Mining Butterflies in Streaming Graphs

by

Aida Sheshbolouki

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Computer Science

Waterloo, Ontario, Canada, 2023

© Aida Sheshbolouki 2023
Exposing Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote.

External Examiner: Jian Pei
Professor, Department of Computer Science, Duke University

Supervisor(s): M. Tamer Özsu
University Professor, David R. Cheriton School of Computer Science, University of Waterloo

Internal Members: Semih Salihoglu
Associate Professor, David R. Cheriton School of Computer Science, University of Waterloo

Yaoliang Yu
Associate Professor, David R. Cheriton School of Computer Science, University of Waterloo

Internal-External Member: Lukasz Golab
Professor, Department of Management Sciences, University of Waterloo
Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.
Statement of Contributions

This thesis includes material, which I learned and developed during my studies and publishing in peer-reviewed venues. The published articles\(^1\) are co-authored and supervised by Prof. M. Tamer Özsu.

\(^1\)Chapter 3 is published in \([295, 296, 297, 298]\), Chapter 4 is published in \([295, 298]\), and Chapter 5 is published in \([296, 297]\).
Abstract

This thesis introduces two main-memory systems $sGrapp$ and $sGradd$ for performing the fundamental analytic tasks of biclique counting and concept drift detection over a streaming graph. A data-driven heuristic is used to architect the systems. To this end, initially, the growth patterns of bipartite streaming graphs are mined and the emergence principles of streaming motifs are discovered. Next, the discovered principles are (a) explained by a graph generator called $sGrow$; and (b) utilized to establish the requirements for efficient, effective, explainable, and interpretable management and processing of streams. $sGrow$ is used to benchmark the stream analytics, particularly in the case of concept drift detection.

$sGrow$ displays robust realization of streaming growth patterns independent of initial conditions, scale and temporal characteristics, and model configurations. Extensive evaluations confirm the simultaneous effectiveness and efficiency of $sGrapp$ and $sGradd$. $sGrapp$ achieves mean absolute percentage error $\leq 0.05/0.14$ for the cumulative butterfly count in streaming graphs with uniform/non-uniform temporal distribution and a processing throughput of 1.5×10^6 data record per second. The throughput and estimation error of $sGrapp$ are $160\times$ higher and $0.02\times$ lower than baselines. $sGradd$ demonstrates an improving performance over time, achieves zero false detection rates when there is not any drift and when a drift is already detected, and detects sequential drifts in zero to a few seconds after their occurrence regardless of drift intervals.
Acknowledgements

I would like to thank all the great people who made this thesis possible.

Many thanks to the person who continuously supported me, who taught me how to manage my time, who encouraged me to pursue my goals and boosted my confidence and motivation through the journey, who resembled a speaking encyclopedia to which I always referred my questions, who introduced me to the world of big data, who showcased the meaning of open-mindedness, kindness, wisdom and intelligence, and thoughtfulness, who is the one and only one prof. Tamer Özsu.

I would like to express my gratitude to my thesis committee members, professors Jian Pei, Semih Salihoglu, Yaoliang Yu, and Lukasz Golab, for taking time to review my thesis and providing constructive and insightful comments. I have learned various topics about graph data processing, machine learning, and data streams from their courses, publications, and discussions.

I was privileged to be a member of Data Systems Group and am thankful for many learning opportunities: from seminars and weekly lunch talks to meeting researchers, to serving on the lab committee and practicing management skills, to coordinating lunch talks and practicing communication skills, to organizing talks and meetings and practicing diversity matters, to working in a shared and open-space workplace, to celebrating the success of others and sharing happiness, to learning from groups chats on state-of-the-art topics, and many other teaching and touching occasions.

It was an honor to complete my Ph.D. at the University of Waterloo, working and living among the great members of faculties, staff, and students of different departments, offices, and centers. In particular, I am thankful to all members of David R. Cheriton School of Computer Science and the Faculty of Mathematics.

I would like to thank my friends, my support group. To name a few: Abeer Khan, Amine Mhedhbi, Anil Pacaci, Banafsheh Lashkari, Behnaz Jamasb, Besat Kassaie, Brad Glasbergen, Chang Ge, Elhab Bidaki, Enamul Haque, Karl Knopf, Kerem Akillioglu, Khaled Ammar, Mahsa Paknezhad, Mana Raziyan, Manoj Sharma, Maryam Omidvar, Melica Mirsafian, Michael Abebe, Mustafa Kurkmaz, Nafisa Anzum, Negar Arabzadeh, Peng Shi, Royal Sequeira, Sara Atapour, Shadi Ghasemitahei, Shaya Pourmirza, Shubhankar Mohapatra, Shufan Zhang, Siddhartha Sahu, Tejasvi Kashi, and Zeynep Korkmaz.

And thanks to my grandparents, my parents, and my siblings. Their love has always been the magic of my life.
Dedication

This thesis is dedicated to my parents and sisters.
Table of Contents

Examiner Committee Membership ii

Author’s Declaration iii

Statement of Contributions iv

Abstract v

Acknowledgements vi

Dedication vii

List of Figures xii

List of Tables xvii

Nomenclature xix

1 Introduction 1

1.1 Thesis Scope 3

1.2 Streaming Graph Analysis 6

1.3 Streaming Graph Modelling 8

1.4 Streaming Graph Analytics 10
1.4.1 Butterfly Counting .. 10
1.4.2 Concept Drift Detection ... 12
1.5 Thesis Organization .. 13

2 Background and Definitions ... 15
2.1 Streaming Graph Model ... 15
2.2 Window Management .. 16
2.3 Subgraphs ... 18

3 Streaming Graph Analysis ... 22
3.1 Data and Methods ... 23
 3.1.1 Data .. 23
 3.1.2 Methods ... 27
3.2 Analysis, Phase 1 ... 36
 3.2.1 Temporal Motifs .. 36
 3.2.2 Butterfly Emergence Patterns - Densification 37
 3.2.3 Summary ... 45
3.3 Analysis, Phase 2 ... 46
 3.3.1 Butterfly Emergence Patterns - Strength Assortativity 46
 3.3.2 Summary ... 54

4 Streaming Graph Modelling .. 55
4.1 Related Works .. 55
 4.1.1 Graph Patterns .. 56
 4.1.2 Growth Models ... 56
4.2 Analysis of Microscopic Growth Mechanisms 59
 4.2.1 Data .. 59
 4.2.2 Analysis ... 59
4.2.3 Summary .. 60
4.3 sGrow .. 64
 4.3.1 Overview ... 65
 4.3.2 Data Structures 69
 4.3.3 Strength Preferential Selection 70
 4.3.4 Preferential Random Walk 70
 4.3.5 Burst Addition 71
4.4 Performance Evaluations 71
 4.4.1 Pattern Reproduction 75
 4.4.2 Stress Testing 81
 4.4.3 Computational Complexity 87
4.5 Summary .. 90

5 Streaming Graph Analytics - Butterfly Counting 94
 5.1 Butterfly Counting over Streaming Graphs 95
 5.2 Related Works ... 98
 5.2.1 Counting in Static Bipartite Graphs 99
 5.2.2 Counting in Streaming Bipartite Graphs 100
 5.3 sGrapp .. 101
 5.3.1 Optimised Algorithm: sGrapp-x 105
 5.4 Performance Evaluation 105
 5.4.1 Effectiveness of sGrapp 108
 5.4.2 Effectiveness of sGrapp-x 111
 5.4.3 Efficiency of sGrapp and sGrapp-x 121
 5.4.4 Comparison with Baselines 128
 5.4.5 Complexity Analysis 130
 5.5 Summary .. 133
List of Figures

1.1 Projecting a bipartite graph to two unipartite graphs. 4
1.2 Bipartite graphs in fraud detection and recommendation systems. 5
1.3 Introduced microscopic mechanisms for explaining butterfly emergence patterns by sGrow model. 9
1.4 Example applications of butterfly counting. 11

2.1 Streaming graph records arriving at sequential time points $t^1 - t^6$. 16
2.2 (a, b, c, d) Caterpillar and (e) butterfly sub-structures [14]. 20

3.1 Schematic figure for the introduced algorithm countButterflies(G). 28
3.2 Assortativity coefficient over timeline of burst arrival in Epinions stream. 31
3.3 Distribution of strength differences of connected butterfly vertices. 32
3.4 Distribution of strength of butterfly i-vertices and j-vertices. 33
3.5 Nearest-neighbour average strength of vertices with strength S. 34
3.6 Temporal evolution of butterfly frequency. 37
3.7 (top) Best Fitting functions for the temporal evolution of butterfly frequency and (bottom) the residual errors of the estimated fitting function in Epinions and ML100k streams. 38
3.8 (top) Best Fitting functions for the temporal evolution of butterfly frequency and (bottom) the residual errors of the estimated fitting function in ML1m and Edit-FrWiki streams. 39
3.9 (top) Best Fitting functions for the temporal evolution of butterfly frequency and (bottom) the residual errors of the estimated fitting function in Edit-EnWiki and ML10m streams. 40
3.10 Distribution of inter-arrival time of edges forming butterflies in real-world graphs. ... 41
3.11 Distribution of inter-arrival time of edges forming butterflies in BA+real stamps graphs. ... 41
3.12 [Best viewed in colored.] Temporal evolution of the normalized fraction of i-hub connection (average i-hub degree). 44
3.13 [Best viewed in colored.] Temporal evolution of the normalized fraction of j-hub connection (average j-hub degree). 44
3.14 The number of young (top 6) i-hubs and (bottom 6) j-hubs after arrival of each batch of sgrs. .. 49
3.15 The number of old (top 6) i-hubs and (bottom 6) j-hubs after arrival of each batch of sgrs. ... 50
3.16 Butterfly count versus edge count in real-world streams with various average butterfly rates. .. 51
3.17 F elements over the timeline of burst arrivals in real-world streams. ... 51
3.18 Strength assortativity localization factor (r^s) of butterflies over the timeline of burst arrivals in real-world streams. 52
3.19 Coefficient of variation (circles), excess kurtosis (squares), and mean (diamonds) of butterfly strength-differences over the timeline of burst arrivals in real-world streams. 52
3.20 Coefficient of variation (circles), excess kurtosis (squares), and mean (diamonds) of strengths of butterfly (a-g) i-vertices and (h-n) j-vertices over the timeline of burst arrivals in real-world streams. 53
4.1 Mixing patterns of butterflies in FF stream with $p=0.15$ and average butterfly rate 0.04±0. ... 61
4.2 Mixing patterns of butterflies in FF stream with $p=0.4$ and average butterfly rate 0.08±0. ... 61
4.3 Mixing patterns of butterflies in FF stream with $p=0.7$ and average butterfly rate 0.09±0. ... 62
4.4 Mixing patterns of butterflies in SPA stream with $m=10$ and average butterfly rate 556.6±24.5. .. 62
4.5 Mixing patterns of butterflies in SPA stream with $m=50$ and average butterfly rate 558 ± 22.4. .. 63
4.6 Mixing patterns of butterflies in SPA stream with $m=100$ and average butterfly rate 548.1 ± 17. .. 63
4.7 (left) The computational graph G and (right) the stream \mathcal{R} at the end of time steps $t=0,1,2$ with $\beta=2$, $\rho=0.4$, $M=5$, and $L \in [1,2]$. New edges are blue and PRW edges are yellow dashed. Timestamps and weights are not depicted and it is assumed that the edges in G_0 expire from the window as their timestamps are below the W^b. .. 66
4.8 Four-vertex graphlets (e, f, g) and schematic burst addition steps (b, c, d) based on an i-vertex u_i in the PRW starting from u_i^0 designated by yellow dashed lines (a). New edges are blue and dotted lines denote probabilistic connections. .. 72
4.9 Mixing patterns of butterflies in Ciao stream. .. 76
4.10 Mixing patterns of butterflies in Epinions stream. .. 76
4.11 Mixing patterns of butterflies in WikiLens stream. .. 77
4.12 Mixing patterns of butterflies in ML100k stream. .. 77
4.13 Mixing patterns of butterflies in ML1m stream. .. 78
4.14 Mixing patterns of butterflies in Amazon stream. .. 78
4.15 Mixing patterns of butterflies in Yahoo stream. .. 79
4.16 Mixing patterns of butterflies in BM stream with $p_l = 0.3$, $p_h = 0.5$. 82
4.17 Mixing patterns of butterflies in BM stream with $p_l = 0.5$, $p_h = 0.7$. 82
4.18 Mixing patterns of butterflies in BM stream with $p_l = 0.7$, $p_h = 0.9$. 83
4.19 Mixing patterns of butterflies in CNM stream with $p = 0.3$. 83
4.20 Mixing patterns of butterflies in CNM stream with $p = 0.5$. 84
4.21 Mixing patterns of butterflies in CNM stream with $p = 0.7$. 84
4.22 Mixing patterns of butterflies in DDM stream with $p_e = 0.3$. 85
4.23 Mixing patterns of butterflies in DDM stream with $p_e = 0.5$. 85
4.24 Mixing patterns of butterflies in DDM stream with $p_e = 0.7$. 86
4.25 Strength assortativity localization factor versus butterfly count for S-Amazon. 88
4.26 Generation time (s) versus the number of sgrs for S-Amazon. 89

4.27 Strength assortativity localization factor versus butterfly count and generation time (s) versus the number of sgrs in S-Amazon. Parameters switch from $M = 100$, $\beta = 5$, $L \in [1, 5]$ and $\rho = 0.4$ to $M = 300$, $\beta = 20$, $L \in [4, 5]$ and $\rho = 0.8$ after generation of 5×10^6 sgrs. 90

4.28 Frequency of burst sizes in S-Amazon. 91

5.1 Butterfly counting methods. 99

5.2 Accuracy of sGrapp for different values of α and N_b. 109

5.3 Relative Error of sGrapp over windows for the best obtained MAPE. 110

5.4 Accuracy of sGrapp-25 for different values of α and N_b. 112

5.5 Accuracy of sGrapp-50 for different values of α and N_b. 113

5.6 Accuracy of sGrapp-75 for different values of α and N_b. 114

5.7 Accuracy of sGrapp-100 for different values of α and N_b. 115

5.8 Minimum approximation MAPE. 116

5.9 Maximum approximation MAPE. 116

5.10 Probability of approximation with MAPE less than equal 0.15. 116

5.11 Probability of approximation with MAPE less than equal 0.2. 117

5.12 Relative Error of sGrapp-25 over windows for the best obtained MAPE. 117

5.13 Relative Error of sGrapp-50 over windows for the best obtained MAPE. 118

5.14 Relative Error of sGrapp-75 over windows for the best obtained MAPE. 119

5.15 Relative Error of sGrapp-100 over windows for the best obtained MAPE. 120

5.16 Average window latency (s) of sGrapp. 122

5.17 Average window latency (s) of sGrapp-100. 123

5.18 Average total throughput (edge/s) of sGrapp at the end of each window. 124

5.19 Average total throughput (edge/s) of sGrapp-100 at the end of each window. 125

5.20 Average window throughput (edge/s) of sGrapp at the end of each window. 126

5.21 Average window throughput (edge/s) of sGrapp-100 at the end of each window. 127

5.22 Impact of FLEET parameters on estimate. 130
5.23 Schematic butterfly formation. i(j)-vertices are in the bottom (top).

6.1 Active concept drift management.

6.2 Passive concept drift management.

6.3 Concept drift modes.

6.4 sGradd’s architecture.

6.5 Projecting G_{BBG} to UWGO. (a) G_{BBG}. (b) Identified young butterflies with shared i-vertices. (c) Structure of UWGO. Where not clear, the label on the right side of an edge denotes the weight. (d) Phases of UWGO vertices.

6.6 Evolution of sGrow’s parameters over the timeline of sgr generation.

6.7 Delay of detecting the first and second drifts for 50 runs of V1, V2 0.05, and V2 0.1 over $R_{21} - R_{25}$.

6.8 Delay of detecting the first, second, and third drifts for 50 runs of V1 over $G_{21} - G_{25}$.

6.9 Delay of detecting the first, second, and third drifts for 50 runs of V2 0.05 over $G_{21} - G_{25}$.

6.10 Delay of detecting the first, second, and third drifts for 50 runs of V2 0.1 over $G_{21} - G_{25}$.

6.11 Impact of algorithm parameters on drift detection.
List of Tables

1.1 Data record inter-dependencies represented by graph data model. 2
2.1 Instances of time-based, count-based, tumbling, and landmark windows. 18
2.2 Instances of burst-based windows. 19
2.3 Frequent notations used to describe data. 21

3.1 Frequent notations in this chapter. 23
3.2 Datasets used in Phase 1 of explorations. 25
3.3 Datasets used in Phase 2 of explorations. 25
3.4 Statistics of the 20th graph snapshot in real-world streams. 30
3.5 R^2 and RMSE of polynomial fitting functions of degree $d = 1$ to $d = 10$ for butterfly count in three real-world streams. 37
3.6 Fraction of butterflies including zero, one, two, three, or four hub(s) after adding 5000 sgrs. 42
3.7 Fraction of butterflies including zero, one, or two i-hub(s) or j-hub(s) after adding 5000 sgrs. 42
3.8 Correlation between the butterfly support and the degree of i-vertices (i-correlation) and j-vertices (j-correlation). 43

4.1 Frequent notations in this chapter 56
4.2 Graph Patterns. 57
4.3 Mixing patterns of butterflies in SPA and FF streams. 64
4.4 Parameters for generating sGrow streams. 74
4.5 Average butterfly rate in synthetic streams generated by our model. 80
4.6 Mean absolute error of r^z and F elements. 81

5.1 Frequent notations in this chapter. 99
5.2 The approximation MAPE for different window lengths and exponents. . . 108
5.3 Throughput of different algorithms for $\gamma=0.7$. 129
5.4 MAPE of different algorithms for $\gamma=0.7$ and $M=0.1S$ and same N_b. . . 129

6.1 Frequent notations in this chapter. 138
6.2 True detection rates of V1 and V2. 163
6.3 False detection rates of V1 and V2. 164
6.4 Miss detection rates of V1 and V2. 165
6.5 Detection latency of V1 and V2. 172

7.1 Research components. 178
Nomenclature

Streaming Graph, denoted as $\mathcal{R} = \langle r_1, r_2, ... \rangle$, is an unbounded sequence of partially ordered **streaming graph records** (sgr), where each sgr $r^m = \langle v^m_i, v^m_j, \omega^m_{ij}, \tau^m \rangle$ with index m denotes an edge e_{ij} between i-vertex v_i and j-vertex v_j, weight ω_{ij}, and timestamp τ.

Degree of vertex v_i, denoted as $\text{deg}(i) = |N(v_i)|$, is the size of its neighbourhood $N(v_i) = \{v_j \mid e_{ij} \in E\}$.

A **window**, denoted as $W_k : = [W_k^b, W_k^e)$, with index k is a range of width $|W_k|$.

A burst-based **graph snapshot**, denoted as $G_{N_b, t} = (E, V)$, is a graph formed by vertices and edges in a window of N_b bursts at time t.

A **Caterpillar**, denoted as \bowtie, is a three-path sub-structure and a **butterfly**, denoted as $\bowtie\bowtie$, is a closed four-path sub-structure.

Butterfly Densification Power-law (BPL), denoted as $B(t) \propto f(|E|^\eta), \eta > 1$, states that the butterfly count at time step t follows a power law function of the edge/sgr counts.

Strength Diversification, denoted as $\mu_1 < \mu_2, Y_1^1(S) < Y_2^2(S), 1 < CV^1(S) < CV^2(S)$, states that, given two consecutive burst-based graph snapshots at times t_1 and t_2, the probability distribution of butterfly vertex strengths $Pr(S)$ gets broader and more skewed since the average μ_S, excess kurtosis $Y_2(S)$, and coefficient of variation $CV(S) = \sigma/\mu$ of strengths increase.

Steady Strength Assortativity, denoted as $Y_2^1(\delta) < Y_2^2(\delta), CV^1(\delta) \approx CV^2(\delta), CV(\delta) \approx 1, F_i^1 = F_i^2, i = 1, ..., 4, r^s > 0.1$, holds when the strength assortativity localization factor, denoted as $r^s = 1 - F_1$, is fixed over two consecutive burst-based graph snapshots at times t_1 and t_2, since the probability distribution of strength difference of butterfly edges $Pr(\delta)$ gets broader and more skewed while remaining fixed-shaped as

- the excess kurtosis $Y_2(\delta)$ of strengths differences δ increases,
- their coefficient of variation $CV(\delta) = \sigma/\mu_\delta$ remains fixed to 1, and
- the proportion of δs in four regions of the distribution F_i does not change.

sGrow model is a generative function with four parameters: connection probability ρ, the maximum batch size M, the slide parameter β, and the range of random walk’s length $[L_{\text{min}}, L_{\text{max}}]$.

sGrapp framework is a butterfly counting algorithm with two parameters: the number of bursts per window N_b and BPL exponent α. **sGrapp** estimates the cumulative butterfly count at the end of window W_k as the summation of the followings.
• \hat{B}_{k-1}
• the number of butterflies introduced by window W_k, denoted as $B_{W_k}^G$
• the approximate number of inter-window butterflies \hat{B}_{interW}^G

`sGradd` framework is a concept drift detection algorithm with one parameter: the number of bursts per window N_b. `sGradd` maps butterflies in the streaming graph to unipartite vertices (which resemble phase oscillators with a phase θ_v and frequency Ω_v); and then detects drifts at time step t by tracking the evolution of synchronization of phases using a quantity called order parameter $O[t] = \frac{((\sum_{v \in V} \sin \theta_v)^2 + (\sum_{v \in V} \cos \theta_v)^2)^{\frac{1}{2}}}{|V|}$.

Chapter 1

Introduction

A wide variety of real-world datasets include data records that are related to each other; for example, citation datasets, transaction datasets, and social network data. Such datasets are best modeled as graphs, where the data records are represented as a set of vertices connected by edges capturing the relationships among entities. The graph model treats both the entities (vertices) and relationships (edges) as first-class objects. The model can also describe several types of many-to-many inter-dependencies among data records as well as their compositions (Table 1.1).

Due to the aforementioned high representational ability, graphs have long been used to represent datasets where it is important to explicitly capture relationships. Management and processing of graph datasets have always been driven by the characteristics of the datasets and/or workloads (often specified by the applications). In most modern applications (e.g. product order transactions, World Wide Web feeds, and social networks), graphs are not static, but change over time. A particular type that is of interest in this thesis is where the graph emerges over time as the entities and the relationships among them are established and the corresponding data records with fine-grained temporal information (i.e. timestamps) stream into a processing unit. These are called streaming graphs whose main characteristic is that they are unbounded and the full graph is never available to algorithms processing them. The continuous rapid temporal evolutions lead to unbounded/unknown stream length and non-stationary distributions of the underlying data snapshots. In this context, the temporal evolutions usually occur with respect to the most recent graph topology (i.e. update events are not global); the evolving streaming rates lead to non-uniform inter-arrivals; and multiple generative sources (as well as factors such as transmission delays) cause out-of-order arrival of data records to a processing unit which has no control over the arrival order or data rate [251, Stream Data...
<table>
<thead>
<tr>
<th>Relation Type</th>
<th>(Sub-)Graph Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>symmetric</td>
<td>undirected or bi-directed graphs</td>
</tr>
<tr>
<td>asymmetric</td>
<td>directed or oriented graphs</td>
</tr>
<tr>
<td>order and transitive</td>
<td>directed triangles or feed forward loops</td>
</tr>
<tr>
<td>anti-symmetric</td>
<td>non-bidirectional graphs</td>
</tr>
<tr>
<td>identity and reflexive</td>
<td>self-loops</td>
</tr>
<tr>
<td>non-binary</td>
<td>hyper-graphs</td>
</tr>
<tr>
<td>multiple</td>
<td>multi-dimensional graphs</td>
</tr>
<tr>
<td>full</td>
<td>complete graphs</td>
</tr>
<tr>
<td>empty</td>
<td>isolated vertices</td>
</tr>
<tr>
<td>Composed Relations</td>
<td>(Sub-)Graph Type</td>
</tr>
<tr>
<td>composition</td>
<td>multi-hop paths with different edge types</td>
</tr>
<tr>
<td>transpose</td>
<td>reversed edge directions</td>
</tr>
<tr>
<td>product</td>
<td>loops</td>
</tr>
<tr>
<td>intersection/union/difference</td>
<td>graph matching</td>
</tr>
</tbody>
</table>

Table 1.1: Data record inter-dependencies represented by graph data model.

A streaming graph is different from aggregated temporal graphs (or graph streams) that are a sequence of graph snapshots (representing a dynamic graph with an entirely available structure that undergoes temporal changes). Moreover, weight addition patterns [229], streaming context [251, Big Data Processing], and data-driven semantics [18] lead to burstiness in streaming record arrivals. A real example is the case of user-product interactions in Alibaba e-commerce services that incurred a processing rate of 470 million event logs per second during a peak interval [251, Big Data Processing]. The streaming graph model captures the characteristics of these real-world datasets. The model assumes that the graph is built incrementally as data records arrive. Each arrival consists of a timestamp assigned by the generative source and a payload that indicates the vertex/edge that is generated and additional information such as edge weight.

This thesis presents an approach towards data-driven algorithm/system design for explainable and interpretable streaming graph analytics. The data-driven approach refers to exploratory analysis of streaming graphs for in-depth understanding and identifying the structural and temporal organizing principles of real-world streaming graphs to design effective and efficient processing algorithms. The explainable and interpretable approach is concerned with performing iterative and stateful tasks over streaming graphs, such that the operations are explainable and the outputs are interpretable.
1.1 Thesis Scope

The thesis has two foci:

1. **Bipartite graphs.** The streaming graph record (sgr)s in many real-world applications capture the interactions that naturally occur in a bipartite mode. These bipartite streaming graphs represent heterogeneous connections between two disjoint sets of vertices (in this thesis referred as i-vertices and j-vertices). For instance, affiliation graphs that model the membership of people in groups, authorship graphs that model the links between authors and their works, text graphs that model the occurrence of words in documents, feature graphs that model the assignment of features to entities, and user-item graphs with items spanning different domains such as social networks (users-hashtags [365]), web-based services (users-websites, multimedia services, and products [316, 163, 310, 342, 329]), financial systems (users-donation campaigns [11]), transportation systems (users-registered vehicles [165]), and communication systems (users-phone calls [353]). It has been shown that all complex networks have an underlying bipartite structure [324, 141]. Even those networks that are naturally unipartite, e.g. social networks, have an inherent bipartite structure driving the topological structure of the unipartite version [243, 324, 141, 323]. Moreover, bipartite graphs provide full representation without information loss for interactions that naturally occur in one mode (compressed datasets as unipartite graphs [376]), or multiple modes (high order interconnections as hyper-graphs [161, 13, 336]).

A natural question that arises is why the bipartite graph cannot be projected into a unipartite graph (via a common approach that connects vertices with shared neighbours [339]) and then apply existing methods for data mining over unipartite graphs? The answer is that projecting the graph based on just shared neighbours is misleading, and counting on it is inefficient since the projected graph displays different patterns [52] due to following reasons. First, the projected unipartite graph loses fine-grained pattern information [194], since the one-to-many relationship information is projected to pairwise relationships and the projection is not bijective. Second, the projected unipartite graph will have significantly more edges than the bipartite graph since each $i-(j-)\text{vertex } v$ with degree d_v produces $\frac{d_v(d_v-1)}{2}$ homogeneous edges. That is, the number of edges in the original bipartite graph is $\Sigma_v d_v$ while in the projected graph it is $\Sigma_v \left(\frac{d_v}{2}\right)$. It has been shown [194] that projection can lead to an edge inflation of 200x. In the case of streaming bipartite graphs that already have a high number of edges, the projection will exacerbate the computational footprint. Finally, the patterns that emerge in the projected unipartite graph are not reliable signals of
the original bipartite graph since the edge inflation artificially changes the patterns. For instance, it has been shown that the clustering coefficient is high in the projected mode [244, 141] and unipartite projection misleads the community detection analysis [143, 39]. Moreover, one-mode projection is a separate line of research. This problem scope is devoted to devising metrics for the similarity of vertices of each mode such that connecting similar vertices does not affect the structural patterns such as degree distribution [384]. Therefore, it is important to devise techniques to directly study bipartite structures.

![Figure 1.1: Projecting a bipartite graph to two unipartite graphs.](image)

2. **Butterfly motifs.** The particular subgraph of focus throughout the thesis is *butterfly* (a complete subgraph between two pairs of distinct vertices). Similar to the triangles in unipartite graphs, butterflies are the simplest and most local form of a cycle in bipartite graphs. Butterflies are identified as one of the main topological drivers of structural features such as transitivity and degree assortativity, whose understanding is critical for improving the studies and models of spreading phenomena on social networks with bipartite backbone graphs [324]. Moreover, butterflies are of great importance in measuring properties such as cohesion, network stability, and error tolerance [378]. For instance, cohesion can be measured by counting the number of butterflies adjacent to vertices or by the clustering coefficient computed based on the fraction of paths of length three, which are adjacent to each vertex and form butterflies. Recently, various butterfly-based data models and analytic algorithms for cohesive subgraph detection in heterogeneous information networks have
Figure 1.2: Bipartite graphs in fraud detection and recommendation systems.

been proposed [117, 149, 14, 370, 106, 220]. Study of cohesive substructures such as butterflies in the streaming setting is challenging due to stateful analytics ($O(n)$ memory/space for at least finding butterflies, while requiring sublinear computational efficiency) and requires specialized techniques for processing and management of data records. Moreover, butterfly-based processing impacts different applications including the following cases in user-item data streams [283].

- **Analytics for anomaly detection.**
 - (Fake user)-item graphs for detecting cases when a number of users are hired to complete transactions to promote target items (Figure 1.2(a)).
 - User-group graphs for detecting online gambling abnormal behaviours when users join gambling groups for exchanging abnormal amount of money (Figure 1.2(b)).
 - User-(fake user)-item graphs for detecting fraudulent money transfers (Figure 1.2(c)).

- **Analytics for recommender systems.**
 - Extract item-item similarity graphs over which a random walk is performed until reaching an item with different category for recommendation to a shopping basket (Figure 1.2(d)).
 - Find community of similar users for offering collaborative items (Figure 1.2(e)).

- **Analysis for promoting sustainable life styles.** United Nations has developed 17 Sustainable Development Goals (SDG) which are “the blueprint to achieve a
better and more sustainable future for all. They address the global challenges we face, including poverty, inequality, climate change, environmental degradation, peace, and justice. Particularly, SDG 12 titled *sustainable consumption and production* is aimed to promote sustainable lifestyles. For instance, in case of user-item streams, one approach towards the mentioned goal is raising awareness about conscious consumption. Since a butterfly represents a pair of users interacting with two common items, analysis of butterfly interconnections unveils hidden orders of user preferences and/or item perceptions. Such analyses can be conducted from different perspectives to gain insight on consumption trends and inform policy makers or product managers. These perspectives include the following cases:

- fast fashion brands are known to be not eco-friendly and the popularity of the low quality new items produced in such ways can reveal consumption patterns. This can be done through analysis of users interacting with new items or perception of new-items;
- re-using products is a sustainable consumption approach and the extent to which items are circulated among users/markets can reveal consumption patterns. This can be done through analysis of reusable items purchased/used by same users.
- long-lasting products and eco-friendly services can sometimes be costly and incur sharing of the expenses. The extent to which expenses (for certain items) are shared can reveal another consumption pattern. This can be done through analysis of user interactions with same certain items.

1.2 Streaming Graph Analysis

The emergence patterns of butterflies as the meso-scale temporal building blocks in bipartite streaming graphs are studied in two phases. Meso-scale refers to the intermediate granularity of subgraphs between microscopic subgraphs such as vertices and edges and macroscopic subgraphs covering most of the vertices in the graph such as the largest connected components. In the first phase, subgraph pattern mining is performed using vertex-centric methods (where the butterfly vertices are explored with respect to their

2“Sustainable consumption and production is about doing more and better with less. It is also about decoupling economic growth from environmental degradation, increasing resource efficiency and promoting sustainable lifestyles.”
type, degree, support, and/or timestamp) and edge-centric methods (where the distribution of the inter-arrival of butterfly edges is explored). In the second phase, subgraph pattern mining is performed using vertex-centric methods (where the butterfly vertices are explored with respect to their type and weighted degree (strength)) and edge-centric methods (where the distribution of strength difference of butterfly edges is explored). In both phases, a landmark window is used for *eager* computations (where sgrs are appended to the window), or *lazy* computations (where batches of sgrs are appended to the window).

The first phase [297, Section 3.2] shows that butterflies are temporal motifs with bursty emergence patterns. Due to these emergence patterns, the number of butterflies is significantly and continuously higher than that of random (null) graphs. The quantitative emergence pattern is formulated as the **butterfly densification power law** (BPL) which states that the number of butterflies at time t follows a power law function of the number of edges at time t. Another finding is that the bursty butterfly formation is contributed by vertices with degree above the average of unique vertex degrees (hubs) and timestamp in the first 25% of ordered set of already seen timestamps (old hubs). The second phase [298, Section 5.1] discovers a phenomenon called **scale-invariant strength assortativity of streaming butterflies**, a co-occurrence of three patterns: butterfly densification, strength diversification, and steady strength assortativity. The confounding data-driven semantics are explained in the domain of user-item interactions as these patterns relate to three graph theory concepts: burstiness, rich-get-richer, and core-periphery. These laws influence the algorithms developed in this thesis.

The main challenge is performing the stream mining while simultaneously maintaining effectiveness and efficiency. As discussed in the following, this is addressed with respect to the data and techniques used throughout the analyses.

Data. Effective exploration relies on real-world bipartite streaming graphs with timestamps and weights. The focus of this research is user-item streams. The sequences of user-item interactions in web-services are typically associated with a weight that can be an explicit value such as rating, or an implicit value denoting the multiplicity of interactions between a pair of vertices. Moreover, the time-labeled interactions are continuously generated with a non-stable rate giving rise to emergence of an unbounded dynamic structure. The edge weights and fine grained temporal information enable exploring the temporal and connectivity patterns. Publicly available data are used in which the timestamp and weight are explicitly given in the data records (common in rating graphs). Implicit weights that are computed by aggregating multiple edges between two vertices are not considered, since such aggregations require aggregating the timestamps as well, which in turn manipulates the temporal properties and makes the temporal analysis unreliable.
Effective exploration also relies on configurable random graph models as null graph models to generate synthetic streams with known properties. A null graph model [297, Section 3.1] is proposed to better understand and explain what is happening in real-world graph streams through the comparisons and contradictory case investigations. The model extends the popular and widely adopted Barabasi-Albert model [38] (e.g. used in [159, 221, 236]) to generate bipartite streaming graph with respect to a given real graph such that the synthetic stream has (roughly) the same dynamic structural statistics but the timestamps are static.

Techniques. Effective exploration also relies on data mining approaches which supports the data characteristics (e.g. does not incur information loss, edge inflation, and artificial graph patterns). This enables explainable, interpretable, and reliable pattern discovery. A new metric, called *strength assortativity localization factor* [298, Section 4], is introduced. This metric enables simple and effective (fair and accurate), statistical temporal analysis (e.g. strength assortativity) for network inference in graphs having dynamic streaming rate, abundant (bi)cliques, different scales, and multiple/skewed (strength) distributions. It is based on tracking the localization of a low-dimensional vector, embedding data distributions in graph snapshots within/across streams.

Efficient exploration with a main-memory processing scheme requires incremental approaches to tackle the unboundedness and partial access to the graph structure. To this end, several windowing schemes are used for setting the slide size/frequency and window size/elements. Precisely, for the purpose of exploratory analyses, landmark windows are used and the analyses are performed after appending of either one sgr or a variable-length batch of sgrs. Also, an exact batched processing algorithm [297, Section 3.2] is devised for butterfly enumeration. This algorithm follows a vertex-centric approach that does not require accessing two-hop neighbours (i.e. it is not triple/wedge-based) and can be computed by looping over either i-vertices or j-vertices depending on their average degree. Therefore, it is suitable for large graphs with high average degrees.

1.3 Streaming Graph Modelling

This component of the thesis involves modelling/explaining the growth patterns in streaming graphs. As previous studies [29, 199, 108] describe, the graph models providing micro-mechanics or high-order generative process of graph structure are generally deemed as the explanation for the patterns observed in real-world graphs. Current works study and
model the generative patterns of static or aggregated temporal graphs commonly optimised for down stream analytics or ignore (1) multi-partite/non-stationary data distributions, (2) emergence patterns (not just existence) of building blocks, and (3) streaming paradigms such as unbounded/time-sensitive updates, evolving streaming rates, and out-of-order/bursty records (e.g., [10, 133, 359, 14, 201, 25, 329, 373]). The thesis introduces a streaming growth model, called sGrow [298, Section 6], which includes a set of microscopic mechanisms to explain the discovered patterns (Figure 1.3). Microscopic mechanisms also known as ‘local rules’ determine how new edges connect to the rest of the graph. sGrow suits the following cases:

Microscopic Mechanisms

Preferred Random Walk
- Strength preferential selection
- BFS+DFS traversals
- Dynamic and random hop-count

Realistic SGR Generation
- Inactivity gaps
- Timestamp assignment
 - Out-of-order sgrs
 - Bursty sgrs
- Evolving streaming rate
 - Batch of new sgrs
 - Random batch size
 - Burst addition per sgr/batch
- Local/unbounded updates
 - Sliding window
 - Continuous sgr generation

Probabilistic Connections
- Random vertices
- Neighbor copying

Scale-Invariant Strength Assortativity
- Butterfly Densification
- Strength Diversification
- Steady Strength Assortativity

Figure 1.3: Introduced microscopic mechanisms for explaining butterfly emergence patterns by sGrow model.

- Streaming graph benchmarks by generating configurable realistic data streams sup-
ported by a reference guide for parameter configuration and stress testing analysis.

- Machine learning benchmarks by providing annotated data streams which are synthesized by realistic instance injection and suit both testing and training purposes.
- Development of streaming algorithms and models (e.g. concept drift models) by providing microscopic mechanisms and characteristic patterns.

The main challenge is reproducing the explored realistic patterns in an effective, efficient, explainable, and configurable approach. As discussed in the following, this is addressed with respect to the functions and parameters of the introduced algorithms.

Functions. An effective, efficient, and explainable growth model requires pinpointing the generative origins and modelling them via accurate and scalable micro-mechanics. $sGrow$ incorporates techniques for iterative addition of bursts of sgrs which satisfy streaming graph model, preserve realistic patterns of butterfly emergence quantitatively and qualitatively, and make the stream generation scalable. Moreover, $sGrow$ enables generating sequence of bipartite edges attributed with timestamps and weights, isolated/out-of-order edges, and four-vertex graphlets.

Parameters. A configurable model requires designing a parameterized algorithm which robustly realizes realistic growth patterns independent of initial conditions, scale and temporal characteristics, and model configurations. $sGrow$ is parameterized with user-specified configurations for the scale, burstiness, level of strength assortativity, probability of out-of-order records, generation time, and time-sensitive connections.

1.4 Streaming Graph Analytics

The third component of the thesis involves designing analytics algorithms as part of frameworks for two cases in streaming graphs: butterfly counting and concept drift detection.

1.4.1 Butterfly Counting

The results from the previous research component confirm that butterflies are temporal motifs in bipartite streaming graphs. On the other hand, as noted in various studies (e.g.
motif counting is a fundamental problem in large-scale network analysis. Therefore, in this part of the thesis, the problem of butterfly counting in bipartite streaming graphs is studied. This benefits many applications where studying the cohesion in graph data is of particular interest. Examples include investigating the structure of computational graphs or input graphs to the algorithms, as well as dynamic phenomena and analytic tasks over complex real graphs (Figure 1.4). Butterfly counting is computationally expensive, and known techniques do not scale to large graphs; the problem is even harder in streaming graphs.

Following a data-driven methodology, the thesis introduces sGrapp [297, Section 4], a streaming graph approximation framework for butterfly counting. sGrapp uses a novel window-based stream processing, which adapts to the temporal distribution of the stream. The window management mechanism is general and conforms to any real stream with no assumption about the order and number of arriving sgrs. This mechanism provides load-balanced windows for efficient analytical workloads and also enables accurate continuous/temporal analysis which are based on comparing the analysis over different windows of a stream as well as analysis over different streams having different temporal distributions.

The main challenge is simultaneously achieving efficiency and effectiveness. Exact butterfly counting is feasible only when the entire graph is available to the processing al-

![Diagram](Figure 1.4: Example applications of butterfly counting.)
algorithm. As discussed in the following, this is addressed with respect to the butterfly emergence patterns and the windowing methods.

Patterns. An efficient streaming algorithm for butterfly counting can only deal with a subset of the stream at any given point in time. Also, a precise streaming algorithm demands taking into account all existing butterflies regardless of how long they take to form and how much memory is available. According to the discovered patterns and based on BPL, an estimate is provided for the count of a certain type of butterflies which are computationally challenging. Also, optimisations are introduced based on learning accurate values for the exponent of BPL.

Windowing. An efficient and accurate streaming algorithm for butterfly counting depends on appropriate windowing approaches for setting the window size/slide such that no butterfly is missed in counting. In window-based algorithms such as those in this thesis, care is required as butterflies may be split across windows, affecting the butterfly count—it is important to take into account the butterflies that may fall between windows. Moreover, when counting the number of multiple-window-spanning butterflies, it is important to quantify them based on BPL. Based on the discovered patterns, a window management method is introduced to deal with the bursty emergence patterns of butterflies. The proposed approach uses burst-based tumbling windows that can adapt to the temporal distribution of the real streams with no assumption about the order and number of arriving sgrs. The benefits are two-fold:

- providing load-balanced windows for efficient analytical workloads; and
- enabling accurate comparison of graph snapshots of the same or different streams.

1.4.2 Concept Drift Detection

Concept Drift (CD) occurs when a change in a hidden context can induce changes in a target concept. CD is a natural phenomenon in streaming data due to the non-stationary setting. Understanding, detection, and adaptation to CD in streaming data is vital for effective and efficient analysis/analytics as reliable outputs depend on adaptation to fresh inputs. Also, a variety of practical use-case scenarios reside in streaming setting and incur CD. This thesis defines CD in streaming graphs and introduces *sGradd*, a streaming graph framework for drift detection.
The main challenge is, again, simultaneously achieving efficiency and effectiveness, while detecting and understanding the drifts with an explainable and unsupervised method. Moreover, the evaluation methodology should be accurate and reliable. As discussed in the following, this is addressed with respect to the framework design and its performance evaluations.

Design. An accurate detection algorithm demands stateful operations over windows of sgrs and this is computationally expensive. On the other hand, high velocity and dynamic streaming rate of sgrs necessitate a rapid drift detection. In the thesis, transient concepts in streaming graphs are defined. CD is defined in the case of transient, interconnected, and sequence of data instances forming a streaming graph which serves as the input to any online adaptive analytic task (in both supervised and unsupervised mode). Accordingly, $sGradd$, a modular framework, is introduced with data management and drift detection components based on the butterfly patterns. The components are composed of a collection of explainable, unsupervised, and adaptive techniques for understanding and detecting drifts in hidden contexts that are reflected in target transient concepts. The introduced techniques display initial and improving performance (with respect to accuracy and latency of detections) over the timeline of sgr arrivals.

Evaluation. An accurate evaluation demands drift labels and precise recognition of true/false and missed/delayed detections. $sGrow$ is used to generate streams with different drift patterns (reoccurring versus gradual drifts) and intervals (close versus far drifts). $sGrow$ generates sgrs through adding bursts such that the stream reproduces realistic subgraph emergence patterns; Therefore, it simulates a drift in a hidden context (generative process) rather than an explicit drift in the target concept (subgraph interconnnectivity patterns). When the drifts are close to each other, there is a concern about evaluation of both accuracy and latency since the detections can be delayed to a time point after the next drifts [173]. In such situations, it is not certain whether a detection is a duplicate false detection or it is a delayed detection corresponding to previous drifts. To address this concern, the accuracy rates and latency of the sequential drifts are considered simultaneously for close drifts and individually for far drifts.

1.5 **Thesis Organization**

The rest of thesis is organised as follows. Chapter 2 includes the definition and notations. Chapters 3, 4, and 5-6 further explain the algorithms and results introduced by the stream-
ing graph analysis, modelling, and analytics, respectively. Chapter 7 concludes the thesis with a summary and future directions.
Chapter 2

Background and Definitions

This chapter includes definitions and notations used for describing the data, processing approaches, and subgraphs. Table 2.3 present the notations based on i-vertices. Similar notations hold for j-vertices where applicable.

2.1 Streaming Graph Model

Definitions 1, 2, 3, and 4 describe the streaming graph data model introduced in this thesis and [252, 253], as part of S-Graffito project\(^1\).

Definition 1 (Streaming Record) A streaming record (sr) \(r\) is a pair \((\tau, p)\) where \(\tau\) is the event (application) timestamp of the record assigned by the data source, and \(p\) defines the payload of the record.

Definition 2 (Streaming Graph Record) A streaming graph record (sgr) is a streaming record (Definition 1) denoted as a quadruple \(r^m = \langle v^m_i, v^m_j, \omega^m_{ij}, \tau^m \rangle\), where \(m\) is the sgr index, and the payload \(p = \langle v^m_i, v^m_j, \omega^m_{ij} \rangle\) indicates an edge with weight \(\omega^m_{ij}\) between vertices \(v_i^m\) and \(v_j^m\).

Definition 3 (Streaming Graph) A streaming graph is an unbounded sequence of sgrs denoted as \(\mathcal{R} = \langle r^1, r^2, \cdots \rangle\) in which each record \(r^m\) arrives at a particular time \(t^m\) (\(t^m \leq t^n\) for \(m < n\)).

\(^1\)dsg-uwaterloo.github.io/s-graffito/
Figure 2.1: Streaming graph records arriving at sequential time points $t^1 - t^6$

Definition 4 (Burst) A burst is the batch of sgrs with same timestamp and arrival time. $b = \{r^m | \exists r^n : \tau^m = \tau^n, t^m = t^n, r^n \notin b\}$.

Multiple generative sources or transmission delays cause out-of-order arrival of sgrs to a processing unit which has no control over the arrival order or data rate. Therefore, a burst is defined as the batch of sgrs with same timestamp which arrive at the computational system together. It is not defined as all sgrs with same timestamp. Bursts can be repeated over time. For instance, Figure 2.1 illustrates a stream with nine sgrs:

$r^1 = \langle p^1, \tau_1^1 \rangle, r^2 = \langle p^2, \tau_1^1 \rangle, r^3 = \langle p^3, \tau_2^2 \rangle, r^4 = \langle p^4, \tau_2^2 \rangle, r^5 = \langle p^5, \tau_5^5 \rangle, r^6 = \langle p^6, \tau_5^5 \rangle, r^7 = \langle p^7, \tau_5^5 \rangle, r^8 = \langle p^8, \tau_5^5 \rangle, r^9 = \langle p^9, \tau_9^9 \rangle$

In this example six bursts exist:

$b_1 = \{r^1, r^2\}$, $b_2 = \{r^3, r^4\}$, $b_3 = \{r^5\}$, $b_4 = \{r^6, r^8\}$, $b_5 = \{r^7\}$, and $b_6 = \{r^9\}$

Where b^2 and b^5 include a same timestamp τ_2 as r^7 is a late arrival.

The sequence of sgrs is considered to be ordered by arrival times rather than timestamps. This helps to take into account late arrivals and enables defining a stream as a sequence of arriving bursts.

2.2 Window Management

Definitions 6, 7, and 8 describe existing approaches to manage a window as described in Definition 5. Definitions 9, 10, and 11 describe the introduced burst-based windows in the
thesis. Tables 2.1 and 2.2 present instances of these windows operating over the streaming graph shown in Figure 2.1. The content of any of the defined windows form a graph snapshot, which is described in Definition 12.

Definition 5 (Window) A window indexed by k, W_k, over a streaming graph is a finite multi-set of sgrs denoted as a range $[W^b_k, W^e_k]$, where W^b_k and W^e_k are the beginning and end borders.

Definition 6 (Time-based Sliding Window) A time-based sliding window with window size $|W_k|$ and slide parameter β is a window (Definition 5) that slides every β time units and at any time point t, $W^e_k = \lfloor t/\beta \rfloor \cdot \beta$ and $W^b_k = W^e_k - |W_k|$.

Definition 7 (Tumbling Window) A tumbling window is a time-based sliding window (Definition 6) that has a constant slide interval equal to the window size and covers disjoint intervals as $(|W_k| = \beta, \forall k)$ and $(W^b_{k+1} = W^e_k, W^e_{k+1} = W^b_{k+1} + |W_{k+1}|)$.

Definition 8 (Landmark Window) A landmark window is a window (Definition 5) that progresses as new sgrs are added and the window size increases. The beginning border is fixed and the window size is incremented as $W^b_{k+1} = W^b_k$ and $W^e_{k+1} = W^e_k + |W_{k+1}|$.

Definition 9 (Burst-based Sliding Window) A burst-based sliding window with a parameter N_b is a window (Definition 5) that progresses as N_b bursts (Definition 4) are added and window size changes randomly as a random number of sgrs are retired from the window.

Definition 10 (Burst-based Tumbling Window) A burst-based tumbling window with a parameter N_b is a window (Definition 5) that covers disjoint intervals. It progresses as N_b bursts are added and window size changes to the number of new sgrs. i.e. It is a tumbling window (Definition 7) with dynamic slide interval and window size.

Definition 11 (Burst-based Landmark Window) A burst-based landmark window with a parameter N_b is a landmark window (Definition 8) that progresses as N_b new bursts are added and the window size increases by the number of new sgrs.
Table 2.1: Instances of time-based, count-based, tumbling, and landmark windows. Windows capture the sgrs arriving according to Figure 2.1.

<table>
<thead>
<tr>
<th>Window Instance</th>
<th>Window Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-based sliding $\beta = 1,</td>
<td>W</td>
</tr>
<tr>
<td>$W_1 = [t_0, t_4)$</td>
<td>{r_1, r_2, r_3, r_4}</td>
</tr>
<tr>
<td>$W_2 = [t_1, t_5)$</td>
<td>{r_2, r_3, r_4, r_5, r_6}</td>
</tr>
<tr>
<td>$W_3 = [t_2, t_6)$</td>
<td>{r_3, r_4, r_5, r_6, r_7, r_8}</td>
</tr>
<tr>
<td>Tumbling $</td>
<td>W</td>
</tr>
<tr>
<td>$W_1 = [t_0, t_2)$</td>
<td>{r_1, r_2}</td>
</tr>
<tr>
<td>$W_2 = [t_2, t_4)$</td>
<td>{r_3, r_4}</td>
</tr>
<tr>
<td>$W_3 = [t_4, t_6)$</td>
<td>{r_5, r_6, r_7}</td>
</tr>
<tr>
<td>Landmark</td>
<td></td>
</tr>
<tr>
<td>$W_1 = [t_0, t_1)$</td>
<td>{}</td>
</tr>
<tr>
<td>$W_2 = [t_0, t_2)$</td>
<td>{r_1, r_2}</td>
</tr>
<tr>
<td>$W_3 = [t_0, t_3)$</td>
<td>{r_1, r_2, r_3, r_4}</td>
</tr>
<tr>
<td>$W_5 = [t_0, t_5)$</td>
<td>{r_1, r_2, r_3, r_4, r_5}</td>
</tr>
<tr>
<td>$W_6 = [t_0, t_6)$</td>
<td>{r_1, r_2, r_3, r_4, r_5, r_6, r_7}</td>
</tr>
<tr>
<td>$W_7 = [t_0, t_7)$</td>
<td>{r_1, r_2, r_3, r_4, r_5, r_6, r_7, r_8, r_9}</td>
</tr>
</tbody>
</table>

Definition 12 (Graph Snapshot) A graph snapshot is a pair of vertex and edge sets $G = (V, E)$ forming a graph at time point t by the sgrs within a corresponding window W_k. For simplicity, graph snapshot denoted as $G_{W,t}$ and its corresponding window W_G are used interchangeably throughout the thesis.

When the graph snapshot is unipartite, edges are denoted as $E = \{e_{vn} = (v, n, w_{vn})\}$. When the graph snapshot is bipartite, vertices are two disjoint sets of i- and j-vertices $V = V_i \cup V_j$, $V_i \cap V_j = \emptyset$ and edges are denoted as $E = \{e_{ij} = (v_i, v_j, w_{ij})\} \subseteq V_i \times V_j$. The set of one-hop neighbours of a vertex v is denoted as $N(v) = \{n \ | \ e_{vn} \in E\}$. Neighbours of an i-vertex v_i are called j-neighbours denoted as $N_j(v_i)$. Similar notation stands for i-neighbours of a j-vertex v_j, denoted as $N_i(v_j)$.

2.3 Subgraphs

Definitions 13, 14, and 16 describe existing subgraphs (illustrated in Figure 2.2) and a graph property used in this thesis. Definition 15 introduces an extension of Definition 14.
Table 2.2: Instances of burst-based windows.
Windows capture the sgrs arriving according to Figure 2.1.

<table>
<thead>
<tr>
<th>Window Instance</th>
<th>Window Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burst-based sliding $N_b = 1$</td>
<td>$W_1 = [t_0, t_2)$</td>
</tr>
<tr>
<td></td>
<td>$W_2 = [t_0, t_3)$</td>
</tr>
<tr>
<td></td>
<td>$W_3 = [t_0, t_5)$</td>
</tr>
<tr>
<td></td>
<td>$W_4 = [t_0, t_6)$</td>
</tr>
<tr>
<td></td>
<td>$W_5 = [t_0, t_6)$</td>
</tr>
<tr>
<td>Burst-based tumbling $N_b = 1$</td>
<td>$W_1 = [t_0, t_2)$</td>
</tr>
<tr>
<td></td>
<td>$W_2 = [t_2, t_3)$</td>
</tr>
<tr>
<td></td>
<td>$W_3 = [t_3, t_5)$</td>
</tr>
<tr>
<td></td>
<td>$W_4 = [t_5, t_6)$</td>
</tr>
<tr>
<td></td>
<td>$W_5 = [t_5, t_6)$</td>
</tr>
<tr>
<td></td>
<td>$W_6 = [t_6, t_7)$</td>
</tr>
<tr>
<td>Burst-based landmark $N_b = 1$</td>
<td>$W_1 = [t_0, t_2)$</td>
</tr>
<tr>
<td></td>
<td>$W_2 = [t_0, t_3)$</td>
</tr>
<tr>
<td></td>
<td>$W_3 = [t_0, t_5)$</td>
</tr>
<tr>
<td></td>
<td>$W_4 = [t_0, t_6)$</td>
</tr>
<tr>
<td></td>
<td>$W_5 = [t_0, t_6)$</td>
</tr>
<tr>
<td></td>
<td>$W_6 = [t_0, t_7)$</td>
</tr>
</tbody>
</table>
Definition 13 (Caterpillar) A caterpillar \(\triangleright \) is a three-path between two \(i \)-vertices \(v_{i1}, \) and \(v_{i2} \) and two \(j \)-vertices \(v_{j1}, \) and \(v_{j2} \). Two pairs of \(i \)- and \(j \)-vertices can form four different caterpillars. i.e. \(\triangleright = \{ e_{i1,j1}, e_{i2,j1}, e_{i2,j2} \} \lor \{ e_{i1,j1}, e_{i1,j2}, e_{i2,j2} \} \lor \{ e_{i1,j2}, e_{i2,j2}, e_{i2,j1} \} \lor \{ e_{i1,j1}, e_{i1,j2}, e_{i1,j2} \} \) (Figure 2.2(a)-(d)).

Definition 14 (Butterfly) A butterfly \(\triangleleft \triangleright \) is a \(2,2 \)-biclique between two \(i \)-vertices \(v_{i1}, v_{i2} \) and two \(j \)-vertices \(v_{j1}, v_{j2} \). It is a closed four-path \(\triangleleft \triangleright = \{ e_{i1,j1}, e_{i2,j1}, e_{i2,j2}, e_{i1,j2} \} \) formed by adding an edge to a caterpillar (Figure 2.2(e)).

Definition 15 (Young Butterfly) A young butterfly \(\triangleright \triangleleft \) is a butterfly with \(j \)-vertices having a timestamp within the last \(x \) percentage of seen unique timestamps in the stream, i.e. \(\triangleright \triangleleft = \{ \triangleright \; \triangleright \triangleleft \; j_{1}, j_{2} \mid \exists r^{m}, r^{n} : v_{j1} \in r^{m}, v_{j2} \in r^{n}, (\tau^{m}, \tau^{n}) \in [\tau^{t-x}, \cdots, \tau^{t-1}, \tau^{t}] \} \).

Considering young butterflies (i.e. restricting the set of \(j \)-vertices), enables case studies where the freshness of input data is important and/or the goal is to perform processing over transient data records rather than all seen data records (streaming processing). In the thesis, \(x = 25\% \). Setting \(x = 100\% \) would be equivalent to considering all seen vertices. The set of unique timestamps in the stream grows over time and consequently the set of \(j \)-vertices within the \(x \) percentage grows. Choosing a low percentage helps to keep the size of this set balanced particularly when the streaming rate is high.

Definition 16 (Vertex Strength) Vertex strength (shortly strength) is the total weight of edges connected to a vertex denoted as \(S_{i} = \sum_{v_{j} \in N_{j}(v_{i})} \omega_{ij} \), \(S_{j} = \sum_{v_{i} \in N_{i}(v_{j})} \omega_{ij} \) [305, 40, 41].
Table 2.3: Frequent notations used to describe data.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^m</td>
<td>Streaming graph record (sgr) with index m</td>
</tr>
<tr>
<td>v_j^m</td>
<td>i-vertex corresponding to sgr r^m</td>
</tr>
<tr>
<td>τ^m</td>
<td>Timestamp of sgr r^m</td>
</tr>
<tr>
<td>t^m</td>
<td>Arrival time of sgr r^m, a computational time point</td>
</tr>
<tr>
<td>ω_{ij}^m</td>
<td>weight of the edge between v_i and v_j corresponding to sgr r^m</td>
</tr>
<tr>
<td>$\mathcal{R} = (r^1, r^2, \ldots)$</td>
<td>Streaming graph</td>
</tr>
<tr>
<td>$V_i = {v_i}$</td>
<td>Set of i-vertices</td>
</tr>
<tr>
<td>E</td>
<td>set of edges</td>
</tr>
<tr>
<td>$\text{deg}(i)$</td>
<td>Degree of vertex v_i</td>
</tr>
<tr>
<td>d_i</td>
<td>Average degree of i-vertices</td>
</tr>
<tr>
<td>$N(v)$</td>
<td>One-hop neighbourhood of a vertex v</td>
</tr>
<tr>
<td>e_{vn}</td>
<td>A unipartite weighted edge between vertices v and n</td>
</tr>
<tr>
<td>e_{ij}</td>
<td>A bipartite edge between vertices v_i and v_j</td>
</tr>
<tr>
<td>N</td>
<td>Number of vertices in Barabasi-Albert model</td>
</tr>
<tr>
<td>m</td>
<td>Initial number of vertices in Barabasi-Albert model</td>
</tr>
<tr>
<td>m_0</td>
<td>Number of connections of each new vertex in Barabasi-Albert model</td>
</tr>
<tr>
<td>$W_k := [W_k^b, W_k^c]$</td>
<td>A window with index k as a range of width $</td>
</tr>
<tr>
<td>$G_{W,t}$</td>
<td>A graph snapshot formed by window W at time t</td>
</tr>
<tr>
<td>G_{N_b}</td>
<td>A graph snapshot formed by a burst-based window</td>
</tr>
<tr>
<td>β</td>
<td>Slide parameter for a sliding window</td>
</tr>
<tr>
<td>b</td>
<td>A burst</td>
</tr>
<tr>
<td>\bar{B}, maxB</td>
<td>Average/maximum seen burst size</td>
</tr>
<tr>
<td>N_b</td>
<td>Number of bursts per window</td>
</tr>
<tr>
<td>\propto</td>
<td>Caterpillar</td>
</tr>
<tr>
<td>$\omega_{j_1, j_1}^{i_1, i_1}$</td>
<td>Butterfly</td>
</tr>
<tr>
<td>\bowtie</td>
<td>Young butterfly</td>
</tr>
<tr>
<td>\wedge</td>
<td>Number of wedges (two-paths)</td>
</tr>
<tr>
<td>\bowtie</td>
<td>Structural pattern</td>
</tr>
</tbody>
</table>
Chapter 3

Streaming Graph Analysis

Bipartite graphs are rich data structures with prevalent applications and characteristic structural features. However, less is known about their growth patterns, particularly in streaming settings. Frequent subgraphs (motifs \cite{232} or graphlets \cite{281}) as the building blocks of graphs \cite{232} play an important role in understanding the structure of graphs \cite{8, 281, 51, 215, 312, 347, 256, 207, 221, 184, 359, 156, 331, 299, 297}. Network motifs are “patterns of interconnections occurring in complex networks at numbers that are significantly higher than those in randomized networks” \cite{232}. Identifying the motifs helps characterize the graph and also benefits applications that are based on subgraph-centric programming model (i.e. operates on subgraphs rather than vertices or edges) and can be optimized by indexing the network motifs. That is, network motifs represent the regularities in the graph data and are helpful in building indexes over frequent and regular graph structures (structural indexing) \cite{350, 369, 290}. Butterflies are known to be motifs in static graphs, however their temporal emergence patterns are not well studied. This chapter presents investigations into the emergence patterns of butterflies in streaming graphs and on the underlying contributors to these patterns. The goal is to understand \textit{How do butterflies as the building blocks of bipartite streaming graphs emerge?} This question is answered in two phases: Phase 1: showing that butterflies \textit{are} the building blocks (temporal motifs) across the timeline of sgr arrivals in bipartite streaming graphs and identifying their emergence patterns \cite{297}; and Phase 2: further explorations to explain the identified patterns and discover all of their contributing factors \cite{298}. Both phases involve systematic and extensive experimental analysis of real and synthetic graphs. This is the first empirical study of how streaming graph substructures emerge.
Table 3.1: Frequent notations in this chapter.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>Butterfly densification power-law exponent for all butterflies</td>
</tr>
<tr>
<td>$N_{hub}(t)$</td>
<td>Number of hubs at time t</td>
</tr>
<tr>
<td>$B(t)$</td>
<td>The number of butterflies since the initial time point until t</td>
</tr>
<tr>
<td>B_i</td>
<td>Butterfly support of vertex i</td>
</tr>
<tr>
<td>S_i</td>
<td>Vertex strength of V_i</td>
</tr>
<tr>
<td>r</td>
<td>ASSortativity coefficient</td>
</tr>
<tr>
<td>$Pr(\delta)$</td>
<td>Probability distribution of strength difference of butterfly edges</td>
</tr>
<tr>
<td>$Pr(S_i)$</td>
<td>Probability distribution of strength of butterfly i-vertices</td>
</tr>
<tr>
<td>μ_i</td>
<td>Average strength of butterfly i-vertices</td>
</tr>
<tr>
<td>μ_δ</td>
<td>Average strength difference of butterfly edges</td>
</tr>
<tr>
<td>σ_δ</td>
<td>Standard deviation of strength difference of butterfly edges</td>
</tr>
<tr>
<td>F_i</td>
<td>The i^{th} element of embedding vector of $Pr(\delta)$</td>
</tr>
<tr>
<td>r^*</td>
<td>Strength assortativity localization factor</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>Y_2</td>
<td>Excess kurtosis</td>
</tr>
</tbody>
</table>

3.1 Data and Methods

Analyses are conducted on a machine with 15.6 GB native memory and Intel Core i7 – 6770HQCPU@2.60GHZ * 8 processor. All algorithms are implemented in Java (OpenJDK versions 1.8.0 – 252 in Phase 1 and 11.0.11 in Phase 2).

3.1.1 Data

The set of real-world bipartite streaming graphs and the synthetic streams generated by a proposed null graph model are described in the following.

Real-world graphs. The focus of research is the organizing principles in bipartite streams such as user-item streams. The sequences of user-item interactions are typically associated with a weight that can be an explicit value such as rating, or an implicit value denoting the multiplicity of interactions between a pair of vertices. Moreover, the time-labeled interactions are continuously generated with a non-stable rate giving rise to emergence of an unbounded dynamic structure. The edge weights and fine grained temporal information enable exploring the temporal and connectivity patterns. The data used are publicly available data in which the timestamp and weight are explicitly given in the data records.
(common in rating graphs). Implicit weights computed by aggregating multiple edges between two vertices are not considered since such aggregations require aggregating the timestamps as well, which in turn manipulates the temporal properties and makes the temporal analysis unreliable. All datasets are available at public repositories KONECT [191] and Netzschleuder [1]. These datasets include naturally occurring bipartite interactions as a set of records including the user ID, item ID, rating, and timestamp. The rating values are in the set \{1, 2, 3, 4, 5\} in all datasets except for WikiLens with ratings in \{0, 0.5, 1, .., 4.5, 5\}. In WikiLens, the ratings are rounded and those ratings equal to 0 are replaced with 1 to convert the rating scale to 1 – 5 (for fair comparison with other datasets). Tables 3.2 and 3.3 provide the statistics of the data streams used in the first and second phases of explorations, respectively (notations are described in Table 2.3). These datasets cover graphs with different structural properties (e.g. edge density, average vertex degree, and wedge (i.e. two-path) count) and characteristics (e.g. number and average size of bursts) which make them suitable for deep analysis. For instance, Ciao and Amazon have low average degree of both i- and j-vertices, while they are bursty streams. Epinions\(^3\) has higher average degree of i-vertices compared to that of j-vertices with a very high number of wedges (the building blocks of butterflies), and it is a bursty stream with large bursts. WikiLens has high average degree of i-vertices but it is not bursty. ML100k has high average degree of i- and j-vertices and high number of wedges and it is roughly as bursty as ML1m and Yahoo which have higher average degree of i- and j-vertices and higher number of wedges.

Synthetic graphs. In Phase 1 of explorations, synthetic random graphs are used in addition to the real-world graphs to bolster the analysis over real-world graphs. In fact synthetic graphs are configurable and have known structural properties that ease the understanding of their patterns. These synthetic graphs are used to better understand and explain what is happening in real-world graphs through the comparisons and contradictory case investigations. These synthetic graphs are generated with respect to the three real-world graphs (Epinions, MovieLens100k, and MovieLens1m) in that the synthetic graphs and the corresponding real-world graphs have (roughly) the same structural statistics (e.g. the number of vertices and edges and the degree). The structure of these synthetic random graphs is generated according to the attachment mechanism of Barabasi-Albert (BA) model [38], which is a popular and widely adopted model for generating scale-free graphs. Given the total number of vertices \(N\), the initial number of vertices \(m_0\) and the number of connections of new vertices \(m \ (m \leq m_0)\) as inputs, the BA graph model applies the rich-

\(^1\)http://konect.uni-koblenz.de/networks/
\(^2\)networks.skewed.de
\(^3\)In literature, Epinions appears as both unipartite and bipartite graphs. In this thesis the bipartite graph is used.
Table 3.2: Datasets used in Phase 1 of explorations.

| Dataset | $|V_i|$ | $|V_j|$ | $|E|$ | d_i | d_j | N | m | N_b |
|------------------|-------|-------|--------|-------|-------|------|--------|--------|
| Epinions | 22,164| 296,277| 922,267| 41 | 3 | 4,318|
| BA+Epinions stamps| 22,514| 21,455| 922,254| 41 | 43 | 22,515,41| 4,318 |
| BA+random stamps | 22,514| 21,455| 922,254| 41 | 43 | 22,515,41| 921,159|
| ML1m | 6,040 | 3,706 | 1,000,210| 166 | 270 | 458,455|
| BA+ML1m stamps | 6,106 | 6,022 | 999,901 | 164 | 166 | 6,107 | 166 | 458,312|
| BA+random stamps | 6,106 | 6,022 | 999,901 | 164 | 166 | 6,107 | 166 | 994,467|
| ML100k | 943 | 1,682 | 100,000 | 106 | 59 | 49,282|
| BA+ML100k stamps | 995 | 982 | 99,905 | 100 | 100 | 966 | 106 | 49,254|
| BA+random stamps | 995 | 982 | 99,905 | 100 | 100 | 966 | 106 | 996,555|
| ML10m | 69,878| 10,677| 10,000,054 | 143 | 937 | 7,096,905|
| Edit-FrWiki | 288,275| 3,992,426| 46,168,355| 160 | 11 | 39,190,059|
| Edit-EnWiki | 262,373,039| 266,665,865| 266,769,613| 70 | 12 | 134,075,025|

Table 3.3: Datasets used in Phase 2 of explorations.

| Dataset | $|V_i|$ | $|V_j|$ | $|E|$ | d_i | d_j | N_b | B | Λ |
|---------|-------|-------|------|-------|-------|------|-------|--------|
| Ciao | 17,615| 16,121| 72,665| 4.1 | 4.5 | 4,919| 14.8 | 4,896,641|
| Epinions| 120,492| 755,760| 13,668,320| 113.4 | 18 | 501 | 27,282| 69,245,866,714|
| WikiLens| 326 | 5,111 | 26,937| 82.6 | 5.2 | 26,239 1 | 6,316,744|
| ML100k | 943 | 1,682 | 100,000| 106 | 59.4 | 49,282 2 | 18,367,254|
| ML1m | 6,040 | 3,706 | 1,000,210| 165.6 | 269.9 | 458,455 2.2 | 602,009,923|
| Amazon | 2,146,057| 1,230,915| 5,838,041| 2.7 | 4.7 | 3,329 | 1,753.7 | 627,186,651|
| Yahoo | 1,000,990| 624,961| 256,804,235| 256.5 | 410.9 | 105,331,405 2.4 | 4,627,224,528,654|

get-richer preferential attachment rule to generate a unipartite scale-free random graph. Precisely, this graph model creates an initial complete graph with m_0 vertices and keeps adding $N - m_0$ new vertices to this initial graph. The new vertices are connected to m existing vertices with higher probability of attachment dictated by the attachment rule. The BA preferential attachment rule states that the probability is determined based on the degree of the vertex, therefore the higher the degree (i.e. the older the vertex), the higher the probability of attachment. BA model produces growing unipartite graphs with no timestamps. Therefore, in the following, the model is extended to generate bipartite and scale-free streaming graphs with respect to a given real-world graph such that the structure is dynamic but the timestamps are static.

1. **Create Unipartite BA graph** – The input parameters to the BA model (i.e. N, m, and m_0) should be set such that the average degree of i-vertices and the number
of total edges ($|E|$) in real-world and synthetic graphs are (roughly) the same. That is because of the edge-centric nature of the intended analysis. Therefore, the m and m_0 are set as equal to the average degree of i-vertices (i.e. users) in the real-world graph and the value of N is determined in a way that it satisfies the equation for the number of edges in BA graph, that is $m_0(m_0 - 1)/2 + (N - m_0)m = |E|$. Given the input parameters, the edge list of the scale-free unipartite directed graph is generated.

2. **Project the graph to bipartite mode** – A common approach to project a bipartite graph $BG = (V, E_{ij})$ to unipartite modes $G_i = (V_i, E_{i})$ and $G_j = (V_j, E_{j})$ is to connect a pair of vertices if they have a common neighbour (Figure 1.1). That is, $(v_{im}, v_{in}) \in E_i$ iff $\exists v_j \in V_j : (v_{im}, v_j) \in E_{ij}$ & $(v_{in}, v_j) \in E_{ij}$ and the same connection rule for j-vertices. Accordingly, a reverse-engineering technique can be used for projecting the unipartite graphs to bipartite mode. Precisely, given a unipartite BA graph G_i with N_i or N_j vertices (assuming the vertices as i- or j-vertices), the bipartite mode BG is generated by the procedure below:

(a) Assign N_j labels $\{L_k | 1 \leq k \leq N_j\}$ to arbitrary edges in G_i.
(b) Create a set of N_j j-vertices.
(c) Project each edge $(v_{im}, v_{in}) \in E_i$ with label L_k into two edges (v_{im}, v_{jk}) and (v_{in}, v_{jk}).

Clearly, this procedure can yield a bipartite BA graph with a pre-specified number of i- and j-vertices. Therefore, it can mimic the number of vertices in the real-world graph exactly. However, the number of edges in the output bipartite BA graph does not match that of the unipartite BA graph and if we create a unipartite BA graph with specific number of edges, then the number of i-vertices would be affected accordingly. Therefore, this projection method can not yield bipartite BA graphs that have specific number of edges and vertices at the same time and solely adjusting the number of edges will affect the number of vertices. On the other hand, the intended analysis are edge-centric, therefore it is important to create synthetic bipartite graphs with the same number of edges as the real-world graphs.

To address this problem, a simple projection method is followed. Given the list of directed edges in the unipartite BA graph, the sources of edges are treated as i-vertices and the destinations as the j-vertices. Hence, the BA graph is projected to bipartite mode with the same number of edges as that of the unipartite and the corresponding real-world graph. The number of i-vertices in the projected bipartite BA graph (equal to the N of unipartite BA graph) is very close to that of the real-world graph. In spite of different number of j-vertices in the projected and real-world
graphs, this projection method is preferable as it solves the aforementioned issue. Moreover, this method preserves the scale-free characteristic of the uni-partite graph since the j-degree (i-degree) distribution in bipartite graph is equivalent to the in-degree (out-degree) distribution of vertices in the unipartite graph and the j-degree distribution is scale-free.

3. **Assign timestamps to the synthetic edges** – Given the timestamps of the real-world graph and the bipartite structure of the corresponding random graph, timestamps are assigned to the edges in two ways:

 (a) Each BA edge is randomly assigned a timestamp within the range of timestamps of the corresponding real-world graph and the resulting graph is called BA+random stamps.

 (b) The un-ordered timestamps of the corresponding real-world graph are assigned to arbitrary BA edges and the resulting graph is called BA+real stamps. This method guarantees same temporal distribution for the edges of BA and real-world graphs and supports fair comparisons.

All the edge lists (real and synthetic) are sorted based on the timestamps to simulate the streaming graph records in the analysis. When there are duplicate edge arrivals (i.e. multiple connections between two vertices), the duplicates are ignored and only the first edge is considered.

3.1.2 Methods

Exact Butterfly Counting. Analyses in both Phase 1 and Phase 2 rely on enumerating butterflies. It is important to calculate the exact number of butterflies to make sure that the analysis is correct and the identified patterns are reliable. Therefore, an exact butterfly counting algorithm (Algorithm 1) is introduced to count the occurrence numbers in sequential graph snapshots. Given a bipartite graph snapshot $G_{W,t}$ at a time point t, the goal is to compute $B(t)$ as the number of all quadruples $(v_{i1}, v_{i2}, v_{j1}, v_{j2})$ in $G_{W,t}$ such that they form a butterfly (Definition 14). Algorithm 1 follows a vertex-centric approach that does not require accessing two-hop neighbours (i.e. it is not triple-based) and can be computed by looping over either i-vertices or j-vertices depending on their average degree (denoted by d_i and d_j). The algorithm takes a vertex v_{i1} (provided that $d_i \leq d_j$) and considering each pair of j-neighbours v_{j1} and v_{j2}, identifies any vertex v_{i2} which is a common i-neighbour of v_{j1} and v_{j2} to form a butterfly (Figure 3.1). Sub-lists are used to avoid
an eager computation model is adopted where the exact number of butterflies is computed after each edge is added. That is, Algorithm 1 runs over a landmark window (Definition 8). This is done in the time period 0 to 5000 (i.e. first 5000 sgrs) due to the computational overhead of the algorithm. Note that the frequency distribution of edge insertions occurring in time-intervals of variant sizes follows the same shape. This means that the distribution with respect to scaling across time scales is invariant (i.e. self-similar [333]). Therefore, we can rely on the analysis of a fraction of the subsequent streaming edges. To compare
Algorithm 2: Butterfly Support

1 Function ButterflySupport(G)
 2 Input: G = (V₁ ∪ Vⱼ, Eᵢⱼ), static graph
 3 Output: vSupport, butterfly support of vertices
 4 vSupport ← ∅, Butterflies ← ∅, jNeighbors ← ∅, vi2s ← ∅
 5 for vi₁ ∈ V₁ do
 6 jNeighbors ← Nⱼ(i₁)
 7 for index₁ ∈ [1, size(jNeighbors)] do
 8 j₁ ← jNeighbors[index₁]
 9 for index₂ ∈ [index₁ + 1, size(jNeighbors)] do
 10 j₂ ← jNeighbors[index₂]
 11 vi₂s ← Nᵢ(j₁) ∩ Nᵢ(j₂)
 12 for i₂ ∈ vi₂s do
 13 if ⟨i₁, j₁, i₂, j₂⟩ ∉ Butterflies then
 14 Butterflies.add(⟨i₁, i₂, j₁, j₂⟩)
 15 vSupport.put(i₁, vSupport.get(i₁) + 1)
 16 vSupport.put(j₁, vSupport.get(j₁) + 1)
 17 vSupport.put(i₂, vSupport.get(i₂) + 1)
 18 vSupport.put(j₂, vSupport.get(j₂) + 1)

the numbers with that of a random graph as a null graph for checking the motifs, only
the corresponding BA graph with the same real timestamp is used. This enables fair
comparison of structural evolution of real-world and synthetic random graphs.

In Phase 2, Algorithm 1 is used to list the butterflies over sequential graph snapshots
corresponding to a burst-based landmark window (Definition 11). The emergence of a
certain number of butterflies is studied in different streams with different structural/temporal properties. That is, the prefix of streams is considered until the arrival of up to
≈6.5 × 10⁶ butterflies, which covers the entire stream in WikiLens with 26220 bursts and a
prefix of 10000, 9600, 460, 2000, and 15000 bursts in ML1m, ML100k, Epinions, Amazon,
and Yahoo, respectively. In Ciao, the entire stream is checked, which has 4900 bursts and
≈6.4 × 10⁵ butterflies (Table 3.4). The corresponding timeline of burst arrival is divided
into 20 equally distanced points and at each point the butterflies in the burst-based graph
snapshot are studied. In the analyses, it is important to care about the value and the trend
data points; the number of graph snapshots (here 20) simply changes the smoothness of
the plots and does not affect the results since streams with different distribution of timestamps are checked and the scale of graph snapshots differs in various streams. The number of edges/butterflies in each burst varies in different graphs depending on the burstiness of the stream.

Table 3.4: Statistics of the 20th graph snapshot in real-world streams. $|E^{20}|$ is edge count, N_b^{20} is burst count, and butterfly count is denoted as \bowtie^{20}.

| | $|E^{20}|$ | N_b^{20} | \bowtie^{20} |
|---------|-----------|------------|---------------|
| Ciao | 72,574 | 4,900 | 636,440 |
| Epinions| 296,665 | 460 | 6,418,862 |
| WikiLens| 26,918 | 26,220 | 6,556,913 |
| ML100k | 18,696 | 9,600 | 6,492,834 |
| ML1m | 22,795 | 10,000 | 6,678,784 |
| Amazon | 2,194,798 | 2,000 | 6,496,236 |
| Yahoo | 42,105 | 15,000 | 6,496,563 |

Strength Assortativity Measurement. The tendency of vertices to connect to similar vertices with respect to one of their quantitative/qualitative attributes is called assortativity/homophily [241]. For instance, degree assortativity refers to the tendency of vertices with similar degrees to connect. In a graph with degree (dis)assortative mixing pattern, high degree vertices are connected to high (low) degree vertices. In a graph with perfect (dis)assortativity, vertices connect only to same (different) degree vertices. In addition to connectivity insights (the primary goal in Phase 2 of explorations), assortativity provides information about the dynamic behaviour and robustness of the graph [318, 100]. For instance, degree disassortative complex networks compared to degree assortative networks exhibit higher epidemiological threshold leading to easier immunization, while assortative networks get higher resilience to systemic risk by degree-targeted immunization policies [100] (Noldus and Van Mieghem [247] describe this in a complete survey). The epidemiological threshold is defined as the critical ratio among the propagation rate and recovery rate of a disease above which epidemics ensue and immunization is the policy to stop the propagation process. Assortativity is usually studied with respect to vertex degrees. A previous study [204] has shown that studying the assortativity by considering just the degree does not completely uncover the organizational patterns in the structure of graphs. Leung and Chau [204] have introduced the weighted assortativity coefficient to measure the tendency of having a high-weighted edge between vertices with similar degrees. However, the goal of analyses in the phase two in this chapter is measuring the tendency of having an edge between vertices with similar strength (i.e. measuring strength assor-
tativity to discover the connection patterns with respect to weights as well as degrees), particularly in butterflies. In the following, first the requirements are established for an effective measurement of strength assortativity that can accommodate analysis of meso-scale, bipartite, and temporal structures; next, a new metric is introduced for strength mixing patterns called strength assortativity localization factor.

The assortativity coefficient \(r \) \cite{241} is a common metric for assortativity \cite{382, 324, 322}. Assuming that we are interested in quantifying the tendency of vertices to connect to each other based on the similarity of their attribute \(K \), \(r \) is computed as the pearson correlation of \(K \) of linked vertices and lies in the range \(-1 \leq r \leq 1\). Positive (negative) \(r \) signals (dis)assortativity and \(r = 0 \) denotes random mixing. Another approach to study assortativity is to compute the average \(K \) of nearest-neighbours for each vertex and then aggregating the values by restricting the class of vertices with \(K = k \). It is denoted as \(\langle K_n \rangle \) which is a function of \(K \). An increasing (decreasing) \(\langle K_n \rangle \) signals (dis)assortativity. This can be inferred by checking the sign of the slope of a linear fit in the log-log plot of \(\langle K_n \rangle \) as a function of \(K \). In the following, the effectiveness of \(r \) and \(\langle K_n \rangle \) in quantifying the strength assortativity of butterflies is investigated.

The evolution of two distributions are considered over sequential graph snapshots:

- \(Pr(\delta) \), the probability distribution of strength difference for connected butterfly vertices which is computed as \(Pr(\delta) = \frac{F(\delta)}{\sum F(\delta)} \), where \(F(\delta) \) is the number of butterfly edges with strength difference \(\delta \) and the sum runs over the range of \(\delta \) values, and

- \(Pr(S_i) \), the probability distribution of strength for butterfly i-vertices which is computed as \(Pr(S_i) = \frac{F(S_i)}{\sum F(S_i)} \), where \(F(S_i) \) is the number of butterfly i-vertices with strength \(S_i \). The same notations hold for j-vertices and \(Pr(S_j) \).

Figure 3.2: Assortativity coefficient over timeline of burst arrival in Epinions stream.
As a running example, the real-world stream Epinions is used with 20 equally-distanced points in the timeline of burst arrivals. At each point \((N_b)\), \(r\) is calculated for the strengths of linked butterfly vertices in the corresponding graph snapshot \(G_{N_b}\) (Figure 3.2). Also, \(Pr(\delta)\) is considered at two points corresponding to the arrival of 92 bursts (Figure 3.3(a)) and 437 bursts (Figure 3.3(b)). At \(N_b = 92\), the probability that a butterfly edge has strength difference below the average strength difference \(\mu_\delta\) is \(Pr(\delta \leq \mu_\delta) = 0.67\). However, the assortativity coefficient is \(r = 0.007\) suggesting no (dis)assortativity (i.e. random connection of butterfly vertices with no tendency to connect to (dis)similar vertices). Also, at \(N_b = 437\), majority of butterfly edges fall in the region behind \(\mu_\delta\) with probability \(Pr(\delta \leq \mu_\delta) = 0.71\), while \(r = -0.17\) suggests strength disassortativity.

![Figure 3.3](image)

Figure 3.3: Distribution of strength differences of connected butterfly vertices.

The reason behind this confusing behaviour of \(r\) is its bias toward the distribution of strength of i- and j-vertices with respect to their average. To clarify, consider \(Pr(S_i)\) and \(Pr(S_j)\) at these two time points (Figure 3.4(a),(b),(c),(d)). At \(N_b = 92\), the probability that a butterfly i(j)-vertex has strength less than or equal to the average strength of butterfly i(j)-vertices \(\mu_i(\mu_j)\) is almost equal to the probability that a butterfly i(j)-vertex has strength greater than the average strength of butterfly i(j)-vertices \(Pr(S_i \leq \mu_i) = 0.57\) and \(Pr(S_j \leq \mu_j) = 0.54\). Therefore, many strength deviations from the mean strength, particularly for j-vertices, would be zero, making the coefficient an insignificant value close to zero \((r = 0.007)\). At \(N_b = 437\), a large majority of butterfly i(j)-vertices have strength above the average strength of butterfly i(j)-vertices \(Pr(S_i > \mu_i) = 0.9, Pr(S_j > \mu_j) = 0.8\), therefore their high deviations from the mean lowers the coefficient. In summary, the assortativity coefficient reflects the global correlation between \(Pr(S_i)\) and \(Pr(S_j)\) (two separate distributions). The assortativity coefficient fails to capture the pairwise correlations between strength of connected i- and j-vertices forming butterflies.
Next, the neighbourhood-based approach for studying assortativity is examined. Figure 3.5, shows the nearest-neighbour average strength of vertices with strength S [260] at $N_b = 92$ and $N_b = 437$. At first glance, the decreasing trend suggests strength disassortativity: the higher the strength of a vertex, the lower the average strength of its neighbours and vice versa. However, we should consider the skewed $Pr(S_i)$ and $Pr(S_j)$ with high-strength vertices. Suppose that low-strength vertices are connected to many low-strength vertices and one high-strength vertex. In this case, the average strength of neighbours for these low-strength vertices would be high although the majority of neighbours have similar low strengths. That is, relatively few vertices that have high strengths (because of many connections and/or connections with high weights) skew the average strength of their low-strength neighbours and hence mislead the assortativity interpretation. This again highlights the issue of measuring strength assortativity in graphs with broad and skewed strength distribution. To conclude, using conventional assortativity metrics is not reliable for analyzing the strength assortativity of butterflies in bipartite streaming graphs since
Figure 3.5: Nearest-neighbour average strength of vertices with strength S.

- r is vertex-centric and reflects the global strength correlations rather than pairwise strength correlations. In particular, in case of computing r for butterflies, each butterfly vertex contributes duplicate values because of two adjacent edges; therefore, vertices with strength equal/close to the mean ($S - \mu \approx 0$) decrease the overall correlation, regardless of the strength of their neighbor.

- r is designed for unipartite graphs and using it in bipartite graphs can bias the outcome by the strength distributions of i- and j-vertices.

- The neighbourhood-based approach can be misleading in case of graphs with broad and skewed strength distributions since high-strength vertices have outlier impacts and make the interpretation difficult.

Informed by the above discussion, an appropriate measure for the tendency of vertices to connect to vertices with similar strength that is applicable to butterfly edges should satisfy the following properties:

- It should directly reflect the probability distribution of strength differences rather than the global correlations in the distribution of strengths.

- It should not be designed based on neighbour information since in case of skewed distribution of strengths, it would be biased by the outlier vertices.

- It should enable comparison of strength assortativity for sequential graph snapshots in the same stream as well as comparison of strength assortativity of graph snapshots in different graph streams.
The goal is to quantify and compare the distribution of strength differences in low dimension to enable temporal analysis over sequential graph snapshots of streams. A common approach for comparing distributions (usually degree distributions) is Kolmogrov-Smirnov test. However, this is sensitive to the distribution range and is not ideal for analyzing sequential graph snapshots and different graph streams. The Degree Distribution Quantification and Comparison (DDQC) approach [20] quantifies the degree distribution of a graph based on $4 \times 2^\beta$ regions in the degree distribution and uses this quantification for comparison. The regions are determined in two steps: first, the degree distribution is divided into four regions covering the intervals between five subsequent points: $\min(\text{degree})$, $\mu - \alpha \sigma$, μ, $\mu + \alpha \sigma$, and $\max(\text{degree})$, where μ is the mean degree and σ is the standard deviation of degrees and α is a configurable parameter. Next, each region is divided into 2^β equal sub-regions, where β is the second configurable parameter. Given these regions in the probability distribution, a vector is constructed with $4 \times 2^\beta$ elements each representing the summation of probabilities in a corresponding region.

The probability distribution of strength difference of connected butterfly vertices $Pr(\delta)$ is considered given a graph snapshot G_{N_0}. Using graph snapshots corresponding to a burst-based landmark window (Definition 11) enables fair comparison of different graphs with different temporal characteristics. Inspired by the DDQC approach, $Pr(\delta)$ is divided into four regions based on the mean and standard deviation of δs (μ_δ and σ_δ, see Figure 3.3). As long as the first region covers the low δs, the number/coverage of other regions for the tail of right-skewed distribution is not important in mixing pattern analyses. Accordingly, the probability distribution is summarized as an embedding vector F with four elements ($\Sigma_{i=1,...,4} F_i = 1$). Each element corresponds to a region as below:

\begin{align*}
F_1 &= \Sigma Pr(\delta), \forall \delta \leq \mu_\delta \quad (3.1) \\
F_2 &= \Sigma Pr(\delta), \forall \mu_\delta < \delta \leq \mu_\delta + \sigma_\delta \quad (3.2) \\
F_3 &= \Sigma Pr(\delta), \forall \mu_\delta + \sigma_\delta < \delta \leq \mu_\delta + 2\sigma_\delta \quad (3.3) \\
F_4 &= \Sigma Pr(\delta), \forall \delta > \mu_\delta + 2\sigma_\delta \quad (3.4)
\end{align*}

The vector F provides fine-grained information. Additionally, to express the strength assortativity as an scalar for simple network inference in temporal analyses, the strength assortativity localization factor is defined as $r^s = F_1 - 0.5$ to track the localization of δs (F) on the region behind mean (F_1). r^s lies in the range $[-0.5, 0.5]$. A positive r^s
highlights strength assortativity (i.e. vertices with similar strengths tend to connect to each other), negative r^s highlights strength disassortativity (vertices with dissimilar strengths tend to connect to each other) and a zero value corresponds to random strength mixing. $r^s = 0.5$ denotes perfect strength assortativity and $r^s = -0.5$ denotes perfect strength disassortativity.

3.2 Analysis, Phase 1

3.2.1 Temporal Motifs

Real-world graphs display rapid temporal evolution of the number of butterflies (Figure 3.6). To further investigate the growth pattern of butterfly frequency in these graphs, ten polynomial functions of degree one to ten are examined to fit the data points of temporal butterfly frequency evolution (black lines in Figure 3.6) and the best fitting function is picked (Table 3.5). The best fitting function satisfies three conditions:

- It has the lowest Root Mean Square Error (RMSE).
- It has the highest coefficient of determination (R^2).
- It is a non-decreasing function.

RMSE quantifies the estimation error, while R^2 quantifies the linear correlation between the estimated fitting function and the data points. Figures 3.7, 3.8, and 3.9 illustrate the best fitting function and its estimation errors used in calculation of the RMSE. Note that high RMSE values are due to the increasing function giving rise to high residuals. The RMSE of different graphs are not compared; instead, the RMSE of different fitting functions for each graph are compared. Therefore, the absolute value of RMSE is not as important as its relative value for different functions. All the plots are properly fitted to polynomial functions of degree above 5 (best fitted to 5th, 7th, 9th and 10th degrees - Figures 3.7, 3.8, and 3.9). This is termed as the butterfly densification power-law (BPL, following the power-law terminology [201]): the number of butterflies at time point t (i.e. $B(t)$) follows a power law function of the number of edges at t (i.e. $B(t) \propto f(|E(t)|^\eta)$, $\eta > 1$).

Moreover, the outstanding frequency of butterflies in the real-world graphs compared to that of random graphs suggests that butterflies are network motifs across the time line.
Table 3.5: R^2 and RMSE of polynomial fitting functions of degree $d = 1$ to $d = 10$ for butterfly count in three real-world streams.

<table>
<thead>
<tr>
<th></th>
<th>R^2</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$d = 1$</td>
<td>$d = 2$</td>
</tr>
<tr>
<td>Epinions</td>
<td>0.9997</td>
<td>0.9995</td>
</tr>
<tr>
<td>ML100k</td>
<td>0.931</td>
<td>0.9977</td>
</tr>
<tr>
<td>ML1m</td>
<td>0.8745</td>
<td>0.9951</td>
</tr>
<tr>
<td>ML10m</td>
<td>0.6943</td>
<td>0.9983</td>
</tr>
<tr>
<td>Edit-FrWiki</td>
<td>0.9228</td>
<td>0.9932</td>
</tr>
<tr>
<td>Edit-EnWiki</td>
<td>8.09e4</td>
<td>2.408e4</td>
</tr>
<tr>
<td></td>
<td>1990</td>
<td>1288</td>
</tr>
</tbody>
</table>

Figure 3.6: Temporal evolution of butterfly frequency.

3.2.2 Butterfly Emergence Patterns - Densification

Bursty Butterfly Formation. To study how butterflies as motifs are formed over time, the distribution of inter-arrival time of pair of edges forming a butterfly is studied. That
is, for any pair of edges \(\langle e_1, e_2 \rangle \) with timestamps \(\tau_1 \) and \(\tau_2 \) that co-exist in a butterfly, the inter-arrival time is \(|\tau_1 - \tau_2| \). A lazy computation model is adopted to compute the inter-arrival distribution once at time point \(t = 5000 \) (i.e. after adding 5000 sgrs).

The distribution of inter-arrival values is skewed to the right (Figures 3.10 and 3.11). The left peaks and the heavy tail of the distribution reveal different patterns. The leftmost peaks highlight that many butterflies are formed by edges with close timestamps. On the other hand, according to Figure 3.6, the number of butterflies increase significantly over time. This suggests that butterflies are formed in a bursty fashion.

Next, the vertices that form the butterflies are investigated to see

- whether the bursty butterfly generation is contributed by hubs (i.e. vertices with
Figure 3.8: (top) Best Fitting functions for the temporal evolution of butterfly frequency and (bottom) the residual errors of the estimated fitting function in ML1m and Edit-FrWiki streams.

degree above the average of unique vertex degrees) or normal vertices; and

- if hubs are the main contributors, are they young, old, or both?

Hubs’ contribution to butterfly emergence. The followings are studied to test the hypothesis that butterflies are contributed by hubs.

- The probability of forming butterflies by hubs
- The correlation between degree and support of vertices
- The connection patterns of hubs
The probability of forming butterflies by hubs – Butterflies formed at time $t = 0$ to $t = 5000$ are enumerated and the fraction of butterflies formed by zero to four hubs (Table 3.6) and the fraction of butterflies formed by zero, one, or two i-/j-hubs (Table 3.7) are checked. It is evident that, butterflies mostly include one or, with higher probability, two hubs which are usually i-hubs.

The correlation between degree and support of vertices – The correlation between degree $\text{deg}(i)$ and butterfly support B_i is studied, where B_i is defined as the number of butterflies incident to each vertex. The correlation computed over the i-vertices and j-vertices is referred to as i-correlation and j-correlation (similarly computed), respectively. The Pearson correlation coefficient is computed at $t = 5000$ for all the $|V_i|$ or $|V_j|$ seen i-(j-)vertices in the graph snapshot. A positive correlation coefficient means $\text{deg}(i)$ and B_i
increase or decrease together, while a negative correlation means increasing one quantity implies decreasing the other one. Values close to 1 demonstrate strong correlation. As provided in Table 3.8, there is a strong positive correlation between the degree and the support of vertices in real-world graphs. i.e. the higher the degree, the higher the butterfly support and vice versa. This highlights the impact of hubs in the emergence of enormous
Table 3.6: Fraction of butterflies including zero, one, two, three, or four hub(s) after adding 5000 sgrs.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>0 hub</th>
<th>1 hub</th>
<th>2 hubs</th>
<th>3 hubs</th>
<th>4 hubs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epinions</td>
<td>0.09</td>
<td>0.29</td>
<td>0.55</td>
<td>0.07</td>
<td>0</td>
</tr>
<tr>
<td>BA+Epinions stamps</td>
<td>0.11</td>
<td>0.44</td>
<td>0.39</td>
<td>0.06</td>
<td>0</td>
</tr>
<tr>
<td>ML100k</td>
<td>0.07</td>
<td>0.35</td>
<td>0.48</td>
<td>0.09</td>
<td>0.01</td>
</tr>
<tr>
<td>BA+ML100k stamps</td>
<td>0.24</td>
<td>0.28</td>
<td>0.28</td>
<td>0.15</td>
<td>0.05</td>
</tr>
<tr>
<td>ML1m</td>
<td>0.07</td>
<td>0.38</td>
<td>0.48</td>
<td>0.07</td>
<td>0</td>
</tr>
<tr>
<td>BA+ML1m stamps</td>
<td>0.01</td>
<td>0.33</td>
<td>0.6</td>
<td>0.06</td>
<td>0</td>
</tr>
<tr>
<td>ML10m</td>
<td>0.09</td>
<td>0.34</td>
<td>0.37</td>
<td>0.17</td>
<td>0.03</td>
</tr>
<tr>
<td>Edit-Frwiki</td>
<td>0.08</td>
<td>0.29</td>
<td>0.53</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>Edit-Enwiki</td>
<td>0.1</td>
<td>0.48</td>
<td>0.41</td>
<td>0.01</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3.7: Fraction of butterflies including zero, one, or two i-hub(s) or j-hub(s) after adding 5000 sgrs.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>0 i-hub</th>
<th>1 i-hub</th>
<th>2 i-hubs</th>
<th>0 j-hub</th>
<th>1 j-hub</th>
<th>2 j-hubs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epinions</td>
<td>0.11</td>
<td>0.35</td>
<td>0.54</td>
<td>0.85</td>
<td>0.13</td>
<td>0.02</td>
</tr>
<tr>
<td>A+Epinions stamps</td>
<td>0.19</td>
<td>0.56</td>
<td>0.25</td>
<td>0.7</td>
<td>0.25</td>
<td>0.05</td>
</tr>
<tr>
<td>ML100k</td>
<td>0.10</td>
<td>0.46</td>
<td>0.44</td>
<td>0.75</td>
<td>0.21</td>
<td>0.04</td>
</tr>
<tr>
<td>BA+ML100k stamps</td>
<td>0.48</td>
<td>0.39</td>
<td>0.13</td>
<td>0.37</td>
<td>0.41</td>
<td>0.23</td>
</tr>
<tr>
<td>ML1m</td>
<td>0.1</td>
<td>0.43</td>
<td>0.47</td>
<td>0.84</td>
<td>0.15</td>
<td>0.01</td>
</tr>
<tr>
<td>BA+ML1m stamps</td>
<td>0.01</td>
<td>0.36</td>
<td>0.63</td>
<td>0.9</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>ML10m</td>
<td>0.25</td>
<td>0.54</td>
<td>0.21</td>
<td>0.47</td>
<td>0.33</td>
<td>0.2</td>
</tr>
<tr>
<td>Edit-Frwiki</td>
<td>0.11</td>
<td>0.35</td>
<td>0.54</td>
<td>0.81</td>
<td>0.18</td>
<td>0.01</td>
</tr>
<tr>
<td>Edit-Enwiki</td>
<td>0.1</td>
<td>0.5</td>
<td>0.4</td>
<td>0.97</td>
<td>0.03</td>
<td>0</td>
</tr>
</tbody>
</table>

number of butterflies in the real-world graphs.

The connection patterns of hubs – The extent to which i-(j-)hubs dominate the edges over time is quantified by means of two equivalent measures:

- the fraction of i-(j-)hub connections (denoted by $\frac{\sum_{i=1}^{N_{hub}(t)}(deg(hub_i))}{E(t)}$) normalized over the number of hubs at time point t (denoted by $N_{hub}(t)$), and

- the average degree of i-(j-)hubs (denoted by $\frac{\sum_{i=1}^{N_{hub}(t)}(deg(hub_i))}{N_{hub}(t)}$) normalized over the total number of edges at time point t (denoted by $|E(t)|$).

Both quantities are calculated by $\frac{\sum_{i=1}^{N_{hub}(t)}(deg(hub_i))}{E(t)\cdot N_{hub}(t)}$ at any given time point t. An eager
Table 3.8: Correlation between the butterfly support and the degree of i-vertices (i-correlation) and j-vertices (j-correlation).

<table>
<thead>
<tr>
<th></th>
<th>i-correlation</th>
<th>j-correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epinions</td>
<td>0.86</td>
<td>0.73</td>
</tr>
<tr>
<td>BA+Epinions stamps</td>
<td>0.56</td>
<td>0.72</td>
</tr>
<tr>
<td>ML1m</td>
<td>0.98</td>
<td>0.92</td>
</tr>
<tr>
<td>BA+ML1m stamps</td>
<td>0.92</td>
<td>0.89</td>
</tr>
<tr>
<td>ML100k</td>
<td>0.95</td>
<td>0.93</td>
</tr>
<tr>
<td>BA+ML100k stamps</td>
<td>0.63</td>
<td>0.88</td>
</tr>
<tr>
<td>ML10m</td>
<td>0.83</td>
<td>0.93</td>
</tr>
<tr>
<td>Edit-Frwiki</td>
<td>0.91</td>
<td>0.85</td>
</tr>
<tr>
<td>Edit-Enwiki</td>
<td>0.89</td>
<td>0.62</td>
</tr>
</tbody>
</table>

computation model is adopted to compute this value when a new edge is added. The time point \(t \) can be interpreted as the number of edges added to the graph since the initial time point \(t = 0 \).

While the number of edges added to the graph increases, the normalized fraction of i-(j-)hub connections (average degree of i-(j-)hubs) decreases over time in both real-world and BA graphs (Figures 3.12 and 3.13). Also, unlike real-world graphs, i- and j-hubs emerge later in the BA graphs (originated by the BA’s preferential attachment rule), and the average degree of hubs in early time points is higher in real-world graphs than that of BA graphs. This is due to the bursty characteristic of graph stream (i.e. arrival of a bunch of edges with same time-stamp and same i- or j- vertex). In summary, early in the stream, the BA graphs have lower number of hubs with lower degrees compared to the real-world graphs. Figure 3.6 also illustrates the low number of butterflies in BA graphs earlier in the stream when there are no hubs in these graphs or the average hub degree is low. On the other hand, real world graphs have high number of hub connections and high number of butterflies. These observations again verify the contribution of hubs to the emergence of butterflies; When the number of hubs and the average degree of hubs are both low, the number of butterflies is also low (as seen in BA graphs). Also, when the number of hubs and their average degree is high, the number of butterflies is high (as seen in real-world graphs).

Contribution of hubs’ age to butterfly emergence. The followings are studied to test the hypothesis that butterflies are contributed by old hubs.

- The evolution of young and old hubs
The inter-arrival of butterfly edges

The evolution of young and old hubs – As mentioned before, the i-(j-)hub are defined as any i-(j-)vertex whose degree is above the average of unique i-(j-)degrees in the graph. Accordingly, young (old) hubs are defined as any hub whose timestamp is in the last (first) 25% of ordered set of already seen timestamps. The vertex timestamps are determined as the timestamp of the sgr by which the vertex has been added to the graph for the first time. For instance, if a vertex i arrives via the inserting edges $e_1 = \langle i, j_1 \rangle$ and $e_2 = \langle i, j_2 \rangle$, the timestamp of vertex i is set to the timestamp of e_1, which has arrived before e_2 (assuming subscript identify order of arrival). A lazy computation model is adopted to compute the number of young/old i-(j-)hubs using a burst-based landmark window (Definition 11), where the computation is done over a growing graph generated by the edges in the append-only window following each expansion. Window expansion lengths are set to cover $0.1 \times N_b$ unique timestamps in each window in Epinions, ML100k, ML1m, and ML10m. In the
larger streams Edit-EnWiki and Edit-FrWiki, this value is equal to 0.01 * N_b.

As shown in the Figure 3.14, young i-hubs and/or j-hubs are formed in the real-world graphs over time, while in BA graphs with random timestamps the number of young i-(j-)hubs is always zero. The timestamp of hubs in real graphs are randomly assigned to other vertices in BA graphs with real timestamps, therefore the old hubs are identified as young hubs that should be ignored. Figure 3.15 demonstrates that old hubs increase over time in BA graphs, which is not always the case for real-world graphs. Moreover the number of old hubs in real world graphs is less than that of BA graphs.

The inter-arrival of butterfly edges – Finally, the heavy tail of the inter-arrival distribution is studied, which is over-represented in BA graphs (Figure 3.11). The heavy tail is related to the butterfly edges with high inter-arrival times. These highly frequent butterfly edges with high inter-arrivals reflect the connection between the young vertices and old vertices. A hypothesis that young vertices are ordinary vertices and old ones are hubs (i.e. old hubs signify the bursty butterfly emergence) is proved due to the following. Young hubs can exist, however they are not the hubs dominating the butterflies.

- Hubs are main contributors to butterfly emergence; and
- The hubs forming the butterflies cannot be young hubs as BA graphs would be contradiction; BA graphs do not have young hubs (Figure 3.15), while they have many butterfly edges with high inter-arrival (Figure 3.6). Therefore, butterflies cannot originate from young hubs.

3.2.3 Summary

Butterflies are network motifs across the time line of sgr arrivals since the number of butterflies increases significantly over time in real-world streaming bipartite graphs, and at each time point the number of butterfly occurrences in real-world graphs are significantly higher than random graphs. This emergence of butterfly inter-connections is formulated as the butterfly densification power law, stating that the number of butterflies at any time point t is a power law function of the size of stream prefix seen until t. In terms of how these very large number of butterflies emerge over time, studies reveal the contribution of hubs in the streaming graphs. Further investigation of the impact of hubs in terms of their age reveal that the older hubs contribute more to the densification of butterflies.
3.3 Analysis, Phase 2

3.3.1 Butterfly Emergence Patterns - Strength Assortativity

Figure 3.16 shows the growth of butterfly count in real-world streams. To quantify this growth, the butterfly rate of each graph snapshot is defined as the number of butterflies in the graph normalized by the number of edges. The average butterfly rate (plus/minus the standard deviation) is computed over the sequential snapshots. The average butterfly rate is greater than 1 in all streams (Figure 3.16), as the number of butterflies in each graph snapshot is far higher than the number of edges and it can be calculated by a super-linear function of the number of edges (e.g. follows a power law $f(|E|)^\eta$, $\eta > 1$ and the slope of the plots for butterfly count versus $|E|$ in the log-log scale is greater than 1 indicating that the number of butterflies grows super-linearly with respect to the number of edges in the sequential graph snapshots.) In some graphs the super-linearity starts after some time.

$Pr(\delta)$, the probability distribution of strength-difference of connected vertices in butterflies, is computed for the graph snapshots in the streams. Each probability distribution is embedded in a vector F. Figures 3.17 and 3.18 demonstrate the evolution of F elements and their corresponding strength assortativity localization factor (r^s) over the timeline of burst arrivals. In all streams, butterfly edges have strength-difference less than equal to the average strength-difference (μ_δ) with probability $Pr(\delta \leq \mu_\delta) \approx 0.7$ (F is localized on F_1). The tail of $Pr(\delta)$ for all graphs is heavier in the region $[\mu_\delta, \mu_\delta + \sigma_\delta]$ with probability of $Pr(\mu_\delta < \delta \leq \mu_\delta + \sigma_\delta) \approx 0.25$ (according to F_2 values) and gets lighter at the end. This demonstrates that the majority of butterfly edges are formed by vertices with similar strengths at all time points. Also, the strength assortativity localization factor is $0.15 \leq r^s \leq 0.2$ in all graphs at almost all time points (Figure 3.18).

Figure 3.19 shows the evolution of three statistical quantities for $Pr(\delta)$:

- mean μ_δ
- coefficient of variation $CV = \sigma_\delta / \mu_\delta$
- excess kurtosis $Y_2 = (N^{-1}\sum_i (\delta_i - \mu_\delta)^4 / \sigma_\delta^4) - 3$

Figure 3.20 shows the evolution of the same quantities for the probability distribution of strength of i- and j-vertices forming a butterfly, denoted as $Pr(S_i)$ and $Pr(S_j)$. CV, also known as relative standard deviation (RSD), enables measuring the degree of variation (dispersion) over distributions with different mean values. A high-variance distribution
has \(CV > 1 \) and a low-variance distribution has \(CV < 1 \). Distributions such as exponential distribution with equal mean and standard deviation have \(CV = 1 \). The excess kurtosis \(Y_2 \) enables measuring the heaviness of the tail of distribution relative to a normal distribution (which has \(Y_2 = 3 \)). A heavy-tailed distribution has a positive \(Y_2 \) (called a \textit{lepto-kurtic} distribution) and a light-tailed distribution has a negative \(Y_2 \) (called a \textit{platykurtic} distribution). Distributions such as family of normal distributions have zero \(Y_2 \) (called \textit{meso-kurtic}).

The excess kurtosis \(Y_2 \) enables measuring the heaviness of the tail of distribution relative to a normal distribution (which has \(Y_2 = 3 \)). A heavy-tailed distribution has a positive \(Y_2 \) (called a \textit{lepto-kurtic} distribution) and a light-tailed distribution has a negative \(Y_2 \) (called a \textit{platykurtic} distribution). The mean and standard deviation of strength-differences are equal to each other and evolve synchronously (Figure 3.19, \(CV \approx 1 \) for sequential \(G_{Nb} \)). On the other hand, the tail of right-skewed \(Pr(\delta) \) gets heavier and the distribution gets broader (Figure 3.19, \(Y_2 \) increases). In Ciao, the tail gets lighter initially and then gets heavier. Moreover, all of the graphs have right-skewed \(Pr(S) \) which gets broader and more skewed over time with the tail of strength distribution becomes heavier/longer over time (Figure 3.20, \(Y_2 \) and \(CV > 1 \) increase). These observations make the steady behavior of strength assortativity more interesting: despite the fact that new high-strength vertices form butterflies and \(Pr(\delta) \) gets broader, the relative standard deviation of \(\delta \)s does not change significantly and the strength assortativity localization factor \(r^s \) remains steadily positive. This implies that these graphs obey non-trivial mixing patterns.

The following concurrent mixing patterns hold in the real-world streams as butterflies emerge over time:

1. \textit{Butterfly densification}. The number of butterflies grows over time and at each time point it is a super-linear function of the number of edges.

2. \textit{Strength diversification}. \(Pr(S) \) of butterflies is initially meso-kurtic and gets more right-skewed as the right tail grows heavier/longer (\(Y_2 \) starts from 0 and rises to extremely high values). The dispersion of strengths increases over time (\(CV > 1 \) increases) as the standard deviation increases and the mean decreases.

3. \textit{Steady strength assortativity}. The strength assortativity localization factor \(r^s \) is fixed at a positive value over time due to the fixed-shaped yet growing distribution of strength-differences of butterflies. \(Pr(\delta) \) is initially meso-kurtic and gets more right-skewed as the right tail grows heavier/longer (\(Y_2 \) starts from 0 and rises to extremely high values). However, the dispersion of strength-differences does not change (\(CV \approx 1 \)) due to synchronous evolution of mean and standard deviation. Also, the proportion of \(\delta \)s in different regions of \(Pr(\delta) \) is constant (stable \(F \) elements). Therefore, the shape of the distribution is stable although the range expands.

The following graph concepts explain the data-driven semantics of the observed patterns in the domain of user-item rating streams.
• **Burstiness.** User-item interactions can be viewed as human-initiated events which introduce two levels of burstiness: individual-level and group-level. The former relates to the interactions of each user with several items at each time point or sequential time points with negligible differences. Barabasi [18] has shown that human-initiated events are driven by the queuing processes of human decision making leading to non-Poisson inter-event statistics. Such bursty interactions lead to formation of many wedges incident to each user/item. The latter relates to the concurrent interactions of several users at each time point. Such bursty interactions lead to merging the individual-level wedges and densification of butterflies. The significance of this continuous burstiness can change over time due to different circumstances leading to peak hours. For instance, Alibaba has reported that customer purchase activities during a heavy period in 2017 resulted in generation of 320 PB of log data in a six hour period [251, Big Data Processing]. There are other studies [229, 371], [251, Stream Data Management] showing that weighted bipartite streaming graphs display bursty patterns since eight additions in temporal graphs follow bursty patterns and data streams are commonly characterized as bursty.

• **Strong-get-stronger.** Online platforms utilise filters such as trends, best sellers, mostly viewed, hot/top categories, newly added, as well as timely promotions, point collection rewarding strategies, and (advertised) recommendations. These systematically lead to the increasing popularity and visibility of the items with most interactions and encouraging the users to interact more and become more active. Such interaction mechanics are similar to the rich-gets-richer argument, where the richness denotes the vertex strength. The butterflies are formed incident to such highly connected and high strength users/items (strong vertices) leading to butterfly densification and diversification of strengths.

• **Core-periphery.** Popular items attract the active users and in another view, active users mostly engage with trending items or make items trending/popular. This is similar to the mesoscale phenomenon ‘core-periphery’ [154, 99] also called ‘rich club’ [375, 95] stating that high-degree vertices tend to connect to each other and create a core attracting the new connections. Such core sets of vertices with high degrees/strengths in user-item streams create numerous edges between strong users and items with high butterfly support leading to assortativity patterns of butterfly vertices.
Figure 3.14: The number of young (top 6) i-hubs and (bottom 6) j-hubs after arrival of each batch of sgrs.
Figure 3.15: The number of old (top 6) i-hubs and (bottom 6) j-hubs after arrival of each batch of sgrs.
Figure 3.16: Butterfly count versus edge count in real-world streams with various average butterfly rates.

Figure 3.17: F elements over the timeline of burst arrivals in real-world streams.
Figure 3.18: Strength assortativity localization factor (r^s) of butterflies over the timeline of burst arrivals in real-world streams.

Figure 3.19: Coefficient of variation (circles), excess kurtosis (squares), and mean (diamonds) of butterfly strength-differences over the timeline of burst arrivals in real-world streams.
Figure 3.20: Coefficient of variation (circles), excess kurtosis (squares), and mean (diamonds) of strengths of butterfly (a-g) i-vertices and (h-n) j-vertices over the timeline of burst arrivals in real-world streams.
3.3.2 Summary

Given two sequential graph snapshots G_{Nb,t_1} and G_{Nb,t_2}, the followings hold.

- The number of butterflies grows according to a super-linear function of the number of edges (e.g. follows a power law function $f(|E|^{\eta})$, $\eta > 1$ and $B_{G_{Nb,t_1}} < B_{G_{Nb,t_2}}$).

- $Pr(S)$ gets broader and more skewed ($\mu_1 < \mu_2$, $Y_1(S) < Y_2(S)$, $1 < CV_1(S) < CV_2(S)$).

- $Pr(\delta)$ gets broader and more skewed while remaining fixed-shaped ($Y_2(\delta) < Y_2(\delta)$, $CV_1(\delta) \approx CV_2(\delta)$, $CV(\delta) \approx 1$, $F^1_i = F^2_i$, $i = 1, .., 4$, $r^s > 0.1$).

The co-occurrence of these patterns is counter-intuitive and interesting. As the stream and the number of butterflies grow rapidly, diversity of strengths for butterfly vertices increases and strong (high-strength) vertices get stronger and obtain weak neighbours with the increasing of variance of strength differences. Therefore, an increasing trend of disassortativity is expected. However, the majority of butterfly edges are formed by vertices with similar strength and this assortativity remains at a fixed level regardless of stream size or butterfly count. This phenomenon is referred to as scale-invariant strength assortativity of streaming butterflies, which is originated by the three parallel mixing patterns of butterflies.
Chapter 4

Streaming Graph Modelling

Explainable modelling of (bipartite) streaming graphs requires identifying the growth patterns and devising local rules to pinpoint the generative origins. Chapter 3 discussed analysis of real-world bipartite streaming graphs and presented the investigations into the emergence patterns of butterflies as the building blocks of these streams, concluding in a characteristic phenomenon called “scale-invariant strength assortativity of streaming butterflies”. This chapter focuses on the next step of devising local rules. Local rules (also referred to as micro-mechanisms) are attachment mechanisms based on connections to vertices and their neighbourhoods [326]. The goal is to answer the question *What is the generative process underlying this phenomenon?* The question is addressed in four phases: Phase 1: reviewing the existing and seminal local rules to investigate their ability to explain the patterns and identify new local rules; Phase 2: analysis of the synthetic streams generated by the candidate local rules; Phase 3: introducing a streaming growth model called *sGrow* to implement the micro-mechanisms reproducing the realistic growth patterns; and Phase 4: Evaluating the performance of the introduced model. *sGrow* is the first model that explains real-life patterns effectively and reproduces them efficiently. Table 4.1 lists the frequent notations in this chapter.

4.1 Related Works

To explain the co-occurrence of butterfly densification, strength diversification, and steady strength assortativity in streaming graphs, the local rules and graph models leading to skewed distributions, degree correlation, and emergence of large numbers of cliques are reviewed in the following.
Table 4.1: Frequent notations in this chapter

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>time step in sGrow</td>
</tr>
<tr>
<td>m</td>
<td>Number of new edges at each iteration, batch size in sGrow, Degree of new vertices in preferential attachment</td>
</tr>
<tr>
<td>M</td>
<td>Maximum batch size in sGrow, a parameter</td>
</tr>
<tr>
<td>L</td>
<td>length of Preferential Random Walk in sGrow, a parameter</td>
</tr>
<tr>
<td>ω</td>
<td>A random integer for operation selection in sGrow</td>
</tr>
<tr>
<td>p</td>
<td>Connection probability in Connecting Nearest-neighbour Model</td>
</tr>
<tr>
<td>p_h</td>
<td>Probability of selecting a host vertex in Butterfly Model</td>
</tr>
<tr>
<td>p_{step}</td>
<td>Probability of traversing a random walk in Butterfly Model</td>
</tr>
<tr>
<td>p_l</td>
<td>Probability of connections in Butterfly Model</td>
</tr>
<tr>
<td>p_e</td>
<td>Probability of edge removal in Duplication Divergence Model</td>
</tr>
<tr>
<td>p, p_b</td>
<td>Forward/backward probability in Forest Fire model</td>
</tr>
</tbody>
</table>

4.1.1 Graph Patterns

Graph patterns characterize a microscopic, mesoscopic, or macroscopic property of a graph (depending on the granularity of the reporting pattern, i.e. vertices/edges, neighbourhoods and motifs, or the entire topology) and can be viewed as either static or dynamic (depending on the underlying graph being a static snapshot or an evolving structure). Examples of static patterns include small diameter accompanied by high clustering coefficient (CC) [340], degree (anti)correlation [241], community structure [128], and power-laws (PL) such as degree distribution PL [38], weight PL [229], and snapshot/vertex strength PL [229, 41]. Examples of dynamic patterns include gelling points [229], increasing average degree, shrinking/controlled diameter, edge densification [201, 202, 119], and bursty weight addition [229]. Table 4.2 provides instances of different patterns partitioned across dynamism and granularity.

4.1.2 Growth Models

Two well-studied network growth mechanisms, preferential attachment and copying, form the basis of many generative models (e.g. [105, 97, 59, 9, 29, 142, 188, 185, 147, 259]) and are widely adopted in the development of graph management approaches (e.g. [159, 85, 221, 168, 213, 236, 351]). Both mechanisms are commonly applied in graph models based on the conception of adding a new vertex at each time step during an iterative process. Preferential attachment leads to skewed distributions, while copying mechanism
<table>
<thead>
<tr>
<th>Patterns</th>
<th>Granularity</th>
<th>Dynamism</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small diameter & High CC</td>
<td>Macroscopic</td>
<td>Static</td>
<td>[340]</td>
</tr>
<tr>
<td>Degree Correlation</td>
<td>Microscopic</td>
<td>Static</td>
<td>[241]</td>
</tr>
<tr>
<td>Community structure</td>
<td>Mesoscopic</td>
<td>Static</td>
<td>[128]</td>
</tr>
<tr>
<td>Degree Distribution PL</td>
<td>Microscopic</td>
<td>Static</td>
<td>[38]</td>
</tr>
<tr>
<td>Weight PL</td>
<td>Microscopic</td>
<td>Static</td>
<td>[229]</td>
</tr>
<tr>
<td>Snapshot/Vertex Strength PL</td>
<td>Mesoscopic</td>
<td>Static</td>
<td>[229, 41]</td>
</tr>
<tr>
<td>Gelling points</td>
<td>Macroscopic</td>
<td>Dynamic</td>
<td>[229]</td>
</tr>
<tr>
<td>Increasing Average Degree</td>
<td>Microscopic</td>
<td>Dynamic</td>
<td>[201, 202]</td>
</tr>
<tr>
<td>Shrinking/Controlled Diameter</td>
<td>Macroscopic</td>
<td>Dynamic</td>
<td>[201, 202, 119]</td>
</tr>
<tr>
<td>Edge Densification</td>
<td>Microscopic</td>
<td>Dynamic</td>
<td>[201, 202]</td>
</tr>
<tr>
<td>Bursty Weight Addition</td>
<td>Microscopic</td>
<td>Dynamic</td>
<td>[229]</td>
</tr>
</tbody>
</table>

leads to degree correlation [326] and emergence of large numbers of cliques when applied explicitly [188] or implicitly and among other mechanisms [201]. In the following, these mechanisms and their alternatives and extensions are reviewed.

Barabasi-Albert model [38] starts with a small clique with m_0 vertices and applies the preferential attachment by connecting the new vertex to $m \leq m_0$ existing vertices selected randomly with probability proportional to their degrees. The preferential attachment rule has also been extended to strength-driven preferential attachment (SPA) where each new vertex is connected to m existing vertices randomly selected with probability proportional to their strength [42, 41, 204]. It has been shown that preferential attachment is induced by the following microscopic mechanisms. All of these mechanisms imply that the probability that a vertex receives a new edge is proportional to its degree, therefore they amount to preferential attachment and lead to scale-free structures [16].

- **Copying [182, 188]:** at every time step, a new vertex is connected to a constant number of vertices and the end point of each new edge is a randomly selected vertex with probability p or a neighbour of a prototype vertex with probability $1-p$.

- **Edge redirection [186]:** at every time step, a new vertex is added and a directed edge from the new vertex to a randomly selected vertex is created with probability $1 - p$, or the edge is redirected to the ancestor of the randomly selected vertex with probability p.

- **Random walks [325]:** at every time step, a new vertex is connected to a random vertex
and the vertices reachable from it through breadth-first traversal with probability p until no new target is found.

- Attaching to edges [107]: at every time step, a new vertex is connected to two connected vertices.

The original version of copying, mentioned above, copies a neighbour of a randomly selected vertex with some probability at each time step. Other works have modified it as follows.

- Butterfly model [229] mixes copying and random walk mechanisms: at every time step, with probability p_{host} a new vertex picks a random vertex called host and with probability p_{link} forms edges with the vertices reachable from the host through a probabilistic random walk with traversal probability p_{step}. This model exhibits shrinking diameter, stabilized next-largest weakly connected component size, and edge densification.

- Growing network model with copying [185] connects the new vertex to a randomly selected vertex as well as its neighbours which leads to sparse ultra-small graphs with logarithmic growth of the average degree with respect to the number of vertices while the diameter equals 2.

- Duplication divergence model [326] removes the copied neighbours with some probability leading to power law decay of clustering coefficient as a function of degree.

- Nearest neighbours model [326] connects the new vertex to one randomly selected vertex and copies one neighbour with some probability leading to clustering coefficient power law and correlation between average neighbour degree and vertex degree.

- Forest Fire model [201, 202] applies the copying process by recursively connecting each new vertex to a randomly selected vertex (called ambassador) and certain numbers of its randomly selected out- and in-neighbours with forward probability p and backward probability p_b. This process leads to heavy-tailed in- and out-degree distributions due to an implicit preferential attachment, community structures due to neighbour copying mechanism [41], edge densification due to many internal-edge establishments, and shrinking diameter due to shortcut-edge establishments.
4.2 Analysis of Microscopic Growth Mechanisms

As discussed in previous section, preferential attachment leads to skewed distributions, and copying mechanism (particularly with the implementation scheme of Forest Fire model) leads to degree correlation and emergence of cliques and edge densification as well. Therefore, in an attempt to explain the origins of the observed patterns in real-world streams, the properties of synthetic streams generated by these local rules are investigated.

4.2.1 Data

Weighted bipartite streaming graphs are synthesized such that the graph structure grows according to the Forest Fire (FF) and strength preferential attachment (SPA) models. To this end, directed graphs are created via the growth models and the source vertices are treated as the i-vertices and destination vertices as the j-vertices. For the timestamp assignment, the time step at which new vertices are connected to existing vertices are used and for the weight assignments, random integers in the range $[1, 5]$ (the same weight scale as in real-world streams) are used. In FF model, when the backward-burning probability p_b is fixed and the forward-burning probability p increases, the graphs become denser and more clique-like with low diameter [202]. Therefore, graphs with fixed $p_b = 0.3$ and $p = 0.15$ (sparse region), 0.4 (transition region), and 0.7 (dense region) are generated. Experiments show that most of the edges are burned (visited) after checking the neighbours of the ambassador vertex, therefore no further edge is checked. This reduces computations and also allows addition of new external links beside the internal densification. In the SPA model, $m \in \{10, 50, 100\}$ is used since the average degree of vertices in real-world streams are mostly below 100 (Table 3.3). The same analysis approach as for real-world streams in Chapter 3 is used to investigate the emergence patterns of butterflies in the synthetic streams quantitatively (by checking the growth patterns of butterfly count) and qualitatively (by checking the assortativity patterns of butterflies and the confounding distributions).

4.2.2 Analysis

Figures 4.1-4.6 show the mixing patterns in FF and SPA streams. In the following, these patterns are investigated.

The butterfly count has a slow growth in FF streams and a speedy growth in SPA streams. The average butterfly rate is less than 1 in FF streams and higher than 500 in
SPA streams. That is, the growth of butterfly count with respect to the number of edges in the sequential graph snapshots is sub-linear in FF streams and extremely super-linear in SPA streams.

As the FF graph grows, in the transition region, the assortativity level fluctuates, and, in the sparse and dense regions, it changes trivially (0.02).

Although in FF stream butterflies emerge such that the range of $Pr(S_i)$ and $Pr(S_j)$ get broader and more skewed over time, strength-difference of butterfly edges retain the same distribution. $Pr(\delta)$ remains unchanged with a low dispersion ($CV<1$) as the graph grows in each region since the mean, and standard deviation are fixed and the tail changes slightly over time. Therefore, it is not surprising that r^s is stable. Moreover, in the denser graphs with more butterflies, assortativity patterns vanish ($r^s \to 0$ as p increases).

The evolution of r^s and the corresponding F elements in SPA streams shows that, for small values of m, there is no assortativity pattern. For $m = 100$, the graph snapshots display weak assortativity ($0.05 \leq r^s < 0.1$). The statistics of the corresponding $Pr(\delta)$s and that of $Pr(S_i)$s and $Pr(S_j)$s show that, as the graph grows, for all values of m, diversity of the strengths of i- and j-vertices do not change significantly (small change in μ_i, μ_j, and corresponding CV and Y_2). The strength-differences continuously follow a skewed distribution with a short tail as most δs remain around the mean ($F_1 + F_2 \approx 0.85$ and $CV<1$) and the skewness does not grow to very high numbers.

4.2.3 Summary

FF streams follow strength diversification but not butterfly densification and steady strength assortativity. In FF streams, as the new vertices attach to random vertices (ambassadors) and reach high-degree vertices (hubs) through copying the neighbours of ambassador, new butterflies emerge and the diversity of strength of butterfly vertices increases. When the probability of neighbour copying p is low (sparse regions), the new vertex establishes fewer connections, therefore, the probability of connecting to the high-strength hubs is lower, and also the strength of the new vertex remains low. As a result, many edges have low strength-difference, $Pr(\delta)$ is broader, and strength assortativity localization factor is positive. On the other hand, when p is high, although the number of butterflies is higher, the connections are established between pairs of vertices with both low and high strength-difference, since the ambassadors and their neighbours are selected uniformly at random. As a result, $Pr(\delta)$ has a lower variance and the strength assortativity displays randomness. Moreover, the butterfly count is a sub-linear function of the number of edges over time even when the graph displays edge densification (in dense regions).
Figure 4.1: Mixing patterns of butterflies in FF stream with $p=0.15$ and average butterfly rate 0.04 ± 0.

Figure 4.2: Mixing patterns of butterflies in FF stream with $p=0.4$ and average butterfly rate 0.08 ± 0.
Figure 4.3: Mixing patterns of butterflies in FF stream with $p=0.7$ and average butterfly rate 0.09 ± 0.

Figure 4.4: Mixing patterns of butterflies in SPA stream with $m=10$ and average butterfly rate 556.6 ± 24.5.
Figure 4.5: Mixing patterns of butterflies in SPA stream with $m=50$ and average butterfly rate 558 ± 22.4.

Figure 4.6: Mixing patterns of butterflies in SPA stream with $m=100$ and average butterfly rate 548.1 ± 17.

63
Table 4.3: Mixing patterns of butterflies in SPA and FF streams.

<table>
<thead>
<tr>
<th></th>
<th>Butterfly Densification</th>
<th>Strength Diversification</th>
<th>Steady Strength Assortativity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPA</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>FF</td>
<td>×</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

SPA streams follow butterfly densification but not strength diversification and steady strength assortativity. In SPA streams, as new low-strength vertices attach to \(m \) vertices with the highest strengths (strong vertices), many butterflies are formed around the high-strength vertices with a rate much higher than that of real-world streams. When the number of connections per new vertex \(m \) is higher, the probability of attachment to low-strength vertices is higher since the number of strong vertices is limited, therefore the number of edges among low-strength vertices increases. As a result, the graphs display weak strength assortativity when average degree is high. When \(m \) is low, the number of edges with high strength-difference is higher compared to the case with high \(m \), although they don’t exceed edges with low strength-difference. The diversity of \(Pr(S) \) and \(Pr(\delta) \) does not increase significantly in either cases.

As summarized in Table 4.3, FF streams with implicit degree-driven preferential attachment and neighbour copying yield graphs with increasing diversity of strengths of butterfly vertices, however the quantity of butterflies and their mixing schemes do not preserve realistic patterns. SPA streams with pure strength-driven preferential attachment lead to graphs with rapidly growing butterfly density, however the mixing patterns do not match realistic patterns. This highlights the essence of a growth model which has both strength-driven preferential attachment and neighbour copying flavours to ensure a balanced butterfly densification and incremental strength diversity. Further considerations regarding the integration of these two mechanisms with other effective mechanisms are also required to create realistic streams. The next section resolves this.

4.3 sGrow

Burstiness, strong-gets-stronger, and core-periphery are the semantic concepts explaining the butterfly emergence patterns (Chapter 3) and also the strength preferential attachment and neighbour copying are the microscopic mechanisms explaining the butterfly densification and strength diversification (Section 4.2). In the following, these concepts and growth mechanisms are integrated with further mechanisms introduced in a streaming growth model, called sGrow [298]. This model explains the co-occurrence of the three realistic
emergence patterns of butterflies in streaming graphs such that all four-vertex graphlets emerge in the graph, the sgrs are realistic (i.e. preserve streaming data characteristics), and the stream properties are configurable.

The introduced mechanisms (Figure 1.3) solve the drawbacks of existing works. For instance, a preferential random walk and copying micro-mechanisms feature strength preferential selection of vertices whose neighbours are copied with probabilistic connections. These lead to butterfly densification as well as emergence of four-vertex graphlets and also increase strength diversity of butterfly vertices. Moreover, the introduced random walk utilizes BFS and DFS traversals with dynamic and random number of hops, which balances the butterfly emergence patterns. The realistic sgr generation techniques (such as inactivity gaps, and techniques for timestamp assignment and evolving streaming rate) yield graphs satisfying streaming paradigms such as burstiness and out-of-order arrivals. These realistic sgr generation techniques also impact the temporal patterns of butterfly emergence (for instance timestamp of sgrs converting a caterpillar to a butterfly influences the number of butterflies in the corresponding burst). The local/unbounded graph updates, including the sliding window mechanism, avoid pure preferential attachment to a few hubs (avoids perfectly disassortative mixing) and helps with the steady pattern of strength assortativity of butterflies.

4.3.1 Overview

An overview of sGrow is provided in this section (Algorithm 3 - Figure 4.7). A time-based sliding window (Definition 6) is used to generate a sequence of sgrs (Definition 2) that constitute the synthetic weighted bipartite streaming graph (Definition 3). In the following, $G_{W,t}$ refers to the computational graph snapshot formed by the sgrs within the window. The output stream is a sequence of sgrs denoted as \mathcal{R}. The time step t is the computational time point used for controlling the window and the timestamp τ is the sgr’s time-label which follows the timestamp scale of an initial graph snapshot. A five-point scale $[1,5]$ (similar to that of real-world streams) is used to generate weights.

$G_{W,t}$ and \mathcal{R} are initiated with an initial graph snapshot $G_{W,t_0} = (V_0, E_0)$. The window’s beginning border W^b is set to the first timestamp in G_{W,t_0} (Algorithm 3, lines 1 - Figure 4.7(a)). At each time step t, m (a random number in $[0, M]$, where M is a parameter) new sgrs $r^1,...,r^m = (v^i_l, v^j_l, \omega^i_l, \tau)$ with new vertices are created and added to \mathcal{R} and $G_{W,t}$ (Figure 4.7(b)(c)). The shared timestamp is one plus the last timestamp in $G_{W,t}$ and the weights are random integers $\omega^i_l \in [1,5]$ (Algorithm 3, line 4). To connect these new isolated edges to the rest of sgrs, the following procedure is followed. A random integer $\omega \in [-1, 5]$
Figure 4.7: (left) The computational graph G and (right) the stream \mathcal{R} at the end of time steps $t=0, 1, 2$ with $\beta=2$, $\rho=0.4$, $M=5$, and $L \in [1, 2]$. New edges are blue and PRW edges are yellow dashed. Timestamps and weights are not depicted and it is assumed that the edges in G_0 expire from the window as their timestamps are below the W^b.
Algorithm 3: sGrow(ρ, M, β, $[L_{\text{min}}, L_{\text{max}}]$)

Data: $G_{W,0}$: an initial graph
Input: ρ: connection probability, M: maximum number of new edges, β: slide parameter, $[L_{\text{min}}, L_{\text{max}}]$: range of PRW’s length
Output: \mathcal{R}, sequence of streaming graph records

1. $G \leftarrow G_{W,0} = (V_0, E_0)$, $\mathcal{R} \leftarrow E_0$, $\tau \leftarrow 1+ \text{last timestamp in } G_{W,0}$, $t \leftarrow 0$, $W^b \leftarrow \text{first timestamp in } G_{W,0}$

2. while true do
 3. $t \leftarrow t + 1$
 4. Add $m \in [0, M)$ new sgrs $r^{l=1,...,m} = (v^l_i, v^l_j, \omega^l_{ij}, \tau)$ with $\omega^l_{ij} \in [1, 5]$ to \mathcal{R} and $G_{W,t}$
 5. for each $r^{l=1,...,m}$ do
 6. $\omega \leftarrow \text{a random integer in } [-1, 5]$
 7. switch ω do
 8. case -1 do
 9. Remove $v^l_i - v^l_j$ from \mathcal{R} and $G_{W,t}$.
 10. case 0 do
 11. No operation
 12. otherwise do
 13. $u^0_j \leftarrow \text{SPS}(V_j)$
 14. $L \leftarrow \text{a random integer in } [L_{\text{min}}, L_{\text{max}}]$
 15. $(\text{PRW}_i, \text{PRW}_j) \leftarrow \text{PRW}(u^0_j, \text{false}, G_{W,t}, L)$
 16. $\text{addBurst}(v^l_i, v^l_j, \text{PRW}_i, G, \mathcal{R}, \rho)$
 17. $\text{addBurst}(v^l_j, v^l_j, \text{PRW}_j, G, \mathcal{R}, \rho)$
 18. $\tau \leftarrow \tau + |(\omega'^5 - 5)(\omega'^4 - 4)(\omega'^3 - 3)|$
 19. Remove any newly added vertex v^l_i and v^l_j with less than 2 neighbours from $G_{W,t}$
 20. $\tau \leftarrow \tau + 1$
 21. $W^b \leftarrow W^b + \beta$
 22. if $t = \beta$ then
 23. Remove any edge with timestamp less than W^b from $G_{W,t}$
 24. $t \leftarrow 0$

67
is generated based on which, one of the three operations (edge removal, no-operation, and burst addition) is performed for each of the m new sgrs in parallel (Algorithm 3, lines 6-18). This random integer is aimed to randomize the order of selected operations. The range is set as $[-1, 5]$ to incur a probability of $5/7$ for additions, and $1/7$ for removals and no-operation. The intuition is the observation in real-world graphs where edge additions dominate edge removals. This range is found to best match the characteristics of real-world streams. Additions and removals happen as described in Section 4.3.2.

- $\omega = -1$, the connection between v^0_i and v^0_j is removed from \mathcal{R} and $G_{W,t}$ (Algorithm 3, line 9). This edge removal introduces isolated vertices if the vertices do not acquire neighbours from the current or next batch (v^{12}_i, v^{12}_j, and v^{13}_i in Figure 4.7.b).

- $\omega = 0$, nothing happens (Algorithm 3, line 11). This no-operation introduces a gap of inactivity between streaming records to form bursts (Definition 4) and also introduces isolated edges. If the current sgr r^l is not connected to the subsequent sgrs in current batch ($r^{l+1:m}$) or the following batches, it will remain isolated (r^{22} in Figure 4.7.c).

- $\omega > 0$, a j-vertex u^0_j in $G_{W,t}$ (v^{01}_j in Figure 4.7.b and v^{14}_j in Figure 4.7.c) is randomly selected via Strength Preferential Selection (SPS, described in Section 4.3.3). Next, a Preferential Random Walk (PRW, described in Section 4.3.4) starting from u^0_j is performed in $G_{W,t}$. The number of hops in PRW (i.e. walk length) is a random integer L in the parameter range $[L_{min}, L_{max}]$. Using PRW as a backbone, bursts of new sgrs between r^l and the rest of sgrs in $G_{W,t}$ and \mathcal{R} are established (as described in Section 4.3.5). The strength preferential attachment and neighbour copying are necessary to ensure a balanced butterfly densification and incremental strength diversity. Therefore, these are incorporated into PRW, which serves as a backbone of vertices for adding bursts of sgrs through connecting the new isolated sgrs to these vertices and their neighbours. Since the vertices are connected through a random walk, graphlets emerge efficiently. Since at each iteration, a random number of PRW vertices are selected based on strength preferential probability, the graphlets effectively obey the observed patterns in real-world streams. Moreover, this process includes adding sgrs according to a parameterized probability as well as bounding the random length of PRW according to a parameterized range, which enable configurable sgr creation. After adding the last edge with weight ω', the timestamp τ is incremented as a function of ω': $\tau = \tau + |(\omega' - 5)(\omega' - 4)(\omega' - 3)/2|$. This function creates a timestamp interval as soon as generation of a sgr with low weight (i.e. $\omega' \leq 2$), therefore it helps characterize the burstiness of the stream (Algorithm 3, lines 13-18). This is based on an observation in real-world streams that the last sgr in each burst
has a low weight. It is noteworthy that there are two levels of burstiness: (1) the bursts initiated by each \(r \) as described here, and (2) the bursts created concurrently by \(m \) sgrs \(r^{l=1,...,m} \) which can be assumed as multiple generative sources.

The aforementioned procedure takes place for all \(m \) new sgrs in parallel\(^1\). After that, any newly added vertex with less than two neighbours is removed from \(G_{W,t} \) (Algorithm 3, line 19 - \(v_i^{22} \) and \(v_j^{22} \) in Figure 4.7.c). This removal of new isolated vertices/edges is done to retain a connected computational graph, yet the old vertices whose adjacent edges are discarded by the window (as described below) become isolated in \(G_{W,t} \) (\(v_i^{03} \) in Figure 4.7(c)). Also, the stream may hold isolated vertices/edges (\(v_i^{22}, v_j^{22}, v_i^{12}, v_j^{12} \), and \(v_i^{13} \) in Figure 4.7(c)). Next, the timestamp is incremented by one (Algorithm 3, line 20). The window slides as \(W_b \) is incremented by \(\beta \); the edges with timestamps out of the sliding window are removed from the graph after each \(\beta \) time steps; and the time step is reset to zero (Algorithm 3, lines 21-24). This sliding window mechanism is used to avoid pure preferential attachment to old vertices in global scale and create time-sensitive and local connections leading to emergence of young hubs (high degree vertices) to support the observations of real-world stream analysis in 3. The generation process happens continuously and \(R \) streams-out as the sgrs are generated. This process can be restricted to continue until a desired number of sgrs \(S \) are generated (\(|R| = S\)) and then return the stream \(R \).

4.3.2 Data Structures

The following data structures and basic graph/stream operators are used to implement \textit{sGrow}'s algorithms.

- A vertex is an object with three attributes: ID, Strength, and timestamp \(\tau \). A new \(i(j) \)-vertex \(v_i(v_j) \) is assigned an integer ID equal to the current number of \(i(j) \)-vertices, a strength initialized to zero, and a timestamp equal to that of the edge by which this vertex is added. Dot notation is used to refer to attributes of an object, e.g. \(v_i.ID \) denotes the ID of the vertex \(v_i \).

- An edge/sgr between vertices \(v_i \) and \(v_j \) is an object with four attributes: i-vertex (object \(v_i \)), j-vertex (object \(v_j \)), timestamp (integer \(\tau \)), and weight (integer \(\omega \)).

\(^1\)This algorithm is implemented in a single machine architecture; a distributed version is doable but not considered here.
• The connections of graph $G_{W,t}$ are stored by two hash-map data structures to map each vertex ID to the hash-set of its immediate neighbours:

 \[\text{iNeighbours} = \{(v_j.ID : N_i(v_j))\} \text{ and } \text{jNeighbours} = \{(v_i.ID : N_j(v_i))\} \]

 Hash-sets are used to avoid storing multiple edges between two vertices in the computational graph. Also, hash-map provides fast access to the neighbourhoods.

• The sgrs in \mathcal{R} are stored in a vector that retains the edges in the order of their additions which include out-of-order sgrs with respect to the timestamps as explained in Section 4.3.5.

When a new edge is added/removed to/from the graph or stream these data structures are updated accordingly and also the strengths of the vertices at the either ends of the edge are incremented/decremented by the weight of the edge.

4.3.3 Strength Preferential Selection

Function $SPS(V)$ is invoked in Algorithms 3. This function selects a random vertex in the set V according to strength preferential probability

\[\Lambda_v = \frac{v.\text{strength}}{\sum_{v' \in V} v'.\text{strength}} \]

[42, 41]. Vertices in V are concurrently added to a list with multiplicity equal to their strength. Next, the list is shuffled and a random element v_0 in the list is selected as the output vertex.

4.3.4 Preferential Random Walk

Function $PRW(starter, isI, G, L)$ performs a random walk with L hops on a graph $G_{W,t}$. It starts from a $starter$ vertex whose type determines a boolean flag isI (true when $starter$ is an i-vertex and false otherwise). At each hop, a neighbour of the $starter$ vertex $(u_i \in N_i(starter), u_j \in N_j(starter))$ is selected via strength preferential selection (invoking $SPS(N_i(starter)), SPS(N_j(starter))$). The selected neighbour (u_i, u_j) is added to a hash set of unique vertices (PRW_i, PRW_j) and is set as the $starter$ vertex. The starter flag is accordingly set and the hop counter is incremented by one. The next hop starts with the last added vertex. When the current selected neighbour is already in the hash set, if it is the last element, the walk continues to another neighbour of that vertex (in depth traversal) and if it is one of the previously selected vertices other than the last element, the walk continues in breadth traversal. Therefore, the walk is a combination of BFS and DFS with random preferential selection.
4.3.5 Burst Addition

Function \textit{addBurst}(v_i^l, v_j^l, PRW_i, G, \mathcal{R}, \rho) is given in Algorithm 4. This function adds bursts (Definition 4) of sgrs to \(G_W\) and \(\mathcal{R}\) based on the i-vertices in the \(PRW_i\) and new vertices \(v_i^l\) and \(v_j^l\) given a probability parameter \(\rho\) (Figure 4.8.a). The same procedure is followed to add bursts with respect to the j-vertices in the \(PRW_j\). As illustrated in Figure 4.8, considering each i-vertex \(u_i\) in the \(PRW_i\), the following connections are established:

Step 1. An edge between \(u_i\) and the newly added \(v_j^l\) is formed with the timestamp of \(v_j^l\) and a weight \(\omega' \in [1, 5]\) (Algorithm 4, lines 3-4 – Figure 4.8.b). This edge connects edge \(v_i^l-v_j^l\) to the graph and also leads to emergence of \(N_1 + N_2\) caterpillars (solid 3-paths in Figure 4.8.e,f), where \(N_1\) and \(N_2\) are the number of 1-hop (immediate) and 2-hop neighbours of \(u_i\), respectively.

Step 2. With probability \(\rho\), an edge between \(u_i\) and an existing j-vertex \(z_j\), selected uniformly at random, is formed with timestamp \(\text{Min}(u_i.\tau, z_j.\tau)\) and a weight \(\omega' \in [1, 5]\) (Algorithm 4, lines 5-8 – Figure 4.8.c). Using a timestamp other than the current timestamp \((v_j^l.\tau)\) introduces out-of-order sgrs (late arrival) since this sgr has a timestamp less than \((v_j^l.\tau)\). It also helps balance the burst sizes since the current timestamp is not assigned to all edges in the current time step. This probabilistic edge leads to converting the caterpillars between \(u_i\) and \(z_j\) into butterflies at the generation time of either vertices (closed 4-path in Figure 4.8.g).

Step 3. With probability \(\rho\), an edge between the newly added \(v_i^l\) and each \(u_i\)'s immediate j-vertex neighbour \(n_j\) is concurrently formed with \(n_j\)'s timestamp \(n_j.\tau\) and a weight \(\omega' \in [1, 5]\) (Algorithm 4, lines 9-12 – Figure 4.8.d). In other words, each of the adjacent links of \(u_i\) is copied with probability \(\rho\). Since \(n_j.\tau < v_i^l.\tau\), out-of-order sgrs join previous burst of sgrs with same timestamp (including the sgr incident to \(n_j\)). These probabilistic edges lead to converting the \(N_1\) caterpillars that emerge in Step 1 into butterflies (closed 4-path in Figure 4.8.e). This step is used to generate streams with high number of sgrs per burst.

4.4 Performance Evaluations

The effectiveness and efficiency of sGrow are tested from three perspectives:
Figure 4.8: Four-vertex graphlets (e, f, g) and schematic burst addition steps (b, c, d) based on an i-vertex u_i in the PRW starting from u^0_j designated by yellow dashed lines (a). New edges are blue and dotted lines denote probabilistic connections.

- Pattern reproduction (Section 4.4.1). The ability of $sGrow$ to reproduce the realistic patterns is compared with baselines and examined under different levels of burstiness, initial graph snapshots, and butterfly counts.

- Stress testing (Section 4.4.2). The impact of introduced parameterized techniques on the effectiveness, efficiency, and burstiness of the generated stream by $sGrow$ is examined.

- Computational complexity (Section 4.4.3). The computational complexity of $sGrow$ is analyzed theoretically.

Data. In the following, the generative methods for $sGrow$ and baseline streams are described.

$sGrow$ streams. The streams generated by $sGrow$ model are created with a prefix of 1000 sgrs from real-world streams (G_{W,t_0}) and the rest of the stream synthesized via
Algorithm 4: Add Burst

1 Function addBurst($v_i^l, v_j^l, PRW_i, G, R, \rho$)
2 for each $u_i \in PRW_i$ do
3 $\omega' \leftarrow \text{a random integer in } [1, 5]$
4 Add a new sgr $\langle u_i, v_j^l, \omega', v_j^l.\tau \rangle$ to R and $G_{W,t}$
5 if $\text{coin}(\rho)$ is Head then
6 $z_j \leftarrow \text{Select a random j-vertex}$
7 $\omega' \leftarrow \text{a random integer in } [1, 5]$
8 Add a new sgr $\langle u_i, z_j, \omega', Min(u_i.\tau, z_j.\tau) \rangle$ to R and $G_{W,t}$
9 for each $n_j \in N_j(u_i)$ do
10 if $\text{coin}(\rho)$ is Head then
11 $\omega' \leftarrow \text{a random integer in } [1, 5]$
12 Add a new sgr $\langle v_i^l, n_j, \omega', n_j.\tau \rangle$ to R and $G_{W,t}$

$sGrow$ model (Algorithm 3) with various parameter configurations and different number of butterflies. The generated streams are referred to as S-$\{G_0\text{-name}\}$. The streams used for pattern reproduction and stress testing purposes are generated as follows.

- Pattern reproduction. Epinions, Amazon, and Ciao are bursty streams with average burst sizes of $b = 27282, 1753.7, \text{and } 14.8$; Yahoo and ML1m are also bursty but with lower values $b = 2.4 \text{and } 2.2$; ML100k and WikiLens have the lowest burstiness with $b = 2 \text{and } 1$, respectively (Table 3.3). According to these burstiness profiles, the parameters are set to control the temporal distribution of sgrs. That is, to simulate a stream with high burstiness, M and $[L_{\text{min}}, L_{\text{max}}]$ are set to high values, which increase (1) the probability of creating high number of new edges at each time step (M) and (2) the burst size by generating backbone walks with more vertices ($[L_{\text{min}}, L_{\text{max}}]$). To simulate a stream with low burstiness (S-ML100k and S-WikiLens), the neighbourhood copying (Algorithm 4, lines 9-12 – step 3 in Section 4.3.5) is not performed. The default value of ρ is 0.3 and it is further adjusted by decreasing (increasing) to push the burst size towards lower (higher) values. $\beta = 5$ in all streams. The exact value of parameters are given in Table 4.4. All the reported results in these figures are based on the same streams.

- Stress testing. To evaluate the impact of $sGrow$ techniques (batch of isolated edges, probabilistic connections, the random walk backbone, and the sliding window) on
effectiveness, efficiency, and burstiness, the corresponding parameters are evaluated statically and dynamically as follows:

- A diverse range of parameters $M \in \{100, 150, 200, 250, 300\}$, $\rho \in \{0.3, 0.4, 0.5, 0.6, 0.7\}$, $L_{\min} \in \{1, 2, 3, 4\}$, $L_{\max} \in \{3, 4, 5\}$, and $\beta \in \{5, 10, 15, 20\}$ are used to create S-Amazon stream. Each row of Tables 4.25, 4.26, and 4.28 illustrates the effect of one parameter on effectiveness, efficiency, and frequency distribution of burst sizes, respectively.

- S-Amazon stream is created with 10^7 sgrs such that after generating 5×10^6, one of the parameters switches from $M = 100$, $\beta = 5$, $L \in \{15\}$ and $\rho = 0.4$ to $M = 300$, $\beta = 20$, $L \in \{45\}$ and $\rho = 0.8$. Figure 4.27 illustrates the effect of the parameter switch on effectiveness and efficiency.

Baseline streams. The streams generated by baseline models are generated with a prefix of 1000 sgrs from Amazon stream and the rest of the stream synthesized via three graph models: Butterfly model (BM) [229], Connecting Nearest-neighbour model (CNM) [326], and Duplication Divergence model (DDM) [326]. These baseline streams are generated using random integers in $[1, 5]$ as weights and the time step at which new vertices join the graph as the timestamp of new sgrs. In all three models, the stream grows by adding a new vertex at each time step and the original models generate unipartite graphs. Either an i-vertex or a j-vertex is chosen to be added randomly with equal probability and the same procedure is followed for adding new j-vertices and new i-vertices.

- In CNM, the stream grows as new i(j)-vertices connect to existing j(i)-vertices. With probability $1 - p$, the new i-vertex is connected to a randomly selected j-vertex and with probability p, an edge between two randomly selected and disconnected vertices is established.
• In BM, the stream grows as new i(j)-vertices connect to existing j(i)-vertices residing on a random walk started from one or more host vertex. Each new i-vertex picks a host (a randomly selected j-vertex) with probability p_h and is assigned a probability p_{step} (a random value in $(0, 1]$). The new i-vertex visits the host as it is linked to the host with probability p_l and then with probability p_{step} visits a two-hop j-vertex on the random walk started from the host. This procedure continues until no new host is chosen.

• In DDM, the stream grows as new i(j)-vertices connect to existing j(i)-vertices by following duplication and divergence rules. In duplication phase, the new i-vertex v_i connects to all j-neighbours n_j of a randomly selected i-vertex $v_{i'}$ ($v_{i'}$ is duplicated) and during the divergence phase, one of the two edges $e_{i'n_j}$ or e_{in_j} is selected randomly and removed with probability p_e.

Metrics. The effectiveness of $sGrow$ is evaluated and compared with real-world streams with respect to the three patterns of scale-invariant strength assortativity of butterflies. Qualitative evaluations are done by checking whether the patterns hold and quantitative evaluations are done by checking the error of r^s and F.

The efficiency of $sGrow$ is evaluated by measuring the generation time (in seconds). Moreover, the burstiness of the $sGrow$ streams is evaluated by investigating the frequency distribution of burst sizes.

Computing setup. Experiments are conducted on a machine with 15.6 GB native memory and Intel Core i7 – 6770HQ CPU @2.60GHz *8 processor. All $sGrow$’s algorithms and experiments are implemented and performed in Java (OpenJDK version 11.0.11).

4.4.1 Pattern Reproduction

$sGrow$. The streams generated by $sGrow$ obey the scale-invariant strength assortativity of butterflies. This is because all the synthetic streams preserve the realistic mixing patterns (Figures 4.9 - 4.15) regardless of the initial graph snapshot, butterfly count, and burstiness level as described below.

• Butterfly densification. The number of butterflies grows over time with an average butterfly rate higher than 1 in all the streams (Table 4.5) indicating that the butterfly count grows super-linearly with respect to the number of edges.
Figure 4.9: Mixing patterns of butterflies in Ciao stream.

Figure 4.10: Mixing patterns of butterflies in Epinions stream.
Figure 4.11: Mixing patterns of butterflies in WikiLens stream.

Figure 4.12: Mixing patterns of butterflies in ML100k stream.
Figure 4.13: Mixing patterns of butterflies in ML1m stream.

Figure 4.14: Mixing patterns of butterflies in Amazon stream.
• Strength diversification. The mean, relative standard deviation, and tail skewness/heaviness of \(Pr(S) \) increases over time showing that butterfly vertex strengths diversify over time.

• Steady strength assortativity. The synchronous evolution of mean and standard deviation accompanied by increasing skewness/heaviness of the tail of \(Pr(\delta) \) plus the stable values of \(F \) elements over time demonstrate that \(Pr(\delta) \) is fixed-shaped yet growing. Moreover, the strength assortativity localization factor changes trivially over time and is positive with \(F_1 \) values between 0.5 and 0.7 indicating the steady strength-assortativity of butterflies over time.

Table 4.6 presents the mean absolute error of \(r^s \) and \(F \) elements in \(s\text{Grow} \) streams with respect to that of real-world streams over the sequential burst-based graph snapshots. In all synthetic streams the error is between 0.01 and 0.1. The low errors of \(F \) elements suggest that sequential graph snapshots in the \(s\text{Grow} \) streams have similar strength difference distribution to the corresponding real-world streams. Particularly the low error of \(F_1 \), \(r^s \) represents the similar strength assortativity localization factor. This indicates that \(s\text{Grow} \) reproduces the similar strength difference distribution and strength assortativity of butterfly edges as in the real-world streams.
Table 4.5: Average butterfly rate in synthetic streams generated by our model.

| | average butterfly rate | $|E^{20}|$ | N_b^{20} | Δt^{20} |
|----------|------------------------|----------|------------|---------------|
| S-Ciao | 37.2440 ± 31.4987 | 72,966 | 940 | 7,430,097 |
| S-Epinions| 9.4358 ± 6.1519 | 14,495 | 300 | 304,417 |
| S-WikiLens| 6.3037 ± 5.6897 | 25,957 | 4,000 | 69,302 |
| S-ML100k | 2.191 ± 1.3045 | 87,951 | 12,000 | 204,118 |
| S-ML1m | 59.8963 ± 29.2066 | 85,397 | 2,000 | 7,860,689 |
| S-Amazon | 30.8994 ± 28.8517 | 106,714 | 4,000 | 9,599,739 |
| S-Yahoo | 51.1708 ± 27.891 | 120,616 | 3,200 | 10,847,746 |
| BM $p_l = 0.3$, $p_h = 0.5$ | $4.9294e-4 ± 2.3263e-4$ | 106716 | 81448 | 30 |
| BM $p_l = 0.5$, $p_h = 0.7$ | $0.0035 ± 8.9103e-4$ | 106716 | 48944 | 253 |
| BM $p_l = 0.7$, $p_h = 0.9$ | $0.2534 ± 0.0453$ | 106720 | 14660 | 26371 |
| CNM $p = 0.3$ | $0.0015 ± 5.2659e-4$ | 106739 | 105841 | 94 |
| CNM $p = 0.5$ | $0.0064 ± 9.4627e-4$ | 106739 | 105841 | 536 |
| CNM $p = 0.7$ | $0.0423 ± 0.0068$ | 106739 | 105841 | 4420 |
| DDM $p_e = 0.3$ | $8.4597 ± 6.2345$ | 106714 | 25524 | 2183130 |
| DDM $p_e = 0.5$ | $1.2260 ± 0.8530$ | 106714 | 42644 | 294543 |
| DDM $p_e = 0.7$ | $0.0928 ± 0.0685$ | 106714 | 69263 | 23342 |

Baselines. None of the baseline streams obey the scale-invariant strength assortativity of butterflies (Figures 4.16-4.24) since $\beta_1, \beta_2, \beta_3$ are not preserved.

- Butterfly densification. The number of butterflies grows slowly in the streams (Table 4.5). In BM streams, a butterfly forms when a new vertex connects to a host (selected with probability p_h) and its two hop neighbour with probability p_l, therefore as p_h and p_l increase, butterfly count increases. In BM stream with $p_l = 0.3$ and $p_h = 0.5$, at some graph snapshots there is no new butterfly added to the graph and butterfly count remains the same. However, the total number of butterflies in each graph snapshot is far below the number of edges. In CNM streams, butterflies have higher chance of emergence when potential edges are converted to edge with probability p compared to addition of new edges with probability $1 - p$, therefore as p increases butterfly count increases, albeit insignificantly. In DDM, with probability $1 - p_e$ butterflies emerge with the addition of each new vertex, which forms wedges with $\text{degree}(v_i')$ neighbour of v_i'. Consequently the lower p_e, the higher is the butterfly count. However, the average butterfly rate is still lower than that of $sGrow$, specifically S-Amazon with average butterfly rate 30.89994 and DDM with $p_e = 0.3$ having 8.4597. Moreover, the streams have low burstiness as N_b^{20} is higher than that of $sGrow$. 80
Table 4.6: Mean absolute error of r^s and F elements.

<table>
<thead>
<tr>
<th></th>
<th>F_1</th>
<th>r^s</th>
<th>F_2</th>
<th>F_3</th>
<th>F_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-Ciao</td>
<td>0.0286</td>
<td>0.05</td>
<td>0.0569</td>
<td>0.0199</td>
<td></td>
</tr>
<tr>
<td>S-Epinions</td>
<td>0.0318</td>
<td>0.0389</td>
<td>0.0219</td>
<td>0.0163</td>
<td></td>
</tr>
<tr>
<td>S-WikiLens</td>
<td>0.0528</td>
<td>0.0705</td>
<td>0.08</td>
<td>0.0194</td>
<td></td>
</tr>
<tr>
<td>S-ML100k</td>
<td>0.0376</td>
<td>0.0513</td>
<td>0.0642</td>
<td>0.0384</td>
<td></td>
</tr>
<tr>
<td>S-ML1m</td>
<td>0.0617</td>
<td>0.0445</td>
<td>0.049</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>S-Amazon</td>
<td>0.1064</td>
<td>0.0539</td>
<td>0.0476</td>
<td>0.094</td>
<td></td>
</tr>
<tr>
<td>S-Yahoo</td>
<td>0.0578</td>
<td>0.0782</td>
<td>0.0519</td>
<td>0.0316</td>
<td></td>
</tr>
<tr>
<td>BM $p_l = 0.5$, $p_h = 0.7$</td>
<td>0.1436</td>
<td>0.0855</td>
<td>0.0855</td>
<td>0.0270</td>
<td></td>
</tr>
<tr>
<td>BM $p_l = 0.7$, $p_h = 0.9$</td>
<td>0.1279</td>
<td>0.0768</td>
<td>0.0463</td>
<td>0.0156</td>
<td></td>
</tr>
<tr>
<td>CNM $p = 0.3$</td>
<td>0.1869</td>
<td>0.1234</td>
<td>0.0997</td>
<td>0.0423</td>
<td></td>
</tr>
<tr>
<td>CNM $p = 0.5$</td>
<td>0.1373</td>
<td>0.0593</td>
<td>0.0635</td>
<td>0.0179</td>
<td></td>
</tr>
<tr>
<td>CNM $p = 0.7$</td>
<td>0.1418</td>
<td>0.0773</td>
<td>0.0561</td>
<td>0.0105</td>
<td></td>
</tr>
<tr>
<td>DDM $p_e = 0.3$</td>
<td>0.0654</td>
<td>0.0654</td>
<td>0.0415</td>
<td>0.0201</td>
<td></td>
</tr>
<tr>
<td>DDM $p_e = 0.5$</td>
<td>0.0690</td>
<td>0.0427</td>
<td>0.0306</td>
<td>0.0289</td>
<td></td>
</tr>
<tr>
<td>DDM $p_e = 0.7$</td>
<td>0.0851</td>
<td>0.0634</td>
<td>0.0415</td>
<td>0.0129</td>
<td></td>
</tr>
</tbody>
</table>

- **Strength diversification.** The vertex strengths do not diversify over time as $Pr(S)$ does not get broader and skewed. In all streams CV of vertex strength of butterfly i- and j-vertices is greater than one and increases over time, however Y_2 and μ_S do not show an increasing trend.

- **Steady strength assortativity.** The distribution of strength difference of connected butterfly vertices does not get broader, however it retains a fixed shape. Y_2 and μ_δ of $Pr(\delta)$ do not increase over time, although CV is fixed at ≈ 1 in BM with highest p_l and p_h and CNM with $p > 0.3$. In BM and CNM streams, the localization of δs below the mean (r^s) is not stable at values at least above 0.1 and fluctuates over time, although the streams display similar F values as Amazon stream (low errors as shown in Table).

4.4.2 Stress Testing

Effectiveness. Figure 4.25 shows the evolution of r^s as the number of butterflies grows to 10^7 in S-Amazon stream with different parameter configurations. Data points are not clustered by colours (corresponding parameters $[L_{min}, L_{max}], M$, and β) in rows a, c, and d, however they are clustered and ordered by ρ. Also, $0.1 \le r^s \le 0.15$ regardless of
Figure 4.16: Mixing patterns of butterflies in BM stream with $p_l = 0.3$, $p_h = 0.5$.

Figure 4.17: Mixing patterns of butterflies in BM stream with $p_l = 0.5$, $p_h = 0.7$.

82
Figure 4.18: Mixing patterns of butterflies in BM stream with $p_l = 0.7$, $p_b = 0.9$.

Figure 4.19: Mixing patterns of butterflies in CNM stream with $p = 0.3$.

83
Figure 4.20: Mixing patterns of butterflies in CNM stream with $p = 0.5$.

Figure 4.21: Mixing patterns of butterflies in CNM stream with $p = 0.7$.
Figure 4.22: Mixing patterns of butterflies in DDM stream with $p_e = 0.3$.

Figure 4.23: Mixing patterns of butterflies in DDM stream with $p_e = 0.5$.
Figure 4.24: Mixing patterns of butterflies in DDM stream with $p_e = 0.7$.

Figure 4.26 displays the time for generation as the stream grows to 10^7 sgrs in S-Amazon stream with different parameter configurations. Data points are not clustered by colours (corresponding parameters $[L_{\text{min}}, L_{\text{max}}]$, M, and β) in rows a, c, and d, however they are clustered by ρ and ordered by both ρ and $[L_{\text{min}}, L_{\text{max}}]$. That is, the generation time is not impacted by M (Figure 4.26(c)) or β (Figure 4.26(d)), however it is affected by ρ and $[L_{\text{min}}, L_{\text{max}}]$. As the connection probability ρ increases, the generation time decreases since the number and the size of bursts created at each time step increases (Figure 4.26(b)). As the range of random walk length $L \in [L_{\text{min}}, L_{\text{max}}]$ increases, the generation time decreases since the size of bursts created at each time step increases (Fig
Figure 4.26(a)). Figure 4.27 depicts the time for generation as the stream grows to 10^7 sgrs in S-Amazon stream with parameter switch in the middle of stream generation. Switching M and β gradually decreases the slope of generation time curve, while switching L and ρ promptly and significantly changes the slope. This confirms that L and ρ significantly determine the generation time.

Burst Size. Figure 4.28 shows the frequency distribution of all burst sizes in S-Amazon with 10^7 sgrs generated by different parameter configurations. For all values of ρ and L_{max}, by increasing M, the range of burst sizes expands; Therefore, M significantly impacts burst sizes. Also, the maximum burst size increases as ρ and L_{max} increase.

4.4.3 Computational Complexity

In the following, it is shown that high degree/strength vertices and PRW hop count determine the computational cost of $s\text{Grow}$.

THEOREM 1 The worst case computational complexity of $s\text{Grow}$ in each window with graph $G=(V_i \cup V_j, E)$ and PRW parameter L is $O(S_{\text{max}} + L(N_{\text{max}}^i + N_{\text{max}}^j))$, where S_{max} is the maximum strength in G and N_{max}^i and N_{max}^j are the maximum number of i-neighbors and j-neighbors for vertices in V_i and V_j.

PROOF 1 $s\text{Grow}$’s computations at each window are dominated by burst additions as the initialisation, sgr addition/removals, and window sliding take $O(1)$ computation. The worst case computational complexity of burst additions is the following.

\[
O(S\text{PS}(.)) + O(P\text{RW}(.)) + O(2\text{addburst}(.))
\] (4.1)

Let us assume that the maximum strength in $G=(V_i \cup V_j, E)$ is S_{max}, L is the parameter for the PRW hop count, and the maximum number of i-neighbors and j-neighbors for vertices in V_i and V_j are N_{max}^i and N_{max}^j. Accordingly, we would have the following complexities: $O(S\text{PS}(V_j)) = S_{\text{max}}$ since the value assignments and corresponding operators, and the list shuffling take one unit of computations, and the outer for loop is parallel and the inner loop sequentially performs S_{max} computational units. We have $O(P\text{RW}(u_0^j, \text{false}, G, L)) = (L/2+1)N_{\text{max}}^j + (L/2)N_{\text{max}}^i$ since $|P\text{RW}_j| = L/2+1$ and $|P\text{RW}_i| = L/2$. Also, $O(\text{addburst}(v_i^l, v_j^l, P\text{RW}_j, G, \mathcal{R}, \rho)) = O(\text{addburst}(v_i^j, v_j^j, P\text{RW}_i, G, \mathcal{R}, \rho)) =
Figure 4.25: Strength assortativity localization factor versus butterfly count for S-Amazon.
Figure 4.26: Generation time (s) versus the number of sgrs for S-Amazon.
Figure 4.27: Strength assortativity localization factor versus butterfly count and generation time (s) versus the number of sgrs in S-Amazon. Parameters switch from $M = 100$, $\beta = 5$, $L \in [1, 5]$ and $\rho = 0.4$ to $M = 300$, $\beta = 20$, $L \in [4, 5]$ and $\rho = 0.8$ after generation of 5×10^6 sgrs.

$O(1)$ since the value assignments, and probabilistic connections are done in $O(1)$ and Step 3 is performed via a parallel loop. Therefore, the total complexity of burst additions would be $S_{max} + (L/2 + 1)N_{max}^j + (L/2)N_{max}^i + O(1)$, i.e. high degree/strength vertices and PRW hop count determine the computational cost.

4.5 Summary

Essence and features. Study of the existing local rules for graph growth that yield skewed distributions, degree correlation, and cohesive structures shows that implicit degree-driven preferential attachment and copying mechanisms or solely strength-driven preferential attachment with random assignment of timestamps to the edges can only partially preserve the observed patterns but are not effective enough to reproduce these patterns simultaneously. Therefore, a set of microscopic mechanisms, in the body of a proposed streaming growth model called $sGrow$, are introduced. These mechanisms are based on realistic sgr generation, probabilistic connections, and strength-driven preferential random walks which explain the emergence patterns of streaming butterflies. $sGrow$ is designed as an iterative addition of bursts of sgrs which satisfies streaming data model, preserves realistic patterns of butterfly emergence quantitatively and qualitatively, and makes the stream generation scalable. Moreover, $sGrow$ enables generating sequence of bipartite edges attributed with timestamps and weights, isolated/out-of-order edges, and four-vertex graphlets.

Use cases. $sGrow$ suits the following cases:
Figure 4.28: Frequency of burst sizes in S-Amazon.
• Streaming graph benchmarks. Performance evaluation of algorithms including but not limited to butterfly-based algorithms relies on considering the characteristics of input graphs [22, 25, 63]. Given the lack of streaming graph generators, sGrow assists in understanding the important graph characteristics as well as providing realistic configurable and scalable graphs for stress testing purposes.

• Machine learning benchmarks. Collecting/annotating the training/testing datasets for graph-based models in domains such as outlier detection and computer vision is challenging due to the nature of data (e.g. rare outliers and diverse image instances), and high cost of manually labeling the instances [367, 329, 258]. Solutions include building benchmark datasets via artificial instance injection [79, 367, 114] and applying weakly-supervised techniques [216, 329, 140]. sGrow’s analytical approach can be extended to such domains to inform the design of graph-based models with the temporal connectivity patterns and also generating realistic yet synthetic datasets to which the artificial instances are injected.

• Concept drift modeling. To improve the performance of online adaptive learning algorithms in stream-based recommender systems for web activities, it is important to consider the temporal evolution of modeled concepts due to a change in the distribution of log data or a change in the relation between data and target variable (i.e. concept drift) [15, 274, 125]. Considering a butterfly as two users with mutual preferences and two items with mutual perceptions, sGrow impacts modeling the parallel drift of concepts such as user preferences and item perception.

• Algorithm developments. Graph analytics and generative models utilise microscopic mechanisms and graph pattern for algorithm design [329, 297]. sGrow’s microscopic mechanisms and growth patterns benefit these cases as well.

Parameter Configuration. The introduced techniques with configurable parameters enable generating realistic bipartite streaming graphs with generation time sub-linear with respect to the number of sgrs. The more bursty the stream, the lower the generation time. In the following, a reference guide for configuring the parameters is elaborated.

• M: The upper bound for the random number of new batched sgrs added at each time step does not impact the strength assortativity patterns and the generation time. This parameter can be comfortably used to adjust the level of burstiness of the streaming graph without affecting the performance of the generative algorithm.
• ρ: The probability of creating an edge between each random walk vertex and a random vertex or an edge between each new sgr and neighbours of the random walk vertices impacts the level of strength assortativity but not its steady state. It also affects the generation time. This parameter can be used to trade off scalability and the level of strength assortativity. The default value is $\rho = 0.3$, yet increasing ρ would decrease the generation time and strength assortativity level. Values less than or equal to 0.7 ensure positive strength assortativity. Also, ρ determines the probability of out-of-order sgrs.

• $[L_{\text{min}}, L_{\text{max}}]$: The range for random length of PRW backbone used for establishing burst of sgrs does not impact the strength assortativity patterns. It affects the generation time. This parameter can be used to increase the scalability of the stream generation. The default range is [1, 2] and shifting/expanding the range by increasing the lower and/or upper bound would decrease the generation time.

• β: The sliding window parameter used as the frequency and the size of sliding does not impact the strength assortativity patterns and generation time. This parameter can be comfortably used for creating streams in which sgrs are semantically time-sensitive and need a user-specified slide parameter. The default value is $\beta = 5$, while any other value can be set.

Evaluations. Comprehensive evaluations validate the efficacy of sGrow in realization of streaming growth patterns effectively and independent of initial conditions, scale and temporal characteristics, and model configurations. Analyses also verify the robustness of sGrow in generating streaming graphs based on user-specified properties for the scale and burstiness of the stream, level of strength assortativity, probability of out-of-order streaming records, generation time, and time-sensitive connections.
Chapter 5

Streaming Graph Analytics - Butterfly Counting

Enumerating and counting butterflies is important in measuring graph cohesion and clustering or community structure [14]. Clustering or community structure is measured by the transitivity/clustering coefficient that is computed as the fraction of caterpillars which form a butterfly [210, 363, 14]. Graph cohesion can be measured by the number of butterflies-per-vertex and by the local clustering coefficient. Study of such local structural measures unveils hidden ordering and hierarchies in graphs displaying structural deviations from uncorrelated random connections [78, 275, 242]. A recent study investigates the predictive performance of deep neural networks by means of clustering coefficient [354]. Other applications are realistic graph models [14, 179] and representative graph sampling [362]. The study of different phenomena in complex graphs such as social collective behaviours [102], synchronization [299, 379], information propagation [175], and epidemic spreading [268] rely on the clustering coefficient. Moreover, clustering coefficient plays an important role in graph analytics tasks such as link prediction [160] and community detection [363], and in general any graph processing algorithm relying on counting the mutual neighbours or Jaccard similarity. For example, in author-publication streams, it is important to count the butterflies to discover cohesive substructures with high clustering coefficient representing the research groups; in user-item and trader-stock streams, butterfly counting helps detect abnormal activities by means of calculating clustering coefficient or discovering the k-bitruss subgraphs. Also, the distribution of local clustering coefficient is used as a feature to uncover statistical differences between normal and fraudulent data in applications such as spam detection [45]. Furthermore, butterfly counting provides similarity measures for product recommendation over user-product streams. Other application areas include hash-
tag recommendation in user-hashtag streams of social networks and intrusion detection in source-destination data flows of telecommunication networks.

Motif counting is a fundamental problem in large-scale network analysis [301, 256, 51] and given the manifest of new data models such as streaming graphs, it is critical to study this problem in streaming contexts. Particularly, butterfly counting is computationally expensive, and known techniques do not scale to large graphs; the problem is even harder in streaming graphs. While there are many algorithms proposed for triangle counting in static and streaming unipartite graphs, counting the butterfly occurrences is still a challenging problem in bipartite streaming graphs due to the following reasons.

- Bipartite streaming graphs are triangle free and current approaches for triangle counting over unipartite streams (e.g. [45, 46, 72, 196, 303, 170, 304]) are not useful, because, as Sanei-Mehri et al. [286] describe, the bimodal structure should be considered for effectiveness.
- Exact butterfly counting algorithms (e.g. [330, 149, 301, 285, 331]) are not able to deal with the unboundedness and high velocity of temporal evolutions in graph streams.
- Simultaneously achieving effectiveness and efficiency is a pressing issue which requires special attention [117].

5.1 Butterfly Counting over Streaming Graphs

In view of the streaming graph properties discussed in Chapter 1, the precise problem definition is as follows: Given a sub-sequence of streaming graph records ordered by their timestamps, how to compute the total number of butterflies in the entire emerging graph G at time point t – denoted as $B(t)$.

Computing the exact value of $B(t)$ over a streaming graph is not feasible, since complete access to the graph is not possible. It is known [26, 33] that without knowing the size of the streaming input data, it is not possible to determine the memory required for processing the data, and unless there is unbounded memory, it is not possible to compute exact answers for this data stream problem. Exact counting is not even possible in massive static graphs [220, 68]. Even if it is assumed that enough memory is available to maintain the input graph corresponding to a subset of the stream from a certain starting point in time to the current time, the growing graph needs to be continually maintained. Moreover,
the iterative and stateful algorithm that retains the intermediate results and state of the computation should be continually executed. This is equivalent to using landmark windows. These append-only windows are computationally expensive for exact butterfly counting. According to the following analysis, given a graph snapshot at t_1, a landmark window appending $|W|$ new edges and ΔV_i new i-vertices to the graph snapshot at t_2 incurs a lower bound for computations of $O((|V_{i,t_1}| + \Delta V_i)K_{i,t_1}K_{j,t_1})$ which is, in the worst case, on the order $O(c|V_{i,t_1}|^3 + |W||V_{i,t_1}|^2)$ making landmark windows computationally too expensive.

The alternative is approximation. One such approach is to use random sampling or sparsification [73, 285, 286], which requires determining the sampling probability, reservoir size, and scaling factor. The sampling process is done several times and can be a potential overhead, lowering the processing throughput. Moreover, to provide accurate results the sampling is performed over the entire prefix of the received streaming graph records and this has high memory and time overhead unless the sampling rate is increased, which results in low processing throughput. Consequently, providing both efficiency and effectiveness is a major challenge in sampling-based methods.

Another approximation approach is to use sliding windows over the incoming sgrs. Sliding windows are known as a natural approximation method over data streams [33]. Most existing streaming proposals (e.g. [73, 37, 74]) assume that (a) all the edges incident to a vertex arrive together (i.e. incidence streams), and (b) vertex degrees are bounded. Neither of these is likely to hold in real-life streaming graphs. In the following, a butterfly counting framework is introduced that can efficiently return an accurate answer over any stream without these unrealistic assumptions. It has been shown that an approximate butterfly count that bounds the relative error to $0 < \delta < 0.01$ needs to store the entire graph, which is possible in $\theta(n^2)$ where n is the number of vertices [286]. This is not feasible in streaming systems.

Computational Complexity of Exact Counting. An exact counting algorithm over streaming graphs requires a landmark window to collect all the streaming edges from a beginning time point to now. A multi-pass counting algorithm is executed over the graph snapshot in the window. In what follows, a landmark window with subsequent window expansions yields graph snapshots at two subsequent time points t_1 and t_2. The computational complexity of a butterfly counting algorithm with $O(\sum_{i \in V_i} \sum_{j_1 \in N_i} \text{deg}(j_1))$ over a streaming graph that follows a densification power law is analyzed at these two time points. The lower bound of i-degree at time t_1 is denoted as K_{i,t_1}.

Given a graph snapshot at t_1, a landmark window appending $|W|$ new edges and ΔV_i new i-vertices to the graph snapshot at t_2 with lower bound i-degree at time t_1 denoted as
A butterfly counting algorithm with \(O(\sum_{i_1 \in V_i} \sum_{j_1 \in N_{i_1}} \text{deg}(j_1)) \) incurs a lower bound for computations of \(\Omega(|V_{i,t_1}| + \Delta V_i)K_{i,t_1}K_{j,t_1} \) which is in worst case of \(\Omega(c|V_{i,t_1}|^3 + |W||V_{i,t_1}|^2) \) due to the following.

1. It has been shown empirically that at any time \(t \), the number of edges in the real-world graph snapshots \(E(t) \) follows a power law function of the number of vertices \(|V(t)| \). This is known as the densification power law denoted as \(|E(t)| \propto |V(t)|^a \), where \(a \) is the exponent that generally lies strictly between 1 (asserting constant average degree over time) and 2 (corresponding to the extremely dense graphs where each vertex is, on average, connected to a constant fraction of all vertices) [201]. According to the densification power law, the graphs grow superlinearly and the vertex out-degrees grow over time. This natural pattern in bipartite graphs with directed edges from i-vertices to j-vertices is interpreted as the growing of average i-vertex degrees.

Also, when the power law exponent is \(a = 2 \) (worst case), we would have

\[
\begin{align*}
 b|V_{j,t_1}| & \leq K_{i,t_1} \quad (5.1) \\
 b|V_{j,t_2}| & \leq K_{i,t_2} \quad (5.2)
\end{align*}
\]

where \(b \) is a constant \(0 < b < 1 \) and \(K_{i,t_1} \) and \(K_{i,t_2} \) are the lower bound i-degree at times \(t_1 \) and \(t_2 \). That is the shared minimum degree of i-vertices in the graph snapshot at times \(t_1 \) and \(t_2 \), respectively.

2. Now, consider a butterfly counting algorithm for static graphs, which has the computational complexity of \(O(\sum_{i_1 \in V_i} \sum_{j_1 \in N_{i_1}} \text{deg}(j_1)) \). The lower bound computational complexity of running the counting algorithm at \(t_1 \) and \(t_2 \) will be:

\[
\begin{align*}
 \Omega(|V_{i,t_1}|K_{i,t_1}K_{j,t_1}) \quad (5.3) \\
 \Omega(|V_{i,t_2}|K_{i,t_2}K_{j,t_2}) \quad (5.4)
\end{align*}
\]

and according to the densification power law,

\[
\Omega(|V_{i,t_2}|K_{i,t_2}K_{j,t_1}) < \Omega(|V_{i,t_2}|K_{i,t_2}K_{j,t_2}) \quad (5.5)
\]

3. Furthermore, the expansion of a landmark window at time \(t_2 \) introduces \(|W| \) new edges which include \(\Delta V_i \leq |W| \) new i-vertices. That is,

\[
|V_{i,t_2}| = |V_{i,t_1}| + \Delta V_i \leq |V_{i,t_1}| + |W| \quad (5.6)
\]

Therefore, the lower bound of computations at \(t_2 \) will be \(\Omega(|V_{i,t_1}| + \Delta V_i)K_{i,t_1}K_{j,t_1} \).
4. The worst case scenario can be analyzed when there are $|W|$ new i-vertices (right side of inequality 5.6). Accordingly, the worst case lower bound at t_2 will be $\Omega((|V_{i,t_1}| + |W|)K_{i,t_1}K_{j,t_1})$. When the power law exponent is $a = 2$ (Equation 5.1), the worst case lower bound at t_2 will become $\Omega(b(|V_{i,t_1}| + |W|)|V_{i,t_1}|K_{j,t_1})$. Since $|V_{j,t_1}|K_{j,t_1} \propto d|E_{i,t_1}| \propto d|V_{i,t_1}|^2$, where $0 < d < 1$, the worst case lower bound at t_2 will be $\Omega(c(|V_{i,t_1}| + |W|)|V_{i,t_1}|^2) = \Omega(c|V_{i,t_1}|^3 + |W||V_{i,t_1}|^2)$ where $0 < c < 1$.

In order to evaluate the computational footprint of a main memory algorithm that returns exact answers, it is necessary to consider the memory required to store the input and the state of computations as well as the processing latency. Although steaming graphs have unbounded size, suppose the memory requirement is relaxed with the (unrealistic) assumption that enough memory is available to store the streaming graph without discarding any graph elements. Performing exact butterfly counting over the dense real streams after adding each batch of edges to a graph snapshot at t_1 incurs a high lower bound of computational footprint on the order $\Omega(|V_{i,t_1}|^3)$. Interpreting this computational complexity according to the time and memory overhead per unit of computation and considering the growth patterns (i.e. growing number of vertices) elaborates the overhead of exact butterfly counting over streaming graphs. This highlights the essence of approximate counting methods which do not introduce expensive computations.

In the following, first, the related works on butterfly counting are reviewed in Section 5.2. This is followed by introducing a butterfly counting approach called $sGrapp$ in Section 3.2. The design of $sGrapp$ is informed by the graph mining insights from the Phase 1 of the streaming graph analysis. The computational complexity of $sGrapp$ and its performance are evaluated in Section 5.4. $sGrapp$ demonstrates superior performance in terms of estimation error for butterfly count and processing throughput compared to baseline algorithms. Table 5.1 lists the frequent notations in this chapter.

5.2 Related Works

The existing works in butterfly counting can be classified along three dimensions: graph characteristics (bipartite/unipartite), data location (disk-resident/in-memory) and graph availability (static/dynamic/streaming). Detailed coverage of each design point is beyond the scope of this thesis; in the following, the focus is on two particular design points that are most relevant: static bipartite graphs and streaming bipartite graphs.
<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Butterfly densification power-law exponent for the inter-window butterflies</td>
</tr>
<tr>
<td>$B(t)$</td>
<td>The number of butterflies since the initial time point until t</td>
</tr>
<tr>
<td>B^W_k</td>
<td>Number of butterflies introduced by at least one vertex in W_k</td>
</tr>
<tr>
<td>\hat{B}_k</td>
<td>Estimation of number of butterflies at time $t = W_k^e$</td>
</tr>
<tr>
<td>B^*_G</td>
<td>Number of butterflies in graph corresponding to W_k</td>
</tr>
<tr>
<td>B^{interW}</td>
<td>Number of inter-window butterflies</td>
</tr>
<tr>
<td>\hat{B}^{interW}</td>
<td>Estimation of number of inter-window butterflies</td>
</tr>
<tr>
<td>K_{i,W_k}</td>
<td>the lower bound of degree of $i(j)$-vertices in W_k</td>
</tr>
<tr>
<td>$V_{i,W_k}/E_{W_k}$</td>
<td>Set of i-vertices/edges in $[W_k^b, W_k^e]$</td>
</tr>
<tr>
<td>E_k</td>
<td>Set of edges in the interval $[W_k^b, W_k^e]$</td>
</tr>
<tr>
<td>P</td>
<td>Sampling probability in FLEET algorithms</td>
</tr>
<tr>
<td>γ</td>
<td>Sub-sampling probability</td>
</tr>
<tr>
<td>M</td>
<td>Reservoir capacity in FLEET algorithms</td>
</tr>
</tbody>
</table>

Table 5.1: Frequent notations in this chapter.

5.2.1 Counting in Static Bipartite Graphs

The literature on counting (bi)cliques in static bipartite graphs (e.g. [330, 331, 285]) and static unipartite graphs (e.g. [334, 152]) is quite rich. A major challenge in this context is the massive size of these graphs. Some studies (e.g. [152, 92, 45, 158, 157, 254]) have focused on disk-resident data and optimised I/O access patterns for counting the exact number of cliques. Other studies consider in-memory algorithms and use random sampling so that the induced graph can fit in main memory for estimating the number of (bi)cliques [73, 285]. There are also studies (e.g. [176, 27]) that propose scaling out computation by parallelization.

Butterfly counting algorithms in bipartite graphs follow either vertex-centric or edge-centric processing. One straightforward edge-centric approach is to take each pair of disjoint edges $(e_{i_1,j_1}, e_{i_2,j_2})$ in the graph (Figure 5.1(a)) and check for the existence of the
two other edges that complete the butterfly pattern. The complexity of this approach is $O(|E|^2)$, which is too expensive for graphs with a high number of edges. Another edge-centric approach [91] takes an edge e_{i_1,j_1} and examines the existence of the three complementary edges. That is, the algorithm checks the connections between neighbours of i_1 and neighbours of j_1 denoted as j_2 and i_2, respectively, to see whether they are connected by an edge e_{i_2,j_2} (Figure 5.1(b)). This approach can be implemented with an algorithm that has complexity $O(\sum_{(i_1,j_1) \in E} \text{Min}(\text{deg}(i_1), \text{deg}(j_1)))$, but this is not appropriate for dense graphs with high number of edges and high average degrees. The state-of-the-art approach [330, 331, 285] is vertex-centric that takes a vertex v_1 and traverses all two-hop neighbours to identify triples $<i_1, j_1, i_2>$ and $<i_1, j_2, i_2>$. That is, it finds all triples (i.e. two-paths) with common incident vertices (i.e. the same two-hop neighbour) and then combines them to get the number of all butterflies (Figure 5.1(c)). The complexity of this approach is $O(\sum_{i_1 \in V} \sum_{j_1 \in N_{i_1}} \text{deg}(j_1))$, which is challenging for graphs with high average i- and j-degrees as a result of traversing two hop neighbours [331].

5.2.2 Counting in Streaming Bipartite Graphs

In the streaming graph context, the literature is also rich for counting in unipartite graphs (e.g. [335, 334, 73, 37, 45, 74, 53, 67]). A state-of-the-art butterfly counting study over bipartite streaming graphs is FLEET [286], which introduces a suite of algorithms. FLEET1 samples the sgrs of a landmark window with probability P into a reservoir with fixed capacity M to bound the memory consumption and increments the butterfly count by the number of incident butterflies for each sampled edge. When the size of reservoir exceeds M, the sgrs are sub-sampled with probability γ and the butterfly count is set to the exact number of butterflies in the reservoir. The sampling probability is then multiplied by γ for the following sgrs. FLEET2 avoids re-computing the exact number of butterflies in the reservoir during the sub-sampling iterations. FLEET3 avoids re-computation and also updates the estimate before sampling the sgrs into the reservoir. FLEETSSW uses count-based sliding windows with limited graph size in each window, and FLEETTSW uses time-based sliding windows with fixed window length across windows. To overcome the variable number of sgrs inside each window, FLEETSSW assumes an upper-bound for the number of sgrs in a window on top of a first-in, first-out (FIFO)-based sampling scheme. As will be discussed in Section 5.3, there exist a number of inter-window butterflies in the stream; these are missed by the FLEET algorithms which use sliding windows. The FLEET variants which are based on landmark windows (FLEET1, FLEET2, and FLEET3) do not provide a proper trade-off between accuracy and processing throughput. Moreover, FLEET requires determining a sub-sampling probability and a normalization
factor to scale-up the estimation computed over the sampled sgrs, and the specification of
a time when the result is ready to be returned. FLEET requires a sufficiently large amount
of memory to guarantee a desired level of accuracy.

5.3 sGrapp

Section 5.1 proved the impossibility of exact counting of butterflies in a streaming graph and
discussed the constraints for a proper window-based approximation. This section describes
a new approximate butterfly counting algorithm called sGrapp that uses tumbling windows.
Tumbling windows are used in order to avoid double counting of repeated butterflies, as
will be described – tumbling windows do not overlap when windows move, thus avoiding
the double-counting problem.

It is possible to adopt a time-based tumbling window model with lazy computation and
calculate the exact number of butterflies introduced by each window of disjoint edge inser-
tions, W_k, at the end time of the window denoted by $B_{G}^{W_k}$, and increment the cumulative
value accordingly: $B(t = W_k^c) = B(t = W_{k-1}^c) + B_{G}^{W_k}$. This processing is incremental. An
important issue is that there may exist some butterflies that are formed by the edges with
large inter-arrival times (heavy and long tail in Figure 3.10). These butterflies, referred to
as inter-window butterflies, are not captured within one window (unless it is sufficiently
large). However, setting the window length to a large value to cover the inter-window
butterflies imposes a high computational footprint in terms of memory and time. This
conflicts with the goal of using a windowed approach to lower this footprint by performing
incremental processing over subsets of sgrs.

sGrapp addresses this issue by (a) using tumbling windows whose lengths are adaptive
to the temporal distribution of sgrs (hence dealing with bursty arrivals) instead of using
heavily-loaded and lengthy sliding windows, and (b) approximating the number of inter-
window butterflies individually instead of aggregating their count with that of window W_k.
These two ideas are the keys to simultaneously enabling efficiency and accuracy. Precisely,
sGrapp estimates the number of butterflies from the beginning of the first window $t = W_0^b$
until the end of kth window denoted as $B(t = W_k^c) = B_k$ by counting the exact number
of butterflies in the graph corresponding to the current window W_k denoted as $B_{G}^{W_k}$ and
approximating the number of inter-window butterflies denoted as B_{inter}^W. The estimated
cumulative value would be $B_k = B_{k-1} + B_{G}^{W_k} + \delta(k \neq 0)B_{inter}^W$, where the function $\delta(\cdot)$ returns 1 for true input and 0, otherwise. Note that the first window W_0 has no inter-
window butterflies and hence the corresponding term would become zero by means of the
Algorithm 5: Adaptive windows

Data: \(\mathbb{R} = \langle r^1, r^2, \cdots \rangle \), sequence of sgrs

Input:
\(N_b \), Number of unique timestamps per window

Output: \(x \), Analysis output collection

1. \(G \leftarrow \langle V = \emptyset, E = \emptyset \rangle \), \(t \leftarrow 0 \), \(unq t \leftarrow \emptyset \), \(x \leftarrow \emptyset \), \(k \leftarrow 0 \), \(W^b_k \leftarrow \tau^0 \)

2. while true do
3. \hspace{1em} \(r^t = (\tau^t, p) \leftarrow sgrIngest() \)
4. \hspace{1em} if \(r^t \neq \emptyset \) then
5. \hspace{2em} \(unq t.add(\tau^t) \)
6. \hspace{2em} \(G \leftarrow updateG(r^t, G) \)
7. \hspace{1em} if \(unq t.size() == N_b \) then
8. \hspace{2em} \(x[t] \leftarrow analysis(G) \)
9. \hspace{2em} \(k \leftarrow k + 1 \)
10. \hspace{2em} \(W^b_k \leftarrow \tau^t \)
11. \hspace{2em} for \(e \in G : e.timestamp \leq W^b_k \) do
12. \hspace{3em} \(G \leftarrow Delete(e, G) \)
13. \hspace{1em} \(t \leftarrow t + 1 \)

delta function.

Adaptive burst-based tumbling Windows. This subsection introduces an adaptive window framework for butterfly approximation. A main challenge with time-based windows is how to set the length of windows. A common approach in stream processing is setting the length of a window using a predetermined value \(L \ (|W_i| = L, \forall i) \). This is sensible in online querying workloads where the user may be interested in results of a particular window size. However, this is not a suitable approach in analytical workloads, such as butterfly counting, where the objective is to count occurrences over the entire timeline of the graph evolution. The temporal distributions of edge arrivals (frequency distribution of sgr timestamps) are different in each window, meaning that the number of sgrs is not uniform across all time intervals. Therefore, a fixed window size would result in windows of sgrs that cover differing numbers of timestamps, which imposes unbalanced loads on the processing algorithms, particularly in the case of sgr arrivals with bursty characteristics and non-uniform temporal distribution.
To tackle this issue, an adaptive approach is introduced to set the window length. This approach determines the window length according to the timestamps of the stream and adapts to the temporal distribution of the stream (Algorithm 5) with no assumption about the order and number of arriving sgrs per time unit. Hence, streams with differing arrival rates and temporal distributions can be accommodated. Precisely, a burst-based tumbling window (Definition 10) is used, which includes a variable number of sgrs but a certain number of unique timestamps in the stream, \(N_b \). That is, given the number of unique timestamps per window \(N_b \), sgrs are ingested to the window (Algorithm 5, lines 3-6). When \(N_b \) timestamps are seen, the window is closed and the intended analysis is performed over the corresponding snapshot (Algorithm 5, line 8). The outputs of the analysis are streamed out correspondingly. Next, the window slides forward (Algorithm 5, lines 9-10) and the retired edges are deleted from the graph snapshot corresponding to the window (Algorithm 5, lines 11-12). In tumbling windows, all the sgrs are retired when the window slides, and the graph snapshot is renewed. The time step is incremented and the algorithm continues until there is a sgr (i.e. continuously in real world streams).

This may appear as a count-based window, but it is not. A count-based window would contain a fixed number of sgrs, while here only the number of unique timestamps (i.e. the number of bursts) in the window is fixed. Therefore, it is burst-based with adaptive width since the window borders adapt to the temporal distribution of the stream. In fact adaptive windowing would reduce to count-based windowing, if and only if the temporal distribution of stream is uniform and unique timestamps occur with equal frequency numbers. Therefore this windowing mechanism is general and conforms to real streams. Sequential adaptive windows cover the same fraction of distribution of the sgrs (load-balanced windows for efficient analytical workloads) and also enables comparing the analysis over different windows of a stream as well as analysis over different streams having different temporal distributions (time-based windows for the accuracy of temporal analysis).

Approximating the Number of Inter-Window Butterflies. This section explains how \(sGrapp \) approximates the \(\hat{B}_{\text{interW}} \) and consequently \(\hat{B}_k \). Algorithm 6 describes how \(sGrapp \) uses the adaptive windowing framework (Algorithm 5) to estimate the number of butterflies in the streaming graph. Since \(sGrapp \) uses tumbling windows, instead of checking the timestamp of windowed sgrs to decide on the retirement (Algorithm 5, lines 11-12), the processing graph is renewed (line 13 of Algorithm 6). As mentioned earlier, the total number of butterflies (Algorithm 6, line 10) is calculated as the summation of the following:

- Total number of butterflies computed at the end of previous window;
• The exact number of butterflies in the current window (Algorithm 6, line 9 - invoking Algorithm 1);

• The estimated number of inter-window butterflies contributed by current window.

Algorithm 6: sGrapp(N_b, α)

Data: $\mathcal{R} = \langle r^1, r^2, \ldots \rangle$, sequence of time-ordered sgrs
Input: N_b, Number of unique timestamps (bursts) per window
α, Approximation exponent
Output: $\hat{B}[t]$, Approximated number of butterflies at t

1. $G \leftarrow \langle V = \emptyset, E = \emptyset \rangle$, $t \leftarrow 0$, $unqt \leftarrow \emptyset$, $k \leftarrow 0$, $\hat{B} \leftarrow \emptyset$, $B^W_G \leftarrow 0$, $\hat{B}_k \leftarrow 0$, $E \leftarrow 0$
2. while true do
3. $r^t = (\tau^t, p) \leftarrow \text{sgrIngest}()$
4. if $r^t \neq \emptyset$ then
5. $unqt$.add(τ^t)
6. $G \leftarrow \text{updateG}(r^t, G)$
7. $E \leftarrow \text{updateE}(r^t, E)$
8. if $unqt$.size() == N_b then
9. $B^W_G \leftarrow \text{countButterflies}(G)$
10. $\hat{B}_k \leftarrow \hat{B}_{k-1} + B^W_G + \delta(k \neq 0)E^{\alpha}$
11. $\hat{B}[t] \leftarrow \hat{B}_k$
12. $k \leftarrow k + 1$
13. $G \leftarrow \langle V = \emptyset, E = \emptyset \rangle$
14. $t \leftarrow t + 1$

According to the butterfly densification power law, the number of butterflies follows a power-law function of the number of existing edges in the graph. Moreover, recall the observation from analyses of real graphs that butterflies are formed by hubs. Thus, the number of inter-window butterflies is approximated as $\hat{B}_{\text{inter}W} = |E(t = W^e_k)|^\alpha$, where $|E(t = W^e_k)|$ is the total number of edges since $t = W^b_0$ until $t = W^e_k$. The total number of added edges are updated at ingestion time (Algorithm 6, line 7) as E is increased when the sgr is an edge insertion and decreased when sgr is an edge deletion and α is the approximation exponent.
optimised algorithm: sGrapp-x

The approximation exponent used in sGrapp (Algorithm 6) is constant over sequential graph snapshots. However, the estimated number of butterflies using a static exponent can be over or under the true value in subsequent windows. To understand the underlying reason, recall the butterfly emergence patterns. Old hubs are the main contributors to butterflies; since the number of edges connecting to old hubs varies across different windows, the estimated number of inter-window butterflies should not increase linearly with respect to the number of sgrs. Therefore, sGrapp is optimised by changing the exponent over windows. To this end, sGrapp is modified to a semi-supervised algorithm that is called sGrapp-x.

The algorithm is provided with true value of butterflies for an initial subset of the stream (the percentage of the available ground truth is denoted by x). Based on the true value, the relative error $\frac{B_K - \hat{B}_K}{B_K}$ is computed in the corresponding window W_K (Algorithm 7, line 17). If the relative error is lower than a user-specified negative tolerance value (in the experiments -0.05 is used), that means there is an underestimation, therefore the exponent is increased by 0.005 (Algorithm 7, lines 12-13). Similarly the exponent is decreased in case the relative error is above positive tolerance value to avoid over-estimation in the next window (Algorithm 7, lines 10-11). The exponent is stabilized when the error is tolerable and after the supervised search for the exponent is finished. In summary, the optimised version of sGrapp is an adaptive algorithm using reinforcement learning that learns the most accurate approximation exponent for any given window parameter N_b in a subset of stream and generalizes the learned exponent to the rest of stream. sGrapp-x is semi-supervised with outstanding performance given limited ground truth.

5.4 Performance Evaluation

The effectiveness and efficiency of sGrapp and its optimised version sGrapp-x are tested from three perspectives:

- Accuracy (Sections 5.4.1, 5.4.2, and 5.4.4). The ability of sGrapp and sGrapp-x to approximate the butterfly count is compared with baselines and examined under different levels of burstiness, exponent values, and available ground truth.

- Throughput (Section 5.4.3). The processing latency as well as the number of processed elements by sGrapp and sGrapp-x are examined for each window individually and all windows cumulatively.
Algorithm 7: sGrapp-x(N_{b}^{W}, \alpha, x)

Data: \{r\}, sequence of time-ordered sgrs

\(B \), ground truths

Input: \(N_b \), Number of unique timestamps (bursts) per window
\(\alpha \), Approximation exponent
\(x \), Percentage of the available ground truth

Output: \(\hat{B}[t] \), Approximated number of butterflies at time \(t \)

1. \(G \leftarrow \langle V = \emptyset, E = \emptyset \rangle \), \(t \leftarrow 0 \), \(unqt \leftarrow \emptyset \), \(k \leftarrow 0 \), \(\hat{B} \leftarrow \emptyset \), \(B_G^{W_k} \leftarrow 0 \), \(\hat{B}_k \leftarrow 0 \), \(E \leftarrow 0 \), \(error \leftarrow 0 \)

2. while true do
 3. \(r^i = (\tau^i, p) \leftarrow \text{sgrIngest()} \)
 4. if \(r^i \neq \emptyset \) then
 5. \(unqt.add(\tau^i) \)
 6. \(G \leftarrow \text{updateG}(r^i, G) \)
 7. \(E \leftarrow \text{updateE}(r^i, E) \)
 8. if \(\text{unqt.size()} == N_b \) then
 9. \(B_G^{W_k} \leftarrow \text{countButterflies}(G) \)
 10. if \(t < 0.01 \ast x \ast \text{size}(B) \) & \(error > 0.05 \) then
 11. \(\alpha- = 0.005 \)
 12. if \(t < 0.01 \ast x \ast \text{size}(B) \) & \(error < -0.05 \) then
 13. \(\alpha+ = 0.005 \)
 14. \(\hat{B}_k \leftarrow \hat{B}_{k-1} + B_G^{W_k} + \delta(k \neq 0)E^{\alpha} \)
 15. \(\hat{B}[t] \leftarrow B_K \)
 16. if \(t < 0.01 \ast x \ast \text{size}(B) \) then
 17. \(error \leftarrow \frac{\hat{B}_k - B_k}{B_k} \)
 18. \(k \leftarrow k + 1 \)
 19. \(G \leftarrow \langle V = \emptyset, E = \emptyset \rangle \)
 20. \(t \leftarrow t + 1 \)

- Complexity analysis (Section 5.4.5). The approximation properties of sGrapp are analyzed theoretically in terms of computational and error bounds.
Data. The real-world streams used in Phase 1 of the analysis in Chapter 3 are used in experiments (Table 3.2). The ground truths for $sGrapp$-x are obtained by running the exact counting Algorithm 1 over the streams. x is the percentage of the available ground truth. $x = 25$, 50, 75, and 100 are used throughout the experiments. Due to the computational expense of Algorithm 1, the truth values are collected over a limited number of sgrs: 72344 in Epinions, 12259 in ML100k, 21696 in ML1m, 21778 in ML10m, 75000 in Edit-EnWiki, and 75000 in Edit-FrWiki.

Metrics. The effectiveness of $sGrapp$ and $sGrapp$-x is evaluated using Mean Absolute Percentage Error (MAPE), which is computed for windows with variable number of unique timestamps and different exponent values. The number of unique timestamps per window, N_b, varies in different streams and the value of N_b is set differently for each stream. The values of α and N_b are cross validated to explore the region including the best accuracy (lowest MAPE illustrated by the lightest color) for $sGrapp$. $MAPE = \frac{1}{n} \sum_{k} |B_k - \hat{B}_k|$, where B_k is the ground truth computed over the growing graph at $t = W_k^\alpha$ by Algorithm 1 and \hat{B}_k is the approximated value at $t = W_k^\alpha$, and n is the number of windows. The data tips in the figures demonstrate the pair of α and N_b yielding the lowest MAPE.

The efficiency of $sGrapp$ and $sGrapp$-100 is evaluated by averaging over 50 independent cases. The efficiency metrics are not reported for $x < 100$ since their efficiency is close to that of $sGrapp$-100. For each stream, the performance is studied for the parameter settings that yield the best accuracy (highlighted data points in Figures 5.2 and 5.7) to see the overhead of a highly accurate approximation. Note that parameter values do not affect the efficiency. The latency of $sGrapp$ and $sGrapp$-100 is checked for each processing window (Figures 5.16 and 5.17). The window latency of all the streams (except the Epinions) is not decreasing. The window latency of each stream follows its temporal distribution pattern. Therefore, to omit the effect of temporal distribution, the performance is studied by considering both the processing time (latency) and the number of processed elements. To this end, at the end point of each window, the window throughput (i.e. the number of processed edges in the window divided by the elapsed time in seconds, Figures 5.20 and 5.21) is checked as well as the total throughput (i.e. the total number of processed edges since the first window until the end of the current window divided by the total elapsed time in seconds, Figures 5.18 and 5.19).

Computing setup. Experiments are conducted on a machine with 15.6 GB native memory and Intel Core i7–6770HQ CPU@2.60GHz×8 processor. FLEET algorithms and $sGrapp$ algorithms are implemented in Java (OpenJDK version 1.8.0 – 252).
Table 5.2: The approximation MAPE for different window lengths and exponents. Exponents are calculated as the probability of one or two i-hub plus the probability of one or two j-hubs at different time points in Epinions stream.

<table>
<thead>
<tr>
<th>Exponent</th>
<th>MAPE</th>
<th>0.006*N_b</th>
<th>0.007*N_b</th>
<th>0.008*N_b</th>
<th>0.009*N_b</th>
<th>0.01*N_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>α = Pr(t = 1k) = 1.2178</td>
<td>0.006*N_b</td>
<td>3.0036</td>
<td>2.5461</td>
<td>2.5005</td>
<td>2.2996</td>
<td>2.2602</td>
</tr>
<tr>
<td>α = Pr(t = 2k) = 1.077</td>
<td>0.007*N_b</td>
<td>0.4472</td>
<td>0.4591</td>
<td>0.3318</td>
<td>0.2359</td>
<td>0.2632</td>
</tr>
<tr>
<td>α = Pr(t = 3k) = 1.1274</td>
<td>0.008*N_b</td>
<td>1.0295</td>
<td>0.8281</td>
<td>0.8212</td>
<td>0.6954</td>
<td>0.7079</td>
</tr>
<tr>
<td>α = Pr(t = 4k) = 1.0806</td>
<td>0.009*N_b</td>
<td>0.4778</td>
<td>0.3551</td>
<td>0.3574</td>
<td>0.2597</td>
<td>0.2864</td>
</tr>
<tr>
<td>α = Pr(t = 5k) = 1.0389</td>
<td>0.01*N_b</td>
<td>0.14286</td>
<td>0.1016</td>
<td>0.0778</td>
<td>0.0864</td>
<td>0.0456</td>
</tr>
<tr>
<td>α = Pr(t = 6k) = 1.0296</td>
<td>0.0723</td>
<td>0.0953</td>
<td>0.0723</td>
<td>0.524</td>
<td>0.0709</td>
<td>0.0315</td>
</tr>
<tr>
<td>α = Pr(t = 7k) = 1.0438</td>
<td>0.1760</td>
<td>0.1176</td>
<td>0.1054</td>
<td>0.1014</td>
<td>0.0597</td>
<td></td>
</tr>
<tr>
<td>α = Pr(t = 8k) = 1.0591</td>
<td>0.2897</td>
<td>0.1950</td>
<td>0.2000</td>
<td>0.1525</td>
<td>0.1446</td>
<td></td>
</tr>
<tr>
<td>α = Pr(t = 9k) = 1.0546</td>
<td>0.2553</td>
<td>0.1658</td>
<td>0.1713</td>
<td>0.1370</td>
<td>0.1188</td>
<td></td>
</tr>
<tr>
<td>α = Pr(t = 10k) = 1.0420</td>
<td>0.1639</td>
<td>0.1189</td>
<td>0.0953</td>
<td>0.0959</td>
<td>0.0508</td>
<td></td>
</tr>
</tbody>
</table>

5.4.1 Effectiveness of sGrapp

The approximation accuracy of sGrapp is not sensitive to window length and the exponent, since there exists a combination of approximation exponent and window length for each stream that yields appropriate MAPE (Figure 5.2). In fact, the best MAPE of sGrapp is significantly lower than 0.1 in all of the rating streams, demonstrating that sGrapp outputs a good approximate of actual butterfly count.

When the approximation exponent is high and the window is compact (bottom right corners in Figure 5.2), the error is high. In this case, sGrapp overestimates the number of inter-window butterflies due to high exponent value. Also, when the exponent is low and the window includes a large number of sgrs (top left corner in Figure 5.2), the error is high. The reason in this case is that sGrapp underestimates the number of inter-window butterflies. An appropriate parameter region to gain a reasonable accuracy is where α and N_b are both high or low (middle diameter from top right corner to bottom left corner in Figure 5.2). The best accuracy is always obtained for higher exponent values. For rating networks, an appropriate exponent value for sGrapp is α = 1.4.

According to the contribution of hubs to the emergence of butterflies (Section 3.2), the value of approximation exponent is related to the probability of having at least one i-hub (Pr(N_{iHub} ≥ 1)) plus the probability of having at least one j-hub (Pr(N_{jHub} ≥ 1)) in the butterflies at time t, i.e. \(\alpha = Pr(t) = Pr(N_{iHub} = 1) + Pr(N_{iHub} = 2) + Pr(N_{jHub} = 1) + Pr(N_{jHub} = 1) \) (Table 3.7). That is, the value of \(\alpha \) can be determined based on
Figure 5.2: Accuracy of sGrapp for different values of α and N_b
Figure 5.3: Relative Error of $sGrapp$ over windows for the best obtained MAPE.
the probability of i- or j-hubs forming butterflies at a certain time point t. The time point t is likely a *tipping point* where the number of hub connections in the graph is stabilized (Figures 3.12 and 3.13). To check this, the value of $Pr(t)$ is calculated for $t \in \{1000, 2000, ..., 9000, 10000\}$ in the Epinions graph stream. The value of MAPE is computed for $sGrapp(N_b, \alpha)$. $\alpha = Pr(t)$ and $N^W_b \in \{0.006N_b, 0.007N_b, 0.008N_b, 0.009N_b, 0.01N_b\}$. Table 5.2 reports the value of MAPE for the approximations with different exponent values and different fraction of unique timestamp per adaptive window. At $t = 6000$, where the exponent is equal to $\alpha = Pr(t = 6000) \approx 1.03$, the approximation error is the lowest. This time point is a *tipping point* where the fraction of average hub degree is steadily low afterward and high backward (Figures 3.12 and 3.13). Moreover, in Figure 5.2, the best accuracy is obtained when the exponent is equal to $Pr(t = 6000) = 1.03$.

Next experiments investigate how $sGrapp$’s performance evolves over windows to track the origins of the accuracy gain. The most accurate α and N_b (highlighted data points in Figure 5.2) are picked and the signed value of relative error $|\hat{B}_k - B_k|/B_k$ for each window W_k is depicted in Figure 5.3. Depending on the value of N_b, the number of windows vary in different streams. Positive errors (depicted by red upward triangles) reflect over-estimations and negative errors (depicted by blue downward triangles) reflect under-estimations. In ML10m, Edit-EnWiki and Edit-FrWiki, the approximation begins with over-estimation and ends up with under-estimation. The underlying reason is the static exponent over sequential windows with different number of connections to the old hubs and consequently different number of inter-window butterflies.

5.4.2 Effectiveness of sGrapp-x

The accuracy of $sGrapp$ is evaluated in terms of MAPE in the region that $sGrapp$ displays the lowest errors in Figures 5.4 – 5.7. While this is not the optimal parameter region for $sGrapp$, it enables a fair comparison of $sGrapp$ with its optimised version $sGrapp-x$ to evaluate the effectiveness of the introduced optimisations. Note that, $sGrapp-x$ begins with a given exponent value and ends up with a modified value after the supervision phase reaches an error below 0.05. Therefore $sGrapp-x$ is fed with same input values of α and N_b as $sGrapp$. The values shown in Figures 5.4 – 5.7 reflect the inputs.

It is evident from these figures that $sGrapp-x$ further improves the accuracy. To further explore the impact of the introduced optimisations on accuracy, Figures 5.4 – 5.7 are compared with Figure 5.2 according to three factors:

- Improving the minimum MAPE (Figure 5.8);
Figure 5.4: Accuracy of $sGrapp$-25 for different values of α and N_b.
Figure 5.5: Accuracy of sGrapp-50 for different values of α and N_b
Figure 5.6: Accuracy of $sGrapp$-75 for different values of α and N_b.

114
Figure 5.7: Accuracy of sGrapp-100 for different values of α and N_b.
• Improving the maximum MAPE (Figure 5.9);
• Expanding the coverage of MAPE ≤ 0.15 and MAPE ≤ 0.2 (Figures 5.10 and 5.11).

The minimum MAPE value in the studied parameter space is roughly the same for both $sGrapp$ and $sGrapp-x \ (x = 25–100)$ in all rating graph streams (Figure 5.8). $sGrapp-x$ lowers the minimum MAPE with respect to $sGrapp$ in Edit-EnWiki graph from 0.681 to 0.376 (via $x = 25$), 0.105 (via $x = 75$), 0.101 (via $x = 50$), and 0.097 (via $x = 100$); in Edit-FrWiki graph from 0.201 to 0.235 (via $x = 25$), 0.137 (via $x = 100$), 0.134 (via $x = 75$), and 0.130 (via $x = 50$). That is, the minimum MAPE is lowered ranging from 44.79% to 85.76% in Edit-EnWiki and 31.84% to 35.32% in Edit-FrWiki. The maximum MAPE related to the over-estimations (bottom right corners in Figures 5.4 – 5.7) is notably decreased in all graph streams (Figure 5.9). The most significant decrease corresponds to Edit-FrWiki stream with the highest change from 2 to 0.26 (via $x = 75, 100$) and Edit-EnWiki stream with highest change from 0.715 to 0.15 (via $x = 100$).
Figure 5.11: Probability of approximation with MAPE less than equal 0.2.

(a) Epinions, $\alpha=1.032$, $N_b=42$, MAPE=0.022

(b) ML100k, $\alpha=1.435$, $N_b=910$, MAPE=0.009

(c) ML1m, $\alpha=1.4$, $N_b=1050$, MAPE=0.043

(d) ML10m, $\alpha=1.394$, $N_b=55$, MAPE=0.187

(e) EnWiki, $\alpha=0.481$, $N_b=250$, MAPE=0.376

(f) FrWiki, $\alpha=0.843$, $N_b=480$, MAPE=0.235

Figure 5.12: Relative Error of $sGrapp$-25 over windows for the best obtained MAPE.
Figure 5.13: Relative Error of sGrapp-50 over windows for the best obtained MAPE.
Figure 5.14: Relative Error of $sGrapp$-75 over windows for the best obtained MAPE.
Figure 5.15: Relative Error of $sGrapp$-100 over windows for the best obtained MAPE.
Figures 5.10 and 5.11 present the probability of approximation with MAPE ≤ 0.15 and MAPE ≤ 0.2 (Pr(MAPE ≤ 0.15(0.2))) by calculating the fraction of approximations that satisfy MAPE ≤ 0.15 and MAPE ≤ 0.2. That is the relative coverage of light blue areas in Figures 5.2 – 5.7. When the approximation MAPE is above 0.15 or 0.2, the corresponding bars are omitted in Figures 5.10 and 5.11. Since sGrapp-100 approximates the number of butterflies in Edit-EnWiki with highest MAPE equal to 0.15, the corresponding bar has a height of 1. sGrapp-25 improves the accuracy of sGrapp in MovieLens10m better than other sGrapp-x versions. For the other graph streams, when x ≥ 50, sGrapp-x displays fairly well accuracy improvement as the probability of accurate approximation (i.e. average window error below 0.15 and 0.2) is amplified. As expected sGrapp-100 has the most improvement, however sGrapp-75 and sGrapp-50 are reliable improvement alternatives for Edit-FrWiki and the rest of graph streams, respectively. sGrapp-x, x = 25, 50, 75, and 100 can achieve the Pr(MAPE ≤ 0.15(0.2)) equal to 67.13% (78.53%), 60.94% (94.55%), 79.74% (84.27%), and 99.31% (100%). Most notably, sGrapp-50(75) increases Pr(MAPE ≤ 0.2) from 0 to 94.55(100)% in Edit-EnWiki.

Next, the evolution of the signed value of relative error are checked over windows for the data points with the lowest sGrapp-x MAPE. As shown in Figures 5.12, 5.13, 5.14, and 5.15, dynamically changing the approximation exponent heals the under/over-estimation problem; Hence the average window error is diminished. sGrapp-x lowers the average approximation error of sGrapp to a value less than equal 0.05 in rating graphs and 0.14 in Wikipedia graphs for any given window length and approximation exponent.

5.4.3 Efficiency of sGrapp and sGrapp-x

The window throughput displays fluctuations due to variable number of sgrs in each window; however overall it is higher in later windows for both sGrapp and sGrapp-100. The total throughput of both sGrapp and sGrapp-100 increases over time. As mentioned in previous section, the old hubs are the main contributors to the butterfly formation. Since old hubs occur in the early windows, the later windows mostly include butterfly vertices with lower degree. That is, there are fewer windowed butterflies in later windows than the inter-window butterflies. Therefore, the exact counting algorithm that computes the number of windowed butterflies finishes quicker. Also, rapid approximation of the inter-window butterflies plays the main role in reducing the processing time, enhancing the total throughput. An evidence is the throughput for MovieLens100k that has almost uniform temporal distribution: There is an increasing total throughput over windows. This is important since the number of sgrs in the windows is not decreasing while the throughput is
Figure 5.16: Average window latency (s) of $sGrapp$.
Figure 5.17: Average window latency (s) of sGrapp-100.
Figure 5.18: Average total throughput (edge/s) of sGrapp at the end of each window.
Figure 5.19: Average total throughput (edge/s) of $sGrapp$-100 at the end of each window.
Figure 5.20: Average window throughput (edge/s) of sGrapp at the end of each window.
Figure 5.21: Average window throughput (edge/s) of sGrapp-100 at the end of each window.
increasing. This confirms (a) the algorithm’s power is independent of the structural/temporal characteristics of the input data and (b) the algorithm is efficient particularly in dense streams.

5.4.4 Comparison with Baselines

The effectiveness and efficiency of sGrapp suit are compared against those of FLEET suit. Experimental results of FLEET suit show that FLEET3, FLEET2 and FLEET1 have the best performance (in that order), therefore these are used as baselines. These three FLEET variants are based on landmark windows, while the other weaker FLEET variants FLEETSSW and FLEETTSW use sliding windows. While sGrapp has the α (approximation exponent) and N_b (number of unique timestamps per window) parameters, FLEET has the M (reservoir size) and γ (sub-sampling probability) parameters. Since the performance of FLEET algorithms is sensitive to its parameters, sGrapp algorithms are compared against the FLEET settings which achieve the best performance. The sub-sampling probability is set as $\gamma = 0.7$ as suggested by FLEET’s authors [286].

When the reservoir size M is greater than the entire stream, latency is negatively impacted since sub-sampling does not occur and all the edges are added to the reservoir and for each new edge the exact butterfly counting is executed. Hence, for evaluating the accuracy over the prefix of a stream, reservoir size is set as $M = 0.01S$, where S is the size of available stream. For evaluating the efficiency, a range of values $M \in \{75k, 150k, 300k, 600k\}$ are also used to examine the throughput over the entire stream; these values are the ones offered in the original paper [286]. The approximation exponent values that yield the lowest MAPE in sGrapp are used; these do not necessarily yield the best MAPE in the optimised variant sGrapp-x. Since FLEET algorithms use different window semantics than sGrapp, virtual burst-based adaptive windows over FLEET algorithms are used to extract the estimated values at the end of virtual windows for accuracy evaluations only (not for efficiency tests). The same value of N_b is used for sGrapp and FLEET suits to compute MAPE: $N_b \in [42, 912, 1050, 80, 290, 500]$ for Epinions, ML100k, ML1m, ML10m, Edit-EnWiki, and Edit-FrWiki, respectively. For efficiency comparisons, the same value used in effectiveness experiments is used since the goal is to check the efficiency cost of the most accurate approximation. For each N_b, there exists an alpha yielding a high precision estimate. N_b does not affect accuracy.

Table 5.3 reports the total throughput over the entire streams for sGrapp and FLEET suits. Since FLEET1’s throughput is very low, it is not included in this experiment. By
increasing the size of reservoir the throughput of all FLEET algorithms decreases since the frequency of exact butterfly counting per edge increases. It is always the case that $M = 75k$ and $M = 600k$ yield the highest and the lowest throughput, respectively. $sGrapp$ outperforms FLEET for every setting: minimum (maximum) ratios of $sGrapp$ to FLEET throughput are 1.32 (16.7), 1.5 (2.5), 1.13 (31.1), 1.58 (100.3), 1.8 (160.4), and 0.4 (32) in Epinions, ML100k, ML1m, ML10m, Edit-FrWiki, and Edit-EnWiki, respectively. $sGrapp$ and $sGrapp-x$ outperform FLEET suit within a range of $[1.13, 160.4]$, with the performance improvement increasing as streams become larger (i.e. Edit-FrWiki, ML10m, and Edit-Enwiki).

Table 5.4 reports accuracy (in terms of MAPE) of $sGrapp$ and FLEET suits over the subset of stream with available true values. $sGrapp$ and $sGrapp-x$ achieve MAPE values equal to 0.022, 0.009, 0.043, 0.143, 0.134, and 0.137 in Epinions, ML100k, ML1m, ML10m, Edit-FrWiki, and Edit-EnWiki which are significantly lower than those of FLEET – $sGrapp$ errors are $0.38x$, $0.02x$, $0.91x$, $1.66x$, $0.08x$, and $0.05x$ of FLEET for these graphs. Table 5.4 shows that for ML10m, FLEET3’s accuracy is 0.057 better than $sGrapp$. Table 5.3 similarly shows that FLEET3’s throughput for the same dataset is up to $100x$ lower, explaining the high computational cost of FLEET3 in this specific dataset. FLEET3 updates the estimate for each new edge by enumerating butterflies incident to that edge. This increases the probability of detecting the incident butterflies by a factor of P (i.e. sampling probability), however the computations are much increased. This technique is more impactful in ML10m with high butterfly density. Butterfly estimate \hat{B} is updated as

<table>
<thead>
<tr>
<th>MAPE</th>
<th>FLEET1</th>
<th>FLEET2</th>
<th>FLEET3</th>
<th>sGrapp</th>
<th>sGrapp-25</th>
<th>sGrapp-50</th>
<th>sGrapp-75</th>
<th>sGrapp-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epinions</td>
<td>0.058</td>
<td>13.789</td>
<td>0.336</td>
<td>0.022</td>
<td>0.022</td>
<td>0.028</td>
<td>0.028</td>
<td>0.028</td>
</tr>
<tr>
<td>ML100k</td>
<td>0.959</td>
<td>2.287</td>
<td>0.399</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>ML1m</td>
<td>0.085</td>
<td>5.261</td>
<td>0.047</td>
<td>0.043</td>
<td>0.043</td>
<td>0.053</td>
<td>0.067</td>
<td>0.055</td>
</tr>
<tr>
<td>ML10m</td>
<td>0.156</td>
<td>0.839</td>
<td>0.086</td>
<td>0.143</td>
<td>0.247</td>
<td>0.162</td>
<td>0.180</td>
<td>0.170</td>
</tr>
<tr>
<td>Edit-FrWiki</td>
<td>1.575</td>
<td>49.165</td>
<td>57.563</td>
<td>0.201</td>
<td>0.313</td>
<td>0.217</td>
<td>0.134</td>
<td>0.137</td>
</tr>
<tr>
<td>Edit-EnWiki</td>
<td>2.689</td>
<td>467.747</td>
<td>178.702</td>
<td>0.684</td>
<td>0.494</td>
<td>0.161</td>
<td>0.141</td>
<td>0.137</td>
</tr>
</tbody>
</table>
soon as an edge arrives in FLEET3 or during the sampling and (or) sub-sampling phase in FLEET1 (FLEET2). In FLEET1, when P is not high or M is small and γ is low, \hat{B} is not frequently updated and error goes up. In FLEET2, many butterflies are missed due to sampling. Moreover, FLEET has poor accuracy when the butterflies are distributed across the edges uniformly (e.g. Edit-EnWiki with a low butterfly density of 9.1×10^{-21} according to the statistics in [286]). The reason is that \hat{B} is updated for some edges only.

In summary, the accuracy of FLEET algorithms are highly dependent on M, γ, and the frequency of updating \hat{B}, because \hat{B} is updated with respect to the P; and P is updated as $p \leftarrow p \ast \gamma$ in each sampling round, which in turn increases \hat{B} more. As depicted in Figure 5.22, M and γ (confounding variables) impact P and P impacts \hat{B} directly through the formula and indirectly through the frequency of updates. A high frequency of butterfly counting and high sub-sampling come at the cost of low throughput. A large M comes at the cost of memory consumption as well as latency issues. FLEET suit cannot guarantee both efficiency and effectiveness at the same time. $sGrapp$ does not suffer from the aforementioned issues since it does not rely on exact counting and sampling; rather it relies on counting the inter-window butterflies. $sGrapp$ keeps the computational footprint of exactly counting the in-window butterflies low by means of the load-balanced adaptive windows and then, effectively estimates the number of inter-window butterflies which are the dominant butterflies based on the butterfly densification power law formalism.

5.4.5 Complexity Analysis

A previous study of space bounds [286] has shown that any butterfly counting algorithm, either randomized or deterministic, that returns an accurate (exact/approximate) answer (i.e. bounds the relative error to a small value $0 < \delta < 0.01$ for each computation round) requires storing the entire graph in $\theta(n^2)$ bits, where n is the number of vertices. On the other hand, it is not possible to determine the size of stream (i.e. n) in real world streaming graphs. Hence, it is not possible to determine the memory required for processing the data without knowing the size of data [26]. In the following, the properties of the introduced
estimator are analyzed in terms of computational and error bounds.

Computational Bound

THEOREM 2 The upper bound of computational complexity of sGrapp for each window \(W_k \) is
\[
O\left(\frac{K_i,W_k(K_i,W_k-1)}{2}K_j,W_kRN_i,W_k\right),
\]
where \(R \) is the average stream rate and \(K_i,W_k(K_j,W_k) \) is the lower bound of degree of \(i(j) \)-vertices in \(W_k \).

PROOF 2 sGrapp’s computations at each window are dominated by the exact counting algorithm as calculating the number of inter-window butterflies is negligible and we ignore it as well as the summations. When \(i \)-vertices are the vertex set with lower average degree, the computational complexity of the core exact counting algorithm is the following.

\[
O\left(\sum_{i_1 \in V_i} \sum_{j_2 \in N_{i_1}} \min(\deg(j_1), \deg(j_2))\right)
\]

Assume the lower bound \(i \)-degree and \(j \)-degree in the graph snapshot corresponding to the tumbling window \(W_k \) be \(K_{i,W_k} \) and \(K_{j,W_k} \), respectively. Accordingly, the computational complexity for this window would be
\[
O\left(\frac{K_i,W_k(K_i,W_k-1)}{2}K_j,W_k|V_i,W_k|\right),
\]
where \(V_i,W_k \) denotes the set of \(i \)-vertices in the window \(W_k \). Since the stream can include edges connecting already existing vertices, the total number of edges in \(W_k \), denoted as \(E_{W_k} \), is greater than equal the total number of \(i \)-vertices in \(W_k \), i.e. \(|V_i,W_k| \leq |E_{W_k}| \). Therefore,

\[
O\left(\frac{K_i,W_k(K_i,W_k-1)}{2}K_j,W_k|V_i,W_k|\right) \leq O\left(\frac{K_i,W_k(K_i,W_k-1)}{2}K_j,W_k|E_{W_k}|\right)
\]

sGrapp uses tumbling windows with adaptive lengths, therefore \(|E_{W_k}| \approx RN_i^W, \) where \(R \) is the average stream rate (i.e. number of edges per timestamp) and \(N_i^W \) is the number of unique timestamps (bursts) in \(W_k \). Hence, the upper bound of computational complexity of sGrapp for a tumbling window \(W \) at \(t \) is
\[
O\left(\frac{K_i,W_k(K_i,W_k-1)}{2}K_j,W_kRN_i^W\right).
\]
Note that this stands for all sequential windows.

Error Bound

LEMMA 1 The exact number of inter-window butterflies at the end of each window \(W_k \), \(\forall k > 0 \), denoted as \(B_{\text{inter}}^W \) is bounded as
\[
|E_{W_k}| - 2|V_i,W_k| \leq B_{\text{inter}}^W \leq \binom{|V_i,W_k|}{2},
\]
where \(V_i \) is the set of all \(i \)-vertices in the \(W_k \).
Figure 5.23: Schematic butterfly formation. i(j)-vertices are in the bottom (top).

Proof 3 The number of inter-window butterflies contributed by window \(W_k\) denoted as \(B_{\text{inter}}^W\), is minimum when the \(W_k\)’s edges \(E_{W_k}\) are uniformly distributed over vertices by connecting each i-vertex in \(W_k\) to at least 2 j-neighbors in \(W_k\) and previous windows forming a series of caterpillars (solid edges in Figure 5.23–left). In this case, according to the pigeonhole principle, the number of edges that complete the caterpillars (dashed edges in Figure 5.23–left) will determine the number of inter-window butterflies: \(B_{\text{inter}}^W = |E_{W_k}| - 2|V_{i,W_k}|\). \(B_{\text{inter}}^W\) is maximum when all of the \(W_k\)’s i-vertices are connected to two j-vertices such that at least one of them is not in \(W_k\) (Figure 5.23–right). (Note, when all of j-neighbors are in previous windows, there wouldn’t be any in-window butterfly in \(W_k\)). In this case, the number of inter-window butterflies reduces to the number of ways we can choose two i-vertices from the entire set of i-vertices: \(B_{\text{inter}}^W = \left(\frac{|V_{i,W_k}|}{2}\right)\). Therefore, \(|E_{W_k}| - 2|V_{i,W_k}| \leq B_{\text{inter}}^W \leq \left(\frac{|V_{i,W_k}|}{2}\right)\).

Theorem 3 The absolute error of sGrapp at the end of each window \(W_k\) is bounded as \(\sum_{l=1}^{k}|E_l|^\alpha - \left(\frac{|V_{i,W_k}|}{2}\right) \leq \text{Err} \leq \sum_{l=1}^{k}|E_l|^\alpha - |E_{W_k}| + 2|V_{i,W_k}|\) where \(E_k, E_{W_k}\), and \(V_{i,W_k}\) denote the number of edges in the interval \([W_0^b, W_k^c]\), the number of edges in the interval \([W_k^b, W_k^c]\), and the number of i-vertices in the interval \([W_k^b, W_k^c]\), respectively.

Proof 4 sGrapp estimates the total number of butterflies at the end of each window \(W_k\), \(\forall k > 0\), as \(\hat{B}_k = \hat{B}_{k-1} + B_{W_k}^W + |E_k|^\alpha\) with initial term \(\hat{B}_0 = B_{W_0}^W\). Expanding this recursive equation would yield \(\hat{B}_k = \sum_{l=0}^{k}B_{W_l}^W + \sum_{l=1}^{k}|E_l|^\alpha\). On the other hand, according to the lemma 1, the true value of the total number of butterflies at the end of each window \(W_k\), \(\forall k > 0\), denoted as \(B_k\) lies in the range \(\sum_{l=0}^{k}B_{W_l}^W + E_k - 2|V_{i,W_k}| < B_k < \sum_{l=0}^{k}B_{W_l}^W + \left(\frac{|V_{i,W_k}|}{2}\right)\), where \(V_{i,W_k}\) is the set of all seen i-vertices in the interval \([W_k^b, W_k^c]\). Therefore, the absolute error of sGrapp \(\text{Err} = |B_k - \hat{B}_k|\) falls in the range \(\sum_{l=1}^{k}|E_l|^\alpha - \left(\frac{|V_{i,W_k}|}{2}\right) \leq \text{Err} \leq \sum_{l=1}^{k}|E_l|^\alpha - |E_{W_k}| + 2|V_{i,W_k}|\).
5.5 Summary

Essence and features. Butterfly counting is a fundamental problem in mining bipartite streaming graphs. Butterfly counting is computationally expensive, and known techniques do not scale to large graphs; the problem is even harder in streaming graphs. The insights from Phase 1 of analysis of real-world streams shed light on developing a streaming graph approximation framework for butterfly counting, $sGrapp$, as follows.

- The streaming graph mining findings establish the requirements for an efficient and effective analytical stream processing framework. Accordingly, a window management method is introduced to deal with the bursty emergence patterns of butterflies. This approach uses burst-based tumbling windows that can adapt to the temporal distribution of the real streams with no assumption about the order and number of arriving streaming graph records. The benefits are two-fold:
 - Providing load-balanced windows for efficient analytical workloads.
 - Enabling accurate continuous/temporal analysis which are based on comparing the analysis over different windows of a stream as well as analysis over different streams having different temporal distributions.

- Statistical analyses uncover the temporal organizing principles of butterflies that impact the identification of any potential butterfly that should be counted by the algorithm. Specifically, the study reveals the dominant contribution of old hubs with young neighbours on shaping butterfly structures over time. That is, the stream mining reveals the emergence of a certain type of butterflies (inter-window butterflies), which are computationally challenging to capture since they span a long time interval to form (as it takes a while before newly added vertices get connected to old hubs and the butterfly structure completes) and demand lengthy time-based windows to cover them (performance bottleneck of incremental butterfly approximation). The enumeration of these butterflies is separated from the rest of streaming butterflies and their count is estimated according to the BPL. This separation has two impacts:
 - Increases the accuracy due to capturing frequent butterflies.
 - Increases efficiency due to enumerating the rest of the streaming butterflies using the proposed exact counting core algorithm on top of an adaptive burst-based windowing method.

- The results of streaming graph mining (contribution of old hubs to butterfly emergence and their dynamic degree) explain the fluctuating over/under-estimation of
butterfly count. Accordingly, optimisations are introduced to enhance the approximate count particularly in dense graphs. *sGrapp* is optimised by changing the exponent of BPL over windows. To this end, it is modified to a semi-supervised algorithm that is called *sGrapp*-x. The performance is improved as the following.

- The minimum average window error is lowered for up to 85.76%.
- The maximum average window error is lowered for up to 87%.
- The probability of low approximation error (i.e. error below 0.15 and 0.2) increases up to 100% in the densest graphs.

Use cases. Similar to triangles in unipartite graphs, enumerating butterflies is crucial in understanding the structure of bipartite graphs. This benefits many applications where studying the cohesion in a graph shaped data is of particular interest. Examples include investigating the structure of computational graphs or input graphs to the algorithms, as well as dynamic phenomena and analytic tasks over complex real graphs.

Evaluations. *sGrapp* displays average window error below 0.05 in streams with almost uniform temporal distribution and its optimised variant yields average window error below 0.14 in streaming graphs with non-uniform temporal distribution. *sGrapp* can handle streams with both high number of edges and high average degree with a sub-linear memory footprint, which is lower than that of the baselines and processes 1.5×10^6 sgrs-per-second. Experimental analysis show that *sGrapp* achieves 160× higher throughput and 0.02× lower estimation error than baselines. Moreover, empirical analyses demonstrate that the performance of *sGrapp* is independent of its input data, hence can be applied to any real stream.
Chapter 6

Streaming Graph Analytics - Concept Drift Detection

Concept drift (CD) is a phenomenon that occurs when “changes in hidden context can induce more or less radical changes in target concept” [344]. Hidden context refers to insufficient, incomplete, or unobservable information about the dataset [113], and target concept refers to known and/or observable information which have direct impact on the output of a downstream task over this dataset. The task can be training a learner model or some form of data analytics/analysis; in both cases the processing task is required to adapt to the changes in its fresh input so as to generate relevant and reliable outputs. CD has been identified as the main cause of decreased effectiveness in many data-driven information systems such as data-driven decision support systems and early warning systems [218]. CD detection benefits applications including cases where it is important to detect a change in the streaming sensor data that affects the automatic monitoring of operation of an industrial plant, a smart home management system, or a robotic mobile system.

CD is natural in non-stationary settings where temporal or spatial evolutions in data characteristics or generative source(s) are the origins of the drift [173, 237]. Streaming data are good representatives of such non-stationary settings, where changes are reflected in data snapshots/samples created at different time points or locations over streaming data records generated by one or multiple generative sources. Another source of change can be sampling bias in supervised machine learning tasks where the generating distribution and/or labelling function of source training data (a source domain) is different from those of target/test data (a target domain) used for operation/evaluation of the trained model. This case is referred to as domain adaptation [49, 48, 50, 101, 43]. In this thesis, the former case is studied: detecting changes in streaming data records which are transient,
sequential (partially ordered by their arrival time), and heterogeneously interconnected, forming a bipartite streaming graph. No assumptions are made on the downstream task(s) and the availability of data labels in the source and target domains. The goal is to answer the question \textit{how to detect/understand concept drift in a bipartite streaming graph}. It is an important problem for the following reasons:

- Study of CD is vital in various application areas such as monitoring and control (for “real-time monitoring or control of some automated activity”), information management (for “organizing and personalizing information”), and analytics and diagnostics (for “characterizing health, well-being, or a state of humans, economics, or entities”) [381].

- Current works mostly focus on supervised learning tasks where the training streaming data records are labelled and statistically independent (usually stream of data points or unipartite graphs). In these studies, CD is considered as a change in a statistical property of data, particularly the joint probability distribution of data and a target label. On the other hand, in many real-world scenarios, the data records are structured as bipartite streaming graph records: heterogeneously interconnected and not statistically independent. Also, in the aforementioned applications, the processing task includes pattern recognition, anomaly detection, and clustering, where the ground truth is not always available and the task is unsupervised.

- Research in CD management covers three aspects [218]:

 - CD detection: identify changes to characterize and quantify the drift.

 - CD understanding: describe the drift event by providing information about the time, severity, and/or the contributing factors of drift.

 - CD adaptation: update a downstream task whenever a need for adaptation is identified.

While many specialized techniques are introduced in the literature for online drift adaptation as part of supervised prediction tasks such as classification, limited number of works consider drift detection over a streaming graph as an independent component that can be combined with downstream analytics. Therefore, there is still a need for a general purpose CD management framework that

- integrates with any downstream analytics (both supervised and unsupervised adaptive tasks as discussed above),
– incurs low computational overhead in terms of both time and memory, while accurately detecting the drifts,
– supports various drift types,
– provides information about the drifts’ time and location,
– enables unsupervised drift detection, and addresses the lack of ground truth for drift events in real-world data streams, and
– does not require user-defined threshold for drift evaluations.

6.1 Drift Detection over Streaming Graphs

Detecting drifts in streaming graphs can be done by tracking either the changes of the generative source or the performance of a downstream task operating on the data. While the latter method depends on the task, the former depends on the data source, which may or may not be related to the task. For instance, certain tasks require specific data formats/availability, while different tasks using the same data can be designed for a certain goal. This thesis takes the former approach to detect a change in a transient concept by detecting a change in data source. The precise problem definition is as follows: Given a sub-sequence of streaming graph records partially ordered by their arrival time steps, how to detect a concept drift as close as possible to its occurrence, while providing descriptive information about the drift.

While different structures can be considered for transient concept, temporal motifs are better candidates since their abundance over the timeline of sgr arrivals benefits drift detection; less frequently occurring structures challenge the detection method. As shown in Chapter 3, butterflies are temporal motifs and their emergence patterns imply the generative patterns of sgrs. Therefore, butterflies can be utilised to effectively detect drifts over streaming graphs. Moreover, butterflies, as the smallest bipartite cohesive subgraphs, enable incremental processing during drift detection. As new sgrs are added to the graph snapshot, butterflies can be maintained without re-examining. Other bipartite structures (maximal subgraphs including several butterflies such as k-bitruss [332], k-wing [288], and $s(\alpha, \beta)_{\tau}$-core [151]) require dynamic maintenance. Therefore, butterflies can be utilised to effectively and efficiently detect drifts over streaming graphs.

Efficiency and effectiveness of the detection approach should be simultaneously achieved since:
Table 6.1: Frequent notations in this chapter.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(⊳⊲v) = v$</td>
<td>Function mapping a young butterfly to a unipartite vertex v</td>
</tr>
<tr>
<td>$∩(⊳⊲u, ⊳⊲v)$</td>
<td>Set of common vertices in $⊳⊲u$ and $⊳⊲v$</td>
</tr>
<tr>
<td>$Ω_v$</td>
<td>Frequency of a phase oscillator vertex v</td>
</tr>
<tr>
<td>$θ_v$</td>
<td>Phase of a phase oscillator vertex v</td>
</tr>
<tr>
<td>$O[t]$</td>
<td>Order parameter values at sequential time points</td>
</tr>
<tr>
<td>S</td>
<td>Drift detection suffix size</td>
</tr>
</tbody>
</table>

- Accuracy of drift detection can be influenced by the amount of analyzed data records. For instance, detecting an abrupt drift does not require a lengthy window of data records compared to gradual, incremental, or reoccurring drifts which require a window spanning a longer time interval and larger amount of data to be examined.

- Accuracy of detections relies on the efficiency, since late detections can be misleading and detections should be as close as possible to the drift events.

On the other hand, similar to other analytic tasks, CD detection over streaming graphs is computationally expensive due to the volume and velocity of the data, as well as the iterativeness and statefulness of the processing task. As discussed in Section 5.1, computing exact answers for analytic tasks over streaming graphs is not feasible since (1) it is not possible to maintain the entire graph, intermediate results, and system states in memory due to unboundedness of the graph, and (2) exact answers demand performing the analytics over the entire stream. Even if we relax the memory constraint, analytics such as butterfly-based tasks enumerating butterfly cliques are compute-intensive, incurring a lower bound of computation of $O(n^3)$, where n is the growing size of vertices in the stream. Therefore, a butterfly-based drift detection algorithm requires design of efficient and effective sliding window management techniques.

In the following, first, the related works on concept drift management are reviewed in Section 6.2. Next, transient concept and concept drift in a streaming graph are defined, according to which a framework for streaming graph drift detection called $sGradd$ is introduced and evaluated in Sections 6.3 and 6.4. $sGradd$ demonstrates efficiency and effectiveness in detecting drifts with different types and occurrence intervals. Table 6.1 lists the frequent notations in this chapter.
6.2 Related Works

The related works are viewed through the lens of a modular framework for performing drift detection, understanding, and adaptation. The framework has three components:

- Data management for retrieving streaming data and memory management to decide how to retain data and system state in memory;
- Drift detection for identifying changes and corresponding metadata; and
- Drift adaptation for updating the downstream task.

Accordingly, the existing works are divided in two groups: active (Figure 6.1) and passive (Figure 6.2) approaches. In active approaches, streaming data is continuously ingested and windowed via data management component and then drifts are explicitly detected and explained via drift detection component, which triggers a signal for updating the downstream task via drift adaptation component. In passive approaches, a data model is learned in the data management component to extract the most important features of data for dimensionality reduction purposes, and the target predictions of downstream task. Based on the performance of this model (for instance, the learner’s error), an implicit drift alert is signaled for drift adaptation. Since the focus in this thesis is on concept drift detection and understanding, in the following, only the data management and drift detection components in active and passive approaches are reviewed. More comprehensive review of the works on drift adaptation exist in literature [218, 125, 4].

6.2.1 Data management

Data records are continuously ingested and windowed through the window management sub-component and possibly fed into a learner model through the data model sub-component (green boxes in Figures 6.1 and 6.2).

Window management. While in most passive approaches, a model is learned over the stream of incoming data records using a landmark window, active approaches usually use a two-window method: a reference window and a data window. Contents of data window are evaluated when the window closes using the reference window as a baseline to determine whether or not a change has happened. While the data window covers the newly arrived data records, the reference window can be fixed [292, 219] or moving [173, 35]. Another windowing method in active approaches is to use one data window. Contents of each
Figure 6.1: Active concept drift management.

Figure 6.2: Passive concept drift management.
window instance are compressed to low dimensional embeddings. This results in a sequence of embeddings as the drift criterion, which is evaluated to detect a change \cite{352, 358, 262}. Different techniques have been used in drift detection literature for maintaining windowed contents with respect to the window borders, window size, and sliding approach. Active approaches commonly use landmark windows \cite{124}, while others use sliding windows \cite{246, 352, 358, 262} with static time-based or count-based sizes \cite{34, 352, 358, 262} or dynamic and optimised sizes \cite{60, 132}. When the window size is fixed, all/sampled streaming records are added/removed according to the size \cite{352, 358, 262} or a weighting function is used to gradually remove elements with low weights \cite{125}. Passive approaches update the learner upon the arrival of each new data record. These approaches do not remove the contribution of old data and slowly adapt to abrupt changes as adaptation only happens when new data records omit the old concepts. Window management raises a trade-off between efficiency and effectiveness of drift detection in both active and passive approaches as small windows can detect sudden/abrupt drifts, however gradual and slow drifts require sufficiently large window sizes.

Data model. In passive approaches, given a window of streaming data, a data model is learned which performs the target adaptive task (green boxes in Figure 6.2). The decrease in model’s effectiveness determines the need for an adaptation (yellow box in Figure 6.2). For instance, when the online error rate of a classifier reaches a drift threshold, a model update is required \cite{124, 212, 349, 122}. Some methods also consider a warning threshold to prepare a new model and replace it with the old model when the drift threshold is reached. Since there is no explicit drift detection in passive approaches, understanding the drift events (i.e. when, where, and how the drift has happened) is not possible and the adaptation can not be informed by the drift patterns. For instance, reoccurring concept drifts can be more efficiently adapted by reusing the trained models or re-training the poor performers only, especially in case of ensemble learning. Unnecessary updates can be avoided in case of insignificant drifts. Moreover, the adaptation can be triggered too often in noisy environments, or too slowly in case of gradual drifts, which requires lengthy windows that in turn increase the computational cost. In those cases where a user feedback is required for model updates, the drift adaptation is further delayed.

6.2.2 Drift detection

In active approaches, given the windows of streaming data, drift criteria is evaluated to decide whether or not a drift has occurred (yellow boxes in Figure 6.1). Hidden concepts that are recognized as the root source of drifts are not tractable/measurable, therefore concept drift is usually detected when a statistical property of data stream changes over time. The
first formal definition of change detection in data streams [173] considers windows as data
samples and compute their distribution distance to identify a drift using a hypothesis test
method. This type of drift detection is also done using multiple hypothesis tests running
in parallel or as a hierarchy of sequential tests [366, 356]. Other works on graph streams
(sequence of graph snapshots arriving one at each time point) compute embeddings [358] or
entropy of discriminative subgraphs [262, 352] over a batch of graph snapshots and detect
a change over the sequence of embeddings/entropy values. The drift evaluation is done by
means of a diversion dissimilarity measure [262] or a hypothesis test [358] and utilising a
static user-defined threshold.

6.3 sGradd

In this section the concept of drift in a streaming graph is defined and a streaming graph
framework for drift detection called sGradd is proposed. The framework features the
following properties:

- It has only one parameter, \(N_b \), which determines the number of bursts in the window
 ingesting the sgrs. This parameter can be adjusted based on the expected level of
 burstiness in the stream. For bursty streams, \(N_b = 1 \) is a reasonable setting, while in
 case of low streaming rates, \(N_b > 1 \) is a more efficient setting.

- Equipped with efficient window management techniques, the framework balances the
 computational workload and conforms to real-world streams with varying streaming
 rates over time. It uses one data window only, and does not require a reference
 window. The data window is a burst-based sliding window which is projected to a
 predicate-based (logical) sliding window. Contrary to existing works that use fixed-
 size sliding windows with a fixed slide size of one step, in the proposed framework,
 the sizes of both windows adapt to the evolving streaming rate. Also, the burst-based
 sliding window moves forward as soon as it is projected by retiring all of its elements
 (i.e., it is a tumbling window). The predicate-based window moves forward after the
 drift detection, if a predicate over the stream burstiness is satisfied, by removing a
 fraction of its randomly selected elements.

- It employs an active approach with a data management component (similar to data
 modelling in passive approaches), which reduces time and memory consumption
 through the extraction of effective information from the sgrs and efficiently main-
 tain this information as the system state. The drift evaluation is done by means
of a simple and efficient measure, and utilises a dynamic threshold adaptive to the number of detections without user input initialization.

6.3.1 Definitions

Definition 17 (Structural Pattern) Structural pattern \(h \) is a quantified pattern of vertex inter-connectivities in a graph snapshot, i.e. \(h(G_{W,t}) : G_{W,t} \mapsto \mathbb{R} \).

Definition 18 (Transient Concept) Transient concept is a non-stable structural pattern in transient data records, i.e. \(h(G_{W,t}) \) | \(\exists(W_{1},t_{1}), (W_{2},t_{2}) : h(G_{W_{1},t_{1}}) \neq h(G_{W_{2},t_{2}}) \).

Definition 19 (Concept Drift in Streaming Graphs) Concept drift in a streaming graph is the event of a change in a transient concept over successive graph snapshots. In other words, given a certain pattern \(h \), concept drift is the event of observing two successive windows \(W_{1} \) and \(W_{2} \) corresponding to the sequential time points \(t_{1} \) and \(t_{2} \), where \(t_{2} - t_{1} \geq 1 \) and \(h(G_{W_{1},t_{1}}) \neq h(G_{W_{2},t_{2}}) \).

As shown in Figure 6.3, a concept drift can occur in four different modes according to the progress of drift [125]: gradual, reoccurring, incremental, or abrupt.

6.3.2 Overview

The sGradd framework (Figure 6.4) takes sgrs from a stream as input, maintains an incrementally updatable graph structure, and streams-out the drift signals as triggers for any online adaptive algorithm. It has a modular architecture with two main components for data management and drift detection.

Data Management. Given the arriving sgrs, in this stage data is managed through windowing and abstracting important information. The goal is to create efficient and effective workload for ultimate processing in the drift detection component. The main idea is to use a tumbling window to ingest raw data records and update information about the burstiness of the stream followed by a projection of the window into a more compact window to effectively reduce the computational overhead of drift detection. This component has two sub-modules:
<table>
<thead>
<tr>
<th>CD mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradual</td>
<td>the transient concept changes gradually and frequently, while spanning a</td>
</tr>
<tr>
<td></td>
<td>considerable time interval until a new concept is stabilized.</td>
</tr>
<tr>
<td>Reoccurring</td>
<td>the transient concept switches to a new concept and then it is repeated.</td>
</tr>
<tr>
<td>Incremental</td>
<td>the transient concept changes as incremental steps towards a new concept.</td>
</tr>
<tr>
<td>Abrupt</td>
<td>the transient concept switches to a new concept suddenly at a trivial time</td>
</tr>
<tr>
<td></td>
<td>interval.</td>
</tr>
</tbody>
</table>

Figure 6.3: Concept drift modes.
• **Window Management**: This sub-module ingests the sgrs and uses two windows W_{BBG} and W_{UWGO} to manage the sgrs and system state, respectively. W_{BBG} is a burst-based tumbling window with a corresponding bipartite graph snapshot. It accepts ingested sgrs (raw data records). W_{BBG} is projected to W_{UWGO}, which is a predicate-based window with a corresponding unipartite weighted graph of oscillators. It updates the system state as described below.

• **System State Management**: The key temporal and structural features of the stream (burstiness properties and butterfly inter-connectivities) are extracted from W_{BBG} and embedded into UWGO to form system states. Drift detection component operates on UWGO and then a number of vertices are removed from UWGO if a predicate is
satisfied. This removal completes a computation round1.

UWGO is aimed to reduce the computational expenses due to the following reasons:

- The butterflies in W_{BBG} are mapped to vertices forming UWGO. The unipartite graph of UWGO resembles a network of oscillators, where each oscillator v has a phase $\theta_v \in [0, 2\pi]$ which oscillates with a frequency Ω_v. The phase of an oscillator embeds the neighborhood of the corresponding butterfly. Therefore, projecting BBG to UWGO implies projecting the butterfly neighborhoods to a latent space of phases in $[0, 2\pi]$.
- The contents of W_{BBG} are entirely retired as soon as they are projected to UWGO. This frees up memory and avoids redundancy. In another words, UWGO decreases the memory consumption by reducing the size of system state and retiring the processed sgrs.
- Similar to W_{BBG}, W_{UWGO} adapts to sgr streaming rate by adjusting its slide interval and slide size to the burstiness of stream. Therefore, UWGO balances the workload assigned to data management and drift detection components in the next round as it adapts to the stream burstiness.
- UWGO is constructed based on mapping butterfly structures to UWGO vertices. Butterflies do not change with the addition of new sgrs, therefore UWGO is maintained incrementally by adding new vertices/edges. In contrast, other bipartite structures such as k-bitruss \cite{332}, k-wing \cite{288}, and $s(\alpha, \beta)_\tau$-core \cite{151} require dynamic maintenance in streaming settings since they are maximal subgraphs, which include butterflies. Using such structures would add the overhead of recomputing the UWGO structure.

\textbf{Drift Detection.} Given the UWGO snapshot, in this stage concept drifts are detected. Since butterflies are building blocks of the stream (Chapter 3), the transient concept (Definition 18) is considered to be the butterfly inter-connectivity pattern in the original stream. The goal is to detect a change in this concept (Definition 19) to figure out a change in the streaming graph. The main idea is to quantify and evaluate two evolution trends of the transient concept, an observed evolution trend and a predicted one. Briefly, the current and future information about the data are extracted and utilised to learn a drift in the past.

1In a distributed/parallel setting, each computation round can start with ingesting sgrs to a window $W_{BBG,K+1}$ in parallel to detecting drifts on a previous window $W_{UWGO,K}$, right after the projection is done. This reduces the interval between two execution of drift detection for as much as $O(\text{Maximum}(\text{ingest}(k + 1), \text{detect}(k) + \text{retire}(k)))$.

146
This is done efficiently through the UWGO to learn the drifts as close as their occurrences. This component has two sub-modules:

- **Drift Criteria:** This sub-module computes the concept drift criteria (the density of butterfly inter-connections) over UWGO. For each UWGO snapshot, two instances of the drift criteria are quantified and appended to their corresponding sequence: one based on the observed butterfly inter-connectivities and another based on a prediction of future inter-connectivities.

- **Drift Evaluation:** The quantified drift criteria are evaluated to detect a drift in transient concept. The trend of evolutions in the two sequences of drift criteria are examined while considering the burstiness profile of the stream. At the detection of a change, a drift alert is signaled with descriptive information about the time and location of the drift.

Data Structure. The bipartite graph snapshots of BBG are implemented similarly to the object oriented data structure described in Section 4.3.2. The unipartite graph snapshots of UWGO are also implemented using an object oriented approach as following.

- A vertex is an object with three attributes: an integer ID, a double phase, and a double frequency. To assign the vertex ID, the vertex object \(v \) is created with zero values for all attributes and next the hash code of the object \(v \) sets the ID.

- An edge is an object with four attributes: a String ID concatenating the ID of vertices, two vertex objects and a double weight.

- A hash set retains vertices in \(V \) and two hash indexes are used to store \(N(v) \) and fast retrieval of graph elements: One hash index retains \(N(v) \) by mapping the vertex IDs to a hash set of neighbours; Another hash index retains \(E \) by mapping the edge IDs to the edge objects. New vertices are added to \(V \) and to \(N(v) \) if their ID is absent, therefore the stored vertices have distinct IDs. When an sgr arrives, The ID of sgr vertices are added to \(N(v) \) according to the aforementioned method and their corresponding hash set of neighbours are updated. Duplicate edges are not stored.

\(sGradd \) is precisely described in Algorithm 8.
Algorithm 8: sGradd(N_b)

Data: $\mathcal{R} = \langle r^1, r^2, \cdots \rangle$, sequence of sgrs

Input: N_b, Size of BBG window

1. $BBG \leftarrow \langle V_1 = V_i \cup V_j = \emptyset, E_1 = \emptyset \rangle$, $UWGO \leftarrow \langle V_2 = \emptyset, E_2 = \emptyset \rangle$, $unqt \leftarrow \emptyset$, $k \leftarrow 0$, $t \leftarrow 0$, $currentB \leftarrow 1$, $\bar{B} \leftarrow 0$, $bursty \leftarrow false$, $maxB \leftarrow 0$, $b2v \leftarrow \emptyset$, $d \leftarrow 0$

2. while true do

 3. $\langle currentB, \bar{B}, maxB, isBursty \rangle \leftarrow ingest(r^t, currentB, \bar{B}, maxB, isBursty)$

 4. if $(\tau^t \notin unqt \& (|unqt| + 1)\%N_b = 0 \& |unqt| > 1)$ then

 5. $unqt.add(\tau^t)$

 6. $UWGO \leftarrow project(iVertexConnections, unqt, BBG, UWGO, b2v)$

 7. System.gc()

 8. $\langle O_1, O_2 \rangle \leftarrow DriftCriteria(UWGO, t)$

 9. $d \leftarrow DetectDriftv1(O_1, O_2, d, t, winNum)$ or

 $DetectDriftv2(\bar{B}, maxB, O_1, O_2, d, t, winNum)$

 10. $\langle UWGO, k \rangle \leftarrow slide(UWGO)$

 else

 12. $unqt.add(\tau^t)$

 13. $t ++$

6.3.3 Data Management

The interleaved procedures of window management and system state management sub-modules are as follows (steps 1 and 2 and green boxes in Figure 6.4).

1) Arriving sgrs are continuously ingested into W_{BBG} (Algorithm 8, line 3 invoking Algorithm 9). Edges are added to BBG and the burstiness profile of the stream, which includes the following four quantities, is updated online.

 - $currentB$, the current burst size
 - \bar{B}, the average burst size
 - $maxB$, the largest seen burst size
 - $isBursty$, a boolean flag for burstiness of the arriving sgrs

W_{BBG} is a burst-based tumbling window (Definition 10), same as the window used in $sGrapp$ (described in Section 5.3). When N_b bursts are seen, the window closes and the following steps are performed (Algorithm 8, lines 4-10).
2) The full window \(W_{BBG} \) is projected to \(W_{UWGO} \) as follows (Algorithm 8, line 6 invoking Algorithm 10 – Figure 6.5).

2.a) The structure of UWGO is updated by identifying the young butterflies, mapping them to UWGO vertices, and connecting the UWGO vertices. The young butterflies (Definition 15) \(\Rightarrow \in W_{BBG} \) are identified using the exact butterfly listing algorithm in sGrapp suit (Algorithm 10, lines 3-15). Figure 6.5(b) illustrates the eight young butterflies identified among eleven butterflies (butterflies incident to \(j_1 \) are excluded):

\[
\begin{align*}
\mathbf{v}_1 &= \{ e_{i_1,j_2}, e_{i_2,j_2}, e_{i_1,j_3}, e_{i_2,j_3} \} \\
\mathbf{v}_2 &= \{ e_{i_1,j_3}, e_{i_2,j_3}, e_{i_2,j_4}, e_{i_1,j_4} \} \\
\mathbf{v}_3 &= \{ e_{i_1,j_2}, e_{i_2,j_2}, e_{i_2,j_4}, e_{i_1,j_4} \} \\
\mathbf{v}_4 &= \{ e_{i_2,j_5}, e_{i_3,j_5}, e_{i_3,j_6}, e_{i_2,j_6} \} \\
\mathbf{v}_5 &= \{ e_{i_4,j_7}, e_{i_5,j_7}, e_{i_5,j_8}, e_{i_4,j_8} \} \\
\mathbf{v}_6 &= \{ e_{i_5,j_9}, e_{i_6,j_9}, e_{i_6,j_10}, e_{i_5,j_10} \} \\
\mathbf{v}_7 &= \{ e_{i_6,j_{11}}, e_{i_7,j_{11}}, e_{i_7,j_{12}}, e_{i_6,j_{12}} \} \\
\mathbf{v}_8 &= \{ e_{i_8,j_{13}}, e_{i_9,j_{13}}, e_{i_9,j_{14}}, e_{i_8,j_{14}} \}
\end{align*}
\]

UWGO vertices are created and connected to each other (Algorithm 10, line 16 invoking Algorithm 11). Each young butterfly is mapped to a unipartite vertex using a projection function \(P : \Rightarrow \in W_{BBG} \mapsto v \in W_{UWGO} \). Two unipartite vertices are connected iff the corresponding butterflies share at least one i-(j-)vertex and the number of shared vertices determines the edge’s weight (Algorithm 10, lines 5-19). i.e. for any UWGO vertices \(u \) and \(v \),

\[
e_{vn} = (v, n, | \cap (\Rightarrow u, \Rightarrow v)|) \in UWGO \iff v = P(\Rightarrow u), n = P(\Rightarrow v), | \cap (\Rightarrow u, \Rightarrow v)| \geq 1
\]

where \(\cap (\Rightarrow u, \Rightarrow v) \) is the set of shared i-(j-)vertices in \(\Rightarrow u \) and \(\Rightarrow v \). In user-item streams, i-vertex based connections reveal patterns of user preferences over new items and j-vertex based connections reveal patterns of new item perceptions. For example, in Figure 6.5(c), \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \) are connected by an edge with weight equal to two since \(\Rightarrow \mathbf{v}_1 \) and \(\Rightarrow \mathbf{v}_2 \) share two i-vertices \(i_1 \) and \(i_2 \).

2.b) The local data structures are set to null. Also, all of the sgrs in \(W_{BBG} \) are retired to free up memory and avoid redundant updates to the system state (Algorithm 10, line 17).
2.c) The attributes of UWGO vertices (connected phase oscillators) are updated (Algorithm 10, lines 18-23). To this end, each vertex $v \in W_{UWGO}$ is assigned a frequency Ω_v sampled from a normal distribution with mean equal to one and a phase $\theta_v = (\sum_{n \in N(v)} H(n)) \% 2\pi$, where $H(n)$ is the hash code of the object representing the vertex n. Isolated vertices would have $\theta = 0$ and vertices with same neighbourhoods would have same phases. Figure 6.5(d) shows example phases for oscillators, where $\bowtie v_8$ has $\theta = 0$ since it is not connected to other butterflies, $\bowtie v_5$ and $\bowtie v_7$ have a same phase as they have one shared neighbour $\bowtie v_6$, and the rest of butterflies except for $\bowtie v_6$ have close phases due to similar neighbourhoods.

2The hash code is implemented using Java method hashCode() which must consistently return the same integer for 'equal' objects during one execution of a Java application. This method is not required to return distinct integers for unequal objects by general contract indicated in https://docs.oracle.com/. In sGradd’s implementation, this concern is resolved since the butterflies are distinct and their corresponding vertex objects are unequal.
Algorithm 9: Add sgrs into W_{BBG} and update burstiness profile of the stream

1 Function $ingest(r^t, currentB, \bar{B}, maxB, isBursty)$

 Data: r^t, a sgr with index t

 Input:
 - $currentB$, the current burst size
 - \bar{B}, average burst size
 - $maxB$, the largest seen burst size
 - $isBursty$, a boolean flag for burstiness of stream

 Output:
 - $\langle currentB, \bar{B}, maxB, isBursty \rangle$, updated burstiness profile

2 If $r^t \notin BBG$ then
 3 $BBG.add(r^t = (v'_{i}, v'_{j}, \tau'))$

4 If $unqt \ni \tau'$ then
 5 $currentB +$
 6 $isBursty \gets (currentB > \bar{B} \& currentB > maxB)$

7 Else
 8 $\bar{B} \gets (\bar{B} \times |unqt| + currentB)/(|unqt| + 1)$
 9 $currentB \gets 1$

10 If $currentB > maxB$ then
 11 $maxB \leftarrow currentB$

12 Return $\langle currentB, \bar{B}, maxB, isBursty \rangle$
Algorithm 10: Project W_{BBG} to W_{UWGO}

Function $project(iVertexConnection, unqt, BBG, UWGO, b2v)$

Input:
- $iVertexConnection$, a boolean flag
- $unqt$, a hash set of seen unique timestamps
- $BBG = (V_i \cup V_j, E_{ij})$, the bipartite graph structure to capture arriving sgrs
- $UWGO = (V, E)$, the graph structure to maintain the system state
- $b2v$, A hash map of butterflies to UWGO vertices

Output: $UWGO$, updated $UWGO$

1. $Butterflies \leftarrow \emptyset$, $jNeighbours \leftarrow \emptyset$, $vi2s \leftarrow \emptyset$, $mergedList \leftarrow \emptyset$, $i2b \leftarrow \emptyset$, $j2b \leftarrow \emptyset$
2. forall $i_1 \in V_i$ do
 3. sorted \leftarrow sort($unqt$)
 4. sorted \leftarrow sorted[[|$unqt$| − |$unqt$|/4], .., |$unqt$| − 1]
 5. youngJNeighbours $\leftarrow \forall v_j \in N_j(i_1) : \tau \in$ sorted
 6. forall index1 $\in [1, |youngJNeighbours|]$ do
 7. $j_1 \leftarrow youngJNeighbours[index1]$
 8. forall index2 $\in [index1 + 1, |youngJNeighbours|]$ do
 9. $j_2 \leftarrow youngJNeighbours[index2]$
 10. $i2vertices \leftarrow N_i(j_1) \cap N_i(j_2)$
 11. forall $i_2 \in i2vertices$, $i_2 \neq i_1$ do
 12. $\Rightarrow \leftarrow [i_1.ID, j_1.ID, i_2.ID, j_2.ID]$
 13. if $\Rightarrow \in Butterflies$ then
 14. Butterflies.add(\Rightarrow)
 15. updateUWGOstructure(\Rightarrow, $UWGO$, $iVertexConnection$, $b2v$)
 16. end
 17. end
 18. end
3. $i2b \leftarrow \emptyset$, $j2b \leftarrow \emptyset$, $mergedList \leftarrow \emptyset$, $BBG \leftarrow \emptyset$
4. forall $v \in V$ do
 5. forall $n \in N(v)$ do
 6. $\theta_v^+ = n.hashCode()$
 7. $\theta_v = \theta_v \% 2\pi$
 8. v.setPhase(θ_v)
 9. $\Omega_v \leftarrow$ sample from a Gaussian distribution
 10. v.setFrequency(Ω_v)
 11. end
 12. return $UWGO$
Algorithm 11: Update the structure of UWGO

Function \text{updateUWGOstructure}(\bowtie, \text{UWGO}, i\text{VertexConnection}, b2v)

Input:
\bowtie, a butterfly
\text{iVertexConnection}, a boolean flag
\text{UWGO} = (V, E), the graph structure to maintain the system state
\text{b2v}, A hash map of butterflies to UWGO vertices

\begin{align*}
\text{mergedList} & \leftarrow \emptyset \\
i2b.\text{put}(\langle i_1 : \bowtie \rangle, \langle i_2 : \bowtie \rangle) \\
f2b.\text{put}(\langle j_1 : \bowtie \rangle, \langle j_2 : \bowtie \rangle) \\
v & \leftarrow \text{new UWGO vertex with } \theta = 0, \Omega = 0, \text{ID} = 0 \\
v.\text{setID}(v.\text{hashCode}()) \\
\text{UWGO}.\text{add}(v) \\
b2v.\text{put}(\langle \bowtie, v \rangle) \\
\text{if } \text{iVertexConnection} \text{ then} \\
\quad \text{// add all butterflies adjacent to } i_1 \text{ and } i_2 \text{ to mergedList} \\
\quad \text{mergedList}.\text{addAll}(i2b.\text{get}(i_1.\text{ID})) \\
\quad \text{mergedList}.\text{addAll}(i2b.\text{get}(i_2.\text{ID})) \\
\text{else} \\
\quad \text{// add all butterflies adjacent to } j_1 \text{ and } j_2 \text{ to mergedList} \\
\quad \text{mergedList}.\text{addAll}(j2b.\text{get}(j_1.\text{ID})) \\
\quad \text{mergedList}.\text{addAll}(j2b.\text{get}(j_2.\text{ID})) \\
\text{forall } \bowtie \in \text{mergedList} \text{ do} \\
\quad u \leftarrow b2v.\text{get}(\bowtie) \\
\quad \text{if } v \neq u \text{ then} \\
\quad \quad e \leftarrow \text{new UWGO edge between } u \text{ and } v \text{ with weight} = |\text{mergedList}| \\
\quad \quad \text{UWGO}.\text{add}(e)
\end{align*}
6.3.4 Drift Detection

The sequential procedures of drift criteria and drift evaluation sub-modules are as follows (steps 3-7 and yellow boxes in Figure 6.4).

Drift Criteria. The degree of global synchronization (phase coherence) is calculated as a drift criterion (Algorithm 8, lines 2-5). The intuition is that, a UWGO vertex embeds a butterfly in BBG and its phase embeds the neighbourhood of the vertex. Therefore, global phase synchronization of UWGO vertices reflects the neighbourhood similarities in UWGO, which in turn reflects the density of butterfly inter-connections in BBG. The global phase synchronization in UWGO at time point t is quantified using a metric called order parameter [280]:

$$O[t] = \left(\frac{\sum_{v \in V} \sin \theta_v}{\sum_{v \in V} \cos \theta_v}\right)^2 / |V|$$

$0 \leq O[t] \leq 1$, the higher the value of $O[t]$, the greater the degree of synchronization. $O[t] = 1$ denotes a phase synchrony state where all of the vertices have a same phase.

Two sequences of the order parameter, O_1 and O_2, as the current and future state of the transient concept are recorded over time:

3) The order parameter is first computed over UWGO’s structure and phases as $O_1[t]$ (Algorithm 8, line 2). The phases in Figure 6.5(d) would result in $O_1[0] = 0.17$.

4) The next phases in UWGO ($\Theta' = \{\theta'_v\}$) are estimated. To this end, Kuramoto model [280] is used. This model provides a mathematically tractable and simple realization of dynamic process of phase oscillation on complex networks. Given the current/initial phases in the network $\Theta = \{\theta_v\}$, edge weights $\{w_{vn}\}$, and frequencies $\{\Omega_v\}$, Kuramoto model provides the phase evolution of a vertex v as $\frac{d\theta_v}{dt} = \Omega_v + \sum_{n \in N(v)} w_{vn} \sin(\theta_n - \theta_v)$. This ordinary differential equation is solved using Runge Kutta method with $h = 0.01$ (Algorithm 8, line 3).

$$\theta'_v = \theta_v + \frac{h}{6}(K(1)_v + 2K(2)_v + 2K(3)_v + K(4)_v)$$

$$K(1)_v = \Omega_v + \sum_{n \in N(v)} w_{vn} \sin(\theta_n - \theta_v)$$

$$K(2)_v = \Omega_v + \sum_{n \in N(v)} w_{vn} \sin(\theta_n + \frac{h}{2}K(1)_n - \theta_v - \frac{h}{2}K(1)_v)$$

$$K(3)_v = \Omega_v + \sum_{n \in N(v)} w_{vn} \sin(\theta_n + \frac{h}{2}K(2)_n - \theta_v - \frac{h}{2}K(2)_v)$$

154
\[K(4)_v = \Omega_v + \sum_{n \in N(v)} w_{vn} \sin (\theta_n + hK(3)_n - \theta_v - hK(3)_v) \]

The model results in the following phases for the example UWGO snapshot in Figure 6.5: \(\theta'_1 = 0.12, \theta'_2 = -0.07, \theta'_3 = -0.14, \theta'_4 = -0.16, \theta'_5 = 0, \theta'_6 = -0.2, \theta'_7 = 0.05, \theta'_8 = -0.18. \)

5) The order parameter is again computed as \(O_2(t) \) over the same structure of UWGO, yet predicted phases \(\Theta' = \{\theta'_v\} \) as the phases of oscillators (Algorithm 8, lines 4-5). The computed phases in the running example have \(O_2[t] = 0.87 \).

Drift Evaluation. A drift is detected by evaluating the trend of evolutions of \(O_1 \) and \(O_2 \) (Algorithm 8, line 9).

6) Two versions are proposed for Drift Evaluation sub-module: V1 (Algorithm 15) and V2 (Algorithm 16). Both algorithms signal a drift when two conditions \(C_1 \) and \(C_2 \) are satisfied.

- \(C_1 \): a local maximum/minimum is observed in \(O_2 \).
- \(C_2 \): \(O_1 \) remains steadily fixed.

The algorithms differ in the way they check for \(C_1 \) and \(C_2 \). Algorithm V1 implements \(C_1 \) as \((10^\alpha \mu_1 - 10^\alpha O_1[t]) / 10^\alpha < 10^{-\alpha}\), where
 - \(\mu_1 \) is the average of last \(S \) values of \(O_1 \),
 - \(O_1[t] \) is the most recent value in \(O_1 \), and
 - \(\alpha \) is a dynamic value used for determining (a) a threshold and (b) a precision for difference of \(\mu_1 \) and \(O_1[t] \).

Algorithm V1 implements \(C_2 \) as \((N_{more} \geq S' \text{ or } N_{less} \geq S')\), where
 - \(N_{more} \) and \(N_{less} \) denote the number of elements in the most recent suffix of \(S \) elements in \(O_2 \) that are greater and less than \(O_2[t] \), respectively, and
 - \(S' \) is a fraction of \(S \).

Soon after a drift occurs, the structure of streaming graph perturbs and \(O_1 \) and \(O_2 \) experience frequent fluctuations, therefore \(C_1 \) and \(C_2 \) should adapt to these perturbations through proper setting of \(S, S', \) and \(\alpha \).
- S is determined based on a function of the number of detections, d (Algorithm 15, line 2). S decreases slowly as d increases, therefore μ_1, N_{more}, and N_{less} are computed over smaller suffix sizes to pass the fluctuated values.

- S' decreases with a rate of 0.05 as the number of detections increases in order to make C_2 easier and avoid missing drifts.

- α is calculated as the current number of detections plus two; therefore, as detections increase, C_1 gets more difficult in order to avoid false detections.

Algorithm V2 implements C_1 similar to V1 except that the threshold is higher ($5 \times 10^{-\alpha}$) and μ_1 is calculated over S' elements. Also, C_2 is the same as in V1, however S is determined based on a function of average burst size, maximum burst size seen, as well as d (Algorithm 16, line 2). This function makes S increasing and decreasing by a factor depending on the size of the burst arrivals. Overall, these strategies aim reaching a balanced state between sensitivity and robustness.

7) Finally, the predicate-based window W_{UWGO} retires a fraction of its randomly selected vertices if the stream is identified as bursty (i.e. when a burst arrives whose size is greater than both the maximum seen burst size and the average burst size (Algorithm 8, line 10 invoking Algorithm 17). The fraction of vertices for removal is determined by a function of maximum seen burst size to adapt the window size (equivalently the number of vertices in UWGO) to the stream burstiness. Consequently the workload imposed to the data management and drift detection components in the next round would be balanced across the timeline of burst arrivals.

6.4 Performance Evaluation

In the following, the effectiveness and efficiency of $sGradd$ are tested from three perspectives:

- Accuracy (Sections 6.4.1 and 6.4.3). The ability of $sGradd$ to effectively detect concept drifts is examined under different drift patterns and drift intervals.

- Latency (Section 6.4.2 and 6.4.3). The detection latency is examined under different drift patterns and drift intervals.

- Complexity analysis (Section 6.4.5). The computational complexity of $sGradd$ is analyzed theoretically.
Algorithm 12: Drift Criteria

1 Function $DriftCriteria(UWGO, t)$

 Input:
 $UWGO = (V, E)$, the graph structure to maintain the system state
 t, current time step

 Output:
 $\langle O_1, O_2 \rangle$, updated sequences of order parameters for observed and estimated phases

 2 $O_1[t] \leftarrow computeOrderParameter(UWGO)$
 3 $\Theta' \leftarrow Kuramoto(UWGO, 0.01)$
 4 $UWGO.setInitialPhases(\Theta')$
 5 $O_2[t] \leftarrow computeOrderParameter(UWGO)$
 6 return $\langle O_1, O_2 \rangle$

Algorithm 13: Compute Order Parameter

1 Function $computeOrderParameter(UWGO)$

 2forall $v \in V$ do
 3 $\sum_c^+ = \cosine(\theta_v)$
 4 $\sum_s^+ = \sin(\theta_v)$
 5 $o = (\sum_c^2 + \sum_s^2)^{\frac{1}{2}}$
 6 return o

Data. Simulated streaming graphs with ground truth about drift time and pattern are used in the experiments. While $sGradd$ works over unbounded stream length, for the purpose of evaluations, synthetic streams with size $|\mathcal{R}| = 10^6$ are used. Streams are generated by $sGrow$, given a prefix of 1000 sgrs from Amazon user-item stream. $sGrow$ as a configurable model enables generating sgrs through adding bursts such that the streaming graph reproduces realistic subgraph emergence patterns. Therefore, it enables simulating a drift in a hidden context (generative process) rather than an explicit drift in the target concept (subgraph inter-connectivity patterns).

A drift is introduced to the generative process by increasing/decreasing two parame-
Algorithm 14: Compute the Kuramoto phases via Runge Kutta method

1 Function Kuramoto(UWGO, h)
 Input: UWGO = (V, E), the graph structure to maintain the system state
 h, a numerical parameter
 Output: \(\Theta' \), set of computed phases
 forall \(v \in V \) do
 sum \(\leftarrow 0 \)
 forall \(n \in N(v) \) do
 sum \(+ = w_{nv} \sin(\theta_u - \theta_n) \)
 \(K1_v \leftarrow \Omega_v + \text{sum} \)
 end for
 end for
 forall \(v \in V \) do
 sum \(\leftarrow 0 \)
 forall \(n \in N(v) \) do
 sum \(+ = \frac{h}{2} w_{nv} \sin(\theta_u + \frac{h}{2} K1_v - \theta_n - \frac{h}{2} K1_n) \)
 \(K2_v \leftarrow \Omega_v + \text{sum} \)
 end for
 end for
 forall \(v \in V \) do
 sum \(\leftarrow 0 \)
 forall \(n \in N(v) \) do
 sum \(+ = \frac{h}{2} w_{nv} \sin(\theta_u + \frac{h}{2} K2_v - \theta_n - \frac{h}{2} K2_n) \)
 \(K3_v \leftarrow \Omega_v + \text{sum} \)
 end for
 end for
 forall \(v \in V \) do
 sum \(\leftarrow 0 \)
 forall \(n \in N(v) \) do
 sum \(+ = h w_{nv} \sin(\theta_u + h K3_v - \theta_n - h K3_n) \)
 \(K4_v \leftarrow \Omega_v + \text{sum} \)
 end for
 end for
 forall \(v \in V \) do
 \(\theta'_v \leftarrow \theta_v + \frac{h}{6} (K1_v + 2K2_v + 2K3_v + K4_v) \)
 \(\Theta'.add(\theta'_v) \)
 end for
 return \(\Theta' \)

tors of sGrow that contribute the most to the emergence of butterflies and caterpillars: [\(L_{\text{min}}, L_{\text{max}} \)] (range of preferential random walk dynamic lengths), and \(\rho \) (burst connection
Algorithm 15: Drift Detection V1

1. **Function** $DetectDriftv1(O_1, O_2, d, t, winNum)$

 Input:
 - O_1, sequence of order parameter values for observed phases
 - O_2, sequence of order parameter values for estimated phases
 - d, number of detections
 - t, current timestep, index of the last ingested sgr
 - $winNum$, current window number

 Output: Drift event with description

2. $S \leftarrow 500(d + 2)/(d + 1)$
3. $S' \leftarrow (1 - 0.05d)S$
4. $\mu_1 \leftarrow$ mean of last S values in O_1
5. $Nmore \leftarrow$ number of elements among the last S elements of O_2 which are greater than $O_2[t]$
6. $Nless \leftarrow$ number of elements among the last S elements of O_2 which are less than $O_2[t]$
7. $\alpha \leftarrow d + 2$
8. **if** $((10^\rho \mu_1 - 10^\rho O_1[t])/10^\rho) < 10^{-\alpha}$)
 & ($Nmore \geq S'$ or $Nless \geq S'$) **then**
9. - Signal a drift at sgr index $\leq t$ and window $winNum$
10. $d ++$
11. **return** d

Probability). Two other parameters of the model (window parameter β and batch size M) are fixed. Parameters are set as follows:

- M and β can be set to any user-specified value without affecting the patterns of generated stream. Therefore, the default values $\beta = 5$ and $M = 10$ are used in the experiments.

- The default value for ρ is 0.3 and for $[L_{min}, L_{max}]$ is $[1, 2]$. Increasing ρ to values less than 0.7 and expanding the range of $[L_{min}, L_{max}]$ ensure preserving butterfly emergence patterns, while decreasing the generation time and increasing burst size. Therefore, $\rho = 0.4$ and $[L_{min}, L_{max}] = [1, 4]$ are used as initial values to reduce the generation time while preserving realistic patterns and leaving room for increment during drift simulation.

For gradual CD (Figure 6.6(a)), parameters switch as follows:
Algorithm 16: Drift Detection V2

Function $\text{DetectDriftv2}(\bar{B}, maxB, O_1, O_2, d, t, winNum)$

Input:

\bar{B}, average burst size
$maxB$, Maximum seen burst size
O_1, sequence of order parameter values for observed phases
O_2, sequence of order parameter values for estimated phases
d, number of detections
t, current timestep, index of the last ingested sgr
$winNum$, current window number

Output: Drift event with description

1. $S \leftarrow 1000 \left(\left\lfloor \log_{10}(\text{Max}(maxB, 100)) \right\rfloor \right)^{-d}$
2. $S' \leftarrow (1 - 0.05d)S$
3. $\mu_1 \leftarrow \text{mean of last } S' \text{ values in } O_1$
4. $N_{\text{more}} \leftarrow \text{number of elements among the last } S \text{ elements of } O_2 \text{ which are greater than } O_2[t]$
5. $N_{\text{less}} \leftarrow \text{number of elements among the last } S \text{ elements of } O_2 \text{ which are less than } O_2[t]$
6. $\alpha \leftarrow d + 2$
7. if $(|(10^\alpha \mu_1 - 10^\alpha O_1[t])|/10^\alpha) < 5 \times 10^{-\alpha} \& (N_{\text{more}} \geq S' \text{ or } N_{\text{less}} \geq S')$
8. then
9. Signal a drift at sgr index $\leq t$ and window $winNum$
10. $d \leftarrow d + 1$
11. return d

- $[L_{\text{min}}, L_{\text{max}}] = [1, 4]$ and $\rho = 0.3$ increase to $[3, 4]$ and 0.6 when $2/5|\mathbb{R}|$ or $4/5|\mathbb{R}|$ sgrs are generated.

- $[L_{\text{min}}, L_{\text{max}}] = [3, 4]$ and $\rho = 0.6$ decrease to $[1, 4]$ and 0.3 when $3/5|\mathbb{R}|$ sgrs are generated.

For recurring CD (Figure 6.6(b)), parameters switch as follows:

- $[L_{\text{min}}, L_{\text{max}}] = [1, 4]$ and $\rho = 0.3$ increase to $[3, 4]$ and 0.6 when $2/5|\mathbb{R}|$ sgrs are generated.

- $[L_{\text{min}}, L_{\text{max}}] = [3, 4]$ and $\rho = 0.6$ decrease to $[1, 4]$ and 0.3 when $3/5|\mathbb{R}|$ sgrs are generated.
Algorithm 17: Slide

Function slide(UWGO)
- Input: UWGO = (V, E), the graph structure to maintain the system state
 k, current window number
- Output: ⟨UWGO,k⟩, updated system state

if isBursty & UWGO ≠ ∅ then
 Randomly remove 0.1log2 maxB of vertices in V
 winNum ++
return ⟨UWGO,k⟩

Figure 6.6: Evolution of sGrow’s parameters over the timeline of sgr generation.

Drift intervals of 1 × 10^5 and 2 × 10^5 sgrs are used. The timestamp at which the drift is introduced is recorded for the evaluations. Five stream instances are generated per pattern per drift interval for a total of 20 streams. The streams are denoted as R_{ab} and G_{ab}, where

- R refers to recurring drifts.
- G refers to gradual drifts.
- a = 1 refers to a stream with drift interval of 1 × 10^5 sgrs (called close-drift stream).
- a = 2 refers to a stream with drift interval of 2 × 10^5 sgrs (called far-drift stream).
- b ∈ {1, 2, 3, 4, 5} refers to the stream instance number.

Butterflies are connected through shared j-vertices. N_b = 1 is fixed in all experiments since the data streams are bursty.

161
Metrics. Two variants of V2 are considered, one with decreasing rate of 0.05 for S′ (V2 0.05) and the other with 0.1 (V2 0.1) to evaluate the impact of this value.

The effectiveness of Algorithms V1 and V2 is evaluated with respect to accuracy. The accuracy is evaluated using three rates computed over 50 executions of $sGradd$ over each data stream:

- True detection rate (T): the fraction of detections that are true (precede a drift within less than 30 seconds or the first detection following a drift).
- False detection rate (F): the fraction of detections which duplicate a true detection (F_{dup}) or fraction of detections which occur early in the stream before any drift happens (F_{early}).
- Miss detection rate (M): the fraction of drifts that are not detected.

$T_i/F_{dup}^i/M_i$ denote the true/false/miss detection rates of the i-th drift, that is the fraction is calculated over the detections corresponding to i-th drift. $T/F/M$ denote the overall rates, that is the fraction is calculated over all detections. Therefore, the following hold:

$$T_i + F_{early}^i + F_{dup}^i = 1, i = 1$$
$$T_i + F_{dup}^i = 1, i \neq 1$$
$$T + F = 1$$

The efficiency of V1 and V2 is evaluated by measuring the detection delay, which is defined as the elapsed time (in milliseconds) between a true detection and a drift. Average detection delays are calculated over 50 execution instances of algorithms. Delay-i denotes the average detection delay for i-th drift. The reported numbers for latency and accuracy correspond to the same execution of algorithms.

When the drifts are closer to each other (i.e. in $R_{11} - R_{15}$ and $G_{11} - G_{15}$), there is a concern about the evaluation of both accuracy and latency since the detection can be delayed to a time point after the next drifts [173]. In such situations, we cannot be certain whether a detection is a duplicate false detection or it is a delayed detection corresponding to previous drifts. In another view, we cannot be certain whether a detection is missed or delayed to a time after subsequent drifts. To address this concern, the accuracy rates and latency of the sequential drifts are evaluated simultaneously for $R_{11} - R_{15}$ and $G_{11} - G_{15}$ and individually for $R_{21} - R_{25}$ and $G_{21} - G_{25}$. 162
Computing setup. Experiments are conducted on a machine with 15.6 GB native memory and Intel Core i7 – 6770HQ CPU@2.60GHz * 8 processor. All algorithms are implemented in Java (OpenJDK 17.0.5).

6.4.1 Accuracy over far-drift streams

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>V2 0.05</th>
<th>V2 0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T_1</td>
<td>T_2</td>
<td>T_3</td>
</tr>
<tr>
<td>R_{11}</td>
<td>0.94</td>
<td>0.26</td>
<td>0.32</td>
</tr>
<tr>
<td>R_{12}</td>
<td>0.5</td>
<td>0.26</td>
<td>0.27</td>
</tr>
<tr>
<td>R_{13}</td>
<td>0.48</td>
<td>0.4</td>
<td>0.43</td>
</tr>
<tr>
<td>R_{14}</td>
<td>0.57</td>
<td>0.3</td>
<td>0.36</td>
</tr>
<tr>
<td>R_{15}</td>
<td>0.53</td>
<td>0.01</td>
<td>0.23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>R_{21}</th>
<th>R_{22}</th>
<th>R_{23}</th>
<th>R_{24}</th>
<th>R_{25}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.61</td>
<td>0.88</td>
<td>0.7</td>
<td>0.39</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.75</td>
<td>0.77</td>
<td>0.46</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>0.82</td>
<td>0.32</td>
<td>0.38</td>
<td>0.5</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>0.79</td>
<td>0.39</td>
<td>0.5</td>
<td>0.47</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>0.55</td>
<td>0.49</td>
<td>0.51</td>
<td>0.46</td>
<td>0.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>G_{11}</th>
<th>G_{12}</th>
<th>G_{13}</th>
<th>G_{14}</th>
<th>G_{15}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.91</td>
<td>1</td>
<td>0.91</td>
<td>0.91</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>0.63</td>
<td>0.8</td>
<td>0.79</td>
<td>0.72</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>0.63</td>
<td>0.69</td>
<td>0.85</td>
<td>0.69</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>0.68</td>
<td>0</td>
<td>0.7</td>
<td>0.78</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>0.79</td>
<td>0.8</td>
<td>1</td>
<td>0.83</td>
<td>0.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>G_{21}</th>
<th>G_{22}</th>
<th>G_{23}</th>
<th>G_{24}</th>
<th>G_{25}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.64</td>
<td>0.64</td>
<td>0.88</td>
<td>0.69</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>0.89</td>
<td>0.45</td>
<td>0.75</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>0.69</td>
<td>0.44</td>
<td>1</td>
<td>0.51</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>0.71</td>
<td>0.56</td>
<td>0.9</td>
<td>0.61</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.5</td>
<td>0.62</td>
<td>0.58</td>
<td>0.83</td>
</tr>
</tbody>
</table>
Table 6.3: False detection rates of V1 and V2.

<table>
<thead>
<tr>
<th></th>
<th>F_{early}</th>
<th>F_{dup}^{early}</th>
<th>F_{dup}^{1}</th>
<th>F_{dup}^{2}</th>
<th>F_{dup}^{3}</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{11}</td>
<td>0</td>
<td>0.06</td>
<td>0.74</td>
<td>0.68</td>
<td>0</td>
<td>0.64</td>
</tr>
<tr>
<td>R_{12}</td>
<td>0</td>
<td>0.54</td>
<td>0.74</td>
<td>0.73</td>
<td>0</td>
<td>0.44</td>
</tr>
<tr>
<td>R_{13}</td>
<td>0.15</td>
<td>0.37</td>
<td>0.6</td>
<td>0.57</td>
<td>0</td>
<td>0.58</td>
</tr>
<tr>
<td>R_{14}</td>
<td>0.31</td>
<td>0.12</td>
<td>0.54</td>
<td>0.64</td>
<td>0.18</td>
<td>0.36</td>
</tr>
<tr>
<td>R_{15}</td>
<td>0.16</td>
<td>0.31</td>
<td>0.99</td>
<td>0.77</td>
<td>0</td>
<td>0.46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>G_{early}</th>
<th>G_{dup}^{early}</th>
<th>G_{dup}^{1}</th>
<th>G_{dup}^{2}</th>
<th>G_{dup}^{3}</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{21}</td>
<td>0.13</td>
<td>0.39</td>
<td>0.12</td>
<td>0.3</td>
<td>0</td>
<td>0.61</td>
</tr>
<tr>
<td>R_{22}</td>
<td>0.08</td>
<td>0.12</td>
<td>0.25</td>
<td>0.23</td>
<td>0.02</td>
<td>0.52</td>
</tr>
<tr>
<td>R_{23}</td>
<td>0.18</td>
<td>0</td>
<td>0.69</td>
<td>0.62</td>
<td>0.01</td>
<td>0.49</td>
</tr>
<tr>
<td>R_{24}</td>
<td>0.04</td>
<td>0.17</td>
<td>0.61</td>
<td>0.5</td>
<td>0</td>
<td>0.52</td>
</tr>
<tr>
<td>R_{25}</td>
<td>0.08</td>
<td>0.37</td>
<td>0.51</td>
<td>0.49</td>
<td>0</td>
<td>0.54</td>
</tr>
</tbody>
</table>

According to Tables 6.2, 6.3, and 6.4, V1 has better accuracy in detecting the first drift, while V2 outperforms V1 in detecting the next drifts.

- **True/False detection rate.** V1 has a higher true detection rate for the first drift due to lower duplicate false detections (higher T_1 and lower F_{dup}^{1} on average and in all data streams except for G_{25} - higher T on average and in all data streams except for R_{23} and R_{25}). In detecting the next drifts, V2 displays a better true detection rate especially when S' decreases with a faster rate of 0.1 (higher T_2 on average and in all data streams except for R_{21}, higher T_3 on average and in all data streams with gradual CD except for G_{23}). V2 has almost zero early false detection, while V1 has a 10% rate.

- **Miss detection rate.** V2, especially with decreasing rate of 0.05 for S', has better miss detection rate for each drift (lower M_1, M_2, and M_3) and overall (lower M) in

164
Table 6.4: Miss detection rates of V1 and V2.
Bold numbers in each row denote the lowest value of M_i / M among three versions.

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>V2 0.05</th>
<th>V2 0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M_1</td>
<td>M_2</td>
<td>M_3</td>
</tr>
<tr>
<td>R_{11}</td>
<td>0.68</td>
<td>0</td>
<td>0.34</td>
</tr>
<tr>
<td>R_{12}</td>
<td>0.9</td>
<td>0</td>
<td>0.45</td>
</tr>
<tr>
<td>R_{13}</td>
<td>0.2</td>
<td>0.02</td>
<td>0.11</td>
</tr>
<tr>
<td>R_{14}</td>
<td>0.46</td>
<td>0</td>
<td>0.23</td>
</tr>
<tr>
<td>R_{15}</td>
<td>0.38</td>
<td>0.02</td>
<td>0.18</td>
</tr>
<tr>
<td>R_{21}</td>
<td>0.08</td>
<td>0.3</td>
<td>0.19</td>
</tr>
<tr>
<td>R_{22}</td>
<td>0.04</td>
<td>0.16</td>
<td>0.1</td>
</tr>
<tr>
<td>R_{23}</td>
<td>0.34</td>
<td>0</td>
<td>0.32</td>
</tr>
<tr>
<td>R_{24}</td>
<td>0.24</td>
<td>0.02</td>
<td>0.13</td>
</tr>
<tr>
<td>R_{25}</td>
<td>0.34</td>
<td>0.16</td>
<td>0.25</td>
</tr>
<tr>
<td>G_{11}</td>
<td>0.58</td>
<td>0.98</td>
<td>0.8</td>
</tr>
<tr>
<td>G_{12}</td>
<td>0.62</td>
<td>0.92</td>
<td>0.48</td>
</tr>
<tr>
<td>G_{13}</td>
<td>0.52</td>
<td>0.82</td>
<td>0.78</td>
</tr>
<tr>
<td>G_{14}</td>
<td>0.4</td>
<td>1</td>
<td>0.54</td>
</tr>
<tr>
<td>G_{15}</td>
<td>0.78</td>
<td>0.92</td>
<td>0.9</td>
</tr>
<tr>
<td>G_{21}</td>
<td>0.5</td>
<td>0.36</td>
<td>0.56</td>
</tr>
<tr>
<td>G_{22}</td>
<td>0.84</td>
<td>0.1</td>
<td>0.64</td>
</tr>
<tr>
<td>G_{23}</td>
<td>0.78</td>
<td>0.06</td>
<td>0.84</td>
</tr>
<tr>
<td>G_{24}</td>
<td>0.7</td>
<td>0.22</td>
<td>0.64</td>
</tr>
<tr>
<td>G_{25}</td>
<td>0.68</td>
<td>0.06</td>
<td>0.74</td>
</tr>
</tbody>
</table>

all data streams (except for M_1 in R_{22} and M_2 in R_{23}, R_{24}, G_{22}, and G_{23}) and on average.

6.4.2 Detection Latency over far-drift streams

According to Table 6.5, average detection delay has the lowest value for the first drift and the highest values for the second drift in all data streams with either pattern. This is due
to the change of burstiness profile in data stream as the bursts sizes get high with the increase of generator parameters in the interval between the first and second drift.

According to Figures 6.7, 6.8, 6.9, and 6.10, V2 has lower delay-1 and delay-2 and higher delay-3 compared to V1. Unlike V1, V2 has a consistent performance across the execution instances and across the sequential drifts since V2 is more robust to the random removal of vertices from the W_{UWGO}.

- **Delay-1.** For recurring CD, V1 has a cluster of delay-1 values between 0 to 4 (s) and a rest of values between 15 to 160 (s), while V2 clusters the values between 0 to 2 (s) and a rest of values around 16 (s). For Gradual CD, both V1 and V2 have cluster of delay-1 values between 1 to 5 (s). However V2 has a denser cluster due to lower miss rate for the first drift, thus the average delay-1 over the execution instances of V1 is up to $2.8\times$ higher (e.g. see delay-1 for G_{11} and G_{13} in Table 6.5).

- **Delay-2.** For recurring CD, similar observations can be made as delay-1 stands. For instance, executing V1 over R_{25} incurs delay-2 of 0 to 400 (s), whereas V2 incurs latency below 100 (s) for this stream. For gradual CD, V1 has a cluster of delay-2 values between 0 to 200 (s) and values centered around 500 and 1400 (s) for G_{23} and G_{25}, while V2 has a cluster compacted around 0 to 100 (s) and values between 100 to 400 for G_{13} and 700 to 900 for G_{25}. The average of delay-2 values over the execution instances of V1 is up to $1.8\times$ higher (e.g. see delay-2 for G_{25} in Table 6.5).

- **Delay-3.** For gradual CD, V1 displays 0 to 100 (s) and outliers up to 380 (s), while V2 has delay-3 values between 0 to 200 (s) and outliers up to 800 (s).

6.4.3 **Accuracy and detection latency over close-drift streams**

According to Tables 6.2, 6.3, 6.4, and 6.5, for recurring CD, similar to far-drift streams, V1 has higher latency compared to V2s and as a result the detections for the first and second drifts are closer and more difficult to evaluate. The (average) true detection rates are higher than those of running algorithms over $R_{21} - R_{25}$. For gradual CD, the true/miss detection rates and detection delay of both algorithms are higher than those of running algorithms over $G_{21} - G_{25}$.

- **First drift.** For recurring CD, V1 has a higher true detection rate for the first drift compared to that of the second drift, however the rates are not very high ($T_1 > T > T_2$ and average T_1 is 0.6). The first drift is either never detected ($T_2 < T$, $F_{early} + F_{dup} < F$, F,
and $M_1 > M$ in R_{11} and R_{12}) or detected with a delay higher than the drift interval ($M_2 \approx 0$, $M_1 > M$ in R_{13}, R_{14}, and R_{15}) with a low probability of rapid detection (delay-1 lower than average delay). V2 0.05 and V2 0.1 detect the first drift mostly with low miss rate ($M_1 \leq M$ in R_{12}, R_{13}, R_{14}, R_{15}, $T_2 < T$, $F_{early} + F_{dup}^{1} < F$, and $M_1 > M$ V2 0.05 and V2 0.1 over R_{11}) with high probability of rapid detection (delay-1 lower than average). For gradual CD, both V1 and V2 (especially V2 0.05) have high true detection rate and low false duplicate detection rate for the first drift (T_1 up to 92%). T_1 is high regardless of M_1 being high or low, which means T_1 is certainly high.

• Second drift. For recurring CD, while the second drift is rarely missed, it has a low true detection rate ($M_2 \approx 0$ and $T_2 < T$), since its detection is dominated by the false duplicate detections due to delayed detections of the previous drift. V2 0.05 and V2 0.1 detect the second drift with higher miss detection rate compared to that of the first drift (average $M_2 >$ average M_1), however the true detection rate is higher ($T_2 > T_1$ in all streams except for R_{11}). For gradual drift, both V1 and V2 (especially V2 0.05) extremely high/low true detection rate for the second drift (T_2 either zero or 100%). $T_2 > T$ accompanied with $F_{dup}^{3} < F$, $M_2 > M$, and delay-2 lower than the average delay suggests that whenever the second drift is detected with a delay lower than the time interval between the second and third drifts, the detection is certainly a true detection (V2’s detections of the second drift in G_{12}, G_{13}, and G_{14} and V1’s detection of the second drift in all streams). While there are cases that the detections are not delayed ($M_3 > M$, while $M_1/M_2 < M$, e.g. V2 0.05 and V2 0.1 over G_{15}), the detection of the second drift is sometimes delayed to a time after the occurrence of the next drift since $M_2 > M$ (M_2 is high), $M_3 < M$ (M_3 is low).

• Third drift. for gradual CD, both V1 and V2 (especially V2 0.05) have high true detection rate and low false duplicate detection rate for the third drift (T_3 up to 100%). Average delay of detecting the third drift is relatively low considering the burstiness of the stream and average delay over different streams (V2 0.05 and V2 0.1 over G_{13}). On the other hand, the miss detection rate in most streams follows the order of $M_1 < M_3 < M_2$ and V2 has better miss detection rates than V1.

6.4.4 Discussion

The high values of T_1 for V1’s detections, as well as significantly increasing trend of T_1 for V2’s detections, indicate that V1 has better true detection rate for the first drift, whereas
Figure 6.7: Delay of detecting the first and second drifts for 50 runs of V1, V2 0.05, and V2 0.1 over $R_{21} - R_{25}$.
Figure 6.8: Delay of detecting the first, second, and third drifts for 50 runs of V1 over $G_{21} - G_{25}$.
Figure 6.9: Delay of detecting the first, second, and third drifts for 50 runs of V2 0.05 over $G_{21} - G_{25}$.
Figure 6.10: Delay of detecting the first, second, and third drifts for 50 runs of V2 0.1 over $G_{21} - G_{25}$.
Table 6.5: Detection latency of V1 and V2.

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>V2 0.05</th>
<th>V2 0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delay-1</td>
<td>Delay-2</td>
<td>Delay-3</td>
</tr>
<tr>
<td>(R_{11})</td>
<td>22253.94</td>
<td>540702.6</td>
<td>65451</td>
</tr>
<tr>
<td>(R_{12})</td>
<td>12885.4</td>
<td>230963.56</td>
<td>2691.24</td>
</tr>
<tr>
<td>(R_{13})</td>
<td>6442.05</td>
<td>387632.51</td>
<td>2672.9</td>
</tr>
<tr>
<td>(R_{14})</td>
<td>6073.93</td>
<td>345451.08</td>
<td>4338.02</td>
</tr>
<tr>
<td>(R_{15})</td>
<td>32094.67</td>
<td>291978.9</td>
<td>49691.87</td>
</tr>
<tr>
<td>AVG</td>
<td>15950</td>
<td>359345.73</td>
<td>24969</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>V2</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delay-1</td>
<td>Delay-2</td>
<td>Delay-3</td>
<td>Delay-1</td>
<td>Delay-2</td>
<td>Delay-3</td>
</tr>
<tr>
<td>(G_{11})</td>
<td>7904.56</td>
<td>263194.57</td>
<td>1595.76</td>
<td>213102.95</td>
<td>1646.28</td>
<td>102230.31</td>
</tr>
<tr>
<td>(G_{12})</td>
<td>23296.79</td>
<td>144621.17</td>
<td>4781.88</td>
<td>138562.91</td>
<td>4530.041</td>
<td>102385.82</td>
</tr>
<tr>
<td>(G_{13})</td>
<td>3672.39</td>
<td>50745.36</td>
<td>2667.17</td>
<td>298226.19</td>
<td>2823.408</td>
<td>144609.95</td>
</tr>
<tr>
<td>(G_{14})</td>
<td>6108.92</td>
<td>400390.28</td>
<td>1710.5</td>
<td>478270.94</td>
<td>164542.36</td>
<td>240721.36</td>
</tr>
<tr>
<td>(G_{15})</td>
<td>45147.09</td>
<td>573515.5</td>
<td>16367.92</td>
<td>873904.89</td>
<td>14983.04</td>
<td>120420.85</td>
</tr>
<tr>
<td>AVG</td>
<td>18396.95</td>
<td>256345.69</td>
<td>14032.03</td>
<td>243180.36</td>
<td>5121.465</td>
<td>156043.86</td>
</tr>
</tbody>
</table>

V2, particularly with decreasing rate of 0.1 for \(S' \), has improving true detection rate over time. The almost zero values of \(F_{early} \) as well as significantly decreasing trend of \(F_{dup} \) for both V1 and V2 indicate that V1 and V2 have very low false detection rates particularly false positives. The low range of \(M_1 \) for V2s’ detections and significant negative magnitude of \(M_2 - M_1 \) for V1’s detections indicate that that V1 has improving miss detection rate and V2s have better initial miss detection rates.

To explain the performance of V1 and V2, the impact of variables/parameters are discussed in the following (Figure 6.11). V1 adapts to the number of detections (through parameter \(d \)), while V2 adapts to the streaming rate (through parameters \(maxB \) and \(\hat{B} \)) as well as the number of detections. Both algorithms signal a drift when two conditions are satisfied: C1 (including variable \(\alpha \) and \(\mu_1 \), dotted nodes in Figure 6.11) and C2 (including...
variables $Nmore$, $Nless$, and S', dashed nodes in Figure 6.11).

As d increases over time, V1 signals more detections for each drift. This increases F_{i}^{dup} and lowers M_{i} and T_{i}. The reason is that C1 is the bottleneck performance of V1, which becomes more difficult over time as the followings happen.

- α increases and the upper bound of C1 is decreased.
- S and S' decrease in V1 and fluctuate in V2. Consequently, $Nmore$, $Nless$, and μ_{1} are computed over smaller O_{2} suffix sizes in V1 and smaller/longer suffixes in V2; Moreover, the fluctuations in O_{2} values, which occur due to the drift, are not examined in V1.

As maxB and \bar{B} increase over time, V2 adapts to the streaming rate and signals fewer duplicate detections. This lowers F_{i}^{dup} and increases T_{i}. The reason is that the performance of V2 changes according to both C1 and C2 and C2 becomes more difficult/easier in V2 due to the followings.

- S and s' increase/decrease when d is even/odd.
- $Nmore$, $Nless$, and μ_{1} are computed over smaller/longer O_{2} suffixes.

6.4.5 Computational Complexity

THEOREM 4 At each time step, sGradd has either of following computational complexities depending on the drift detection module used.

$$O(\frac{K_{i,w_{k}}(K_{i,w_{k}} - 1)}{2}K_{j,w_{k}}RN_{t}^{w_{k}}) + O(d^{2})$$
\[O\left(\frac{K_{i, W_k}(K_{i, W_k} - 1)}{2} K_{j, W_k} R N_{i, W_k}^{W_k} \right) + O((d + 1)(\max B / B)^{(-1)^d}) \]

where \(R \) is the average stream rate, \(K_{i, W_k}(K_{j, W_k}) \) is the lower bound of degree of \(i(j) \)-vertices in \(W_k \), \(\max B \) is the maximum seen burst size, \(b \) is the average burst size, and \(d \) is the number of drift detections.

PROOF 5 The computations of sGradd at each time step are dominated by the windowed analytics since data ingestion and window sliding have constant computational cost. The windowed analytics include projection to create/update UWGO, computing the drift criteria, and evaluating the drift criteria as described below.

- The function \(\text{project(.)} \) identifies the butterflies, maps them to connected phase oscillators (i.e. creates the structure of UWGO), and next assigns phases and frequencies to oscillators. Therefore, it takes \(O(\text{ButterflyListing}) O(\text{Mapping}) + O(\text{Assignments}) \). To identify the butterflies, the exact listing algorithm in sGrapp is used, which is \(O\left(\frac{K_{i, W_k}(K_{i, W_k} - 1)}{2} K_{j, W_k} R N_{i, W_k}^{W_k} \right) \), where \(R \) is the average stream rate and \(K_{i, W_k}(K_{j, W_k}) \) is the lower bound of degree of \(i(j) \)-vertices in \(W_k \) (Theorem 2). To map the butterflies to unipartite vertices and connect them to create the UWGO’s structure, the function \(\text{updateUWGOstructure(.)} \) is executed which takes constant units of computation. The final phase of attribute assignment also runs in constant units of computations as it happens in a parallel loop. Consequently, the projection occurs in \(O\left(\frac{K_{i, W_k}(K_{i, W_k} - 1)}{2} K_{j, W_k} R N_{i, W_k}^{W_k} \right) \).

- The function \(\text{DriftCriteria(.)} \) computes the order parameter twice: once using the current phases, and once using the Kuramoto phases computed via Runge Kutta method. Therefore, it takes \(O(\text{OrderParameter}) + O(\text{Kuramoto}) \). The function \(\text{computeOrderParameter(.)} \) takes constant units of computations. The function \(\text{Kuramoto(.)} \) has five sequential parallel loops, with the first four loops including an inner parallel loop; Therefore, this function takes constant units of computation as well. Consequently, computing the drift criteria occurs in \(O(c) \).

- Either of the functions \(\text{DriftDetectv1(.)} \) or \(\text{DriftDetectv2(.)} \) is used to evaluate the drift criteria and signal a drift. \(\text{DriftDetectv1(.)} \) takes \(O(S) \) units of computation, where \(S \), the suffix size for drift detection, is determined based on a function of \(d^2 \) (\(d \) is the number of detections). Therefore, it takes \(O(d^2) \). \(\text{DriftDetectv2(.)} \) takes \(O(S + S') \), where \(S' \in O(S \times d) \) and \(S \in O((\max B / B)^{(−1)^d}) \); hence it takes \(O((d + 1)(\max B / B)^{(−1)^d}) \). Consequently, drift detection occurs in \(O(d^2) \) or \(O((d + 1)(\max B / B)^{(−1)^d}) \).
6.5 Summary

Essence and features. CD is a natural phenomenon in streaming data. Understanding, detection, and adapting to CD in streaming data is vital for effective and efficient analysis/analytics since reliable outputs are generated based on adaptation to fresh inputs. The problem is challenging due to the pressing issue of drift label acquisition and the fact that CD detection intrinsically requires stateful yet efficient operations as well as effective mechanisms for CD evaluations. Finally being able to detect and adapt to CD is impactful since a variety of practical use-case scenarios reside in streaming settings that experience CD. The research on this topic is mostly focused on (i) black-box drift adaptation, (ii) drift detection over independent data instances or sequences of graph snapshots, and/or (iii) drift detection with respect to a supervised downstream task which determines the target concept. These assumptions do not always hold.

To address the aforementioned issues, a definition is introduced for CD in the case of transient, interconnected, and sequential data instances forming a streaming graph which serves as the input to any online adaptive analytic task (in both supervised and unsupervised mode). Powered by this definition, a modular framework, \textit{sGradd}, is proposed for understanding and unsupervised detection of transient concept drifts. The components of \textit{sGradd} are designed as a collection of explainable, unsupervised, and adaptive techniques for understanding and detecting the drifts in hidden contexts (generative source) which are reflected as drifts in target transient concepts (inter-connectivity patterns). Specifically, \textit{sGradd} has a data management component with two sub-components for window management and system state management. For window management, two different windowing methods are used, which are adaptive to the streaming rate. For system state management, a graph structure is used to retain the system state incrementally. For the drift detection component, two versions (V1 and V2) of an algorithm are introduced each incorporating a different adaptation technique for evaluating the occurrence of drifts. V1 and V2 are parameterized as described below.

Evaluations. \textit{sGradd} is examined in different scenarios where the drift pattern, drift interval, and stream burstiness vary. Experiments show that while V1’s drift detection strategies, which adapt to just the number of detections, display higher initial true detection rate and improvement (decreasing trend) of miss detection rate over time, V2’s adaptation to the streaming rate (burstiness), as well as the number of detections, display improving true detection rate, better initial miss detection rate, and lower detection latency. Both strategies result in almost zero false positives in streams with either gradual or reoccurring drift patterns and are able to effectively lower the duplicate false detections down to almost zero. Detection latency in both algorithms increases with the increase of
burstiness regardless of the drift detection’s adaptation mechanism and the drift pattern. However, as the detection algorithm adapts to the streaming rate, the delay is lowered and the latency performance becomes more consistent. This occurs in spite of sliding window mechanisms that randomly remove vertices from the window while adapting the window to the streaming rate.
Chapter 7

Conclusions and Future Works

7.1 Conclusion

A wide variety of real-world datasets include inter-connected entities best modeled as a graph. The graph model treats both the entities (vertices) and relationships (edges) as first-class objects. The model can also describe several types of inter-dependencies among data records as well as their compositions. Management and processing of graphs have always been driven by the characteristics of the data and/or workloads (often specified by the applications). In most modern applications (e.g. user-item interactions), graphs are not static, but change over time. A particular type that is of interest is streaming graphs, an unbounded sequence of arriving graph data records (a timestamp, and a payload indicating the vertex/edge). The streaming graph model assumes that the graph emerges incrementally as data records arrive. The main characteristics are unknown stream length, unavailable full structure, non-stationary distributions of the underlying data snapshot, non-global updates, out-of-order arrivals, non-uniform inter-arrival times, and burstiness.

The focus of this thesis is data-driven algorithm design for explainable and interpretable analytics over streaming graphs with respect to (2,2)-bicliques (known as butterflies) in bipartite structures (Table 7.1). This is done in three steps (Table 7.1).

Step 1: Given the real-world streaming graphs as input, exploratory analysis is performed for in-depth understanding and discovery of the emergence principles in data.

Step 2: Real-world data and the discovered patterns are utilised to model and explain the growth patterns in streaming graphs as sGrow model. These two steps provide the
requirements for ultimately designing effective and efficient processing algorithms in
the next step (i.e. accomplish the data-driven approach).

Step 3: The mined patterns and sGrow model as well as the data are utilised to architect
two frameworks sGrapp and sGradd.

These frameworks are designed to perform iterative and stateful tasks (butterfly counting
and concept drift detection) over streaming graphs. The reason behind design choices of
algorithms are explained and the outputs provide actionable descriptions. For instance,
sGrow’s choices of target vertices for establishing new connections are explained via the
introduced local rules; And sGradd’s alerts include details about time/location of drifts
that can be used to improve the performance of a down-stream online algorithm.

<table>
<thead>
<tr>
<th></th>
<th>Input</th>
<th>Component</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>data</td>
<td>analysis</td>
<td>streaming graph emergence patterns</td>
</tr>
<tr>
<td>Step 2</td>
<td>data, patterns</td>
<td>modelling</td>
<td>sGrow: a streaming growth model</td>
</tr>
<tr>
<td>Step 3</td>
<td>data, patterns, sGrow</td>
<td>analytics</td>
<td>sGrapp: a framework for streaming graph butterfly-count approximation, sGradd: a framework for streaming graph drift detection</td>
</tr>
</tbody>
</table>

Table 7.1: Research components.

7.2 Future Work

Future directions of the research in this thesis can be either application-driven data mining
tasks, or designing data-driven algorithms and frameworks based on updates to the data,
to the methodology, or to the computational approaches considered in this thesis.

Application-driven data mining. In many real-world scenarios, a scheme such as the
followings can be used to represent the snapshots of streaming data by a bipartite streaming
graphs.

- When the payload in streaming records denotes interactions between two disjoint
 sets, a batch of streaming records form a naturally occurring bipartite streaming
 graph.
• When the payload in streaming records denotes interactions between two or more vertices of the same mode, a batch of streaming records form a unipartite or hypergraph that can be projected to a bipartite structure. For instance, social networks inherit a backbone bipartite structure which can be extracted based on some heuristic data modeling approach; or the vertices and edges in hyper-graphs can be conceived as two connected disjoint sets; or property graphs include vertices/edges attributed with numeric/vectorized properties, and the property values and the corresponding vertices/edges can form two connected disjoint sets.

• When the payload in streaming records denotes a non-graph element such as items in spatial/sensory time series with an entity ID as well as a variable such as geographic location, the IDs and instances of variable can be represented as two connected disjoint sets.

Once the data is represented as a bipartite streaming graph, it can be analyzed to discover knowledge for practical purposes in the corresponding domain-specific context. In this stage, the butterfly-based analytics approaches proposed in this thesis can be applied and further extended. For instance, when there is a data mining task based on data cohesion, sGrapp can be utilised to effectively and efficiently estimate the clustering coefficient; or when there is an online adaptive data mining task, sGradd can enhance a down-stream adaptation algorithm.

Data-driven algorithm design. This thesis followed a data-driven approach for devising techniques and algorithms for graph modelling and graph analytics. This approach can be modified in the following directions to cover other use cases.

• The followed methodology includes exploratory data analysis to inform the design of pattern-driven data modelling/analytics. The exploratory phase can be performed to discover other patterns such as the following examples to introduce generative models and analytics tasks.

 – Temporal patterns for the generative mechanisms of timestamps can be studied by considering bipartite graphs of edge-timestamps.

 – Temporal-structural patterns for other types of subgraphs/connectivities can be studied by defining other assortativity measures. For example, a (time-stamped) subgraph assortativity measure can be defined as the tendency of (close-time stamped) vertices to form a certain subgraph.
– The connection between the probability of butterflies formed by hubs and the magnitude of the power law exponent can be investigated to further optimise sGrapp. Since this probability changes over windows, the exponent will dynamically change based on the hub connectivity patterns. As mentioned in [297], butterfly approximation can be highly accurate when the exponent equals to the probability of having at least one i-hub plus the probability of having at least one j-hub in the butterflies at a time when the number of hubs is stabilized in the graph. This tipping point can be studied to better understand the best way to initialize the approximation exponent.

• The computational approach can be modified based on other processing techniques (e.g. parallel/distributed settings, or windowing techniques) and/or storage setups (e.g. applying the algorithms to the data stored in a database, or optimising low-level main-memory data structures).
References

200

[276] Xiang Ren, Jialu Liu, Xiao Yu, Urvashi Khandelwal, Quanquan Gu, Lidan Wang, and Jiawei Han. Cluscite: Effective citation recommendation by information network-based clustering. In *Proc. 20th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining*, pages 821–830, 2014.

208

for modeling bursty traffic. In Proc. 18th Int. Conf. on Data Engineering, pages 507–516, 2002.

[350] Xifeng Yan, Philip S Yu, and Jiawei Han. Graph indexing: a frequent structure-based approach. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 335–346, 2004.

213
[368] Peixiang Zhao, Charu Aggarwal, and Gewen He. Link prediction in graph streams. In *Proc. 32nd Int. Conf. on Data Engineering*, pages 553–564, 2016.

[373] Dawei Zhou, Lecheng Zheng, Jiawei Han, and Jingrui He. A data-driven graph generative model for temporal interaction networks. In *Proc. 26th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining*, pages 401–411, 2020.

