaxation coefficient, ω, is only
meaningful for a field which demonstrates an approximately linear rate of convergence.
In our case, ω is only a function of the displacements, u, but the whole solution vector
is updated according to ω. Using for example the flux, which may oscillate wildly be-
tween iterations especially outside of the radius of convergence, does not improve the rate
of convergence nor robustness of the solution scheme. Aitken relaxation is implemented
according to:

1. Set d′
k+1 = dk +∆dk

2. Calculate the relaxation parameter, ωk(u) [81]

ωk = −ωk−1

∆u⊤
k−1(∆uk −∆uk−1)

|∆uk −∆uk−1|2
(4.51)

3. Update the current solution guess with the relaxation parameter

dk+1 = (1− ωk)dk + ωkd
′
k+1 (4.52)

4. Resume the regular Newton-Raphson procedure.

4.4.3 Line Search

The second measure introduced is to replace the Newton-Raphson procedure with a steepest-
descent line-search procedure. A step factor γ ≤ 1 is introduced to the update (4.48) in
each iteration according to

dk = dk−1 + γ∆dk (4.53)

It is well-known that Newton-Raphson provides a quadratic rate of convergence within
the radius of convergence while line-search only provides a linear rate of convergence.
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However, the quadratic rate of convergence is not recovered in practice as coupled fracture
flow problems are generally non-smooth. Second, although the line-search provides a slower
rate of convergence, this is improved by Aitken relaxation and under the theoretical ideal
circumstances, the combination of line-search with Aitken relaxation recovers the same
quadratic rate of convergence as Newton-Raphson as ω = 1/γ inside the Newton-Raphson
radius of convergence. Third is robustness; for a sufficiently stiff non-smooth problem, the
differences between each iteration are large. By damping the steps with the step factor γ,
the solution is more likely to move monotonically towards a converged solution. Consider
for example the one-dimensional root-finding problem for ln(x) = 0, x ∈ R. It is easy to
show that Newton-Raphson converges to the solution x = 1 for an initial guess x0 in the
range 0 < x0 < e1. At x0 ≥ e1, the following iteration x1 < 0 and the solution does
not converge. Repeating the problem with a line-search procedure finds that the radius
of convergence is 0 < x0 < e1/γ, where e1/γ > e1. Thus, adopting a line-search procedure
over a Newton-Raphson procedure can produce large improvements in robustness for non-
smooth problems.

4.4.4 Improvement in convergence rate

The combined effectiveness of these measures to improve robustness is illustrated in Figure
4.3. The norm of the residuals are plotted for a typical small timestep in a stiff hydraulic
fracturing problem such as considered in Section 4.6. The pure Newton-Raphson method
diverges in seven iterations. The addition of Aitken relaxation improves the robustness and
allows the timestep to converge in 50 iterations. The use of line search results in significant
improvements in the number of iterations required to converge, and the determined optimal
step factor of γ = 0.8 reduces the number of iterations from 50 to 27.

The characteristic residuals curves do not display a constant rate of convergence, instead
showing plateaus followed by periods of rapid decrease in the residuals. Figure 4.4 illus-
trates why this behaviour is observed by examining each of the residuals and the Aitken
relaxation parameter for the optimal γ. The plateaus in the residual curves correspond to
periods where ω = 10−3, as ω has been limited to the range 10−3 ≤ ω ≤ 10. Equation
(4.51) is not restricted to producing ω > 0 and a negative Aitken parameter indicates that
the solution is moving away from the solution to which the previous iterations had been
converging. While allowing a negative Aitken parameter can sometimes improve conver-
gence, in a multi-physics problem where the parameter is based on only a single field, all
the fields would take a step in the opposite direction of the steepest descent, and allowing
too large a negative parameter may produce poor solution predictions in the other fields
which then delay or prevent convergence. How large a negative parameter is too large
is not an easy question to answer, and is likely not constant throughout the simulation.
Therefore, it is generally advisable to restrict ω > 0. An ω > 0 that is too large produces
similar issues, so it is advisable to apply an upper bound. However, applying too small
of an upper bound can also delay convergence, so it is more difficult to provide guidance
on the upper bound. It can be shown that for a linearly converging series with a steepest
descent line search, Aitken relaxation will produce ω = 1/γ. However, for non-smooth
problems it is very likely to encounter relaxation parameters beyond 1/γ, so an upper
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Figure 4.3: Comparison of the convergence behaviour of various solution methods. Con-
vergence of a typical timestep is considered for a viscous-dominant hydraulic fracturing
problem as considered in Section 4.6. Methods are compared for a single small timestep
of ∆t = 0.1s at 10s into the simulation. Aitken’s ∆2 parameter is limited to the range
10−3 ≤ ω ≤ 10. A line search parameter of γ = 0.8 has been determined to be the optimal
step size which for convergence at this time in the simulation.

bound of at least ω ≥ 1/γ is recommended. Last, it can be observed that even when
the solid and momentum residuals are plateaued, such small increments can still produce
orders of magnitude change in the continuity residual Rc, thus demonstrating the stiffness
of the problem.

4.4.5 Optimal line search parameter

The Newton-Raphson method is also a steepest-descent line search with γ = 1. Thus,
the three converged residual curves in Figure 4.3 imply the existence of an optimal γ
that results in a minimum number of iterations to converge. Figure 4.5 illustrates the
relationship between step factor and the number of iterations required to converge for the
same timestep illustrated in Figure 4.3. The relationship is non-monotonic and more than
one local minimum is observed. Furthermore, while all tested value of γ converged for this
particular timestep, it is often the case that many values of γ do not converge. We are able
to demonstrate that in practice we can determine a viable γ using an adapative scheme
to find the local minimum which produces significant improvements in the convegence
behaviour and computation time.

We adopt a simple procedure to experimentally find a local minimum step factor by testing
γ in fixed increments (e.g., ∆γ = 0.05) in the direction of decreasing iterations until
a local minimum (which may or may not also be the global) is found. The optimal γ
is reevaluated at set intervals throughout the simulation (e.g. every 50 time steps) and
based on performance metrics (e.g., last 4 time steps all took > 50 iterations). Figure 4.6
illustrates the determined optimal step size for a typical hydraulic fracturing simulation
and shows the relative improvement in iterations required to converge over the course
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Figure 4.4: The convergence of the various residuals in a typical timestep for a viscous-
dominant hydraulic fracturing problem as considered in Section 4.6 with a line search
method of γ = 0.8. Methods are compared for a single small timestep of ∆t = 0.1s at
10s into the simulation. Aitken’s ∆2 parameter is limited to the range 10−3 ≤ ω ≤ 10. In
this problem, a tolerance of 10−5 is specified for the normalized fluid residuals and 10−6 is
specified for the solid residual. This typical convergence curve illustrates the stiffness of
the problem, as even an iteration with minimum Aitken parameter, ω = 10−3, can cause
orders of magnitude change in the continuity residual even while the solid and momentum
residuals undergo negligible change.
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Figure 4.5: The dependence between the line search step factor γ and required iterations
to converge for a specific timestep in a viscous-dominant hydraulic fracturing problem as
considered in Section 4.6. The relationship is non-monotonic, and more than one local
minimum is observed. The optimal step factor requires 46% fewer iterations to converge
than a Newton-Raphson scheme. This relationship is unique to this simulation and this
timestep, and is not applicable to a general timestep.

of the simulation. The optimal step factor is non-uniform and changes non-monotonically
throughout the simulation. Improvements of up to 80% reduction in iterations are observed
in single timesteps. The overall performance improvement is more modest, generally in the
range of 25-40%, though the authors have observed up to 70% reductions in the number of
iterations in exceptional circumstances. More importantly, the resulting algorithm is robust
and does not suffer the same convergence issues as the pure Newton-Raphson method.

4.5 Example: Hydro-Mechanical Interactions Arising

from Oscillating Quasi-Static Elastic Plates

In this section, we examine the behaviour of a simple hydro-mechanically coupled system
for the purpose of verification. In general, verification of the model is difficult as no analyt-
ical solutions currently exist for the hydro-mechanically coupled GG22 model. There are
however analytical solutions to purely hydraulic GG22 problems and we will demonstrate
that the numerical results converge to this solution for sufficiently slow loading rates in
which the solid deformations are small. Furthermore, as flow rates decrease, the GG22
model will reproduce the Poiseuille flow response.

Consider the flow through a submerged channel of length 2L, as illustrated in Figure 4.7.
The channel is defined by two elastic plates of thicknessH separated by an initial distance of
w0 without cohesive tractions. The exterior edge of the plates oscillate at a fixed frequency
Ω according to y(t) = w0(1 + A sin(Ωt)), |A| < 1 in which A is the relative amplitude of
the oscillations. Fluid is permitted to flow in and out of the channel. The pressure at the
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Figure 4.6: The cumulative iterations over 30s simulation time for a a viscous-dominant
hydraulic fracturing problem as considered in Section 4.6 with small timesteps. The ex-
perimentally determined optimal line-search parameter is shown to be non-constant and
change non-monotonically throughout the simulation. The use of line-search over Newton-
Raphson reduces the overall number of iterations by 30% for this simulation.

Figure 4.7: Schematic diagram for oscillating elastic plates. The domain is symmetrical
along the centerline.

end of the channel is assumed to be fixed at the submerged pressure p(x = L) = p and by
symmetry the flux at the centerline is q(x = 0) = 0.

For sufficiently slow oscillations and laminar flow, the effect of deformation of the rock
mass will be negligible and the solution will converge to the rigid plate solution:

w(t) = w0(1 + A sin(Ωt)) (4.54)

q(x, t) = −ẇx (4.55)

pPF (x, t) = p0 +
12µẇ

w2

L2

2

(
x2

L2
− 1

)
(4.56)

pGG(x, t) = p0 +

[
ρf

(
ẅ

w
− 2α

(
ẇ

w

))
+

12µẇ

w3

]
L2

2

(
x2

L2
− 1

)
(4.57)
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Table 4.1: Oscillating Elastic Plate Simulation Parameters

Parameter Value
L 10 m
H 1 m
w0 1 mm
ρf 1000 kg/m3

µ 1 mPa · s
E 50 GPa
ν 0.25
p 0 Pa
ϕ 12 s−1

A 0.25

It can be shown that the Poiseuille flow solution, pPF , is only a function of the excitation
frequency Ω, while the GG22 solution, pGG, is also a function of the fundamental frequency
of the fracture-fluid system, ϕ = 12µ

ρfw
2
0
. The fundamental frequency emerges naturally from

analytical solutions to the purely hydraulic GG22 model.

The chosen simulation parameters are detailed in Table 4.1. Figure 4.8 illustrates the
normalized aperture at the inlet and centerline, the flux at the inlet, and the pressure at the
centerline when the elastic plates are oscillated at excitation frequencies of Ω = 0.1ϕ, 1ϕ, 5ϕ.
Figure 4.9 illustrates the deformation of the rock mass and fracture as well as the shear
forces in the rock mass for the excitation frequency Ω = 5ϕ.

At lower excitation frequencies, inertial effects are negligible, and the GG22 solution con-
verges to the Poiseuille flow solution, both of which converge to the rigid plate solution.
As the excitation frequency increases, both models depart from the rigid plate solution
and each other. At Ω = ϕ, the mechanically coupled GG22 models displays larger aper-
tures, pressures, and fluxes than both the rigid plate GG22 solution and the elastic plate
Poiseuille flow solution due to the influence of inertial forces. The differences are regular
to the oscillation cycle though a phase shift is observed as the solution moves out of sync
with the excitation.

At higher excitation frequencies (Ω = 5ϕ), the results become chaotic due to the large
influence of inertia. The largest apertures are observed, as are the largest raw fluxes
and pressures. However the normalized fluxes and pressures decrease relative to Ω =
ϕ, suggesting a non-linear relationship and the existence of a resonant frequency which
produces the largest pressures and fluxes for the least excitation energy. The differences
are no longer regular to a single cycle but instead demonstrate regularity to a two-cycle
period, suggesting the existence of wave phenomena and interference effects at play. These
wave phenomena can be observed in the rock mass as well, despite its quasi-static nature,
as Figure 4.9 demonstrates a clear wave in the shear stress that travels down the length
of the fracture and reverberate back. Notably, stresses in the rock mass are an order of
magnitude greater in the GG22 solution. While the magnitude of stress changes in the
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(f) Flux - Ω = 5ϕ
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Figure 4.8: The influence of excitation frequency on the fluid response to oscillation of
elastic plates. This example problem shows the large departures in behaviour that occur
due to fluid inertia in a system at higher excitation frequencies. Furthermore, it validates
the numerical model as the coupled hydro-mechanical system matches the analytical solu-
tion to a purely hydraulic system at low excitation frequency where the effects of inertia
are negligible.
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Poiseuille flow solution with excitation frequency, the distribution of stress for the Poiseuille
flow solution displays little change with excitation frequency.

This examples not only serves as verification, it also illustrates how the behaviour of the
GG22 model departs from the Poiseuille flow model at higher loading frequencies and
provides guidance into the unique types of behaviours which might be expected in more
traditional fracture flow scenarios at sufficiently high loading rates.

4.6 Application to Planar Hydraulic Fractures

In this section we consider the application of the hydro-mechanical GG22 model to hy-
draulic fracture propagation of a planar fracture. While previous works have studied
turbulence in depth [26], inertia has only briefly been investigated [27]. Furthermore, both
of these topics have been primarily studied in the context of tip-asymptotic models. Our
study differs in two key ways: a) GG22 model is adopted, which is a mathematically con-
sistent means to consider inertia; and b) fracture propagation is controlled via a cohesive
process zone, which is not considered in asymptotic models but is similar to that adopted
in Discrete Element models (DEM) [82]. The purpose of this study is not to provide a com-
prehensive examination on the intricacies and interactions of the fluid physics, but rather
to establish the relative importance of fluid inertia and turbulence on fracture propagation
within the range of typical hydraulic fracturing scenarios.

Consider the reopening of a cemented KGD-like fracture as illustrated in Figure 4.10. Fluid
is injected into the fracture at various flow rates for 60 s. Leak-off is permitted through
the fracture tip and pressure at the end of the domain is fixed at the far-field hydrostatic
pressure. The injection rate is ramped from zero to the prescribed maximum flow rate over
6 s, then held constant for the remaining 54 s. Two different scenarios are examined, one
in which the fracture-fluid system is viscous-dominant, and one in which the fracture-fluid
system is toughness-dominant. These two systems are examined with three different layers
of fluid physics: a) fluid flows according to Poiseuille flow; b) fluid flows according to the
GG22 model, but flow is assumed to be laminar; and c) fluid flows according to the GG22
model, but flow transitions from laminar to turbulent.

The maximum Reynolds number one could reasonably expect to encounter in a planar
vertical fracture is estimated based on: a) a formation thickness of H = 50 m, which is
relatively small; b) a maximum volumetric flow rate of Q = 120 bpm, which is relatively
large; and c) water as the fracturing fluid, which has relatively low viscosity. It is thus
estimated that the maximum injection Reynolds encountered in practice might be Re =
Q
2H

ρf
µ

= 3500. Injection Reynolds numbers of Re = 10, 100, 1000, 2000, and 3500 were
tested. The material parameters listed in Table 4.2 are approximately based on a granitic
rock mass but were selected such that their theoretical fracture asymptotics as defined
in the work of Detournay [40] remain within their respective dominant regimes even at
Re = 3500. A large surface roughness parameter, ϵ, relative to the aperture is adopted as
the fracture surfaces are naturally very rough.

The bounds of the laminar and turbulent regimes are adopted based on the work of Zia
and Lecampion [26], such that ReL = 1400 and ReT = 5000 by equating the laminar and
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(a) GG22 - Ωt = 2π (b) Poiseuille flow - Ωt = 2π

(c) GG22 - Ωt = 5π/2 (d) Poiseuille flow - Ωt = 5π/2

(e) GG22 - Ωt = 3π (f) Poiseuille flow - Ωt = 3π

(g) GG22 - Ωt = 7π/2 (h) Poiseuille flow - Ωt = 7π/2

(i) GG22 - Ωt = 4π (j) Poiseuille flow - Ωt = 4π

Figure 4.9: Shear stress [Pa] in the elastic plates (deformation ×1000) under an excitation
frequency of Ω = 5ϕ in the half-domain 0 ≤ x ≤ L. Stresses are an order of magnitude
larger in the GG22 model and a clear shear wave behaviour is observed in the quasi-static
rock mass due to the influence of inertia in the fluid.
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Figure 4.10: Two-dimensional planar hydraulic fracturing domain.

Table 4.2: Hydraulic Fracturing Simulation Parameters

Parameter Viscous-Dominant Toughness-Dominant
E 60 GPa 50 GPa
ν 0.25 0.25
Gc 10 J/m2 100 J/m2

Fu 4 MPa 10 MPa
ρf 1000 kg/m3 960 kg/m3

µ 1 mPa · s 0.3 mPa · s
ϵ 0.5 mm 0.5 mm
w0 5 µm 5 µm
σ0 25 MPa 25 MPa

Depth 2000 m 2000 m

turbulent thresholds for pipes with the equivalent hydraulic diameter of the fracture. Thus,
the maximum Reynolds number tested in this work falls within the transitional regime and
the fluid never enters the fully turbulent regime.

Figure 4.11 illustrates the injection pressure for the GG22 model with and without tur-
bulence over the course of the injection for various flow rates. Negligible differences are
observed in the injection pressure between the GG22 and Poiseuille flow models unless
turbulence is considered. Higher injection flow rates correlate with higher peak injection
pressures. The toughness-dominant fractures produce larger peak pressures than the vis-
cous dominant fractures as the fluid pressure must overcome a larger cohesive force. The
toughness-dominant pressures generally decrease over time, as the cohesive forces govern
fracture length and thus apertures increase faster than fracture length which reduces the
fluid resistance. The viscous-dominant fractures generally see pressures increase over time
at higher flow rates, as the pressure at the inlet must increase to compensate for the in-
creased length of the fracture. The largest differences are observed with the inclusion of
turbulence, where a sharp departure is observed when the fluid passes the critical Reynolds
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Figure 4.11: Comparison of GG22 injection pressures for various Reynolds numbers over
time. Negligible differences are observed between the GG22 and Poiseuille flow models.
“T” indicates the inclusion of turbulence. Turbulence causes the injection pressure to
increase, as the pressure must overcome larger fluid resistance.

number. Pressure flat-lines when the injection becomes constant then slowly increases over
time, as in the case without turbulence.

Figure 4.12 illustrates the fracture lengths and injection point aperture for the toughness
dominant fracture after 60s for various flow rates. A power-law relationship is observed
between injection Reynolds number and fracture length or injection aperture. Minor dif-
ferences on the order of 10−3 are observed between the Poiseuille flow and GG22 models
— centimetre differences on decametre fracture lengths. Figure 4.13 illustrates the spatial
distribution of aperture, Reynolds number, and pressure for an injection rate of Re = 2000
after 60 s of injection. Negative fluxes are observed ahead of the fracture tip within the
residual aperture, but they are small compared to flux within the fracture. A sharp pressure
front is observed at the fracture tip and the pressure is lower than the far-field pressure.
A pressure boundary layer precedes the fracture tip in the cohesive zone which returns
to the far-field pressure farther ahead of the fracture. The differences between the GG22
and Poiseuille flow models both spatially and temporally are on the order of 10−3 and are
practically imperceptible at the plotted scales.

Figure 4.14 illustrates the fracture lengths and injection point aperture for the viscous-
dominant fracture after 60s for various flow rates both with and without turbulence. The
differences between the GG22 and Poiseuille flow models are even less significant in the
viscous dominant regime, on the order of 10−4 when turbulence is not considered. When
turbulence is considered, significant differences are observed. In response to the higher
fluid resistance, fracture lengths decrease up to 18%. In order to conserve the injected
volume, fracture apertures greatly increase by up to 50%. Figure 4.15 illustrates the spatial
distribution of aperture, Reynolds number, and pressure for an injection rate of Re = 2000
after 60 s of injection. Within the 90 m fracture, there is a transition at x = 63 m such
that turbulence develops near the injection point but flow near the tip is laminar. The
characteristic shape of the solution also changes and steeper gradients in aperture, flux, and
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Figure 4.12: Comparison of toughness-dominant fracture lengths and wellbore apertures
after 60s of injection. A power-law relationship between the crack length and injection
Reynolds number is observed. Minor differences on the order of 10−3 are observed between
the GG22 and Poiseuille flow solutions when turbulence is not considered.
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Figure 4.13: Spatial distribution of aperture, Reynolds number, and pressure in the
toughness-dominant fracture for an injection Reynolds number of 2000 after 60s of in-
jection. Minimal differences are observed between the Poiseuille flow and GG22 solutions,
verifying that in the context of planar hydraulic fractures, inertia is indeed negligible.
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Figure 4.14: Comparison of viscous-dominant fracture lengths and inlet aperture after 60s
of injection. A power-law relationship between the aperture and injection Reynolds number
is observed. Minor differences on the order of 10−4 are observed between the GG22 and
Poiseuille flow solutions when turbulence is not considered. Turbulence produces significant
changes and fundamentally different solutions.

pressure are all observed near the injection point. As a large surface roughness is adopted,
the turbulent friction factor fD is primarily a function of the surface roughness (> 95%)
instead of the Reynold’s number (< 5%) based on equation (5.9). While adopting smaller
surface roughness would result in less turbulent effects, similar high surface roughnesses
relative to the aperture are expected in natural fractures.

Therefore, the results verify the assumptions of previous works that inertia is indeed neg-
ligible within the context of planar fractures. Furthermore, non-cubic law behaviour does
not appear in the vicinity of the fracture tips, suggesting that in these contexts fracture
tip asymptotics remain unchanged. However, turbulence is important and will create sub-
stantially different solutions as soon as it is invoked. Inertia remains negligible even in
the turbulent case. Care must be taken in considering the results of Poiseuille flow-based
models when considering large flow rates, low viscosity fluids, or small formations.

These results are only applicable to hydraulic fracturing based on constant injection into
a planar fracture. Further investigation is required to examine the role of inertia in ax-
isymmetric and two-dimensional fractures, as well as non-constant injection scenarios like
pressure pulsing [29]. Preliminary investigations into axisymmetric fractures suggest that
inertia has a significant role [83, 84] and the null result returned here will not be applica-
ble.

4.7 Conclusions

In this chapter, a fully-coupled hydro-mechanical coupled model based on the GG22 flow
model is developed and numerical challenges are addressed. The hydro-mechanically cou-
pled GG22 model yields comparable convergence properties to the Poiseuille flow model
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Figure 4.15: Spatial distribution of aperture, Reynolds number, and pressure in the viscous-
dominant fracture for an injection Reynolds number of 2000 after 60s of injection. While
the Poiseuille flow solution exhibits negligible differences, there are significant differences
between the turbulent and laminar cases. The transition from turbulent to laminar flow
occurs at 63 m, with the tip remaining laminar while turbulent flow occurs near the inlet.
The characteristic shape of the solution changes in the turbulent region, such as steeper
gradients can be observed.

when applied to elastic fractures, but slower convergence when combined with cohesive
fracture models. Aitken’s relaxation is extremely effective in both accelerating the conver-
gence of the iterative scheme and improving its robustness. The use of a steepest-descent
line search in this context is demonstrated to be superior to a Newton-Raphson method.
The line search method using an empirically determined optimal step size parameter ac-
celerates the rate of convergence and results in a robust solution algorithm.

The model is verified with applications to flow through a channel between oscillating elastic
plates and the propagation of two-dimensional KGD-like hydraulic fractures. The case of
oscillating elastic plates illustrates that the influence of inertia causes the GG22 solution to
depart from the Poiseuille flow solution at higher loading rates and frequencies. Fluid be-
haviours similar to those in Chapter 3 are observed, including phase shifts, larger pressures,
and lower fluxes. In the rock mass new phenomena including larger stresses, and wave-like
interference behaviour are observed in both the rock mass and the fluid even when the
rock mass is quasi-static. Next, the model was applied to hydraulic fracturing of cohesive
planar KGD-like fractures. No inertial effects are observed in planar hydraulic fractures
with constant injection rates. Turbulence is shown to have significant effects on the solu-
tion, resulting in shorter fractures with more fracture opening as a result of the increased
resistance to flow. Non-cubic law behaviour does not appear in the vicinity of fracture
tips, suggesting that in these contexts tip asymptotic behaviour is unchanged.

Now that we have developed a hydro-mechanically coupled numerical model for the GG22
model, we can apply it to common fracture flow scenarios to examine the role of inertia,
turbulence, and transient behaviours.
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Chapter 5

Inertia and Turbulence in Radial
Hydraulic Fractures

5.1 Introduction

While planar fracture have large widths over which to distribute the flow, resulting in
lower Reynolds numbers, this is not a luxury afforded to axisymmetric/radial fractures.
Near the wellbore, the large flow rates are distributed around a very small circumference,
leading to very large Reynolds numbers. These large Reynolds numbers decay quickly
as the fluid is dispersed into the fracture, leading to a loss of kinetic energy that must
be conserved or dissipated elsewhere in the domain. Large Reynolds numbers also imply
the development of turbulence near the wellbore: consider for example the properties of
water and a wellbore diameter of 15 cm, then a flow rate of 1 L/s is sufficient to produce
inlet Reynolds numbers in excess of 2000. Near the tip, the gradient of aperture is large,
which is a significant violation of the Poiseuille assumption, but the flow rate is small, so
without investigation it is difficult to estimate the importance of inertial behaviours. Thus,
in this chapter the hydro-mechanically coupled model developed in Chapter 4 is used to
investigate the role of inertia and turbulence in radial fracture propagation.

Section 5.2 describes the axisymmetric governing equations of the rock mass deformation,
fluid flow, and hydro-mechanical coupling. Section 5.3 establishes the parameters of a
typical hydraulic fracturing scenario which we will consider for investigation. In Section
5.4, we investigate the solutions to the model problem by varying the fluid physics model,
starting with the standard Poiseuille flow solution, then introducing one new phenomenon
at a time until we reach the full GG22 fluid model. Next, we discuss the impacts of surface
roughness and fracture toughness on the observed results in Section 5.5 and 5.6. Last,
Section 5.7 discusses how the results change when we introduce friction reducers into the
fluid and change the turbulent regime transition point.

79



(a) Mathematical Domain. (b) Cubic cohesive traction-separation law.

Figure 5.1: Mathematical domain for an impermeable axisymmetric rock mass under in-situ
stress with discrete pre-existing fluid-filled fractures. Fracture propagation is controlled by
the fracture process zone ahead of the fracture tip which follows a cubic traction-separation
law.

5.2 Governing Equations

Consider an impermeable rock mass under in-situ stresses as illustrated in Figure 5.1a.
Fluid flows through fractures which may propagate through the rock mass. Axisymmetric
conditions are assumed, such that the rock mass, Ωs, is considered as a two-dimensional
body and the fractures are considered as one-dimensional spaces characterized by an aper-
ture w(r, t) with negligible transverse flow. Typically, fluid flow within fractures is char-
acterized by the Poiseuille flow equation. In this work, we use the GG22 fluid model to
explore the phenomena that arise at high flow rates [41].

The GG22 flow model is a two-field model that describes the behaviour of an incompressible
fluid with a flux, q(r, t), and a pressure, p(r, t). The incompressible fluid has density ρf and
viscosity µ. The governing equations of the GG22 model in axisymmetric form are

∂w

∂t
+

1

r

∂

∂r
(rq) = 0 (5.1)

∂q

∂t
+

1

r

∂

∂r

(
rα

q2

w

)
= − w

ρf

∂p

∂r
− 1

2

fD
w2

q2 (5.2)

in which (5.1) is the continuity equation describing the conservation of fluid mass, and (5.2)
describes the conservation of fluid momentum. The conservation of momentum equation
is comprised of several new terms compared to the Poiseuille flow model. These terms will
be referred to as follows:
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The transient term:
∂q

∂t
(5.3)

The convective term:
1

r

∂

∂x

(
rα

q2

w

)
(5.4)

The pressure term: − w

ρf

∂p

∂r
(5.5)

The friction term: −1

2

fD
w2

q2 (5.6)

The transient term and the convective term will collectively be referred to as “the inertial
terms”. While turbulence cannot exist without inertia, the friction term is differentiated
because friction is a dissipative phenomena, while the transient and convective terms cap-
ture transformative phenomena.

In addition to the fields q, p, the conservation of momentum is also a function of two
dimensionless coefficients which are functions of the flow regime. First, the momentum
correction factor α(Re) considers the increase in total momentum carried by a non-uniform
velocity profile across the aperture. Assuming a parabolic velocity profile in laminar flow
and a 1/7 power-law profile in turbulent flow, the momentum correction factor is defined
as

α =

{
6
5

if Re ≤ ReL
64
63

if Re ≥ ReT
(5.7)

Re =
ρf |v|w

µ
=

ρf |q|
µ

(5.8)

in which ReL is the Reynolds number defining the threshold between the laminar regime
and the transitional regime, and ReT is the Reynolds number defining the threshold be-
tween the transitional regime and the fully turbulent regime.

The friction factor fD accounts for the dissipation of fluid momentum by viscous and
turbulent forces. In the laminar regime, dissipation is the result of viscous shear with
the fracture faces, and in the turbulent regime dissipation is caused by both viscous shear
and turbulent eddy formation. An empirical relationship is required to determine the
friction factor in the turbulent regime, and so the Colebrook-White equation is adopted
for simplicity [45]. The friction factor is thus defined as

fD =

{
24
Re

if Re ≤ ReL
1√
fD

= −2 log( ϵ
7.4w

+ 2.51
Re

√
fD
) if Re ≥ ReT

(5.9)

in which ϵ is a measure of the surface roughness of the fracture. In the transitional fluid
regime, ReL < Re < ReT , both the momentum correction factor and the friction factor
are linearly interpolated. Assuming a Newtonian fluid as the injection fluid (water) the
transition from the laminar to the turbulent regime begins at Re ≈ 2000, while the fully
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Figure 5.2: Friction factor as a function of Reynolds number for a standard Newtonian
fluid (water) and a fluid enhanced with friction reducers (slickwater).

turbulent regime begins at Re ≈ 5000. The friction factors for water are illustrated in
Figure 5.2.

To reduce the energy required to pump the fluid down the wellbore, it is common to in-
troduce friction reducers into the fluid to create slickwater [85, 86]. Friction reducers are
long-chain polymers which may be added in small quantities to disrupt the formation of
turbulent eddies, delaying the onset of turbulence. The reduction in friction factor reaches
a maximum drag reduction asymptote (MDR) at small concentrations [85]. The concen-
tration is dilute, so the density of the bulk fluid remains unchanged, but the viscosity
is affected. The fluid becomes non-Newtonian and experiences shear thinning, with the
viscosity approaching an asymptotic viscosity after shear degradation. After degradation,
the fluid viscosity is approximately constant. It is thus assumed that the slickwater has
experienced sufficient shear during in the wellbore that it has reached its asymptotic vis-
cosity in the fracture. A Newtonian fluid behaviour is thus assumed in the fracture with an
appararent viscosity of 5mPa · s [87]. The friction reducers delay the onset of turbulence
from Re ≈ 2000 up to Re ≈ 3× 104. Fully turbulent flow is observed at Re ≈ 5× 105, so
there is a transitional regime between the fully turbulent and MDR regimes. In the MDR
regime, which begins at Re ≈ 1000, the MDR asymptote is correlated with the Reynolds
number such that fD ∝ Re−0.7 [85]. The friction factor for slickwater is illustrated in
Figure 5.2.

In the laminar regime, the friction term simplifies to −12µ
ρfw2 q. Under Poiseuille flow con-

ditions, i.e. steady flow through parallel plates, the conservation of momentum equation
(5.2) recovers the Poiseuille flow constitutive model:

0 = − w

ρf

∂p

∂r
− 12µ

w2ρf
q =⇒ q = − w3

12µ

∂p

∂r
(5.10)

such that flux is a function of the pressure gradient, q = f(p), and the fluid may be
described with a single field, p(r, t).

The rock mass is modeled as a quasi-static impermeable linear elastic axisymmetric medium
under in-situ stress. The equilibrium equation governs the deformation of the rock mass,
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such that

0 = ∇ · σ(u) on Ωs (5.11)

σ − σ0 = C : ε (5.12)

in which u(r, z, t) is the rock mass deformation, σ is the axisymmetric Cauchy stress
tensor, σ0 is the in-situ stress tensor, C is the axisymmetric elasticity tensor, and ε is
the axisymmetric linear strain tensor. The rock mass contains fractures defined by an
aperture w which is a function of the deformation of the rock mass. The relationship
between aperture and deformation is

w = w0 + nΓc · u
∣∣∣∣
Γc

(5.13)

in which w0 is some residual aperture in a pre-existing cemented fracture that may arise
from surface roughness, and Γc is the fracture surface. The pre-existing cemented fractures
are modelled with a traction-separation law such that a quasi-brittle cohesive fracture
process zone forms ahead of the fracture. A cubic traction-separation law [76] is adopted,
as illustrated in Figure 5.1b. The traction-separation law is defined as a function of the
aperture according to

tcoh(w) =

{
27
4
fu∆(1− 2∆ +∆2), w ≤ wc

0, w > wc

, ∆ =
w

w c
(5.14)

wc =
48

27

Gc

fu
(5.15)

in which fu is the cohesive strength of the rock mass, Gc is the fracture energy, and wc is the
critical aperture which defines the boundary between the cohesive zone and the physical
fracture tip. The rock mass is therefore subject to tractions on the fracture surfaces such
that

σ · nΓ±
c
= (−p+ tcoh)I · nΓ±

c
on Γ±

c (5.16)

in which nΓ±
c
is the corresponding normal to the face of the fracture, Γ±

c .

5.3 Model Problem: Radial Fracture Propagation

In this paper, we consider a single hydraulic fracturing scenario and examine how it reacts
to varying fluid physics.

Consider the re-opening of a cemented radial fracture with a small residual aperture.
The fracture is assumed to have an initial residual aperture of w0 = 5 µm. Due to the
residual aperture, the fracture tip allows fluid flow. Ahead of the fracture tip at the
end of the computational domain, a Dirichlet condition is imposed on the pressure such
that the pressure is fixed at the far-field hydrostatic pressure of p = ρfgh in which g is the
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Figure 5.3: Computational domain for the reopening of a cemented radial fracture.

acceleration due to gravity. The surface roughness of the fracture faces is conceptualized as
asperities which are compressed in the initial stress state and decompress as the fracture
opens, such that the maximum relative roughness is set to ϵ/w = 0.99 is set when the
roughness up to a maximum of 0.5 mm.

The radial fracture exists within an impermeable granite rock mass at a depth of 2000 m
and a minimum in-situ stress of 25 MPa. The dimensions of the computational domain
are illustrated in Figure 5.3. The rock mass has a tensile strength of 10 MPa, and elastic
modulus of 60 GPa, and a Poisson’s ratio of ν = 0.25.

Fluid is injected into a wellbore with a diameter of D = 15 cm. The injection fluid is
assumed to be water with a constant viscosity of µ = 1 mPa · s and a constant density
of ρf = 1000 kg/m3. The injection rate Qo is specified in terms of the injection Reynolds

number, Re =
ρf q

µ
=

ρfQo

µπD
. Injection rates of Re = 10 up to Re = 2 × 105 are considered.

Figure 5.4 illustrates the relationship between injection flow rate, injection Reynolds num-
ber, and wellbore diameter. For the problem considered, the maximum injection Reynolds
number corresponds to a maximum injection flow rate of 36 bpm (5.75 m3/min, 96 L/s).
The injection rate is applied with a linear ramp over the first 6 s, and a constant injection
rate for the rest of the simulated time. The fracture propagation is simulated for a total
of 60 s.

A zero-toughness fracture case is considered first, such that the fracture propagation is
restricted only by the resistance of the initial residual aperture. In this case, the physical
tip is assumed to be the coordinate where w > w0. Next, various fracture toughnesses are
considered using the cubic cohesive zone traction-separation law.

The model problem is solved numerically using a fully-coupled monolithic mixed FEM-
FVMmethod [88]. Finite elements are used to discretize the rock mass, while finite volumes
are used to discretize the fracture.
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Figure 5.4: Reynolds number at the wellbore as a function of wellbore diameter and injec-
tion flow rate. Even small flow rates can induce large Reynolds numbers at the wellbore.

5.4 The Effects of Turbulence and Inertia

In this section, we will examine the behaviour of the fracture propagation problem described
in Section 5.3. To isolate the fluid behaviour, a zero-toughness fracture is considered
(Gc = 0J/m2). We will consider the problem with four layers of fluid physics by modifying
the conservation of momentum equation (5.2). First, we will consider the problem using
the standard Poiseuille flow model, which assumes steady laminar flow through constant
aperture. Next, we will upgrade the friction term to capture turbulent flow, but neglect
the inertial terms introduced by the GG22 model. Third, we will assume laminar flow, but
introduce the inertial terms into the conservation of momentum. Last, we will consider
the full GG22 conservation of momentum equation. By layering the physics one at a time,
we will be able to isolate how each term affects the solution and determine the flow rate
threshold at which each layer becomes relevant.

5.4.1 The Poiseuille flow solution

First we discuss the standard Poiseuille flow solution as a baseline case for the model
problem. The Poiseuille flow model is the standard assumption for across most fracture
flow simulations. Steady laminar flow is assumed and the conservation of momentum
equation (5.2) simplifies to

0 = − w

ρf

∂p

∂r
− 12µ

ρfw2
q (5.17)

which can be rearranged as a constitutive relationship between flux and pressure such
that

q = − w3

12µ

∂p

∂r
(5.18)

Figure 5.5 illustrates the pressure at the wellbore. There is an initial peak pressure asso-
ciated with the re-opening of the fracture, followed by a monotonic decrease in pressure.
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Within the constitutive equation there are two competing processes, fracture lengthening
and fracture opening. Lengthening requires an increase in pressure at the wellbore to pro-
pel the fluid a farther distance. Opening decreases the pressure at the wellbore as the
resistance to fluid flow decreases. The injection pressures indicate that fracture opening
generally dominates, but at higher injection rates, the pressure decreases more slowly over
time as fracture lengthening has a greater contribution.
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Figure 5.5: Injection pressure for varying injection rates with a Poiseuille flow model. The
Poiseuille flow solution shows a spike in pressure to reopen the fracture, then decreases
over time.

Figure 5.6a illustrates the pressure along the fracture after 60 s of injection at the highest
tested injection rate of Re = 2 × 105. The pressure decreases monotonically until the
fracture tip. There is a discontinuity in the pressure gradient at the fracture tip, as the
permeable fracture tip creates a zone of negative flow ahead of the tip. Farther ahead of the
fracture tip, the pressure slowly returns to the far-field pressure. Figure 5.6b illustrates the
aperture along the fracture. Aperture decreases monotonically and continuously. There is
a discontinuity in the aperture gradient at the tip.

5.4.2 The effects of turbulence

Next we consider replacing the Poiseuille constitutive equation with a turbulent friction
term. Given that most fracture flow simulation tools are developed for Poiseuille flow, the
inclusion of the inertial terms in the conservation of momentum equation are intrusive and
require significant modifications. The implementation of a turbulent friction term without
the inertial terms is therefore an attractive prospect for capturing the effects of turbulence
with minimally intrusive implementation.

The equation for conservation of momentum (5.2) becomes

0 = − w

ρf

∂p

∂r
− fD(q)

w2
q2 (5.19)

which may be rearranged into a non-linear constitutive equation
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Figure 5.6: Pressure and aperture along the fracture with a Poiseuille flow model after 60
s of injection with an injection rate of Re = 2× 105.

q = − w3

ρffD(q) · q
∂p

∂r
(5.20)

Figure 5.7 illustrates the pressure at the wellbore for increasing flow rates. There is an
initial local peak pressure associated with the opening of the fracture, as observed in the
Poiseuille flow case. Unlike the Poiseuille flow case, at sufficiently high flow rates to induce
turbulence, the required pressure to maintain the injected flow rate increases due to the
resistance created by turbulence. With a turbulent flow model, the pressure required to
maintain a flow of Re = 2×105 is approximately four times greater than with the Poiseuille
flow model.

Figure 5.8a illustrates the pressure along the fracture compared to the Poiseuille flow case
after 60 s of injection at the highest tested injection rate of Re = 2×105. There is a region
of significantly elevated pressure near the wellbore extending up to 5 m along the fracture
radius. Farther along the fracture, the fluid returns to laminar flow and the pressures are
similar to the Poiseuille flow profile. Figure 5.8b illustrates the aperture distribution along
the fracture. The elevated pressures near the wellbore create a region of increased aperture,
with an increase of 90 % at the wellbore in this case. The aperture decreases monotically
along the fracture, but the curvature of the aperture changes around 20 m. To conserve
the total injected volume, the aperture farther along the fracture are slightly smaller and
the overall fracture length is slightly shorter than the Poiseuille flow case.

5.4.3 The effects of inertia

Next, we consider the behaviour of fracture growth when we introduce the inertial terms but
maintain the laminar flow assumption from Poiseuille flow. The conservation of momentum
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Figure 5.7: Injection pressure for varying injection rates with a turbulent model neglecting
inertia. The inclusion of turbulence requires much higher pressures to achieve the same
injection rates. Large pressures are required to open the fracture, then pressure decreases,
but the increasing flow rate increases resistance to flow resulting in a peak pressure at 6s
when the flow finishes ramping up to its prescribed injection rate.
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Figure 5.8: Pressure and aperture along the fracture with a turbulent flow model that
neglects inertia after 60 s of injection with an injection rate of Re = 2× 105.

equation (5.2) becomes

∂q

∂t
+

1

r

∂

∂r

(
r
α

w
q2
)
= − w

ρf

∂p

∂r
− 12µ

ρfw2
q (5.21)

and cannot be re-arranged into a constitutive equation. It remains a separate coupled
governing partial differential equation which must be simultaneously solved.

Figure 5.9 illustrates the pressure at the wellbore for increasing injection rates. At suffi-
ciently high flow rates, the inertial terms induce positive pressure gradients and therefore
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the pressure at the wellbore required to maintain the injection flow rate decreases. There
is an initial peak positive pressure associated with reopening the fracture, after which as
the flow rate increases, the wellbore pressure drops precipitously. The pressures illustrated
in Figure 5.9 are gauge pressures relative to the hydrostatic pressure, and so the negative
gauge pressure are still positive absolute pressures and cavitation is not a concern.

The dominant term behind the negative pressure is the continuity term. Consider the
case of injection at a constant rate into a set of radial parallel plates (constant w). In
this case, the steady-state solution for flux takes the form, q ∝ 1/r. The velocity of the
fluid is proportional to the flux, q = vw, where v is the average fluid velocity across the
cross-section. Thus as the flux moves away from the wellbore, the velocity of the fluid
must decrease to maintain continuity. When the fluid velocity is decreasing, that kinetic
energy must be transformed into potential energy or dissipated. If the friction term cannot
dissipate the excess kinetic energy faster than the rate at which the fluid is decelerating,
the transformation and conservation of energy causes an increase in potential energy which
is represented by an increase in fluid pressure. The result is the development of a positive
pressure gradient at the wellbore despite the positive direction of flow. The negative
pressure causes the aperture to decrease, which then increases the friction term, leading to
non-monotonic interactions at high Re.
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Figure 5.9: Injection pressure for varying injection rates with a model including inertial
terms but assuming laminar flow. Fluid velocity rapidly decreases as it moves away from
the wellbore. If the kinetic energy of the fluid cannot be dispersed by frictional forces, it
gets transferred back into potential energy in the form of pressure. The result is a positive
pressure gradient that requires negative injection pressures to satisfy the boundary value
problem. Pressure here is measured relative to the hydrostatic pressure, so total pressure
remains positive.

Figure 5.10a illustrates the pressure along the fracture when considering the inertial terms
with laminar flow compared to the Poiseuille flow solution after 60 s of injection at the
highest tested injection rate of Re = 2× 105. Similar to the turbulent flow solution, there
is a region of deviation from the Poiseuille flow solution near the wellbore, but it does not
extend as far as in the turbulent solution. Approximately 1 m along the fracture, the fluid

89



returns the pressures are well approximated by the Poiseuille flow profile. Figure 5.10b
illustrates the aperture profile along the fracture. The negative pressures at the wellbore
induce a decrease in the aperture at the wellbore, which also increases the velocity and
thereby exacerbates the influence of the convective term. To conserve the overall injected
volume, the fracture is slightly longer than the Poiseuille flow case and the apertures near
the tip are slightly larger.
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(a) The slowing fluid introduces a positive
pressure gradient near the wellbore and cre-
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calized near the wellbore and the solution
returns towards the Poiseuille flow solution
within 1 m.
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(b) The negative pressures cause a decrease
in the aperture near the wellbore. To ac-
commodate the total injected volume, the
fracture length must increase.

Figure 5.10: Pressure and aperture along the fracture with a model that includes inertial
terms but assumes laminar flow after 60 s of injection with an injection rate of Re = 2×105.

5.4.4 The combined effects of inertia and turbulence

Based on the results of the previous sections, we can observe that the two phenomena of
inertia and turbulence are in conflict. One seeks to increase pressure and decrease crack
length, while the other seeks to decrease pressure and increase crack length. Only by
combining the two phenomena into a single model can we observe the true fluid behaviour.
Thus we now consider the full GG22 flow model and solve the conservation of momentum
equation as

∂q

∂t
+

1

r

∂

∂r

(
r
α

w
q2
)
= − w

ρf

∂p

∂r
− fD(q)

w2
q2 (5.22)

Figure 5.11 illustrates the pressure at the wellbore for increasing injection rates. The
overall form of the pressure curves is similar to the turbulent-only solution in Figure 5.7,
but the peak pressures at t = 6 s are reduced. We therefore observe that the turbulent
friction factor is dominant at lower Re and the effects of the inertial terms do not manifest
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Figure 5.11: Injection pressure for varying injection rates with a model with turbulent and
inertial terms. In general, the turbulent solution is dominant, however the influence of the
negative pressures from the inertial terms significantly reduce the pressures.

until higher Re, though it has significant effects on the pressure (a reduction of 5 MPa at
t = 6 s for Re = 2× 105).

Figure 5.12a illustrates the pressure along the fracture after 60 s of injection at the highest
tested injection rate of Re = 2 × 105. The full model pressure generally aligns with
the turbulent-only model, though pressures are reduced up to 20% in the vicinity of the
wellbore. Figure 5.12b illustrates the aperture along the fracture. The increase in aperture
from turbulence reduces the influence of inertia, as the increased aperture at the wellbore
results in a lower fluid velocity to maintain the prescribed wellbore flux (q = vw). The
decrease of pressure at the wellbore does not translate directly to the same decrease in
aperture, and though it is reduced compared to the turbulent-only model, the reduction
is small. We attribute this difference to the fact that aperture and pressure are no longer
directly correlated through a constitutive equation and instead are now indirectly correlated
through a partial differential equation. The crack length is similar to the turbulent-only
model. In all cases, the changes in crack length are very small, on the order of 10−3

compared to the overall fracture length.

Figure 5.13 illustrates how the various fluid models affect the distribution of stress in
the rock mass. The Poiseuille flow model generates a single stress concentration at the
fracture tip. Introducing turbulence generates increased fluid pressure at the wellbore,
which in turn increases the stresses in the rock mass at the wellbore. Including inertia
but neglecting turbulence causes the pressure to decrease at the wellbore and restricts
the wellbore aperture. Echoing the fluid pressure behaviours, the stress concentration
induced by the inertial terms is more localized than the stress concentration induced by
turbulence. The full GG22 fluid flow model shows stress concentrations at the wellbore,
but the magnitude and size of the concentrations are reduced due to the influence of inertia
compared to the turbulent-only model.

Figure 5.14a illustrates the pressure at the wellbore after 60 s of injection for various
Re. The full flow model deviates from the Poiseuille flow model as soon as turbulence is
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(a) Turbulence is dominant over the inertial
terms in the pressure solution but inertia
reduces the pressures within 1m.
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(b) Differences in pressure are significant
between turbulent solutions with and with-
out inertia, but the translation to aperture
is more modest.

Figure 5.12: Pressure and aperture along the fracture with a with turbulent and inertial
terms after 60 s of injection with an injection rate of Re = 2× 105.

induced at Re ≈ 2× 103. The full model and the turbulent-only model remain similar up
to Re ≈ 2 × 104, after which the effects of inertia manifest and the full model deviates
from the turbulent-only model. Figure 5.14b illustrates the aperture at the wellbore after
60 s of injection time. The full model deviates from the Poiseuille flow model as soon as
turbulence is introduced, but the effects of inertia are more modest and differences with
the turbulent-only model are small.

Figure 5.15 illustrates the fraction of inertial and turbulent forces to the total pressure
drop observed along the fracture. As the inertial and turbulent forces are localized to the
wellbore (approximately 2 m or 13 wellbore diameters), this fraction indicates the ratio
of entrance losses to the total pressure loss along the fracture. This fraction is calculated
as

Entrance loss fraction =
∆pFull −∆pPF

∆pFull

(5.23)

in which ∆pFull is the difference between the wellbore pressure from the full GG22 model
and the far-field pressure, and ∆pPF is the difference between the wellbore pressure from
the Poiseuille flow and the far-field pressure. We observe that the majority of the pres-
sure loss that occurs along the fracture is attributable to entrance losses. The fraction of
entry losses increases rapidly after turbulence is induced at Re = 2000, surpassing 0.5 by
Re = 5000. It approaches an asymptote of 0.93 at higher Re, though the exact value of
this asmptote is likely unique to this specific problem setup. Crack length and injection
time do not appear to have a significant impact on the ratio. These results imply that en-
trance losses, a phenomenon observed experimentally [89] and often attributed to wellbore
perforations, may be described wholly or in part by turbulent and inertial forces which
develop near the wellbore due to high Re flow conditions. However, true near-wellbore be-
haviour is a complicated phenomenon, confounded by the flow in the wellbore, the effects

92



(a) Poiseuille flow model. A stress concentration is observed near the fracture tip.

(b) Turbulent-only flow model. The increased fluid pressure at the wellbore creates a stress
concentration at the wellbore.

(c) Inertia-only flow model. The decreased fluid pressure at the wellbore creates a stress concen-
tration at the wellbore.

(d) Full GG22 flow model. The interaction of turbulence and inertia decrease the magnitude of
the stress concentration at the wellbore compared to the turbulent only model.

Figure 5.13: Rock mass stresses and fluid pressures for an injection rate of Re = 2 × 105

for various fluid models after 60 s of injection. Displacements are scaled ×2000.

93



of perforations, and near-wellbore tortuosity [90]. This model does not capture all these
near-wellbore effects but suggests that these effects must be considered in combination
with inertia and turbulence to fully capture the near-wellbore behaviour. These results
imply that near-wellbore behaviour may govern the wellbore pressure and thus the power
required to inject fluid at these high flow rates into the fractures.

With regard to the implications and importance of inertia to the overall fracture propaga-
tion, it is concluded in Zia and Lecampion [26] by dimensional analysis that the inertial
terms are always negligible, while in Garagash [27] it is concluded that inertial terms are
only important in the early-time solution. We have shown that inertia is primarily a
near-wellbore effect, so the assumption that inertial terms are negligible is comparable to
assuming that near-wellbore effects are negligible as the fracture length increases. In the
context of the overall fracture propagation, our results agree with this conclusion, and the
scaling arguments presented by Garagash [27] can be used to estimate the importance of
inertia to the overall fracture propagation. However, inertia is a phenomenon that occurs
relative to the forces over a cross-section, so when concerned with near-wellbore behaviour,
the inertial effects are not negligible at high flow rates. Furthermore, the pressure drop
along the fracture appears to be dominated by near-wellbore behaviour caused by turbu-
lent and inertial effects. By neglecting this combination effects near the wellbore, it may
be possible to predict the overall fracture length, but considerably under- or over-estimate
the amount of power (product of flow rate and pressure) required to generate a fracture of
that length.

Based on these observations, the following recommendations for the simulation of axisym-
metric fractures are proposed. For injection flow of Re < 2000, the Poiseuille flow model
appears to be adequate. For injection flow rates in the range of 2 × 103 ≤ Re ≤ 2 × 104,
one should include the effects of turbulence but may neglect the effects of inertia with
minimal error. For injection flow rates Re > 2×104, one should include both the effects of
inertia and turbulence. If one is only interested in predicting crack lengths and apertures,
it appears that one could apply a higher upper bound on the range of applicability of the
turbulent-only model at the cost of over-predicting the pressures. For wellbore diameters
of 10, 15, and 20 cm (4, 6, 8 in), these thresholds correspond to flow rates of 0.24, 0.36,
and 0.48 bpm for the onset of turbulence effects (Re ≥ 2× 103) and 2.4, 3.6, and 4.8 bpm
for the onset of inertial effects (Re ≥ 2× 104) assuming water as the injected fluid.

While the results presented herein are discussed in terms of the dimensionless Re, the sys-
tem is non-linear so the magnitudes of flow rate and wellbore diameter will have some effect
on the results presented. However, the differences in the size of the wellbore that occur in
practice are small, and the flow rates pumped through those wellbores scale with wellbore
size, so in practice we expect qualitatively similar behaviour without significant differences
when considering wellbores sizes other than the 15 cm adopted here. Furthermore, these
results and recommendation thresholds assume water without additives as the injected
fluid. The use of additives in the injected fluid, such as slickwater, which reduce drag and
affect the transition from laminar to turbulent flow, will influence these thresholds and the
results presented herein may not be applicable.
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ter 60 s. The full physics behaviour de-
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(b) Turbulence increases the pressure at the
wellbore which in turn increases the aper-
ture. Despite the large pressure differences
that arise by neglecting inertia, this does
not translate to the same difference in aper-
ture. Smaller apertures are observed, but
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Figure 5.14: Pressure and aperture at the wellbore after 60 s of injection for various
injection flow rates and models.
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Figure 5.15: Relative contribution of turbulent and inertial forces to the total pressure dif-
ference along the fracture. The contribution of turbulent and inertial forces to the pressure
difference rapidly increases once turbulence is induced and eventually converges towards
an asymptote of 0.93 . Crack length L appears to have little effect on the contribution,
but may increase in longer fractures.
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5.5 The Effects of Surface Roughness

The friction factor as determined by the Colebrook-White equation is a function of two
terms: the relative roughness of the fracture surfaces compared to the aperture, and the
Reynolds number. At the Reynolds numbers considered in this analysis, the friction factor
is controlled primarily by the surface roughness term. As the flux is not constant along the
radius, neither is the friction factor, and the asymptotic friction factor is only reached near
the wellbore. As the Colebrook-White equation is primarily applicable in the context of
pipe flow, it is important to question the influence of the assumed empirical relationship on
the results we are interpreting. The surface roughness we have specified is at the high end
of the range of applicability of the Colebrook-White equation, and as rock mass fractures
are highly heterogeneous and uneven, the friction factor is likely to be even greater in
reality. To stay within the range of applicability of the adopted empirical relationship, let
us examine the results using a lower surface roughness.

We consider a very smooth fracture surface with a roughness up to ϵ = 10 µm and compare
it to the earlier results with a surface roughness up to ϵ = 500 µm, which is still small
compared to a real rock mass fracture. Figure 5.16 illustrates the wellbore pressures after
60 s of injection time for high and low surface roughness. Both show significantly different
behaviour from the Poiseuille flow model and similar trends: they depart from the Poiseuille
flow solution as soon as turbulence is induced, and the influence of the inertial terms
manifests at higher Re than the influence of turbulence. The influence of the inertial terms
is greater in the low roughness case as the smaller pressures create smaller apertures and
therefore higher fluid velocities and greater inertial effects. The departure of the full model
from the turbulent-only model therefore occurs at lower Re than the high roughness case.
Nevertheless, it shows that even with smooth fracture faces, the influence of turbulence
and inertia cannot be neglected, and with larger roughnesses the findings presented herein
are only reinforced.
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Figure 5.16: The influence of the surface roughness term on wellbore pressure after 60 s of
injection.
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5.6 The Effects of Fracture Toughness

Thus far, we have considered the reopening of a fracture for the model problem described
in Section 5.3 for a zero-toughness fracture. In this section we will introduce fracture
toughness through a cohesive fracture process zone ahead of the fracture with a cubic
traction separation law.

Consider the definitions of the dimensionless viscous and toughness coefficients defined by
Detournay [40]. The dimensionless viscous storage coefficient is proportional to

M ∝ µE3Qo

K4
Ic

∝ µE3Qo

G2
c

∝ µ2E3Re

ρfG2
c

(5.24)

while the dimensionless toughness coefficient is proportional to

K ∝ KIc

(EµQ0)
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1
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c ρ

1
4
f

(Eµ2Re)
1
4

(5.25)

where KIC is the mode I fracture toughness of the rock mass. The two dimensionless
coefficients are inversely proportional to each other, such that one decreases as the other
increases. The viscous and toughness coefficients M and K are derived for Poiseuille flow
fracture asymptotics, and so are not directly applicable to the model we consider here,
and are rather used in analogy. As the viscous coefficient is proportional to the injection
flow rate, Qo, it seems likely that any fracture in which the flow rate is high enough to
induce turbulent effects will also be a viscous dominant fracture. We therefore hypothesize
that applications concerned with toughness dominant fractures need not consider turbulent
effects.

The numerical results provide evidence to support this hypothesis. Figure 5.17a illustrates
the wellbore pressure and Figure 5.17b illustrates the wellbore aperture as functions of
the injection rate after 60 s of injection with the full fluid model for fracture energies
of Gc = 0, 250, 500 J/m2. The fracture energies considered are very high for a brittle
rock formation, but we consider high fracture energies to examine the asymptotic case
and increase the toughness coefficient at high injection rates. At low Re, the pressure
at the wellbore is governed by the pressure required to overcome the cohesive forces, i.e.,
toughness dominated, and pressure is correlated with fracture energy. At high Re, the
pressure at the wellbore is correlated to the turbulent resistance of the fluid, i.e., storage
dominated. At these higher Re, the cohesive tractions restrict the ability of the fracture to
grow, resulting in shorter fractures with larger apertures which create less resistance to flow
and resulting in lower pressures, such that pressure is inversely correlated with fracture
energy. The cross-over between these two regimes occurs near the onset of turbulent flow.
Both the pressures and aperture imply that at higher Re, even for rock masses with large
toughness, fracture propagation in the GG22 model becomes dominated by turbulence
rather than toughness or viscosity and the solutions converge towards the zero-toughness
solution.
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(a) Injection pressure after 60 s. At low Re,
the pressure is correlated to fracture tough-
ness. At high Re, the pressure is governed
by the fluid resistance.
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(b) Wellbore aperture after 60 s. At low
Re, the cohesive tractions restrict fracture
growth and cause the aperture to increase to
maintian the overall injected volume. At Gc
= 500 and Re = 10, the fluid forces are not
capable of overcoming the cohesive tractions
and the fracture does not open.

Figure 5.17: Pressure and aperture at the wellbore for various fracture energies (Gc, J/m
2).

Though the fracture toughness create different responses at low Re, high injection rates
cause the fractures to become viscosity dominant.

5.7 The Effects of Friction Reducers (Slickwater)

It is common in hydraulic fracturing treatments to use slickwater to reduce the energy of
pumping the fracturing fluid down the wellbore [86]. The polymers introduced in slickwater
delay the onset of turbulent flow from Re ≈ 2×103 to Re ≈ 3×104 [85] at the cost of higher
viscosity, µ = 5mPa · s [87]. In this section we examine how turbulent and inertial effects
manifest in slickwater for the zero-toughness fracture problem (Gc = 0 J/m2) described in
Section 5.3.

Figure 5.18 illustrates the pressure at the wellbore for increasing injection rates. While the
behaviour is different from the water cases, the various terms in the governing equation
produce the same effects. In the laminar regime, water and slickwater exhibit the same
behaviour. As the slickwater enters the MDR regime (103 < Re < 3 × 104, fD ∝ Re−0.7),
we observe a reduction in pressure at the wellbore. Much like the case of inertia without
turbulence discussed in Section 5.4.3, the slowing fluid supplies energy faster than it is
dissipated by friction, so a positive pressure gradient develops at the wellbore. As the
injection flow rate continues to increase, the pressure at the wellbore increases after the
MDR regime decrease. It enters the transitional regime (3 × 104 < Re < 5 × 105), which
increases the friction factor and causes a positive pressure gradient to develop.

Thus, while turbulence was the dominant effect at lower Re in pure water and inertia
did not become important until higher Re, we draw the opposite conclusion in slickwater.
In slickwater, inertia is the dominant effect at lower Re and turbulence only becomes
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Figure 5.18: Injection pressure for various injection rates with slickwater considering the
full GG22 model. The higher viscosity of slickwater implies larger flow rates at the same
Reynolds number, creating inertia dominant flow and producing a positive pressure gradi-
ent at the wellbore which reduces pressure.

important at higher Re. Figure 5.19a illustrates the pressure at the wellbore after 60 s
of injection for various Re and models with slickwater. While the MDR regime begins
at Re > 1000, we observe that Poiseuille is a reasonably good approximation until Re ≈
5 × 103. At Re > 5 × 103, after which inertia creates deviations from the Poiseuille flow
solution. Figure 5.19b compares the wellbore pressures for the full GG22 model between
water and slickwater. The higher viscosity of slickwater implies that a larger flow rate of
slickwater is required to produce the same Reynolds number, thus at low Re the slickwater
pressures are increased compared to water. The larger flow rates increase the inertial effects,
causing inertia to be the dominant mechanism in the wellbore pressure at large flow rates.
In a similar but inverted case to water, turbulence and inertia are in opposition. Each
mechanism moderates the other at high Reynolds numbers and turbulence reduces the
magnitude of wellbore pressure by 50% in high Re slickwater flow. Turbulence leads to
deviations from the inertia-only solution at Re > 2 × 104. Figure 5.19c illustrates the
wellbore pressures for various models as a function of flow rate. Slickwater successfully
reduces the power needed to pump fluid down the wellbore at the same flow rate, and
inertial effects are not observed until flow rates of 0.7 m3/min (11 L/s, 4.5 bpm).

Figure 5.20a illustrates the pressure along the fracture after 60 s of injection at a rate of
Re = 5×104 for both water and slickwater. Figure 5.20b illustrates the aperture along the
fracture. The larger viscosity of slickwater creates longer fractures with larger apertures
and higher pressures away from the wellbore, but the shape of the solution is similar to the
inertia-only model with water. The amplified inertial effects increase the aperture of the
fracture near the tip. As the model is non-linear, the 5× increase in viscosity and flow rate
correspond to an approximately 5× increase in fracture volume, but only a 2× increase in
pressure.

The trends observed with slickwater do not substantially change when a fracture toughness
is re-introduced. Similar trends to those observed with water in Section 5.6 are observed: at
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(a) Wellbore pressure as a
function of Re.
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(c) Water and slickwater as a
function of Q.

Figure 5.19: Wellbore pressure after 60 s of injection with water and slickwater.
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(a) Pressure in the fracture is greater and
inertial effects dominate near the wellbore
with slickwater.
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(b) The larger flow rate results in a larger
fracture with an area of reduced aperture
near the wellbore due to inertial effects.

Figure 5.20: Comparison of pressure and aperture along the fracture with water and slick-
water after 60 s of injection with an injection rate of Re = 5× 104.

the flow rates large enough to induce inertial and turbulent effects, the fracture propagation
is pushed away from toughness dominant propagation and is instead dominated by fluid
behaviours.

5.8 Conclusions

In this chapter, the effects of inertia and turbulence on the hydraulic stimulation of frac-
tured rock masses have been investigated. The phenomena of inertia and turbulence are
significant near the wellbore where the flux is greatest. As the flow disperses into the
fracture, laminar flow is recovered and Poiseuille flow is well-suited to modelling the flow
behaviour. At the fracture tip, no inertial or turbulent effects are observed due to the low
flow rates.

The development of turbulence leads to significant increases in the injection pressure and
the formation of an area of increased aperture near the wellbore relative to the Poiseuille
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flow solution. Pressure and aperture are no longer simply correlated because they are
now indirectly related through a partial differential equation rather than directly related
through a constitutive equation. These significant changes in wellbore aperture and pres-
sure translate to only small changes in overall crack length. While turbulence increases
wellbore pressure, inertia at high flow rates reduces wellbore pressure and a model which
only includes turbulence leads to an overestimation of the injection pressure. Turbulence is
generally the dominant phenomenon, causing deviations from the Poiseuille flow solution
as soon as it is induced, at an injection Reynolds number of Re ≈ 2× 103, approximately
corresponding to a flow of 0.4 bpm. Inertial effects do not manifest until higher Reynolds
numbers, deviating from a turbulent-only model at Reynolds numbers approximately one
order of magnitude higher than the onset of turbulence, Re ≈ 2× 104, approximately cor-
responding to a flow of 4 bpm. Inertial and turbulent forces manifest primarily within 2 m
of the wellbore (13 wellbore diameters) and are responsible for up to 93% of the total pres-
sure loss along the fracture. This suggests that inertial and turbulent forces may provide
a more accurate description for entrance losses, an experimentally observed phenomenon
which were previously accounted for in an empirical manner. Increasing surface roughness
exacerbates turbulent effect and delays the onset of inertial effects. Flow rates large enough
to induce turbulent effects also drive the fracture propagation regime towards viscous dom-
inance and it appears unlikely that turbulent effects would manifest in toughness-dominant
fracture propagation regimes.

Using slickwater as the injected fluid, the opposite trend is observed. Slickwater delays the
onset of turbulence but not inertia, so reductions in wellbore pressure from the Poiseuille
flow solution due to inertia are observed at a Reynolds number ofRe ≈ 5×103 (approximate
flow rate of 5 bpm). Turbulent effects in slickwater begin to manifest at Re ≈ 2 × 104

(approximate flow rate of 18 bpm).
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Chapter 6

Conclusions

6.1 Concluding Remarks

In this thesis, a gap in the available models to capture fracture flow behaviour was identi-
fied and a new fracture flow model that balances physical processes with complexity was
developed. The model was verified against existing models, and numerical methods were
developed to solve the model on its own and with hydro-mechanical coupling. The new
flow model reveals how inertial and turbulent phenomena manifest near the wellbore of
traditional hydraulic stimulation setups.

The GG22 model is derived from the Navier-Stokes equations by integrating over the aper-
ture and making simplifying assumptions. It is therefore not predicated on the same innate
assumptions as the Poiseuille flow model and thus contains additional terms that allow it to
capture inertial, transient, and turbulent flow behaviours. However, the increased capacity
is accompanied by more complexity. While Poiseuille flow reduces to a single constitutive
equation, the GG22 model consists of two separate partial differential equations which
must be simultaneously satisfied. The GG22 model still significantly decreases complexity
compared to the full Navier-Stokes equations. It is demonstrated that the GG22 model
conserves energy in non-parallel apertures while the Poiseuille flow model does not. Fur-
thermore, the GG22 model contains the Poiseuille flow model within its solution space,
such that when the Poiseuille flow model is appropriate, the Poiseuille flow solution is re-
covered. Thus, there exists no case in which the GG22 model makes worse predictions than
the Poiseuille flow model, as it is an expansion of the more common model. Neither model
performs well when fundamentally two-dimensional phenomena arise across the fracture
aperture, such as stable eddy formation.

Regarding numerical methods, while the formulations required to solve the GG22 model
are undeniably more complex, the computational effort is overall comparable to Poiseuille
flow models. With regards to hydro-mechanical coupling, the GG22 model is subject to
many of the same issues as Poiseuille flow, so monolithic solution methods or clever se-
quential methods are still required. With regards to computation time, the numerical
formulations of the GG22 model do not explicitly include the notorious cubic non-linearity
that is characteristic of Poiseuille flow and the inertial terms provide stabilizing numerical
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effects, so many problems (particularly elastic fractures) converge faster than the Poiseuille
flow model. Convergence issues only arise when the GG22 model is paired with the co-
hesive fractures, an issue which is less pronounced in Poiseuille flow models. While the
convergence issues observed with the GG22 model in planar cohesive fractures are severe,
it is noteworthy that this computational difficulty does not persist into the axisymmetric
models.

In practice, inertial, transient, and tuburlent behaviours are likely to be more common
than currently considered. Poiseuille flow is a reasonable model for natural fracture flows
and near-tip behaviour, but is very poor for capturing near-wellbore behaviour. Any simu-
lation of flow in a radial fracture from a wellbore using water as the injection fluid should at
the very least include turbulent behaviour. The threshold of departure from the standard
Poiseuille flow solution is low, and the change in fracture geometry and flow behaviour is
large. The threshold to induce inertial effects in water is also relatively low, and simula-
tions dealing with higher injection Reynolds numbers should consider the implementation
of inertia to capture the complete fluid behaviour. While Poiseuille flow is better at approx-
imating slickwater behaviour, any simulation of flow in a radial fracture from a wellbore
using slickwater should consider including inertial behaviour. The threshold for consider-
ing turbulent behaviours in slickwater is higher, so they may be neglected with minimal
impact at modest flow rates. In traditional hydraulic stimulation applications, the driving
force behind deviations from the Poiseuille flow solution appears to be flow rate. There
are various other factors that can lead to non-Poiseuille flow behaviour, as explored in
the various verification cases. For example, larger apertures like those of a geothermal
installation lead to greater transient effects, and any sudden aperture change can induce
inertial forces. In general, the influence of inertia, transience, and turbulence are expected
to result in larger pressures, lower fluxes, greater stresses, and phase-shifts in the fluid
response.

6.2 Research Contributions

In the development of the GG22 model and its applications, research contributions that ex-
pand the literature on non-Poiseuille flow processes in fractured rock masses were produced.
The significant contributions produced by this research were disseminated in conferences
and peer-reviewed journals and are summarized here.

The first objective of this thesis was to develop a new reduced-dimension model for frac-
ture flow that captures inertial, transient, and turbulent behaviours. This research was
disseminated in:

B. Gee and R. Gracie, “Beyond Poiseuille flow: A transient energy-conserving model for
flow through fractures of varying aperture”, Advances in Water Resources, vol. 164, p.
104192, 2022.

B. Gee and R. Gracie, ”Reduced Dimension Fracture Flow – Deformable fractures coupled
with inertial and transient fluid behaviour”, The 8th European Congress on Computational
Methods in Applied Sciences and Engineering. Oslo, Norway, June 2022.
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B. Gee and R. Gracie, ”Inertia Dominant and Transient Flow in Fractures – Beyond the
Cubic Law”, 56th US Rock Mechanics/Geomechanics Symposium. ARMA. Santa Fe, NM,
June 2022.

The key contributions of this work are:

• A new mathematical fracture flow model is derived from the Navier-Stokes equations
by integating over the aperture and making simplifying assumptions.

• The performance of the new model is verified against the Navier-Stokes and Poiseuille
flow models.

• The error in using reduced-dimension models is quantified at various flow rates in
sinusoidal geometries.

The second objective of this thesis was to develop a simulator with novel numerical methods
to solve the new fracture flow equations and simulate flow behaviour in rigid fractures. This
research was disseminated in:

B. Gee and R. Gracie, “Beyond the cubic law: A finite volume method for convective and
transient fracture flow,” International Journal for Numerical Methods in Fluids, vol. 94,
no. 11, pp. 1841–1862, 2022.

B. Gee and R. Gracie, “Reduced Dimension Fracture Flow – Deformable fractures coupled
with inertial and transient fluid behaviour”, The 8th European Congress on Computational
Methods in Applied Sciences and Engineering. Oslo, Norway, June 2022.

The key contributions of this work are:

• The first numerical method to solve the GG22 equations is developed. An explicit
finite volume solution algorithm with a continuity correction is presented to overcome
numerical instabilities.

• The types of behaviours to be expected by inertial and transient flow are illustrated.
These effects include lower fluxes, higher pressures, and phase-shifts in the fluid
response.

The third objective of this thesis was to develop a multi-physics simulator to couple the new
fracture flow model with rock mass deformation and fracture propagation. This research
was disseminated in:

B. Gee and R. Gracie, “Inertial and turbulent flow in hydro-mechanically coupled planar
fractures,” Submitted to International Journal for Numerical and Analytical Methods in
Geomechanics, February 2023.

R. Gracie and B. Gee, “Non-cubic law behavior in hydraulic fractures”, 56th US Rock
Mechanics/Geomechanics Symposium. ARMA. Santa Fe, NM, June 2022.

B. Gee, R. Gracie, and M.B. Dusseault, “Transient, Inertial, and other non-Cubic Law
Phenomena”, 3rd International Conference on Coupled Processes in Fractured Geological
Media. Berkeley, CA, November 2022.

The key contributions of this work are:
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• The first hydro-mechanical model for the GG22 equations coupled with rock mass
deformation and fracture propagation is developed.

• A monolithic implicit solution algorithm is presented. Numerical convergence issues
are addressed by introducing Aitken relaxation and adaptive line search techniques.
The line search is demonstrated to be superior to a Newton-Raphson scheme.

• Previous modelling assumptions on inertia are verified and inertia is demonstrated
to be negligible in KGD-like fractures. Previous findings on turbulent effects are
verified and it is demonstrated that they have significant impacts on the shape of the
fracture.

The fourth objective of this thesis was to investigate the role of inertia and turbulence in
hydraulic stimulation and fracture propagation. This research was disseminated in:

B. Gee and R. Gracie, “The Influence of Turbulence and Inertia in Radial Fracture Flow,”
Submitted to International Journal of Solids and Structures, April 2023.

B. Gee. “Beyond the cubic law: Inertial, turbulent, and transient flow behaviours in hy-
draulic fractures”. American Rock Mechanics Association (ARMA) Hydraulic Fracturing
Technical Seminar Presentation, March 9th 2023.

The key contributions of this work are:

• The axisymmetric form of the GG22 equations is presented for the first time.

• The role of inertia and its interactions with turbulence is presented for the first time.
Inertia is shown to have significant impacts on pressure and aperture in the vicinity
of the wellbore. Inertia and turbulence are demonstrated to be at odds, as turbulence
increases wellbore pressure while inertia deceases wellbore pressure.

6.3 Directions for Future Study

There are many new potential avenues for future study on inertial, transient, and turbulent
flow in fractures. Some of these directions include:

Validation: Validation with experimental results is one of the largest remaining chal-
lenges. The combination of high flow rates with deformable apertures under high in-situ
stresses leads to complex interactions and scale effects that are difficult to replicate at the
lab scale. Validation with field data remains a significant challenge due to the high un-
certainty and heterogeneity of rock masses. There has been experimental work performed
to examine and validate Poiseuille and Forchheimer flow, and similar experimental setups
could be leveraged to examine and validate the GG22 model at lower Reynolds numbers.
Of particular interest might be a survey of existing experimental data to see if any unex-
plained phenomena could be attributed to effects captured by the GG22 model. Further
design and refinement of experimental testing is recommended to validate the GG22 model
and establish an experimentally verified range of applicability.

Model Extensions: There are several physical behaviours which the GG22 model cannot
currently capture but are of interest for practical applications. These include fluid leak-off,
fracture tortuosity, fluid compressibility, and fluid temperature among others.
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Leak-off is the loss of fluid through the walls of the fracture. Leak-off is a phenomenon
observed in the field and one which is important to predicting the behaviour of hydraulic
stimulation and other fracture flow applications. This is commonly incorporated into
the Poiseuille flow model through the conservation of mass, despite the Poiseuille flow
assumption that the rock matrix is impermeable. To include leak-off in a mathematically
consistent manner requires intrusion into the derivation of the GG22 governing equations,
as it too assumes an impermeable rock mass. Such an extension would permit the GG22
model to be coupled with porous rock masses.

Fracture tortuosity is the concept that the centerline of the fracture follows a curved path,
rather than a straight line or plane. Including tortuosity likely requires the re-derivation of
the governing equations with respect to an arbitrary curved centerline. I suspect this would
introduce new inertial terms associated with changing the flow path, and there are likely to
be limits on the tortuosity and flow rate before a reduced-dimension model is inadequate.
Such an extension would permit the GG22 model to capture non-mated fractures, which
are a more accurate depiction of natural fractures.

Fluid compressibility is the concept that fluid density may change in response to temper-
ature or pressure. Fluid compressibility is likely to be one of the easier extensions to the
GG22 model as the assumption that density is constant is not critical. The resulting for-
mulation would appear similar to the GG22 equations, except density would appear inside
the transient and convective terms. This would form a three-field model where density
is introduced as a function of time and space. A third governing equation, an equation
of state, would be required to dictate how the density responds to changes in pressure or
temperature. Temperature can be included in a similar fashion by introducing a governing
equation associated with the conservation of energy and a temperature dependent friction
factor. Such an extensions would be of particular interest to applications such as heat
mining with supercritical carbon dioxide.

Non-Newtonian fluid rheology is a more complex extension. Non-Newtonian rheology
will only manifest in the friction term, but it is likely that a complete re-derivation of
the friction term following the methodology laid out in Chapter 2 is required for a new
rheology of interest. This would allow the GG22 model to properly capture behaviours like
shear-thinning that occur in slickwater, among other fracturing fluids.

Fracture Planes: The research presented in this thesis focused primarily on the one-
dimensional form of the GG22 equations and fracture planes were only investigated under
axisymmetric conditions. Fracture planes are of interest in hydraulic stimulation but also
in applications such as geothermal energy. The complexity of the equations is significantly
elevated by the introduction of a flux dyad, such that the equations are similar to the
compressible Navier-Stokes equations in which aperture is a proxy for density. New nu-
merical methods are required to solve the GG22 equations in this form, and the extension
from one- to two-dimensions is non-trivial. The GG22 model in fracture planes is expected
to unveil a myriad of new behaviours, such as in-plane re-circulation, which may have
profound impacts on heat transfer and rock mass deformation in fractures at high flow
rates.
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Other Applications: This research has focused primarily on applications to hydraulic
stimulation. The GG22 model should be applied to other fracture flow problems to exam-
ine the importance of inertia, transience, and turbulence. Other such applications might
include but are not limited to: geothermal energy, hydraulic stimulation with pressure
pulses, particle and contaminant transport during seismic excitation, and flow through
fracture networks.
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Appendix A

Finite Volume Continuity Correction
Derivation

In this appendix, the continuity correction is derived and the equation is discretized. Given
the current fluxes qn∗ which do not satisfy continuity, the problem is to find the new fluxes
qn which do satisfy continuity while minimizing the difference the new and current fluxes.
Therefore, the problem is to minimize the residual

R =
1

2

∫ L

0

(qn − qn∗)2 dx (A.1)

subject to the constraint

0 =
∂

∂x
(qn) +

∂

∂t
(wn) (A.2)

This problem can be addressed by introducing a Lagrange multiplier. The new problem is
to find the saddle point of the Lagrangian,

L(qn∗, λ) = 1

2

∫ L

0

(qn − qn∗)2 dx−
∫ L

0

λ

(
∂

∂x
(qn) +

∂

∂t
(wn)

)
dx (A.3)

in which λ = λ(x) is the Lagrange multiplier. Let qn be the field which minimizes the
residual R, such that R(qn) = min(R). Introducing a small variation δq, then

L =
1

2

∫ L

0

((qn + δq)− qn∗)2 dx−
∫ L

0

λ

(
∂

∂x
(qn + δq) +

∂

∂t
(wn)

)
dx (A.4)

L = min(R) + δR (A.5)

δR =

∫ L

0

δq (qn − qn∗) dx−
∫ L

0

λ

(
∂

∂x
(δq)

)
dx (A.6)

in which the second order terms involving (δq)2 have been dropped. The Lagrangian can
therefore be minimized if δR = 0. Integration by parts is applied to the second term in
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δR.

δR =

∫ L

0

δq

(
qn − qn∗ +

∂λ

∂x

)
dx− λδq

∣∣∣∣L
0

= 0 (A.7)

On boundaries where q is prescribed, δq = 0 as both qn∗ and qn satisfy the given conditions,
which leads to the boundary condition ∂λ

∂x
= 0 on Γq. On boundaries where pressure is

prescribed, δq is not necessarily zero, so we set the condition that λ = 0 on Γp. Therefore,
the surface term in δR goes to zero. For δR to go to zero for arbitrary δq, we find that

qn − qn∗ +
∂λ

∂x
= 0 (A.8)

qn is still unknown, but is constrained by the continuity equation. Therefore the derivative
is taken to substitute in the known aperture velocity, ẇn.

0 =
∂

∂x
(qn)− ∂

∂x
(qn∗) +

∂2λ

∂x2
(A.9)

∂2λ

∂x2
=

∂

∂t
(wn) +

∂

∂x
(qn∗) (A.10)

This provides an equation for λ, which can then be used to correct the fluxes according
to

qn = qn∗ − ∂λ

∂x
(A.11)

A.1 Discretization using the Finite VolumeMethod

The minimization problem produces an additional equation for a Lagrange multiplier that
will correct the fluxes to meet continuity. This equation is discretized using the finite
volume method.

First, the equation is integrated over the flux control volumes.∫ xe
2

xe
1

∂2λi

∂x2
dx =

∫ xe
2

xe
1

∂

∂t
(wn

i )dx+

∫ xe
2

xe
1

∂

∂x
(qn∗)dx (A.12)

∂λi

∂x

∣∣∣∣xe
2

xe
1

= ∆xẇi
n + (qn∗)

∣∣∣∣xe
2

xe
1

(A.13)

∂λi

∂x

∣∣∣∣xe
2

xe
1

= ∆xẇi
n +

(
qn∗i,2 − qn∗i,1

)
(A.14)

Next, the derivative is discretized using a central differencing scheme, such that

∂λi

∂x

∣∣∣∣xe
2

xe
1

=

(
λi+1 − λi

∆x

)
−
(
λi − λi−1

∆x

)
(A.15)
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Thus the following discrete equation for λ is obtained.

λi−1 − 2λi + λi+1 = (∆x)2ẇi
n +∆x

(
qn∗i,2 − qn∗i,1

)
(A.16)

Last, the derivative of the Lagrange multiplier is constructed in each cell using central
difference, such that

∂λi

∂x
=

λi+1 − λi−1

2∆x
(A.17)

Then the fluxes may be corrected such that

qni = qn∗i − ∂λi

∂x
(A.18)

A.2 Boundary Conditions on λ

λ is subject to the boundary conditions λ = 0 on Γp where pressure is prescribed, and
∂λ
∂x

= 0 on Γq where flux is prescribed. Implementation of the flux boundary condition is
applied directly through the discrete equation.

In volume 1,

∂λi

∂x

∣∣∣∣xe
2

xe
1

=

(
λ2 − λ1

∆x

)
− (0) (A.19)

−λ1 + λ2 = (∆x)2ẇ1
n +∆x

(
qn∗1,2 − qn∗1,1

)
(A.20)

In volume m,

∂λi

∂x

∣∣∣∣xe
2

xe
1

= (0)−
(
λm − λm−1

∆x

)
(A.21)

λm−1 − λm = (∆x)2ẇm
n +∆x

(
qn∗m,2 − qn∗m,1

)
(A.22)

To implement the pressure boundary condition, a ghost cell is introduced outside of the
domain such the interpolated value of λ between the ghost cell and the end cell satisfies
the boundary condition. Using a linear interpolation between cell i = 1 and ghost cell
i = −1

λ1 + λ−1 = 0 (A.23)

−3λ1 + λ2 = (∆x)2ẇ1
n +∆x

(
qn∗1,2 − qn∗1,1

)
(A.24)

Using a linear interpolation between cell i = m and ghost cell i = m+ 1

λm + λm+1 = 0 (A.25)

λm−1 − 3λm = (∆x)2ẇm
n +∆x

(
qn∗m,2 − qn∗m,1

)
(A.26)
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Appendix B

Pressure Poisson Equation Finite
Volume Discretization and Boundary
Conditions

This appendix documents the details of the finite volume discretization the pressure Poisson
equation.

B.1 Discretization of the Pressure Poisson Equation

in the Domain

The PPE is discretized using the finite volume method by integrating over the pressure
cells. ∫ xe

2

xe
1

∂

∂x

(
w

ρf

∂p

∂x

)n

dx = −
∫ xe

2

xe
1

∂

∂x
(H)n−1 dx−

∫ xe
2

xe
1

1

∆t

(
−ẇn + ẇn−1

)
dx (B.1)

wn

ρf

∂pn

∂x

∣∣∣∣xe
2

xe
1

= −Hn−1

∣∣∣∣xe
2

xe
1

− 1

∆t

(
−ẇn + ẇn−1

) ∣∣∣∣xe
2

xe
1

(B.2)

H =
∂

∂x
(α

q2

w
) +

1

2

fD
w2

q|q| (B.3)

On the right-hand side, a central differencing scheme is used to discretize the derivatives
of α, w, and q. All terms in the following equations are evaluated at the previous timestep
n− 1 unless otherwise noted.

First, the friction term evaluated over the control volumes gives

1

2

fD
w2

q|q|
∣∣∣∣xe

2

xe
1

=
1

2

(
fD(qi)

(wi)2
(qi)|qi| −

fD(qi−1)

(wi−1)2
(qi−1)|qi−1|

)
(B.4)
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Next, the convective term is expanded and discretized, such that

− ∂

∂x

(
α
q2

w

) ∣∣∣∣xe
2

xe
1

= −

(
∂α

∂x

q2

w

∣∣∣∣xe
2

xe
1

+ 2α
q

w

∂q

∂x

∣∣∣∣xe
2

xe
1

− α
(q)2

(w)2
∂w

∂x

∣∣∣∣xe
2

xe
1

)
(B.5)

The gradients over each flux cell are constructed using the face values of q, α and w in
each flux cell.

− ∂

∂x

(
α
q2

w

) ∣∣∣∣xe
2

xe
1

=−
(

q2i
wn−1

i

α(qi,2)− α(qi,1)

∆x
− (qi−1)

2

wi−1

α(qi−1,2)− α(qi−1,1)

∆x

)
− 2

(
α(qi)

qi
wi

qi,2 − qi,1
∆x

− α(qi−1)
qi−1

wi−1

qi−1,2 − qi−1,1

∆x

)
+

(
α(qi)

(
qi
wi

)2 wi+ 1
2
− wi− 1

2

∆x
− α(qi−1)

(
qi−1

wi−1

)2 wi−1+ 1
2
− wi−1− 1

2

∆x

)
(B.6)

Last, the continuity term is evaluated by assuming that the difference in ẇi and ẇi−1 is
small, such that the rate of aperture change across the cell is approximately constant. This
leads to

− 1

∆t

(
−ẇn + ẇn−1

) ∣∣∣∣xe
2

xe
1

≈ −∆x

∆t

(
−ẇn

i− 1
2
+ ẇn−1

i− 1
2

)
(B.7)

Therefore, the combined pressure source term is given as

Spi =−
(
(qn−1

i )2

wn−1
i

α(qi,2)− α(qi,1)

∆x
−

(qn−1
i−1 )

2

wn−1
i−1

α(qi−1,2)− α(qi−1,1)

∆x

)
− 2

(
α(qi)

qn−1
i

wn−1
i

qn−1
i,2 − qn−1

i,1

∆x
− α(qi−1)

qn−1
i−1

wn−1
i−1

qn−1
i−1,2 − qn−1

i−1,1

∆x

)

+

(
α(qi)

(
qn−1
i

wn−1
i

)2 wn−1
i+ 1

2

− wn−1
i− 1

2

∆x
− α(qi−1)

(
qn−1
i−1

wn−1
i−1

)2 wn−1
i−1+ 1

2

− wn−1
i−1− 1

2

∆x

)

− 1

2

(
fD(qi)

(wn−1
i )2

(qn−1
i )|qn−1

i | − fD(qi−1)

(wn−1
i−1 )

2
(qn−1

i−1 )|qn−1
i−1 |

)
− ∆x

∆t

(
−ẇn

i− 1
2
+ ẇn−1

i− 1
2

)

(B.8)

B.2 Implementation of Neumann Boundary Condi-

tions on PPE

The Neumann boundary condition is first examined in cell 1. Starting from the integrated
PPE (3.16), the Neumann boundary condition (3.10) is introduced such that Γq = xe

1,
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which yields the governing equation in cell 1 as

wn

ρf

∂pn

∂x

∣∣∣∣
xe
2

= − ∂

∂x
(α

q2

w
)

∣∣∣∣
xe
2

− 1

2

fD
(w)2

q|q|
∣∣∣∣
xe
2

− ∆x

∆t

(
−ẇn + ẇn−1

)
− ∂q

∂t

∣∣∣∣
xe
1

(B.9)

The left-hand side is discretized as

wn

ρf

∂pn

∂x

∣∣∣∣
xe
2

=
wn

1

ρf

(
p2 − p1
∆x

)
(B.10)

while the right-hand side is discretized as

Sp1 = −
(
(q1)

2

w1

α(q1,2)− α(q1,1)

∆x

)
− 2

(
α(q1)

q1
w1

q1,2 − q1,1
∆x

)
+

(
α(q1)

(
q1
w1

)2 w1+ 1
2
− w1− 1

2

∆x

)
− 1

2

(
fD(q1)

(w1)2
(q1)|q1|

)
−∆x

∆t

(
−ẇn

1− 1
2
+ ẇn−1

1− 1
2

)
− 1

∆t
(qn − qn−1)

(B.11)

The discrete equation for pressure in cell 1 with a flux boundary condition is therefore

p1 − p2 = −∆xρf
wn

1

Sp1 (B.12)

Next, the Neumann boundary condition is examined in cell m + 1. Starting from the
integrated PPE (3.16), the Neumann boundary condition (3.10) is introduced such that
Γq = xe

2, which yields the governing equation in cell m+ 1 as

−wn

ρf

∂pn

∂x

∣∣∣∣
xe
1

= − ∂

∂x
(α

q2

w
)

∣∣∣∣
xe
1

− 1

2

fD
(w)2

q|q|
∣∣∣∣
xe
1

− ∆x

∆t

(
−ẇn + ẇn−1

)
+

∂q

∂t

∣∣∣∣
xe
2

(B.13)

The left-hand side is discretized as

−wn

ρf

∂pn

∂x

∣∣∣∣
xe
1

= −wn
m

ρf

(
pm+1 − pm

∆x

)
(B.14)

while the right-hand side is discretized as

Spm+1 = −
(
−(qm)

2

wm

α(qm,2)− α(qm,1)

∆x

)
− 2

(
−α(qm)

qm
wm

i−1

qm,2 − qm,1

∆x

)
+

(
−α(qm)

(
qm
wm

)2 wm+ 1
2
− wm− 1

2

∆x

)
− 1

2

(
−fD(qm)

(wm)2
(qm)|qm|

)
−∆x

∆t

(
−ẇn

m+ 1
2
+ ẇn−1

m+ 1
2

)
+

1

∆t
(qn − qn−1)

(B.15)

The discrete equation for pressure in cell m + 1 with a flux boundary condition is there-
fore

pm+1 − pm = −∆xρf
wn

m

Spm+1 (B.16)
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Appendix C

Definitions of Jacobian Derivative
Matrices for the Hydro-Mechanically
Coupled Model

The component matrices of the fully-coupled monolithic system Jacobian are defined in
this appendix.

Kuu = Kelastic +Kcohesive (C.1)

Kelastic =

∫
Ωs

B⊤DBdΩ (C.2)

Kcohesive = −
∫
Γc

N⊤nΓc

∂tcoh

∂w
nΓcJNKdΓ (C.3)

Kup =

∫
Γc

N⊤nΓcψdΓ (C.4)

Kcu(i, j) =
3∆x

2∆t
nΓc · JNK

∣∣∣∣
xi,1

,∀j (C.5)

Kcq(i, [i− 1, i]) =
[
−1 1

]
(C.6)

Kmp(i, [i, i+ 1]) =
wi

ρf

[
−1 1

]
(C.7)

Kmu(i, j) =− α(qi,2)

w2
i,2

(qi,2)
2nΓc · JNK

∣∣∣∣
xi,2

+
α(qi,1)

w2
i,1

(qi,1)
2nΓc · JNK

∣∣∣∣
xi,1

+

[
pi+1 − pi

ρf
+∆x

1

2w2
i

qi|qi|
∂fD
∂w

−∆x
fD(qi)

w3
i

(qi)|qi|
]
nΓc · JNK

∣∣∣∣
xi

(C.8)
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At Re < ReT , where ReT is the threshold Reynolds number which defines the transition
between the turbulent and transitional regimes, ∂fD

∂w
= 0. At Re > ReT , the derivative

∂fD
∂w

is generally small, though the computational effort associated with computing derivative
(which is defined implicitly) is high. It is therefore preferable to assume that ∂fD

∂w
=

0 ∀Re.

The matrix Kmq is defined as

Kmq =
∂Ft

∂qn
+

∂Fc

∂q
+

∂Ff

∂q
(C.9)

The derivative of the forcing vector Ft is defined as

∂Ft

∂qn
i

=
3∆x

2∆t
(C.10)

The derivative of the convective forcing vector, Fc, depends on the interpolation scheme
for the cell faces. The implementation adopted in this paper uses the QUICK scheme for
non-uniform meshes. The version presented here assumes a uniform structured mesh. Let
Qi be the 5 × 1 matrix of cell face flux derivatives defined for each row i with column
entries i− 2, i− 1, i, i+ 1, i+ 2.

In a structured mesh, case 1: qi ≥ 0

Qi,1 =
∂qi,1
∂q

(i− 2, i− 1, i, i+ 1, i+ 2)i =
1

8

[
−1 6 3 0 0

]
(C.11)

Qi,2 =
∂qi,2
∂q

(i− 2, i− 1, i, i+ 1, i+ 2)i =
1

8

[
0 −1 6 3 0

]
(C.12)

case 2: qi < 0

Qi,1 =
∂qi,1
∂q

(i− 2, i− 1, i, i+ 1, i+ 2)i =
1

8

[
0 3 6 −1 0

]
(C.13)

Qi,2 =
∂qi,2
∂q

(i− 2, i− 1, i, i+ 1, i+ 2)i =
1

8

[
0 0 3 6 −1

]
(C.14)

Thus, the derivative of the convective forcing vector Fc with respect to the nodal fluxes
is

∂Fc

∂q i

=
2α(qi,2)

wi,2

qi,2Qi,2 −
2α(qi,1)

wi,1

qi,1Qi,1 (C.15)

It is assumed here that ∂α
∂q

= 0, which is true in the laminar and turbulent regimes.

Last, the derivative of the friction forcing vector Ff with respect to the nodal fluxes is
divided by flow regime.

∂Ff

∂qi
=

∆x

w2
i

(
fD|qi|+

1

2
qi|qi|

∂fD
∂qi

)
(C.16)
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In the laminar regime,

fD =
24

Re
=

24ν

|qi|
(C.17)

∂fD
∂qi

= − 24ν

qi|qi|
(C.18)

∂Ff

∂qi
=

12∆xν

w2
i

(C.19)

In the transitional regime,

fD = fDL + (Rei −ReL)
fDT − fDL

ReT −ReL
(C.20)

∂fD
∂qi

=
fDT − fDL

ReT −ReL
· sign(qi)

ν
(C.21)

in which ReL, fDL = fD(ReL) are the Reynolds number and friction factor at the transition
from the laminar regime to the transitional regime, and ReT , fDT = fD(ReT ) are the
Reynolds number and friction factor at transition from the transitional regime to the
turbulent regime.

In the turbulent regime,

1√
fD

= −2 log

(
ϵ

7.4w
+

2.51

Re
√
fD

)
(C.22)

∂fD
∂qi

= −10.04ν

ln 10

(
ϵ

7.4wi

+
2.51

Re
√
fD

)−1
fD
q2i

(
1 +

5.02ν

(ln 10)qi

(
ϵ

7.4wi

+
2.51

Re
√
fD

)−1
)−1

(C.23)
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