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Abstract 

Economic growth is usually accompanied by extensive extraction of natural resources, 

especially in developing countries. From a “material-stock-flow-service” perspective, the 

substantial part (e.g., construction materials) of the extracted natural resources as inflows to a 

society get accumulated in the built environment as “material stocks” (MS). Depending on the 

end-use types of their containers, MS provide essential services to a society such as housing, 

education and transportation. When an environmental hazard strikes, MS lose their functionality 

due to the destruction of the physical structure of their carriers, resulting in extra construction 

waste that then must be cleared for recovery. To make a society more resilient to environmental 

hazards, which is especially important in small island states with limited natural and human 

resources, the knowledge of exposure of MS to hazard risk is critical. 

This research focuses on the quantity and spatial distribution of MS in buildings in the 

context of intense rainfall-triggered flash flooding in Dominica, a small island state in the 

Caribbean region. A Geographical Information System (GIS)-based stock-driven methodology is 

used to quantify four typical types of construction materials: concrete, aggregates, timber, and steel. 

To quantify exposed MS in buildings to flash flooding, an event-based flood model is used to 

generate flood inundation extents at the national scale. To investigate the degrees to which the 

exposed households are susceptible to the impacts of environmental hazards, this research also 

designs a resident survey to collect social factors contributing to household vulnerability to hazards. 

For 2020, the total MS in the building sector is estimated at 6,574 kt, equivalent to 91 t per capita, 

given Dominica’s population of the year. In terms of the distributions of MS in different material 

categories, concrete accounts for 86% of the total MS in buildings, followed by aggregate at 7%, 

timber at 4% and steel at 3%. Examining the exposure of MS in buildings to flash flooding, it is 

found that flood events of larger magnitudes would result in more MS contained in the exposed 

buildings. For flash flood events with 5-year, 10-year, and 20-year return periods, the numbers of 

exposed buildings are 2,781, 3,030, and 3,274, respectively, which contain 17%, 18%, and 19% of 

the total MS in buildings in Dominica. This research demonstrates how to link the results of 

material stock accounting to flash flood modelling, approaching the concept of socio-economic 

metabolism from an environmental hazard risk perspective. Knowledge of the quantity and spatial 

distribution of the exposed MS in buildings can assist local governments in making cost-effective 

mitigation plans before a hazard event. Although the designed survey was not implemented due to 
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travel restrictions, it is a valuable instrument to collect the information about household 

vulnerability to environmental hazards, which can help hazard response agencies with more-

efficient rescue operations during a hazardous event. 

Keywords: Small Island States, material stocks, Geographical Information Systems (GIS), flood 

modelling, material stock accounting, Dominica 
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1 Thesis Introduction 

1.1 Decoupling and Socio-economic Metabolism 

Economic growth, often accompanied by population growth, the desire for higher levels of 

consumption, and rapid industrialization especially in developing countries and regions, has 

resulted in more extensive extraction and use of natural resources both locally and globally 

(Krausmann et al., 2016). A ten-fold increase has been observed in global raw material extraction 

from 1900 to 2010, with the built environment being the most crucial sector for material extraction 

growing from 18% to 55% (Krausmann et al., 2017b). After being extracted, these raw materials 

get accumulated in buildings, infrastructures, and durable goods in a society as in-use material 

stocks (MS) that provide essential services like housing, transportation, education, and 

communication (Krausmann et al., 2017a; Pauliuk & Müller, 2014). Currently, the increase in 

global material extraction is not equally distributed across the world, with developing countries in 

Asia contributing to most of the growth over western industrialized countries since 2000 

(Schaffartzik et al., 2014). For example, the increase in material extraction from 1980 to 2006 is 

352.76% in Indonesia but is only 5.42% in Japan (York et al., 2011). In terms of different end-use 

carriers where materials get accumulated, the growth in extracted materials is also not equally 

distributed within a society. For residential buildings only, the global growth of accumulated 

materials from 2020 to 2050 is predicted to be 50% (Deetman et al., 2020). 

However, the world’s resources are finite, while the expansion of economic activities is 

generally required by the improvement of human well-being, which inevitably leads to more 

materials extracted from nature (IRP, 2011). As the scarcity of natural resources is expected to 

evolve in the future, decoupling has become one of the main themes in the field of industrial 

ecology. Decoupling aims to reduce the amount of resource required for economic growth and to 

delink economic growth from environmental deterioration (Fischer-Kowalski et al., 2011; IRP, 

2011). Accordingly, as is shown in Figure 1.1, there are two aspects of the term “decoupling”: 

resource decoupling and impact decoupling. While the former aims to ease over-exploitation of 

natural resources by enlarging the difference between resource usage and economic activity 

(usually measured as gross domestic production or GDP), the latter is considered equally 

significant because profound environmental impacts (e.g., pollution, harm of biodiversity, and 

climate change and cascading hazards like flooding and sea-level rise,) caused by the expansion 
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of consumption are leading to economic loss and casualty (IRP, 2011). To achieve a decent level 

of both resource decoupling and impact decoupling, one solution is to limit virgin material 

extraction and utilize recycled materials from demolition and hazard waste to ideally form a 

closed-loop resource cycle (Symmes et al., 2020). 

 

 
Figure 1.1: The two aspects of the term “decoupling”: resource decoupling and impact 

decoupling, adopted from IRP (2011). 

 

To monitor the level of resource decoupling achieved in a society, socio-economic 

metabolism is defined as the flows of materials and energy between a social system and nature, 

which enables holistic investigation of the underlying biophysical factors influencing these flows 

(Fischer-Kowalski & Haberl, 1998; Pauluik & Hertwich, 2015). The flow perspective of social 

metabolism is vital because although material stocks are fundamental for the direct provision of 

service, material and energy flows are also required to establish, energize, maintain, and update 

in-use MS (Fishman et al., 2014). In other words, while the state of a society can be indicated by 

in-use stocks accumulated within its boundary, the change of that society can only be measured by 

flows (Meadows, 1998). How socio-economic metabolism fits in sustainability science can be 

explained in Figure 1.2, which demonstrates the ‘means and end’ framework developed by 

Meadows (1998) using the building sector as an example. At the bottom of the ‘means and end’ 

triangle is the ultimate means or natural capital, which in the case of the building sector includes 
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earth materials like sand, wood, and stone. With the help of science and technology, raw materials 

turn into processed materials for the constructions of buildings (intermediate means or built 

capital), which provides the services required in a society (intermediate ends or human/social 

capital). Most socioeconomic metabolism studies focus on the transformation from the ultimate 

means to the intermediate ends in the triangle and investigate the quantity of raw materials 

accumulated in different types of built capital such as residential buildings (Condeixa et al., 2017; 

Ortlepp et al., 2018; Wiedenhofer et al., 2015), non-domestic buildings (Deetman et al., 2020, 

Ortlepp et al., 2016), transport sector (Gassner et al., 2021) and infrastructures (Pailiuk et al., 2014). 

 

 
Figure 1.2: The integrating framework of the “Daly Pyramid” that relates natural wealth and 

ultimate human well-being, modified from Meadows (1998). 
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One of the goals of socio-economic metabolism studies is to assess the material efficiency 

in a society, which is conventionally defined as economic growth (usually measured as GDP) 

contributed by per unit of material use (Fishman et al., 2014). Assessment of material efficiency 

can be operationalized from a new perspective by using the material stock-flow-service (SFS) 

nexus approach developed by Haberl et al. (2017) in Figure 1.3. The SFS-nexus links socio-

economic metabolism with the provision of services and the well-being of a society (Kalt et al., 

2021). Material flow alone is not sufficient for service provision; instead, they alter the patterns of 

MS (e.g., types of function and spatial distribution) that respond to the need of a society (Pauliuk 

& Müller, 2014). This service-based approach for material efficiency measurement offers more 

complementary insights beyond mainstream economic measurements (Haberl et al., 2017). 

Material efficiency can be further quantified by economic data-based indicators associating both 

stocks and flows to the services they provide. One example of these indicators is the Material 

Productivity developed by Tanikawa et al (2021) for Japan. Material Productivity is an integrated 

framework developed by linking six individual indicators, each of which has a corresponding role 

and position in the “Daly Pyramid” in Figure 1.2. Despite different methodologies used in socio-

economic metabolism studies, understanding the patterns of in-use MS, flow dynamics, and 

associated services is fundamental. 

 

 
Figure 1.3: The material stock-flow-service nexus approach incorporating the impact of 

environmental hazards, modified from Haberl et al. (2017). 
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1.2 The Role of Environmental Hazards 

Over the last decade, many regions worldwide have been affected by a large number of 

environmental hazard events. Amongst all kinds of environmental hazards, climate-related hazards 

(e.g., tropical cyclones and storms) and subsequently triggered hydrological hazards (e.g., flooding 

and landslides) are more destructive, especially in coastal areas. According to the Emergency 

Events Database (EM-DAT), 2,882 hydrological and climate-related hazard events occurred from 

2010 to 2019 worldwide, which caused 0.17 million casualties and a total economic loss of 

US$0.68 billion (EM-DAT, 2023). 

While social metabolism studies reveal long-term patterns of economic growth from a 

material and energy perspective, the impacts of environmental hazards are more immediate. 

Environmental hazard is an example of ecosystem “dis-services” which force a society to alter its 

current patterns of socio-economic metabolism to protect itself (Singh, Fischer-Kowalski & 

Chertow, 2020). As is shown in Figure 1.3, environmental hazards cause sudden changes to the 

input and output of both material and energy throughput. For example, despite various average 

building lifespans in different areas (e.g., 34 years for residential buildings in Japan and 100 years 

in Brazil) caused by different proportions of short-lived buildings, environmental hazards can 

completely change the demolition rate of facilities and infrastructures in a given year (Condeixa 

et al., 2017; Daigo et al., 2017; Miatto, Schandl, & Tanikawa, 2017). When environmental hazards 

strike, in-use MS are first affected due to the destruction of the physical structure of their carriers, 

resulting in lost MS, defined as MS that lose their social function (Tanikawa, Managi, & Lwin, 

2014). Following this change in in-use MS pattern, the corresponding absence of services 

previously provided by lost MS will function as a driver for the increase in subsequent material 

flows (Müller, 2006). After a hazard event, either new input of materials or the recycling of lost 

MS is required to restore the essential services. The latter is recommended to achieve a higher 

resource efficiency and create job opportunities, which is particularly beneficial in developing 

countries (Brown, Milke & Seville, 2011). However, Deetman et al. (2020) argue that even under 

ordinary urban mining circumstances without the influence of environmental hazards, the growing 

demand for construction materials is not sufficiently covered by recycled materials from regular 

demolition. Nevertheless, demolition waste management and recycling are the initial steps for 

recovering from a hazard (Moriguchi & Hashimoto, 2016), and understanding the location and 
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composition of potential disaster waste is imperative to maximizing the quantity of recycled 

materials following a hazard event (Tabata et al., 2016). 

1.3 Vulnerability of Small Island States to Environmental Hazards 

1.3.1 Common Factors Contributing to Vulnerability to Environmental Hazards 

The impact of environmental hazards has a place-specific nature. The same environmental 

hazard event can cause various degrees of damage to different places due to their unique 

combinations of social and physical characteristics (Cutter et al., 2008). As a result, the impact of 

environmental hazard is disproportionately distributed across the world with small island 

developing states (SIDS) as the most vulnerable group (UNCTAD, 1997). SIDS is conventionally 

defined as a group of islands and coastal countries or territories facilitated by the United Nations 

(UN) to promote partnerships for addressing common needs (Shultz et al., 2016). Recently, there 

are conflicting perspectives on the use of the term SIDS regarding the ambiguous meaning of 

“developing”, so this research is adopting the terminology of “small island states” instead. Every 

island state has its own features, but compared to continental nations with greater landmass, some 

common factors that put small island states at risk include: 1) physical remoteness that results in 

delayed and high-cost external aids when hazards strike (Pelling & Uitto, 2001; Shultz et al., 2016); 

2) scarcity of natural, human, and financial resources that results in a heavy dependence on imports 

of food and fossil fuels (Chertow et al., 2012; Krausman et al., 2014); 3) limited scope of economic 

diversification with tourism as the key sector, while a significant proportion of tourism activities 

occur in hazardous coastal areas (UNDP, 2016; Becken et al., 2014); 4) climate change-related 

risks such as intensified rainfall patterns, sea-level rise, and more frequent extreme weather events 

(Hagedoorn et al., 2019), which are aggravated by rapid global economic growth as material 

production currently contributes to almost a quarter of greenhouse gas emissions (Pauliuk et al., 

2021). Apart from these factors originated from the small island states themselves, from a 

humanitarian aid perspective, Singh, Ficher-Kowalski & Haas (2018) argued that a small island 

nation’s limited resource base may not be sufficient to generate enough income to sustain a more 

industrialized consumption pattern enforced by external help. Considering Sustainable 

Development Goals 11.5 and 13.1 indicated in the 2030 Agenda for Sustainable Development, 

making cities and human settlements inclusive, safe, resilient, and sustainable to combat climate-

related natural hazards is one of the main concerns in the short term (UN, 2022). When the 
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differences in vulnerability are examined within small island states, it is also found that island 

states in different regions of the world are susceptible to environmental hazards to different extents 

due to their different economical and demographical characteristics (Pelling & Uitto, 2001). 

Nevertheless, because of the vulnerable nature of small island states, many researchers in the field 

of hazard risk management are paying more attention to the vulnerability assessments of these 

island nations to environmental hazards. 

When resource scarcity is examined in more detail, it is found that small island states are 

more limited in domestic resource bases with few locally occurring resource types, and most 

construction materials are unsustainably extracted from beaches and coastal reefs (Babinard et al., 

2014; Krausmann et al., 2014). Such resource scarcity is exacerbated by economic development, 

which is often accompanied by rapid housing and infrastructure improvements to accommodate 

the increased demand in tourism (Babinard et al., 2014; Becken et al., 2014). Therefore, small 

island states depend heavily on imports of construction materials. In addition, small island states 

are at the frontline of global climate change facing sea-level rise and more frequent and stronger 

storms that threaten the “long-term existence of whole island nations” (Petzold & Magnan, 2019). 

For example, after Hurricane Maria in 2017, the monetary need to recover the housing and other 

infrastructure sectors in Dominica was estimated at 235% of its GDP in 2018 (Government of the 

Commonwealth of Dominica, 2017). Thus, there is an urgent need for a better understand of 

material stocks and associated services in small island states, which helps them achieve more-

sustainable resource use patterns in the reality of limited funding (Haberl et al., 2017). 

1.3.2 Flooding in the Context of Small Island States 

Small island states are frequently impacted by climate-related hazards, resulting in 

significant property loss and casualties. Conventional climate-related hazards include sea-level 

rise, subsequent coastal erosion and saltwater intrusion that threaten freshwater resources (Holding 

et al., 2016). Apart from these types of hazards, the changed pattern of extreme weather events in 

terms of their frequency and intensity is another research focus in recent years, especially in the 

Caribbean region (Robinson, 2020). The increase in the number of more intense tropical cyclones 

and hurricanes (tropical storms with a sustained wind speed over 63 km/h) and associated high 

precipitation has been observed as the global hydrological cycle intensifies with anthropogenic 

global warming (IPCC, 2019; Huntington, 2006; Nunez, 2023). During hurricanes, devastating 

storm surges can occur, leading to an abnormal rise of sea water that threatens population in costal 
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areas, and evacuations in such extreme events are primarily due to storm surge (World 

Meteorological Organization, 2023). The cascading impacts of intense rainfall like flooding are 

equally devastating. In general, there are two types of flooding: flash flooding and river flooding. 

Flash flooding is defined as intense flow of water triggered by short and extreme precipitation 

activating substantial surface runoff that exceeds the capacity of river channels, whereas river 

flooding is associated with multiple rainfall events spanning days or months (Borga et al., 2014; 

Charlton, 2007; Doswell III et al., 1996). In island states in the Caribbean region, the rugged and 

steep terrain resulted from their volcanic origin also contributes to relatively intense precipitation 

during extreme weather events, which cannot be captured by rainfall forecast models at the global 

scale (Nugent & Rios-Berrios, 2018). Therefore, investigating the impact of environmental 

hazards for individual islands is necessary for site-specific results, which can provide more-

accurate flood characteristic information to hazard response agencies for more-effective mitigation 

planning. 

One of the tools for flood risk estimation is physics-based flood inundation modelling. In 

physics-based flood inundation modelling, the evolution of a flood event caused by extreme 

rainfall is simulated based on a continuum representation of the study area as detailed as possible. 

Such models also require a comprehensive understanding of the physics of hydrological processes 

to calculate surface flows (Wheater, 2002). Generally required input datasets for the physical 

properties of the study area include topography, river channel dimension, land use and soil physical 

characteristics (Bout et al., 2018). Expected outputs of flood inundation models are usually flood 

extent, maximum flood height, maximum flow velocity, flood start time and flood duration (Yan 

et al., 2015). The flood properties mentioned above are essential for identifying the locations 

exposed to various levels of flood risk (e.g., to what extent and how quickly these exposed 

locations are impacted). Such information can provide an objective basis for policymakers to 

initiate proactive emergency preparedness plans before flooding occurs or optimize priority 

settings in evacuation actions during a flood event for a better emergency response (Jetten, 2016). 

1.4 Research Objectives 

Most studies about material stocks and flows focus on static material stock accounting 

which captures a ‘snapshot’ of the quantity of certain types of materials accumulated in a social 

system or using historical flow data to forecast the future stocks. Although an environmental 



9 

 

hazard causes sudden unexpected outflows of materials which alters the pattern of in-use MS, few 

studies have prospectively approached MS exposure to the impact of such events. To bridge this 

research gap, this thesis presents a methodological framework for integrating the results of material 

stock accounting with hazard exposure. Using the impact of flash flooding on the building sector 

in Dominica (a small island state in the Caribbean region) as a case study, this thesis also attempts 

to incorporate household-level vulnerability factors to assess the susceptibility of households 

exposed to different flooding scenarios. 

This study is the first attempt to perform a material stock analysis in Dominica at the 

national level and to examine the impacts of flash flooding through flood modelling. This research 

builds on two previous studies, one was conducted in Grenada by Symmes et al. (2020) and the 

other was conducted in Dominica by Jetten (2016). The former provides a methodological 

framework for material stock accounting in small island states in the Caribbean region, and the 

latter provides the primary workflow of flood inundation modelling. This study also paves the way 

to examining household-level vulnerability to environmental hazards once hazard exposure has 

been revealed. The main research questions that guide this study are: 

1. What, and where are the concentrations of material stocks in buildings in Dominica? 

2. What are the quantity and spatial distribution of material stocks in buildings in 

Dominica exposed to potential intense rainfall triggered flash flooding? 

3. What are the commonly used variables for social factors of vulnerability to 

environmental hazards that can be applied at the household level in Dominica? 

To answer these questions, the research objectives of this study are as follows: 

1. Conduct a material stock accounting analysis for buildings in Dominica for 2020 and 

map the quantity of material stocks. 

2. Develop a flash flood model with updated river channel dimension and building 

footprint datasets, identifying building stocks exposed to flash flooding in Dominica. 

3. Identify social factors to define vulnerability to environmental hazards in Dominica 

based on the literature and design a corresponding household survey for collecting 

primary data. 
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1.5 Study Area 

The Commonwealth of Dominica (Dominica in short) is one of the member states of the 

Organization of Eastern Caribbean States. It is a small island state located in the Eastern Caribbean 

(shown in Figure 1.4). Dominica is a single-island nation, whose population is 71,991 in 2020 with 

its per capita GDP of US$11,000 (The World Bank, 2020). The landmass of Dominica spans about 

750 km2 (CREAD, 2020), so its population density is about 96 people per square km. There are 

ten parishes in Dominica, and the capital city Roseau is in the parish of St. George on the west 

coast of the island. About 30% of the population in Dominica live in St. George parish, and 25% 

of the buildings on the island are also in St. George (Central Statistics Office of Dominica, 2011). 

Due to Dominica’s mountainous inland topography, buildings are also not evenly distributed 

across the island, with 13% of the buildings within 100 m from the coastline. 

Agriculture was the most significant contributor to Dominica’s economic growth in the 

1970s. However, agriculture and other primary sector activities have gone through a drastic shrink 

over the past few decades, with their contribution declining from 35% in 1977 to 12% in 2021 

(Eastern Caribbean Central Bank, 2021). Accordingly, such decline has been gradually 

compensated by the rise of the service sector. Like other small island states in the Caribbean region, 

Dominica greatly depends on the travel and tourism sector. In 2019, travel and tourism contributed 

to 36.9% of Dominica’s GDP and 38.7% of its total employment, and the international visitors 

contributed 56.4% of the country’s total exports (WTTC, 2020). However, hotels and population 

are mostly clustered along the coast (Government of the Commonwealth of Dominica, N.D.), 

resulting in most of the country’s socio-economic activities occurring in low-lying coastal areas 

vulnerable to climate change-related impacts like sea-level rise (Parry, 2007). 

In terms of environmental hazards, destructive tropical cyclones can be expected during 

late summer (Central Intelligence Agency, 2020). Table 1.1 lists the country-level statistics of the 

major environmental hazard events that have struck Dominica since 2000. On September 18, 2017, 

Dominica was hit by Hurricane Maria and was exposed to extraordinary winds and intense rainfall, 

which provoked landslides and flash flooding. Hurricane Maria caused US$1.3 billion of damage 

and loss, which accounts for 226% of Dominica’s GDP in 2016 (The Government of the 

Commonwealth of Dominica, 2017). In this hazard event, the housing sector in Dominica was 

heavily impacted, with 15% of houses destroyed and 75% suffering different levels of damage 

(The Government of the Commonwealth of Dominica, 2017). As for the tourism sector, 39% of 
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hotel rooms were heavily damaged and were not recoverable within a year, which caused US$91 

million economic loss and the unemployment of hotel staff and other support personnel in the 

tourism sector (The Government of the Commonwealth of Dominica, 2017). 

 

Table 1.1: Basic statistics of the impact of the major environmental hazards that struck Dominica 

since 2000, source: EM-DAT (2022). 
Hazard 

Type 

Event 

Name 

Month/Year Associated 

Hazard 

Number 

of Deaths 

Number 

of Injured 

Affected 

Population 

Total 

Damages 

(Thousand 

US$) 

Earthquake - Nov. 2004 - - - 100 - 

Tropical 

Cyclone 

Hurricane 

“Dean” 

Aug. 2007 Flooding 2 30 7,500 20,000 

Tropical 

Cyclone 

Tropical 

Storm 

Orphelia 

Sep. 2011 Flooding - - 144 - 

Tropical 

Cyclone 

Hurricane 

“Erika” 

Aug. 2015 Flooding, 

Landslide 

30 20 28,000 482,810 

Tropical 

Cyclone 

Hurricane 

“Maria” 

Sep. 2017 Flooding, 

Landslide 

64 100 71,293 1,456,000 
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Figure 1.4: Map of the island of Dominica showing its location in the Caribbean Sea and its parish 

boundaries. 
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1.6 Thesis Structure 

The built environment is currently the most crucial sector for raw material extraction, so 

better understanding the composition of its MS is important for sustainable development planning. 

This work focuses on the quantity and the spatial distribution of MS in buildings in Dominica, 

while investigating the potential impact of intensive rainfall triggered flash flooding on these 

stocks. This thesis follows a manuscript style and has five sections. Section 1 is an introduction to 

fundamental concepts of socio-economic metabolism in the context of small island states, and the 

role of environmental hazards in relevant metabolic processes. Section 2 is a literature review 

presenting a theoretical background of the relationship between material stocks and environmental 

hazards, frequently used flood modelling methodologies, followed by common physical and social 

factors of vulnerability to environmental hazards. Section 3 starts with a methodological 

framework which shows an overview of the workflow of this research, followed by more detailed 

explanations of the approaches used for the material stock accounting of Dominica’s buildings, 

the flash flood modelling, as well as the design and application of a resident survey instrument for 

the collecting primary data of household vulnerability to environmental hazards. Following the 

methodology section, Section 4 presents the results of MSA and flood modelling in maps and 

tables. To expand on the results, Section 5 interprets the findings, compares the results with those 

of previous studies, and summarizes key conclusions of the thesis. 
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2 Literature Review 

The role of environmental hazards in socioeconomic metabolism is illustrated in Figure 

1.3. In the short term of post-recovery efforts, environmental hazards cause an unexpected increase 

in MS outflow, which must be compensated by either inflow or recycled waste to restore associated 

services (Tanikawa, Managi, & Lwin, 2014). Small island states have more recovery constraints 

due to limited natural and human resources than developed countries with giant landmasses. As is 

shown in Figure 2.1, there was a sudden turning point where Dominica’s import of buildings 

cement started increasing dramatically, partly due to the impact of Hurricane Maria in 2017 

(Central Statistics Office of Dominica, 2020). The increase continued until 2019, which agrees 

with the estimation by the government of Dominica that the recovery may take one or two years 

(The Government of the Commonwealth of Dominica, 2017). A pre-disaster analysis is an 

effective way to mitigate such impacts and determining where the materials are located is the first 

step. This literature review section contains three parts and begins with material stock accounting 

studies and approaches. This literature review also covers flood modelling studies and techniques, 

indicator-based vulnerability assessment studies and practices, and how the methods work in the 

field of hazard management. 

 

 
Figure 2.1: The trend of Dominica’s building cement imports (in EC$) from 2004 to 2020 (Central 

Statistics Office of Dominica, 2020). 
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2.1 Existing Material Stock Analysis Approaches in Previous Research 

Material stock analysis has a relatively long history which can be traced back to the 1980s. 

In Europe, knowledge about material stocks was once gathered from traditional housing surveys 

(Wilhelmsen, 1982; O’Dell, 1988). More recent studies on material stock analysis conducted since 

the late 1990s were different in spatial and temporal scales, as well as their main purposes (e.g., 

from merely city planning to resource efficiency assessment) (Augiseau & Barles, 2017). Despite 

these evolvements of scale and purpose, classical material stocks analysis approaches used in 

previous studies or projects can be categorized into two major types: bottom-up stock analysis and 

top-down stock analysis (Tanikawa et al., 2015; Augiseau & Barles, 2017). 

The bottom-up approach, also known as a static approach or stock-driven approach, divides 

MS into categories, based on which different material ratios or intensities can be applied (Augiseau 

& Barles, 2017). This approach is good at revealing the “inner structure” of MS as it investigates 

different elements both qualitatively and quantitatively (Lichtensteiger & Baccini, 2008). Also, 

bottom-up approaches make it possible to investigate the spatial distribution of certain types of 

MS (Symmes et al., 2020), since the basic analytical unit of these approaches is usually individual 

buildings that can be divided into groups sharing a common material intensity (MI). Due to its 

static nature, the results of a bottom-up approach are fixed points on the timeline as “snapshots” 

of MS (Tanikawa et al., 2015). Bottom-up approaches are very popular among studies of different 

space and time scales when data sources for MI of the study areas are available. In a local scale 

study of the urban area of Vienna, Obernosterer et al. (1998) used a bottom-up approach to estimate 

the MS of all constructions in 1997 and argued that material stock analysis is a good complement 

to conventional environmental and resource management tools as it provides a holistic base for the 

prediction of future stocks. For regional scale studies, Tanikawa et al. (2014) used a bottom-up 

approach to estimate the amount of lost MS in 47 prefectures in Japan due to buildings and roads 

destroyed by the 2011 Great East Japan Earthquake and Tsunami. Compared with ordinary 

bottom-up approaches, the approach used by Tanikawa et al. (2014) took the underground 

foundation and roads and the upper structures of buildings into consideration (by involving the 

effects of atriums and setbacks when calculating gross floor area). For national scale studies, 

Wiedenhofer et al. (2015) used a bottom-up approach to account for the amount of nonmetallic 

mineral stock in residential buildings and transportation networks in 25 European Union members. 

In this study, residential buildings were categorized into 72 types, roads into four types, and 
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railways into two types. Each type has its responding MI for each type of material, and the 

approach was made dynamic by utilizing data from different time steps (Wiedenhofer et al., 2015). 

Another popular type of MS accounting approach is the top-down approach. The top-down 

approach uses long-period data of annual net additions to MS, which is derived from inflows and 

outflows by calculating the difference between these values (Augiseau & Barles, 2017). This type 

of accounting approach is similar to the dynamic MS flow analysis driven by stock demand models, 

but the former utilizes direct material flow values, either from statistical official construction and 

demolition data or from estimations of average lifespans and current conditions (Tanikawa et al., 

2015; Augiseau & Barles, 2017). Compared with bottom-up approaches, top-down MS accounting 

approaches are more popular in studies of national scale, especially in developed countries, since 

statistical data is more available and detailed. Fishman et al. (2014) utilized long-term data sources 

for annual inflow of 60 material groups. With the estimated lifespan of building and infrastructure, 

these data sources made it feasible to calculate the MS from the 1870s to 2005 in both Japan and 

the United States (Fishman et al., 2014). Müller (2006) used a similar MS accounting framework, 

but the approach took population and lifestyle into the calculation to investigate how these factors 

affect MS in the residential building sector. The framework was calibrated by historical data, and 

then used to predict MS in the near future before 2100 (Müller, 2006). 

There are also other MS accounting approaches. Remote sensing-based approaches have 

been used in more recent studies which reveal geographical distributions of MS by correlated 

human activity intensities (Tanikawa et al., 2015). For example, Liang et al. (2017) utilized night-

time satellite imagery to estimate distribution of steel stocks based on light intensity at the 

prefectural level of Japan. At a continental scale, Peled & Fishman (2021) estimated total material 

stocks of Europe using radiance values from nighttime lights data derived from satellite imagery. 

This novel type of approach can ease the scarcity of material stock data, and provides spatial 

comparability and the possibility of more regular updates, because satellite data can be acquired 

regularly for relatively large spatial extent (Peled & Fishman, 2021). Apart from its fundamental 

role in novel material stock analysis approaches, remote sensing technique is also beneficial for 

traditional bottom-up MS accounting approaches. For example, LiDAR datasets can help to 

improve the accuracy of MS accounting by allowing more accurate gross floor area calculation 

when building heights are not available (Symmes et al., 2020). In addition to different spatial and 

time scales, there is also research investigating MS in terms of their physical containers rather than 
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low-level material categories like timber, steel, aggregate, etc. For example, Aroa et al. (2019) 

estimated MS of residential buildings in Singapore at the component level (e.g., doors and 

windows), because materials cannot always be isolated from their physical (natural) state and 

components are usually more cost-efficient secondary resources in material circularity. 

2.2 Material Stocks and Environmental Hazard 

From a spatial scale point of view, material stocks have been investigated at different levels, 

including urban (Pauliuk et al., 2014), national (Fishman et al., 2014), regional (Wiedenhofer et 

al., 2015), and the global scale (Deetman et al., 2020). Nevertheless, studies on MS often focus on 

a single sector or a particular type of material. For example, Venkatesh et al. (2009) used an 

integrated life cycle-MF analysis approach to predict the amount of input material to the 

wastewater pipeline sector in the city of Oslo in Norway. For the transportation sector, Wang et al. 

(2016) examined the high-speed rail network in China regarding the cumulative steel and cement 

consumption at the national level. Kalt et al. (2021) quantified the composition of primary bulk 

materials accumulated in the global electricity infrastructure sector. As a result, MS studies of 

various spatial scales provide different levels of details: insights of urban metabolism like scenario-

based predictions on future flows can help urban planning specialists anticipate the need for 

rehabilitation and maintenance hotspots (Pauliuk et al., 2014), which is incorporated into modern 

smart city initiatives (Gassner et al., 2021); while MS studies at the national level in combination 

with standard economic indicators can help reveal the efficiency of resource use of a country 

(Matthews et al., 2000). 

The linkage between MS and environmental hazards is underexplored. Still, there is an 

agreement that MS and associated concepts are significant in hazard risk management for three 

reasons: 1) MS provides direct socioeconomic services, and some services are crucial when 

environmental hazards strike (e.g., medical services and shelters) (Pauliuk & Müller, 2014); 2) 

material stocks accounting (MSA) provides the possibility of quantitatively evaluating lost 

materials due to hazard events and the quantities required for reconstruction (Tanikawa et al., 

2014); and 3) results of material flow analysis indicate a society’s sustainability by revealing its 

capability of reproducing MS, especially from outputs after hazard events (Wiedenhofer et al., 

2016). There is also a consensus that areas with a higher composition of critical services are more 

prone to destruction due to the vulnerability inherent in the material-intensive lifestyle (Tanikawa 
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et al., 2014). Compared with developed countries, rural areas of developing countries are more 

vulnerable to seismic hazards and high winds during hurricanes because of the higher composition 

of traditional and low-quality building materials (e.g., straw and clay) (Cuny, 2017; Endlhardt et 

al., 2019). Reasons for the limited studies relating MS to environmental hazards include the lack 

of detailed information about individual buildings' damage due to the significant effort required to 

collect it (Wahab & Tiong, 2016). Such information is usually collected through surveys, making 

it practical only for studies of small scale (Englhardt et al., 2019). Among the limited studies, 

Thieken et al. (2008) included building quality and use type in a model for estimating direct 

monetary losses due to flooding in Germany. Englhardt et al. (2019) developed a framework to 

define the vulnerability of buildings to flooding based on their construction type and material, in 

which four vulnerability classes are identified with a unique vulnerability curve showing the 

relationship between water depth and the amount of damage. 

An environmental hazard event is also a common incident in which MS is converted to 

waste, even long before the ends of expected lifespans (Tabata et al., 2018). Waste is generated 

either as debris or damaged consumer goods (e.g., furniture and appliances). Traditional quick 

treatments for disaster waste include incineration and landfill (Tabata et al., 2018). Although such 

quick treatments can help accelerate the reconstruction of affected areas by clearing up 

transformation lines and restoring the space to rebuild, they may not be cost-effective. In small 

island states that rely on imports of construction materials, these quick treatments can even lead to 

overexploitation of natural resources because waste is a reliable source of secondary materials for 

reconstruction (Tabata et al., 2017). One example of recycling hazard waste is that 81% of disaster 

waste and 99% of tsunami debris were recycled after the 2011 Great East Japan Earthquakes (Japan 

Ministry of Environment (JMOE), 2017). 

2.3 Flood Risk Assessment 

According to the action of the Sendai Framework for Disaster Risk Reduction 2015-2030 

(UNDRR, 2015), understanding hazard risk is essential for reducing current hazard risk and 

preventing potential threats in the future. As for flood risk management, systematic efforts trace 

back to the 1970s (Teng et al., 2017). However, it is since the 1980s that simulation-based models 

have gained more popularity than empirical methods that rely on historical data and statistics of 

previous hazard events (Galasso et al., 2021). In addition to these two types of models, regression-
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based models are applied in data-scarce developing areas, using information from another data-

rich basin with similar geological characteristics (Galasso et al., 2014). Despite the variety of 

modelling methodologies, there is a consensus that flooding is one of the most challenging types 

of hazards to model for: 1) its multi-stage complexity from precipitation to inundation; 2) high 

data requirement (details of rainfall, soil type, land cover, topography etc.); 3) limitations on 

computational feasibility in simulation-based models that result in the compromise of temporal 

efficiency (European Commission, 2016). The rest of this section reviews the state-of-the-art flood 

modelling techniques, focusing on hydrodynamic models. 

2.3.1 Empirical Methods 

Flood investigation approaches can be divided into two major groups: empirical methods 

and hydrodynamic models (Teng et al., 2017). Studies employing empirical methods utilize flood-

related observations like geologic evidence from prehistoric floods that reveals ancient flood 

generation mechanisms and magnitudes (O’Connor & Costa, 2004). Also valuable are 

observations that depict flow path alteration from aerial and satellite imageries (Kastridis et al., 

2020), flood depth from in-situ watermarks (Mathew et al., 2021), and post-flood interviews of 

eyewitnesses that help reconstruct the temporal evolvement of the event (Marchi et al., 2009). 

Although such empirical observations are commonly considered accurate, Teng et al. (2017) argue 

that the limitations of empirical approaches include: the high cost of financial and human resources 

in post-flood data collection in large watersheds, lack of prediction functions but only static 

snapshots of past events, as well as potential artificial errors during the data collection and 

processing phases. 

2.3.2 Hydrodynamic Models 

Also known as simulation-based models, hydrodynamic models generally use multiple 

input datasets describing the watershed under investigation to mathematically emulate the impact 

of certain flood events. In terms of varying degrees of physical complexity involved in the 

simulation processes, hydrodynamic models can be further grouped into one-dimensional (1D), 

two-dimensional (2D), and three-dimensional (3D) models (Teng et al., 2017).  

In general, water flow can be grouped into three types when it comes to flood modelling: 

overland flow, channel flow, and flooding, as is shown in Figure 2.2. Overland flow is triggered 

by intense precipitation or snowmelt and runs into river channels, and flooding is initiated when 
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channel flow reaches the maximum capacity (Bout et al., 2018). In 1D models, floodplain flow is 

simplified as flow parallel to the centerline of the main river channel, so any point of a given cross-

section shares the same averaged velocity. Such simplification results in low computing power 

requirement, and 1D models are considered sufficient when knowledge in other dimensions is not 

required in a project, or the flow being modelled is indeed one dimensional (e.g., artificial confined 

channel flow) (Teng et al., 2017). For example, Anju et al. (2021) used the 1D MIKE HYDRO 

River model to simulate water levels of the Pamba river during the flood season in 2010. 

Comparing the recorded and the simulated water levels, they found that the observed values agree 

with the simulated values, with the correlation coefficient reaching 0.94 (Anju et al., 2021). 

 

 
Figure 2.2: Illustrations of overland flow (1), channel flow (2), flooding (3) and flood recession 

(4), adopted from Jetten (2016). 

 

Since the 2000s, 2D flood models have become widely used to map flood extent for the 

advances in high-resolution data availability, mathematical solutions to physical equations, as well 

as computational power (Tayefi et al., 2007). Compared with 1D models, 2D flood models 

incorporate an additional dimension to express the floodplain as a collection of planes but assume 

shallow water depth (Teng et al., 2017). Therefore, 2D models can ease the impact of the 

complexity of topographic features like small objects in urban areas and artificial obstacles in rural 
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areas (Tayefi et al., 2007). However, the quality of topography data is critical for the accuracy of 

the 2D modelling results. According to Yu & Lane (2006), flood inundation extent and timing of 

inundation is relatively sensitive to even minor fluctuations in model resolution in the context of 

fluvial flood modelling. In a national flash flood modelling project, Jetten (2016) also argues that 

the simulation of a flood hazard can be considerably altered by a better digital elevation model 

(DEM) that represents the topography better by matching the visually interpreted river network 

from satellite imageries. 

Compared with 2D models, 3D flood models are more physically complex since velocities 

are not considered vertically identical. This added dimension is crucial in circumstances that the 

vertical component of the flow velocity is not negligible: when the topology of the modelled 

floodplain goes through abrupt changes frequently (Casulli & Stelling, 1998), or when a 

catastrophic flood occurs because of dam collapse, tsunamis, and levee breaks (Teng et al., 2017). 

This vertical characteristic of 3D models also enables the simulation of suspended-sediment 

transport analysis, a significant factor in flood hazard mitigation actions (Jia et al., 2014). The dam 

failure modelling study by Prakash et al. (2014) used the 3D smoothed particle hydrodynamics 

(SPH) model, incorporating potential vertical turbulence and vortices caused by the presence of 

dam wall fragments. In terms of inundation time and water level of the downstream area, the 

simulated event agrees with the observed data of the historical dam failure (Prakash et al., 2014). 

Although 3D flood models can capture the three-dimensional nature of flooding, especially in the 

early stage of flood generation, one drawback of 3D models is the high requirement of computing 

power. 3D models, or even 2D models, were once considered unviable to simulate areas over 1000 

km2 at a resolution less than 10 m (Teng et al., 2017). However, this situation has been improved 

by recent advances in algorithms to solve hydrodynamic equations and high-efficient 

supercomputers. For example, Zhang et al. (2021) reproduced a flood event along the 280 km 

reach in the Three Gorges Reservoir using a 3D flood model and found that the 3D model can 

accurately predict the impact of flooding at a relatively big scale. 

2.4 Vulnerability Assessment to Environmental Hazard 

2.4.1 General Definition of Vulnerability 

In the context of environmental hazards, risk can be defined as a combination of three 

components: hazard (intensity, extent, duration), exposure (land and population exposed), and 
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vulnerability (social factors that affect the susceptibility of the exposed land and people) (UNISDR, 

2015). The first two components are more site-specific and cannot be easily eliminated in the short 

term. Different parts of the world are exposed to varying combinations of environmental hazards. 

For example, tropical regions such as the Caribbean are frequently affected by tropical storms and 

hurricanes (Smith et al., 2009), while South America and Central Asia often experience debris 

flows due to more frequent tectonic activity and concentrated precipitation (Kelfoun et al., 2008). 

According to IPCC, vulnerability is defined as the degree to which a social system is prone to and 

is uncapable to cope with negative effects (McCarthy et al., 2006). Vulnerability, as the third 

component of hazard risk discussed earlier, can be further considered as a combination of factors 

from multiple dimensions: physical, social, institutional, economic, and environmental (Fuchs, 

2009). Institutional, economic, and environmental vulnerability are often investigated at a larger 

scale (e.g., in a regional scale), whereas physical and even social vulnerability can be estimated at 

the building level (Papathoma-Köhle et al., 2019). 

2.4.2 Physical Factors of Vulnerability to Environmental Hazard 

Despite the interconnected multiple dimensions of vulnerability to environmental hazards, 

physical factors of vulnerability is identified as a primer (Mazzorana et al., 2014), and is defined 

as the physical elements of the built environment affecting the degree of loss by a hazard (Fuchs, 

2009). Regarding physical factors of vulnerability, three approaches are summarized by 

Papathoma-Köhle et al. (2017): 1) vulnerability matrices; 2) vulnerability curves; and 3) 

vulnerability indicators. Supported by the knowledge of historical hazards, the first two approaches 

investigate the relationship between hazard intensity level (e.g., water levels in the context of 

flooding) and the degree of damage. As a result, they may not be applicable in areas where detailed 

hazard records are absent. Although initially used to examine social factors of environmental 

hazard vulnerability, approaches utilizing vulnerability indicators are also prevalent in research 

focusing on physical vulnerability. Vulnerability indicators are composed of variables indicating 

a system’s capacity to offer information of the “susceptibility, coping capacity and resilience” to 

a hazard event (Birkmann, 2006). This indicator-based approach is flexible and can be adjusted to 

the needs of a specific area with the following general procedures: 1) selecting relevant indicators 

that are considered typical in the affected area; 2) identifying a weighting scheme to combine the 

selected indicators; and 3) aggregating all indicators to a vulnerability index to show the overall 

vulnerability (e.g., by weighted linear combination) (Kappes, Papathoma-Köhle & Keiler, 2012). 
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One example that uses physical vulnerability indicators is by Papathoma-Köhle et al. (2007), in 

which a Geographic Information System (GIS) database was generated to store physical factors 

that would affect the vulnerability of buildings to landslides. The selected indicators included 

construction materials, surrounding conditions (existence of walls), up-hill side conditions (walls 

or windows), and the number of floors. (Papathoma-Köhle et al., 2007). In the context of small 

island states in the Caribbean region, where tropical storms causing high winds can be expected 

during late summer, some common variables of physical vulnerability factors are presence or 

absence of foundation pillars, hurricane straps, and bracing in the building corners (Canevari-

Luzardo et al., 2017). For physical vulnerability to flash flooding, some building specific variables 

are identified as number of floors, presence of basement, height of lowest opening, building age, 

and wall material (masonry or non-masonry) (Granger et al., 1999; Menoni et al., 2006; Kappes, 

Papathoma-Köhle & Keiler, 2012). 

2.4.3 Social Factors of Vulnerability to Environmental Hazard 

Compared with physical factors, social factors of vulnerability to environmental hazards 

are often regarded as inherent human system properties independent from the environmental 

hazards themselves and hazard exposure (Holand et al., 2011). According to Wisner et al. (2004), 

social factors of vulnerability can be defined as the characteristics and conditions of an individual 

or a group of people which influence their capacity of predicting, resisting, and recovering from 

hazard events, which can also be considered as a broad definition of social resilience (Cutter et al., 

2008). Social factors of vulnerability are discussed less frequently in the literature due to the 

difficulty in its quantification (Cutter et al., 2003). When investigating social aspects of 

vulnerability to environmental hazards, the most commonly used approach is also based on 

indicators. 

A wide range of social variables would impact vulnerability to environmental hazards. 

Some common concepts of vulnerability reflected by social variables are age, socioeconomic 

status, gender, education, and special needs. To expand on these vulnerability concepts, both sides 

of the age spectrum result in limited mobility for evacuation (Cutter et al., 2000), and burden of 

care in hazard aftermath (Morrow, 1999); Income level is usually the best indicator for the ability 

to absorb losses due to hazard events through insurance and other means (Chen et al., 2013; Cutter 

et al., 2000); Women is recognized as a social group with higher levels of vulnerability due to 

family care responsibilities, traditional gender roles and gender discrimination (Forhergill, 1996); 
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A higher level of education results in a better understanding of hazard warning and recovery 

information (Center & John, 2000; Tierney, 2006), and a better chance to survive hazard events 

(Frankenberg et al., 2013); People with disabilities are disproportionately affected and more likely 

to require transportation, medical care or assistance with their daily activities during and after 

hazard events (Cutter et al., 2003; Flanagan et al, 2011; Morrow, 1999). 

With the recognition of the influence of social factors on disaster management, 

policymakers are incorporating social vulnerability into policy making (Spielman et al., 2019). 

One critical study in the literature for social factors of vulnerability to environmental hazards was 

conducted by Cutter et al. (2003). The impact of the study is beyond the academic literature and 

has been applied worldwide by practitioners in place-based vulnerability assessments (e.g., 

Flanagan et al., 2011; U.S. Environmental Projection Agency, 2015). This study used a robust 

social vulnerability assessment framework consisting of 42 variables to derive the Social 

Vulnerability Index (SoVI). SoVI is a comprehensive index that involves a wide range of factors, 

such as access to resources (e.g., medical, information), access to political power and social capital. 

The SoVI was initially developed for the United States but has proven applicable in other cultural 

contexts. For example, Chen et al. (2013) applied the methodology in China's Yangtze River Delta 

region. They found that it could capture most social factors (e.g., per capita disposable income, 

median age, number of beds in health care institutions per thousand population) of the study area. 

Some studies tried to improve the framework by Cutter et al. (2003) rather than replicating the 

same methodology in a new context. For example, Holand & Lujala (2013) demonstrated three 

types of index accommodations for the better adaption of the SoVI approach in a non-US context 

by investigating the correlation between the replicated and the adapted indexes. Such studies can 

guide the future application of the SoVI methodology to be better adapted to a new context. 

In a study by Borden et al. (2007), social factors of vulnerability were divided into two 

groups from a new perspective: socioeconomic vulnerability factors and built environment 

vulnerability factors. The former is at the individual level about education, employment, gender, 

etc. The latter is more emphasized at the household level about surrounding environmental factors, 

such as distance to the nearest hospital and population density. Inspired by this idea of 

distinguishing socioeconomic factors and built environment factors, Holand et al. (2011) 

quantitatively assessed social vulnerability to environmental hazards in Norway. They found that 
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by separately investigating socioeconomic and built environment factors, it is possible to prevent 

minor high-score indices from masking other significant factors. 

2.5 Research Gaps 

This literature review section has covered existing material stock analysis approaches, the 

relationships between MS and environmental hazards, methodologies for flood risk investigation, 

and indicator-based vulnerability assessment to environmental hazards. Most previous studies that 

focused on the impacts of environmental hazards on MS were conducted from a post-disaster 

perspective, which aid governments in identifying areas requiring rebuild and managing waste 

flows (Fu et al., 2021). A few studies have estimated future MS losses in the contexts of climate-

change related hazards such as high winds during extreme weather events and coastal flooding, 

using qualitative damage assessments of historical hazard events and sea-level rise scenarios 

(Symmes et al., 2020; Bradshaw et al., 2020). However, few studies have focused on the exposure 

of MS to flash flooding through physics-based models that involve fluvial geomorphology and 

hydrodynamics. Thus, the benefits of integrating the results of material stock analysis and more 

detailed hazard risk assessment remain unexplored. 

In combination with hazard characteristics (e.g., intensity, extent, and duration) and hazard 

exposures, hazard vulnerabilities define hazard risks (UNISDR, 2015). Although vulnerability is 

the only element of hazard risk that can be eliminated in the short term, most studies considered 

only social or physical factors of vulnerability to environmental hazards. One reason for this 

separation of social and physical factors could be the difference between the spatial scales to which 

these two types of factors are suitable for, respectively. For example, some physical factors such 

as the up-hill side condition (wall or windows) or the height of lowest opening (Papathoma-Köhle 

et al., 2007) are more sensible at the household level, while some social factors are more 

meaningful at a more aggregated level, such as the median age of residents in a community and 

the per capita number of community hospitals (Cutter et al., 2013). However, in small island states 

with a lower population density, estimating vulnerability at the island level with parish as the 

analytical unit may not be detailed enough to reveal where vulnerable population are located. 

Therefore, further one direction for vulnerability assessment in the context of small island states 

is involving both social and physical factors at the household level. 
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3 Methodology 

3.1 The Methodological Framework 

This section describes the methodologies used to address the research questions mentioned 

in Section 1.4. To link the findings, a methodological framework consisting of three major parts 

in response to the three previously described research questions is shown in Figure 3.1. The 

framework begins with an island-level material stock accounting (MSA) to estimate MS in 

buildings, which is aimed to form the basis of a further flood risk analysis. Following the MSA, a 

flood model is used to simulate flash flooding events of different return periods. The major output 

of flood modelling is a collection of flood extent maps for flash flood events with different 

magnitudes. If examined together with the estimated MS in buildings, these flood extent maps can 

be used to locate high concentrations of MS in buildings exposed to flash flooding.  

Once hazard exposure levels are revealed, the last part of the framework examines flood 

risk from a social vulnerability perspective in the context of small island states. This part of the 

framework has two steps. First, relevant variables are collected from the literature, tailored for the 

area under investigation, and a household survey is designed to collect these selected variables. 

Next, data reductionist techniques (e.g., principal components analysis and composite index 

development) are used to combine these variables into an index for each building to indicate its 

degree of vulnerability by incorporating social factors of vulnerability to flooding, which can be 

further used to identify vulnerable households exposed to potential flash flood hazard events. In 

this study, only the first step was completed due to the constraints on travel during the COVID-19 

pandemic, which hindered a field work to implement the household survey for data collection. 

This study is the first attempt to investigate MS from an environmental hazard perspective 

in Dominica. The proposed methodological framework was partially tested, excluding the 

vulnerability assessment part (highlighted by the dashed box in Figure 3.1) due to limited access 

to secondary data and the constraints on primary data collection during this research. A stock-

driven approach that was employed for MSA is described in Section 3.2, followed by a flood 

modelling approach explained in Section 3.3. If the whole methodological framework is applied, 

this study could help the government locating clusters of potential hazard demolition waste and 

help a hazard mitigation agency or municipality to identify vulnerable households at risk and 

accordingly prioritize evacuation and recovery actions during and after a flood event, respectively. 
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Figure 3.1: The methodological framework for integrating the results of MSA, flood risk 

assessment, and vulnerability factors to identify households that are exposed and susceptive. 

3.2 Methodology for Material Stock Accounting for Buildings in Dominica 

This study employs a stock-driven approach (also called bottom-up or coefficient-based 

approach) to account for material stocks in Dominica’s buildings. In a stock-driven approach, the 

quantity of a type of material is derived from the product of the total inventory of items and the 

corresponding material intensity coefficients (Tanikawa et al., 2015). Since material stocks are 

directly derived from stock inventory rather than material flows, such approach enables the 
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investigation of the spatial characteristics of the results in a defined area (Lanau et al., 2019). 

Although bottom-up approach can also be made dynamic by compiling a series of material stock 

accounts (Tanikawa et al., 2015), the stock-driven approach used in this study was static because 

only one “snapshot” of building stocks was taken for 2020, when the building footprints on the 

whole island (including informal settlements located far away from urban areas or towns) were 

acquired from Open Street Map (OSM). 

The workflow for MSA in Dominica was adopted from Symmes et al. (2020) and includes 

three major steps. First, buildings are divided into different occupancy classes so that the same set 

of material intensity coefficients can be applied for all buildings of the same occupancy class. 

Following building classification, building height is derived and used to calculate gross floor area 

(GFA) as the approximation of the physical sizes of the buildings. The last step is based on the 

outputs of the first two steps, in which material stocks in buildings are estimated by applying 

material intensity coefficients on corresponding occupancy classes. The following subsections 

describe the methodology for material stock accounting in more detail. 

3.2.1 Data Sources 

The data sources of the geodatabase compiled for the MSA in Dominica are summarized 

in Table 3.1. The key data sources are: Open Street Map (OSM), which provides footprints of all 

the buildings on the island in 2020, Google Maps, which contains a considerable amount of 

building use-type information that helps building classification, as well as AERIAL DOMINICA, 

an unofficial organization that posts aerial videos online for public use. These aerial videos taken 

from drones were available in major towns and communities, so they were used to derive building 

heights. The aerial videos were taken within five years before 2020 and showed a good match to 

satellite imageries in Google Earth Pro, so this data source is considered relatively accurate. 

However, the building footprints from OSM had to be manually corrected for three times with 

reference to satellite imageries, and the building use types from Google Maps may not be up to 

date. Nevertheless, these data sources are capable of generating reasonable material stock analysis 

results, as this research intends to acquire a relatively rough estimate of building stock at the 

national level. 
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Table 3.1: Summary of data sources of the MSA in Buildings in Dominica. 

Source Topic 

Caribbean Handbook on Risk Information 

Management (CHARIM) 

Administrative, risk information, land-

use, river channel 

DomiNode Ecology, topography, transportation, 

hydrology 

Open Street Map Building footprints, building use-type 

Google Earth Building use-type 

AERIAL DOMINICA Building height (number of storeys) 

3.2.2 Building Classification 

In stock-driven approaches, the initial step is to divide the inventory of items into groups 

that share the same material intensity. In the case of building stock accounting, buildings are first 

grouped into different occupancy classes with similar building compositions so that the same set 

of material intensity coefficients can be applied. In this study for Dominica, the building 

classification framework by Symmes et al. (2020) was adopted to assign an occupancy class code 

for each building. The adopted classification framework was originally developed for Grenada (a 

small island state near Dominica with similar cultural and environmental background) but was 

tailored to match the situations in Dominica by referencing the information in the aerial videos. 

The classification framework is based on visual interpretation of satellite imageries, field 

observations, and expert consultation, as discussed in detail in Symmes et al. (2020). With 

reference to satellite imageries and existing building use-type information in OSM, Google Map, 

and photos posted by users of Google Earth, each building was first assigned a first- or second-

level occupancy code (e.g., 100 for institutional buildings, 110 for church and 120 for school). 

Next, buildings were further differentiated to a third level occupancy (e.g., 111 for Cathedral, 112 

for regular community church, 121 for educational campus building and 122 for standalone 

elementary/secondary school building) by applying a series of decision trees which involves 

criteria like footprint area, spatial pattern with nearby buildings, and its spatial relationship with 

land use. 

Listed with their codes in Table 3.2 are the 22 third-level building occupancy classes 

identified in Dominica. The first digit stands for the first-level use types: 100 for institutional, 200 

for commercial/industrial, 300 for residential, 400 for tourism, 500 for cultural, and 600 for 

transport. The second and third digits present second-level use types (e.g., 110 for religious and 
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120 for educational) and final occupancy classes (e.g., 111 for cathedral and 112 for church). There 

are over 30,000 buildings on the whole island, so the strategy for building classification was to 

start by identifying large buildings, which could potentially be industrial buildings, supermarkets, 

hotels, or office buildings (Alam, 2015). The visual interpretation process also referenced the key 

image interpretation elements like footprint shape, pattern, size, and association with surrounding 

buildings (e.g., unique irregular shapes that distinguish churches from their surrounding buildings, 

illustrated in Figure 8 in Bradshaw, 2020). For the rest of the buildings, the assumption is that they 

fall into the first-level use type of residential. Based on the first-level use-types, the final building 

occupancy classes are derived by applying a decision tree developed by Symmes et al. (2020) for 

each first-level use-type, with some minor adjustments to the thresholds on footprint size that 

separates major hospital from minor health centre, cathedral from community church. For each 

building occupancy class, an example is included in Appendix A.1, showing the footprint, satellite 

image, and a screenshot from the aerial video. 

 

Table 3.2: Domain codes for each building occupancy class in Dominica. 

Code Building Occupancy Class   

111 Cathedral 321 High-density apartment building 

112 Church 322 Low-density apartment building 

121 Educational campus building 330 Rural single-family dwelling 

122 Standalone primary /secondary 

school 

340 Residential single-family dwelling 

131 Major hospital 411 Large multi-unit hotel building 

132 Health centre 412 Small hotel/villa 

140 Government office 510 Stadium 

210 Commercial 520 Recreational centre 

220 Urban mixed commercial 530 Historic building 

230 Industrial 610 Seaport 

310 Urban single-family dwelling 620 Airport 

3.2.3 Building Height Estimation 

After building classification, each footprint was assigned a building height in terms of its 

number of storeys. The workflow of building height estimation is shown in Figure 3.2. The actual 
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building heights were acquired from visual interpretation of aerial videos. However, some 

buildings were not covered in any aerial video available at the time of building height estimation. 

For these buildings, the average height of nearby buildings of the same occupancy class with 

visually interpreted heights was assigned. 

 
Figure 3.2: The workflow of building height estimation using visual interpretation of aerial videos. 

 

Most of the towns and cities in Dominica are covered in aerial videos, and 37% of the 

buildings on the whole island were assigned a true building height. All the aerial videos were taken 

within five years before 2020 from a variety of viewing angles, making them valuable sources for 

the acquisition of building heights. Google Earth satellite imageries were used as base maps, on 

top of which the buildings in the aerial videos were linked to the building footprint vector dataset 

that stores building height data. In more detail, visual interpretation of building heights includes 

three steps: 1) overlay the classified building footprint vector dataset on top of Google Earth 

satellite imageries; 2) navigate to the towns or cities covered in the aerial videos and identify 

sampled buildings whose heights can be visually interpreted; 3) interpret the building heights of 

sampled buildings and store the heights in the building footprint vector dataset. The actual heights 

of sampled buildings were further utilized to estimate the heights of buildings far from any flight 

route or not covered by any viewing angle of the available aerial videos. In the same town or city, 

the average height of the sampled buildings of the same occupancy class was assigned to those not 

covered. For buildings in physically isolated towns that are not covered by any aerial video, the 
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average height of all the other buildings of the same occupancy class, with an interpreted height, 

and in the same parish is assigned. The rationale is the “first law of geography” argued by Tobler 

(1970) that objects are more related to other objects nearby than those further away. 

 
Figure 3.3: A sample area (Vielle Case, St. Andrew Parish) for building height acquisition using 

aerial video. 

 

Figure 3.3 shows an example of a town (Vielle Case village) for building height 

interpretation with a combination of the aerial video, Google Earth imagery, OSM building 

footprint layer alone, and the footprint layer on top of Google Earth image. In this sample area, 

seven buildings were identified to have two floors, while the rest were confirmed as one-storey 

buildings. The strategy was to identify relatively tall buildings (e.g., buildings with three floors or 

more) for spatial orientation and link aerial videos and Google Earth satellite imageries by 

matching roof colours and shapes. For relatively tall buildings in the aerial videos, the shadows in 

Google Earth images can also provide a hint about their heights (Shao et al., 2011). Shadows can 

be used to derive building height by applying a trigonometric relationship involving the sun 

inclination angle at the time of the day and the shadow length (Irvin & McKeown, 1989). Due to 

the limited scope of this study and data availability, shadows are merely used as a qualitative 

confirmation of the visually interpreted building heights, especially for tall buildings. 
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3.2.4 Material Intensity 

In a stock-driven material stock accounting approach, the homogeneity of the material 

intensity of each occupancy class is a key assumption (Augiseau & Barles, 2017), so accurate 

material intensity coefficients are crucial for the accuracy of the final estimated amount of MS. 

One reliable source for estimating material intensity is the engineering information in building 

construction manuals, but Dominica’s data infrastructure is still under development and such 

information is not available. Moreover, a considerable proportion of residential buildings in 

Dominica were constructed under contracts with individual merchants, so they are often non-

engineered even in larger cities such as Roseau and Portsmouth (Cuny, 2017). Since no in-person 

fieldwork observations were included in this research, the seven basic building construction styles 

identified in Grenada by Symmes et al. (2020) were adopted. For Dominica’s building construction 

styles, Cuny (2017) identified the five most common housing construction types in a report of a 

quantitative evaluation of their performance against high winds and earthquakes. These two sets 

of building construction types show similarities in the general composition of primary materials 

(wood frame or concrete block). The comparison between the building construction styles by 

Symmes et al. (2020) (adopted in this study) and by Cuny (2017) is presented in Appendix A.2, 

with the material intensity coefficients of four types of construction materials investigated in this 

study: aggregate, timber, concrete, and steel. 

For residential buildings only, the methodology by Symmes et al. (2020) was also adapted 

to derive a composite material intensity typology utilizing the shares of different construction 

material categories presented in the 2011 Housing and Population Census report of Dominica. 

Regarding material types for outer walls of residential buildings, the percentages in the 2011 

census are: 27.6% for wood, 60.4% for concrete, 10.8% for wood and concrete, and 0.4% for other. 

Table 3.3 shows the process of allocating the composite material intensity typology. It is assumed 

that Concrete Structure 1 and Concrete Structure 2 (two of the building construction styles, as 

detailed in Appendix A.2) share the same number of buildings in the concrete construction style. 
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Table 3.3: Composite material intensity typology for residential buildings in Dominica. 

Material category in 

the census report 

Percentage in 

Census 2011 

Relevant material 

intensity typologies 

(Appendix A.2) 

Final allocated 

composition in material 

intensity typology for 

residential buildings. 

Wood 27.6% 
Timber Structure 

(100%) 
Timber Structure (27.6%) 

Concrete 60.4% 

Concrete Structure 1 

(50%) 

Concrete Structure 2 

(50%) 

Concrete Structure 1 

(30.2%) 

Concrete Structure 2 

(30.2%) 

Wood and concrete 10.8% 
Concrete/Timber Mix 

Structure (100%) 

Concrete/Timber Mix 

Structure (10.8%) 

Other 1.2% None 0% (ignored) 

3.2.5 Material Stock Accounting for Buildings 

With building occupancy class, corresponding material intensity, and estimated building 

height, construction materials in a building can be calculated by multiplying its gross floor area 

(GFA) and the material intensity coefficients. At the national level, total material stock in buildings 

in Dominica was quantified with the equation: 

𝑀𝑆𝑖 = ∑ 𝑀𝐼𝑖,𝑂𝐶 × 𝐺𝐹𝐴𝑂𝐶𝑂𝐶                                                    (1) 

where 

MS = total amount of material stocks in all buildings 

MI = material intensity with gross floor area (GFA) as the unit for measurement (in Appendix A.2) 

i = individual material class (in this research: concrete, timber, aggregate, and steel) 

OC = building occupancy class (defined in Section 3.2.2) 

GFA = gross floor area calculated as the production of number of floors and footprint area. 
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3.3 Methodology for Flash Flood Modelling in Dominica at the Island Level 

Section 3.2 has focused on the methodology of material stock accounting for buildings in 

Dominica. However, the quantity of material stocks in buildings alone does not convey the 

information about the exposure to environmental hazards. From a risk management point of view, 

this section describes the methodology for quantifying the exposure of Dominica’s MS in buildings 

to intense rainfall-provoked flash flooding. The magnitude of flash flooding is influenced by 

multiple factors, among which a high precipitation resulted from sustained high rainfall intensities 

is a dominating factor. In addition to heavy rainfall, the physical characteristics of the concerned 

catchment also affect the magnitude of flash flooding. For example, the topography, initial soil 

moisture and other soil physical properties, river channel dimensions, vegetation coverage, and 

land-use types all participate in surface flow generating processes (Doswell III et al., 1996; Marchi 

et al., 2010). To cope with the complex nature of flash flooding, the Open Source Limburg Soil 

Erosion Model (OpenLISEM, LISEM in short) was used for flood inundation modelling to 

integrate the multiple factors affecting the occurrence of flash flooding. 

LISEM is an event-based model for simulating soil erosion and surface runoff caused by 

short-term rainfall (Bout et al., 2018; Starkloff et al., 2018). It was initially developed to simulate 

overland flow but has been extended and adapted to other applications like soil conservation 

(Takken et al., 1999; Hessel et al., 2003) and flood modelling (Pérez Molina, 2014; Pratomo, 2015). 

 

 
Figure 3.4: Input data structure of the LISEM showing multiple sets of input data layers for flood 

modelling, adopted from Jetten (2016). 
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Table 3.4: Base input datasets and their derivatives for flood modelling using LISEM. 

Base Input Dataset Derived Layers Processes Involved Data Source 

DEM 

Local drainage 

direction network  

Surface runoff 

CHARIM GeoNode 

(2021) 
Slope gradient Surface runoff 

River channel Channel flow 

Soil depth Infiltration 

Soil map 

Porosity Infiltration 

CHARIM GeoNode 

(2021) 

Saturated hydraulic 

conductivity 

Infiltration 

Average initial matric 

suction 

Infiltration 

Land use map 

Vegetation canopy 

cover 

Interception 

CHARIM GeoNode 

(2021) Surface roughness Surface runoff 

Flow resistance Surface runoff 

Historical rainfall 

statistics 

Design rainfall event 

intensity 

Precipitation 
Jetten (2016) 

Road network Road width 

Interception, 

infiltration, surface 

runoff 

CHARIM GeoNode 

(2021) 

Building Footprints Building size 

Interception, 

infiltration, surface 

runoff 

OSM (2020) 
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Figure 3.5: The flow chart of deriving input data layers for LISEM from 5 basic datasets. 
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Figure 3.4 presents the input data structure of LISEM. LISEM divides the concerned basin 

or catchment into grid cells, and for each cell aggregates surface physiography information 

supplied from multiple input layers. The model requires 14 input data layers in total, but most of 

these layers were derived from a few base maps. Figure 3.5 visualizes the derivation of the 14 

input layers from five basic datasets, except for soil depth (river depth). The arrow from slope to 

soil depth indicates the estimation of soil depth using its relation with slope, distance to river 

channel, and distance to coastline (explained in Section 3.3.1.3) Table 3.4  summarizes the relevant 

processes of flash flooding simulation in which the input layers are involved. Details of how the 

input maps were derived are discussed in Section 3.3.1. To balance the precision and performance 

of the island-level flood model, all required input data layers were resampled to a spatial resolution 

of 20 m. 

3.3.1 Initial Processing of Input Data Layers of Flood Modelling in LISEM 

3.3.1.1 Design Rainfall Events 

Rainfall is one of the fundamental input datasets for flood modelling and other hydrological 

simulation processes. In LISEM, rainfall data is presented as a time series of precipitation 

intensities describing the evolution of a rainfall event. Like other computer-based simulations, 

LISEM uses discrete timesteps for flood modelling. Since flash flooding has a relatively short 

duration, small timesteps are preferred for accurate modelling results (Bout et al., 2018). In this 

study, 5-min precipitation intensities were used to balance modelling quality and performance, 

which means rainfall intensity changed every five minutes until the simulation ended. The 

assumption made by Jetten (2016) that the magnitude and frequency of flood events align with the 

volume and frequency of the rainfall events that cause the flood events was also adopted in this 

study. This assumption is supported by the finding in Ogden (2016) that rainfall intensity 

determines peak discharges in streams in tropical forested watersheds with mountainous terrain. 

In this research, flood events with three different return periods were investigated: 5-year flood, 

10-year flood, and 20-year flood. Return period indicates the frequency of a flood event of a given 

magnitude, and a flood event with a more extended return period is more extreme in terms of its 

magnitude and duration (Charlton, 2007). Due to the limited access to official meteorological data, 

the rainfall magnitude and frequency used in this research were adopted from the design storms 

by Jetten (2016), who applied a frequency magnitude analysis using historical maximum daily 
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rainfall data in Dominica to generate intensity-duration-frequency curves (IDF curves) for flood 

events with 5 , 10 , and 20 year return periods. Also adopted was the assumption by Jetten (2016) 

that the whole island is subjected to spatially homogenous rainfall events due to the limited number 

of gauge stations in Dominica. The detailed rainfall intensity data for the three investigated rainfall 

events with different return periods is presented in Appendix B.1 as IDF curves. 

3.3.1.2 River Channel Dimensions 

As listed in Table 3.1, a river network is available on CHARIM. However, the river 

channels provided by CHARIM does not coincide with the valley bottoms from the DEM used in 

the flood model, resulting in “rivers cut across slopes, or traverse low elevated hills in the 

floodplain” (Jetten, 2016). Thus, a new river network was generated from the DEM. The first step 

of river network derivation is to create a local drainage direction network (LDD) raster map 

indicating the flow direction of each cell, referencing its deepest downslope neighbor. The LDD 

map is then used to generate a stream order map for the whole catchment referencing the stream 

order scheme by Strahler (1964), in which cells with no upstream cells are assigned an order of 

one, cells with two order one upstream neighbors are assigned order two, and so on. Finally, major 

river channels are derived by applying a threshold on stream order, which is an iterative process 

referencing satellite images to achieve the best alignment between the generated river network and 

the actual river network in satellite images. In this study, the highest identified stream order was 

eight, and five was determined to be the optimized threshold for river channel extraction, because 

the river network comprising cells with a stream order of five or higher showed the best match 

with both the total length and spatial pattern of the actual river network in the satellite images. 

Therefore, cells with a stream order greater than five were marked as river channel cells. 

In addition to the river network, three more input maps related to river channels were 

produced: channel width, river depth, and flow resistance. River widths were manually acquired 

through visual interpretation of Google Earth satellite images. The strategy involved starting from 

the origin of each branch (the finest level for river width assignment in this study) before it joins 

another branch of higher stream order. Therefore, every location of the river of the same branch 

shares the same river width. The widths of most river branches were acquired from the satellite 

image in September 2017 (one week after Hurricane Maria) when the land surface was more 

exposed due to the large-scale destruction of vegetation. Figure 3.6 shows a comparison between 

a satellite imagery took in September 2017 and another one took in October 2018. The official 
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dataset for river depth was not available for Dominica, so soil depth was used as an approximation 

to actual river depth (as described in Section 3.3.1.3). Flow resistance is a parameter related to 

surface roughness and is presented as Manning's n value in LISEM. In this study, flow resistance 

was set to a constant value of 0.05, based on the comparison by Jetten (2016) between field 

observations and typical literature values of different surface types. All the input maps related to 

the river channels are presented in Appendix B.2. 

 

Figure 3.6: A comparison between the satellite imagery took in September 2017 (left) and the one 

took in October 2018 (right). 

3.3.1.3 Soil Physical Parameters 

The soil map of Dominica provided by the Soil Survey and Research Department of the 

University of the West Indies (Lang, 1967) was used as the base map for deriving other soil 

properties. In this soil map, there are 17 soil types identified in the original soil map referencing 

soil chemical properties such as degree of weathering and mineral composition (Lang, 1967). Due 
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to the absence of a fieldwork to collect soil samples, the initial step was to transfer these original 

soil types to texture classes. The soil map follows the US convention for soil classification, so the 

each of the 17 soil types was translated to a soil texture class regarding the United States 

Department of Agriculture (USDA) texture class triangle (Jetten, 2016). With translated soil 

texture class, three soil physical parameters required by the LISEM are calculated by applying the 

pedotransfer functions on the assumed average grain size distribution of the texture class. The 

three soil physical parameters are: saturated hydraulic conductivity, porosity, and field capacity. 

The process was done using the latest version of the Soil-Plant-Air-Water (SPAW) model software 

package (Saxton et al., 2005), which requires the translated soil texture class as the input and 

automatically calculates the three soil physical parameters mentioned above. Figure 3.7 shows an 

example of the sandy clay soil texture class with the three concerned soil physical properties 

highlighted (porosity is referred to as saturation in the SPAW model software). Table 3.5 lists the 

three soil physical parameters of the 7 soil texture classes translated from the original 17 soil types 

identified in the soil map by Lang (1967). 

 

 
Figure 3.7: Relevant soil physical parameters (field capacity, porosity and saturated hydraulic 

conductivity) of the sandy clay soil texture class automatically calculated in the SPAW model 

software. 
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Table 3.5: Soil texture classes and corresponding soil physical parameters. 

Soil Texture Class Ksat (mm/h) Porosity (% Vol) Field Capacity (% Vol) 

Clay 0.78 48.8 42.0 

Clay Loam 4.56 47.2 35.0 

Loamy Sand 91.26 45.7 12.1 

Sand 114.05 46.3 9.4 

Sandy Clay Loam 7.84 43.2 28.3 

Sandy Loam 50.34 45.0 17.9 

Urban 15 0.2 0.3 

 

In addition to the three soil physical parameters determined by soil texture class, there are 

two other soil property maps required by the LISEM. One is a map showing wetting-front matric 

suction, which is a necessary parameter in the Green-Ampt (GA) infiltration model (the infiltration 

model used in this study). The GA infiltration model was used because soil physical parameters 

are assumed vertically homogeneous for the lack of detailed data in Dominica, which aligns with 

the assumption in the GA infiltration model that there is a clear wetting front, above which the soil 

is saturated (Kale & Sahoo, 2011). Wetting-front matric suction is calculated with uniform initial 

soil moisture at 85% of porosity, which is a typical value for the wet season when most extreme 

rainfall events occur in the Caribbean region. The equation adopted from Jetten (2016) for matric 

suction calculation is: 

𝑝𝑠𝑖 = 𝑎 𝜃−𝑏                                 (2) 

where 

𝑏 = (𝑙𝑛 1500 − 𝑙𝑛 33)/(𝑙𝑛(𝜃𝑓𝑐) − 𝑙𝑛(𝜃𝑤𝑝)) 

𝑎 = 𝑒𝑥𝑝 (𝑙𝑛(33) + 𝑏 𝑙𝑛(𝜃𝑓𝑐)) 

1500 and 33 = matric suction for wilting point and field capacity, respectively (kPa) 
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The other soil property map is soil depth derived from terrain slope, relative distance to the 

closest river channel, and relative distance to the coastline. The equation adopted from Jetten (2016) 

for soil depth (in m) calculation is: 

𝑆𝑜𝑖𝑙 𝑑𝑒𝑝𝑡ℎ = 𝑎((1 − 𝑆) − 𝑏𝐷𝑟𝑖𝑣𝑒𝑟 + 𝑐𝐷𝑠𝑒𝑎
𝑑)𝑒              (3) 

where 

𝑆 = 𝑡𝑒𝑟𝑟𝑎𝑖𝑛 𝑠𝑙𝑜𝑝𝑒 (𝑏𝑜𝑢𝑛𝑑𝑒𝑑 0 − 1) 

𝐷𝑟𝑖𝑣𝑒𝑟 = 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑟𝑖𝑣𝑒𝑟 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

𝐷𝑠𝑒𝑎 = 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑒𝑎 

Scaling parameters:𝑎 = 𝑒 = 1.5, 𝑏 = 𝑐 = 0.5, 𝑑 = 0.1 

The rationale is that soil depth tends to increase as distance to river channels increases or 

terrain slope and the distance to the sea decrease (Kuriakose et al., 2009). As mentioned in Section 

3.3.1.2, soil depth was used as an approximation of river depth, because rivers were observed to 

had eroded to the rock bed (Jetten, 2016). All the input maps for soil-related properties are 

presented in Appendix B.3. 

3.3.1.4 Buildings and Roads 

In addition to the abovementioned catchment physiographic characteristics, man-made 

structures also affect flash flooding generation. Artificial hard surfaces can cause extra interception 

and obstruct infiltration and surface flow. Two input maps describing the infrastructures in 

Dominica were included in the flash flood modelling of this study. One is a building density map 

created from the building footprint layer previously used for MSA in the first part of this study. In 

LISEM, building density is presented as the fraction of a grid cell covered by building footprints. 

The other input layer is related to the road network in Dominica and was created from the road 

network vector dataset provided by CHARIM. The road segments in the original road network 

dataset are classified into three types according to road width: main highway (10 m wide), primary 

roads (6 m wide), and secondary roads (4 m wide). The vector dataset was converted to a raster 

dataset showing the width of the road segments. According to visual interpretation of the road 

segments against satellite images, all road segments in the dataset are paved, so they were 

considered impermeable in the modelling process. Thus, roads obstruct surface flow with a higher 
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Manning’s n value for greater flow resistance (automatically applied in LISEM). The two 

infrastructure-related input maps are presented in Appendix B.4. 

 

3.3.1.5 Hydrological Parameters Related to Land Cover 

Another group of input maps is related to land cover. The original forest and land cover 

map provided by CHARIM was produced using Landsat and SPOT images between 1996 and 

1999 (USGS, 2006). The whole island is classified into 18 land cover types, from which 

hydrological parameters affecting soil surface structure can be interpreted. The original 18 land 

cover types were reclassified into ten new land cover types to simplify the modelling process. 

Although some original land cover types were merged after reclassification (e.g., coastal evergreen 

forest and semi deciduous evergreen forest were grouped into the evergreen forest class), the 

reclassified land cover types are detailed enough in terms of hydrological characteristics for event-

based flash flood modelling (Jetten, 2016). From the reclassified land cover map, three input maps 

were derived: micro surface roughness (in cm), surface flow resistance (also presented in 

Manning’s n), and vegetation canopy cover. Micro surface roughness is the standard deviation of 

surface heights at the microscale. It is used to calculate the storage of micro ponds, whose overflow 

cause surface runoff at the macro scale (Jetten, 2018). Vegetation canopy cover is defined as the 

fraction of a cell covered by plants. It was used to calculate leaf area index (LAI) with the following 

equation adopted from Jetten (2018): 

𝐿𝐴𝐼 =
𝑙𝑛(1−𝐶𝑜𝑣𝑒𝑟)

−0.4
                                                          (4) 

where 

𝐶𝑜𝑣𝑒𝑟 = 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 𝑐𝑜𝑣𝑒𝑟 𝑏𝑦 𝑝𝑙𝑎𝑛𝑡𝑠 (𝑖𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑎𝑟𝑒𝑎) 

LAI is a significant parameter to simulate the partition between the canopy and ground 

surface (Pribulick et al., 2016). In LISEM, LAI is used to calculate the maximum amount of 

precipitation that a plant canopy can store. All land cover-related input maps are presented in 

Appendix B.5. 

3.3.2 Model Setup 

The version of the LISEM used in this study was 6.62 beta (05.03.2021). There are few 

options in LISEM for surface flow simulation. This study used the option that combines 1D 
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kinematic wave and 2D dynamic wave. Both overland flow and channel flow were simulated as 

1D kinematic wave (using local drainage direction only), while the overbank flow was simulated 

as 2D dynamic wave (using DEM) and was calculated with the full Saint-Venant equations. This 

combination of 1D kinematic wave and 2D dynamic wave emphasizes flooding generated from 

the overflowing of rivers rather than regular surface runoff, because fluvial flooding is more 

common during heavy rainfall as rivers, stream and other channels tend to overflow their banks 

(Dominica News Online, 2022). Detailed explanations for the water balance equations for 1D 

kinematic wave and 2D dynamic shallow water flow simulation can be found in Jetten (2018). The 

extra options for simulating interception and infiltration were set as default because no relevant 

datasets were available to optimize these options. All LISEM run options are shown in Appendix 

B.6. 

3.3.3 Calculating Exposed MS in Buildings in Dominica 

After flood inundation areas are identified in the flood model, the next step is to quantify 

the amount of material stocks in buildings exposed to flash flooding. Output flood inundation areas 

of LISEM are stored as raster datasets. These raster datasets were converted to polygon shapefiles 

and imported into ArcGIS for further overlay analysis. Quantify the amount of exposed building 

MS and identifying buildings affected by the simulated flood events are necessary. An individual 

building footprint was used as the basic unit to investigate the exposure of buildings to simulated 

flash flooding events. As a result, this study assumed that a building was either not affected at all 

or affected as a whole. A building footprint is considered exposed to potential flash flooding events 

if it intersects any flooded areas in the polygon shapefile converted from the flood extent raster 

dataset from the LISEM. 

3.4 Methodology for Household-level Vulnerability Assessment 

In addition to hazard exposure, vulnerability is another element of hazard risk. Hazard 

exposure approaches the concept of hazard risk from a physical perspective and refers to the 

coincidence of lives or properties and the locations involved in physical hazards events (Kron, 

2002), while vulnerability reflects the social part of hazard risk and is defined as the degree to 

which lives and properties can be impacted (Cutter et al., 2008). 

The first two parts of the methodological framework presented in Figure 3.1 aim 

collectively to reveal clusters of exposed MS in buildings in Dominica. Following these two parts, 
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the third part of the methodological framework aims to investigate the vulnerability aspect of 

hazard risk. This part of the research is mainly based on the Social Vulnerability Index (SoVI) 

approach initially developed for the United States by Cutter et al. (2003), except that the 

socioeconomic variables have to be collected at the household level as primary data, because 

census data is aggregated to the parish level or the nation level in Dominica to protect the 

household-level confidentiality (Central Statistics Office of Dominica, 2011; Flowerdew, 2011). 

As is shown in Figure 3.1, the vulnerability assessment part of this research has three major steps. 

Accordingly, the rest of this subsection will discuss the methodologies for the selection of 

commonly used variables for social factors of vulnerability, the design of a household survey to 

collect primary data, and the combination of these variables to calculate a composite vulnerability 

score for each household exposed to the simulated flooding events. 

3.4.1 Selection of Socioeconomic Variables 

3.4.1.1 Initial Selection of Socioeconomic Variables 

This research adapts the SoVI methodology for the quantification of household-level 

vulnerability to environmental hazards. The SoVI methodology derives socioeconomic indicators 

from census variables, and these socioeconomic indicators are independent from each other and 

can be further combined into a summary score indicating general vulnerability to environmental 

hazards (Cutter, Boruff & Shirley, 2003). Since disaggregated and georeferenced census data of 

small island states in the Caribbean is usually not available to the public (Cumberbatch et al., 2020), 

the first step is collecting relevant variables from the literature and tailoring these variables so that 

they can be specifically applied at the household level in Dominica. 

The SoVI research by Cutter, Boruff & Shirley (2003) served as a starting point for the 

selection of variables related to social factors contributing to vulnerability to environmental 

hazards. The original 42 census variables in the SoVI research were expanded by searching the 

adaptations or variants of the SoVI methodology in other contexts. Three digital databases were 

used for the search: University of Waterloo Library, Wilfrid Laurier University Library, University 

of Guelph Library and Google Scholar. The keywords for the search were: SoVI, environmental 

hazard, social vulnerability, Caribbean and flood. Based on the search results, six previous studies 

were identified, with three focusing on small island states in the Caribbean region (Boruff & Cutter, 

2007; Cumberbatch et al., 2020; St. Bernard, 2007) and the other three focusing on China (Chen 
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et al., 2013), Zimbabwe (Mavhura, Manyena & Collins, 2017) and the United States (Flanagan et 

al., 2011), respectively. Appendix C.1 lists the 57 variables extracted from the aforementioned 

studies, and these variables were grouped into 18 categories reflecting different concepts of 

vulnerability such as socioeconomic status, gender, occupation, and so on. 

3.4.1.2 Adaptation of the Selected Variables to a New Context 

Adaptation of indicators for vulnerability to environmental hazards are crucial because 

vulnerability heavily depends on geographical and cultural backgrounds (Brooks, Adger & Kelly, 

2005). Therefore, the relevant variables collected from literature must be contextualized before 

they are mapped to the associated questions to be included in the survey. Following the guideline 

by Holand & Lujala (2013), this research adopted three types of variable accommodation: 

conceptual accommodation, technical accommodation, and geographic accommodation. 

Conceptual accommodation responds to the question Does the vulnerability concept 

captured by a variable apply for the new context? If the answer is negative, modifications are 

necessary to correct the disparities in vulnerability concepts between the original and the new 

setting (Holand & Lujala, 2013). As a result, some variables identified in literature were omitted 

from the final collection because they are not typical in the new context. For example, mobile 

homes are relatively common in North America, but in Dominica there is a lack of records of this 

type of residence. For the variables whose associated vulnerability concepts are valid in the new 

context, minor revisions regarding the counterparts in the new context were still required. One 

example is the variables for the percentages of non-white and non-Anglo population, which reflect 

the race and ethnicity aspect of vulnerability in the original SoVI research as ethnic minorities are 

likely to encounter cultural and language barriers that hinder their access to post-hazard funding 

(Cutter, Boruff & Shirley, 2003). In this research, these variables were adapted by switching to the 

existence of Amerindian, White, East Indian, Chinese, Syrians and Lebanese population, because 

84.8% of Dominica’s total population are Afro-Caribbean descent (Central Statistics Office of 

Dominica, 2011). 

Technical accommodation and geographical accommodation are respectively the second 

and the third step for variables adaptation if the vulnerability concepts reflected by the variables 

do apply for the new setting. Technical accommodation examines data availability and responds 

to the question Is census data that is required to construct relevant variables collected or available 

to the public? Geographic accommodation builds on the previous two questions and responds to 
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the question If the vulnerability concepts apply for the new context and data is available to the 

public, is the data shared at the appropriate scale? Viewing these two questions collectively, the 

answer is simply negative in the context of this research, because census data is aggregated to the 

parish level before dissemination in Dominica to maintain confidentiality (Central Statistics Office 

of Dominica, 2011; Flowerdew, 2011). However, since this research attempted to design a 

household-level survey instrument to collect primary data, both technical accommodation and 

geographical accommodation are an inherent part of the methodology workflow. Variables 

adapted to the context of Dominica through the aforementioned three types of accommodations 

are listed in Table 3.6, along with the rationale behind these variables and whether a variable 

increases or decrease household-level vulnerability to environmental hazards. How these adapted 

variables were mapped to associated questions in the designed household survey will be described 

in Section 3.4.2. 

 

Table 3.6: Variables of household-level vulnerability adapted to the context of Dominica. 

Concept of 

Vulnerability 
Variable Name Rationale +/-1 

Age 

Percentage of family 

members aged below five 

Both sides of the age spectrum result in 

limited mobility for evacuation (Cutter et 

al., 2000), and burden of care in hazard 

aftermath (Morrow, 1999). 

+ 

Percentage of family 

members aged above 65 
+ 

Education 

Percentage of family 

members 18 years or 

older with a high school 

diploma 

A higher level of education results in a 

better understanding of hazard warning 

and recovery information (Center & John, 

2000; Tierney, 2006), and a better chance 

to survive hazard events (Frankenberg et 

al., 2013). Access to hazard information 

may also be facilitated by a higher 

computer literacy rate (St. Bernard, 

2007). 

- 

Percentage of family 

members 18 years or 

older with exposure to 

tertiary level education 

- 

Percentage of family 

members 15 years or 
- 
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older with computer 

literacy 

Socioeconomic 

Status 

Per capita income Income level is usually the best indicator 

for the ability to absorb losses due to 

hazard events through insurance and 

other means (Chen et al., 2013; Cutter et 

al., 2000). 

- 

Percentage of 

unemployed family 

members 

+ 

Residential 

Property 

Monetary value of 

owner-occupied housing 

The value of housing affects potential 

losses and houses that are more expensive 

are usually more costly to repair (Center 

& John, 2000; Cutter et al., 2000). 

Transportation out of evacuation zones is 

problematic for household without a 

vehicle (Flanagan et al, 2011; Morrow, 

1999). 

+ 

Number of vehicles per 

family member 
- 

Renters 
Monetary value of 

renter-occupied housing 

Renters often lack financial resources to 

own a house, and sometimes have limited 

shelter options if temporary lodging is too 

expensive (Morrow, 1999). 

+ 

Gender 

Percentage of female 

family members 18 years 

or older 

Women is recognized as a social group 

with higher levels of vulnerability due to 

family care responsibilities, traditional 

gender roles and gender discrimination 

(Forhergill, 1996). 

+ 

Family 

Structure 

Total number of family 

members (sleeping at 

least  

four days per week) 

Households with more family members 

are overcrowded, thus encounter 

difficulties during evacuation (Tierney, 

2006). Single-parent families are usually 

dependent on social resources and have 

more stress taking care of the dependents 

(Cutter et al., 2003). 

+ 

Ratio of parents to 

children (under 18 years 

old) 

- 
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Ratio of family members 

to the number of 

bedrooms 

+ 

Special Needs 

Percentage of family 

members with a 

disability 

People with disabilities are 

disproportionately affected and more 

likely to require transportation, medical 

care or assistance with their daily 

activities during and after hazard events 

(Cutter et al., 2003; Flanagan et al, 2011; 

Morrow, 1999) 

+ 

Isolated 

Household 

Percentage of family 

members who are not 

ethnic majorities 

Ethnic minorities are more likely to 

encounter language and cultural barriers 

that makes them unfamiliar to the region 

and makes it difficult for them to assess 

post-disaster funding (Chen et al., 2013; 

Cutter et al., 2014; Morrow, 1999). 

+ 

Percentage of family 

members five years or 

older and whose first 

language is not English 

+ 

1Positive (+) means increased vulnerability; negative (-) means decreased vulnerability. 

3.4.2 Design and Implementation of a Resident Survey Instrument to Assess Household-

level Vulnerability 

Questionnaire surveys are commonly used tools in human geography when primary data 

about people, their attitudes and behavior is required. Based on the 17 variables (listed in Table 

3.6) adapted for Dominica, a resident survey was developed to collect the information about 

household-level vulnerability to environmental hazards. Appendix C.2 shows the resident survey 

consisting of 16 questions developed with reference to the general guidelines for quantitative 

survey design (Bryman & Bell, 2019; Flowerdew & Martin, 2005). 

3.4.2.1 The Development of Survey Questions 

The 17 variables listed in Table 3.6 are the experimental or independent variables which 

are possibly the predictors of vulnerability to environmental hazards (Flowerdew & Martin, 2005). 



51 

 

In addition, all the 17 variables are used to measure the characteristics of the households 

themselves (e.g., per capita income and number of vehicles), rather than people’s behaviour and 

attitudes, which are more difficult to elicit due to their complexities and susceptibility to the quality 

the survey design (Rattray & Jones, 2007). Moreover, all the properties measured by the 17 

variables are interval or ratio in nature, which makes them more appropriate to be elicit from closed 

questions (Bird, 2009). Closed questions are presented with a set of fixed alternatives, and with 

the extra clarification provided by the available answers, respondents can understand a question 

better, which promotes standardization in both how the questions are asked and how the answers 

are recorded (Bryman & Bell, 2019). 

Most questions in the resident survey are presented in an explicit manner asking the exact 

numerical values required to populate the adapted variables. However, to maintain a decent level 

of confidentiality for two variables reflecting sensitive information, namely Per capita income and 

Monetary value of owner-occupied housing, multiple mutually-exclusive categories were created 

and listed with letter labels (e.g., A. EC$0 to EC$1000, B. EC$1001 to EC$2000). Although 

categorical values are not as precise as interval values, this type of question is still preferable to 

the lack of response if participants directly refuse to answer the question (Flowerdew & Martin, 

2005). 

3.4.2.2 Sampling and Piloting of the Resident Survey 

To maintain statistical reliability of the results collected from the resident survey, usually 

at least thirty respondents are required by most statistical tests (Bryman & Bell, 2019), while there 

is always a trade-off between decreasing sample size to save time or costs and increasing sampling 

bias (Flowerdew & Martin, 2005). As is shown in Figure 3.1, a sampling procedure is inherent in 

the methodological framework, in which high concentrations of exposed MS to the simulated 

flooding events are potential samples for vulnerability. The rational is that small island states with 

limited natural and economical resources need to pinpoint the households with both high exposure 

and vulnerability to lower the overall loss due to potential hazard events in a more cost-effective 

manner. In this research, it was decided that recruitment would be focused on the town of 

Portsmouth as it was a cluster of exposed MS in buildings identified via flood modelling (shown 

in Figure 4.10). A total number of 346 residential buildings exposed to the 20-year flood scenario 

were selected as a sample. 
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With the identified sample, the resident survey would be conducted on a door-to-door base 

via physical copies of the questionnaire during fieldwork. The author (also the interviewer) would 

distribute the printed questionnaires, explain its purpose, and inform the potential participants of a 

draw in appreciation of the time given for a higher response rate. The questionnaire is self-

explanatory and can be completed without the assistance of the interviewer, so the finished 

questionnaires would be collected three days after the distribution by revisiting the households. 

 

 
Figure 3.8: Exposed buildings in the city of Portsmouth as a sample for the resident survey. 

 

3.4.2.3 Data Analysis for Information Collected from the Resident Survey 

Data analysis methods should be carefully considered during the aftermath of a fieldwork, 

as they are critical for the elicitation of new insight and information (Flowerdew & Martin, 2005). 

Following the methodology adapted from the original SoVI research by Cutter, Boruff & Shirley 

(2003), this research would apply a principal components analysis (PCA) to derive a composite 

vulnerability score for each household participating the resident survey. PCA is a multivariate 

statistical method for data reduction by combining variables into mutually-exclusive dimensions, 
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or principal components, which account for a sufficient amount of the variance in the original input 

variables (Chu, Tan & Mortsch, 2021; Cutter, Boruff & Shirley, 2003). In this research, the aim 

of applying a PCA is to identify a few uncorrelated indicators that can explain the majority of be 

variance among all surveyed households and can be further combined into a summary vulnerability 

score. 

Data normalization is a necessary step before performing a PCA to ensure all input features 

are in the same scale, because in a PCA higher numerical values are considered to be of higher 

significance, which would result in biased outputs (Dutt, 2021). In this research, most variables 

are fundamentally percentages which range from 0 to 1, but for interval variables, the following 

equation can be used to standardize the values: 

𝑧𝑖 =
𝑥𝑖−min (𝑥)

max (𝑥)−min (𝑥)
                                                               (5) 

With the inputs of all the 17 variables, a PCA generates 17 principal components (PCs) via 

linear commination of the original variable, and each new variable is assigned an eigenvalue 

representing the proportion of variance it can capture (Oulahen et al., 2015). This research follows 

the methodology by Cutter, Boruff & Shirley (2003) and select PCs with an eigenvalue greater 

than 1.0 as the vulnerability factors, which can be further combined into a composite vulnerability 

score for each household using the following equation: 

𝑆𝑜𝑉𝐼 𝐴𝑑𝑎𝑝𝑡𝑒𝑑 = ±𝐹1 ± 𝐹2 ± ⋯ ± 𝐹𝑛                                       (6) 

where Fi represents the PCs and the sign before each PC is determined by its composition of the 

original 17 variables and whether they are negatively (decreases) or positively (increases) 

household vulnerability, as indicated in Table 3.6. For example, if the majority of the original 

variables consisted in a PC increases household vulnerability to environmental hazards, the sign 

of that PC would be adjusted to positive and vice versa (Chu, Tan & Mortsch, 2021; Cutter, Boruff 

& Shirley, 2003). Based on the methodology described above, the resulting adapted SoVI values 

indicates household-level vulnerability and a larger value means more susceptible to the impacts 

of environmental hazards. 
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4 Results 

4.1 Results of Material Stock Accounting for Dominica’s Buildings 

This subsection presents the results of material stock accounting for buildings in Dominica 

using the methodology described in Section 3.2. First, the basic statistics of the building heights 

derived from aerial videos are examined. Following the determination of building heights, the 

calculated material stocks in buildings in 2020 are presented by material category and building 

use-type. Finally, the spatial distribution of estimated material stocks in buildings is examined to 

identify clusters of material stocks in buildings in Dominica. 

4.1.1 Estimation of Building Heights in Dominica by Building Use-type 

This subsection presents the results of the building height acquisition methodology 

described in Section 3.2.3. The total number of buildings in Dominica covered by the aerial videos 

available online is 12,430 (about 37% of the total number of buildings on the whole island). In this 

research, the height a building is presented in the term of the number of floor levels it has. The 

average height of these 12,430 buildings is 1.18 floor levels. The heights of all the buildings 

captured by the aerial videos range from 1 floor level to 6 floor levels (e.g., the financial centre of 

the government). 

To further examine the building heights collected from the aerial videos, Table 4.1 shows 

the basic statistics of these building heights by building use-type. Some building heights are 

fractions, and a building with 1.5 or 2.5 floor levels is built with a partial top floor to accommodate 

for more space (an example is shown in Figure A.2). All building use-types share the same 

minimum floor level of one, but the maximum floor level varies across different building use-

types. The highest value of maximum floor level is identified in the institution use-type at six, and 

the lowest value is observed in the transportation use-type at 1.5. The mean floor level for all 

building use-types are below two storeys, and the mean building height also varies cross different 

building use-types. Commercial/industrial buildings have the largest average building height at 1.6 

floor levels, followed by cultural buildings (1.5 floor levels), institutional and tourism buildings 

(1.4 floor levels), residential buildings (1.2 floor levels), and transportation buildings (1.1 floor 

levels). These values also demonstrate that no significant positive correlation is found between the 

maximum building height and the mean building height. For example, the commercial/industrial 

building use-type has the largest mean building height at 1.6 floor levels, while its maximum 
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building height is smaller than that of the residential building use-type with a lower mean building 

height at 1.2 floor levels.  

For the amount of variation of building heights collected from the aerial videos of each 

building use-type, the lowest standard deviation is identified in the transportational use-type, 

which could be due to the limited number of samples as there are only 24 buildings of the 

transportational use-type. The same explanation can be applied to the cultural use type with the 

highest standard deviation but also a limited number of samples (28 buildings). The residential 

use-type has the second-lowest standard deviation, with the largest number of samples (11,512 

buildings). This reflects the finding during the process of visual interpretation from the aerial 

videos that most residential buildings in Dominica are single-storey dwellings. 

 

Table 4.1: Basic statistics of sampled buildings with an actual number of floors. 

Building Use-type Number of 

Buildings 

Minimum 

Floor 

Level 

Mean 

Floor 

Level 

Maximum 

Floor 

Level 

Standard 

Deviation 

Institutional 181 1 1.4 6 0.656 

Commercial/Industrial 422 1 1.6 4 0.600 

Residential 11,512 1 1.2 5 0.392 

Tourism 263 1 1.4 5 0.707 

Cultural 28 1 1.5 3 0.780 

Transportational 24 1 1.1 1.5 0.165 

 

The pie charts in Figure 4.1 show the overall shares of building samples with different floor 

levels compared to those in Grenada collected from a fieldwork by De Kroon (2020). The pie 

charts indicate a higher percentage of one-storey buildings in Dominica (83.35%) than that in 

Grenada (50%). As a result, the total shares of two- and three-storey buildings in Dominica is 

relatively small at 15% and 0.88%, respectively. Given the two island states' similar historical and 

cultural backgrounds, there is a potential overestimation of the number of one-storey buildings in 

Dominica, though in De Kroon (2020) only 703 buildings were sampled in six communities across 

Grenada, while 12,430 buildings were sampled across the whole island of Dominica in this 

research. 
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Figure 4.1: Pie charts of buildings floor levels in Dominica compared to building floor levels in 

Grenada collected from fieldwork by De Kroon (2020). 

 

4.1.2 Material Stocks in Buildings by Material Category 

Total material stocks in buildings of Dominica in 2020 was estimated at 6,574 kt. Given 

Dominica’s population in 2020, the per capita material stocks in buildings was 91 t/cap. Figure 4.2 

shows the percentage shares of the four material categories investigated in this study. Concrete 

accounts for the largest share of total MS in buildings at 85.66%, followed by aggregate (7.62%), 

timber (3.74%), and steel (2.97%). This reveals the dominance of buildings with a concrete 

structure in Dominica. 

 

 

Figure 4.2: Total share (in %) of material stocks in buildings of Dominica by material category. 
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4.1.3 Material Stocks in Buildings by Building Use-type 

Figure 4.3 shows the distribution of material stocks by different building use types. The X-

axis presents the percentage share of each building use type to the total number of buildings in 

Dominica following the building use type names. The blue columns present the percentage shares 

of the building MS contained in different building use-types. The orange line shows the ratio of 

the proportion of MS contributed by each building use-type to its share of the total number of 

buildings in Dominica, reflecting the overall material intensity of each building use type. In 2020, 

MS in buildings of Dominica was dominated by the residential building use-type at 75.93%, 

followed by industrial/commercial buildings at 11.1%, institutional buildings at 7.23%, tourism 

buildings at 4.79%, and cultural and transportation buildings contributing to less than 1%. 

Moreover, no apparent positive correlation is identified between the number of buildings of each 

use type and its overall material intensity. On the contrary, building use-types with more footprints 

tend to have lower overall material intensity. For example, residential buildings have the lowest 

MS-to-footprint number ratio, while they occupy the largest share of total MS. 

 

 
Figure 4.3: Material stocks in buildings by building use-type with overall material intensity. 

 

The absolute values of MS in different building use-types by material category are 

presented in Table 4.2 regarding per capita values. It can be found that for all the four material 

categories, the residential building use-type is the largest sink. In Figure 4.4, MS in buildings are 
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broken down by material category for each building use type. For all building use-types, concrete 

has the largest share (above 80%), reflecting the dominance of concrete structure buildings in 

Dominica. Moreover, for all building use-types, aggregate accounts for the second-largest 

percentage share of MS in buildings at around 10%. The largest share of timber is observed in the 

residential use-type at 4.38%. For steel, the cultural building use-type is identified as the most 

steel-intensive building use-type. Not much difference is observed in the composition of material 

category among building use-types since concrete dominates the percentage share of total MS in 

buildings. The percentage shares of the four material categories in all building use-types are similar 

to the aggregated results shown in Figure 4.2, which means construction types are equally shared 

across different building use-types in Dominica. Except for the residential use-type, the percentage 

share of steel is higher than that of timber, reflecting a steel-intensive for all non-domestic building 

use-types. However, the opposite is true for the residential use type. Since the residential use-type 

accounts for 94% of all buildings in Dominica, the percentage share of steel is actually lower than 

that of timber in the aggregated results shown in Figure 4.2. 

 

Table 4.2: Per capita material stocks by material category and building use-type. 

Building Use-Type Aggregate 

(t/cap) 

Timber 

(t/cap) 

Concrete 

(t/cap) 

Steel 

(t/cap) 

Total 

(t/cap) 

Institutional 0.61 0.15 5.68 0.21 6.66 

Commercial/Industrial 0.90 0.22 9.27 0.27 10.65 

Residential 5.26 3.24 62.99 1.68 73.17 

Tourism 0.36 0.05 3.17 0.22 3.80 

Cultural 0.06 0.00 0.42 0.05 0.54 

Transportation 0.03 0.00 0.26 0.02 0.31 
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Figure 4.4: Material Stocks broken down by material category (in %) in Dominica for 2020. 

 

4.1.4 The Spatial Distribution of Material Stocks in Buildings 

The spatial distribution of MS in buildings in Dominica is only investigated at the national 

scale. The methodology described in Section 3.2.4 for material stock accounting assumes that 

buildings of the same occupancy class share the same material intensity typology, so the 

individual-building resolution cannot be achieved. Breaking the island into 10,000 m2 cells, Figure 

4.5 shows the distribution of accumulated MS in buildings in Dominica in 2020. The cell size of 

100 m corresponds to the average distance between blocks in dense urban areas like the capital 

city Roseau. Clusters of high MS accumulation are represented by dark yellow and red, while low 

accumulation is represented by the green colours (colours are classified by the Natural Breaks-

Jenks methodology for better variances between classes). The largest cluster of material stocks in 

buildings is identified in the parish of St. George along the southwestern coast of the island, where 
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the capital city Roseau is located. The second-largest cluster can be seen in the parish of St. John 

along the northwestern coast, where Portsmouth is located. 

Figure 4.6 shows the distribution of building MS at the district level. The district 

boundaries do not coincide with the parish boundaries, and the relationship between district and 

parish is unknown. However, district is the smallest geographic unit because the spatial data for 

census enumeration district is not available. The district-level map confirms that building MS tends 

to accumulate near the coast rather than in the mountainous interior areas where two protected 

areas (national parks) are located. The map also conveys that the island's western coast is more 

material intensive than the eastern coast, showing a radial pattern emerging from the capital city 

Roseau but blocked by the two protected areas. 

The distribution of building MS by building use type is also examined at the district level, 

as presented in Figure 4.7. Institutional, commercial/industrial, cultural, and residential MS is 

mainly concentrated near the capital city in St. George at 65.4%, 50.1%, 72.2%, and 34.6%, 

respectively. A high accumulation of tourism MS (46.3%) is identified along the island's 

northwestern coast, where Portsmouth, the second-largest city in Dominica, is located. A high 

concentration of MS in the transportation use type is observed in the northern district where the 

two airports (Roseau-Canefield Airport and Douglas-Charles Airport) are located. 
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Figure 4.5: Accumulation of MS in Dominica’s buildings in 2020, shown with 10,000 m2 cell 

resolution. 
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Figure 4.6: Material Stocks in Dominica’s buildings in 2020, by district.
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Figure 4.7: Distribution of material stocks in Dominica’s buildings in 2020 by building use-type at the district level. 
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4.2 Results of Flood Modelling and Exposure of MS in Dominica’s Buildings 

The following subsections present the results of flash flood modelling described in Section 

3.3. Flood extent is summarized for flash flood hazard events with return periods of 5 years, 10 

years, and 20 years. The impact of the simulated flood events on MS in buildings in Dominica is 

also described, with the quantity and spatial distribution of MS at risk examined at the island scale. 

4.2.1 Flood Modelling Results 

Significant outputs of flood inundation modelling are flood extent, flood start time, 

maximum flood height, and flood volume. In this study, only flood extent was used to investigate 

the exposure of building MS to flash flooding in Dominica. Flood height and flood start time are 

not accurate enough for flood modelling at the island scale due to relatively low spatial resolution 

(Jetten, 2016). Flood volume is essential for calibrating a flood model by referencing on-site river 

discharge records of selected catchment, but it is not discussed in this research for the lack of 

relevant hydrological data in Dominica. 

In this research, flood extent (flooded area) consists of cells with a maximum flood height 

of over 0.05 m. Flood depth under 0.05 m is considered harmless, according to a discussion with 

stakeholders in a previous CHARIM project (Jetten, 2016). 

Basic statistics of the flood extents of the three designed flash flood events are listed in 

Table 4.3. The total flooded area for the 5-year, 10-year, and 20-year events are 4.1 km2, 5 km2, 

and 5.7 km2, respectively. Thus, there is a positive relationship between flood extent and flood 

magnitude. However, the difference in flood extent is relatively small, as there is only an increase 

of 20% in flood extent from the 5-year flood event to the 10-years flood event, and a rise of 17% 

from the 10-year flood event to the 20-year flood event. 

 

Table 4.3: Flooded area of the flood hazard for three return periods. 

Return Period Rainfall Depth (mm) Rainfall Duration (min) Flood Extent (km2) 

5 years 217 195 4.1 

10 years 267 265 5.0 

20 years 315 330 5.7 

 

Figure 4.8 shows the spatial distributions of flooded areas (flooded cells are buffered by 

20 m for better recognition at the island scale). For all three flood magnitudes, flooded cells 
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concentrate along the west coast of the island. It is found that the increase in flood extent from 

flood events of small magnitude to that of larger magnitude is mainly caused by the occurrences 

of entirely new flooded areas. For example, the 10-year flood extent includes few obvious clusters 

of flooded cells along the southeastern coast of the island, which are not observed in the 5-year 

flood extent map. Similar new clusters are identified along the northeastern and eastern coast in 

the 20-year flood extent map. 
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Figure 4.8: Maps of flood extent for the flood hazard event for three return periods. 
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4.2.2 Impact of Flash Flooding on Material Stocks in Dominica Buildings 

Previous sections have shown the results of material stock accounting and flash flood 

modelling separately. Linking the results of material stock accounting, the following subsections 

describe the impact of the simulated flash flood hazard events on MS in buildings in Dominica. 

The number of exposed buildings and the quantity of contained MS are shown by considering 

flood magnitude, building use type, and material category. 

4.2.2.1 Total Affected Material Stocks in Buildings in Dominica 

Total MS in buildings affected by the design flash flood events with different return periods 

are shown in Table 4.4. In terms of affected buildings on the island, the 5-year flood event accounts 

for the least number of exposed building footprints at 2,781, followed by the 10-year flood event 

and 20-year flood event at 3,030 and 3,274, respectively. When exposed MS is considered, flood 

events of greater magnitude also result in more exposed MS. However, the differences in exposed 

MS between the three simulated flood events are small, as there is only an increase of 1% from 

less extreme events to more extreme events. 

 

Table 4.4: Summary of total affected buildings by the flash flood hazard event for three return 

periods. 

Return Period Number of Buildings 

Affected 

MS Exposed 

(kt) 

% of MS Exposed 

5 years 2,781 1,162 17% 

10 years 3,030 1,232 18% 

20 years 3,274 1,302 19% 

 

The spatial distributions of exposed buildings in the three investigated flood events are 

presented in Figure 4.9. The spatial pattern of exposed buildings corresponds to the spatial pattern 

of flooded areas, demonstrating that the most affected buildings are located along the west coast 

of the island, with some entirely new clusters of affected buildings by 10-year and 20-year flash 

flood events along the southeastern and southwestern coast. When presented in 10,000 m2 cells, 

the affected MS in buildings by the three simulated flood events did not show much difference, so 

only the map of the 20-year flood event is included (Figure 4.10). Comparing the spatial 

distribution of exposed buildings and that of contained MS, it is found that there is an overlap 



68 

 

between high concentrations of building MS at risk and clusters of buildings exposed to flash 

flooding. 

Following the national-scale distributions of exposed buildings and MS, Figure 4.11 

focuses on the local-scale distribution of exposed buildings in the capital city of Roseau to the 

three flash flooding scenarios, with the flood extent maps overlaid on a satellite imagery. Due to 

the low-quality DEM used in this research, there is a misalignment between the artificially 

generated river network and the river network in the satellite imagery. Therefore, the exposure of 

buildings located on the southern coast of the Roseau River could be overestimated, and vice versa 

for buildings on the northern part of the city. However, even with this data precision issue, it is 

found that riverbank overflows are not the major reason for flash flooding in urban areas such as 

Roseau. Apart from inundated cells along the river network, other flooded areas exist across high-

density build-up zones. Possible reasons for this distribution pattern are obstructed infiltration and 

surface flow by a high density of man-made structures. 

Also focusing on the capital city of Roseau, Figure 4.12 breakdowns the amount of exposed 

MS in individual buildings by material category. The distributions of exposed aggregate, concrete, 

and steel are similar with some of the institutional buildings (e.g., the government headquarter and 

the financial centre), educational buildings (e.g., Convent high school), health buildings (e.g., 

Princess Margaret Hospital), and recreational buildings (e.g., Windsor Park Stadium) being the 

biggest sink. These non-domestic buildings tend to have a larger footprint area and multiple floors, 

resulting in relatively large gross floor areas. Compared with the aforementioned three material 

categories, exposed timber does not concentrate in the health buildings and recreational buildings 

in Roseau. This is because these two types of buildings are in a reinforced concrete structure with 

no timber involved in their constructions. 



69 

 

 

Figure 4.9: Maps of exposed buildings to the flood hazard event for three return periods. 
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Figure 4.10: Maps of exposed material stocks in buildings to the flood hazard event for three 

return periods.
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Figure 4.11: A local-scale map of exposed buildings in the capital city of Roseau and the flood extents over satellite imagery. 
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Figure 4.12: The local-scale distribution of MS of each category in buildings in the city of Roseau. Top left: aggregate; Top right: 

Concrete; Bottom left: steel; Bottom right: timber. 
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4.2.2.2 Affected Material Stocks in Buildings by Material Category 

In terms of types of materials affected (Figure 4.11), hardly any difference was observed 

between the share of each material category among the three simulated flash flood events. This is 

because the increase in the quantity of total impacted MS from small magnitude events to large 

magnitude events is relatively small (about 1%, as discussed in the previous subsection). The 

distribution of affected stocks by material category is similar to the distribution of total MS in 

Buildings without considering flood impacts (Figure 4.2), demonstrating that construction types 

are similarly shared in affected buildings. Concrete accounts for the highest share of affected MS 

in buildings at about 85.9%. Aggregate is the second-largest material category accounting for 8.2% 

of total affected materials, followed by timber at about 3% and steel at about 2.9%. 

 

 
Figure 4.13: Total share (in %) of exposed material stocks in buildings of Dominica to flood 

hazard event for the three return periods by material category. 

 

4.2.2.3 Affected Material Stocks in Buildings by Building Use-type 

The results of affected MS in buildings of different use types are summarized in Table 4.5. 

In terms of absolute value, the residential sector is most affected by all three simulated flood events, 

with 554 kt, 609 kt, and 652 kt of MS exposed respectively to the 5-year, 10-year, and 20-year 

flash flooding scenarios. In terms of percentage of total MS of the use type, cultural buildings are 

most exposed to the simulated flood events, with 64.9% of total materials exposed in all the three 

simulated flash flood events due to their proximity with the coast. Institutional and 

commercial/industrial buildings are moderately affected with 41.6-45.7% and 41.9-43.5% of total 

materials exposed, respectively, though the quantity of exposed MS in institutional buildings is 

lower in terms of absolute value. It was also found that transportation buildings show the largest 



74 

 

increase in exposed materials across different flood magnitudes, with 7.1% and 27.2% more at-

risk materials from the 5-year event to the 10-year event, and from the 10-year event to the 20-

year event, respectively. 

 

Table 4.5: Summary of affected buildings by building use-type for the three simulated flood events. 

Units: kt. 

Return Period: 5-year Flood Event 10-year Flood Event 20-year Flood Event 

Building Use-type 

Exposed 

MS 

% of Use-

type MS 

Exposed 

MS 

% of Use-

type MS 

Exposed 

MS 

% of Use-

type MS 

Institutional 200 41.6% 208 43.3% 219 45.7% 

Commercial/ 

Industrial 

322 41.9% 326 42.4% 333 43.5% 

Residential 554 10.5% 609 11.6% 652 12.4% 

Tourism 57 20.9% 59 21.6% 61 22.2% 

Cultural 25 64.9% 25 64.9% 25 64.9% 

Transportation 5 20.4% 6 27.5% 12 54.7% 

 

The spatial distribution of affected MS by building use type at the district level is shown 

in Figure 4.12 and Figure 4.13. For institutional, commercial/industrial, residential, and cultural 

buildings, the highest concentration of affected material stocks is in the southwestern district, 

where the capital city is located. For tourism and transportation buildings, most at-risk material 

stocks are found in the northern district where the town of Portsmouth is located. When the results 

of the three simulated flood events for all building use types are compared, it is found that flood 

magnitude did not significantly affect the distribution of impacted MS in buildings at the district 

level, because the orders of different districts regarding affected MS within them did not change 

with flood magnitude. However, the 10-year and 20-year flood events did result in more exposed 

MS in the eastern districts. One exception is the cultural use type, which shows no distinction of 

affected material stocks across flood events of different return periods. 
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Figure 4.14: Affected MS by building use type (institutional, commercial/industrial, and 

residential) in 5-year, 10-year, and 20-year flood events, presented at the district level. 
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Figure 4.15: Affected MS by building use type (tourism, cultural, and transportation) in 5-year, 

10-year, and 20-year flood events, presented at the district level. 
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5 Discussion & Conclusion 

This section concludes the thesis by discussing the key findings from both the material 

stock accounting and the flash flood modelling, as well as how the research questions are addressed 

by the results. Also considered are directions for future work about material stocks and 

environmental hazards, followed by a brief summary of the entire research project. 

5.1 Material Stocks in Buildings in Dominica and Spatial Distribution 

The first research question of this study is about the quantity and spatial distribution of MS 

in buildings in Dominica. To answer this question, a material stock accounting analysis was 

conducted to capture a “screenshot” of 2020, when the building footprints were acquired from 

Open Street Map (OSM). 

5.1.1 Material Stocks in Buildings in Dominica 

The quantity of Dominica’s in-use material stocks in buildings in 2020 is estimated at 6,574 

kt, equivalent to 91 t/capita, given Dominica’s population of the year. Table 5.1 lists the results 

from similar MS studies conducted in both developed and developing societies also at the national 

scale. When these results are compared, it is found that per capita values of MS in buildings in 

developed countries are not necessarily larger than the per capita values in small island states. For 

example, among the three small island states in Table 5.1, only Antigua & Barbuda (A&B) has a 

lower per capita value than Japan and Germany. When material density is considered, the same 

conclusion can be reached for per area values.  

Previous studies also indicate that a high per capita value of MS in buildings does not 

always accompany a high per area value (at least to the same extent). Regarding A&B as a 

benchmark, the per capita value of Germany is 315% larger than that in A&B, while the difference 

between corresponding per area values is only 176%. Another example is the comparison between 

Dominica and Japan: the per capita MS in buildings of Japan is lower than that of Dominica, while 

the per area value of Japan is almost twice as large as that of Dominica. Although the 

abovementioned disagreement between per capita and per area values of Japan and Dominica is 

mainly caused by different population densities, the extent of this disagreement can reveal some 

information about the proportions of different housing styles. For example, Japan has a relatively 
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high per area MS in buildings due to its high population density, but this may be offset by more 

single-family dwellings, which have a greater impact on per area value than per capita value. 

Considering the three small island states in the Caribbean region in Table 5.1, their per 

capita MS in buildings show some disparities, with Dominica’s per capita value in the middle 

range, but its per area value being amongst the lowest. Again, this misalignment between per capita 

and area values is mainly due to population density, with Grenada having the largest population 

density at 311 people per km2, followed by A&B at 223 people per km2 and Dominica at 96 people 

per km2. In summary, based on the results from this research a limited number of material stock 

accounting studies conducted at the national scale, MS in buildings are proven to be site-specific, 

necessitating the adaptation of the methodology framework of this thesis for other study areas. 

 

Table 5.1: Per capita and per area MS in buildings of this research and previous studies. 

Country Year MS in Buildings 

(t/cap) 

MS in Buildings 

(t/km2) 

Source 

Japan 2010 60 (193%) 20,107 (188%) Tanikawa et al., 2015 

Germany 2010 128.6 (415%) 29,427 (276%) 
Ortlepp et al., 2016; 

Ortlepp et al., 2018 

Grenada 2014 125 (403%) 40,207 (377%) De Kroon, 2020 

Antigua & 

Barbuda 

2004 31 (100%) 10,677 (100%) Bradshaw, 2019 

Dominica 2020 91 (294%) 8,754 (82%) Current Study 

 

5.1.2 Spatial Distribution of Material Stocks in Buildings in Dominica 

From a building use type point of view, it is found that except for tourism and transport 

buildings, MS in all building use types are clustered near the capital city Roseau in St. George 

parish. This spatial pattern reflects the population and building distributions mentioned in Section 

1.5 that 30% of Dominica’s population live in St. George, and 25% of buildings are located in the 

capital city Roseau, which can also explain the high concentration of MS in buildings in the 

corresponding district in Figure 4.6. Being Dominica’s economic and political center, Roseau is 

where many institutional buildings are clustered. Some examples are government offices like the 

Dominica Government Headquarters and the country’s financial center, educational campus 

buildings of Dominica State College, as well as major buildings of Princess Margaret Hospital. 
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Buildings of the institutional use type are assigned relatively intense material intensity typology 

(e.g., Concrete Structure 2 or Reinforced Concrete Structure) and often appear as a cluster (e.g., 

buildings of the Princess Margaret Hospital). For MS in commercial/industrial buildings, tourist 

agencies, vehicle rentals, insurance companies, and banks are common in Roseau because the 

Roseau Ferry Terminal accounts for over 50% of annual visitors arriving by sea (Central Statistics 

Office of Dominica, 2010). For MS in cultural buildings, Roseau also has the Windsor Park 

Stadium, the country's only stadium. In addition, since non-domestic buildings tend to be higher 

than domestic buildings in general, the larger proportion of non-residential buildings in St. George 

makes its average building floor level (1.64 storeys) larger than the national average value of 1.26 

floors. All the factors mentioned above contribute to the high concentration of total MS in 

buildings in St. George and around the capital city Roseau. 

MS in tourism buildings are distributed differently from that of the aforementioned 

building use types, with the highest concentration identified in the parish of St. John along the 

northwestern coast of Dominica. Although tourism buildings are spread throughout the island, 

about 24% of total tourism buildings are located near Portsmouth, the second-largest city in 

Dominica. Like the capital city Roseau, Portsmouth also has a seaport, but it only accounts for 5% 

of annual visitors arriving by sea (Central Statistics Office of Dominica, 2010). Thus, this high 

concentration of MS in tourism buildings might be resulting from the clustering of tourist 

attractions. For instance, a few public beaches (e.g., Coconut Beach and Ripaton Beach) can be 

found along the coast near Portsmouth. In addition, not far from Portsmouth is the Cabrits National 

Park, where Fort Shirley is located. The construction of Fort Shirley traces back to the 1700s, and 

it is one of the limited cultural sites for visitors interested in the history of Dominica (UNESCO, 

2021). Thus, new resorts tend to be built in St. John. For example, the recently-built 5-star hotel, 

Cabrits Kempinski Resort, is located near Portsmouth, which also helps to explain the high 

concentration of MS observed in tourism buildings, since this multi-unit large hotel accounts for 

nearly 7% of total MS in tourism buildings in Dominica. 

5.2 Dominica’s Material Stocks in Buildings Affected by Flash Flooding 

The second research question of this study is about the quantity and spatial distribution of 

MS in buildings exposed to flash flooding in Dominica. To answer this question, flash flood 
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modelling was conducted to derive the extent of flash flood events with different return periods. 

The following sections summarize the results and explain why these results occur. 

5.2.1 Flooded Area in Dominica 

The total flooded area in Dominica is 4.1 km2, 4.9 km2, and 5.7 km2 for 5-year, 10-year, 

and 20-year flash flood events, respectively. Given Dominica’s landmass of 750km2, only a small 

proportion (less than 1%) of the island is impacted by the simulated flash flood events. In terms of 

total rainfall depth, the 5-year, 10-year, and 20-year flood events are triggered by precipitation of 

220.3 mm, 270 mm, and 317.6 mm, respectively. The increase in total rainfall depth is nearly 50% 

from the 5-year rainfall event to the 20-year rainfall event, while the increase in corresponding 

flood extent was not proportional at about 39%. This illustrates that total rainfall depth is not the 

only factor affecting flood extent in Dominica when a flash flood hazard is investigated at the 

national level. From a flood generation mechanism perspective, rainfall amount, intensity, duration, 

and spatial distribution all influence flood extent (Bracken et al., 2008). Therefore, although this 

was not the case in Dominica, it is possible that flood events with larger return periods and rainfall 

depths do not necessarily result in a larger flood extent. 

The locations of flooded areas provide essential information of where flood-related risks 

can be expected. When the spatial distribution of flooded areas is examined, it is evident that most 

of the inundated areas are located along the west coast of the island. This spatial pattern could be 

caused by lower infiltration rates along the west coast. The infiltration maps of the three simulated 

flash flood events are presented in Appendix B.7, showing an overlap between flooded areas and 

areas with low infiltration values. The soil texture of these areas is clay, whose saturated hydraulic 

conductivity is relatively low. Therefore, when the soil is saturated after a certain point from the 

start of the rainfall event, its infiltration capacity cannot manage further intense precipitation, 

leading to high overland flow as flooding. Knowledge of the influence of soil property on flood 

modelling results uncovers the need for more detailed soil maps or fieldwork observations to 

acquire more accurate soil properties, including porosity, initial soil moisture, and saturated 

hydraulic conductivity. 

Also discovered are entirely new flooded areas on the southwestern coast in the 10-year 

flood event, and on the northeastern coast and in more inland mountainous zones in the 20-year 

flood event. Two previous projects assessing flash flood susceptibility in Dominica exist (CIPA, 

2006; Jetten, 2016), which also produced qualitative flash flood maps as primary results (Figure 
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5.1). According to the flood extent map by CIPA (2006), most of the flooded areas are located 

near the west coast of the island, which is similar to the pattern of flooded areas identified in this 

research. However, a major difference is that the flooded areas in the CIPA project are more 

extensive, especially along the west coast. Compared with the result of the CHARIM project, less 

flash flood risk is identified along the east coast in this study, with a smaller number of flooded 

areas distributed on the east side. Although both the CHARIM project and this study employed the 

same model for flood simulation, flood areas in the CHARIM project show a more extensive and 

continuous pattern along major rivers, while flooded areas in this study are more dispersed and 

distributed along drainage lines. This is important because an over estimate of flood extents could 

put extra burden on government finance in small island states with limited budgets. In addition, 

the spatial pattern of flooded areas in this research would suggest Dominica putting more emphasis 

on developing better drainage systems, especially in urban areas, as a complement to regular flood 

risk reduction approaches like floodwalls and levees. 

One contribution of this research to the original flood modelling in the CHARIM project 

is the derivation of a more accurate river width input map, as the original river width map was 

derived by extrapolating river width data from another basin, so it was not site-specific. Artificial 

river networks were used in both the CHARIM project and this study, but this research was able 

to identify a smaller number of river channels, where the locations and widths match the actual 

rivers identified in satellite imagery. Another contribution of this study is a more accurate building 

density map derived from manually corrected building footprints with reference to satellite 

imagery (Section 3.2.2). In the CHARIM project, the footprint area for buildings outside Roseau 

was assumed to be 70 m2, which is smaller than the average size of 103 m2 of all the building 

footprints in Dominica (manually corrected). Therefore, the dispersed pattern of flooded areas 

along drainage lines identified in this research is probably resulting from fewer river channels 

gathering overland flow to main river branches, as well as higher building density leading to 

surface flow obstruction. Despite the two improved input maps mentioned above, it is uncertain 

whether they are the only factors for the different patterns of the flooded areas observed in this 

study. Except for the two improved input maps, the rest of the input maps used in the CHARIM 

project were unavailable, making it difficult to replicate the entire modelling process. 
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Figure 5.1: Flash flooding extent generated in (a) the US-AID funded multi-hazard assessment 

project by CIPA (2006); (b) the CHARIM project by Jetten (2016); and (c) current study. 
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5.2.2 Affected Buildings and Contained Material Stocks 

The numbers of buildings affected by flash flooding were 2,781, 3,030, and 3,274, 

respectively, in the 5-year, 10-year, and 20-year events. Table 5.2 is used to comparatively 

summarise the affected buildings and the contained material stocks in Dominica regarding a multi-

hazard assessment project (CIPA, 2006), the CHARIM project (Jetten, 2016), and this research. 

For the multi-hazard assessment project, only the high hazard class resulting from a 2-year rainfall 

event is included, because the low hazard class covering the whole island is considered as non-

flooded area, and the medium hazard class can be interpreted as runoff area contributing to actual 

flooding near river channels (Jetten, 2016). When exposed buildings are investigated together with 

flood extent, it is observed that there is a positive relationship between the number of affected 

buildings and flooded area for all three flood modelling projects. This positive relationship 

suggests that most buildings in Dominica were located without considering flood risk. This finding 

agrees with the statement by Barclay et al. (2019) that much of Dominica’s population is 

concentrated in areas with high disaster risk due to historical illegal settlements in unoccupied 

lands. 

When the results of the CHARIM project and current study are compared, it is found that 

the increase in the number of affected buildings does not bring an increase of the same scale in 

exposed material stocks in Dominica. For example, for all three flood scenarios, the number of 

affected buildings in the CHARIM project is about twice the number of affected buildings in this 

research. However, the difference in corresponding exposed MS is relatively small at 1-4%. This 

unmatched increase pattern can be explained by the location of these extra exposed buildings in 

the CHARIM project. As discussed in the previous subsection, there are more affected buildings 

identified along the east coast of Dominica in the CHARIM project. The mean gross floor area 

(GFA) of buildings on the eastern side of Dominica is 88 m2, which is smaller than the average 

GFA of all the buildings on the island at 145 m2. Therefore, since all building occupancy classes 

are similar in total material intensity, smaller GFA is the main cause of the unmatched increase 

patterns of exposed buildings and MS. 
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Table 5.2: Quantitative summary of affected buildings and contained material stocks by flood 

extent in different flood risk assessment projects. 

Source 
Return 

Period 

Number of 

Buildings 

Affected 

% of 

Buildings 

Affected 

MS 

Exposed 

(kt) 

% of MS 

Exposed 

(kt) 

Multi-hazard 

Assessment Project 

(CIPA, 2006) 

2 years 2,605 7.8% 959 14% 

CHARIM Project 

(Jetten, 2016) 

5 years 4,862 14.5% 1,213 18% 

10 years 6,101 18.3% 1,509 22% 

20 years 6,122 18.3% 1,513 22% 

Current Study 

5 years 2,781 8.3% 1,162 17% 

10 years 3,030 9.1% 1,232 18% 

20 years 3,274 10.0% 1,032 19% 

 

5.3 Incorporating Vulnerability Factors 

Once the results of material stock accounting and flash flood modelling reveal the quantity 

and spatial distribution of flash flood-prone MS in buildings in Dominica, the third research 

question is about the effect of social characteristics on household level-vulnerability to flash 

flooding. To answer this research question, 17 variables for social factors of vulnerability to 

environmental hazards were collected from the literature and adapted to the context of Dominica. 

Based on these 17 adapted variables, a resident survey instrument was designed to collect primary 

data following general guidelines for quantitative survey design (Bryman & Bell, 2019; 

Flowerdew & Martin, 2005). This survey was not conducted in the field for this research due to 

the COVID-19 pandemic, which resulted in travel restrictions that prevented surveys to be 

conducted on-site and in-person in Dominica. If these variables can be collected through the 

implementation of the designed resident survey, they can be used to calculate a composite 

vulnerability score following the methodology described in Section 3.4.2.3 for each household that 

participates in the survey. This quantitative information can help local government to evaluate 

hazard risk from a vulnerability perspective by cal. Relevant future work and possible deliverables 

are discussed in Section 5.4.3.  
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5.4 Limitations & Future Work 

Small island states are generally limited in terms of spatial data availability, and all the 

assumptions in the methodology are related to this issue. This section begins with the limitations 

of the material stock accounting process, followed by what can be improved in the flash flood 

modelling process. Finally, this section also discusses probable future work related to material 

stocks and environmental hazards to extend the scope of current research. 

5.4.1 Material Stock Accounting in Dominica 

Building classification is a fundamental step in bottom-up MSA approaches. The goal of 

building classification is to group buildings into the least possible number of occupancy classes, 

while material intensity homogeneity within every single occupancy class can still be achieved. 

The existing footprints dataset for buildings in Dominica only covers buildings in the capital city 

of Roseau. The rest of the buildings on the island are stored as points without essential properties 

like footprint area for material stock accounting. Therefore, OSM building footprints were used 

instead for all buildings in Dominica to ensure that footprints inside and outside Roseau were 

collected from a consistent source. 

This study adopts the building classification framework and the material intensity 

coefficients developed by Symmes et al. (2020) for Grenada, another Caribbean island nation. 

Although the two island nations are similar in geographical background, material intensity 

coefficients are unique to individual buildings for gradient slope and soil type, among other 

physical attributes of the lands they are built on, as well as societal and economic factors like time 

of construction, technologies available, and owner’s budgets (Sprecher et al., 2021). Data sources 

for building classification in Dominica were limited to Google Maps, OSM, aerial videos and 

Google Earth images. Considering the site-specific nature of building use-type and material 

intensity, one of the most significant improvements of the material stock accounting in Dominica 

can come from future field work to conduct on-site validations of the building use types and 

calibration of relevant material intensity coefficients through interviews on local construction 

experts. 

The strategy of identifying remarkable non-residential buildings and assuming the rest to 

be residential buildings could result in an overestimation of the number of residential buildings. 

According to Dominica’s census report, there were 25,133 residential buildings in 2011 (Central 

Statistics Office of Dominica, 2011), while there were 31,403 buildings in Dominica classified as 
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residential buildings in this research. Again, a fieldwork to conduct on-site validations of the 

building occupancy classes is essential for the calibration of this offset in the proportion of 

residential buildings. Another point to investigate during future fieldworks is whether some 

residential buildings are used as villas during the tourist season in Dominica. According to Central 

Statistics Office of Dominica (2010), 45% of visitors from outside the Caribbean region in 2010 

stayed in private homes rather than hotels. This phenomenon could cause bias in the relationship 

between MS in buildings and associated services because a considerable amount of MS should be 

regarded as providers for both residential and tourism services.  

Building height is another reason the methodology used in this research cannot achieve an 

individual building-resolution MS accounting. Except for the footprint area, the OSM building 

footprint dataset does not include many attributes of the buildings in Dominica, so building heights 

were derived from visual interpretation of aerial videos, which improves to some extent the 

accuracy of MS accounting compared with simply assuming the same height for buildings within 

the same occupancy class. With 37% of the buildings in Dominica covered by the aerial videos, 

the heights of the rest of the buildings were derived from buildings with an actual height of the 

same occupancy class and in the same parish. However, the number of buildings with an 

interpreted height cannot be controlled within occupancy classes or parishes. This would lead to 

biased results if there is a limited number of buildings with an interpreted height within a specific 

occupancy class or parish. In addition, this method of acquiring building heights may not be 

applicable in other areas because aerial videos are not commonly available. 

A more accurate way to obtain buildings heights for material stock accounting would be 

using remote sensing data like high-resolution DSM (Digital Surface Model) generated from a 

LiDAR (Light Imaging Detection and Ranging) survey. In 2018, a LiDAR topography survey was 

conducted in Dominica under the Disaster Vulnerability Reduction Project. Despite the careful 

manual correction of the OSM footprint dataset, there could be a few artificial errors that remain 

in this data layer (e.g., the misalignment between footprints and actual buildings in the images or 

multiple footprints overlapping each other). Thus, in addition to building heights, the LiDAR 

dataset is also helpful for the development of an entirely new building footprint dataset that is more 

accurate than the OSM dataset used in current research. Since LiDAR datasets are usually difficult 

to access and time-consuming if processed at the island scale, it is recommended that the first step 
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for future work is to focus on a smaller area (e.g., one catchment in hydrology) and compare the 

new results with those in current research. 

5.4.2 Flash Flood Modelling in Dominica 

As discussed in the methodology section, it is assumed that the whole island is subjected 

to spatially homogenous rainfall events in the flood modelling process implemented in this study. 

The design rainfall events adopted from Jetten (2016) were derived from records of only two rain 

gauge stations located separately at the two airports in Dominica. However, the spatially 

homogenous rainfall distribution pattern is not realistic when applied to the entire island state. It 

is found that annual total precipitation is actually higher in central areas in Dominica due to the 

orographic effect that produces extremely concentrated precipitation when a tropical cyclone 

passes over high mountains (Houze, 2012). If the rain gauge station network in Dominica is 

improved, the lack of detailed rainfall data could be solved by using rainfall interpolation methods. 

For example, Mair & Fares (2011) conducted a comparative study evaluating the performances of 

traditional and geostatistical rainfall interpolation methods in mountainous tropical island settings. 

While low errors still exist in interpolated rainfall, geostatistical interpolation methods (e.g., 

ordinary kriging) that incorporate the pattern of spatial dependence would improve the accuracy 

of flash flood modelling by adding some spatial variability to the rainfall input map (Goovaerts, 

2000; Mair & Fares, 2011). 

The river network was artificially generated from the DEM. The river channels were 

derived by applying a threshold on stream order, and river width was manually interpreted from 

satellite imagery. Therefore, the river network and relevant river parameters cannot perfectly 

reflect the actual river system in Dominica. There is a consensus that flood models are sensitive to 

the quality of DEM (Yu & Lane, 2006), but it is uncertain how sensitive is the flood model in this 

research to river parameters. Thus, it is recommended that future research conducts a sensitivity 

analysis of river dimensions. It is also recommended to calibrate the flood model by referencing 

images or videos of potential flood events in the future. 

Since flood risk was examined at the national level in Dominica, only flood extent is 

considered to be accurate among other flood properties. Thus, the sole criterion for identifying MS 

exposed to potential flash flooding risk is whether the building footprint intersects any flooded 

area. Although clusters of flooded buildings and contained MS can be located at the national level 

using the current methodology, exposure cannot be quantified for individual buildings because 
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based on the simplified methodology buildings are either affected as a whole or not affected at all. 

This does not reflect reality because even if the simulated flood extent fully covers a building, it 

may withstand the impact of flooding for its good inherent structural resistance (Prieto et al., 2018). 

One solution is to investigate flash flood risk at the local level (e.g., in a catchment with a high 

concentration of affected MS identified in the national-scale simulations) so that more flood 

characteristics can be applied. For example, Kreibich et al. (2009) argue that flow velocity and 

water depth can be combined to indicate total flow energy, which is proven to be a significant 

physics-based parameter influencing the structural damage of domestic buildings in the context of 

flash flooding in Germany. With these extra flood properties, it is possible to calculate the degree 

of damage caused by the simulated flood event for an individual building, which can be further 

used to quantify the actual amount of lost MS within that building. While the highest concentration 

of buildings MS is identified in the capital city of Roseau, local-scale flood simulations in urban 

areas are sensitive to the resolution of the DEM used, because significant topographic features 

such as man-made structure greatly affect flow dynamics (Haile & Rientjes, 2005). This issue can 

also be solved by incorporating a more detailed DEM generated from LiDAR data to better 

representing the model domain (Haile & Rientjes, 2005). Given the multiple potential applications 

of LiDAR data in both MSA and flash flood modelling, as well as the high computing requirements 

for LiDAR data processing, it is recommended that the local government share the existing LiDAR 

datasets to facilitate preparedness for hazard response and recovery. It should also be noted that 

sediment transportation was not involved in the simulations, despite the fact that the extra forces 

caused by high sediment loads cannot be ignored (Marvi, 2020). Therefore, even with accurate 

flood properties derived from local-level simulations, the exposed MS could be underestimated in 

the current study because the effect of sediment transportation was not included. 

5.4.3 Directions for Future Work 

As discussed in Section 2.3.1, the risk of an environmental hazard encompasses three 

components: 1) hazard characteristics including intensity, extent, and duration; 2) exposure of 

lands or population; 3) vulnerability defined as the susceptibility of the exposed lands or people 

due to social factors (UNISDR, 2015). Using Dominica as a case study, this research has focused 

on the first two components by modelling the impact of flash flooding events of different 

magnitudes on the accounted material stocks in buildings. However, vulnerability as the third 

component of hazard risk is equally important because the same hazard event can cause different 
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degrees of damage to different households for their various levels of susceptibility. For example, 

Dominica’s low-income families tend to live in houses of low resilience against environmental 

hazards and reside in informal settlements in low-lying areas far away from urban areas or towns, 

where high flood risk can be expected (Barclay et al., 2019). This suggests that the impact of 

environmental hazards is a function of both physical exposure and social factors contributing to 

vulnerability. 

Different methodologies can be used to incorporate vulnerability in the framework of the 

current study (mentioned in Section 2.4), but primary data collection is necessary to bridge the 

data gap between hazard exposure and vulnerability. A draft household survey (in Appendix C.2) 

was designed to collect primary date about household vulnerability to environmental hazards. It is 

recommended that future studies utilize this resident survey instrument to investigate household-

level social factors of vulnerability to environmental hazards. If information of household 

vulnerability can be collected using the household survey, the flood risk can be quantified from 

both social (socioeconomic factors contributing to vulnerability) and physical (hazard exposure) 

perspectives. Together with the flash flood exposure investigated in this study, social vulnerability 

as a multidimensional concept can help the government identify the households that have difficulty 

responding to and recovering from potential flooding events (Cutter et al., 2003). 

In addition to buildings, roads are also a significant sink of construction materials. Different 

from buildings and other discrete structures with clear footprints, roads are comprised of a network 

of continuous structures and can contain construction materials that are comparable to or more 

than building material stocks (Tanikawa et al., 2015). Considering MS in seven end-use types in 

Japan in 2010, 43% of the materials were in buildings, and 26 % were in roads (Tanikawa et al., 

2015). For developing countries, it is also found that approximately 40% of the construction 

materials were used to expand and maintain the road network in Vietnam from 2003 to 2013 

(Nguyen et al, 2019). For small island states in the Caribbean region, the amount of building 

material stock was 14,012 kt in 2014 in Grenada, and the amount of road material stock was 

estimated at 4,375 kt (De Kroon, 2020; Ye, 2022). Therefore, road material stock should not be 

neglected in material stock accounting for a more complete investigation of the entire built 

environment in Dominica. From an environmental hazard perspective, roads in addition to 

buildings are also severely affected. More specifically in flash flooding events, the degree of 

structural damage of inundated roads sections are significantly affected by flow velocity, and due 
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to the paved structure of roads, both road surface and road foundation are equally crucial in MS 

exposure analysis (Kreibich et al., 2009; Tanikawa et al., 2014). In Dominica, informal settlements 

where low-income families live are usually linked by coastal roads, so if these roads are damaged, 

those families are easily isolated, which prevents efficient aid to be transferred from other parts of 

the island (Barclay et al., 2019). Thus, it is necessary to pay more attention to roads in both material 

stock accounting and hazard exposure analysis. 

5.5 Recommendations 

The following section outlines some generalized recommendations for decision-makers 

and practitioners on how this research can be used in the context of hazard risk reduction to achieve 

certain Sustainable Development Goals (SDGs; UN, 2023) not limited in Dominica, but in other 

small island states as well. 

Small island states heavily rely on imports of construction materials due to the scarcity of 

natural and human resources and a limited scope of economic diversification. Utilizing in-use 

material stock account at the building level, urban planning specialist will be able to identify 

clusters of construction materials, which could be potential maintenance hotspots (Pauliuk et al., 

2014). Since building stock is linked to the services, decision makers will also be informed about 

the distribution of essential services across the island, and accordingly adjust development plans 

to achieve a more coordinated development (Kunz et al., 2013). However, data infrastructure in 

small island states is often underdeveloped, posing challenges for both stock-driven and flow-

driven material stock analysis. Nevertheless, it is recommended that small island states adapt the 

material stock analysis approach in this research to first acquire a rough material stock account at 

the island scale. This island-level material stock account could serve as a base point for further 

material flow analysis, which would support the efficient use of natural resources and help reduce 

waste generation, as stated in SDG 12.2 and 12.5. Decision makers could operationalize material 

flow analysis by promoting the application of Building Information Model (BIM) in the 

construction of institutional buildings and even in residential buildings under contracts with 

individual merchants to track the amount of material used for construction and maintenance 

throughout the whole lifecycle (Smith, 2014). 

An environmental hazard event is a common incident in which MS is converted to waste, 

even long before the ends of expected lifespans (Tabata et al., 2018). In small island states with 
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limited natural resources, disaster waste is a part that cannot be neglected in ordinary construction 

and demolition (C&D) waste estimation and management. The material stock analysis part of this 

research paves the way for estimating the quantity and distribution of material stocks and 

associated services exposed to potential hazard events. It is recommended that stakeholders in 

small island states combine the results of material stock analysis and hazard risk mapping to 

pinpoint clusters of exposed material stocks, which could help local governments prioritize 

funding for local scale hazard risk assessment. This would promote SDG 11.b, which encourages 

the implementation of local disaster risk reduction strategies. 

After revealing the exposure of material stocks to environmental hazards, the resident 

survey instrument developed in this research could be used by small island states as a template to 

involve the vulnerability aspect of hazard risk. The survey instrument could be improved by 

incorporating more physical factors contributing to vulnerability, such as presence of basement, 

height of lowest opening, building age, and wall material (masonry or non-masonry) (Granger et 

al., 1999; Menoni et al., 2006; Kappes, Papathoma-Köhle & Keiler, 2012). In the reality of limited 

budgets, it is recommended that governments of small island states pilot the survey in previously 

identified clusters of exposed material stocks. This would help small island states initiate proactive 

emergency preparedness plans before a hazard event or optimize priority settings in evacuation 

actions during a hazard event for a better emergency response, which aligns with sustainable 

development goal 11.5 (protecting people in vulnerable situations). 
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5.6 Conclusion 

Dominica and other small island states are on the frontlines of climate crisis and are 

disproportionately affected by climate-related hazards, as small island states contribute to less than 

1% of global greenhouse gas emission but are more vulnerable to extreme events and sea-level 

rise due to their unique social, physical, institutional, and environmental characteristics (UNDP, 

2017). Using a bottom-up approach, this study is the first attempt of material stock accounting in 

Dominica. Both the quantity and spatial distribution of material stocks in buildings were examined, 

providing a knowledge base that can help policymakers understand the spatial patterns of different 

material categories in different building occupancy classes across the island. The results of the 

material stock analysis created a ‘snapshot’ of MS in buildings for 2020, showing that MS in 

buildings concentrate in major towns along the coastline. With the help of annual inflow and 

outflow data, this ‘snapshot’ can be used as a base point for material flow analysis, providing a 

flow-based perspective from which predictions of the future amounts of material stocks can be 

made. However, a few assumptions exist in the material stock accounting methodology, as the 

building classification framework and the material intensity coefficients were adopted from 

another research conducted another Caribbean small island state. This research also linked the 

results of material stock analysis to the impacts of environmental hazards in the context of small 

island states. Focusing specifically on flash flooding, this research found that about 17%, 18% and 

19% of MS in buildings in Dominica were exposed to 5-year, 10-year and 20-year flash flood 

events, respectively. In terms of the spatial distribution of these exposed MS in buildings, it was 

also found that high concentrations of exposed MS were located along the western coast of the 

island, mainly in the capital city of Roseau and other towns. In terms of methodological 

contribution, this study developed a methodological framework for small island states to estimate 

hazard risk as a function of hazard exposure and vulnerability of impacted people and properties. 

The vulnerability assessment part of the methodological framework was not tested in current 

research due to the travel restrictions on the in-person survey implementation, so it is 

recommended that future studies conduct a fieldwork for both the validation of the assumptions in 

the material stock analysis and implementing the resident survey instrument to test the reliability 

of the entire methodological framework. 

Several previous projects have focused on flash flooding risk assessment using flood 

inundation modelling in Dominica, but this is a novel study investigating the impacts of such type 
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of environmental hazard on the building sector. Most of the input datasets for flood modelling are 

adopted from the previous CHARIM project, but this study improves the quality of the river width 

dataset using visual interpretation based on satellite images. The accuracy of the building density 

input dataset was also enhanced by using a more complete building footprint dataset manually 

corrected by referencing satellite images. Based on the improved flood modelling, this research 

found that flood extent might be overestimated in the CHARIM project, probably due to the denser 

river network used in the CHARIM project that channel more water to the outlets. Future 

improvements regarding more accurate exposure of material stocks in buildings could include not 

only more-accurate input datasets, but also incorporate building performance against flooding and 

hazard intensity variables. Combining the results of material stock accounting and flood inundation 

modelling will allow policy makers to understand the quantity and spatial pattern of material stocks 

in buildings exposed to flash flooding in Dominica. 
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Appendix A. Supplementary Information for MS Accounting in Dominica 

A.1 Occupancy Class Examples 

Each building occupancy class is given an example in this appendix. The building footprint 

(with a colored background showing land use), the Google Imagery, and the screenshot of the 

aerial video (or Google Photo) are presented together. 

Figure A.1: Background colors used to distinguish land use as one of the criteria of building 

classification. 

A.1.1 Institutional Buildings - 100 

A.1.1.1 Cathedral - 111 

Gospel Mission Church (Brick Historical Structure) 

(Aerial video screenshot)       (Google Imagery, 2018)       (OSM building footprint) 

Figure A.2: An example of the cathedral building occupancy class (code 111) in Brick Historical 

Structure. 
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A.1.1.2 Church - 112 

Marigot Methodist Church (Concrete Structure 2) 

(Aerial video screenshot)      (Google Imagery, 2018)       (OSM building footprint) 

Figure A.3: An example of the church building occupancy class (code 112) in Concrete Structure 

2. 

A.1.1.3 Educational Campus Building - 121 

Dominica State College (Concrete Structure 2) 

(Aerial video screenshot)      (Google Imagery, 2021)       (OSM building footprint) 

Figure A.4: An example of the educational campus building occupancy class (code 121) in 

Concrete Structure 2. 

A.1.1.4 Standalone School - 122 

Colihaut Primary School (Concrete Structure 2) 

(Aerial video screenshot)      (Google Imagery, 2018)       (OSM building footprint) 

Figure A.5: An example of the standalone school building occupancy class (code 122) in Concrete 

Structure 2. 
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A.1.1.5 Major Hospital - 131 

Portsmouth Hospital (Reinforced Concrete Structure) 

(Aerial video screenshot)      (Google Imagery, 2021)       (OSM building footprint) 

Figure A.6: An example of the major hospital building occupancy class (code 131) in Reinforced 

Concrete Structure. 

A.1.1.3 Health Center - 132 

New Castle Bruce Health Center (Concrete Structure 2) 

(Aerial video screenshot)      (Google Imagery, 2018)       (OSM building footprint) 

Figure A.7: An example of the health centre building occupancy class (code 132) in Reinforced 

Concrete Structure. 

A.1.1.4 Government Office - 140 

Dominica Government Headquarters (Reinforced Concrete Structure) 

(Aerial video screenshot)      (Google Imagery, 2021)       (OSM building footprint) 

Figure A.8: An example of the government office building occupancy class (code 140) in 

Reinforced Concrete Structure. 
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A.1.2 Industrial/Commercial - 200 

A.1.2.1 Commercial - 210 

Calibishie Tourist Center (Concrete Structure 2) 

(Aerial video screenshot)      (Google Imagery, 2021)       (OSM building footprint) 

Figure A.9: An example of the commercial building occupancy class (code 210) in Concrete 

Structure 2. 

A.1.2.2 Urban Mixed Commercial - 220 

Courts (Concrete Structure 2) 

(Aerial video screenshot)      (Google Imagery, 2021)       (OSM building footprint) 

Figure A.10: An example of the urban mixed commercial building occupancy class (code 220) in 

Concrete Structure 2.  

A.1.2.3 Industrial - 230 

Dominica Brewery & Beverages (Composite Industrial Structure) 

(Aerial video screenshot)      (Google Imagery, 2020)       (OSM building footprint) 

Figure A.11: An example of the industrial building occupancy class (code 230) in Composite 

Industrial Structure. 
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A.1.3 Residential - 300 

A.1.3.1 Urban Single-family Dwelling - 310 

A residential building in Portsmouth (Composite Residential Structure) 

(Aerial video screenshot)      (Google Imagery, 2021)       (OSM building footprint) 

Figure A.12: An example of the urban single-family dwelling occupancy class (code 310) in 

composite residential structure. 

A.1.3.2 High-density Apartment Building - 321 

An apartment in Roseau (Concrete Structure 2) 

(Aerial video screenshot)      (Google Imagery, 2021)       (OSM building footprint) 

Figure A.13: An example of the high-density apartment building occupancy class (code 321) in 

Concrete Structure 2.  

A.1.3.3 Low-density Apartment Building - 322 

An apartment in Wesley (Concrete Structure 2) 

(Aerial video screenshot)      (Google Imagery, 2021)       (OSM building footprint) 

Figure A.14: An example of the low-density apartment building occupancy class (code 322) in 

Concrete Structure 2. 



112 

 

A.1.3.4 Rural Single-family dwelling - 330 

A house in Wesley (Composite Residential Structure) 

(Aerial video screenshot)      (Google Imagery, 2021)       (OSM building footprint) 

Figure A.15: An example of the rural single-family dwelling building occupancy class (code 330) 

in composite residential structure.  

A.1.3.5 Residential-area Single-family Dwelling - 340 

Bellevue Chopin Housing Project (Composite Residential Structure) 

          (Google Photo)              (Google Imagery, 2021)       (OSM building footprint) 

Figure A.16: An example of the residential-area single-family dwelling building occupancy class 

(code 340) in composite residential structure. 
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A.1.4 Tourism - 400 

A.1.4.1 Large Multi-unit Hotel Building - 411 

Cabrits Kempinski Resort (Reinforced Concrete Structure) 

(Aerial video screenshot)      (Google Imagery, 2021)       (OSM building footprint) 

Figure A.17: An example of the large multi-unit hotel building occupancy class (code 411) in the 

reinforced concrete structure. 

A.1.4.2 Small Hotel/Villa - 412 

Oceanview Apartments (Concrete Structure 2) 

(Aerial video screenshot)      (Google Imagery, 2021)       (OSM building footprint) 

Figure A.18: An example of the small hotel/villa building occupancy class (code 412) in Concrete 

Structure 2. 
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A.1.5 Cultural - 500 

A.1.5.1 Stadium - 510 

Windsor Park Stadium (Reinforced Concrete Structure) 

(Aerial video screenshot)      (Google Imagery, 2021)       (OSM building footprint) 

Figure A.19: An example of the stadium building occupancy class (code 510) in the reinforced 

concrete structure. 

A.1.5.2 Recreational Center - 520 

Portsmouth Youth Centre (Concrete Structure 2) 

(Aerial video screenshot)      (Google Imagery, 2021)       (OSM building footprint) 

Figure A.20: An example of the recreational centre building occupancy class (code 520) in 

Concrete Structure 2.  

A.1.5.3 Historic Building - 530 

Fort Shirley (Brick Historical Structure) 

(Aerial video screenshot)      (Google Imagery, 2021)       (OSM building footprint) 

Figure A.21: An example of the historic building occupancy class (code 530) in Brick Historical 

Structure. 
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A.1.6 Transport - 600 

A.1.6.1 Seaport - 610 

A seaport in Portsmouth (Concrete Structure 2) 

(Aerial video screenshot)      (Google Imagery, 2021)       (OSM building footprint) 

Figure A.22: An example of the seaport building occupancy class (code 610) in Concrete Structure 

2. 

A.1.6.2 Airport - 620 

Canefield Airport Terminal (Reinforced Concrete Structure) 

(Google Photo)      (Google Imagery, 2021)       (OSM building footprint) 

Figure A.23: An example of the airport building occupancy class (code 620) in the reinforced 

concrete structure. 
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A.2 Material Intensity Typologies Used for MSA 

Table A.1: Adopted material intensity typologies with relevant building construction types (Symmes 

et al., 2020) and corresponding construction types identified by Cuny (2017) (if applicable). Unit: 

kg/m2. 

Material 

intensity typology 

Aggregate Timber Concrete Steel Concept Sketch 

(Cuny, 2017) 

Relevant 

occupancy 

classes (codes) 

Concrete 

Structure 1 
    

 

310 

330 

340 

Foundation - Pad 

footings 
45 - 45 1 

Foundation - Posts - - 300 5 

Floors - - 450 10 

Walls - - 520 1 

Roof - Frame - 40 - - 

Roof - Covering - - - 10 

Total 45 40 1315 27 

Concrete 

Structure 2 
    

 

112        412 

121        520 

122        610 

132        312 

210        322 

220 

230 (80%) 

310 (30.2%) 

330 (30.2%) 

340 (30.2%) 

Foundation -Strip 

footings 
135 - 225 5 

Foundation - 

Ground slab 
24 - 450 10 

Floors - - 450 10 

Walls - - 520 1 

Roof - Frame - 40 - - 

Roof - Covering - - - 10 

Total 159 40 1645 36 
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Timber Structure     

 

310 (27.6%) 

330 (27.6%) 

340 (27.6%) 

Foundation - Pad 

footings 
45 - 45 1 

Foundation - Posts - - 300 5 

Floors - - - 20 

Walls - 50 - - 

Roof - Frame - 40 - - 

Roof - Covering - - - 10 

Total 45 90 345 36 

Concrete/Timber 

Mix Structure 
    

 

310 (10.8%) 

330 (10.8%) 

340 (10.8%) 

Foundation -Strip 

footings 
135 - 225 5 

Foundation - 

Ground slab 
24 - 450 10 

Floors - - 450 10 

Walls - 50 - - 

Roof - Frame - 40 - - 

Roof - Covering - - - 10 

Total 159 90 1125 35 

Steel Structure     

- 230 (20%) 

Foundation -Strip 

footings 
135 - 225 5 

Foundation - 

Ground slab 
24 - 450 10 

Floors - - 450 10 

Walls - - 520 145 

Roof - Frame - - - 145 

Roof - Covering - - - 10 

Total 159 0 1645 325 
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Brick Historical 

Structure 
    

- 
111 

530 

Foundation -Strip 

footings 
135 - 225 5 

Foundation - 

Ground slab 
24 - 450 10 

Floors - - - 20 

Walls - 50 - - 

Roof - Frame - 40 - - 

Roof - Covering - - - - 

Total 159 90 675 35 

Reinforced 

Concrete 

Structure 

    

- 

131 

140 

411 

510 

620 

Foundation -Strip 

footings 
135 - 225 5 

Foundation - 

Ground slab 
24 - 450 10 

Floors - - 450 10 

Walls - - - 145 

Roof - - - 10 

Total 159 0 1125 180 

Note: The percentage in the last column quantifies the allocation of the material intensity typology 

in the occupancy class. For example, the industrial occupancy class (code 230) is allocated 80% 

of Concrete Structure 2 and 20% of Steel Structure, so its final material intensities are: 159 kg/m2 

for aggregate, 32kg/m2 for timber, 1645kg/m2 for concrete, and 93.8kg/m2 for steel. 
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Appendix B. Supplementary Information for Flash Flood Modelling 

B.1 Series of Rainfall Intensities for the Design Rainfall Events 

Figure B.1: The IDF curves for design rainfall events of the three return periods., adopted from 

Jetten (2016). 

Table B.1: Five-min rainfall intensities for the design rainfall events of the three return periods. 

Time (min) 
Rainfall Intensity (mm/h) 

1:5 year 1:10 year 1: 20 year 

0 0.0  0.0  0.0  

5 26.0  0.4  0.4  

10 74.6  9.0  0.8  

15 157.8  36.5  1.1  

20 198.9  82.5  7.9  

25 211.7  122.4  19.6  

30 212.4  162.7  41.4  

35 201.5  185.3  65.9  

40 183.8  199.2  94.9  

45 164.6  204.1  123.5  

50 148.4  200.8  144.6  

55 129.2  192.5  163.1  

60 112.6  181.2  176.6  

65 99.4  168.0  184.2  

70 86.3  154.4  187.9  

75 76.1  141.6  187.2  

80 65.9  127.7  183.1  

85 57.3  113.7  176.6  
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90 50.5  102.8  169.5  

95 44.1  91.5  160.1  

100 38.4  81.0  149.9  

105 33.9  73.1  140.5  

110 29.8  64.8  129.6  

115 26.4  58.0  120.5  

120 23.0  51.2  110.0  

125 20.3  45.2  100.2  

130 18.1  40.7  92.3  

135 15.8  35.8  83.6  

140 14.3  32.0  75.7  

145 12.4  28.6  68.9  

150 11.3  25.2  62.1  

155 9.8  22.2  55.7  

160 9.0  20.0  51.2  

165 7.9  17.7  46.0  

170 7.2  15.8  41.8  

175 6.4  14.3  37.3  

180 5.6  12.8  33.5  

185 5.3  11.3  30.5  

190 4.5  10.2  27.5  

195 3.8  9.0  24.5  

200 0.0  8.3  22.2  

205 0.0  7.2  20.0  

210 0.0  6.4  18.1  

215 0.0  5.6  16.2  

220 0.0  5.3  14.7  

225 0.0  4.5  13.2  

230 0.0  4.1  11.7  

235 0.0  3.4  10.5  

240 0.0  2.6  9.4  

245 0.0  1.9  8.7  

250 0.0  1.5  7.5  

255 0.0  1.1  6.8  

260 0.0  0.8  6.0  

265 0.0  0.4  5.3  

270 0.0  0.0  4.9  

275 0.0  0.0  4.5  

280 0.0  0.0  4.1  

285 0.0  0.0  3.8  

290 0.0  0.0  3.4  

295 0.0  0.0  3.0  

300 0.0  0.0  2.6  

305 0.0  0.0  2.3  

310 0.0  0.0  1.9  

315 0.0  0.0  1.5  

320 0.0  0.0  1.1  

325 0.0  0.0  0.8  

330 0.0  0.0  0.4  
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B.2 River Dimension Input Maps 

 

Figure B.2: Input maps relevant to river channel dimensions and riverbed flow resistance. Top 

left: river width; Top right: river depth; Bottom left: gradient in percentage; Bottom right: channel 

resistance to flow as manning’s n (assumed to be consistent at 0.05). 
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B.3 Soil Physical Parameters Input Maps 

 

Figure B.3: The input maps relevant to soil physical properties. Top left: porosity; Top right: 

saturated hydraulic conductivity; Bottom left: matric suction at the wetting front; Bottom right: 

soil depth.
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B.4 Buildings and Roads Input Maps 

 

Figure B.4: Local-scale input maps of building density and road width in the capital city of Roseau. Left: fraction of building occupation 

as building density; Right: road width. 
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B.5 Land Use Input Maps 

 

Figure B.5: The input maps of land use-derived surface properties. Top left: vegetation cover; 

Top right: leaf area index; Bottom left: flow resistance in manning’s n; Bottom right: surface 

random roughness.
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B.6 LISEM Run Options 

 

Figure B.6: LISEM run options with interception and infiltration sections set as default for the lack of relevant datasets to optimize the 

model.
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B.7 Infiltration Maps for the Simulated Flash Flood Events for the Three Return Periods 

 

Figure B.7: Output infiltration maps for the three simulated flash flooding events. Top left: 5-year 

flood event; Top right: 10-year flood event; Bottom left: 20-year flood event. 
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Appendix C. Supplementary Information for Collecting Vulnerability Factors to Flooding 

in Dominica 

C.1 Commonly Used Variables for Vulnerability to Flooding Collected from Literature 

Table C.1: Commonly used variables for vulnerability to flooding and their adaptability to the 

household level (SIS stands for small island states). 

Concept of 

Vulnerability 
Description Original Scale(s) Reference(s) 

Age 

Percent of population 

under the age of five 

SIS Parish, 

U.S. County, 

SIS Enumeration 

District (ED) 

Boruff & Cutter 

(2007); Cutter, 

Boruff & Shirley, 

(2003); Cumberbatch 

et al., (2020) 

Percentage of population 

attending primary school 
SIS Parish 

Boruff & Cutter 

(2007) 

Percentage of population 

aged 65 or above 

SIS Parish, 

U.S. County, 

Orleans Parish 

Boruff & Cutter 

(2007); Cutter, 

Boruff & Shirley, 

(2003); Flanagan et 

al., (2011) 

Median age U.S. County 
Cutter, Boruff & 

Shirley, (2003) 

Population 

growth 

Number of birth per 1,000 

population 
U.S. County 

Cutter, Boruff & 

Shirley, (2003) 

Number of housing units 

per area unit 

U.S. county 

SIS parish 

Cutter, Boruff & 

Shirley, (2003); 

Boruff & Cutter 

(2007) 

Number of housing units 

per new residential 

construction per area unit 

U.S. County 
Cutter, Boruff & 

Shirley, (2003) 
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Percent population change U.S. County 
Cutter, Boruff & 

Shirley, (2003) 

Commercial and 

industrial 

development 

Number of manufacturing 

establishments per area 

unit 

U.S. County 
Cutter, Boruff & 

Shirley, (2003) 

Number of commercial 

establishments per area 

unit 

U.S. County 
Cutter, Boruff & 

Shirley, (2003) 

Value of property and farm 

products sold per area unit 
U.S. County 

Cutter, Boruff & 

Shirley, (2003) 

Profit in all industries per 

area unit 
U.S. County 

Cutter, Boruff & 

Shirley, (2003) 

Education 

Percentage of population 

25 years or older with no 

high school diploma 

U.S. County, 

Orleans Parish 

Cutter, Boruff & 

Shirley, (2003); 

Flanagan et al., 

(2011) 

Percentage of population 

20 years and over with 

exposure to tertiary level 

education 

SIS Nation St. Bernard (2007) 

Percentage of population 

aged 15 years and over 

with computer literacy 

SIS Nation St. Bernard (2007) 

Literacy rate of population 

15 years or older 
Chinese County Chen et al., (2013) 

Employment 

loss 

Percent of the population 

in the labor force 
U.S. County 

Cutter, Boruff & 

Shirley, (2003) 

Percent of labor force 

unemployed 

U.S. County, 

Orleans Parish, 

SIS ED 

Cutter, Boruff & 

Shirley, (2003); 

Flanagan et al., 
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(2011), Cumberbatch 

et al., (2020) 

Percentage of population 

employed 
SIS Parish 

Boruff & Cutter 

(2007) 

Socioeconomic 

status (income, 

political power, 

prestige) 

Per capita income 
U.S. County, 

Orleans Parish 

Cutter, Boruff & 

Shirley, (2003); 

Flanagan et al., 

(2011) 

Percent voting for leading 

party 
U.S. County 

Cutter, Boruff & 

Shirley, (2003) 

Percent of households with 

an annual income over 

[certain amount] 

U.S. County 
Cutter, Boruff & 

Shirley, (2003) 

Percent living in poverty 
U.S. County 

Orleans Parish 

Cutter, Boruff & 

Shirley, (2003); 

Flanagan et al., 

(2011) 

Infrastructure 

and lifelines 

General local government 

debt to revenue ratio 
U.S. County 

Cutter, Boruff & 

Shirley, (2003) 

Residential 

property 

Median monetary value of 

owner-occupied housing 
U.S. County 

Cutter, Boruff & 

Shirley, (2003) 

Percent mobile homes 
U.S. County; 

Orleans Parish 

Cutter, Boruff & 

Shirley, (2003); 

Flanagan et al., 

(2011) 

Renters 

Percent renter-occupied 

housing 
U.S. County 

Cutter, Boruff & 

Shirley, (2003) 

Median monetary value of 

renter-occupied housing 
U.S. County 

Cutter, Boruff & 

Shirley, (2003) 

Gender Percent female population SIS Parish, Boruff & Cutter 
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SIS ED, 

U.S. County 

(2007); Cumberbatch 

et al., (2020); Cutter, 

Boruff & Shirley, 

(2003) 

Percent females in labor 

force 
U.S. County 

Cutter, Boruff & 

Shirley, (2003) 

Family structure 

Average number of people 

per household 

SIS Parish, 

U.S. County, 

SIS ED 

Boruff & Cutter 

(2007); Cutter, 

Boruff & Shirley, 

(2003); Cumberbatch 

et al., (2020),  

Percentage of single-

parent or elder headed 

households with children 

under 18 

U.S. County, 

Orleans Parish 

Cutter, Boruff & 

Shirley, (2003); 

Flanagan et al., 

(2011), Mavhura et 

al., (2017) 

Crowding with more 

residents than rooms 
Household level 

Flanagan et al., 

(2011) 

Population dependency by 

age distribution  
Chinese County Chen et al., (2013) 

Social 

dependence 

Percentage of population 

retired 

SIS Parish, 

SIS ED 

Boruff & Cutter 

(2007). Cumberbatch 

et al., (2020) 

Per capita residents in 

nursing homes 

U.S. County, 

Orleans Parish 

Cutter, Boruff & 

Shirley, (2003); 

Flanagan et al., 

(2011) 

Per capita Social Security 

recipients 
U.S. County 

Cutter, Boruff & 

Shirley, (2003) 

Special needs Percentage of population SIS Parish, Boruff & Cutter 
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disabled Orleans Parish, 

SIS ED 

(2007). Flanagan et 

al., (2011), 

Cumberbatch et al., 

(2020) 

Infrastructure 

Percentage of households 

without piped water 
Chinese County Chen et al., (2013) 

Percentage of housing 

units possessing radios 
SIS Parish 

Boruff & Cutter 

(2007). 

Percentage of housing 

units possessing television 

sets 

SIS Parish 
Boruff & Cutter 

(2007). 

Percentage of households 

with no vehicle 
Orleans Parish 

Flanagan et al., 

(2011), 

Percentage of housing 

units cooking with 

electricity 

SIS Parish 
Boruff & Cutter 

(2007). 

Percentage of housing 

units lighting with 

electricity 

SIS Parish 
Boruff & Cutter 

(2007), 

Rural/urban 

Percentage of land used 

for agriculture 

SIS Parish, 

U.S. County 

Boruff & Cutter 

(2007); Cutter, 

Boruff & Shirley 

(2003) 

Percent rural population U.S. County 
Cutter, Boruff & 

Shirley, (2003) 

Percent urban population U.S. County 
Cutter, Boruff & 

Shirley, (2003) 

Medical services 

Number of physicians per 

100,000 population 
U.S. County 

Cutter, Boruff & 

Shirley, (2003) 

Per capita number of U.S. County Cutter, Boruff & 
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community hospitals Shirley, (2003) 

Race and 

ethnicity 

Net international migration U.S. County 
Cutter, Boruff & 

Shirley, (2003) 

Percentage of African 

American population 

U.S. County, 

Orleans Parish 

Cutter, Boruff & 

Shirley, (2003); 

Flanagan et al., 

(2011) 

Percentage of native 

American population 

U.S. County, 

Orleans Parish 

Cutter, Boruff & 

Shirley, (2003); 

Flanagan et al., 

(2011) 

Percentage of Asian 

population 
U.S. County 

Cutter, Boruff & 

Shirley, (2003) 

Percentage of Hispanic 

population 
U.S. County 

Cutter, Boruff & 

Shirley, (2003) 

Occupation 

Percent of population 

employed in primary 

extractive industries 

U.S. County 
Cutter, Boruff & 

Shirley, (2003) 

Percent of population 

employed in 

transportation, 

communications, and other 

public utilities 

U.S. County 
Cutter, Boruff & 

Shirley, (2003) 

Percent of population 

employed in the service 

sector 

U.S. County 
Cutter, Boruff & 

Shirley, (2003) 
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C.2 The Resident Household Survey for Vulnerability Factors Collection 

The designed survey instrument and relevant ethics materials are on the next page. 

  



134 

 

  

Image Copy Right 2011 AFP http://www.irf.org/queensland-floods-threaten-barrier-reef-like/ 

Flooding in Your Community 

Please help us to understand the factors that 

make your household more prone to 

flooding by completing this 20-minute 

survey for a university research project. 
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Dear community resident, 

I am writing as a master’s student from the Department of Geography and Environmental Management at 
the University of Waterloo, Canada. I would like to ask you for your assistance with a study that I am 
conducting as a part of my master’s degree. The title of my study is “Quantifying the Impacts of Flash Flooding 
on Dominica’s Material Stocks in Buildings: A GIS-based methodological framework for Small Island States”. 
I would like to provide you some information about this research project that explores flood risk perceptions 
involving both flood exposure and vulnerability. 

The purpose of this study is to find out how different household socioeconomic characteristics may affect the 
degree to which a household is susceptible to the impact of flooding. If you are interested in obtaining more 
information about my research, please contact me by e-mail at t6ren@uwaterloo.ca. 

You are invited to participate in my research under the supervision of Dr. Su-Yin Tan from the Department of 
Geography and Environmental Management of the University of Waterloo, Canada. Participate by completing 
this resident survey, where different questions about your household will be asked (for example, “How many 
of the family members are below five years old?”). 

Your involvement in this survey is entirely voluntary, and the survey should not take more than 20 minutes. 
You may decline to answer any questions that you do not wish to answer, and you can withdraw your 
participation at any time by not submitting your responses. The information that you provide will be kept 
confidential and will be used at an aggregated level indicating the overall vulnerability score of your 
neighborhood. 

This paper copy of the survey will be collected on a door-to-door basis during [time period of collection], 
and you will be entered in a draw for 1 of 5 EC$60 remuneration after submitting your responses. The 
remuneration will be paid to you in cash during [time period of payment]. If you are not available during any 
of the two time periods, please feel free to contact me at [phone number], or contact me by e-mail at 
t6ren@uwaterloo.ca. 

The results of this study will be useful to practitioners involved in flood risk management and emergency 
response. Thank you very much in advance for your assistance with this study! 

This study has been reviewed and received ethics clearance through the University of Waterloo Research 
Ethics Committee. 

Yours sincerely, 

Tianyu Ren 
MSc Candidate 
Department of Geography & Environmental Management 
University of Waterloo 
 

mailto:t6ren@uwaterloo.ca
mailto:t6ren@uwaterloo.ca
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A Resident Survey for Vulnerability to Floods 

The impacts of  flooding on different households are highly variable. This survey aims to gather information on how different 

household characteristics may affect their vulnerability levels to the impacts of  flooding. Your household social and economic 

characteristics may play a role in your ability to prepare for an upcoming flood event, cope with it during the event, and recover in the 

aftermath of  flooding. 

Guide: For multiple choice questions, please check all the boxes that apply. Example: □ Yes 

1. Do you own your home? □ Yes  □ No 

2. How many people live in your home? (Sleep at least four nights per week, please indicate the number of  family members 

below, with regard to their ages.) 

__________ preschool children (age 0 - 5) 

__________ children (age 6 - 12) 

__________ teenagers (age 13 - 17) 

__________ adults (age 18 - 64) 

__________ elders (age 65 and over) 

3. How many bedrooms are there in your home? 

□ One □ Two □ Three □ Four □ Five □ Six or more 

4. How many female family members are there in your home? 

□ None □ One □ Two □ Three □ Four □ Five □ Six or more 

5. How many family members in your home are native English speakers? 

□ None □ One □ Two □ Three □ Four □ Five or more □ Prefer not to answer 

6. How many family members in your home were born in Dominica? 

□ None □ One □ Two □ Three □ Four □ Five or more □ Prefer not to answer 

7. How many family members in your home are disabled? 

□ None □ One □ Two □ Three or more □ Prefer not to answer 

Part A: Basic Information about Your Household 

Your family structure may affect how much stress you have when taking care of  the dependents (children and elders) for 

evacuation, and female family members are usually more affected by hazards due to family care responsibilities. 
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8. Which category best describes your total annual household income? 

□ Less than EC$10,000 □ EC$10,001 to EC$15,000 □ EC$15,001 to EC$25,000 

□ EC$25,001 to EC$40,000 □ More than EC$40,000 □ Prefer not to answer 

9. How many family members in your home are employed? 

□ None □ One □ Two □ Three  

□ Four □ Five □ Six or more □ Prefer not to answer 

10. How many vehicles are owned by your family (vehicles that can be accessed anytime when they are needed)? 

□ None □ One □ Two □ Three or more 

11. When was your house constructed? 

□ 2022 – 2012 

□ 2011 – 2000 

□ 1999 – 1990 

□ 1989 – 1980 

□ 1979 – 1970 

□ Before 1970 

□ I cannot recall. 

12. Which category best describes the amount of  money you spent on construction of  the house that you are living in? (If  you 

rent your home, please skip this question.) 

□ Less than EC$50,000 

□ EC$50,001 to EC$100,000 

□ EC$100,001 to EC$150,000 

□ EC$150,001 to EC$200,000 

□ More than EC$200,000 

□ Prefer not to answer/I cannot recall 

  

Part B: Your Socioeconomic Status 

Improved income level or employment status can help you cope with the impacts of  floods. Please tell us more about your 

socioeconomic status. 
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13. If  you rent your home, what is the amount of  rent that you pay each month? (If  you answered Question 10, please skip this 

question.) 

□ Less than EC$500 

□ EC$501 to EC$750 

□ EC$751 to EC$1,000 

□ EC$1,001 to EC$1,500 

□ More than EC$1,500 

□ Prefer not to answer 

14. How many adult family members (18 years or older) in your household have a high school diploma? 

□ None □ One □ Two □ Three □ Four □ Five or more □ Prefer not to answer 

15. How many adult family members (18 years or older) in your household have completed university or college education? 

□ None □ One □ Two □ Three □ Four □ Five or more □ Prefer not to answer 

16. How many family members in your home are 15 years or older and can use a computer or a mobile phone? 

□ None □ One □ Two □ Three □ Four □ Five or more □ Prefer not to answer 

Thank You for participating in this survey. 

Part C: Education Status 

A higher level of  education and the ability to use a computer or mobile phone may help you to better access hazard warning 

and recovery information. 


