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Abstract 
The purpose of prosthetic hands is to restore a portion of dexterity lost through upper limb 

amputation. However, a key capability of human grasping that is missing from most currently 

available prosthetic hands is the ability to adapt grasp forces in response to slip or disturbances 

without visual information. Current prosthetic hands do not have the integrated tactile sensors or 

control policies to support adaptive grasp stabilization or manipulation. Research on slip 

detection and classification has been providing a pathway towards integrating tactile sensors on 

robotic and prosthetic hands; however, current literature focuses on specific sensors and simple 

graspers. Policies that use slip prediction to adapt grasp forces are still largely unexplored. 

Rigid-body simulations have recently emerged as a useful tool for training control 

policies due to improvements in machine learning techniques. Simulations allow large amounts 

of interactive data to be generated for training. However, since simulations only approximate 

reality, policies trained in simulation may not be transferable to physical systems. Several grasp 

policies with impressive dexterity have been trained in simulation and transferred successfully to 

physical systems. However, these grasp policies used visual data as policy inputs instead of 

tactile data. This research investigates if rigid-body simulations can use slip prediction as the 

primary input for training grasp stabilization policies. 

 Since current slip detection and prediction literature is based on specific tactile sensors 

and grasper setups, testing slip-reactive grasp policies is difficult, especially with an 

anthropomorphic hand. As an alternative to implementing a system-specific policy, real human 

grasp poses and motion-trajectories were used to test if the trained policy could replicate known 

human grasp stability. To acquire the human grasp data, grasp and motion trajectories from a 

human motion-capture dataset were adapted into a simulation. Since motion-capture only 

includes grasp and object pose data, grasp forces had to be inferred through a combination of 

analytical and iterative methods. Simulation contacts are also just approximate models; therefore, 

slip in the simulation was characterized for detection and prediction. The stability of the 

converted grasps was tested by simulating the grasp manipulation episodes with no control 

policy. Viable grasps were expected to maintain stability until the manipulation trajectory caused 

grasp degradation or loss. The initial grasps maintained stability for an average of 27.7% of the 

grasp episode durations, though with a wide standard deviation of 35%. The large standard 



 iv 

deviation is due to episodes with high hand acceleration trajectories, as well as grasp objects with 

varying grasping difficulty. 

Policy training using the imported grasps and trajectories was performed using 

reinforcement learning, specifically proximal-policy optimization. Policies were trained with and 

without slip prediction inputs, using different reward functions: a reward proportional to the 

duration of grasp stability, and a reward that also added a grasp-force magnitude penalty. A 

multi-layer perceptron was used as the policy function approximator. The policies without slip-

prediction inputs did not converge, while the policy with slip inputs and the grasp-force penalty-

reward function converged on a poorly performing policy. On average, episodes tested with the 

policy that used a grasp-force-penalty had a 0.11 s reduction in grasp stability duration compared 

to the initial grasp duration results. However, episodes that did have improved stability under the 

learned policy improved on average by 0.38 s, significantly higher than the average stability loss. 

Moreover, the change in stability duration under the trained policy negatively correlated with the 

initial stability duration (Pearson -0.69, p-value 9.79e-11). These results suggest that slip 

predictions contribute to learned grasp policies, and that reward shaping is critical to the grasp-

stability task. Ultimately, the trained policies did not perform better than the baseline no-policy 

grasp stability, suggesting that the slip predictions were not sufficient to train reasonable grasp 

policies in simulation. 
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Chapter 1 Introduction 

1.1 Human Grasp-Dexterity Reliance on Tactile Feedback 
The human hand can grasp a wide range of objects with high dexterity. In addition, humans are 

able to stabilize and manipulate objects with little conscious attention and minimal prior 

knowledge of object parameters such as mass and surface conditions. The ability for high 

dexterity without prior knowledge of the object shape is partly due to a complex system of 

afferent nerves that react to spatial and temporal features across multiple types of tactile 

feedback [1] [2] [3]. These afferents appear to measure direct values such as force, pressure, and 

contact location in addition to surface features such as friction and curvature. For example, in 

grasping, humans perform force adjustments to exceed the minimum slip forces of grasps with a 

constant safety factor ranging between 10-40% [2] [4]. Since minimum slip forces are a function 

of object mass, shape, and surface conditions, it is likely that human tactile feedback includes 

cues that distinguish these features and provide force and pressure feedback for error correction. 

The timescales for tactile feedback can be small. Frictional grip force responses in adults are 

typically approximately 100 ms [2] [5] [6], with anticipatory force changes based on 

proprioception and predicted disturbances that can reduce the reaction time further [2] [6]. In 

contrast to normal grasp dexterity, human grasping with inhibited tactile feedback is 

characteristically clumsy and loses all the force adaptations related to surface conditions [4]. 

Subjects with such limitations have difficulty with detailed tasks or low-friction surfaces, often 

letting objects slip and overcompensating for slip thresholds with significantly more force than 

necessary [1] [4]. This indicates that tactile feedback and slip-force management are core 

components of human dexterous manipulation. 

1.2 Prosthetic Hand Areas of Improvement 

In 2005, it was estimated that approximately 541,000 individuals in the United States had some 

form of upper limb amputation [7]. Most of these (61%) are transcarpal (below the wrist), while 

the next largest categories are transradial (12%, below the elbow) and trans-humeral (16%, 

above the elbow) [7]. Each of these amputations involves a significant loss of dexterous 

capability, which is not fully restored by currently commercially available prostheses. 

 A meta-analysis of upper-limb prosthesis-user surveys lists desired features related to 

grasp dexterity across all prosthesis types. The broadest desired feature was the ability to 



 2 

perform detailed daily task actions such as cutting meat and tying shoelaces. More specific 

desires included providing users with sensory feedback, applying high grasp forces, controlling 

grasp strength, performing actions without visual attention, performing stable grasps by avoiding 

slippage, changing object position or orientation, improving small object precision, and moving 

finger independently [7]. A direct analysis of prosthesis usage in daily life through egocentric 

(head-mounted) video [8] revealed that users demonstrated a higher proportion of non-prehensile 

(non-grasping) manipulations with their prostheses compared to their intact hand, suggesting that 

grasping with the prosthetic hand was often too limited to be used. A specific observed behavior 

was the use of the prosthetic hand for holding unnecessary objects, while the intact hand 

performed manipulations [8], indicating that the prosthesis was only trusted to handle static 

grasps. The directly observed behavior combined with the broader need priorities indicated by 

prosthesis users demonstrates that current prostheses do not have sufficient dexterity and control. 

These areas of improvement could be addressed in part, though tactile-sensor integration. 

However, integration of tactile sensors and tactile control-loops into prosthetic hands has so far 

been limited. A review of prosthetic-hand control [1] found that of the 12 reviewed prosthetic 

hands, half of them did not have any tactile sensors, and only one commercially available hand 

included a slip recognition mechanism. 

1.3 Need for Automation in Tactile Integration in Prosthetic Hands 

A prosthetic hand with integrated tactile sensors contains a control loop. Tactile sensors measure 

information such as contact location, force, vibration, or surface conditions from the grasp, and 

finger forces and position adjustments act based on the sensor information to maintain the grasp. 

Force and position adjustments could be directly made by the user, but current direct control 

methods are limited to a small number of control channels. Body-powered mechanical prostheses 

map hand manipulations onto shoulder movements [7] or other body flexions; however, the 

number of available mechanical mappings for other parts of the body fundamentally limit the 

degrees of freedom (DOF) of these mechanical prostheses. Myoelectric devices sense muscle or 

neural activation using electrodes, ultrasound, or other interfaces [7]. Most commercially 

available myoelectric devices are single channel, single direction devices, typically with on/off 

trigger control [1]. While there is extensive research on multi-electrode patterns for multi-

channel control, such setups still have consistency issues due to posture or muscle shift, fatigue, 



 3 

sensor crosstalk, and sweat [1] [7]. The small number of channels available via direct control 

methods limits the degree of grasp dexterity when directly controlling a prosthetic hand. 

Automating portions of the grasp process could allow increased prosthetic hand 

capability, while reducing or eliminating the need for direct control channels. So far, automation 

has seen success with user task intent decoding and grasp selection for prosthetic hands. Such 

methods used for both intent decoding and grasp selection included visual identification and 

classification of objects using convolutional neural networks [9], and myoelectric signal 

feedback for error correction or action confirmation [10] [11]. Although grasp selection and 

grasp approach have been demonstrated, these only cover the initial stages of the grasping 

process. By contrast, grasp stability automation for prosthetic hands has seen less development. 

Grasp stability is highly sensitive to the amount of observable environmental information. In 

controlled environments, where there is accurate information from sensors in the environment 

and prior information about the grasped objects, grasp stability is a solved problem that has been 

demonstrated in industrial robotics [5]. Prosthetic hands operate in a much more restricted 

environment where all sensors must be placed on the grasper itself, and prior object information 

is not available. Methods used in controlled environments [12] are thus not possible in 

prosthetics, requiring the development of new control policies tailored for this specific 

application and environment. 

1.4 Learning Grasp-Stability Policies in Simulation 

A specific method of learning grasp-stability policies that has shown great promise is machine 

learning in simulation. Both simulation environments and machine learning models have 

improved drastically in recent years, allowing sophisticated learned models that have 

demonstrated capable grasp-policies that transfer to real-world setups [13] [14] [15]. These 

models benefited from an end-to-end training pipeline that iterates over simulated states much 

faster than a physical setup, with flexibility over the physical parameters, such as surface friction 

or softness, and direct access to environmental information such as contact location, forces, or 

relative surface motion. 

The ability to adjust the observable information of the environment that is fed into the 

grasp policy is crucial. Current literature on tactile grasp stability exhibits a high degree of 

variance in type of tactile information used. Many real-world studies use contact, force, and 

pressure information to improve grasp stability and correction [16] [17] or perform grasp 
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readjustment [18] [19]. In addition, a growing number of research studies focus on classifying 

slip or overall grasp stability from specific tactile sensors [17] [20] - [24] for use with grasp 

stability or manipulation. However, only a few studies handle grasp-force adjustment in relation 

to slip management [14]. Most slip research is performed on simple graspers such as parallel-jaw 

grippers [16][17][21][22] or 3-jaw grippers [20], preempting the development of grasp 

management policies. Most grasp-policy simulation studies on anthropomorphic hands still use 

visual information or contact force information as inputs to their grasp policies [13] [25] - [29], 

which does not reflect the kinds of tactile information used in real-world tactile grasp studies. 

The primary drawback of simulation is that it is only an approximation of reality, making 

simulation-to-real transfer and vice-versa not guaranteed. A critical part of any robotic 

simulation is the methods used to ensure that a policy trained in simulation generalizes in a way 

that includes real-world environments and deals with simulation simplifications. Some grasp 

simulations start from synthetic grasps or manually selected neutral starting points (such as an 

object cupped in a hand) and use methods during training such as domain randomization to 

prompt learned policies to generalize enough for transfer to real grasps [13] [14] [25]. An 

alternate method for reducing simulation divergence might be to incorporate real grasps into the 

simulation from the start by training on actual grasps that have been transferred into the 

simulation [26] [27]. The ability of the simulation and learned policy to stabilize known viable 

grasps would serve as a measure of how well rigid-body simulations can use slip prediction to 

train grasp stabilization policies. 

1.5 Motivation and Research Goals 

In summary, tactile feedback is critical to stabilizing grasps and manipulating objects; however, 

tactile sensors are not currently integrated in prosthetic hands. It may be possible to extend grasp 

robustness and capability by automating parts of the grasping process such as grasp stabilization 

using tactile data. Simulations have proved to be viable environments to train grasp policies with 

good stabilization and manipulation capabilities that are transferable to real grasps. However, 

many of these simulations start from synthetic or manually chosen grasps, and then rely on visual 

information, which is not available on a prosthetic hand. Some simulations use force and 

pressure data as inputs, while many real-world grasp studies focus on slip classification and 

prediction for tactile feedback. This thesis research creates an environment in simulation for 

grasp-stabilization policy-learning that uses real human grasps and manipulation trajectories and 
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provides slip prediction in simulation as potential policy input. Finally, a simple machine-

learning structure is used in the environment to attempt to learn a grasp stabilization policy. 

 

The objectives of this research thesis are to: 

1. Create an environment in a rigid-body simulation that incorporates real human grasps and 

manipulation trajectories.  

a. Convert human motion-captured grasp poses with objects, into simulation. 

b. Adjust grasp states to mimic inferred forces and initial states from motion-capture 

dynamics. 

c. Recreate grasp hand-trajectories found in motion-captured data. 

2. Characterize contact slip in rigid-body simulation to replicate slip prediction for 

simulated grasps. 

3. Determine through the created grasp environment, if a simple multilayer-perceptron 

network can replicate real grasp stability using slip prediction inputs. 
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Chapter 2 Background 

2.1 Modeling Contacts and Grasps 
Mathematically modeling contacts and grasps is a fundamental step in describing and predicting 

contact and grasp behavior. Although mathematical representations do not capture all real 

contact qualities, they form the basis of simulator contact models and can be used to approximate 

the required forces for a grasp. 

A common way to quantify contacts in a grasp is to consider all contacts between the 

grasped object and hand as points with individual contact forces exerted along all cartesian and 

torque axes (Eq. 2.1) [30] [31]. In this convention the z-axis is defined as the axis colinear with 

the surface normal at the point of contact, pointed inwards towards the grasped object. 

𝐹!! = [𝐹" 𝐹# 𝐹$ 𝜏" 𝜏# 𝜏$]% (2.1) 

where 𝐹!! is the contact wrench, the vector containing all forces and torques exerted by the i’th 

contact in the local reference frame. 𝐹",	𝐹# are the cartesian forces of the contact that are 

tangential to the surface normal,	𝐹$	is the normal force, and 𝜏",	𝜏#,	𝜏$ are the torques about each 

cartesian axis. 

In the idealized case of frictionless contact, the contact wrench 𝐹!!, could be trivially 

expressed as the normal force 𝑓!! mapped from a scalar onto the wrench vector. A matrix created 

from the three force and three torque unit components using a simple vector of ones and zeros 

(the wrench basis) performs the mapping. The basis in Eq. 2.2 only includes contacts that exert 

pure normal force without any tangential or torsional forces. 

𝐹!! = [0 0 1 0 0 0]%𝑓!! , (2.2) 

where 𝑓!! is the contact normal force subject to: 𝑓!! ≥ 0. 

A more complex soft-finger frictional contact representation incorporates the coulomb 

friction model 0𝐹&'(!)(*+0 ≤ 𝜇𝐹+*',-. to represent a contact with tangential friction as well as 

resistive torque about the contact normal. The friction model defines the maximum potential 

resistive contact forces as less than the multiple of the normal force with a constant friction 

coefficient. The tangential and torsional friction forces use independent friction coefficients 𝜇 

and 𝛾. Under this contact representation the contact wrench 𝐹!! can be expressed as: 
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Figure 2.1 Point 
contact model 
illustration 

𝐹!! =

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

𝑓!! , 	𝑓!! ∈ 𝐾, (2.3) 

where 𝐾 = #𝑓 ∈ ℝ":	)𝑓#$ + 𝑓$$ ≤ 𝑢𝑓%, 𝑓% ≥ 0, |𝑓"| ≤ 𝛾𝑓%2 represents the friction cone constraints 

created by applying the coulomb friction model to each force and torque component. 𝑓!! is the 

force vector that includes the tangential forces 𝑓/ and 𝑓0, the z-axis torque 𝑓1, and the normal 

force 𝑓2 [30] [31]. 

Since friction forces are only resistive, 𝐾 defines a set of possible contact force vectors 

enclosed in a cone, whose bounds are derived from the coulomb model (Fig. 2.1 blue cone). This 

friction cone’s aspect angle is governed by the tangential and torsional friction coefficients, 𝜇 

and 𝛾, respectively. 

 
Figure 2.1. Illustration of the point contact model showing contact between a hemispherical 

endpoint (green) and a flat plane (red). The local contact axes are drawn extending from the 

contact point along with the friction cone (blue). 

 

A more general form of the friction cone constraints for 𝑛 arbitrary friction constraints 

and constraint forces {𝑓/, 𝑓0, … , 𝑓+}, can be defined as follows (note that 𝑓/ is now defined as 

normal force for convenience) [30]: 
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𝐾 = A𝑓 ∈ ℝ+: 𝑓/ ≥ 0, 𝑓/0 ≥D
𝑓(0

𝜇(3/0

+

(40

E (2.4) 

Given a set of contacts, the sum of all contact wrenches 𝐹!! transformed by some 

rotational and translational matrices 𝑇( to a common coordinate system, provides the net forces 

and torques for some object 𝐹*. For simplicity the transformation matrices can be combined with 

the wrench-basis matrices into a single matrix 𝐺. 𝐺 can be used with the original force vectors 𝑓!! 

to represent the sum of contact wrenches. 

𝑓! = [𝑓!& 𝑓!' … 𝑓!!]% (2.5) 

𝐹* =D𝑇(𝐹!! = 𝐺𝑓! (2.6) 

A special case that can be considered for this sum of forces and torques is force-closure, 

where contact forces exist to allow the net object wrench 𝐹* to have any value. In practical terms, 

this means that the contact configuration allows any arbitrary resistive or manipulative force and 

torque to be generated for the object [30] [31]. From the simplified form: 𝐹* = 𝐺𝑓!, it follows 

that if the columns of 𝐺 are linearly independent (invertable), then the contact configuration is 

force-closure. If some column of 𝐺 is not linearly independent, the grasp will not be able to 

produce or resist any arbitrary forces along that axis. 

 Given the above definition of contacts and the properties of force-closure, the matrix 𝐺 

can be used in methods of quantifying grasp quality [31]. Some simple metrics of grasp quality 

include the minimum singular value of 𝐺, which indicates how close 𝐺 is to becoming singular, 

and the ratio between the minimum and maximum singular values. A more common metric of 

grasp quality is the radius of the origin-centred hypersphere inscribed within the convex hull 

formed by the union of all the contact friction cones. In practical terms, the sphere radius would 

represent the minimum wrench (force and torque) that would be able to exceed the resistive 

forces of the grasp. However, although these grasp metrics appear reasonable, they are limited in 

the factors they consider. Evaluations focusing on pose error robustness [32] have shown that 

grasp metrics can be vulnerable to pose error, and human ratings of grasps [33] [34] do not 

necessarily correspond to grasp metrics. While any of the above grasp metrics may be useful for 

conceptualizing grasps in terms of a single quality value, they are less useful in mimicking 

human capability. On the other hand, the simple contact model is still relevant since it is a 
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common starting point for contact models in simulators and serves as an analytical starting point 

for inferring grasp forces. 

2.2 Mujoco Physics Simulator 

Physics simulators are powerful tools for building, training, and testing control methods, and 

have already proven useful for learning grasp stabilization or manipulation policies [13] [14]. 

The ability to iterate and predict physical outcomes without material restrictions is a great 

advantage that allows algorithm development methods such as reinforcement learning to be 

viable. Mujoco [35] and Pybullet [36] are both premier open-source physics simulators, with 

multiple modules incorporated in popular reinforcement learning toolkits such as OpenAI Gym 

[37]. Mujoco specifically is a prime candidate for robot control tasks. According to a 2015 

comparison of simulation tools, Mujoco had the best speed-accuracy performance for robot 

simulation tasks and was able to complete a simulated grasp task with the largest timestep, 

indicating high stability for grasp tasks [38]. A 2021 comparison had a more mixed conclusion, 

but noted that Mujoco had high customizability for simulation parameters, and had a lower 

barrier of entry for reinforcement learning problems [39]. In addition, Mujoco is able to 

demonstrate several emergent physical behaviors such as the Newton’s cradle inertia transfer, the 

Dzhanibekov effect, and “tippe top” flipping [40]. Finally, learned policies for grasp 

manipulation trained on synthetic data from Mujoco have been shown to be able to transfer to 

real physical systems [13] [15], albeit with domain randomization to train a more generalized 

policy [13]. Physics simulations depend on contact models to accurately approximate reality; 

thus, contact models limit the conditions where the simulation is accurate. Understanding the 

simulation contact model is necessary for imitating real-world conditions, especially for 

importing real-world grasps. Although an explanation of Mujoco’s algorithms is outside the 

scope of this work, an overview of its general process and key characteristics are provided in the 

next subsections. Further details can be found in the Mujoco documentation [41] and in [42] by 

the original developer. 

2.2.1 Mujoco Simulation Framework 

A physics simulation in Mujoco begins with the compilation of a predefined model file into an 

initial state that can be quantified in terms of relevant system matrices. The simulation then steps 

forward in time from the initial state using the general equation of motion.  

𝑀𝑣̇ + 𝑐 = 𝜏 + 𝐽%𝑓	, (2.7) 
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where 𝑀 is the inertial matrix in joint space, 𝑣 are the velocities along all degrees of freedom 

(DOF), 𝑣̇ are the DOF accelerations, 𝑐 represents the system bias force (gravity, Coriolis, 

centrifugal), 𝜏 are the applied forces (externally applied or through actuators), 𝐽 is the Jacobian 

for any constraints (which maps the constraints to the DOF) and 𝑓 are the constraint forces. 

Note that instead of using cartesian coordinates, Mujoco operates using generalized joint 

coordinates, where the axes are defined by the joint degrees of freedom. This ensures that joint 

constraints are implicit in the coordinate system and thus not violated. This strategy works well 

for large kinematic hierarchies such as robotic arms. However, this also means that closed-loop 

kinematics, for example, for a four-bar linkage, cannot be defined without at least one constraint 

that is not implicit. It can also be observed from the general equation of motion (Eq. 2.7), that the 

Mujoco state vector only requires time, position, and velocity as internal time-dependent 

parameters. To compute all unknowns for time integration, the inertial matrix is derived using 

the Composite-Rigid-Body algorithm described in [43], and the bias forces are calculated using 

the Recursive Newton-Euler algorithm. 

 Mujoco solves both the forward and inverse dynamics of the motion equation 

(rearrangements of Eq. 2.7). The forward dynamics (Eq. 2.8) solve for accelerations, while the 

inverse dynamics (Eq. 2.9) recover forces given position, velocity, and acceleration: 

𝑣̇ = 𝑀3/(𝜏 + 𝐽%𝑓 − 𝑐)	 (2.8) 

𝜏 = 𝑀𝑣̇ + 𝑐 − 𝐽%𝑓 (2.9) 

The inverse dynamics equation (Eq. 2.9) serves as an accuracy check since forward 

dynamics includes a numerically-solved constraint-force optimization problem. Acceleration 

solved for in forward dynamics is used to step through simulation time and perform forward 

kinematic updates through a numerical integrator. In Mujoco, several options available are: 

Semi-implicit Euler, Implicit-in-Velocity Euler, and 4th-order Runge-Kutta. Specific details on 

how each of these integrators perform time updates and some stability tradeoffs can be found in 

the Mujoco documentation [41]. 

2.2.2 Mujoco Contact Model 

A critical part of how Mujoco operates is its constraint-contact model. Without the constraint 

force, the forward dynamics equation is incomplete. Mujoco handles contacts and general 

constraints in a similar manner; however, this subsection will focus on how contacts are handled, 

given that most non-implicit constraints encountered in this research are contacts. 
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 A key preface of the Mujoco contact-collision model is that contacts are considered 

Coulomb-friction point contacts (Sec. 2.1). This means that for any two contacting geometries, 

the contact between them will be represented by a single point. This does allow contacts and 

their constraints to be described with friction cones; however, unrealistic contacts with the wrong 

geometry can be produced. Managing the expected contact geometries to mitigate the problem of 

unrealistic contacts must be considered in the design of a Mujoco environment. 

A core theme of Mujoco’s constraint model is the relationship between the constrained 

and unconstrained behavior of a physical system. Gauss’s principle on constrained dynamics 

[44] states that a constrained system’s accelerations will be as close as possible to the system’s 

unconstrained (free) accelerations with the minimal allowable constraints. 

𝑎!*+5)'-(+67 = argmin
-∈!*+5)'-(+)

\𝑎 − 𝑎&'66\9						
0 , (2.10) 

where 𝑎 is the system accelerations (constrained or free), 𝑀 is the mass matrix, and double bar 

operator is defined as: ‖𝑎‖90 = 𝑎%𝑀𝑎.  

In terms of the previous equation of motion notation (Eq. 2.7) and 𝑥 as the acceleration variable: 

𝑣̇ = argmin
;"4-∗

‖𝑥 −𝑀3/𝜏‖90 , (2.11) 

where the unconstrained acceleration is rearranged from the unconstrained dynamics	𝑀𝑣̇ = 𝜏,	

and is subject to the acceleration constraint:	𝑎∗ = 𝐽𝑣̇. 

The problem above can be considered as a solution for a system with “hard” constraints 

that can be solved via optimization, though it is not invertible. Mujoco “softens” the constraints 

by adding a regularization term 𝑅 such that 𝑅 → 0 approaches the original “hard” problem. In 

addition, the reference acceleration 𝑎∗ is moved from the constraint into the optimization 

formulation along with a slack variable 𝑦. 

(𝑣̇, 𝑤̇) = argmin
(",#)

‖𝑥 −𝑀3/(𝜏 − 𝑐)‖90 + ‖𝑦 − 𝑎∗‖@)&
ABC6'(D) , (2.12) 

where 𝑤̇ is the velocity of constraint deformations, minimization is subject to the constraint 𝐽𝑥 −

𝑦 ∈ 𝐾∗ for contacts, 𝐾∗ is the acceleration dual of the friction-cone constraints from Eq. 2.4, and 

the Huber function has an output that transitions between a quadratic at zero to a linear function 

at a predetermined threshold 𝜂. The regularization term 𝑅 and reference acceleration term 𝑎∗ are 

both parameter-dependent values encapsulated by several contact parameters tuned by the user. 
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Although these values do appear in the primary optimization problem equation, they are best 

described in the context of the Lagrange dual of the optimization formulation. 

 

For the forward dynamics, the Lagrange dual is: 

𝑓 = argmin
E∈F

1
2 𝜆

%(𝐴 + 𝑅)𝜆 + 𝜆%(𝑎G − 𝑎∗)	 . (2.13) 

and for the inverse dynamics: 

𝑓 = argmin
E∈F

1
2 𝜆

%𝑅𝜆 + 𝜆%(𝑎/ − 𝑎∗) , (2.14) 

where Ω is the force constraint space for contacts in the friction cone 𝜆 ∈ 𝐾, 𝑅 is the 

regularization term, and 𝐴 is the inverse inertial matrix in joint space 𝐴 = 𝐽𝑀3/𝐽% calculated 

with the mass matrix 𝑀 and Jacobian 𝐽. The unconstrained and constrained accelerations 𝑎G and 

𝑎/ are rearranged from the equations of motion: 

𝑎G = 𝐽𝑀3/(𝜏 − 𝑐) + 𝐽𝑣̇ (2.15) 

𝑎/ = 𝐽𝑣̇ + 𝐽𝑣̇	, (2.16) 

where the Jacobian 𝐽 and mass matrix 𝑀 define the contribution of the bias forces 𝑐, actuated 

forces 𝜏, and velocities 𝑣. 

Given the unconstrained minimizer for the dual optimization problem: 

𝑓H = (𝐴 + 𝑅)3/(𝑎∗ − 𝑎G)		, (2.17) 

a rearrangement of the equations of motion with these definitions results in: 

𝑎/ = 𝐴(𝐴 + 𝑅)3/𝑎∗ + 𝑅(𝐴 + 𝑅)3/𝑎G			. (2.18) 

Once again, just like in the primal optimization form, in Eq. 2.18, 𝑅 → 0 results in a 

completely hard contact. On the other hand, it is clear that 𝑅 interpolates the constrained 

acceleration 𝑎/ between the reference acceleration 𝑎∗ when 𝑅 → 0 and the unconstrained 

acceleration 𝑎G when 𝑅 → ∞. In order words, 𝑅 allows the interpolation between strong and 

weak constraints. Both 𝑅 and 𝐴 can be redefined as dependent on a single parameter 𝑑, which 

has a scalar value for each constraint. These definitions allow constraint and acceleration 

interpolation to be controlled by a user-selected parameter that is bounded from 0 → 1. 

𝑅(( =
1 − 𝑑(
𝑑(

𝐴i(( (2.19) 

𝑎(/ = 𝑑(𝑎(∗ + (1 − 𝑑()𝑎(G		, (2.20) 



 13 

where 𝑅(( and 𝐴i(( are the diagonals of the interpolation and inverse inertial matrices, and the 

diagonal of the 𝐴 matrix is approximated from the model configuration. 

As the approximation of 𝐴 approaches the actual value, the constrained acceleration turns 

into an interpolation based on the value of 𝑑. For modeling soft constraints or contacts, 𝑑 itself is 

defined as dependent on a constraint position value 𝑟. In the context of contact, this would 

correspond to the geometric interference between the two geometries in contact. Mujoco user 

parameters allow the definition of a position-dependent 𝑑(𝑟) based on a shifted or reflected 

sigmoid function, and these govern the impedance of a simulated soft material. 

 The reference acceleration parameter 𝑎∗ is defined as a spring and damper model in the 

constraint space: 

𝑎(∗ = −𝑏((𝐽𝑣)( − 𝑘(𝑟( 	, (2.21) 

where 𝑘 is the spring coefficient, and 𝑏 is the damping coefficient for the i’th constraint. 

For contact, dimensions such as the contact normal include both spring-damper terms, but 

for frictional dimensions, the position value 𝑟 is simply zero, leaving just a damping component. 

Combining the impedance interpolation function with the reference acceleration definition 

introduces a scaling factor on the spring-damper model. In order to prevent this from impacting 

the characteristics of the model, 𝑏 and 𝑘 can be redefined in terms of a time constant 𝑇 and 

damping ratio 𝑅,  respectively: 

𝑏 =
1
2
(𝑑,-"𝑇)		, (2.22) 

𝑘 =
𝑑(𝑟)

𝑑,-"0 𝑇0𝑅0
		 . (2.23) 

With these definitions, the damping ratio remains constant, while the time constant increases as 

impedance decreases. 

2.2.3 Mujoco Key Characteristics 

In summary, the Mujoco physics simulator has several characteristics that are key to 

understanding the behavior of a simulated kinematic chain with contact constraints. Joints in a 

kinematic chain are implicit and thus never violated. Kinematic loops will always have at least 

one constraint that is “soft”. The simulation state is only dependent on position, velocity, and 

time (and actuator activations if included). Contacts are represented by coulomb-friction point 

contacts and forces are constrained within the friction cones generated by the Coulomb-friction 
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ratios. Constraint forces and accelerations are solved via optimization with a tunable parameter 𝑑 

that governs the strength of constraints and can vary with a position value to model soft contact. 

Finally, the strong bounds of constraint accelerations are defined via a spring-damper model with 

tunable damping ratio and time constant values. 

2.3 Machine Learning 
Machine learning is a set of automated methods of deriving inferences from data, usually using a 

function approximation model [45] [46]. The function approximator is shaped by exposure to 

(training) data and evaluated on separate (test) data. A specific type of function approximator 

that has become highly popular since breakthroughs around 2015 is neural networks [45]. Neural 

networks have demonstrated the ability to generalize for high-dimensional problems even 

without expert knowledge [46]. However, the ability of a neural network to approximate 

complex functions also allows neural networks to overfit training data. Finding the right balance 

of approximator complexity matched to the training data richness is a major challenge not only 

for neural networks but machine learning in general. Most of the time, more data and with 

variance in features relevant to the target function helps neural networks generalize. 

 Machine learning and neural networks have been successfully applied many times to 

deriving robotic grasp control policies [13]-[21],[24]-[29],[47]-[49]. The distinctions between 

each application of machine learning for grasp control are the chosen training environment and 

the input data provided to the machine learning algorithm. 

2.3.1 Training Environment 

Both real-world and simulated data are used to train grasp control policies. Real-world training 

data has the advantage of being sourced from the same environment a trained grasp policy is 

expected to operate in. However, real-world data is difficult to gather, as it involves creating 

grasps in a physical setup. The difficulty of creating enough physical grasps with variance in 

grasper, object, and grasp type often leads to trained policies that are platform specific and 

overfit on undesirable characteristics such as object or grasp orientation  [20] [21] [24]. 

Synthetic training data created by simulations offers a solution to generating large 

amounts of varied training data. Simulations can be automatically created and adjusted, and often 

run faster than real-time. However, the issue with synthetic data is that it is only an 

approximation of reality. Grasp policies trained in simulation often mix in real-world data or 

inputs to try to prevent the final policy from overfitting on the unrealistic simplifications of the 
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simulation. A common process is to first train a policy on synthetic data, then perform final 

tuning with real-world data [13]. The drawback is that a partially viable grasp policy must be 

trained in simulation first. Another popular method of bridging synthetic and real-world data 

specifically for grasp tasks is to use human grasps as demonstrations. The demonstrations can 

range from processed video of grasp tasks [29] to interactive episodes measured using 

proprioceptive gloves and VR equipment [26] [27] [28]. In almost all cases, human grasp 

demonstration increases the robustness of the final trained policy [26]. 

2.3.2 Policy Input Data 

Policy input data is the other factor that distinguishes each instance of grasp control with 

machine learning in the literature. From the perspective of this research, the most important 

policy input distinction is between policies that incorporate external object information, or only 

use tactile information. External object information includes any data not collected from tactile 

sensors on the grasper, such as visual information or prior object characteristics. Policies that 

incorporate external object information have demonstrated impressive grasp control capability, 

but requires external camera views [13] [15] [29], or directly measured object pose [26]. 

Additional research focuses on fusing large amounts of tactile, visual, and depth information [16] 

[17] [21] [47] for use in grasp stabilization. Policies trained with only grasper-situated tactile 

information are generally more limited in scope and focus on predicting or classifying grasp 

stability through slip detection or prediction [20] [21] [24] [48]. The type of input a policy is 

trained with often aligns with the type of data the policy is being trained with, real or synthetic. 

Many of the most capable grasp policies using external object information are at least partially 

trained in simulation with synthetic data and take advantage of the large breadth of generated 

data. Most policies trained with only tactile information are trained with real-world data, since 

contact models in simulations are not as detailed as in real-world contacts. As stated in the third 

research objective, this research aims to bridge this divide by replicating slip predictions in 

simulation and then using that input to train a grasp-stabilization policy. 

2.3.3 Reinforcement Learning 

A particular class of machine learning methods that aligns well with interactive learning in 

simulation is reinforcement learning. Reinforcement learning generally centres around learning 

from states and action sequences to find an optimal policy that maximizes a reward function [45] 

[46] for all actions taken in the environment. Deep learning, where deep neural networks are 
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used for policy approximation, has been a relatively recent innovation that has allowed 

reinforcement learning to scale to very high-dimensional problems, such as natural language 

processing, computer games, and more recently, robotics [45] [46]. The primary feature of 

reinforcement learning is that the agent learns through environmental interaction, which requires 

significant trial and error in the process. However, the environmental dynamics do not need to be 

known or characterized if sufficient interaction data is available. Also, rewards can be sparse, for 

example, only being defined at the end of a specific series of actions and not at every state. 

2.3.3.1 Reinforcement Learning Definitions 

Most reinforcement learning setups can be split into several definitions. A policy that produces 

actions given a state, a reward generated by the current state, action, or state transition, a 

cumulative reward score, and a policy-dependent value that estimates the expected cumulative 

rewards given the current state. An additional useful augmentation to the value function is the 

quality function, which performs value evaluation given some initial policy action and serves as 

an estimate for the quality of some action given the current policy. Finally, the difference 

between the value and quality functions can be used to infer the advantage of some action over 

the current policy. 

For a policy 𝜋 that maps states 𝑠 to actions: 

𝜋(𝑠) → 𝑎	, (2.24) 

and an immediate environmental reward 𝑟) and cumulative reward 𝑅): 

𝑟) = 𝑟(𝑠) , 𝑠)H/, 𝑎) (2.25) 

𝑅) = 𝑟)H/ + 𝑟)H0 +⋯ . (2.26) 

The value 𝑉I, quality 𝑄I, and advantage 𝐴I for the policy 𝜋 are defined as: 

𝑉I(𝑠) = 𝔼(𝑅)|𝑠) (2.27) 

𝑄I(𝑠, 𝑎) = 𝔼(𝑅)|𝑠, 𝑎) (2.28) 

𝐴I(𝑠, 𝑎) = 𝑄I(𝑠, 𝑎) − 𝑉I(𝑠)	. (2.29) 

The quality function conveniently provides a definition for the optimal policy: 

𝜋∗(𝑠) = argmax
-

𝑄I(𝑠, 𝑎)	 . (2.30) 

Note that there can be many variations. For example, a policy might be stochastic rather 

than deterministic and thus would be defined as 𝜋(𝑠, 𝑎), or the cumulative reward can be 

calculated with a time horizon, decay factor, or numerous other discount functions. These 

common definitions of reinforcement learning systems illustrate some of the core components of 
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reinforcement learning methods: learning the optimal policy, while also determining the value or 

quality function. 

Reinforcement learning is often initially described as a Markov decision process [45] 

[46], where an agent with an action policy acts on a series of environmental states that 

encapsulate all information required to move to the next state. With this property, it is possible to 

summarize the expected environmental reward of all policy actions recursively into a value 

function dependent on the expected cumulative reward 𝑅). 

𝑅) = 𝑟)H/ + 𝛾𝑟)H0 + 𝛾0𝑟)H2 +⋯ =D𝛾J𝑟)HJ

K

J4G

= 𝑟)H/ + 𝛾𝑅)H/	. (2.31) 

With this definition of cumulative reward, the value and quality functions can be redefined: 

𝑉I(𝑠) = 𝔼(𝑅)|𝑠) = 𝔼(𝑟)|𝑠) + 𝛾𝔼(𝑅)H/|𝑠L) = 𝔼(𝑟)|𝑠) + 𝛾𝑉I(𝑠L) (2.32) 

𝑄I(𝑠, 𝑎) = 𝔼(𝑅)|𝑠, 𝑎) = 𝔼(𝑟)|𝑠, 𝑎) + 𝛾𝔼(𝑅)H/|𝑠L) = 𝔼(𝑟)|𝑠, 𝑎) + 𝛾𝑉I(𝑠L)	. (2.33) 

The Markov property allows the quality and value functions to depend on their own 

values given the successor state 𝑠′. A decay parameter 𝛾 has also been added to prevent the 

cumulative sum from increasing indefinitely. The recursive nature of the value and quality 

functions means that the problem of optimizing the policy and quality can be broken into simpler 

step-by-step convergence processes. The caveat is that not all reinforcement learning problems 

can be considered Markov decision processes, often because environments are not entirely 

observable. 

2.4 Summary 

In summary, contact representation, simulation contact model, and machine-learning 

characteristics are all key background factors to this research. Point contact models represent the 

most basic but generalizable form of contact representation and open the door for limited 

analytical grasp solutions as well as more complex contact models. The Mujoco contact model 

implements soft contact on top of the point contact representation, but relies on tuned parameters 

such as the spring-damper parameters and the contact-hardness interpolation value. Finally, 

machine learning, specifically reinforcement learning, is the policy training method of choice for 

interactive control applications such as grasp control, but literature results are split between real-

world and synthetic data as well as policy inputs such as external object information. 
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Figure 3.1 Methods organization flowchart 

Chapter 3 Methods 

3.1 Overview 
Creation of a policy learning pipeline using human grasps in simulation involves two steps: 

1) importing human grasps from a motion-capture dataset into simulation, and 2) a training loop. 

Dataset conversion includes all the preparatory steps to transfer human grasps in a dataset into 

some viable representation in simulation, and the training loop consists of the simulation running 

in parallel with policy training. Each part can be further broken down into nested steps and 

methods, which are individually addressed in this section. 

 
Figure 3.1. Methods organization flowchart showing the two major sections: motion-capture 

dataset conversion, and the simulation training loop. The green subsection encapsulates steps run 

within the physics simulation. 

 

 The starting point for the entire pipeline is the motion-capture dataset. In this thesis, the 

GRAB Dataset [49] was used. The dataset presents multiple object-grasp episodes using 

common hand representation models that provide the basic parameters for later hand-

simplification steps. These representation models include hand and object poses, but not force 
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information. Thus, force information must be inferred later based on pose and object dynamics 

after the poses are imported into simulation. Before any data conversion (required for inputting 

the dataset to the model), simulation parameter selection provides the first opportunity to tune 

simulation behavior. Real human hands incorporate contact properties that cannot be replicated 

completely in simulation, such as a deformable skin and large contact area. Simulation contact 

parameters allow contact behavior to be adjusted for more realistic grasp behavior across all 

hand and object poses in the dataset. After parameter selection, a simplified analog hand that 

retains as many of the original grasp poses as possible, is created. Grasp contacts have a low 

margin for error. Therefore, contact errors that already existed in the dataset or were introduced 

during hand-model simplification, must be removed. Next, the hand trajectories for each grasp 

episode are replicated in simulation to ensure that the simulated grasp is subjected to 

disturbances that are similar to those experienced by the real hand. Finally, the last step of 

dataset conversion is to infer the initial grasp forces based on the corrected hand, object, and 

trajectory poses. Once the grasps are replicated in simulation, the training loop is used to learn a 

control policy through proximal policy optimization (PPO). PPO is a common reinforcement 

learning method used in contemporary control simulation literature; however, this research 

diverges from the literature in the choice of policy network and chosen reward function. 

3.2 Body and Hand Representation Models 

To represent a hand in motion, a parameterized hand model, which incorporates the kinematic 

hierarchy, is necessary. The MANO (hand Model with Articulated and Non-rigid defOrmations) 

hand model [50] is a parameterized hand mesh model derived from high resolution three 

dimensional (3D) scans of 31 subject hands. The MANO parameters include shape parameters, 

blend parameters, and blend weights that are applied to a hand template to shape it to an 

individual’s hand. The template also includes joint regression parameters that allow the 

extraction of estimated joint positions through a weighted sum of specific mesh vertices. The 

MANO model was originally associated with the SMPL (Skinned Multi-Person Linear Model) 

body model to create the SMPL+H combined body and hand model, until it was superseded by 

the SMPL-X model [51], which included expressive facial features. 

3.3 GRAB Dataset 

The GRAB (Grasping Actions with Bodies) Dataset [52] is a series of whole-body motion-

captured episodes of object interaction. What separates the GRAB Dataset from most human-
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motion-capture datasets is that the interaction objects have known meshes, and the object poses 

(position and orientations) are also tracked. Human and object 3D poses are recorded using 

tracking targets with known locations on a body suit and object. The body of each human subject 

is scanned beforehand and approximated using the SMPL-X [51] body model to account for 

differing body and hand shapes, generate a full body mesh from tracked points, create pose 

parameters, and derive joint positions. The interaction objects are 3D printed from the 

ContactDB [49] dataset, which has known 3D models. 

Each interaction episode consists of a subject who is instructed to interact with an object 

with some intent (“use”, “pass”, “lift”, and “off-hand pass”). The episodes always start with the 

subject in a T-pose (arms outstretched laterally) a short distance from the object, and end in 

approximately the same pose. Each episode is repeated across ten subjects (five women, five 

men). A single episode could contain multiple grasps and object interactions separated by 

periods of no contact depending on the episode intent. For each timestep of the episode, a SMPL-

X model and object pose are constructed to represent the instantaneous pose of both the subject 

and interaction object. 

The GRAB Dataset as a motion-captured dataset does not contain any force or contact 

information. Contact must therefore be assumed based on surface proximity. The threshold 

distance was tuned empirically by the dataset authors to 4.5 mm, but this was tuned to produce 

object-contact heatmaps. No actual poses were altered. The assumption of contact through 

proximity combined with pose errors and the use of a body-mesh instead of a true surface scan 

causes most instances of assumed contact to either underpenetrate with a gap between the contact 

surfaces, or overpenetrate with excessive overlapping geometry between the contact objects. To 

successfully import these grasp poses into a simulation that does model contact forces, finger and 

object under/overpenetration must be corrected. 

3.4 Mujoco Contact Parameter Selection 

Human fingers have much greater contact areas than rigid fingers due to skin deformation. 

Reducing the behavioral differences between the real and simulated hand contacts is primarily 

accomplished by adjusting the Mujoco contact parameters. These parameters are not able to 

correct for the differences between simulated and real contact under all circumstances, and 

therefore must be tuned specifically for the grasps included in the GRAB Dataset. Mujoco 

contacts depend on two classes of values: instantaneous contact properties and static contact 
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Figure 3.2 Contact 
distance illustration 

parameters. Some of the instantaneous contact properties change according to the contact context 

and include values such as the contact position, surface normal, and contact distance. The 

behavior of these instantaneous values is partially governed by the static contact parameters that 

are chosen on simulation initialization, and are tuned to achieve a desired contact behavior. 

These parameters include friction coefficients, Solimp, Solref, and Condim. The next paragraphs 

explain the meaning of the contact values, starting with the definitions of the instantaneous 

contact properties and followed by how each static parameter value alters instantaneous contact 

property behavior. 

3.4.1 Instantaneous Contact Properties 

Not all contact values directly depend on the static contact parameters. Contact position and 

surface normal are governed by where two objects intersect to create contact. The contact surface 

normal is the axis perpendicular to the plane formed by overlap between surfaces, and the 

contact position is determined by the mid-point between the two contact surfaces along the 

normal axis. Although initially, contact position and surface normal are independent of the static 

contact parameters, the behavior of the contact, such as slip or sliding, will affect future position 

and normal values.  

Contact distance in Mujoco is the negative value of the shortest distance along a contact 

normal between two intersecting surfaces, as shown in Fig. 3.2. The contact distance generally 

represents the geometry overlap or penetration distance along the contact normal. Contact 

distance is always negative, as a positive value or zero would mean that there is no geometric 

overlap, no contact constraint impedance, and thus no contact force. Contact distance is an 

artifact of Mujoco’s contact model with no true corresponding value in real contacts. 

 
Figure 3.2. Contact distance 𝐷! for contact between a spherical endpoint (green) and box (red).  
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3.4.2 Condim 

Condim is a static parameter with possible integer values of 1, 3, 4, and 6. Condim corresponds 

to the number of local contact axes that are allowed to exert resistive friction force. As in the 

point contact model, discussed in Sec. 2.1, the Condim value determines what friction forces 

map onto the contact wrench 𝐹! for each contact. 

𝐹! = [𝐹" 𝐹# 𝐹$ 𝜏" 𝜏# 𝜏$]% 	, (3.1) 

where 𝐹! is the contact wrench vector containing the XYZ forces 𝐹", 𝐹#, 𝐹$, and axis torques 𝜏", 

𝜏#, 𝜏$. In the local contact frame of reference, the z-axis is colinear with the contact surface 

normal. Table 3.1 illustrates the mapping of contact forces onto the wrench vector for Condim 

values. 

 

Table 3.1. Condim values corresponding to friction forces and local contact force matrices. 

Condim Local contact force matrix Friction forces 

1 

𝐹! =

⎣
⎢
⎢
⎢
⎢
⎡
0
0
1
0
0
0⎦
⎥
⎥
⎥
⎥
⎤

𝑓$ 

Normal Force (no friction) 

3 

𝐹! =

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0⎦

⎥
⎥
⎥
⎥
⎤

w
𝑓"
𝑓#
𝑓$
x

%

 

Normal and tangential forces 

(tangential friction only) 

4 

𝐹! =

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

y

𝑓"
𝑓#
𝑓$
𝜏$

z

%

 

Normal and tangential forces, 

torque about contact normal 

(tangential and normal twist 

friction) 

6 

𝐹! =

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝑓"
𝑓#
𝑓$
𝜏"
𝜏#
𝜏$ ⎦
⎥
⎥
⎥
⎥
⎤
%

 

Normal and tangential forces, 

torque about all local axes 

(tangential friction, normal 

twist friction, rolling friction) 
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3.4.3 Friction 

Contact friction is denoted by a vector of three values that represent the coulomb friction 

coefficients for separate types of friction: tangential sliding (𝜇), rolling (𝜔), and torsional (𝛾). 

|𝑓"0 + 𝑓#0 ≤ 𝜇𝑓$ (3.2) 

|𝜏"0 + 𝜏#0 ≤ 𝜔𝑓$ (3.3) 

𝜏$ ≤ 𝛾𝑓$	. (3.4) 

Each additional friction coefficient corresponds to the local contact forces and torques added by 

increasing the Condim value. Altogether, the friction coefficients form the point-contact model 

friction-cone constraint 𝐾 covered in Eq. 2.4, Sec. 2.1.  

𝐾 = A𝑓 ∈ ℝ+: 𝑓/ ≥ 0, 𝑓/0 ≥D
𝑓(0

𝜇(3/0

+

(40

E (3.5) 

By default, the torsional friction coefficients in Mujoco are small. However, almost all the 

human grasps in the GRAB Dataset were unstable without high torsional friction coefficients (in 

the order of 103/). By observation, this requirement is likely due to the high finger-contact areas 

and thus high torsional friction found in human grasps. This is most evident in human pinch 

grasps, which heavily rely on torsional friction for stability. 

3.4.4 Solimp 

The defining equation for the static Solimp parameter is one of the characteristic Mujoco contact 

model equations defined in Sec. 2.2.2: 

𝑎(/ = 𝑑((𝑟)𝑎(∗ + }1 − 𝑑((𝑟)~𝑎(G, 0 ≤ 𝑑(𝑟) ≤ 1		, (3.6) 

where the constrained acceleration 𝑎(/ is defined as an interpolation by the parameter 𝑑(𝑟) 

between the unconstrained acceleration 𝑎(G and the reference acceleration 𝑎(∗ for some contact 

index 𝑖. 𝑑(𝑟) is dependent on the value of the contact distance 𝑟. 

 The Solimp parameter defines the relationship between the interpolation value 𝑑 and the 

contact distance 𝑟 though a set of values: dmin, dmax, midpoint, and power. In simple terms, the 

Solimp parameters determine how the contact constraint impedance increases as the penetration 

and contact distance between the two objects increases. The specific curve is generated as a 

spline from the Solimp values. dmin and dmax determine the maximum impedance values, 

power determines the degree of the spline function, and midpoint determines the inflection point. 



 24 

Figure 3.3 Impedance function 
examples 

 
Figure 3.3. Graphs of the value of impedance 𝑑 vs. contact distance 𝑟 for different midpoint and 

power values [41]. The impedance graphs are symmetric and centre about 𝑟 = 0 to 

accommodate constraints with positive distance values such as weld constraints. 

 

The dynamic nature of contact impedance results in contact distances that move towards 

some steady state, which can result in a loss of contact. Contacts that are unstable in this way 

often have contact distances that oscillate until contact is completely lost, or some stable value is 

found. This oscillation causes slip and sliding in Mujoco to be characterized as contact losses 

(contact-distance increases above zero) of high frequency because the contact distance 

temporarily exceeds zero. Fig. 3.4 illustrates the difference in behavior between an unstable 

contact undergoing slip (3.4a), and a stable contact that has initial contact distance oscillation but 

settles on a stable distance value (3.4b). 
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Figure 3.4 Contact 
distance settling 
behavior 

 
             (a)  

 
               (b) 

Figure 3.4. Contact distance over simulation time showing contact distance settling for a friction 

contact with a constant normal force: (a) contact distance over simulation time, where the normal 

force is sufficient to stabilize the contact, and (b) contact distance with a normal force not large 

enough to maintain contact through friction, resulting in sliding and contact distance oscillation. 

 

3.4.5 Solref 

The Solref parameter is also defined in the characteristic Mujoco contact equations from Sec. 

2.2.2: 

𝑏 =
1
2
(𝑑,-"𝑇)		, (3.7) 

𝑘 =
𝑑(𝑟)

𝑑,-"0 𝑇0𝑅0
		 . (3.8) 

Solref is composed of two parameters: time-constant 𝑇 and damping-ratio 𝑅, which are used to 

calculate the stiffness 𝑘 and damping 𝑏. A characteristic of contact in Mujoco is a small but 

sustained slip regardless of contact force, since Mujoco constraints only approach but do not 

actually achieve complete hardness (when all forces within the friction cone are completely 

resisted). The sustained slip is characterized by a small but constant change of position. One 

method of reducing the magnitude of unwanted slip is to reduce the Solref time-constant 

parameter. A small time-constant value increases both the stiffness 𝑏 and damping 𝑘, thus 

scaling the impedance contact constraint and resulting in stiffer contacts, in general. 

Figs. 3.5 and 3.6 demonstrate the effect of a smaller time-constant 𝑇 on contact distance 

and slip. The example data shown are from a sphere held via friction against a vertical wall with 
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Figure 3.5 Time-
constant effect on 
contact distance 

different constant normal force scenarios ranging from 4.1 to 100 N.  The minimum normal force 

to resist downward slip under gravity in this context is 4.1 to 4.2 N. 

Fig. 3.5 shows the contact distances between the sphere and wall over time for each 

constant normal force scenario given a time-constant value of 0.02 (Fig. 3.5a), and 0.005 (Fig. 

3.5b). Similar to the behavior shown in Fig. 3.4, the contact distances for normal forces above 

the minimum force required to resist gravity (stable contacts) reach a stable negative value. The 

only normal force scenario (4.1 N) below the minimum force (unstable contact) has a contact 

distance that oscillates towards zero. The decreased time-constant value between Fig. 3.5a and 

Fig, 3.5b causes the contact distances for stable normal force scenarios to decrease, and the 

contact distance oscillation frequency for the insufficient force scenario (4.1 N) to increase. 

 
            (a)  

 
             (b) 

Figure 3.5. Comparison of the effect of the time-constant 𝑇 on contact distance under different 

normal forces. A smaller time-constant of 0.005 (b) results in an increased contact distance 

oscillation frequency for contacts with insufficient normal forces (4.1 N) compared to a higher 

time-constant value of 0.02 (a). The smaller time-constant value also decreases the overall 

steady-state contact distances for all stable contacts. 

 

Fig. 3.6 shows the sphere’s vertical position over time for the same constant normal 

forces scenarios in Fig. 3.5 given the same two time-constant values of 0.02 (Fig. 3.6a), and 

0.005 (Fig. 3.6b). Regardless of the normal force, a degree of constant slip always occurs 

because Mujoco’s contact model only approaches completely “hard” contacts (Sec. 2.2.2). In this 

example situation, detuned simulation parameters result in an exaggerated degree of constant slip 

(in the order of mm/s). Forces above the minimum have close to linear constant slip while the 
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Figure 3.5 Time-
constant effect on 
constant contact 
slippage 

force below the minimum (4.1 N) has downwards vertical acceleration. Decreasing the time-

constant decreases the degree of constant slip, while also increasing the divergence between the 

constant slip experienced for stable contacts, and the slip for unstable contacts. The minimum 

value for the time-constant is the timestep of the simulation itself; however, to achieve 

simulation stability, a more realistic minimum time-constant value is several times the simulation 

timestep 𝑡. Ultimately a time-constant 𝑇 = 0.005 was chosen for this research. Smaller time-

constant values were observed to introduce instability, since they were too close to the 

simulation timestep 𝑡 = 0.001	𝑠. 

 
           (a)  

 
            (b) 

Figure 3.6. Comparison of the time-constant parameter 𝑇 on the effects of force on contact 

slippage. In both graphs all forces except for 4.1 N are sufficient to theoretically prevent slip. As 

such, the position vs. time relationships for all forces, except for 4.1 N, are linear. The smaller 

time-constant (b) of 0.005 decreases the rate of constant slip compared to a time-constant value 

of 0.02 (a). 

 

3.5 GRAB Dataset Object Transfer to Mujoco 
As mentioned in Sec. 2.2.3, several key limitations restrict contacts simulated in Mujoco. First, 

all collision geometries are convex, and generally only one contact point can exist between two 

geometries. This restriction can only be bypassed by dividing up non-convex geometry into 

individual concave pieces that can form their own contact pairs. However, this must be done 

considering the object contact. For example, an edge-on-edge contact between two cylinders 

produces a single contact that oscillates between the top and bottom endpoints of the theoretical 
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Figure 3.6 Single 
contact restriction 
demonstration 

contact edge. The solution is to split one of the contact geometries in two, resulting in two 

contact points that are stable. 

Fig. 3.7 depicts how the contact points of a cylinder suspended via friction between two 

boxes can be manipulated by dividing the cylinder into multiple bodies. Each contact is 

represented by a gold disc indicating the contact location (centre of the disc), and normal vector 

(disc longitudinal axis). Theoretically, contact between the cylinder and the boxes would have 

the shape of a line. Mujoco restrictions cause all contacts to be points. In Fig. 3.7(a), the cylinder 

is a single body, thus only has a single contact point between the cylinder and each box. Single 

contact points in this configuration allow the cylinder to unrealistically rotate about the 

horizontal axis. Fig. 3.7(b) shows the same cylinder divided into two bodies (which are welded 

together), each with their own contact points. This new configuration, although not matching the 

theorical contact shape, now has two contacts between the box and the composite cylinder, 

making horizontal rotation realistically more difficult.  

  
    (a)     (b) 

Figure 3.7. Demonstration of resolving Mujoco single contact restriction: (a) single-body 

cylinder (dark grey) held between two boxes (red and blue). One contact (gold disc) is present 

between the cylinder and each box; and (b) two-body cylinder (dark and light grey), where each 

cylinder section has a contact point with the boxes. 
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Figure 3.7 
VHACD 
decompositio
n example 

The single contact restriction and its solution drastically effect the choice of geometry for 

both the objects and simulated hands. Many of the GRAB Dataset objects are complex and 

concave. Although tools such as VHACD [53] can perform automatic convex decomposition, the 

results are not controllable, and the number of subdivided bodies (shards) increases significantly 

to reach a good approximation of the original object shape. Fig. 3.8 provides an example of 

convex decomposition for a detailed object using VHACD.  

 
Figure 3.8. VHACD decomposition example [53]. Finer details of the original mesh, such as the 

camel’s toe and knee joints, are lost in the decomposition process. 

 

The original concave grasp objects from the GRAB dataset could be decomposed with 

high accuracy. However, the high number of convex shards produced changes the number of 

contacts in the grasp and alters the grasp forces. Some of these contacts are also likely to be on 

the edges or corners of multiple shards causing erroneous contact normals. To keep the expected 

types of grasp-contact consistent, the training data from the GRAB Dataset is filtered to only use 

episodes with convex interaction objects. This restricts the interaction objects to cubes (small, 

medium, large), cylinders (medium, large), spheres (small, medium, large), and pyramids (small, 

medium). Although this filtration greatly reduces the number of interaction objects, a reasonable 

portion of the interaction episodes remain to be used for training. 

3.6 Simplified Simulation Hand 

The GRAB Dataset is composed of the SMPL-X mesh poses for each subject for each frame of 

the episode. The MANO hand model is a single parameterized mesh that generally follows hand 
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Figure 3.8 
Simplified 
hand model 
comparison 

kinematics, but also deforms significantly with movement since the model does not preserve 

mesh sizes between hand poses. Given the restrictions of convex contact bodies in Mujoco, 

directly recreating the hand mesh model in Mujoco is not feasible. Using a preset hand model of 

an existing robot in Mujoco as a replacement would not be able to capture the differences in 

hand size and shape between the subjects in the dataset. Instead, a simplified hand is generated. 

Mujoco can simulate composite objects attached by deformable constraints; however, 

directly simulating the hand mesh as a deformable composite object would not take the hand’s 

hard kinematic hierarchy into account. Thus, a generated hand, composed of discrete rigid pieces 

and jointed based on the hand kinematic hierarchy, is used. Fig. 3.9 compares the original hand 

mesh (Fig. 3.9a) with the generated hand (Fig. 3.9b). The generated hand is composed of several 

capsule shapes, sized to fit the individual finger segments of the subject’s hand. Each capsule has 

a length generated from the initial hand pose skeleton, and a diameter centred around an 

estimated fingertip radius from the initial hand pose. The resulting hand is more skeletal than the 

original mesh, and in almost all cases, is inscribed in the original hand mesh volume. Even after 

simplification, the original hand mesh and generated hand still have the same pose errors. For 

example, in Fig. 3.9 the index finger penetrates the cube (over-penetrating contact), and the 

thumb has a gap above the object surface without contact (hovering contact). 

  
(a) (b) 

Figure 3.9. Comparison of (a) original hand mesh with (b) simplified hand model in the same 

pose. The wrist joint is marked by a purple sphere and each finger has a separate color. 



 31 

Generated hands also address the Mujoco contact limitation of convex collision 

geometries. The simple shapes of the simplified hand segments are already convex and reduce 

the probability of contact situations where the single contact restriction is not realistic. 

3.6.1 Initial Frame Choice 

Each GRAB Dataset episode starts and ends with the subject in a T-pose with no contact with the 

interaction object. Although the entire episode could be replicated in Mujoco from the beginning, 

this would include grasp approach and grasp initiation, which would be outside the scope of this 

thesis. Furthermore, the sensitivity of contacts to error could easily cause even small differences 

in pose or shape to result in unintended collisions on grasp approach and initiation. To avoid 

these potential complications, the initial frames of the grasp are chosen after the GRAB Dataset 

contact distance threshold has been reached and the number of fingers in contact remains stable. 

3.7 Pose Adaptation 

As mentioned in Sec. 3.3, the GRAB Dataset does not directly measure contacts. Detecting 

contacts via visual motion capture is difficult because proximity and contact are often only 

distinguishable from a few angles. Furthermore, contact is discontinuous, allowing small pose 

errors to potentially lead to contact misclassification. Finally, the hand and finger surfaces are 

not directly measured. The surfaces are generated using a tuned body and hand model, which 

may not exactly represent reality. The GRAB Dataset avoids this issue by using a large 

proximity margin of 4.5 mm for hand and object mesh vertices to define contact. Although 

defining contact by proximity would produce an acceptable contact heatmap, the result is raw 

hand poses that often have fingers that should be in contact with the grasp object, but actually 

have a small gap between the contact surface. These “hovering” contacts carry over when the 

hand poses are transferred into simulation and are sometimes exacerbated because the simplified 

geometry does not completely match the body mesh. Overlap between the fingers and grasp 

object geometries (overpenetration) is another type of contact error present, but with less 

frequency than hovering contact. 

 Even with hovering contacts, over-penetrating contacts, and other pose errors after hand 

pose importation, the resulting pose will still be close to a viable pose. Thus, grasp synthesis is 

not necessary. Hovering and over-penetrating contacts must be resolved before allowing the 

simulation to proceed because they would disrupt the viability of the grasp. Alg. 3.1 uses a 

combination of brute force search and contact normal position adjustment to resolve the contact 
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errors. The existing GRAB Dataset contact distance threshold is initially used to determine 

which fingers within a proximity margin of 𝑚 should have contact and need adjustment (Alg. 3.1 

Line 2). To resolve hovering contacts, a brute-force search of joint angles close to the original 

pose is conducted to find the closest finger poses that contact the interaction object. Permutations 

of joint changes are stepped by a value 𝑗5)6M up to a maximum of 𝑗,-". The change with the 

minimum magnitude that produces contact (negative proximity) is selected as the new adjusted 

finger pose (Alg. Line 3). Overpenetration (contact distance greater than 𝑟,-") due to the initial 

pose or the brute-force contact search is resolved by moving the geometries apart along the 

contact normal until the penetration distance is below a manually selected threshold 𝑟,-" (Alg. 

3.1 Line 5:6). The current pose Jacobian 𝐽(𝑃�⃗ ) is used to translate motion along the contact 

normal to joint pose changes. 

 

Algorithm 3.1. Hovering and over-penetrating contact pose correction. 

Input: Finger joint poses: 𝑃�⃗( = [𝑝(& 𝑝(' 𝑝(* 𝑝(+] ∈ [0,2𝜋)1  

            …for five fingers: 𝐹G = {𝑃/ 𝑃0 𝑃2 𝑃1 𝑃N} 

            Proximity margin 𝑚, joint change steps 𝑗5)6M up to a maximum of 𝑗,-", 

            Maximum contact distance 𝑟,-" 

Output: Corrected finger joint poses 𝑃�⃗( for five fingers 𝐹/ 

1: for 𝑃�⃗  in 𝐹G do 

2:  if 𝑚 ≥ 𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦}𝑃�⃗ ~ > 0 then 

   /* Change 𝑃�⃗  by the minimum joint step 𝑗5)6M up to 𝑗,-" that has negative 

proximity */ 

3:   𝑃�⃗ ← 𝑎𝑟𝑔𝑚𝑖𝑛
OP⃗

\{0 𝑗5)6M 2𝑗5)6M ⋯ 𝑗,-"}1 ∈ 𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦(𝑃�⃗ + 𝚥) < 0\ 

4:  if 0 ≥ 𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦(𝑃�⃗ ) then 

5:   while 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝐷𝑖𝑠𝑡(𝑃�⃗ ) > 𝑟,-" do 

    /* Step contact position along contact normal by 𝑟5)6M */ 

6:    𝑃�⃗ ← 𝑃�⃗ − 𝐽(𝑃�⃗ )3/ ∙ 𝑟5)6M ∙ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑁𝑜𝑟𝑚𝑎𝑙(𝑃�⃗ ) 
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3.7.1 Initial State Grasp Balancing 

Although the GRAB Dataset includes essential information such as grasp and object pose, force 

information is unfortunately not present. The finger control policy is responsible for managing 

finger forces but acts on the initial state of the grasp. If the initial state is not stable, then the 

policy would likely be given irrecoverable grasp states, potentially hindering the learning 

process. Since contact forces depend on both the actuator forces and contact impedance (which 

depends on contact distance), both the actuator forces and finger poses need to be adjusted to 

bring the initial grasp state into equilibrium. 

3.7.1.1 Analytical force-closure solution 

Given the simple point-contact and friction-cone model, described in Sec. 2.1, the forces 

required for grasp equilibrium within the friction-cone constraints can be solved as a convex 

optimization problem [54]: 

−𝐹6 = 𝐺𝑓! 	, 𝑓! ∈ 𝐾 (3.9) 

where 𝐹6 is the external force wrench on the object that the grasp is resisting, 𝐺 is the 

transformation matrix that maps local contact forces onto the global wrench space, and 𝑓! is a 

matrix of all the contact forces subject to the friction cone restrictions 𝐾 (Eq. 2.4). 

Most convex solvers can readily solve for 𝑓!; however, the force solution is only for 

completely rigid contacts and does not incorporate any contact parameters other than position 

and contact normal. Since Mujoco contact forces depend on contact impedance, and thus contact 

distance, the analytical point-contact force-closure method is not sufficient to find a complete 

solution for an equilibrium grasp state by itself. However, analytical point-contact solutions are 

used as starting solutions for other methods of finding the grasp forces. 

3.7.1.2 Equilibrium pose optimization 

Since contact forces, and thus grasp equilibrium, in Mujoco, depend on both external actuated 

force and contact position, some combination of applied force and pose close to the original 

dataset pose would produce a grasp in equilibrium and minimize undesired acceleration. Since 

the contact impedance model implies that changes in external force and contact distance always 

change the contact constraint force, convex optimization might be a possible method for finding 

equilibrium values. The process is unlikely to be straightforward, as the optimization inputs are 

the finger contact poses, and the outputs are affected by the surface curvature, and thus the shape 

of the object. Furthermore, multiple solutions exist for the acceleration minimization problem. It 
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is possible that for equilibrium pose optimization, an initial guess at the contact forces and finger 

poses might be good enough to permit optimization to converge to a final solution. 

 Several variations of pose optimization were tested as potential solutions for the initial 

grasp forces and pose adjustments. These included direct optimization of pose and force values 

via gradient descent and Nelder-Mead algorithm [55] with and without analytical force-closure 

initial conditions and force solutions, and gradient descent optimization of only contact positions 

along the contact normal instead of joint angles. Table 3.2 lists each tested variation of 

optimization. They key differences between variations was the optimization algorithm, and the 

parameters being optimized. Variations 1 and 2 optimized over the joint poses and joint forces 

directly, with the initial force values determined by the analytical force-closure method. 

Variations 3 and 4 only optimized the joint poses with the forces determined for each pose value 

via analytical force-closure. Finally, Variation 5 optimized the contact positions along the 

contact normal instead of directly altering the joint poses, while the contact forces were once 

again determined by analytical force closure.  

 

Table 3.2. Pose optimization variations (X indicates use). 

Variation Optimization algorithm Optimization parameters Used force-closure 

solutions for force 

1 Nelder-Mead Joint poses and forces  

2 Gradient descent Joint poses and forces  

3 Nelder-Mead Joint poses X 

4 Gradient descent Joint poses X 

5 Gradient descent Contact normal position X 

 

Unfortunately, all optimization variants converged onto a local minimum, which did not 

produce equilibrium. The most common optimization result was the trivial case of no contact 

force and minimal contact distance, thus minimizing the object acceleration to gravity only. It is 

possible that the stiff contact impedance parameters chosen to reduce constant contact slip also 

narrowed the transition region between stable and unstable contact, thus increasing the difficulty 

of optimization. Clearly, without carefully crafted constraints, convex optimization would not be 

viable for direct pose optimization in Mujoco, even with a reasonable initial guess. 
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3.7.1.3 Contact constraint force balancing 

Since the general optimization techniques failed to converge on viable pose and force solutions 

for the initial grasp state, a separate method similar to optimization Variation 5 was explored. 

The new method expands on the analytical force-closure solution by adding a step to consider 

the effect of contact impedance on contact force in Mujoco. As discussed in Sec. 3.4.4, contact 

distance determines contact impedance, which then impacts contact force. Without sufficient 

impedance, a contact would not be able to properly exert force, since the contact constraint 

would be interpolated close to the unconstrained acceleration (Eq. 2.12). Thus, for any desired 

grasp force, a matching impedance must be found to allow the desired contact force. 

Alg. 3.2 is the process used to find the joint forces and pose adjustments for the initial 

grasp. The original grasp pose is used to generate joint forces via the analytical force-closure 

method. For each contact, the pose is adjusted along the contact normal by 𝑟5)6M to increase or 

decrease the contact distance and find an impedance that can generate the force-closure contact 

force. Force-closure forces are solved for the new poses, and the cycle is repeated until the total 

pose adjustment falls beneath a chosen threshold 𝑚. Once again, the Jacobian 𝐽 is used to 

translate pose changes along the contact normal to joint angle changes. 

 

Algorithm 3.2. Contact constraint force balancing. 

Input: Finger joint poses: 𝑃�⃗( = [𝑝(& 𝑝(' 𝑝(* 𝑝(+] ∈ [0,2𝜋)1  

            …for five fingers: 𝐹G = {𝑃/ 𝑃0 𝑃2 𝑃1 𝑃N} 

            Pose change margin 𝑚, contact distance step 𝑟5)6M 

Output: Corrected finger joint poses 𝑃�⃗( for five fingers 𝐹/ 

1: while ‖∆𝐹‖ > 𝑚 do 

2:  𝑓- ← 𝑓𝑜𝑟𝑐𝑒𝐶𝑙𝑜𝑠𝑢𝑟𝑒(𝐹) 

3:  for 𝑃�⃗( in 𝐹 do	
4:   while 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝐹𝑜𝑟𝑐𝑒}𝑃�⃗(~ − 𝑓-! < 𝑒 do 

5:    𝑑 ← 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝐹𝑜𝑟𝑐𝑒}𝑃�⃗(~ − 𝑓-! 

6:    𝑃�⃗ ( ← 𝑃�⃗ ( + 𝑠𝑖𝑔𝑛(𝑑) ∙ 𝐽(𝑃�⃗ )3/ ∙ 𝑟5)6M ∙ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑁𝑜𝑟𝑚𝑎𝑙(𝑃�⃗ ) 
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Figure 3.9 
Dataset pose 
smoothing 

The contact constraint force balancing method finds contact impedances to match the 

grasp forces found via analytical force-closure optimization. However, the contact distance for 

each contact may not be stable and could oscillate before settling at a stable value such as in Fig. 

3.4 in Sec. 3.4.4. The overall effectiveness of the contact constraint force balancing method for 

initial state balancing is evaluated in the results chapter. 

3.8 Hand Trajectory Optimization 

In addition to the grasp-internal forces, the trajectory of the hand during the grasp episode is 

replicated to recreate the external forces applied to the object. Before the trajectory can be 

imported into simulation, the raw dataset poses must be preprocessed to smooth pose wobbling 

and match the simulation sampling rate. The GRAB dataset only includes pose data without 

velocity or acceleration information. Thus, any velocity or acceleration reference value for the 

trajectory must be estimated from the original poses. Fig. 3.10 illustrates the issue of velocity 

estimation with pose wobbles in the raw dataset. The small position wobbles in Fig. 3.10a cause 

discontinuities in the velocity estimate in 3.10b. Cubic splines with a tuned smoothing factor 

remove the pose wobbles and make the velocity and acceleration estimates smooth. 

 
           (a) 

     
          (b) 

Figure 3.10. Comparison of smoothed dataset pose values for: (a) position, and (b) velocity. 

 

The smoothing factor restricts the maximum divergence of the spline from the sample 

points according to the function: 

𝑠 ≥D(𝑔(𝑥() − 𝑦()0
(

	 , (3.10) 
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where 𝑠 is the smoothing parameter, 𝑥( and 𝑦( represent the points for 𝑖 samples to be smoothed, 

and 𝑔(𝑥) is the smoothed spline function. 

The smoothing parameter values were chosen manually by inspecting the velocity and 

acceleration estimates for discontinuities. The final smoothing values were 𝑠 = 0.0004 for the 

XYZ positions and 𝑠 = 0.014 for the quaternion poses. Since quaternions must have a 

magnitude of one, the SQUAD spherical cubic interpolation algorithm [56] was used for 

smoothing all quaternions together. The XYZ positions were smoothed with independent splines. 

In addition to removing wobbles, spline smoothing has the dual effect of interpolating the poses, 

allowing a simulation timestep not matching the dataset sampling rate. 

 The smooth pose trajectories are suitable for replication in simulation. Two methods were 

attempted, each with a distinct advantage and disadvantage. The first method is to use convex 

optimization to find the optimal forces that produce the desired pose trajectory, and the other is 

to use Mujoco’s “Mocap” property to arbitrarily set the position of a virtual object to the 

trajectory, and then use a soft constraint to fix the wrist pose to that object. 

 The force optimization method involves searching for the forces that would allow the 

currently tracked values (position, velocity, or acceleration) to match the desired values of the 

next step in the trajectory. Since the simulation can be stepped and resampled for different force 

inputs, it is possible to empirically converge on a force that achieves the desired trajectory, 

regardless of the disturbances from manipulation. In initial explorations, this method of 

optimization worked best for matching the velocity of the desired trajectory, while position and 

acceleration matching often drifted from the target trajectory until optimization failed. The 

advantage of this method is that it can instantly adjust forces to stay on target, regardless of the 

disturbances encountered during the grasp manipulation. The drawbacks are that the optimization 

significantly increases computation time because the simulation state is sampled multiple times 

per optimization step. Furthermore, without restrictions, the forces found by the optimization 

process can be discontinuous, and although those forces would make the hand follow the desired 

trajectory, discontinuous forces on contacts in the grasp could cause overpenetration or 

unrealistic changes in contact distance. 

 The other method of replicating the hand trajectories in simulation uses a solution already 

incorporated in Mujoco: the Mocap object. In Mujoco, the Mocap object is a geometry that has 

its position arbitrarily set for each timestep, for use with motion-capture. This Mocap geometry 
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alone does not solve the issue of trajectory following, because it essentially is a teleporting 

geometry that would cause issues with the grasp contacts. Instead, the Mocap geometry can be 

used as an intangible target, onto which the actual hand wrist is fixed, via a soft constraint. As 

the Mocap geometry is moved to new positions, the constraint produces forces that try to keep 

the wrist fixed to the Mocap geometry’s pose. This does not guarantee that the constraint forces 

will make the hand follow the trajectory. The procedure will produce forces according to the 

constraint parameters that try to maintain the fixed constraint in a viable simulation solution. The 

resulting trajectory can thus exhibit oscillations and divergence from the target trajectory based 

on disturbances from the grasp. The greatest advantage of the Mocap method is that it is already 

integrated in Mujoco, and is significantly computationally less intensive than the force 

optimization method (from testing, this has been found to be one to two orders of magnitude 

faster). Even though the trajectory is not guaranteed from the soft constraint, tests demonstrated 

that the trajectory divergence is most often an issue only when the grasp contact is already lost. 

For these reasons, the Mocap method of trajectory following was chosen for this research. 

3.9 Slip Prediction in Mujoco 

Slip prediction for human and robotic hands in the real-world use temporal and spatial tactile 

information from pressure, force, and surface texture sensors. Replicating such a setup in 

simulation would be highly complex and require introducing slip classification as an additional 

problem to be solved. The simplified contact model of Mujoco might not exhibit the same slip 

signals that are detected in real slip; therefore, any slip detection and prediction method must be 

tailored to Mujoco’s contact model to ensure accuracy. 

Mujoco’s soft contact model allows frictional forces to not always be completely resistive 

and contact normal force and velocity to both be positive. A consequence of this model is that 

slip initiation results in motion along the contact normal and vice versa [41]. As introduced in 

Sec. 3.4.1, contact distance is the shortest normal distance between two penetrating geometries in 

contact. The coupling of incipient slip and normal-distance changes is thus reflected in contact 

distance values. This can be seen in the oscillation and settling behavior in Figs. 3.4 and 3.5. 

Unstable contacts have contact distances that oscillate up to zero, resulting in zero crossings of 

regular frequency. This oscillation characterizes the rate of slip and separates non-constant slip 

from the constant unavoidable slip addressed in Sec. 3.4.4. 
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Figure 3.10 Contact 
force vs contact 
distance 
characterization 

Fig. 3.11 displays the relationship between the frequency of contact distance zero 

crossings to the degree of non-constant slip for a contact. The situation illustrated is an object 

held via friction against a vertical wall simulated across different friction forces. The minimum 

number of zero crossings, 1, corresponds to a maximum friction force of zero and an immediate 

and permanent loss of contact, since zero contact distance corresponds to no contact. The 

discontinuity at approximately 4.1 N of maximum friction force corresponds to the minimum 

ideal force required to prevent non-constant slip. Forces between 0 and 4.1 N experience slip 

with a degree that corresponds to the frequency of contact distance zero crossings. Forces greater 

than this threshold have contact distances that stabilize, and only suffer from the small 

unavoidable constant slip. This relationship between contact-distance zero-crossing frequency 

and slip-type allows the clear detection of non-constant slip in Mujoco. Slip prediction is a 

simple extension of slip detection. Since simulations can be copied, saved, and reverted, 

prediction of slip can be simply performed by saving the current simulation state, stepping the 

simulation forward in time until slip is detected, then reverting to the original state. 

 
Figure 3.11. Friction force vs. contact distance zero crossing frequency. Contacts with friction 

forces below 4.1 N are experiencing accelerating (non-constant) slip. 

 

3.10 Reinforcement Learning Pipeline 

After the GRAB dataset is converted into simulation, the next major step is running the learning 

process. As discussed in Sec. 2.3.3, reinforcement learning is well-suited for interactive tasks 

like grasp stabilization. While many reinforcement learning methods focus on the value or 

quality functions, policy gradient methods focus on updating a parameterized policy 

representation itself, usually taking parameter steps that increase the expected value distribution 
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[57]. For many modern reinforcement learning setups, the policy gradient parameterization is 

done through a neural network, and thus the stepped policy parameters are the weights of the 

neural network. Similar to neural network backpropagation, parameter adjustment is performed 

via a gradient of the expected policy return over possible trajectories. For settings with black-box 

environments, these gradients need to be estimated. Expressed in the simplest generic form, the 

update functions for the parameters 𝜃 are: 

𝜃JH/ = 𝜃J + 𝛼J∇R𝐽(𝜃) (3.11) 

𝑈(𝜃) = 𝔼�D𝑟)|𝜋R�	, (3.12) 

where the gradient of the objective function 𝑈 is used to update the parameters 𝜃 from iteration 𝑘 

to iteration 𝑘 + 1 with a learning rate 𝛼. Note that the objective function does not need to be the 

expected policy reward 𝑟)|𝜋R. Other combinations of value, quality, and advantage function 

objectives can be used. More sophisticated methods also adjust the learning rate in order to 

achieve better results. 

The reinforcement learning method used in this research is Proximal Policy Optimization 

(PPO). There were two reasons PPO was chosen for this research. First, PPO has widespread and 

recent use for continuous control problems [46], including grasp-related control problems in 

simulation [13] [15]. Second, the primary advantage of PPO is that its update method restricts 

parameter updates based on characteristics of the current policy, thus improving policy stability. 

The specific variation is the clipped advantage function variation of PPO. PPO alters the generic 

objective function to rely on a clipped advantage function 𝐿OOS(𝜃) as the objective function 

[57]: 

𝜃JH/ = argmax
R

𝐿TTU(𝜃) (3.13) 

𝐿TTU(𝜃) = 𝔼min}𝑟M𝐴) , 𝑐𝑙𝑖𝑝}𝑟M, 1 − 𝜖, 1 + 𝜖~𝐴)~ (3.14) 

𝑟M =
𝜋(𝑠, 𝑎)

𝜋VWXY(𝑠, 𝑎)
	 , (3.15) 

where the parameters 𝜃 are updated from iteration 𝑘	to 𝑘 + 1 by the maximum argument of the 

𝐿OOS function. 𝑟M is the ratio of the probability for some given action compared to the probability 

under the previous policy, 𝐴) is the current advantage (Eq. 2.29) , the 𝑐𝑙𝑖𝑝(𝑣𝑎𝑙𝑢𝑒,𝑚𝑖𝑛,𝑚𝑎𝑥) 

function restricts values between a maximum and minimum, and 𝜖 is a hyperparameter that 

limits the risk that the policy takes by constraining the probability ratio to [1 − 𝜖, 1 + 𝜖]. 
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The 𝐿OOS objective function constrains the parameter update steps by clipping the update 

based on the estimated risk using the advantage values [45] [57]. Note that this method does 

require advantage estimates and is thus contingent on having a method to provide such estimates. 

3.10.1 Policy Function Approximator 

This research uses simple multi-layer perceptron neural networks for both the actor and critic 

functions. Both actor and critic neural networks are restricted to a single hidden layer, inputting 

the simulation-environment observation-vector and outputting force for each of the finger-joint 

actuators. Table 3.3 lists the policy input elements and output vectors. Since all the input 

components can be represented by vectors of fixed size, complex convolutional layers or size-

invariant structures are not necessary. Existing literature training policies in simulation [15] [29] 

and on physical systems [47], use convolutional layers for image pre-processing, and also use 

multi-layer perceptrons for fusion of vector information to calculate the final policy output. 

 

Table 3.3. Actor and critic input and output vector component description. 

Input/Environment 

Observation Size 
Element Size Number Total 

Finger segment lengths 4 (per finger including palm segment) 5 (fingers) 20 

Joint angles 4 (per finger) 5 (fingers) 20 

Joint velocities 4 5 20 

Previous joint forces 4 5 20 

Wrist linear velocity 3 1 (hand) 3 

Wrist angular velocity 3 1 3 

Contact relative position 3 
15 (finger 

segments) 
45 

Contact normal force 1 15 15 

Slip prediction 1 15 15 

Total   161 

Output Size    

Joint forces 4 (per finger) 5 (fingers) 20 

Total   20 
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3.10.2 Reward function 

During each trajectory episode, a reward is calculated for each timestep based on the simulation 

state. The reward function should be chosen to shape the desirable qualities of the control policy 

when maximized during the learning process. For grasp stability, the desired qualities are 

maintaining the grasp, and minimizing the force required to maintain the grasp. Grasp episodes 

are run until the trajectory data ends, or contact is lost, thus any positive reward will reward 

maintaining the grasp. The simplest such reward function is just a constant reward of 1 for each 

timestep. 

𝑅(𝑡) = 1 (3.16) 

Smaller grasp-force magnitudes can be favored by adding a penalty based on the 

magnitude of the grasp forces; however, this works in opposition to the positive maintained 

grasp score. Since there are no known minimum grasp force bounds for each object grasp, a 

negative bias based on force magnitude cannot be introduced without potentially exceeding the 

positive reward value. Instead of using a bias or constant penalties for both the grasp 

maintenance reward and the force minimization penalty, the ratio of the corresponding rewards 

can be used as the final reward. 

𝑅(𝑡) =
𝑒)

𝐹Z'-5M + 1
	 (3.17) 

 The above reward function (Eq. 3.17) exponentially increases the reward for later 

timesteps, while inversely penalizing grasp-force magnitude. Since the grasp maintenance 

reward numerator increases faster than the force minimization denominator, the reward will 

always favor maintaining a grasp over reducing the grasp force. 

3.11 Experimental Setup 
Experiments were divided into two stages: grasp conversion stability analysis, and policy 

training. For general Mujoco contact parameters, a Condim of 6 was chosen to include all types 

of frictional forces (tangential, torsional, rolling). The Solimp values were tuned to 𝑑𝑚𝑖𝑛 = 0.9, 

𝑑𝑚𝑎𝑥 = 0.95, 𝑤𝑖𝑑𝑡ℎ = 0.001, and 𝑝𝑜𝑤𝑒𝑟 = 2. Finally, the Solref values were tuned to 

𝑇 = 0.005 and damping ratio 𝑑' = 1. 

The grasp conversion process started by generating simplified hands in simulation for 

each grasp episode in the GRAB dataset (Sec. 3.6), followed by contact pose adaptation to 

eliminate hovering or over-penetrating contacts (Sec. 3.7). Final grasp initial state balancing was 
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performed using the constraint force balancing method (Sec. 3.7.1.3). The grasp trajectory 

smoothing was performed with tuned smoothing weights of 𝑠 = 0.004 and 𝑠 = 0.014 for XYZ 

and quaternion poses, respectively. To analyze the converted grasp’s stability over the imported 

trajectories, each grasp episode was simulated with the initial grasp forces held constant. 

The policy training experiments were conducted with actor and critic input sizes of 161, 

output sizes of 20, and a hidden layer with a size of 256. The dataset was divided in two sets 

using an 80% - 20% split to produce a training set and test set, respectively. The test dataset was 

set aside for final policy validation and was never used to alter policy parameters or training 

hyperparameters. The PPO training process was run using a constant sampled data batch length 

of 16,384 timesteps for 500 batches. A policy output standard deviation value of 0.01 was 

selected to promote grasp policy exploration during training, and a maximum 𝐿OOS clip value of 

0.2 was used. Two reward functions were tested: the constant time reward (Eq. 3.16), and the 

shaped exponential reward function (Eq. 3.17). 
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Chapter 4 Results and Discussion 

4.1 Introduction 
This chapter presents the research results of the two primary objectives: the GRAB dataset 

transfer into Mujoco and the PPO learning with the multi-layer perceptron neural network. 

Sec. 4.2 addresses the effectiveness of converting human grasps from the GRAB dataset 

into Mujoco. The objective was to ensure that the viable human grasps remained viable after 

being replicated in simulation. The primary metric used to evaluate the grasp viability was the 

duration of grasp stability given the converted initial grasp state, or “initial grasp duration”. This 

value also served to establish a baseline for the learned policies evaluated in the second results 

section (Sec. 4.3). The initial grasp duration was compared to episode characteristics such as 

subject, grasp object, maximum acceleration, and number of contacts, to determine if the dataset 

conversion process introduced unwanted biases or had specific weaknesses. 

Sec. 4.3 discusses the attempt to learn a grasp policy using a PPO reinforcement learning 

process. The losses for the neural network structure (Sec. 3.10) during PPO policy training 

indicate learning effectiveness. Two reward functions were tested: a generic constant non-scaling 

reward for each timestep (Sec. 3.10.2, Eq. 3.16); and an exponential reward function scaling with 

time, while penalizing grasp force magnitude (Sec. 3.10.2, Eq. 3.17). 

4.2 Grasp Conversion Results 

To test the stability of the calculated initial states, each grasp episode was simulated with no 

additional inputs. The initial grasp forces calculated by the contact constraint force balancing 

process, described in Sec. 3.7.1.3, were held constant until the grasp was lost or the episode 

completed. The stable-grasp duration with only the initial forces is referred to as “initial grasp 

durations” (IGD) for the rest of this section. The initial forces were not expected to maintain the 

grasp for the entire grasp episode, since the forces do not adapt to the grasp trajectory, external 

accelerations, or disturbances. However, the initial grasp forces were expected to keep the grasps 

stable for the initial portion of the episode so that a learning policy had a starting point that is 

nominally stable. Ideally, the initial grasp forces would maintain initial stability across episodes 

that vary in number of contacts and disturbances. The results also served as a baseline for the 

trained policy effectiveness. 

The stability results were collected with a force overgrip of 20%, within the typically 

observed human overgrip range of 10-40% [2] [4]. Fig. 4.1 is a histogram of number of episodes 
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Figure 4.1 
Initial grasp 
duration 
distribution 

for varying stable grasp duration, showing the distribution of the stable initial grasp durations 

and maximum episode durations (Fig. 4.1a), and the distribution of the stable initial grasp 

durations relative to the maximum episode duration, or relative stable duration (Fig. 4.1b). As 

expected, Fig. 4.1a shows that the stable grasp durations distribution was shifted left from the 

maximum duration distribution, representing a smaller mean duration compared to the maximum 

durations. The relative episode stability duration distribution in Fig. 4.1b shows that the initial 

grasp stability durations were not equally distributed relative to the maximum episode length. 

Out of the total 503 grasp episodes, 81 (16.1%) were stable for the entire episode duration. 

However, the mode of the relative stable duration distribution was within the 10% duration bin. 

This could indicate that some factor of the grasp initial condition separates grasps that are stable 

for the full episode duration from grasps that are only stable for the initial portion of the episode. 

 
          (a) 

 
          (b) 

Figure 4.1. Histogram of number of episodes for varying stable grasp durations given the 

constant initial grasp forces: (a) with distribution of maximum episode duration, and (b) with the 

stable initial grasp duration as a percentage of the maximum episode duration. 

 

Since the initial grasp forces were held constant, the initial grasp stability was expected to 

be disrupted by high accelerations or simply accumulated slip. Fig. 4.2 is a histogram of number 

of episodes for varying stable grasp durations, showing the distribution of episode maximum 

durations in the dataset and the average initial stable grasp duration. As expected, the average 

initial grasp duration decreased with a greater maximum episode length, since greater maximum 

episode length decreases the relative duration of the stable grasp region. The relative initial grasp 
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Figure 4.2 
Grasp episode 
maximum 
durations 

Figure 4.3 Maximum 
episode accelerations 

duration also clearly had a negative correlation to the maximum episode XYZ and angular 

accelerations, as shown in Figs. 4.3a and 4.3b. This is also expected, as the initial grasp forces 

did not compensate for disturbances; accelerations greater than the acceleration at the initial state 

are thus expected to upset or degrade the grasp. Table 4.1 contains the calculated correlation 

values for the maximum durations and accelerations and shows that the negative correlations 

with the initial grasp duration are all strong with low p-values. 

 
Figure 4.2. Histogram of number of episodes for varying grasp episode maximum duration 

(blue) and stable grasp duration expressed as a percentage of entire episode duration (orange). 

 

 
                            (a) 

 
          (b) 

Figure 4.3. Histogram of number of episodes for varying grasp episodes distributed according 

to: (a) maximum XYZ acceleration, and (b) wrist angular acceleration in the episode. 
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Table 4.1. Episode metrics correlation to stable grasp duration ratio. 

 Pearson 

Correlation 

Pearson 

p-value 

Spearman 

Correlation 

Spearman 

p-value 

Max. episode 

length 

-0.30 5.80e-10 -0.52 2.13e-36 

Max. XYZ wrist 

acceleration 

-0.23 1.13e-7 -0.27 7.96e-10 

Max. angular 

wrist acceleration 

-0.14 2.19e-3 0.22 7.68e-7 

 

A key requirement of the dataset conversion into simulation was to ensure that the initial 

grasps were stable for episodes with a variety of starting conditions. Fig. 4.4 shows the 

distribution of average initial grasp stability vs. episode characteristics, such as the initial number 

of grasp contacts, grasped object, subject, and episode task. Each histogram contains the 

distribution of the dataset according to a specific metric, as well as the average initial grasp 

duration as a percentage of the maximum duration. None of these episode characteristics were 

expected to correlate to the initial grasp duration, as a correlation might indicate an unwanted 

bias in the dataset. The distributions in Fig. 4.4 do not demonstrate any correlations between the 

initial grasp duration and the number of initial contacts, subject, or episode task; however, the 

distribution in Fig. 4.4b does highlight specific objects that the initial grasp struggles to keep 

stable. The large pyramid (P1) was only kept stable for on average 10% of the episode durations. 

Upon review of the raw dataset footage, the large pyramid’s low initial grasp duration appeared 

to be due to the large pyramid being too large to be grasped from opposing edges, and often 

having to be grasped using the top face, unlike the small (C3) and medium pyramids (C2). In 

pyramid grasps using the top face, the contact normal forces oppose the friction forces lifting the 

object, making the grasp very sensitive to error and disturbances. The large sphere (S1) had a 

low relative grasp duration of 12% for similar reasons, as the sphere was too large for the hand to 

fully enclose it. This may be the reason that the initial grasp duration progressively increased to 

18% for the medium sphere (S2) and 26% for the small sphere (S3), though this is only an 

observation for three sphere sizes. The last poorly performing object was the small cube with a 

average relative grasp duration of 8%, which did not have a clearly observable explanation. 
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Figure 4.4 Episode initial 
grasp duration comparison 

Although size could have made the small cube grasps more vulnerable to pose error, the small 

cylinder (Y3) was of similar size, yet had a much higher stable duration (26%). Overall, 

differences in initial grasp stability due to the grasped object are expected, as objects have 

different characteristic grasps with varying robustness. 

 
          (a) 

 
                           (b) 

 
          (c) 

 
          (d) 

Figure 4.4. Histograms showing number of episodes for average initial stable grasp duration and 

episode characteristic such as: (a) number of initial contacts, (b) grasped object, (c) subject 

performing the task, and (d) interaction task. The initial grasp durations for (d) are in absolute 

terms, since each task category had different average maximum durations. The grasped objects in 

(b) are labeled according to object (Cube: C, Sphere: S, Cylinder: Y, Pyramid: P) and size 

(Large: 1, Medium: 2, Small: 3). 
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4.2.1 Grasp Transfer Discussion 

Overall, the stability of the transferred grasps behaved as expected. Episode characteristics such 

as acceleration and maximum duration, which were expected to decrease the initial grasp 

stability, were shown to have the expected negative correlations. Characteristics such as number 

of contacts, subject, and task, broadly had the same initial grasp stability, while stability varied 

based on object type and size. A manual review of the original grasp tasks suggests that 

differences in initial grasp duration within grasp object types (sphere, pyramid) were a result of 

the most common grasp used for the object. Although the initial grasp durations broadly behaved 

as expected, as shown in Fig. 4.2, 4.3, and 4.4, the divided distribution of grasp duration ratios in 

Fig. 4.1 with the most common relative stable duration bins of 0-10% and 90-100%, suggest that 

some other property of each grasp episode divides grasps that are stable for the entire duration 

(100%) from grasps that only maintain stability for a short time (10% or less). Although the 

contact constraint force balancing method did not completely stabilize all grasp episodes, the 

initial grasp stability results show that finger and contact pose information with the addition of 

contact distance values is sufficient to analytically infer reasonable initial grasp forces from the 

motion-captured initial poses. 

4.3 PPO Training Results 

Two training runs were performed using PPO and the multi-layer perceptron structure from Sec. 

3.10.1. One run used a constant reward for each timestep (Eq. 3.16), while the other used a 

reward function that exponentially scaled with timestep and inversely with grasp magnitude (Eq. 

3.17). The progression of the actor and critic networks was measured through the network losses 

(Fig. 4.5), specifically mean squared-error loss. The actor network used the estimated value to 

calculate loss, while the value network used the accumulated reward. Since each simulated grasp 

episode ran until either the grasp object was dropped or the maximum episode duration was 

reached, data from multiple grasp episodes were concatenated to form training data batches of 

fixed size. The number of batches trained on was used instead of epochs in the Fig. 4.5 loss 

graphs to keep the loss value relative to a constant size of observation and action sets, as well as 

a constant number of parameter updates. 
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Figure 4.5 
PPO training 
loss 

 
          (a) 

 
          (b) 

Figure 4.5. PPO training loss over training batches for exponential (Eq. 3.6), and constant (Eq. 

3.5) reward functions: (a) Actor (policy) network loss, and (b) Critic (value estimation) network 

loss. The value estimation loss in Fig. 4.5(b) is normalized to allow both runs to be visible.  

 

Figs. 4.6 and 4.7 are histograms of the number of episodes for different grasp durations, 

showing the direct comparison between the stable grasp durations under the trained policy 

compared to the baseline initial grasp stability after 500 training batch iterations. The leftward 

shift of almost all grasp episodes into the smallest duration bin, indicating all episodes lost grasp 

stability in less than 1 second, confirmed what the loss graphs in Fig. 4.5 indicated: the trained 

policies performed worse than the initial grasp duration baseline. Fig. 4.6a shows that the policy 

trained with the constant reward function immediately loses grasp stability, with 94% of the test 

episodes retaining stability for less than 0.1 s. The policy trained with the exponential reward 

function performed better with only 69% of the episodes retaining grasp stability for less than 0.1 

s. However, the exponential reward policy still underperforms compared to the initial grasp 

baseline. In the test set, the average reduction in grasp stability time was -0.11 s over all 

episodes. A minority (23%) of the grasp episodes were stable longer under the learned policy, 

though the average increase in the grasp duration of 0.38 s was higher than the average duration 

reduction. The change of grasp duration in seconds for episodes not bounded by the minimum or 

maximum episode lengths was found to negatively correlate with the initial grasp duration with a 

Pearson correlation of -0.69 and p-value of 9.79e-11. This shows that grasps that were not held 

stable by the initial grasps benefited most from the learned policy. 
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Figure 4.6 Constant 
reward policy grasp 
durations 

Figure 4.7 Exponential 
reward function grasp 
durations 

Figure 4.6. Histograms of the number of episodes for different grasp durations. Grasp duration 

distribution for policy trained with constant reward function (Eq. 3.16) for (a) before training, 

and (b) after 500 training batches. The histograms plot the policy episode durations on the 

training (orange) and test (green) additively stacked together. For comparison the baseline initial 

grasp duration (blue) is plotted to reveal the overlap (dark orange) between the trained policy 

durations and the baseline durations. 

 

Figure 4.7. Histograms of the number of episodes for different grasp durations. Grasp duration 

distribution for policy trained with exponential reward function (Eq. 3.17) for: (a) before 

training, and (b) after 500 training batches. 

 

 
        (a) 

 
         (b) 

 
         (a) 

 
         (b) 
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Figure 4.8 Policy 
performance without 
slip prediction inputs 

Fig. 4.8 evaluates a policy trained using the exponential reward function without slip 

prediction inputs. The actor loss (Fig. 4.8a) generally increases over the number of batches 

trained, indicating that similar to the constant reward loss, the policy does not converge. The 

grasp stability duration (Fig. 4.8b) confirms this conclusion, as 99% of the test grasps were stable 

for less than 0.1 s. 

 
           (a) 

 
       (b) 

Figure 4.8. Grasp policy trained without slip prediction inputs using the exponential reward 

function: (a) actor loss, (b) grasp duration distribution after 500 training batches. 

 

4.3.1 PPO Training Discussion 

The training losses from Fig. 4.5a and Fig 4.8.a clearly show that in most cases the policy 

network did not learn a viable grasp stabilization policy. In a successful training session, the 

actor loss would be expected to decrease as the policy parameters are altered according to the 

policy loss. Although the critic loss (Fig. 4.5b) quickly fell from the initial value, the actor loss 

(Fig 4.5a) increased and remained relatively stable at a value higher than the initial loss. The 

only policy that had an actor loss that decreased slightly through training was the policy trained 

with the exponential reward and slip prediction inputs. However, the final actor loss was still 

above the initial starting value. The distributions of grasp stability durations in Figs 4.6, 4.7, and 

4.8(b) demonstrate that only the policy with the exponential-reward with slip prediction inputs 

converged to a grasp stability solution, though it was a suboptimal solution unable to keep the 

episode grasps stable for as long as the initial grasp forces. 
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Although no trained policy exceeded the performance of the baseline initial grasp, there 

was a clear difference in the before-and-after training results for the policy using the exponential 

reward function (Eq. 3.17). The duration distribution after training in Fig. 4.7b clearly showed a 

minor improvement over the original duration distribution in Fig. 4.6a. In contrast, the policy 

trained with a constant time-based reward function (Eq. 3.16) showed no improvement through 

training, with almost all episodes (94%) losing stability immediately. The difference in training 

improvement between the reward functions suggests that incorporating a reward penalty for total 

grasp force magnitude prompted a poor stabilization policy to be learned. 

The comparison between the exponential-reward policies trained with and without slip 

prediction inputs clearly demonstrates that the slip prediction inputs do benefit the learned 

policy, through to a very small degree. The policy without slip predictions did not converge, and 

like the failure of the force-closure method, discussed in Sec. 3.7.1.1 for balancing the initial 

states, a policy only using hand positions and forces could not maintain grasp stability in the 

simulation. 
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Chapter 5 Conclusion 

5.1 Conclusion 
The objective to transfer a set of human grasps into simulation was largely successful. The grasp 

poses were recreated with a simplified hand model, and the inferred grasp forces kept the initial 

grasp stable for the initial portion of most grasp episodes. The initial grasp durations negatively 

correlated to the maximum episode accelerations as expected, while not correlating to factors 

such as subject, object, task, or number of contacts. 

The objective of predicting slip in simulation was also successful. Leveraging the 

coupled nature of contact distance and contact impedance of Mujoco’s soft contact model, slip 

could be detected through direct measurement of contact-distance zero-crossing frequency, 

bypassing any need for contact surface information. This model of slip detection was extended to 

make slip predictions by branching the simulation and stepping forward in time until slip was 

detected. So far, no other research appears to have used this method to detect or predict contact 

slip in Mujoco. 

The objective to learn a grasp stabilization policy based on slip prediction inputs 

produced mixed results. A comparison between policies trained with and without slip prediction 

inputs showed that the slip predictions did contribute to a better learned policy. However, the 

failure of the policy to converge on a solution superior to the initial grasp baseline indicates that 

slip prediction was not sufficient to replace visual information for learning grasp stability 

policies via a multi-layer perceptron in simulation. The difference in training outcome also 

depended on reward function, suggesting that slip prediction as a policy input may require 

specific adaptations through reward shaping. Other literature [26] has made similar conclusions 

on the importance of reward shaping for learning grasp policies in simulation. Ultimately, the 

performance of the grasp stabilization policies using slip prediction in simulation suggests that 

while slip predictions in simulation may assist in learning a grasp stabilization policy, the learned 

policy does not compare to policies trained on physical systems with real-world slip prediction or 

simulated systems trained with visual information. 

5.2 Future Work 

Expansion of the scope of the dataset imported into Mujoco to include more objects and grasps 

could create a better foundation for future grasp policy learning attempts. The most significant 

improvement would be to expand the number of imported objects. Since Mujoco’s contact model 
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restricts collision geometries to convex meshes only, this research only included convex grasp 

objects. Decomposing non-convex objects into convex subcomponents was attempted with the 

VHACD library; however, the grasp contacts were found to rapidly change location when close 

to the edges where the decomposed object pieces were joined. A possible method of addressing 

this issue would be to decompose the object surface based on proximity to the grasp fingers so 

that surfaces near contact points are preserved as single geometries. 

It is important to consider that the function approximator structures used in this research 

for policy learning were simple and not specifically altered for processing inputs such as slip 

prediction. The chosen policy structure was a simple multi-layer perceptron, one of the basic 

forms of neural network. The same type of structure was used in other grasp simulation studies 

[15] [29] to combine processed visual pose features and directly sampled grasp-pose information 

(Sec. 2.3). However, the hypothesis that slip prediction could be processed together with 

proprioceptive information directly may not be true. Given the limited degree of learning 

displayed by the policy network, perhaps just as visual information was processed through 

specialized convolutional-neural-network layers before insertion into the multi-layer perceptron, 

slip prediction information may also require specialized processing before insertion into a multi-

layer perceptron. 

One initial expectation for the learned policies was for the policy parameters to converge 

in passing through the previous joint forces as outputs. This configuration would replicate the 

initial grasp solution by simply holding the initial calculated forces constant. However, this 

convergence did not occur, suggesting that the local minimum represented by a constant initial 

force policy was a form of unstable equilibrium not easily accessible though gradient descent, at 

least from the randomly initialized policy weights. An avenue of further exploration would be to 

initialize the policy in a pass-through state so that policy exploration starts immediately from the 

constant force policy. 
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